WO2012124294A1 - Fourier transform spectrometer and fourier transform spectrometry - Google Patents

Fourier transform spectrometer and fourier transform spectrometry Download PDF

Info

Publication number
WO2012124294A1
WO2012124294A1 PCT/JP2012/001554 JP2012001554W WO2012124294A1 WO 2012124294 A1 WO2012124294 A1 WO 2012124294A1 JP 2012001554 W JP2012001554 W JP 2012001554W WO 2012124294 A1 WO2012124294 A1 WO 2012124294A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measured
fourier transform
semi
interferometer
Prior art date
Application number
PCT/JP2012/001554
Other languages
French (fr)
Japanese (ja)
Inventor
長井 慶郎
利夫 河野
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Priority to JP2013504551A priority Critical patent/JP5737386B2/en
Publication of WO2012124294A1 publication Critical patent/WO2012124294A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Definitions

  • the present invention relates to a spectrometer and a spectroscopic method, and more particularly to a Fourier transform spectrometer and a Fourier transform spectroscopic method.
  • the spectrometer is a device that measures the spectrum of the light to be measured, one of which is an interferometer that measures the interference light of the light to be measured, and Fourier-transforms the measurement result, thereby measuring the light to be measured.
  • an interferometer that measures the interference light of the light to be measured
  • Fourier-transforms the measurement result thereby measuring the light to be measured.
  • the Fourier spectrometer disclosed in Patent Document 1 includes an interferometer that emits interference light of light to be measured emitted from a light source, a photodetector that detects the light intensity of interference light emitted from the interferometer, An analog-to-digital converter (AD converter) that converts the output of the photodetector from an analog signal to a digital signal, and a spectrum of the light to be measured is obtained by performing Fourier arithmetic processing on the output of the AD converter. And an arithmetic processing circuit.
  • AD converter analog-to-digital converter
  • the output of the interferometer (the output of the photodetector, the output of the AD converter) is such that light of a plurality of wavelengths emitted from the light source is collectively interfered by the interferometer.
  • This combined waveform is called an interferogram, and has a profile having one or a plurality of steep peaks in a predetermined range and a substantially zero level in the remaining range.
  • the central peak among the one or more steep peaks is called a center burst.
  • the Fourier spectrometer disclosed in Patent Document 1 detects minute signals near zero with one AD converter, while detecting fluctuations in the center burst portion with other AD converters as non-saturated signals. The noise of the AD converter is reduced.
  • the Fourier spectrometer disclosed in Patent Document 1 requires two AD converters, and it is also necessary to match the timing when synthesizing the outputs.
  • the present invention has been made in view of the above-described circumstances, and its purpose is a Fourier that can detect even a minute signal near the zero level of an interferogram with a higher resolution even with a single AD converter.
  • a conversion spectrometer and a Fourier transform spectroscopy method are provided.
  • two first and second optical paths formed by a plurality of optical elements are provided between the incident position of the light to be measured and the interference position.
  • the plurality of optical elements is configured such that the optical path difference between the two first and second optical paths is zero.
  • a phase difference interferometer having a phase difference between the optical paths in the arrangement state where is arranged. Since the Fourier transform spectrometer and the Fourier transform spectroscopic method having such a configuration use a phase difference interferometer, the amplitude thereof is larger than that of an interferogram obtained by an interferometer equipped with a conventional phase compensator. Since the height (level) becomes small, even a single AD converter can detect a minute signal near the zero level of the interferogram with higher resolution.
  • FIG. 1 is a block diagram showing a configuration of a Fourier transform spectrometer in the embodiment.
  • FIG. 2 is a diagram mainly illustrating a configuration of an interferometer in the Fourier transform spectrometer according to the embodiment.
  • FIG. 3 is a diagram illustrating a spectrum of laser light emitted from the position measurement light source in the Fourier transform spectrometer according to the embodiment. The horizontal axis in FIG. 3 is the wave number (1 / wavelength), and the vertical axis is the magnitude of the amplitude.
  • FIG. 4 is a circuit diagram illustrating a configuration of an envelope detection unit in the Fourier transform spectrometer according to the embodiment.
  • the Fourier transform spectrometer D is a device that measures the spectrum of the light to be measured as a measurement target, measures the light to be measured with an interferometer, and the waveform of the interference light of the measured light to be measured.
  • This is a device for obtaining a spectrum of light to be measured by Fourier transforming (interferogram). For example, as shown in FIGS. 1 and 2, such a Fourier transform spectrometer D receives light (measurement light) emitted from the measurement target object SM and emits interference light of the measurement light.
  • the interferometer 11 that receives the interference light of the light to be measured obtained by the interferometer 11, and an electric signal of the waveform of the interference light of the light to be measured by photoelectric conversion (represents a change in light intensity in the interference light of the light to be measured)
  • a light reception processing unit 20 that outputs an electrical signal
  • a position detection processing unit 30 that detects the position of the movable mirror 115 of the interferometer 11, a control calculation unit 41, an input unit 42, and an output unit 43.
  • the measurement object SM may be a light source that emits light by itself, and is irradiated with light emitted from another light source, and radiates light by reflecting, transmitting, or re-radiating the light (for example, fluorescence emission). You may do.
  • the interferometer 11 receives measurement light to be measured, branches the incident measurement light into two first and second measurement lights, and the branched first and second measurement lights. Each travels (propagates) in the first and second optical paths, which are two different paths, and merges again. From this branch point (branch position), a merge point (merging position, interference position). If there is an optical path difference between the first and second optical paths until then, a phase difference is generated at the time of merging, so that interference fringes are generated by the merging.
  • an interferometer having various types of first and second optical paths such as a Mach-Zehnder interferometer can be used. In this embodiment, as shown in FIG. It is constituted by.
  • the interferometer 11 includes a semi-transparent mirror (half mirror, beam splitter) 112 as a plurality of optical elements, a fixed mirror 114, and a moving mirror 115 that moves in the optical axis direction.
  • the fixed mirror 114 and the movable mirror 115 are arranged so that the normals of the mirror surfaces are orthogonal to each other, and the semi-transparent mirror 112 has a normal line corresponding to each of the normal lines of the fixed mirror 114 and the movable mirror 115.
  • the light to be measured incident on the interferometer 11 is branched into two first and second light to be measured by the semi-transparent mirror 112.
  • the branched first first measured light is reflected by the semi-transparent mirror 112 and enters the fixed mirror 114.
  • the first light to be measured is reflected by the fixed mirror 114 and returns to the semi-transparent mirror 112 again following the optical path that has come.
  • the other branched second measured light passes through the semi-transparent mirror 112 and enters the movable mirror 115.
  • This second light to be measured is reflected by the movable mirror 115, and reversely follows the optical path that has come to return to the semi-transparent mirror 112 again.
  • the first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other.
  • the light to be measured is incident on the interferometer 11 along the normal direction on the mirror surface of the movable mirror 115, and the interference light of the light to be measured is reflected on the mirror surface of the fixed mirror 114.
  • the light is emitted from the interferometer 11 along the normal direction.
  • the movable mirror 115 may preferably have a configuration in which the reflecting surface moves in translation using a parallel leaf spring.
  • the movable mirror 115 having a parallel leaf spring structure includes an actuator (not shown) that gives a driving force to move the mirror surface from the outside, and a driving signal that resonates the reflecting surface (mirror surface) is given to the actuator.
  • the position of the movable mirror 115 when not driven (when stationary) is the center of movement (vibration) and becomes the reference position when stationary.
  • the position of the reflecting surface when the parallel leaf spring is stationary is “the optical path length on the fixed mirror 114 side and the optical path length on the movable mirror 115 side are formed of the same medium. This is a reference for the optical path on the movable mirror 115 side when the optical element is arranged so that the optical path difference is zero (0).
  • the interferometer 11 is arranged on the transmission side of the semi-transparent mirror 112 that has passed through the semi-transparent mirror 112 when the light to be measured is branched into two first and second measured light beams by the semi-transparent mirror 112.
  • a first retardation plate 113 is further provided. That is, in the present embodiment, the second measured light that has passed through the semi-transparent mirror 112 is incident on the movable mirror 115 via the first phase difference plate 113, and the second measured light that is reflected by the movable mirror 115 is The light enters the semi-transparent mirror 112 again through the first retardation plate 113.
  • the first phase difference plate 113 is an isotropic phase plate, and the first phase difference plate 113 with respect to the phase of light traveling in the vacuum or in air for the same distance as the thickness of the first phase difference plate 113. This causes a shift in the phase of the light traveling inside.
  • the later-described phase compensation plate CP, second phase difference plate 117, and transparent substrate of the semi-transparent mirror 112 also function in the same manner.
  • the incident optical is placed at an appropriate position between the measurement target object SM and the semi-transparent mirror 112.
  • a biconvex collimator lens 111 is disposed as a system, and the first and second light receiving units collect the interference light of the light to be measured generated by the first and second light beams to be combined and interfered by the semi-transparent mirror 112.
  • a biconvex condensing lens 116 is disposed as an emission optical system at an appropriate position between the semi-transparent mirror 112 and the first light receiving unit 21 in order to enter the lens 21.
  • the light reception processing unit 20 includes, for example, a first light reception unit 21, an amplification unit 22, and an analog-digital conversion unit (hereinafter referred to as “AD conversion unit”) 23.
  • the first light receiving unit 21 is a circuit that outputs an electric signal corresponding to the light intensity of the interference light of the light to be measured by receiving and photoelectrically converting the interference light of the light to be measured obtained by the interferometer 11.
  • the first light receiving unit 21 is, for example, an infrared sensor that includes an InGaAs photodiode and its peripheral circuits.
  • the amplifying unit 22 is an amplifier that amplifies the output of the first light receiving unit 21 with a predetermined amplification factor set in advance.
  • the AD conversion unit 23 is a circuit that converts the output of the amplification unit 22 from an analog signal to a digital signal (AD conversion).
  • the AD conversion timing is executed at the zero cross timing input from the zero cross detector 37 described later.
  • the position detection processing unit 30 includes, for example, a position measurement light source 31, a second light receiving unit 36, a zero cross detection unit 37, and an envelope detection unit 38. Then, the position detection processing unit 30 obtains the interference light of the laser light emitted from the position measurement light source 31 with the interferometer 11, as shown in FIG. 2, a collimator lens 32, a semi-transparent mirror 33, A semi-transparent mirror 34 and a condenser lens 35 are further provided.
  • the position measurement light source 31 is a light source device that emits laser light having a predetermined line width set in advance.
  • the position measuring light source 31 includes, for example, a semiconductor laser that emits laser light having a predetermined line width. Further, for example, the position measuring light source 31 includes a laser device that emits monochromatic laser light, and a high-frequency superimposing device that superimposes the monochromatic laser light emitted from the laser device at a high frequency. A laser beam having a predetermined line width is emitted.
  • the predetermined line width is a wavelength width (frequency width) such that the amplitude of the interference light of the laser light obtained by the interferometer 11 changes according to the movement of the movable mirror 115 of the interferometer 11.
  • the amplitude of the interference light of the laser light does not change due to the movement of the movable mirror 115 of the interferometer 11.
  • a Gaussian profile having a full width at half maximum (FWHM) of 2.3 / cm with respect to a center wave number of 15151.52 / cm. have.
  • a collimator lens 32 and a half mirror (half mirror, beam splitter) 33 are incident optical systems for causing the laser light emitted from the position measuring light source 31 to enter the interferometer 11 with parallel light.
  • the semi-transparent mirror 33 is disposed between the collimator lens 111 and the semi-transparent mirror 112 so that the normal line intersects the normal line (optical axis) of the movable mirror 115 at 45 degrees.
  • the collimator lens 32 is, for example, a biconvex lens, and is appropriately set so that the laser light emitted from the position measurement light source 31 is incident on the semi-transparent mirror 33 arranged in this manner at an incident angle of 45 degrees. Placed in position.
  • the semi-transparent mirror (half mirror, beam splitter) 34 and the condenser lens 35 are an emission optical system for taking out the interference light of the laser beam generated by the interferometer 11 from the interferometer 11.
  • the semi-transparent mirror 34 is disposed between the semi-transparent mirror 112 and the condenser lens 116 so that the normal line intersects the normal line (optical axis) of the fixed mirror 114 at 45 degrees.
  • the condensing lens 35 is, for example, a biconvex lens, and condenses the interference light of the laser light emitted at an emission angle of 45 degrees in the semi-transparent mirror 34 arranged in this manner and enters the second light receiving unit 36.
  • the semi-transparent mirror 33 may be a dichroic mirror that reflects laser light and transmits measured light.
  • the semi-transparent mirror 34 reflects interference light of laser light and transmits interference light of measured light. A dichroic mirror may be used.
  • the laser light having the predetermined line width emitted from the position measuring light source 31 is collimated.
  • the light beam 32 is converted into parallel light, and its optical path is bent by about 90 degrees by the semi-transparent mirror 33, and travels along the optical axis of the interferometer 11 (normal direction on the mirror surface of the movable mirror 115). Therefore, this laser light travels in the interferometer 11 as with the light to be measured, and the interferometer 11 generates the interference light.
  • the interference light of the laser light is bent about 90 degrees by the semi-transparent mirror 34, taken out from the interferometer 11, collected by the condenser lens 35, and received by the second light receiving unit 36.
  • the second light receiving unit 36 receives the interference light of the laser light obtained by the interferometer 11 and photoelectrically converts it, thereby outputting an electric signal corresponding to the light intensity of the interference light of the laser light. It is a circuit to do.
  • the second light receiving unit 36 is, for example, a light receiving sensor including a silicon photodiode (SPD) and its peripheral circuit.
  • SPD silicon photodiode
  • the second light receiving unit 36 outputs an electrical signal corresponding to the light intensity of the interference light of the laser light to each of the zero cross detection unit 37 and the envelope detection unit 38.
  • the zero-cross detection unit 37 is a circuit that detects a timing at which the electric signal corresponding to the light intensity of the interference light of the laser beam input from the second light receiving unit 36 becomes zero.
  • the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the movable mirror 115 is There is a 2 ⁇ shift before and after. For this reason, the interference light of the laser light repeats the intensity in a sine wave shape as the movable mirror 115 moves.
  • the zero cross detector 37 detects the zero cross of the electrical signal that repeats the strength in a sine wave form.
  • the zero-cross detection unit 37 outputs the detected zero-cross timing to the AD conversion unit 23, and the AD conversion unit 23 outputs the interference light of the measured light input from the first light receiving unit 21 at the zero-cross timing.
  • An electrical signal corresponding to the light intensity is sampled and AD converted.
  • the envelope detector 38 is a circuit that detects an envelope of an electric signal input from the second light receiver 36 and corresponding to the light intensity of the interference light of the laser beam.
  • the envelope detector 38 can employ various circuit configurations. For example, as shown in FIG. 4, the envelope detector 38 is connected in series to the diode D by being connected to the diode D and the cathode terminal of the diode D.
  • the resistor element R is connected to the resistor element R, and the capacitor C is connected in parallel to the resistor element R. Both ends of the series-connected diode D and the resistor element R are input ends, and both ends of the resistor element R are The output end.
  • the envelope detector 38 can detect the envelope with such a simple circuit configuration.
  • the envelope detection unit 38 outputs an envelope of an electric signal corresponding to the detected light intensity of the interference light of the laser beam to the control calculation unit 41.
  • the control calculation unit 41 controls each part of the Fourier transform spectrometer D according to the function of each part in order to obtain the spectrum of the light to be measured.
  • the control calculation unit 41 is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically) that stores various programs executed by the CPU, data necessary for the execution, and the like in advance.
  • the microcomputer includes a nonvolatile memory element such as an Erasable Programmable Read Only Memory), a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and a peripheral circuit thereof.
  • the control calculation unit 41 is functionally configured with a spectrum calculation unit 411 and a center burst position calculation unit 412 by executing a program.
  • the center burst position calculation unit 412 detects the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the light under measurement is zero. More specifically, in this embodiment, the center burst position calculation unit 412 detects a position that gives the maximum value of the envelope detected by the envelope detection unit 38 as the position of the center burst. As described above, in the present embodiment, the position of the center burst detects the envelope of the light intensity in the interference light of the laser light obtained by making the laser light having a predetermined line width enter the interferometer 11, It is obtained by detecting the position giving the maximum value of the detected envelope.
  • the spectrum calculation unit 411 performs Fourier transform on the interferogram of the light to be measured obtained by the interferometer 11 based on the position of the center burst detected by the center burst position calculation unit 412, thereby A spectrum is obtained.
  • the input unit 42 measures, for example, various commands such as a command for instructing the start of measurement, and a spectrum such as an input of an identifier in the light source SM to be measured and a selection input of a window function used at the time of Fourier transform.
  • a device that inputs various data necessary for the Fourier transform spectrometer D such as a keyboard and a mouse.
  • the output unit 43 is a device that outputs the command and data input from the input unit 42 and the spectrum of the light to be measured predicted by the Fourier transform spectrometer D.
  • the output unit 43 includes a CRT display, an LCD, an organic EL display, and the like.
  • a display device such as a plasma display or a printing device such as a printer.
  • FIG. 5 is a diagram for explaining the configuration of the interferometer in the Fourier transform spectrometer of the embodiment, the waveform of the interference light of the light under measurement (interferogram), and the waveform of the interference light of the laser light of the position measurement light source.
  • FIG. 5A shows the configuration of the interferometer in the Fourier transform spectrometer of the embodiment
  • FIG. 5B shows the waveform (interferogram) of the interference light of the measured light schematically drawn.
  • FIG. 5C shows a waveform of interference light of the laser light of the position measurement light source schematically drawn.
  • FIG. 6 is a diagram illustrating a waveform (interferogram) of interference light of actually measured light as an example.
  • FIG. 5A shows the configuration of the interferometer in the Fourier transform spectrometer of the embodiment
  • FIG. 5B shows the waveform (interferogram) of the interference light of the measured light schematically drawn
  • FIG. 5C shows a waveform of interference light of the laser light of the position measurement light source schematic
  • FIG. 6A shows the whole
  • FIG. 6B shows the vicinity of the zero level
  • FIG. 6C shows the vicinity of the center burst.
  • FIG. 7 is a diagram illustrating an interference waveform of laser light from a position measurement light source that is actually measured.
  • FIG. 7A shows the whole
  • FIG. 7B shows the vicinity of the end
  • FIG. 7C shows the vicinity of the maximum value.
  • FIG. 8 is a diagram for explaining the configuration of the Michelson interferometer in the conventional Fourier transform spectrometer, the waveform of the interference light of the light under measurement (interferogram), and the waveform of the interference light of the laser light of the position measurement light source.
  • FIG. 8A shows the configuration of a Michelson interferometer in the case of including a phase compensation phase difference plate in a conventional Fourier transform spectrometer
  • FIG. 8B shows the phase compensation phase difference plate
  • FIG. 8C schematically shows the interference light waveform (interferogram) of the measured light
  • FIG. 8D shows the configuration of the Michelson interferometer in the case where it is not provided.
  • the waveform of the interference light of the laser beam of the light source for position drawing drawn typically is shown.
  • FIG. 9 is a diagram illustrating a waveform (interferogram) of interference light of actually measured light as a conventional example.
  • FIG. 9A shows the whole
  • FIG. 9B shows the vicinity of the zero level
  • FIG. 9C shows the vicinity of the center burst.
  • FIG. 9A shows the whole
  • FIG. 9B shows the vicinity of the zero level
  • FIG. 9C shows the vicinity of the center burst.
  • FIG. 9A shows the whole
  • FIG. 9B shows the vicinity of the zero
  • FIG. 10 is a diagram showing an actually measured interference waveform of laser light from a position measuring light source as a conventional example. 10A shows the whole, FIG. 10B shows the vicinity of the end, and FIG. 10C shows the vicinity of the maximum value.
  • FIG. 11 is a diagram showing a phase shift that occurs in the semi-transparent mirror.
  • FIG. 12 is a diagram showing the phase when the phase shift caused by the semi-transparent mirror is compensated.
  • the horizontal axis in FIGS. 11 and 12 indicates the wavelength expressed in nm, and the vertical axis indicates the phase expressed in degrees.
  • FIG. 13 is a diagram illustrating the relationship between the interferogram and the window function. The horizontal axis in FIG. 13 indicates the optical path difference, and the vertical axis indicates the amplitude.
  • the Fourier transform spectrometer D takes in the measurement light emitted from the measurement object SM.
  • the measured light enters the interferometer 11 and is received by the first light receiving unit 21 as interference light of the measured light. More specifically, the light to be measured is converted into parallel light by the collimator lens 111 and is reflected and transmitted by the semi-transparent mirror 112 via the beam splitter 33 to be branched into the first and second light to be measured.
  • the first light to be measured branched by being reflected by the semi-transparent mirror 112 enters the fixed mirror 114, is reflected by the fixed mirror 114, and returns to the semi-transparent mirror 112 again by following the optical path that has come.
  • the second light to be measured branched by passing through the semi-transparent mirror 112 is incident on the movable mirror 115 via the first phase difference plate 113, reflected by the movable mirror 115, and traces the optical path that has come reversely. Return to the semi-transparent mirror 112 again.
  • the first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other.
  • the Fourier transform spectrometer D has at least one optical path so that the difference in the number of refraction regions accompanied by the optical path extension is 2 or more in each light passing through the two first and second optical paths.
  • a first retardation plate 113 which is an optical element made of a transparent substrate, is provided therein (see FIG. 5).
  • the refracting region accompanied by the optical path extension is a region in which the optical path length is increased by refraction compared to the optical path length when the light is not refracted between two parallel planes.
  • the optical path inside the transparent member that constitutes the semi-transparent mirror 112 is accompanied by the extension of the optical path.
  • the internal region of the transparent member corresponds to a refractive region, and the optical path inside the transparent member constituting the first retardation plate 113 is accompanied by an optical path extension, and the inside of the transparent member constituting the first retardation plate 113 The region corresponds to the refractive region.
  • the difference in the number of refractive regions between the optical path from the incident point of the semi-transparent mirror 112 to the movable mirror 115 and the optical path from the incident point to the fixed mirror 114 is 2, and the optical path difference is It will be set larger.
  • the interference light of the light to be measured is emitted from the interferometer 11 to the first light receiving unit 21.
  • the first light receiving unit 21 photoelectrically converts the incident interference light of the measurement light, and outputs an electrical signal corresponding to the light intensity in the interference light of the measurement light to the amplification unit 22.
  • the amplifying unit 22 amplifies the electric signal corresponding to the interference light of the light to be measured with a predetermined amplification factor, and outputs it to the AD converting unit 23.
  • the Fourier transform spectrometer D also captures laser light having a predetermined line width emitted from the position measurement light source 31.
  • This laser light is incident on the interferometer 11 via the beam splitter 33, interferes with the interferometer 11 in the same manner as described above, and is received by the second light receiving unit 36 via the beam splitter 34 as interference light of the laser light.
  • the second light receiving unit 36 photoelectrically converts the incident interference light of the laser beam, and outputs an electric signal corresponding to the light intensity in the interference light of the laser beam to each of the zero cross detection unit 37 and the envelope detection unit 38.
  • the zero cross detection unit 37 detects a timing at which the electric signal corresponding to the interference light of the laser beam becomes zero as a zero cross timing, and outputs the zero cross timing to the AD conversion unit 23 as a sampling timing (AD conversion timing).
  • the movable mirror 115 of the interferometer 11 is moved along the optical axis direction under the control of the control calculation unit 41.
  • the AD conversion unit 23 samples the electrical signal output from the amplification unit 22 according to the light intensity in the interference light of the light to be measured at the zero cross timing input from the zero cross detection unit 37, and converts the electrical signal from an analog signal to a digital signal. A / D conversion is performed, and the electric signal of the digital signal subjected to the AD conversion is output to the spectrum calculation unit 411 of the control calculation unit 41.
  • an interferogram as shown in FIG. 5B and FIG. 6 is input from the AD conversion unit 23 to the spectrum calculation unit 411 of the control calculation unit 41.
  • the interferogram generated by the Fourier transform spectrometer D in the present embodiment will be described in comparison with the interferogram generated by the conventional phase-compensated Fourier transform spectrometer.
  • the Michelson interferometer without the phase compensation plate for phase compensation includes a semi-transparent mirror 112, a fixed mirror 114, and a moving mirror 115 that moves in the optical axis direction.
  • the fixed mirror 114 and the movable mirror 115 are arranged so that their optical axes are orthogonal to each other, and the semi-transparent mirror 112 intersects each of these optical axes at an angle of 45 degrees and at the intersection of these optical axes. It arrange
  • the light to be measured is reflected by the semi-transparent mirror 112 and incident on the fixed mirror 114, reflected by the fixed mirror 114, returned to the semi-transparent mirror 112, and transmitted through the semi-transparent mirror 112.
  • the optical path (semi-transparent mirror 112 ⁇ fixed mirror 114 ⁇ semi-transparent mirror 112) and the semi-transparent mirror 112 are incident on the movable mirror 115, reflected by the movable mirror 115, returned to the semi-transparent mirror 112, and reflected by the semi-transparent mirror 112.
  • Two optical paths of the second optical path are formed.
  • the optical path difference between the two first and second optical paths is zero.
  • the merging position interference position
  • each of these two first and second optical paths is formed of the same medium is, for example, the case where the first and second optical paths are formed of the same material as the transparent substrate of the semi-transparent mirror 112.
  • the semi-transparent mirror 112 when the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 are each disposed in a vacuum or in a gas, and the semi-transparent mirror 112 is formed only by the semi-transparent mirror surface.
  • the semi-transparent mirror 112 of the semi-transparent mirror is usually of a negligible thickness.
  • the semi-transparent mirror 112 includes a transparent substrate formed of a material transparent to the wavelength of the light to be measured or the laser beam, such as glass or resin, and the transparent substrate.
  • a semi-transparent surface such as a metal thin film or a dielectric multilayer film.
  • each of the two first and second optical paths formed by the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 is formed of the same medium between the incident position of the light to be measured and the interference position.
  • the semi-transparent mirror 112 Even in the arrangement state in which the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 are arranged so that the optical path difference between the two optical paths becomes zero in the case where the first optical path and the second optical path are The phase difference from the optical path does not become zero due to the refractive index of the transparent substrate.
  • the amount of phase shift caused by the transparent substrate of the semi-transparent mirror 112 has a wavelength dependency as shown in FIG. 11, for example, because the refractive index has a wavelength dependency. is doing.
  • phase compensation plate CP having the same phase characteristics (refractive index characteristics) as the transparent substrate of the semi-transparent mirror 112 is disposed between the semi-transparent mirror 112 and the fixed mirror 114.
  • phase compensation plate CP is the transparent substrate itself of the semi-transparent mirror 112 (of course, there is no semi-transparent mirror surface).
  • a refractive region is provided in each of the two optical paths, and the difference in the number of refractive regions is zero.
  • the interferogram in the interference light of the light to be measured has an initial phase difference of each wavelength component of the light to be measured, which is shown in FIG. 8C or FIG.
  • the profile has a large center burst and a small side lobe. For this reason, the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the light to be measured is zero is relatively clear.
  • the initial phase is a phase at a position where the optical path difference is 0 (center burst position).
  • the interferogram by the interferometer 11 in the present embodiment does not include the above-described phase compensation plate CP that is conventionally used, and further includes the phase difference plate 113 only in the second optical path. That is, the interferometer 11 in the present embodiment is formed by a plurality of optical elements (semi-transparent mirror 112, fixed mirror 114, and movable mirror 115 in the example shown in FIG. 2) between the incident position of the light to be measured and the interference position. Two first and second optical paths, and when each of the two first and second optical paths is formed of the same medium, between the two first and second optical paths.
  • the phase difference interferometer has a phase difference between the optical paths in the arrangement state in which the plurality of optical elements are arranged so that the optical path difference becomes zero.
  • the phase difference interferometer is in an arrangement state in which the movable mirror 114 is located at the center burst position in the case where the phase compensation is performed as in the case of the interferometer having the conventional phase compensation plate CP.
  • the interferometer 11 is a phase difference interferometer, and as an example, as can be seen by comparing FIG. 6 and FIG. 9, the interferometer 11 is an interferometer equipped with a conventional phase compensator CP.
  • the magnitude (level) of the amplitude is small.
  • the maximum amplitude Y in the interferogram by the interferometer provided with the conventional phase compensator CP is about 3200.
  • the magnitude X of the maximum amplitude in the interferogram is about 1400 as shown in FIG. 6C (X ⁇ Y).
  • the A / D count assigned to one unit amplitude level is more conventional in the Fourier transform spectrometer D of the present embodiment. More than the conventional Fourier transform type spectrometer using an interferometer equipped with a phase compensation plate CP. That is, in the Fourier transform spectrometer using the interferometer having the conventional conventional phase compensator CP, X is the maximum amplitude at one or more peaks of the interferogram in the Fourier transform spectrometer D of the present embodiment.
  • the maximum amplitude at one or more peaks of the interferogram is Y
  • the A / D count assigned to one unit amplitude level 2 Z / X> 2 Z / Y, and the number of Fourier transform spectrometers D of this embodiment is larger than that of a conventional Fourier transform spectrometer using an interferometer equipped with a conventional phase compensation plate CP. Therefore, the Fourier transform spectrometer D of the present embodiment is relatively more relative to the electrical signal near the zero level than the conventional Fourier transform spectrometer using the interferometer having the phase compensation plate CP. Many A / D counts are assigned (2 Z / X> 2 Z / Y). Therefore, the Fourier transform spectrometer D of the present embodiment can detect a minute signal near the zero level of the interferogram with higher resolution even with a single AD converter.
  • the Fourier transform spectrometer D of the present embodiment obtains the position of the center burst from the envelope in the interference light of the laser beam having a predetermined line width.
  • monochromatic laser light (monochromatic laser light) is used to detect the moving position of the moving mirror in the interferometer and obtain AD conversion sampling timing. More specifically, the monochromatic laser light is incident on the interferometer, and the light intensity in the interference light of the monochromatic laser light is detected by receiving the interference light of the monochromatic laser light generated by the interferometer. As shown in FIG. 10, the light intensity of the interference light of the monochromatic laser light repeatedly increases and decreases in a sine wave shape according to the movement of the movable mirror. Therefore, the sampling timing of the AD conversion is obtained by detecting this zero cross timing. ing. As shown in FIGS.
  • the light intensity of the interference light of the monochromatic laser light has a substantially constant amplitude regardless of the position of the optical path difference 0 or the position of the sideband.
  • the position of the optical path difference 0 corresponds to the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the light under measurement is zero.
  • laser light having a predetermined line width is used instead of the monochromatic laser light.
  • the interference light of the laser light having such a predetermined line width is the same as that of the monochromatic laser light in the zero cross timing, but FIGS. 7A, 7B and 7C. ).
  • the amplitude is the largest at the position where the optical path difference is 0, and the amplitude gradually decreases as the position approaches the sideband position. Therefore, the position of the center burst can be detected by detecting the envelope of the light intensity in the interference light of the laser light having a predetermined line width.
  • the envelope detection unit 38 envelope-detects an electric signal according to the light intensity in the interference light of the laser beam input from the second light receiving unit 36, and the result is a control calculation unit 41.
  • the center burst position calculation unit 412 detects the maximum value of the envelope input from the envelope detection unit 38, and obtains the position that gives this maximum value as the position of the center burst. Then, the center burst position calculation unit 412 outputs the obtained center burst position to the spectrum calculation unit 411.
  • the spectrum calculation unit 411 receives the interferogram of the light to be measured from the AD conversion unit 23 and the center burst position from the center burst position calculation unit 412. Then, the spectrum calculation unit 411 performs Fourier transform on the interferogram of the measured light based on the detected position of the center burst, and obtains the spectrum of the measured light. The obtained spectrum of the light to be measured is output to the output unit 43.
  • the optical path difference is x i
  • the wave number is ⁇ j
  • the spectral amplitude of the wave number ⁇ j is B ( ⁇ j )
  • the optical path difference is 0.
  • X is 0
  • the phase at the position of optical path difference 0 of wave number ⁇ j is ⁇ ( ⁇ j ).
  • m represents the measurement result of the mth measurement.
  • one measurement may be performed, but usually, an integration (sum) of a plurality of measurement results is obtained, and noise is reduced.
  • This integrated interferogram (integrated interferogram) F (x i ) is expressed by Equation 2.
  • the interferograms F m (x i ) and F (x i ) represented by the formula 1 or the formula 2 are subjected to Fourier transform.
  • FFT fast Fourier transform
  • generation of side lobes is prevented.
  • a window function A window (x i ) that is symmetrical about the position of the optical path difference 0 (center burst position) is multiplied as shown in FIG.
  • of the spectrum of the light to be measured is obtained (formula 4).
  • Equations 3 and 4 is shown for the case of the interferogram F (x i) of the formula 2, which is obtained once the measurement with less noise satisfactory results in the Instead of Formula 2, the interferogram F m (x i ) represented by Formula 1 may be used.
  • the window function A window (x i ) can be various appropriate functions.
  • the window function A window (x i ) is a function represented by Expression 5-1 to Expression 5-3.
  • Equations 5-1 and 5-2 are called Hamming Window (Hamming window) functions
  • Equation 5-3 is called a Blackman Window (Blackman window) function.
  • the spectrum calculation unit 411 performs fast Fourier transform on the interferogram of the measured light obtained by the interferometer 11 based on the position of the center burst detected by the center burst position calculation unit 412. Thus, the spectrum of the light to be measured is obtained.
  • the Fourier transform spectrometer D is a phase difference interferometer having a phase difference even if the optical elements constituting the interferometer 11 are arranged at a virtual optical path difference of zero. Since the interference light of the measured light is generated by the interferometer 11, the maximum amplitude X at one or more peaks of the interferogram is generated by a normal interferometer that compensates for the phase difference. It becomes smaller than the maximum amplitude Y at one or more peaks of the interferogram corresponding to the interference light of the light to be measured (X ⁇ Y).
  • the Fourier transform type spectrometer D and the Fourier transform type spectroscopic method implemented in the present embodiment are very small in the vicinity of the zero level of the interferogram even when one AD converter is used. Can also be detected with higher resolution.
  • the Fourier transform spectrometer D of the present embodiment satisfies X ⁇ Y as described above, an operational amplifier with a relatively low slew rate (relatively slow tracking with respect to an input signal) is used as the amplifier of the amplification unit 22.
  • Operational amplifier and a low noise amplifier can be used.
  • LNA low noise amplifier
  • the Fourier transform spectrometer D of the present embodiment further includes the first retardation plate 113 on the transmission side of the semi-transparent mirror 112, the phase difference between the first and second optical paths in the interferometer 11 is further increased. be able to.
  • the Fourier transform spectrometer D of the present embodiment does not include the first phase difference plate 113 shown in FIG. 14A described later with the maximum amplitude X at one or more peaks of the interferogram.
  • the interferogram can be made smaller than the interferogram obtained by the phase difference interferometer having only the phase difference generated on the transparent substrate of the semi-transparent mirror 112.
  • the Fourier transform spectrometer D of the present embodiment detects the position of the center burst by detecting the envelope of the light intensity in the interference light of the laser light having a predetermined line width.
  • the detection circuit can be configured with a simpler circuit configuration.
  • the laser beam is a laser beam having a predetermined line width
  • the configuration for detecting the position of the center burst is for detecting the position of the movable mirror 112.
  • the position measuring light source 31 is a laser device that emits laser light having a predetermined line width by superimposing monochromatic laser light at a high frequency, or a predetermined line width.
  • a semiconductor laser that emits a laser beam having the above is used.
  • the position measuring light source 31 that emits the laser beam having the predetermined line width can be configured more simply.
  • FIG. 14 illustrates the configuration of the interferometer of the second aspect in the Fourier transform spectrometer of the embodiment, the waveform of the interference light of the light under measurement (interferogram), and the waveform of the interference light of the laser light of the position measurement light source. It is a figure for doing.
  • FIG. 14A shows the configuration of the interferometer of the second aspect in the Fourier transform spectrometer of the embodiment
  • FIG. 14B shows the waveform of the interference light of the light to be measured (interference) schematically drawn
  • 14C shows the waveform of the interference light of the laser beam of the position measurement light source schematically drawn.
  • FIG. 15 is a diagram illustrating a configuration of the interferometer of the third aspect in the Fourier transform spectrometer of the embodiment.
  • the interferometer 11 (first step) having the phase difference plate 113 between the semi-transparent mirror 112 and the movable mirror 115 is used.
  • one mode of interferometer 11 the present invention is not limited to this.
  • the second mode of interferometer 11a having the configuration shown in FIG. 14 or the third mode of interference having the configuration shown in FIG. It may be 11b in total.
  • the semi-transparent mirror 112 itself causes a phase difference because the semi-transparent mirror 112 includes a transparent substrate, and therefore, as shown in FIG.
  • the phase difference plate 113 in the interferometer 11 of the first aspect is omitted.
  • the interferometer 11a includes a semi-transparent mirror 112, a fixed mirror 114, and a moving mirror 115 that moves in the optical axis direction.
  • the first measurement light reflected by the fixed mirror 114 and the second measurement light reflected by the movable mirror 115 are split by the semi-transparent mirror 112.
  • a Michelson interferometer that interferes with each other, and the semi-transparent mirror 112 includes a transparent substrate and a semi-transparent surface formed on one main surface of the transparent substrate.
  • Such an interferometer 11a according to the second aspect also provides the same operational effects as the interferometer 11 according to the first aspect, but compares FIGS. 5 (B) and (C) with FIGS. 14 (B) and (C).
  • the interferometer 11 of the first aspect has a smaller maximum amplitude in the interference light of the measured light than the interferometer 11a of the second aspect, and the laser The amplitude change of the envelope in the interference light is large. For this reason, when comparing the interferometer 11 of the first aspect with the interferometer 11a of the second aspect, the interferometer 11 of the first aspect is more advantageous.
  • the interferometer 11b includes a semi-transparent mirror 112, a fixed mirror 114, and a movable mirror 115 that moves in the optical axis direction.
  • the first and second two light beams are measured by the semi-transparent mirror 112.
  • the first measured light reflected by the fixed mirror 114 and the second measured light reflected by the movable mirror 115 are split into the measured light and incident on the fixed mirror 114 and the movable mirror 115, respectively.
  • the half mirror 112 includes a transparent substrate and a half mirror surface formed on one main surface of the transparent substrate.
  • the interferometer 11b reflects the reflected light of the half mirror 112 reflected by the half mirror 112 when the light to be measured is split into two first and second light beams to be measured by the half mirror 112.
  • a second phase difference plate 117 is further provided on the side, and the second phase difference plate 117 generates a phase difference different from the phase difference generated in the semi-transparent mirror 112.
  • the second retardation plate 117 is formed of a material having the same thickness as the transparent substrate of the semi-transparent mirror 112 and a different refractive index (refractive index characteristic) from the transparent substrate of the semi-transparent mirror 112, for example.
  • the second retardation plate 117 has a thickness different from that of the transparent substrate of the semi-transparent mirror 112 by a material (for example, the same material) having the same refractive index (refractive index characteristic) as that of the transparent substrate of the semi-transparent mirror 112. Is formed.
  • the interferometer 11b according to the third aspect further includes the second retardation plate 117 on the reflection side of the semi-transparent mirror 112, as compared with the interferometer 11a according to the second aspect having the configuration shown in FIG.
  • the phase difference between the first and second optical paths can be further increased.
  • the interferometer 11c (not shown) of the fourth aspect may further include a second phase difference plate 117. .
  • FIG. 16 is a diagram for explaining a second mode method for obtaining the position of the center burst based on the envelope in the interference light of the laser beam.
  • FIG. 16A shows the envelope
  • FIG. 16B shows a differential waveform of the envelope.
  • FIG. 17 is a diagram for explaining the method of the third aspect for obtaining the position of the center burst based on the envelope in the interference light of the laser light.
  • the horizontal axis in FIGS. 16 and 17 indicates the optical path difference (position of the movable mirror 115), and these vertical axes indicate the levels.
  • the center burst position calculation unit 412 uses the envelope maximum value input from the envelope detection unit 38 as the amplitude value of the envelope according to the movement of the movable mirror 112 (change in optical path difference). For example, as shown in FIG. 16A, when the envelope is in the vicinity of the maximum value, the movement of the movable mirror 112 (change in optical path difference) may be detected. ), It is not easy to detect the point with high accuracy. For this reason, the center burst position calculation unit 412 determines the position that gives the maximum value of the envelope detected by the envelope detection unit 38 based on the difference information of the envelope detected by the envelope detection unit 38 as the position of the center burst. You may detect as.
  • the center burst position calculation unit 412 obtains a difference between two points on the envelope at an appropriate interval. For example, when the difference between two points on the envelope is obtained with respect to the envelope shown in FIG. 16A, a difference graph shown in FIG. 16B is obtained as the difference information. In the difference graph, since the zero cross point at which the difference value changes from a positive value to a negative value corresponds to the position where the maximum value is given, the center burst position calculation unit 412 determines that the difference value is from the positive value in the difference graph. A zero cross point that turns to a negative value is obtained, and the zero cross point may be set as the center burst position.
  • the larger the interval for obtaining the difference the larger the difference value, and the zero cross point can be detected with higher accuracy.
  • the position of the center burst can be detected with higher accuracy.
  • the storage capacity of the storage element that stores the measurement result of the envelope is restricted, and the interval cannot be made too large, or the number of bits Z of the AD conversion unit 23 is small and the resolution is small.
  • the difference may have a stepped shape near the zero cross point as shown in FIG. In such a case, the position of the center burst may be obtained by linearly approximating the difference graph near the zero cross point by the least square method and obtaining the zero cross point of the approximate straight line.
  • the center burst position calculation unit 412 of the Fourier transform spectrometer D can detect the position giving the maximum value of the envelope more accurately. Even when it is difficult to distinguish the maximum value of the envelope because the change of the line is gradual, the position where the maximum value of the envelope is given can be detected.
  • a Fourier transform spectrometer includes two optical paths formed by a plurality of optical elements between a measurement light incident position and an interference position where the measurement target light is incident.
  • the optical path is actually A phase difference interferometer having a phase difference therebetween, a center burst position detector for detecting a position of a center burst in an interferogram when the initial phase difference of each wavelength component of the light to be measured is zero, and An interferogram of the measured light obtained by the phase difference interferometer is Fourier-transformed based on the center burst position detected by the center burst position detector.
  • a spectrum calculating unit for obtaining the spectrum of said light to be measured by performing.
  • the Fourier transform type spectroscopic method includes two optical paths formed by a plurality of optical elements between the incident position of the measurement target light to be measured and the interference position.
  • the phase difference between the optical paths is actually
  • a spectrum calculation step of obtaining a spectrum of the light to be measured by performing a Fourier transform on the basis of the detected center burst position by the burst position detecting step.
  • the Fourier transform spectrometer and the Fourier transform spectroscopic method having such a configuration since the interference light of the light to be measured is generated by the phase difference interferometer, the maximum in one or a plurality of peaks of the interferogram is obtained.
  • the amplitude X is smaller than the maximum amplitude Y at one or more peaks of the interferogram corresponding to the interference light of the measured light generated by the normal interferometer that compensates for the phase difference (X ⁇ Y). .
  • AD converter analog-digital converter
  • Relatively more A / D counts are assigned (2 Z / X> 2 Z / Y). Therefore, when the AD converter is used, the Fourier transform spectrometer and the Fourier transform spectroscopic method having such a configuration have a higher minute signal near the zero level of the interferogram even with one AD converter. It can be detected with resolution.
  • the phase difference interferometer has a difference in the number of refraction regions accompanying optical path extension of 2 or more in each light passing through the two optical paths.
  • an optical element made of a transparent substrate is provided in at least one of the optical paths.
  • a Fourier transform spectrometer having such a configuration can easily form a phase difference interferometer by disposing a transparent substrate in at least one optical path.
  • the phase difference interferometer includes a semi-transparent mirror, a fixed mirror, and a movable mirror that moves in the optical axis direction as the plurality of optical elements.
  • the measurement light is split into two first and second measurement light beams by the semi-transparent mirror, and is incident on the fixed mirror and the movable mirror, respectively, and is reflected by the fixed mirror.
  • a Michelson interferometer that causes the second measured light reflected by the movable mirror to interfere with each other by the semi-transparent mirror, wherein the semi-transparent mirror is formed on one main surface of the transparent substrate and the transparent substrate. A semi-transparent mirror surface.
  • the Fourier transform spectrometer having such a configuration performs phase compensation normally used in a general Michelson interferometer using a normal semi-transmission mirror including a transparent substrate having a semi-transmission surface formed on one main surface. Therefore, the phase difference interferometer can be easily configured.
  • the semi-transparent mirror when the light to be measured is branched into two first and second light to be measured by the semi-transparent mirror, the semi-transparent mirror is transmitted.
  • a first retardation plate is further provided on the transmission side of the semi-transparent mirror.
  • the Fourier transform spectrometer having such a configuration further includes the first phase difference plate on the transmission side of the semi-transparent mirror, the phase difference between the optical paths in the phase difference interferometer can be further increased. .
  • the light to be measured when the light to be measured is branched into two first and second light to be measured by the semi-transparent mirror, the light is reflected by the semi-transparent mirror.
  • a second retardation plate is further provided on the reflection side of the semi-transparent mirror, and the second retardation plate generates a phase difference different from the phase difference generated in the semi-transparent mirror.
  • the Fourier transform spectrometer having such a configuration further includes a second phase difference plate on the reflection side of the semi-transparent mirror, the phase difference between the optical paths in the phase difference interferometer can be further increased. .
  • the center burst position detection unit is obtained by causing a laser beam having a predetermined line width to enter the phase difference interferometer. An envelope of light intensity in the interference light of the laser beam is detected, and a position that gives a maximum value of the detected envelope is detected as the position of the center burst.
  • the Fourier transform spectrometer Since the Fourier transform spectrometer having such a configuration detects the position of the center burst by detecting the envelope of the light intensity in the interference light of the laser beam having a predetermined line width, it has a simpler circuit configuration.
  • a detection circuit can be configured.
  • the interference light of the measurement light obtained by the phase difference interferometer is received, and the light intensity of the interference light of the measurement light is measured.
  • a zero-cross detector that outputs the detected zero-cross timing as a sampling timing to the analog-digital converter, and the center burst position detector includes a laser beam having a predetermined line width.
  • a position measuring light source incident on the phase difference interferometer and the interference light of the laser beam obtained by the phase difference interferometer are received. Then, a second light receiving unit that outputs light intensity in the interference light of the laser light, an envelope detection unit that detects an envelope of the output of the second light receiving unit, and an envelope detected by the envelope detection unit And a center burst position calculation unit that detects a position that gives a local maximum value as the position of the center burst.
  • the laser beam is a laser beam having the predetermined line width, and a part for detecting the position of the movable mirror is used as a configuration for detecting the position of the center burst.
  • the configuration of is diverted. For example, the configuration from the position measurement light source to the second light receiving unit is shared, and the output of the second light receiving unit is output to each of the zero cross detection unit and the envelope detection unit. For this reason, the Fourier transform spectrometer having the above configuration can detect the position of the center burst with a smaller circuit configuration.
  • the position measurement light source is a laser device that emits laser light having the predetermined line width by superimposing monochromatic laser light at high frequency.
  • a position measurement light source that emits laser light having the predetermined line width is configured more simply.
  • the position measurement light source is a semiconductor laser that emits laser light having the predetermined line width.
  • a position measurement light source that emits laser light having the predetermined line width is configured more simply.
  • the center burst position calculation unit is detected by the envelope detection unit based on difference information of the envelope detected by the envelope detection unit. A position that gives the maximum value of the envelope is detected as the position of the center burst.
  • the Fourier transform spectrometer having such a configuration can detect the position where the maximum value of the envelope is given more accurately, and since the change of the envelope is gentle, the maximum value of the envelope is Even if it is difficult to distinguish, it is possible to detect the position that gives the maximum value of the envelope.
  • a Fourier transform spectrometer and a Fourier transform spectrometer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

In this Fourier transform spectrometer and Fourier transform spectrometry, two light paths (a first and second light path) that are formed by means of a plurality of optical elements (112, 114, 115) are provided between the entrance position of light to be measured and an interference position, and a phase difference spectrometer (11) having a phase difference between the light paths is used in a disposition state that disposes the plurality of optical elements in a manner so that the light path difference between the two light paths (first and second light path) becomes zero when supposing that each of the two light paths (first and second light path) are formed from the same medium. The Fourier transform spectrometry and Fourier transform spectrometer having such a configuration use the phase difference spectrometer (11), and so compared to interferograms resulting from interferometers provided with conventional phase compensation plates, the magnitude (level) of the amplitude thereof becomes smaller, and thus it is possible to also detect at a high resolution minute signals in the vicinity of the zero level of the interferogram even with one AD converter.

Description

フーリエ変換型分光計およびフーリエ変換型分光方法Fourier transform spectrometer and Fourier transform spectroscopic method
 本発明は、分光計および分光方法に関し、特に、フーリエ変換型分光計およびフーリエ変換型分光方法に関する。 The present invention relates to a spectrometer and a spectroscopic method, and more particularly to a Fourier transform spectrometer and a Fourier transform spectroscopic method.
 分光計は、測定対象の被測定光のスペクトルを測定する装置であり、その1つに干渉計で被測定光の干渉光を測定し、この測定結果をフーリエ変換することによって、被測定光のスペクトルを求めるフーリエ変換型分光計がある。このフーリエ変換型分光計は、例えば、特許文献1に開示されている。 The spectrometer is a device that measures the spectrum of the light to be measured, one of which is an interferometer that measures the interference light of the light to be measured, and Fourier-transforms the measurement result, thereby measuring the light to be measured. There is a Fourier transform spectrometer that obtains a spectrum. This Fourier transform type spectrometer is disclosed in Patent Document 1, for example.
 この特許文献1に開示のフーリエ分光器は、光源から放射される被測定光の干渉光を射出する干渉計と、前記干渉計から射出される干渉光の光強度を検出する光検出器と、前記光検出器の出力をアナログ信号からディジタル信号へ変換するアナログ-ディジタル変換器(AD変換器)と、前記AD変換器の出力をフーリエ演算処理を行うことによって前記被測定光の分光スペクトルを求める演算処理回路とを備えて構成される。このようなフーリエ分光器では、前記干渉計の出力(前記光検出器の出力、前記AD変換器の出力)は、前記光源から放射された複数の波長の光が前記干渉計によって一括で干渉された合成波形であり、インターフェログラムと呼ばれ、所定の範囲で1または複数の急峻なピークを持つと共に残余の範囲では略ゼロレベルとなるプロファイルとなる。この1または複数の急峻なピークのうちの中央のピークは、センターバーストと呼ばれる。このセンターバーストで前記AD変換器を飽和させないために、前記AD変換器のフルスパンを前記センターバーストに設定すると、測定結果は、前記AD変換器の大きなノイズを含んでしまう。そこで、前記特許文献1に開示のフーリエ分光器は、1つのAD変換器でゼロ付近の微小信号を検出する一方、他のAD変換器でセンターバースト部分の変動を非飽和で検出しこれらの信号を合成することによって、前記AD変換器のノイズを低減している。 The Fourier spectrometer disclosed in Patent Document 1 includes an interferometer that emits interference light of light to be measured emitted from a light source, a photodetector that detects the light intensity of interference light emitted from the interferometer, An analog-to-digital converter (AD converter) that converts the output of the photodetector from an analog signal to a digital signal, and a spectrum of the light to be measured is obtained by performing Fourier arithmetic processing on the output of the AD converter. And an arithmetic processing circuit. In such a Fourier spectrometer, the output of the interferometer (the output of the photodetector, the output of the AD converter) is such that light of a plurality of wavelengths emitted from the light source is collectively interfered by the interferometer. This combined waveform is called an interferogram, and has a profile having one or a plurality of steep peaks in a predetermined range and a substantially zero level in the remaining range. The central peak among the one or more steep peaks is called a center burst. In order not to saturate the AD converter with this center burst, if the full span of the AD converter is set to the center burst, the measurement result includes a large noise of the AD converter. Therefore, the Fourier spectrometer disclosed in Patent Document 1 detects minute signals near zero with one AD converter, while detecting fluctuations in the center burst portion with other AD converters as non-saturated signals. The noise of the AD converter is reduced.
 このように前記特許文献1に開示のフーリエ分光器では、2個のAD変換器が必要であり、そして、各出力を合成する場合にタイミングを合わせる必要もある。 As described above, the Fourier spectrometer disclosed in Patent Document 1 requires two AD converters, and it is also necessary to match the timing when synthesizing the outputs.
特開平09-005160号公報JP 09-005160 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、1個のAD変換器でもインターフェログラムのゼロレベル付近における微小な信号もより高分解能で検出することができるフーリエ変換型分光計およびフーリエ変換型分光方法を提供することである。 The present invention has been made in view of the above-described circumstances, and its purpose is a Fourier that can detect even a minute signal near the zero level of an interferogram with a higher resolution even with a single AD converter. A conversion spectrometer and a Fourier transform spectroscopy method are provided.
 本発明にかかるフーリエ変換型分光計およびフーリエ変換型分光方法では、被測定光の入射位置から干渉位置までの間に、複数の光学素子によって形成される2個の第1および第2光路を備え、これら2個の第1および第2光路のそれぞれが仮に同一の媒質で形成されている場合にこれら2個の第1および第2光路間の光路差がゼロとなるように前記複数の光学素子を配置した前記配置状態において前記光路間に位相差を持つ有位相差干渉計が用いられる。このような構成のフーリエ変換型分光計およびフーリエ変換型分光方法は、有位相差干渉計が用いられるため、従来の位相補償板を備えた干渉計によるインターフェログラムに較べて、その振幅の大きさ(レベル)が小さくなるから、1個のAD変換器でもインターフェログラムのゼロレベル付近における微小な信号もより高分解能で検出することができる。 In the Fourier transform spectrometer and the Fourier transform spectroscopic method according to the present invention, two first and second optical paths formed by a plurality of optical elements are provided between the incident position of the light to be measured and the interference position. In the case where each of the two first and second optical paths is formed of the same medium, the plurality of optical elements is configured such that the optical path difference between the two first and second optical paths is zero. A phase difference interferometer having a phase difference between the optical paths in the arrangement state where is arranged. Since the Fourier transform spectrometer and the Fourier transform spectroscopic method having such a configuration use a phase difference interferometer, the amplitude thereof is larger than that of an interferogram obtained by an interferometer equipped with a conventional phase compensator. Since the height (level) becomes small, even a single AD converter can detect a minute signal near the zero level of the interferogram with higher resolution.
実施形態におけるフーリエ変換型分光計の構成を示すブロック図である。It is a block diagram which shows the structure of the Fourier-transform type spectrometer in embodiment. 実施形態のフーリエ変換型分光計における主に干渉計の構成を示す図である。It is a figure which mainly shows the structure of the interferometer in the Fourier-transform-type spectrometer of embodiment. 実施形態のフーリエ変換型分光計における位置測定用光源から放射されるレーザ光のスペクトルを示す図である。It is a figure which shows the spectrum of the laser beam radiated | emitted from the light source for position measurement in the Fourier-transform-type spectrometer of embodiment. 実施形態のフーリエ変換型分光計における包絡線検波部の構成を示す回路図である。It is a circuit diagram which shows the structure of the envelope detection part in the Fourier-transform-type spectrometer of embodiment. 実施形態のフーリエ変換型分光計における干渉計の構成、被測定光の干渉光の波形(インターフェログラム)および位置測定用光源のレーザ光の干渉光の波形を説明するための図である。It is a figure for demonstrating the structure of the interferometer in the Fourier-transform-type spectrometer of embodiment, the waveform (interferogram) of the interference light of to-be-measured light, and the waveform of the interference light of the laser beam of the position measurement light source. 一例として、実測した被測定光の干渉光の波形(インターフェログラム)を示す図である。As an example, it is a figure which shows the waveform (interferogram) of the interference light of the to-be-measured light measured. 一例として、実測した位置測定用光源のレーザ光の干渉光の波形を示す図である。As an example, it is a figure which shows the waveform of the interference light of the laser beam of the measured position measurement light source. 従来のフーリエ変換型分光計におけるマイケルソン干渉計の構成、被測定光の干渉光の波形(インターフェログラム)および位置測定用光源のレーザ光の干渉光の波形を説明するための図である。It is a figure for demonstrating the structure of the Michelson interferometer in the conventional Fourier-transform-type spectrometer, the waveform (interferogram) of the interference light of the to-be-measured light, and the waveform of the interference light of the laser beam of the position measurement light source. 従来例として、実測した被測定光の干渉光の波形(インターフェログラム)を示す図である。It is a figure which shows the waveform (interferogram) of the interference light of the to-be-measured light as a prior art example. 従来例として、実測した位置測定用光源のレーザ光の干渉波形を示す図である。It is a figure which shows the interference waveform of the laser beam of the light source for position measurement measured as a prior art example. 半透鏡で生じる位相ずれを示す図である。It is a figure which shows the phase shift which arises with a semi-transparent mirror. 半透鏡で生じる位相ずれを位相補償した場合における位相を示す図である。It is a figure which shows the phase in the case of carrying out phase compensation of the phase shift which arises with a semi-transparent mirror. インターフェログラムと窓関数との関係を示す図である。It is a figure which shows the relationship between an interferogram and a window function. 実施形態のフーリエ変換型分光計における第2態様の干渉計の構成、被測定光の干渉光の波形(インターフェログラム)および位置測定用光源のレーザ光の干渉光の波形を説明するための図である。The figure for demonstrating the structure of the interferometer of the 2nd aspect in the Fourier-transform-type spectrometer of embodiment, the waveform (interferogram) of the interference light of a to-be-measured light, and the waveform of the interference light of the laser beam of a position measurement light source It is. 実施形態のフーリエ変換型分光計における第3態様の干渉計の構成を示す図である。It is a figure which shows the structure of the interferometer of the 3rd aspect in the Fourier-transform-type spectrometer of embodiment. レーザ光の干渉光における包絡線に基づいてセンターバーストの位置を求める第2態様の方法を説明するための図である。It is a figure for demonstrating the method of the 2nd aspect which calculates | requires the position of a center burst based on the envelope in the interference light of a laser beam. レーザ光の干渉光における包絡線に基づいてセンターバーストの位置を求める第3態様の方法を説明するための図である。It is a figure for demonstrating the method of the 3rd aspect which calculates | requires the position of a center burst based on the envelope in the interference light of a laser beam.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 図1は、実施形態におけるフーリエ変換型分光計の構成を示すブロック図である。図2は、実施形態のフーリエ変換型分光計における主に干渉計の構成を示す図である。図3は、実施形態のフーリエ変換型分光計における位置測定用光源から放射されるレーザ光のスペクトルを示す図である。図3の横軸は、波数(1/波長)であり、その縦軸は、振幅の大きさである。図4は、実施形態のフーリエ変換型分光計における包絡線検波部の構成を示す回路図である。 FIG. 1 is a block diagram showing a configuration of a Fourier transform spectrometer in the embodiment. FIG. 2 is a diagram mainly illustrating a configuration of an interferometer in the Fourier transform spectrometer according to the embodiment. FIG. 3 is a diagram illustrating a spectrum of laser light emitted from the position measurement light source in the Fourier transform spectrometer according to the embodiment. The horizontal axis in FIG. 3 is the wave number (1 / wavelength), and the vertical axis is the magnitude of the amplitude. FIG. 4 is a circuit diagram illustrating a configuration of an envelope detection unit in the Fourier transform spectrometer according to the embodiment.
 実施形態にかかるフーリエ変換型分光計Dは、測定対象の被測定光のスペクトルを測定する装置であって、前記被測定光を干渉計で測定し、この測定した被測定光の干渉光の波形(インターフェログラム)をフーリエ変換することによって被測定光のスペクトルを求める装置である。このようなフーリエ変換型分光計Dは、例えば、図1および図2に示すように、測定対象物体SMから放射された光(被測定光)が入射され、前記被測定光の干渉光を射出する干渉計11と、干渉計11で得られた被測定光の干渉光を受光して光電変換によって被測定光の干渉光の波形の電気信号(被測定光の干渉光における光強度変化を表す電気信号)を出力する受光処理部20と、干渉計11の移動鏡115の位置を検出する位置検出処理部30と、制御演算部41と、入力部42と、出力部43とを備えている。測定対象物体SMは、自発光する光源であってよく、また、他の光源から放射された光が照射され、前記光を反射、透過または再放射(例えば蛍光発光等)することによって光を放射するものであってもよい。 The Fourier transform spectrometer D according to the embodiment is a device that measures the spectrum of the light to be measured as a measurement target, measures the light to be measured with an interferometer, and the waveform of the interference light of the measured light to be measured. This is a device for obtaining a spectrum of light to be measured by Fourier transforming (interferogram). For example, as shown in FIGS. 1 and 2, such a Fourier transform spectrometer D receives light (measurement light) emitted from the measurement target object SM and emits interference light of the measurement light. The interferometer 11 that receives the interference light of the light to be measured obtained by the interferometer 11, and an electric signal of the waveform of the interference light of the light to be measured by photoelectric conversion (represents a change in light intensity in the interference light of the light to be measured) A light reception processing unit 20 that outputs an electrical signal), a position detection processing unit 30 that detects the position of the movable mirror 115 of the interferometer 11, a control calculation unit 41, an input unit 42, and an output unit 43. . The measurement object SM may be a light source that emits light by itself, and is irradiated with light emitted from another light source, and radiates light by reflecting, transmitting, or re-radiating the light (for example, fluorescence emission). You may do.
 干渉計11は、測定対象の被測定光が入射され、この入射された被測定光を2個の第1および第2被測定光に分岐し、これら分岐した第1および第2被測定光のそれぞれを、互いに異なる2個の経路である第1および第2光路のそれぞれに進行(伝播)させ、再び合流させるものであり、この分岐点(分岐位置)から合流点(合流位置、干渉位置)までの間に第1および第2光路間に光路差があると、前記合流の際に位相差が生じているため、前記合流によって干渉縞を生じるものである。干渉計11は、例えばマッハツェンダー干渉計等の種々のタイプの第1および第2光路を備える干渉計を利用することができるが、本実施形態では、図2に示すように、マイケルソン干渉計によって構成されている。 The interferometer 11 receives measurement light to be measured, branches the incident measurement light into two first and second measurement lights, and the branched first and second measurement lights. Each travels (propagates) in the first and second optical paths, which are two different paths, and merges again. From this branch point (branch position), a merge point (merging position, interference position). If there is an optical path difference between the first and second optical paths until then, a phase difference is generated at the time of merging, so that interference fringes are generated by the merging. As the interferometer 11, for example, an interferometer having various types of first and second optical paths such as a Mach-Zehnder interferometer can be used. In this embodiment, as shown in FIG. It is constituted by.
 より具体的には、図2に示すように、干渉計11は、複数の光学素子として半透鏡(ハーフミラー、ビームスプリッタ)112と、固定鏡114と、光軸方向に移動する移動鏡115とを備え、固定鏡114と移動鏡115とは、各鏡面の各法線が互いに直交するようにそれぞれ配置され、半透鏡112は、その法線が前記固定鏡114および移動鏡115における各法線の直交点を通り、これら各法線に対し45度の角度で交差するように配置される。この干渉計11において、干渉計11に入射された被測定光は、半透鏡112で2個の第1および第2被測定光に分岐する。この分岐した一方の第1被測定光は、半透鏡112で反射されて固定鏡114に入射する。この第1被測定光は、固定鏡114で反射し、来た光路を逆に辿って再び半透鏡112に戻る。一方、この分岐した他方の第2被測定光は、半透鏡112を通過して移動鏡115に入射する。この第2被測定光は、移動鏡115で反射し、来た光路を逆に辿って再び半透鏡112に戻る。これら固定鏡114で反射された第1被測定光および移動鏡115で反射された第2被測定光は、半透鏡112で互いに合流して干渉する。このような構成のマイケルソン干渉計11では、被測定光は、移動鏡115の鏡面における法線方向に沿って干渉計11へ入射され、被測定光の干渉光は、固定鏡114の鏡面における法線方向に沿って干渉計11から射出される。 More specifically, as shown in FIG. 2, the interferometer 11 includes a semi-transparent mirror (half mirror, beam splitter) 112 as a plurality of optical elements, a fixed mirror 114, and a moving mirror 115 that moves in the optical axis direction. The fixed mirror 114 and the movable mirror 115 are arranged so that the normals of the mirror surfaces are orthogonal to each other, and the semi-transparent mirror 112 has a normal line corresponding to each of the normal lines of the fixed mirror 114 and the movable mirror 115. Are arranged so as to cross each normal line at an angle of 45 degrees. In the interferometer 11, the light to be measured incident on the interferometer 11 is branched into two first and second light to be measured by the semi-transparent mirror 112. The branched first first measured light is reflected by the semi-transparent mirror 112 and enters the fixed mirror 114. The first light to be measured is reflected by the fixed mirror 114 and returns to the semi-transparent mirror 112 again following the optical path that has come. On the other hand, the other branched second measured light passes through the semi-transparent mirror 112 and enters the movable mirror 115. This second light to be measured is reflected by the movable mirror 115, and reversely follows the optical path that has come to return to the semi-transparent mirror 112 again. The first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other. In the Michelson interferometer 11 having such a configuration, the light to be measured is incident on the interferometer 11 along the normal direction on the mirror surface of the movable mirror 115, and the interference light of the light to be measured is reflected on the mirror surface of the fixed mirror 114. The light is emitted from the interferometer 11 along the normal direction.
 なお、移動鏡115は、好ましくは、平行板バネを利用した、反射面が並進移動する構成であってよい。この平行板バネ構造の移動鏡115では、鏡面を移動する駆動力を外部から与える図略のアクチュエータを備えており、反射面(鏡面)が共振するような駆動信号が前記アクチュエータに与えられる。このような平行板バネ構造が有する並進性を利用した移動鏡115では、非駆動時(静止時)における移動鏡115の位置は、移動(振動)の中心となり、静止時の基準位置となるから、移動鏡115側に分岐された光路長の基準位置となる。したがって、平行板バネの静止時における反射面の位置は、「固定鏡114側の光路長と移動鏡115側の光路長とが、仮に同一の媒質で形成されている場合に、これら2個の光路差がゼロ(0)になるように光学素子を配置した場合」の、移動鏡115側の光路の基準となる。 Note that the movable mirror 115 may preferably have a configuration in which the reflecting surface moves in translation using a parallel leaf spring. The movable mirror 115 having a parallel leaf spring structure includes an actuator (not shown) that gives a driving force to move the mirror surface from the outside, and a driving signal that resonates the reflecting surface (mirror surface) is given to the actuator. In the movable mirror 115 using the translational property of such a parallel leaf spring structure, the position of the movable mirror 115 when not driven (when stationary) is the center of movement (vibration) and becomes the reference position when stationary. The reference position of the optical path length branched to the movable mirror 115 side. Therefore, the position of the reflecting surface when the parallel leaf spring is stationary is “the optical path length on the fixed mirror 114 side and the optical path length on the movable mirror 115 side are formed of the same medium. This is a reference for the optical path on the movable mirror 115 side when the optical element is arranged so that the optical path difference is zero (0).
 そして、本実施形態では、干渉計11は、被測定光を半透鏡112で2個の第1および第2被測定光に分岐する場合において、半透鏡112を透過した半透鏡112の透過側に配置される第1位相差板113をさらに備えている。すなわち、本実施形態では、半透鏡112を透過した第2被測定光は、第1位相差板113を介して移動鏡115へ入射され、移動鏡115で反射された第2被測定光は、第1位相差板113を介して再び半透鏡112へ入射される。第1位相差板113は、等方性の位相板であり、第1位相差板113の厚さと同じの距離を真空中または空気中で進行した光の位相に対し、第1位相差板113内を進行した光の位相にずれを生じさせるものである。後述の位相補償板CP、第2位相差板117および半透鏡112の透明基板も同様に機能するものである。 In this embodiment, the interferometer 11 is arranged on the transmission side of the semi-transparent mirror 112 that has passed through the semi-transparent mirror 112 when the light to be measured is branched into two first and second measured light beams by the semi-transparent mirror 112. A first retardation plate 113 is further provided. That is, in the present embodiment, the second measured light that has passed through the semi-transparent mirror 112 is incident on the movable mirror 115 via the first phase difference plate 113, and the second measured light that is reflected by the movable mirror 115 is The light enters the semi-transparent mirror 112 again through the first retardation plate 113. The first phase difference plate 113 is an isotropic phase plate, and the first phase difference plate 113 with respect to the phase of light traveling in the vacuum or in air for the same distance as the thickness of the first phase difference plate 113. This causes a shift in the phase of the light traveling inside. The later-described phase compensation plate CP, second phase difference plate 117, and transparent substrate of the semi-transparent mirror 112 also function in the same manner.
 さらに、本実施形態では、測定対象物体SMから放射された被測定光を平行光で半透鏡112へ入射させるために、測定対象物体SMと半透鏡112との間の適宜な位置に、入射光学系として例えば両凸のコリメータレンズ111が配置され、半透鏡112で第1および第2被測定光を合流して干渉させることによって生じた被測定光の干渉光を集光して第1受光部21へ入射させるために、半透鏡112と第1受光部21との間の適宜な位置に、射出光学系として例えば両凸の集光レンズ116が配置されている。 Furthermore, in this embodiment, in order to make the light to be measured radiated from the measurement target object SM incident on the semi-transparent mirror 112 as parallel light, the incident optical is placed at an appropriate position between the measurement target object SM and the semi-transparent mirror 112. For example, a biconvex collimator lens 111 is disposed as a system, and the first and second light receiving units collect the interference light of the light to be measured generated by the first and second light beams to be combined and interfered by the semi-transparent mirror 112. For example, a biconvex condensing lens 116 is disposed as an emission optical system at an appropriate position between the semi-transparent mirror 112 and the first light receiving unit 21 in order to enter the lens 21.
 図1に戻って、受光処理部20は、例えば、第1受光部21と、増幅部22と、アナログ-ディジタル変換部(以下、「AD変換部」と呼称する。)23とを備えている。第1受光部21は、干渉計11で得られた被測定光の干渉光を受光して光電変換することによって、被測定光の干渉光の光強度に応じた電気信号を出力する回路である。第1受光部21は、例えばInGaAsフォトダイオードおよびその周辺回路を備えて構成される赤外線センサ等である。増幅部22は、第1受光部21の出力を予め設定された所定の増幅率で増幅する増幅器である。AD変換部23は、増幅部22の出力をアナログ信号からディジタル信号へ変換(AD変換)する回路である。このAD変換のタイミングは、後述のゼロクロス検出部37から入力されたゼロクロスタイミングで実行される。 Returning to FIG. 1, the light reception processing unit 20 includes, for example, a first light reception unit 21, an amplification unit 22, and an analog-digital conversion unit (hereinafter referred to as “AD conversion unit”) 23. . The first light receiving unit 21 is a circuit that outputs an electric signal corresponding to the light intensity of the interference light of the light to be measured by receiving and photoelectrically converting the interference light of the light to be measured obtained by the interferometer 11. . The first light receiving unit 21 is, for example, an infrared sensor that includes an InGaAs photodiode and its peripheral circuits. The amplifying unit 22 is an amplifier that amplifies the output of the first light receiving unit 21 with a predetermined amplification factor set in advance. The AD conversion unit 23 is a circuit that converts the output of the amplification unit 22 from an analog signal to a digital signal (AD conversion). The AD conversion timing is executed at the zero cross timing input from the zero cross detector 37 described later.
 また、位置検出処理部30は、例えば、位置測定用光源31と、第2受光部36と、ゼロクロス検出部37と、包絡線検波部38とを備えている。そして、位置検出処理部30は、この位置測定用光源31から放射されたレーザ光の干渉光を干渉計11で得るために、図2に示すように、コリメータレンズ32と、半透鏡33と、半透鏡34と、集光レンズ35とをさらに備えている。 Further, the position detection processing unit 30 includes, for example, a position measurement light source 31, a second light receiving unit 36, a zero cross detection unit 37, and an envelope detection unit 38. Then, the position detection processing unit 30 obtains the interference light of the laser light emitted from the position measurement light source 31 with the interferometer 11, as shown in FIG. 2, a collimator lens 32, a semi-transparent mirror 33, A semi-transparent mirror 34 and a condenser lens 35 are further provided.
 位置測定用光源31は、予め設定された所定の線幅を持つレーザ光を放射する光源装置である。位置測定用光源31は、例えば、所定の線幅を持つレーザ光を放射する半導体レーザを備えて構成される。また例えば、位置測定用光源31は、単色レーザ光を放射するレーザ装置と、前記レーザ装置から放射された単色レーザ光を高周波重畳する高周波重畳装置とを備え、単色レーザ光を高周波重畳ことによって前記所定の線幅を持つレーザ光を放射するものである。前記所定の線幅は、干渉計11によって得られたレーザ光の干渉光における振幅の大きさが干渉計11の移動鏡115の移動に従って変化する程度の波長幅(周波数幅)である。なお、レーザ光が輝線である場合には、このレーザ光の干渉光における振幅の大きさが干渉計11の移動鏡115の移動によって変化しない。このような所定の線幅を持つレーザ光は、一例を挙げると、図3に示すように、中心波数15151.52/cmに対し半値幅(FWHM)2.3/cmであるガウス型のプロファイルを持つ。 The position measurement light source 31 is a light source device that emits laser light having a predetermined line width set in advance. The position measuring light source 31 includes, for example, a semiconductor laser that emits laser light having a predetermined line width. Further, for example, the position measuring light source 31 includes a laser device that emits monochromatic laser light, and a high-frequency superimposing device that superimposes the monochromatic laser light emitted from the laser device at a high frequency. A laser beam having a predetermined line width is emitted. The predetermined line width is a wavelength width (frequency width) such that the amplitude of the interference light of the laser light obtained by the interferometer 11 changes according to the movement of the movable mirror 115 of the interferometer 11. When the laser light is a bright line, the amplitude of the interference light of the laser light does not change due to the movement of the movable mirror 115 of the interferometer 11. As an example of the laser beam having such a predetermined line width, as shown in FIG. 3, a Gaussian profile having a full width at half maximum (FWHM) of 2.3 / cm with respect to a center wave number of 15151.52 / cm. have.
 図2において、コリメータレンズ32および半透鏡(ハーフミラー、ビームスプリッター)33は、位置測定用光源31から放射されたレーザ光を平行光で干渉計11へ入射させるための入射光学系である。半透鏡33は、その法線が移動鏡115の法線(光軸)に対し45度で交差するように、コリメータレンズ111と半透鏡112との間に配置される。コリメータレンズ32は、例えば両凸のレンズであり、このように配置された半透鏡33に対し45度の入射角で位置測定用光源31から放射されたレーザ光が入射されるように、適宜な位置に配置される。そして、半透鏡(ハーフミラー、ビームスプリッター)34および集光レンズ35は、干渉計11で生じた前記レーザ光の干渉光を干渉計11から取り出すための射出光学系である。半透鏡34は、その法線が固定鏡114の法線(光軸)に対し45度で交差するように、半透鏡112と集光レンズ116との間に配置される。集光レンズ35は、例えば両凸のレンズであり、このように配置された半透鏡34において45度の射出角で射出されるレーザ光の干渉光を集光して第2受光部36へ入射させる。なお、半透鏡33は、レーザ光を反射するとともに被測定光を透過するダイクロイックミラーであってもよく、半透鏡34は、レーザ光の干渉光を反射するとともに被測定光の干渉光を透過するダイクロイックミラーであってもよい。 In FIG. 2, a collimator lens 32 and a half mirror (half mirror, beam splitter) 33 are incident optical systems for causing the laser light emitted from the position measuring light source 31 to enter the interferometer 11 with parallel light. The semi-transparent mirror 33 is disposed between the collimator lens 111 and the semi-transparent mirror 112 so that the normal line intersects the normal line (optical axis) of the movable mirror 115 at 45 degrees. The collimator lens 32 is, for example, a biconvex lens, and is appropriately set so that the laser light emitted from the position measurement light source 31 is incident on the semi-transparent mirror 33 arranged in this manner at an incident angle of 45 degrees. Placed in position. The semi-transparent mirror (half mirror, beam splitter) 34 and the condenser lens 35 are an emission optical system for taking out the interference light of the laser beam generated by the interferometer 11 from the interferometer 11. The semi-transparent mirror 34 is disposed between the semi-transparent mirror 112 and the condenser lens 116 so that the normal line intersects the normal line (optical axis) of the fixed mirror 114 at 45 degrees. The condensing lens 35 is, for example, a biconvex lens, and condenses the interference light of the laser light emitted at an emission angle of 45 degrees in the semi-transparent mirror 34 arranged in this manner and enters the second light receiving unit 36. Let The semi-transparent mirror 33 may be a dichroic mirror that reflects laser light and transmits measured light. The semi-transparent mirror 34 reflects interference light of laser light and transmits interference light of measured light. A dichroic mirror may be used.
 このようにコリメータレンズ32、半透鏡33、34および集光レンズ35の各光学素子が配置されると、位置測定用光源31から放射された前記所定の線幅を持ったレーザ光は、コリメータレンズ32で平行光とされ、その光路が半透鏡33で約90度曲げられて、干渉計11の光軸(移動鏡115の鏡面における法線方向)に沿って進行するようになる。したがって、このレーザ光は、被測定光と同様に、干渉計11内を進行し、干渉計11でその干渉光を生じさせる。このレーザ光の干渉光は、半透鏡34で約90度曲げられて、干渉計11から外部に取り出され、集光レンズ35で集光されて第2受光部36で受光される。 When the optical elements such as the collimator lens 32, the semi-transparent mirrors 33 and 34, and the condenser lens 35 are arranged in this way, the laser light having the predetermined line width emitted from the position measuring light source 31 is collimated. The light beam 32 is converted into parallel light, and its optical path is bent by about 90 degrees by the semi-transparent mirror 33, and travels along the optical axis of the interferometer 11 (normal direction on the mirror surface of the movable mirror 115). Therefore, this laser light travels in the interferometer 11 as with the light to be measured, and the interferometer 11 generates the interference light. The interference light of the laser light is bent about 90 degrees by the semi-transparent mirror 34, taken out from the interferometer 11, collected by the condenser lens 35, and received by the second light receiving unit 36.
 図1に戻って、第2受光部36は、干渉計11で得られたレーザ光の干渉光を受光して光電変換することによって、レーザ光の干渉光の光強度に応じた電気信号を出力する回路である。第2受光部36は、例えばシリコンフォトダイオード(SPD)およびその周辺回路を備えて構成される受光センサ等である。第2受光部36は、レーザ光の干渉光の光強度に応じた電気信号をゼロクロス検出部37および包絡線検波部38のそれぞれへ出力する。 Returning to FIG. 1, the second light receiving unit 36 receives the interference light of the laser light obtained by the interferometer 11 and photoelectrically converts it, thereby outputting an electric signal corresponding to the light intensity of the interference light of the laser light. It is a circuit to do. The second light receiving unit 36 is, for example, a light receiving sensor including a silicon photodiode (SPD) and its peripheral circuit. The second light receiving unit 36 outputs an electrical signal corresponding to the light intensity of the interference light of the laser light to each of the zero cross detection unit 37 and the envelope detection unit 38.
 ゼロクロス検出部37は、第2受光部36から入力された、レーザ光の干渉光の光強度に応じた電気信号がゼロとなるタイミングを検出する回路である。干渉計11の移動鏡115が光軸方向に移動している場合に、半透鏡112から固定鏡114を介して再び半透鏡に戻ったレーザ光の位相に対し、半透鏡112から移動鏡115を介して再び半透鏡に戻ったレーザ光の位相がずれるので、レーザ光の干渉光は、その移動量に応じて正弦波状に強弱する。そして、干渉計11の移動鏡115がレーザ光の波長の1/2の長さだけ移動すると、半透鏡112から移動鏡115を介して再び半透鏡に戻ったレーザ光の位相は、この移動の前後において、2πずれる。このため、レーザ光の干渉光は、移動鏡115の移動に従って正弦波状に強弱を繰り返すことになる。ゼロクロス検出部37は、この正弦波状に強弱を繰り返す前記電気信号のゼロクロスを検出している。ゼロクロス検出部37は、この検出したゼロクロスのタイミングをAD変換部23へ出力し、AD変換部23は、このゼロクロスのタイミングで、第1受光部21から入力された、被測定光の干渉光の光強度に応じた電気信号をサンプリングしてAD変換する。 The zero-cross detection unit 37 is a circuit that detects a timing at which the electric signal corresponding to the light intensity of the interference light of the laser beam input from the second light receiving unit 36 becomes zero. When the movable mirror 115 of the interferometer 11 is moved in the optical axis direction, the movable mirror 115 is moved from the semi-transparent mirror 112 to the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror via the fixed mirror 114. Since the phase of the laser light that has returned to the semi-transparent mirror is shifted again, the interference light of the laser light becomes strong and weak in a sine wave shape according to the amount of movement. When the movable mirror 115 of the interferometer 11 moves by a length that is ½ of the wavelength of the laser light, the phase of the laser light that has returned from the semi-transparent mirror 112 to the semi-transparent mirror through the movable mirror 115 is There is a 2π shift before and after. For this reason, the interference light of the laser light repeats the intensity in a sine wave shape as the movable mirror 115 moves. The zero cross detector 37 detects the zero cross of the electrical signal that repeats the strength in a sine wave form. The zero-cross detection unit 37 outputs the detected zero-cross timing to the AD conversion unit 23, and the AD conversion unit 23 outputs the interference light of the measured light input from the first light receiving unit 21 at the zero-cross timing. An electrical signal corresponding to the light intensity is sampled and AD converted.
 包絡線検波部38は、第2受光部36から入力された、レーザ光の干渉光の光強度に応じた電気信号の包絡線を検出する回路である。包絡線検波部38は、種々の回路構成を採用することができるが、一例を挙げると、図4に示すように、ダイオードDと、ダイオードDのカソード端子と接続されることでダイオードDに直列に接続される抵抗素子Rと、抵抗素子Rに並列に接続されるコンデンサCとを備えて構成され、直列接続のダイオードDおよび抵抗素子Rの両端が入力端とされ、抵抗素子Rの両端が出力端とされる。包絡線検波部38は、このような簡易な回路構成で包絡線を検波することができる。包絡線検波部38は、この検出したレーザ光の干渉光の光強度に応じた電気信号の包絡線を制御演算部41へ出力する。 The envelope detector 38 is a circuit that detects an envelope of an electric signal input from the second light receiver 36 and corresponding to the light intensity of the interference light of the laser beam. The envelope detector 38 can employ various circuit configurations. For example, as shown in FIG. 4, the envelope detector 38 is connected in series to the diode D by being connected to the diode D and the cathode terminal of the diode D. The resistor element R is connected to the resistor element R, and the capacitor C is connected in parallel to the resistor element R. Both ends of the series-connected diode D and the resistor element R are input ends, and both ends of the resistor element R are The output end. The envelope detector 38 can detect the envelope with such a simple circuit configuration. The envelope detection unit 38 outputs an envelope of an electric signal corresponding to the detected light intensity of the interference light of the laser beam to the control calculation unit 41.
 制御演算部41は、被測定光のスペクトルを求めるべく、フーリエ変換型分光計Dの各部を当該各部の機能に応じてそれぞれ制御するものである。制御演算部41は、例えば、CPU(Central Processing Unit)、このCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically
Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えたマイクロコンピュータによって構成される。そして、制御演算部41には、プログラムを実行することによって、機能的に、スペクトル演算部411と、センターバースト位置演算部412とが構成される。
The control calculation unit 41 controls each part of the Fourier transform spectrometer D according to the function of each part in order to obtain the spectrum of the light to be measured. The control calculation unit 41 is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically) that stores various programs executed by the CPU, data necessary for the execution, and the like in advance.
The microcomputer includes a nonvolatile memory element such as an Erasable Programmable Read Only Memory), a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU, and a peripheral circuit thereof. The control calculation unit 41 is functionally configured with a spectrum calculation unit 411 and a center burst position calculation unit 412 by executing a program.
 センターバースト位置演算部412は、被測定光の各波長成分の初期位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置を検出するものである。より具体的には、センターバースト位置演算部412は、本実施形態では、包絡線検波部38で検波された包絡線の極大値を与える位置をセンターバーストの位置として検出するものである。このように本実施形態では、センターバーストの位置は、所定の線幅を持つレーザ光を干渉計11に入射させることによって得られた前記レーザ光の干渉光における光強度の包絡線を検波し、この検波された包絡線の極大値を与える位置を検出することによって求められる。 The center burst position calculation unit 412 detects the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the light under measurement is zero. More specifically, in this embodiment, the center burst position calculation unit 412 detects a position that gives the maximum value of the envelope detected by the envelope detection unit 38 as the position of the center burst. As described above, in the present embodiment, the position of the center burst detects the envelope of the light intensity in the interference light of the laser light obtained by making the laser light having a predetermined line width enter the interferometer 11, It is obtained by detecting the position giving the maximum value of the detected envelope.
 スペクトル演算部411は、干渉計11によって得られた被測定光のインターフェログラムを、センターバースト位置演算部412によって検出されたセンターバーストの位置に基づいてフーリエ変換を行うことによって前記被測定光のスペクトルを求めるものである。 The spectrum calculation unit 411 performs Fourier transform on the interferogram of the light to be measured obtained by the interferometer 11 based on the position of the center burst detected by the center burst position calculation unit 412, thereby A spectrum is obtained.
 入力部42は、例えば、測定開始を指示するコマンド等の各種コマンド、および、例えば測定対象の光源SMにおける識別子の入力やフーリエ変換の際に用いられる窓関数の選択入力等のスペクトルを測定する上で必要な各種データをフーリエ変換型分光計Dに入力する機器であり、例えば、キーボードやマウス等である。出力部43は、入力部42から入力されたコマンドやデータ、および、フーリエ変換型分光計Dによって予測された被測定光のスペクトルを出力する機器であり、例えばCRTディスプレイ、LCD、有機ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。 The input unit 42 measures, for example, various commands such as a command for instructing the start of measurement, and a spectrum such as an input of an identifier in the light source SM to be measured and a selection input of a window function used at the time of Fourier transform. Is a device that inputs various data necessary for the Fourier transform spectrometer D, such as a keyboard and a mouse. The output unit 43 is a device that outputs the command and data input from the input unit 42 and the spectrum of the light to be measured predicted by the Fourier transform spectrometer D. For example, the output unit 43 includes a CRT display, an LCD, an organic EL display, and the like. A display device such as a plasma display or a printing device such as a printer.
 次に、本実施形態の動作について説明する。図5は、実施形態のフーリエ変換型分光計における干渉計の構成、被測定光の干渉光の波形(インターフェログラム)および位置測定用光源のレーザ光の干渉光の波形を説明するための図である。図5(A)は、実施形態のフーリエ変換型分光計における干渉計の構成を示し、図5(B)は、模式的に描いた、被測定光の干渉光の波形(インターフェログラム)を示し、そして、図5(C)は、模式的に描いた、位置測定用光源のレーザ光の干渉光の波形を示す。図6は、一例として、実測した被測定光の干渉光の波形(インターフェログラム)を示す図である。図6(A)は、全体を示し、図6(B)は、ゼロレベル付近を示し、そして、図6(C)は、センターバースト付近を示す。図7は、一例として、実測した位置測定用光源のレーザ光の干渉波形を示す図である。図7(A)は、全体を示し、図7(B)は、端部付近を示し、そして、図7(C)は、極大値付近を示す。図8は、従来のフーリエ変換型分光計におけるマイケルソン干渉計の構成、被測定光の干渉光の波形(インターフェログラム)および位置測定用光源のレーザ光の干渉光の波形を説明するための図である。図8(A)は、従来のフーリエ変換型分光計における、位相補償の位相差板を備える場合のマイケルソン干渉計の構成を示し、図8(B)は、前記位相補償の位相差板を備えない場合のマイケルソン干渉計の構成を示し、図8(C)は、模式的に描いた、被測定光の干渉光の波形(インターフェログラム)を示し、そして、図8(D)は、模式的に描いた、位置測定用光源のレーザ光の干渉光の波形を示す。図9は、従来例として、実測した被測定光の干渉光の波形(インターフェログラム)を示す図である。図9(A)は、全体を示し、図9(B)は、ゼロレベル付近を示し、そして、図9(C)は、センターバースト付近を示す。図10は、従来例として、実測した位置測定用光源のレーザ光の干渉波形を示す図である。図10(A)は、全体を示し、図10(B)は、端部付近を示し、そして、図10(C)は、極大値付近を示す。図11は、半透鏡で生じる位相ずれを示す図である。図12は、半透鏡で生じる位相ずれを位相補償した場合における位相を示す図である。図11および図12の横軸は、nm単位で表す波長を示し、それらの縦軸は、度単位で表す位相を示す。図13は、インターフェログラムと窓関数との関係を示す図である。図13の横軸は、光路差を示し、その縦軸は、振幅を示す。 Next, the operation of this embodiment will be described. FIG. 5 is a diagram for explaining the configuration of the interferometer in the Fourier transform spectrometer of the embodiment, the waveform of the interference light of the light under measurement (interferogram), and the waveform of the interference light of the laser light of the position measurement light source. It is. FIG. 5A shows the configuration of the interferometer in the Fourier transform spectrometer of the embodiment, and FIG. 5B shows the waveform (interferogram) of the interference light of the measured light schematically drawn. FIG. 5C shows a waveform of interference light of the laser light of the position measurement light source schematically drawn. FIG. 6 is a diagram illustrating a waveform (interferogram) of interference light of actually measured light as an example. FIG. 6A shows the whole, FIG. 6B shows the vicinity of the zero level, and FIG. 6C shows the vicinity of the center burst. FIG. 7 is a diagram illustrating an interference waveform of laser light from a position measurement light source that is actually measured. FIG. 7A shows the whole, FIG. 7B shows the vicinity of the end, and FIG. 7C shows the vicinity of the maximum value. FIG. 8 is a diagram for explaining the configuration of the Michelson interferometer in the conventional Fourier transform spectrometer, the waveform of the interference light of the light under measurement (interferogram), and the waveform of the interference light of the laser light of the position measurement light source. FIG. FIG. 8A shows the configuration of a Michelson interferometer in the case of including a phase compensation phase difference plate in a conventional Fourier transform spectrometer, and FIG. 8B shows the phase compensation phase difference plate. FIG. 8C schematically shows the interference light waveform (interferogram) of the measured light, and FIG. 8D shows the configuration of the Michelson interferometer in the case where it is not provided. The waveform of the interference light of the laser beam of the light source for position drawing drawn typically is shown. FIG. 9 is a diagram illustrating a waveform (interferogram) of interference light of actually measured light as a conventional example. FIG. 9A shows the whole, FIG. 9B shows the vicinity of the zero level, and FIG. 9C shows the vicinity of the center burst. FIG. 10 is a diagram showing an actually measured interference waveform of laser light from a position measuring light source as a conventional example. 10A shows the whole, FIG. 10B shows the vicinity of the end, and FIG. 10C shows the vicinity of the maximum value. FIG. 11 is a diagram showing a phase shift that occurs in the semi-transparent mirror. FIG. 12 is a diagram showing the phase when the phase shift caused by the semi-transparent mirror is compensated. The horizontal axis in FIGS. 11 and 12 indicates the wavelength expressed in nm, and the vertical axis indicates the phase expressed in degrees. FIG. 13 is a diagram illustrating the relationship between the interferogram and the window function. The horizontal axis in FIG. 13 indicates the optical path difference, and the vertical axis indicates the amplitude.
 測定が開始されると、フーリエ変換型分光計Dは、測定対象物体SMから放射される被測定光を取り込む。被測定光は、干渉計11に入射され、被測定光の干渉光となって第1受光部21で受光される。より具体的には、被測定光は、コリメータレンズ111で平行光とされ、ビームスプリッター33を介して半透鏡112で反射および透過することで第1および第2被測定光に分岐される。半透鏡112で反射することによって分岐した第1被測定光は、固定鏡114へ入射し、固定鏡114で反射し、来た光路を逆に辿って再び半透鏡112に戻る。一方、半透鏡112を通過することによって分岐した第2被測定光は、第1位相差板113を介して移動鏡115へ入射し、移動鏡115で反射し、来た光路を逆に辿って再び半透鏡112に戻る。これら固定鏡114で反射された第1被測定光および移動鏡115で反射された第2被測定光は、半透鏡112で互いに合流して干渉する。このように、フーリエ変換型分光計Dは、2個の第1および第2光路を通過するそれぞれの光において、光路延長を伴う屈折領域数の差が2以上となるように、少なくとも一方の光路中に透明基板から成る光学素子である第1位相差板113を備えている(図5参照)。ここで、光路延長を伴う屈折領域とは、互いに平行な2平面間において、仮に屈折しない場合の光路長と較べて、屈折によって光路長が長くなる領域である。例えば、図5(A)において、半透鏡112を通過して移動鏡115に至る光路では、半透鏡112を構成する透明部材の内部の光路が光路延長を伴っており、半透鏡112を構成する透明部材の内部領域が屈折領域に相当し、そして、第1位相差板113を構成する透明部材の内部の光路が光路延長を伴っており、第1位相差板113を構成する透明部材の内部領域が屈折領域に相当する。この図5(A)では、半透鏡112の入射点から移動鏡115に至る光路と、前記入射点から固定鏡114に至る光路との間における屈折領域数の差は、2となり、光路差がより大きく設定されることになる。この被測定光の干渉光は、干渉計11から第1受光部21へ射出される。第1受光部21は、この入射された被測定光の干渉光を光電変換し、前記被測定光の干渉光における光強度に応じた電気信号を増幅部22へ出力する。増幅部22は、所定の増幅率で前記被測定光の干渉光に応じた前記電気信号を増幅し、AD変換部23へ出力する。 When the measurement is started, the Fourier transform spectrometer D takes in the measurement light emitted from the measurement object SM. The measured light enters the interferometer 11 and is received by the first light receiving unit 21 as interference light of the measured light. More specifically, the light to be measured is converted into parallel light by the collimator lens 111 and is reflected and transmitted by the semi-transparent mirror 112 via the beam splitter 33 to be branched into the first and second light to be measured. The first light to be measured branched by being reflected by the semi-transparent mirror 112 enters the fixed mirror 114, is reflected by the fixed mirror 114, and returns to the semi-transparent mirror 112 again by following the optical path that has come. On the other hand, the second light to be measured branched by passing through the semi-transparent mirror 112 is incident on the movable mirror 115 via the first phase difference plate 113, reflected by the movable mirror 115, and traces the optical path that has come reversely. Return to the semi-transparent mirror 112 again. The first light to be measured reflected by the fixed mirror 114 and the second light to be measured reflected by the moving mirror 115 are merged with each other by the semi-transparent mirror 112 and interfere with each other. As described above, the Fourier transform spectrometer D has at least one optical path so that the difference in the number of refraction regions accompanied by the optical path extension is 2 or more in each light passing through the two first and second optical paths. A first retardation plate 113, which is an optical element made of a transparent substrate, is provided therein (see FIG. 5). Here, the refracting region accompanied by the optical path extension is a region in which the optical path length is increased by refraction compared to the optical path length when the light is not refracted between two parallel planes. For example, in FIG. 5A, in the optical path that passes through the semi-transparent mirror 112 and reaches the movable mirror 115, the optical path inside the transparent member that constitutes the semi-transparent mirror 112 is accompanied by the extension of the optical path. The internal region of the transparent member corresponds to a refractive region, and the optical path inside the transparent member constituting the first retardation plate 113 is accompanied by an optical path extension, and the inside of the transparent member constituting the first retardation plate 113 The region corresponds to the refractive region. In FIG. 5A, the difference in the number of refractive regions between the optical path from the incident point of the semi-transparent mirror 112 to the movable mirror 115 and the optical path from the incident point to the fixed mirror 114 is 2, and the optical path difference is It will be set larger. The interference light of the light to be measured is emitted from the interferometer 11 to the first light receiving unit 21. The first light receiving unit 21 photoelectrically converts the incident interference light of the measurement light, and outputs an electrical signal corresponding to the light intensity in the interference light of the measurement light to the amplification unit 22. The amplifying unit 22 amplifies the electric signal corresponding to the interference light of the light to be measured with a predetermined amplification factor, and outputs it to the AD converting unit 23.
 一方、フーリエ変換型分光計Dは、位置測定用光源31から放射された所定の線幅を持つレーザ光も取り込む。このレーザ光は、ビームスプリッター33を介して干渉計11に入射され、上述と同様に干渉計11で干渉し、レーザ光の干渉光となってビームスプリッター34を介して第2受光部36で受光される。第2受光部36は、この入射されたレーザ光の干渉光を光電変換し、前記レーザ光の干渉光における光強度に応じた電気信号をゼロクロス検出部37および包絡線検波部38のそれぞれへ出力する。ゼロクロス検出部37は、前記レーザ光の干渉光に応じた前記電気信号がゼロとなるタイミングをゼロクロスタイミングとして検出し、このゼロクロスタイミングをサンプリングタイミング(AD変換タイミング)としてAD変換部23へ出力する。 On the other hand, the Fourier transform spectrometer D also captures laser light having a predetermined line width emitted from the position measurement light source 31. This laser light is incident on the interferometer 11 via the beam splitter 33, interferes with the interferometer 11 in the same manner as described above, and is received by the second light receiving unit 36 via the beam splitter 34 as interference light of the laser light. Is done. The second light receiving unit 36 photoelectrically converts the incident interference light of the laser beam, and outputs an electric signal corresponding to the light intensity in the interference light of the laser beam to each of the zero cross detection unit 37 and the envelope detection unit 38. To do. The zero cross detection unit 37 detects a timing at which the electric signal corresponding to the interference light of the laser beam becomes zero as a zero cross timing, and outputs the zero cross timing to the AD conversion unit 23 as a sampling timing (AD conversion timing).
 このような被測定光およびレーザ光がそれぞれ干渉計11に取り込まれている間に、干渉計11の移動鏡115は、制御演算部41の制御に従って光軸方向に沿って移動される。 While such measured light and laser light are respectively taken into the interferometer 11, the movable mirror 115 of the interferometer 11 is moved along the optical axis direction under the control of the control calculation unit 41.
 AD変換部23は、増幅部22から出力された、前記被測定光の干渉光における光強度に応じた電気信号を、ゼロクロス検出部37から入力されたゼロクロスタイミングでサンプリングしてアナログ信号からディジタル信号へAD変換し、このAD変換したディジタル信号の前記電気信号を制御演算部41のスペクトル演算部411へ出力する。 The AD conversion unit 23 samples the electrical signal output from the amplification unit 22 according to the light intensity in the interference light of the light to be measured at the zero cross timing input from the zero cross detection unit 37, and converts the electrical signal from an analog signal to a digital signal. A / D conversion is performed, and the electric signal of the digital signal subjected to the AD conversion is output to the spectrum calculation unit 411 of the control calculation unit 41.
 このように動作することによって、図5(B)および図6に示すようなインターフェログラムがAD変換部23から制御演算部41のスペクトル演算部411に入力される。 By operating in this way, an interferogram as shown in FIG. 5B and FIG. 6 is input from the AD conversion unit 23 to the spectrum calculation unit 411 of the control calculation unit 41.
 ここで、本実施形態におけるフーリエ変換型分光計Dによって生成されるインターフェログラムについて、位相補償された従来のフーリエ変換型分光計によって生成されるインターフェログラムと対比して説明する。 Here, the interferogram generated by the Fourier transform spectrometer D in the present embodiment will be described in comparison with the interferogram generated by the conventional phase-compensated Fourier transform spectrometer.
 まず、従来のフーリエ変換型分光計の位相補償について説明する。前記位相補償のための位相差板を備えない場合のマイケルソン干渉計は、図8(B)に示すように、半透鏡112と、固定鏡114と、光軸方向に移動する移動鏡115とを備え、固定鏡114および移動鏡115は、互いに光軸が直交するように配置され、半透鏡112は、これら各光軸と45度の角度でそれぞれ交差するとともにこれら各光軸の交差位置に半透鏡面が位置するように、配置される。このようなマイケルソン干渉計では、被測定光は、半透鏡112で反射して固定鏡114へ入射し、固定鏡114で反射して再び半透鏡112に戻り、半透鏡112を透過する第1光路(半透鏡112→固定鏡114→半透鏡112)と、半透鏡112を透過して移動鏡115へ入射し、移動鏡115で反射して再び半透鏡112に戻り、半透鏡112で反射する第2光路(半透鏡112→移動鏡115→半透鏡112)との2個の光路が形成される。 First, the phase compensation of a conventional Fourier transform spectrometer will be described. As shown in FIG. 8B, the Michelson interferometer without the phase compensation plate for phase compensation includes a semi-transparent mirror 112, a fixed mirror 114, and a moving mirror 115 that moves in the optical axis direction. The fixed mirror 114 and the movable mirror 115 are arranged so that their optical axes are orthogonal to each other, and the semi-transparent mirror 112 intersects each of these optical axes at an angle of 45 degrees and at the intersection of these optical axes. It arrange | positions so that a semi-transparent mirror surface may be located. In such a Michelson interferometer, the light to be measured is reflected by the semi-transparent mirror 112 and incident on the fixed mirror 114, reflected by the fixed mirror 114, returned to the semi-transparent mirror 112, and transmitted through the semi-transparent mirror 112. The optical path (semi-transparent mirror 112 → fixed mirror 114 → semi-transparent mirror 112) and the semi-transparent mirror 112 are incident on the movable mirror 115, reflected by the movable mirror 115, returned to the semi-transparent mirror 112, and reflected by the semi-transparent mirror 112. Two optical paths of the second optical path (semi-transparent mirror 112 → moving mirror 115 → semi-transparent mirror 112) are formed.
 ここで、このような2個の第1および第2光路のそれぞれが仮に同一の媒質で形成されている場合に、これら2個の第1および第2光路間の光路差がゼロとなるように、これら半透鏡112、固定鏡114および移動鏡115のそれぞれが配置された配置状態では、合流位置(干渉位置)において、半透鏡112で分岐して第1光路を進行(伝播)した第1被測定光と半透鏡112で分岐して第2光路を進行した第2被測定光との間には、位相差が生じない。これら2個の第1および第2光路のそれぞれが仮に同一の媒質で形成されている場合とは、例えば、半透鏡112の透明基板と同一の材料によって第1および第2光路が形成される場合や、また例えば、これら半透鏡112、固定鏡114および移動鏡115のそれぞれが真空中または気体中に配置され、半透鏡112が半透鏡面のみで形成される場合等である。なお、半透鏡の112の半透面鏡は、通常、無視できる厚さである。 Here, when each of the two first and second optical paths is formed of the same medium, the optical path difference between the two first and second optical paths is zero. In the arrangement state in which each of the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 is arranged, the first object that is branched by the semi-transparent mirror 112 and travels (propagates) in the first optical path at the merging position (interference position). There is no phase difference between the measurement light and the second light to be measured branched by the semi-transparent mirror 112 and traveling on the second optical path. The case where each of these two first and second optical paths is formed of the same medium is, for example, the case where the first and second optical paths are formed of the same material as the transparent substrate of the semi-transparent mirror 112. Or, for example, when the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 are each disposed in a vacuum or in a gas, and the semi-transparent mirror 112 is formed only by the semi-transparent mirror surface. Note that the semi-transparent mirror 112 of the semi-transparent mirror is usually of a negligible thickness.
 現実には、図8(B)に示すように、半透鏡112は、被測定光やレーザ光の波長に対して透明な材料、例えばガラスや樹脂等によって形成された透明基板と、前記透明基板の一方主面に形成された、例えば金属薄膜や誘電体多層膜等の半透鏡面とを備えて構成される。このため、図8(B)に示すように、合流(干渉)の際に、第1光路の第1被測定光は、半透鏡112の前記透明基板を通過しないが、第2光路の第2被測定光は、半透鏡112の前記透明基板を2回通過することになる。すなわち、図8(B)では、固定鏡114に向かう第1光路には、屈折領域が無く、移動鏡に向かう第2光路には、屈折領域が1つ配置されていることになる。よって、これら2つの光路間の屈折領域の差は、「1」となる。したがって、被測定光の入射位置から干渉位置までの間に、これら半透鏡112、固定鏡114および移動鏡115によって形成される2個の第1および第2光路のそれぞれが仮に同一の媒質で形成されている場合に前記2個の光路間の光路差がゼロとなるようにこれら半透鏡112、固定鏡114および移動鏡115が配置された前記配置状態であっても、第1光路と第2光路との位相差は、前記透明基板の屈折率に起因してゼロにならない。そして、半透鏡112の前記透明基板によって生じる位相のずれ量は、屈折率が波長依存性を有しているために、一例を挙げると、例えば、図11に示すように、波長依存性を有している。 Actually, as shown in FIG. 8B, the semi-transparent mirror 112 includes a transparent substrate formed of a material transparent to the wavelength of the light to be measured or the laser beam, such as glass or resin, and the transparent substrate. For example, a semi-transparent surface such as a metal thin film or a dielectric multilayer film. For this reason, as shown in FIG. 8B, at the time of merging (interference), the first measured light in the first optical path does not pass through the transparent substrate of the semi-transparent mirror 112, but the second in the second optical path. The light to be measured passes through the transparent substrate of the semi-transparent mirror 112 twice. That is, in FIG. 8B, there is no refraction area in the first optical path toward the fixed mirror 114, and one refraction area is disposed in the second optical path toward the movable mirror. Therefore, the difference in the refractive area between these two optical paths is “1”. Accordingly, each of the two first and second optical paths formed by the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 is formed of the same medium between the incident position of the light to be measured and the interference position. Even in the arrangement state in which the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 are arranged so that the optical path difference between the two optical paths becomes zero in the case where the first optical path and the second optical path are The phase difference from the optical path does not become zero due to the refractive index of the transparent substrate. The amount of phase shift caused by the transparent substrate of the semi-transparent mirror 112 has a wavelength dependency as shown in FIG. 11, for example, because the refractive index has a wavelength dependency. is doing.
 このため、従来の干渉計では、図8(A)に示すように、このような2個の第1および第2光路のそれぞれが仮に同一の媒質で形成されている場合に、これら2個の第1および第2光路間の光路差がゼロとなるように、これら半透鏡112、固定鏡114および移動鏡115のそれぞれが配置された前記配置状態において、合流位置(干渉位置)で、半透鏡112で分岐して第1光路を進行(伝播)した第1被測定光と半透鏡112で分岐して第2光路を進行した第2被測定光との間に実際には生じる上述の位相差を補償するために、半透鏡112と固定鏡114との間に、半透鏡112の前記透明基板と同一の位相特性(屈折率特性)を有する位相補償板CPが配置される。例えば、このような位相補償板CPは、半透鏡112の前記透明基板そのものである(もちろん、半透鏡面はない)。このような位相補償板CPを配置することによって、これら第1および第2光路間における位相差は、図12に示すように無くなる。すなわち、図8(A)では、2つの光路内にそれぞれに屈折領域を設けていることになり、屈折領域数の差は、ゼロとなる。このような位相補償された干渉計を用いると、被測定光の干渉光におけるインターフェログラムは、被測定光の各波長成分の初期位相差がゼロとなり、図8(C)や図9に示すように、センターバーストが大きく、そして、サイドローブが小さいプロファイルとなる。このため、このような被測定光の各波長成分の初期位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置は、比較的明瞭である。なお、初期位相は、光路差0の位置(センターバーストの位置)での位相である。 For this reason, in the conventional interferometer, as shown in FIG. 8A, when each of the two first and second optical paths is formed of the same medium, these two In the arrangement state in which each of the semi-transparent mirror 112, the fixed mirror 114, and the movable mirror 115 is arranged so that the optical path difference between the first and second optical paths becomes zero, the semi-transparent mirror is at the joining position (interference position). The phase difference actually generated between the first measured light branched at 112 and traveling (propagating) in the first optical path and the second measured light branched at the semi-transparent mirror 112 and traveled on the second optical path In order to compensate for this, a phase compensation plate CP having the same phase characteristics (refractive index characteristics) as the transparent substrate of the semi-transparent mirror 112 is disposed between the semi-transparent mirror 112 and the fixed mirror 114. For example, such a phase compensation plate CP is the transparent substrate itself of the semi-transparent mirror 112 (of course, there is no semi-transparent mirror surface). By disposing such a phase compensation plate CP, the phase difference between the first and second optical paths is eliminated as shown in FIG. That is, in FIG. 8A, a refractive region is provided in each of the two optical paths, and the difference in the number of refractive regions is zero. When such a phase compensated interferometer is used, the interferogram in the interference light of the light to be measured has an initial phase difference of each wavelength component of the light to be measured, which is shown in FIG. 8C or FIG. As described above, the profile has a large center burst and a small side lobe. For this reason, the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the light to be measured is zero is relatively clear. The initial phase is a phase at a position where the optical path difference is 0 (center burst position).
 これに対し、本実施形態における干渉計11によるインターフェログラムは、従来では用いられた上述の前記位相補償板CPを備えず、さらに、第2光路のみに位相差板113を備えている。すなわち、本実施形態における干渉計11は、被測定光の入射位置から干渉位置までの間に、複数の光学素子(図2に示す例では半透鏡112、固定鏡114および移動鏡115)によって形成される2個の第1および第2光路を備え、これら2個の第1および第2光路のそれぞれが仮に同一の媒質で形成されている場合にこれら2個の第1および第2光路間の光路差がゼロとなるように前記複数の光学素子を配置した前記配置状態において前記光路間に位相差を持つ有位相差干渉計である。言い換えれば、有位相差干渉計は、従来の位相補償板CPを備えた干渉計のように仮に位相補償された場合において移動鏡114がセンターバーストの位置にある配置状態で、実際には、これら2個の第1および第2光路間に位相差を持つものである。このように本実施形態では、干渉計11は、有位相差干渉計であるので、一例として、図6と図9とを比較すると分かるように、従来の位相補償板CPを備えた干渉計によるインターフェログラムに較べて、その振幅の大きさ(レベル)が小さくなる。例えば、従来の位相補償板CPを備えた干渉計によるインターフェログラムにおける最大振幅の大きさYは、図9(C)に示すように、約3200であるが、本実施形態の干渉計11によるインターフェログラムにおける最大振幅の大きさXは、図6(C)に示すように、約1400である(X<Y)。 On the other hand, the interferogram by the interferometer 11 in the present embodiment does not include the above-described phase compensation plate CP that is conventionally used, and further includes the phase difference plate 113 only in the second optical path. That is, the interferometer 11 in the present embodiment is formed by a plurality of optical elements (semi-transparent mirror 112, fixed mirror 114, and movable mirror 115 in the example shown in FIG. 2) between the incident position of the light to be measured and the interference position. Two first and second optical paths, and when each of the two first and second optical paths is formed of the same medium, between the two first and second optical paths. The phase difference interferometer has a phase difference between the optical paths in the arrangement state in which the plurality of optical elements are arranged so that the optical path difference becomes zero. In other words, the phase difference interferometer is in an arrangement state in which the movable mirror 114 is located at the center burst position in the case where the phase compensation is performed as in the case of the interferometer having the conventional phase compensation plate CP. There is a phase difference between the two first and second optical paths. Thus, in the present embodiment, the interferometer 11 is a phase difference interferometer, and as an example, as can be seen by comparing FIG. 6 and FIG. 9, the interferometer 11 is an interferometer equipped with a conventional phase compensator CP. Compared to the interferogram, the magnitude (level) of the amplitude is small. For example, as shown in FIG. 9C, the maximum amplitude Y in the interferogram by the interferometer provided with the conventional phase compensator CP is about 3200. However, according to the interferometer 11 of this embodiment. The magnitude X of the maximum amplitude in the interferogram is about 1400 as shown in FIG. 6C (X <Y).
 したがって、同じビット数ZのAD変換器によってこれらインターフェログラムをAD変換した場合に、一単位振幅レベルに割り当てられるA/Dカウントは、本実施形態のフーリエ変換型分光計Dの方が従来の従来の位相補償板CPを備えた干渉計によるフーリエ変換型分光計より多くなる。すなわち、本実施形態のフーリエ変換型分光計Dにおけるインターフェログラムの1または複数のピークにおける最大の振幅をXとし、従来の従来の位相補償板CPを備えた干渉計によるフーリエ変換型分光計におけるインターフェログラムの1または複数のピークにおける最大の振幅をYとする場合に、X<Yであり、AD変換器のビット数をZとする場合では、一単位振幅レベルに割り当てられるA/Dカウントは、2/X>2/Yとなり、本実施形態のフーリエ変換型分光計Dの方が従来の従来の位相補償板CPを備えた干渉計によるフーリエ変換型分光計より多くなる。したがって、本実施形態のフーリエ変換型分光計Dの方が従来の従来の位相補償板CPを備えた干渉計によるフーリエ変換型分光計に較べて、ゼロレベル付近の電気信号に対して相対的により多くのA/Dカウントが割り当てられる(2/X>2/Y)。このため、本実施形態のフーリエ変換型分光計Dは、1個のAD変換器でもインターフェログラムのゼロレベル付近における微小な信号もより高分解能で検出することができる。 Therefore, when these interferograms are AD-converted by an AD converter having the same number of bits Z, the A / D count assigned to one unit amplitude level is more conventional in the Fourier transform spectrometer D of the present embodiment. More than the conventional Fourier transform type spectrometer using an interferometer equipped with a phase compensation plate CP. That is, in the Fourier transform spectrometer using the interferometer having the conventional conventional phase compensator CP, X is the maximum amplitude at one or more peaks of the interferogram in the Fourier transform spectrometer D of the present embodiment. When the maximum amplitude at one or more peaks of the interferogram is Y, when X <Y and when the number of bits of the AD converter is Z, the A / D count assigned to one unit amplitude level 2 Z / X> 2 Z / Y, and the number of Fourier transform spectrometers D of this embodiment is larger than that of a conventional Fourier transform spectrometer using an interferometer equipped with a conventional phase compensation plate CP. Therefore, the Fourier transform spectrometer D of the present embodiment is relatively more relative to the electrical signal near the zero level than the conventional Fourier transform spectrometer using the interferometer having the phase compensation plate CP. Many A / D counts are assigned (2 Z / X> 2 Z / Y). Therefore, the Fourier transform spectrometer D of the present embodiment can detect a minute signal near the zero level of the interferogram with higher resolution even with a single AD converter.
 一方、本実施形態のフーリエ変換型分光計Dでは、上述したように、干渉計11として有位相差干渉計が用いられているので、例えば、一例として図6(B)に示すように、センターバーストの位置が不明瞭である。そこで、本実施形態のフーリエ変換型分光計Dは、このセンターバーストの位置を、所定の線幅を持つレーザ光の干渉光における包絡線から求めている。 On the other hand, in the Fourier transform type spectrometer D of the present embodiment, as described above, a phase difference interferometer is used as the interferometer 11, so, for example, as shown in FIG. The position of the burst is unclear. Therefore, the Fourier transform spectrometer D of the present embodiment obtains the position of the center burst from the envelope in the interference light of the laser beam having a predetermined line width.
 従来のフーリエ変換型分光計では、干渉計における移動鏡の移動位置を検出してAD変換のサンプリングタイミングを得るために、単色のレーザ光(単色レーザ光)が用いられている。より具体的には、単色レーザ光が干渉計に入射され、この干渉計で生成された単色レーザ光の干渉光を受光することによって単色レーザ光の干渉光における光強度が検出される。この単色レーザ光の干渉光における光強度は、図10に示すように、移動鏡の移動に応じて正弦波状に強弱を繰り返すので、このゼロクロスタイミングを検出することで前記AD変換のサンプリングタイミングを得ている。この単色レーザ光の干渉光における光強度は、図10(A)、(B)および(C)に示すように、光路差0の位置でもサイドバンドの位置でも略一定の振幅である。この光路差0の位置は、被測定光の各波長成分の初期位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置に対応する。 In a conventional Fourier transform spectrometer, monochromatic laser light (monochromatic laser light) is used to detect the moving position of the moving mirror in the interferometer and obtain AD conversion sampling timing. More specifically, the monochromatic laser light is incident on the interferometer, and the light intensity in the interference light of the monochromatic laser light is detected by receiving the interference light of the monochromatic laser light generated by the interferometer. As shown in FIG. 10, the light intensity of the interference light of the monochromatic laser light repeatedly increases and decreases in a sine wave shape according to the movement of the movable mirror. Therefore, the sampling timing of the AD conversion is obtained by detecting this zero cross timing. ing. As shown in FIGS. 10A, 10B, and 10C, the light intensity of the interference light of the monochromatic laser light has a substantially constant amplitude regardless of the position of the optical path difference 0 or the position of the sideband. The position of the optical path difference 0 corresponds to the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the light under measurement is zero.
 本実施形態のフーリエ変換型分光計Dでは、前記単色レーザ光に代えて、所定の線幅を持つレーザ光が用いられている。このような所定の線幅を持つレーザ光の干渉光は、図7に示すように、ゼロクロスタイミングは、単色レーザ光の場合と同様であるが、図7(A)、(B)および(C)に示すように、光路差0の位置でその振幅が最も大きく、サイドバンドの位置へ近づくに従ってその振幅が徐々に小さくなるプロファイルを持つ。したがって、所定の線幅を持つレーザ光の干渉光における光強度の包絡線を検波することによってセンターバーストの位置が検出可能である。より具体的には、包絡線検波部38は、第2受光部36から入力された、前記レーザ光の干渉光における光強度に応じた電気信号を包絡線検波し、その結果を制御演算部41のセンターバースト位置演算部412へ出力する。センターバースト位置演算部412は、包絡線検波部38から入力された包絡線の極大値を検出し、この極大値を与える位置をセンターバーストの位置として求める。そして、センターバースト位置演算部412は、この求めたセンターバーストの位置をスペクトル演算部411へ出力する。 In the Fourier transform spectrometer D of the present embodiment, laser light having a predetermined line width is used instead of the monochromatic laser light. As shown in FIG. 7, the interference light of the laser light having such a predetermined line width is the same as that of the monochromatic laser light in the zero cross timing, but FIGS. 7A, 7B and 7C. ), The amplitude is the largest at the position where the optical path difference is 0, and the amplitude gradually decreases as the position approaches the sideband position. Therefore, the position of the center burst can be detected by detecting the envelope of the light intensity in the interference light of the laser light having a predetermined line width. More specifically, the envelope detection unit 38 envelope-detects an electric signal according to the light intensity in the interference light of the laser beam input from the second light receiving unit 36, and the result is a control calculation unit 41. To the center burst position calculation unit 412. The center burst position calculation unit 412 detects the maximum value of the envelope input from the envelope detection unit 38, and obtains the position that gives this maximum value as the position of the center burst. Then, the center burst position calculation unit 412 outputs the obtained center burst position to the spectrum calculation unit 411.
 以上の動作によって、スペクトル演算部411には、被測定光のインターフェログラムがAD変換部23から入力され、センターバースト位置がセンターバースト位置演算部412から入力される。そして、スペクトル演算部411は、この被測定光のインターフェログラムを、この検出されたセンターバーストの位置に基づいてフーリエ変換を行い、被測定光のスペクトルを求める。この求めた被測定光のスペクトルは、出力部43に出力される。 Through the above operation, the spectrum calculation unit 411 receives the interferogram of the light to be measured from the AD conversion unit 23 and the center burst position from the center burst position calculation unit 412. Then, the spectrum calculation unit 411 performs Fourier transform on the interferogram of the measured light based on the detected position of the center burst, and obtains the spectrum of the measured light. The obtained spectrum of the light to be measured is output to the output unit 43.
 より具体的に説明すると、まず、インターフェログラムF(x)は、光路差をxとし、波数をνとし、波数νのスペクトル振幅をB(ν)とし、光路差0の位置をXとし、波数νの光路差0の位置における位相をφ(ν)とする場合に、式1で表される。なお、mは、m番目の測定による測定結果であることを表す。
Figure JPOXMLDOC01-appb-I000001
More specifically, first, in the interferogram F m (x i ), the optical path difference is x i , the wave number is ν j , the spectral amplitude of the wave number ν j is B (ν j ), and the optical path difference is 0. Where X is 0 and the phase at the position of optical path difference 0 of wave number ν j is φ (ν j ). Note that m represents the measurement result of the mth measurement.
Figure JPOXMLDOC01-appb-I000001
 1回の測定でノイズの少ない充分な結果が得られる場合には、1回の測定でよいが、通常、複数の測定結果の積算(和)が求められ、ノイズが低減される。この積算されたインターフェログラム(積算インターフェログラム)F(x)は、式2で表される。
Figure JPOXMLDOC01-appb-I000002
In the case where a sufficient result with little noise can be obtained by one measurement, one measurement may be performed, but usually, an integration (sum) of a plurality of measurement results is obtained, and noise is reduced. This integrated interferogram (integrated interferogram) F (x i ) is expressed by Equation 2.
Figure JPOXMLDOC01-appb-I000002
 そして、この式1または式2で表されるインターフェログラムF(x)、F(x)がフーリエ変換されるが、高速フーリエ変換(FFT)する場合には、サイドローブの発生を低減するために、図13に示すように、光路差0の位置(センターバーストの位置)を中心に左右対称な窓関数Awindow(x)が掛け合わされてから(式3)、高速フーリエ変換が行われ、被測定光のスペクトルの振幅|Bwindow(ν)|が求められる(式4)。なお、ここでは、式3および式4は、式2で表されるインターフェログラムF(x)の場合について示されているが、1回の測定でノイズの少ない充分な結果が得られる場合には、式2に代え、式1で表されるインターフェログラムF(x)であってもよい。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Then, the interferograms F m (x i ) and F (x i ) represented by the formula 1 or the formula 2 are subjected to Fourier transform. When performing fast Fourier transform (FFT), generation of side lobes is prevented. In order to reduce the frequency, a window function A window (x i ) that is symmetrical about the position of the optical path difference 0 (center burst position) is multiplied as shown in FIG. And the amplitude | B windowj ) | of the spectrum of the light to be measured is obtained (formula 4). In the case, where, Equations 3 and 4 is shown for the case of the interferogram F (x i) of the formula 2, which is obtained once the measurement with less noise satisfactory results in the Instead of Formula 2, the interferogram F m (x i ) represented by Formula 1 may be used.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 上記窓関数Awindow(x)は、適宜な種々の関数を上げることができるが、例えば、式5-1ないし式5-3で表される関数である。式5-1および式5-2は、Hamming Window(ハミング窓)関数と呼ばれ、式5-3は、Blackman Window(ブラックマン窓)関数と呼ばれる。
Figure JPOXMLDOC01-appb-I000005
The window function A window (x i ) can be various appropriate functions. For example, the window function A window (x i ) is a function represented by Expression 5-1 to Expression 5-3. Equations 5-1 and 5-2 are called Hamming Window (Hamming window) functions, and Equation 5-3 is called a Blackman Window (Blackman window) function.
Figure JPOXMLDOC01-appb-I000005
 このような演算処理によってスペクトル演算部411は、干渉計11によって得られた被測定光のインターフェログラムを、センターバースト位置演算部412によって検出されたセンターバーストの位置に基づいて高速フーリエ変換を行うことによって、被測定光のスペクトルを求めている。 Through such calculation processing, the spectrum calculation unit 411 performs fast Fourier transform on the interferogram of the measured light obtained by the interferometer 11 based on the position of the center burst detected by the center burst position calculation unit 412. Thus, the spectrum of the light to be measured is obtained.
 以上、説明したように、本実施形態におけるフーリエ変換型分光計Dは、干渉計11を構成する光学素子が仮想的な光路差ゼロの配置位置であっても位相差を有する有位相差干渉計である干渉計11によって被測定光の干渉光が生成されているので、そのインターフェログラムの1または複数のピークにおける最大の振幅Xは、前記位相差を補償した通常の干渉計によって生成された被測定光の干渉光に対応するインターフェログラムの1または複数のピークにおける最大の振幅Yよりも小さくなる(X<Y)。このため、干渉光を受光して得られた電気信号をZビットのAD変換器でAD変換する場合に、ゼロレベル付近の電気信号に対して相対的により多くのA/Dカウントが割り当てられる(2/X>2/Y)。したがって、本実施形態におけるフーリエ変換型分光計Dおよびこれに実装されるフーリエ変換型分光方法は、AD変換器が用いられる場合に、1個のAD変換器でもインターフェログラムのゼロレベル付近における微小な信号もより高分解能で検出することができる。 As described above, the Fourier transform spectrometer D according to the present embodiment is a phase difference interferometer having a phase difference even if the optical elements constituting the interferometer 11 are arranged at a virtual optical path difference of zero. Since the interference light of the measured light is generated by the interferometer 11, the maximum amplitude X at one or more peaks of the interferogram is generated by a normal interferometer that compensates for the phase difference. It becomes smaller than the maximum amplitude Y at one or more peaks of the interferogram corresponding to the interference light of the light to be measured (X <Y). Therefore, when an electric signal obtained by receiving the interference light is AD converted by a Z-bit AD converter, a relatively larger A / D count is assigned to the electric signal near zero level ( 2Z / X> 2Z / Y). Therefore, the Fourier transform type spectrometer D and the Fourier transform type spectroscopic method implemented in the present embodiment are very small in the vicinity of the zero level of the interferogram even when one AD converter is used. Can also be detected with higher resolution.
 また、本実施形態のフーリエ変換型分光計Dは、上述のように、X<Yであるので、増幅部22の増幅器として、スルーレートの比較的低いオペアンプ(入力信号に対する追従性の比較的遅いオペアンプ)を用いることができ、低ノイズアンプを用いることができる。増幅部22の増幅器として低ノイズアンプ(LNA)を用いることによって、本実施形態のフーリエ変換型分光計Dは、いわゆるSN比の向上を図ることができる。 Further, since the Fourier transform spectrometer D of the present embodiment satisfies X <Y as described above, an operational amplifier with a relatively low slew rate (relatively slow tracking with respect to an input signal) is used as the amplifier of the amplification unit 22. Operational amplifier), and a low noise amplifier can be used. By using a low noise amplifier (LNA) as the amplifier of the amplifying unit 22, the Fourier transform spectrometer D of the present embodiment can improve the so-called SN ratio.
 また、本実施形態のフーリエ変換型分光計Dは、半透鏡112の透過側に第1位相差板113をさらに備えるので、干渉計11における第1および第2光路間の位相差をさらに大きくすることができる。この結果、本実施形態のフーリエ変換型分光計Dは、インターフェログラムの1または複数のピークにおける最大の振幅Xを、後述の図14(A)に示す第1位相差板113を備えないで半透鏡112の透明基板で生じる位相差だけの有位相差干渉計によるインターフェログラムに較べて、より小さくすることができる。 In addition, since the Fourier transform spectrometer D of the present embodiment further includes the first retardation plate 113 on the transmission side of the semi-transparent mirror 112, the phase difference between the first and second optical paths in the interferometer 11 is further increased. be able to. As a result, the Fourier transform spectrometer D of the present embodiment does not include the first phase difference plate 113 shown in FIG. 14A described later with the maximum amplitude X at one or more peaks of the interferogram. The interferogram can be made smaller than the interferogram obtained by the phase difference interferometer having only the phase difference generated on the transparent substrate of the semi-transparent mirror 112.
 また、本実施形態のフーリエ変換型分光計Dは、所定の線幅を持つレーザ光の干渉光における光強度の包絡線を検波することによってセンターバーストの位置を検出するので、例えば、図4に示すような、より簡易な回路構成で検波回路を構成することができる。 Further, the Fourier transform spectrometer D of the present embodiment detects the position of the center burst by detecting the envelope of the light intensity in the interference light of the laser light having a predetermined line width. As shown, the detection circuit can be configured with a simpler circuit configuration.
 また、本実施形態のフーリエ変換型分光計Dは、レーザ光が所定の線幅を持つレーザ光とされ、センターバーストの位置を検出するための構成として、移動鏡112の位置を検出するための一部の構成が流用されている。より具体的には、位置測定用光源31から第2受光部36までの構成が共用され、第2受光部36の出力がゼロクロス検出部37および包絡線検波部38のそれぞれに出力される。このため、本実施形態のフーリエ変換型分光計Dは、より少ない回路構成でセンターバーストの位置を検出することができる。 Further, in the Fourier transform spectrometer D of the present embodiment, the laser beam is a laser beam having a predetermined line width, and the configuration for detecting the position of the center burst is for detecting the position of the movable mirror 112. Some configurations are diverted. More specifically, the configuration from the position measurement light source 31 to the second light receiving unit 36 is shared, and the output of the second light receiving unit 36 is output to each of the zero cross detection unit 37 and the envelope detection unit 38. For this reason, the Fourier transform spectrometer D of the present embodiment can detect the position of the center burst with a smaller circuit configuration.
 また、本実施形態のフーリエ変換型分光計Dでは、位置測定用光源31として、単色レーザ光を高周波重畳することによって所定の線幅を持つレーザ光を放射するレーザ装置、あるいは、所定の線幅を持つレーザ光を放射する半導体レーザが用いられる。このため、本実施形態では、より簡易に前記所定の線幅を持つレーザ光を放射する位置測定用光源31が構成され得る。 In the Fourier transform spectrometer D of the present embodiment, the position measuring light source 31 is a laser device that emits laser light having a predetermined line width by superimposing monochromatic laser light at a high frequency, or a predetermined line width. A semiconductor laser that emits a laser beam having the above is used. For this reason, in this embodiment, the position measuring light source 31 that emits the laser beam having the predetermined line width can be configured more simply.
 図14は、実施形態のフーリエ変換型分光計における第2態様の干渉計の構成、被測定光の干渉光の波形(インターフェログラム)および位置測定用光源のレーザ光の干渉光の波形を説明するための図である。図14(A)は、実施形態のフーリエ変換型分光計における第2態様の干渉計の構成を示し、図14(B)は、模式的に描いた、被測定光の干渉光の波形(インターフェログラム)を示し、そして、図14(C)は、模式的に描いた、位置測定用光源のレーザ光の干渉光の波形を示す。図15は、実施形態のフーリエ変換型分光計における第3態様の干渉計の構成を示す図である。 FIG. 14 illustrates the configuration of the interferometer of the second aspect in the Fourier transform spectrometer of the embodiment, the waveform of the interference light of the light under measurement (interferogram), and the waveform of the interference light of the laser light of the position measurement light source. It is a figure for doing. FIG. 14A shows the configuration of the interferometer of the second aspect in the Fourier transform spectrometer of the embodiment, and FIG. 14B shows the waveform of the interference light of the light to be measured (interference) schematically drawn. 14C shows the waveform of the interference light of the laser beam of the position measurement light source schematically drawn. FIG. 15 is a diagram illustrating a configuration of the interferometer of the third aspect in the Fourier transform spectrometer of the embodiment.
 なお、上述の実施形態では、有位相差干渉計として、図2や図5(A)に示すように、半透鏡112と移動鏡115との間に位相差板113を有する干渉計11(第1態様の干渉計11)が用いられたが、これに限定されるものではなく、例えば、図14に示す構成の第2態様の干渉計11aや、図15に示す構成の第3態様の干渉計11bであってもよい。 In the above-described embodiment, as the phase difference interferometer, as shown in FIG. 2 and FIG. 5A, the interferometer 11 (first step) having the phase difference plate 113 between the semi-transparent mirror 112 and the movable mirror 115 is used. Although one mode of interferometer 11) is used, the present invention is not limited to this. For example, the second mode of interferometer 11a having the configuration shown in FIG. 14 or the third mode of interference having the configuration shown in FIG. It may be 11b in total.
 より具体的には、第2態様の干渉計11aは、上述したように、半透鏡112が透明基板を備えるために半透鏡112自身が位相差を生じさせるので、図14(A)に示すように、第1態様の干渉計11における位相差板113を除いた構成である。このように、半透鏡面を一方主面に形成した透明基板を備える通常の半透鏡112を用いたごく一般的な構成のマイケルソン干渉計において、図8(A)を用いて上述した通常用いられる位相補償を行うための位相補償板CPを備えないことで、前記有位相差干渉計を簡単に構成することができる。すなわち、この第2態様の干渉計11aは、半透鏡112と、固定鏡114と、光軸方向に移動する移動鏡115とを備え、被測定光を半透鏡112で2個の第1および第2被測定光に分岐して固定鏡114および移動鏡115にそれぞれ入射させ、固定鏡114で反射された第1被測定光および移動鏡115で反射された第2被測定光を半透鏡112で互いに干渉させるマイケルソン干渉計であって、半透鏡112は、透明基板と、前記透明基板の一方主面に形成された半透鏡面とを備えて構成されるものである。 More specifically, in the interferometer 11a of the second aspect, as described above, the semi-transparent mirror 112 itself causes a phase difference because the semi-transparent mirror 112 includes a transparent substrate, and therefore, as shown in FIG. In addition, the phase difference plate 113 in the interferometer 11 of the first aspect is omitted. Thus, in the Michelson interferometer having a very general configuration using the normal semi-transparent mirror 112 including the transparent substrate having the semi-transparent surface formed on one main surface, the normal use described above with reference to FIG. Since the phase compensation plate CP for performing the phase compensation is not provided, the phase difference interferometer can be easily configured. That is, the interferometer 11a according to the second aspect includes a semi-transparent mirror 112, a fixed mirror 114, and a moving mirror 115 that moves in the optical axis direction. The first measurement light reflected by the fixed mirror 114 and the second measurement light reflected by the movable mirror 115 are split by the semi-transparent mirror 112. A Michelson interferometer that interferes with each other, and the semi-transparent mirror 112 includes a transparent substrate and a semi-transparent surface formed on one main surface of the transparent substrate.
 このような第2態様の干渉計11aによっても第1態様の干渉計11と同様の作用効果を奏するが、図5(B)および(C)と図14(B)および(C)とを対比すると分かるように、位相差板113をさらに備えるために、第1態様の干渉計11の方が第2態様の干渉計11aよりも、被測定光の干渉光における最大振幅が小さく、また、レーザ光の干渉光における包絡線の振幅変化が大きい。このため、第1態様の干渉計11と第2態様の干渉計11aとを比較する場合では、第1態様の干渉計11の方が有利である。 Such an interferometer 11a according to the second aspect also provides the same operational effects as the interferometer 11 according to the first aspect, but compares FIGS. 5 (B) and (C) with FIGS. 14 (B) and (C). As can be seen, in order to further include the phase difference plate 113, the interferometer 11 of the first aspect has a smaller maximum amplitude in the interference light of the measured light than the interferometer 11a of the second aspect, and the laser The amplitude change of the envelope in the interference light is large. For this reason, when comparing the interferometer 11 of the first aspect with the interferometer 11a of the second aspect, the interferometer 11 of the first aspect is more advantageous.
 また、第3態様の干渉計11bは、半透鏡112と、固定鏡114と、光軸方向に移動する移動鏡115とを備え、被測定光を半透鏡112で2個の第1および第2被測定光に分岐して固定鏡114および移動鏡115にそれぞれ入射させ、固定鏡114で反射された第1被測定光および移動鏡115で反射された第2被測定光を半透鏡112で互いに干渉させるマイケルソン干渉計であって、半透鏡112は、透明基板と、前記透明基板の一方主面に形成された半透鏡面とを備える。そして、この第3態様の干渉計11bは、前記被測定光を半透鏡112で2個の第1および第2被測定光に分岐する場合において、半透鏡112で反射された半透鏡112の反射側に配置される第2位相差板117をさらに備えており、この第2位相差板117は、半透鏡112で生じる位相差と異なる位相差を生じさせるものである。このような第2位相差板117は、例えば、半透鏡112の前記透明基板と同一の厚さであって半透鏡112の前記透明基板と異なる屈折率(屈折率特性)を持つ材料によって形成される。また例えば、第2位相差板117は、例えば、半透鏡112の前記透明基板と同一の屈折率(屈折率特性)を持つ材料(例えば同一の材料)によって半透鏡112の前記透明基板と異なる厚さで形成される。 The interferometer 11b according to the third aspect includes a semi-transparent mirror 112, a fixed mirror 114, and a movable mirror 115 that moves in the optical axis direction. The first and second two light beams are measured by the semi-transparent mirror 112. The first measured light reflected by the fixed mirror 114 and the second measured light reflected by the movable mirror 115 are split into the measured light and incident on the fixed mirror 114 and the movable mirror 115, respectively. In the Michelson interferometer, the half mirror 112 includes a transparent substrate and a half mirror surface formed on one main surface of the transparent substrate. The interferometer 11b according to the third aspect reflects the reflected light of the half mirror 112 reflected by the half mirror 112 when the light to be measured is split into two first and second light beams to be measured by the half mirror 112. A second phase difference plate 117 is further provided on the side, and the second phase difference plate 117 generates a phase difference different from the phase difference generated in the semi-transparent mirror 112. The second retardation plate 117 is formed of a material having the same thickness as the transparent substrate of the semi-transparent mirror 112 and a different refractive index (refractive index characteristic) from the transparent substrate of the semi-transparent mirror 112, for example. The Further, for example, the second retardation plate 117 has a thickness different from that of the transparent substrate of the semi-transparent mirror 112 by a material (for example, the same material) having the same refractive index (refractive index characteristic) as that of the transparent substrate of the semi-transparent mirror 112. Is formed.
 このような第3態様の干渉計11bは、半透鏡112の反射側に第2位相差板117をさらに備えるので、図14(A)に示す構成の第2態様の干渉計11aに較べて、第1および第2光路間の位相差をさらに大きくすることができる。 Since the interferometer 11b according to the third aspect further includes the second retardation plate 117 on the reflection side of the semi-transparent mirror 112, as compared with the interferometer 11a according to the second aspect having the configuration shown in FIG. The phase difference between the first and second optical paths can be further increased.
 なお、図2および図5(A)に示す構成の第1態様の干渉計11において、第2位相差板117をさらに備えて第4態様の干渉計11c(図略)が構成されてもよい。 In the interferometer 11 of the first aspect configured as shown in FIGS. 2 and 5A, the interferometer 11c (not shown) of the fourth aspect may further include a second phase difference plate 117. .
 図16は、レーザ光の干渉光における包絡線に基づいてセンターバーストの位置を求める第2態様の方法を説明するための図である。図16(A)は、前記包絡線を示し、図16(B)は、前記包絡線の差分波形を示す。図17は、レーザ光の干渉光における包絡線に基づいてセンターバーストの位置を求める第3態様の方法を説明するための図である。図16および図17の横軸は、光路差(移動鏡115の位置)を示し、これらの縦軸は、レベルを示す。 FIG. 16 is a diagram for explaining a second mode method for obtaining the position of the center burst based on the envelope in the interference light of the laser beam. FIG. 16A shows the envelope, and FIG. 16B shows a differential waveform of the envelope. FIG. 17 is a diagram for explaining the method of the third aspect for obtaining the position of the center burst based on the envelope in the interference light of the laser light. The horizontal axis in FIGS. 16 and 17 indicates the optical path difference (position of the movable mirror 115), and these vertical axes indicate the levels.
 また、上述の実施形態において、センターバースト位置演算部412は、包絡線検波部38から入力された包絡線の極大値を、移動鏡112の移動(光路差の変化)に従って前記包絡線の振幅値(レベル)が増加から減少に転じた点で検出してもよいが、一例として、図16(A)に示すように前記包絡線が前記極大値付近では移動鏡112の移動(光路差の変化)に従って比較的緩やかに変化する場合には、前記点を精度よく検出することは容易ではない。このため、センターバースト位置演算部412は、包絡線検波部38で検波された包絡線の差分情報に基づいて包絡線検波部38で検波された包絡線の極大値を与える位置をセンターバーストの位置として検出してもよい。 In the above-described embodiment, the center burst position calculation unit 412 uses the envelope maximum value input from the envelope detection unit 38 as the amplitude value of the envelope according to the movement of the movable mirror 112 (change in optical path difference). For example, as shown in FIG. 16A, when the envelope is in the vicinity of the maximum value, the movement of the movable mirror 112 (change in optical path difference) may be detected. ), It is not easy to detect the point with high accuracy. For this reason, the center burst position calculation unit 412 determines the position that gives the maximum value of the envelope detected by the envelope detection unit 38 based on the difference information of the envelope detected by the envelope detection unit 38 as the position of the center burst. You may detect as.
 より具体的には、センターバースト位置演算部412は、適宜な間隔で、包絡線上の2点間の差分を求める。例えば、図16(A)に示す包絡線に対し、この包絡線上の2点間の差分を求めて行くと、前記差分情報として、図16(B)に示す差分のグラフが得られる。この差分のグラフにおいて、差分値が正値から負値へ転じるゼロクロス点が前記極大値を与える位置に対応するので、センターバースト位置演算部412は、この差分のグラフにおいて、差分値が正値から負値へ転じるゼロクロス点を求め、ゼロクロス点をセンターバーストの位置とすればよい。 More specifically, the center burst position calculation unit 412 obtains a difference between two points on the envelope at an appropriate interval. For example, when the difference between two points on the envelope is obtained with respect to the envelope shown in FIG. 16A, a difference graph shown in FIG. 16B is obtained as the difference information. In the difference graph, since the zero cross point at which the difference value changes from a positive value to a negative value corresponds to the position where the maximum value is given, the center burst position calculation unit 412 determines that the difference value is from the positive value in the difference graph. A zero cross point that turns to a negative value is obtained, and the zero cross point may be set as the center burst position.
 ここで、差分を求める前記間隔が大きいほど、差分値が大きくなり、より精度よくゼロクロス点が検出可能となり、この結果、より精度よくセンターバーストの位置が検出可能となる。 Here, the larger the interval for obtaining the difference, the larger the difference value, and the zero cross point can be detected with higher accuracy. As a result, the position of the center burst can be detected with higher accuracy.
 また、このような差分を求める場合において、包絡線の測定結果を格納する記憶素子の記憶容量が制約されて前記間隔があまり大きく取れない場合や、AD変換部23のビット数Zが少なくて分解能があまり大きくない場合では、前記差分は、ゼロクロス点付近では図17に示すように、階段状になってしまう場合がある。このような場合では、ゼロクロス点付近の差分のグラフを最小2乗法によって直線近似し、この近似直線のゼロクロス点を求めることによって、センターバーストの位置が求められてもよい。 Further, when obtaining such a difference, the storage capacity of the storage element that stores the measurement result of the envelope is restricted, and the interval cannot be made too large, or the number of bits Z of the AD conversion unit 23 is small and the resolution is small. When the difference is not so large, the difference may have a stepped shape near the zero cross point as shown in FIG. In such a case, the position of the center burst may be obtained by linearly approximating the difference graph near the zero cross point by the least square method and obtaining the zero cross point of the approximate straight line.
 このような包絡線の差分情報を用いることによって、フーリエ変換型分光計Dのセンターバースト位置演算部412は、前記包絡線の極大値を与える位置をより精度よく検出することができ、仮に前記包絡線の変化が緩やかであるために前記包絡線の極大値が見分け難い場合であっても、前記包絡線の極大値を与える位置を検出することができる。 By using such envelope difference information, the center burst position calculation unit 412 of the Fourier transform spectrometer D can detect the position giving the maximum value of the envelope more accurately. Even when it is difficult to distinguish the maximum value of the envelope because the change of the line is gradual, the position where the maximum value of the envelope is given can be detected.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるフーリエ変換型分光計は、測定対象の被測定光が入射され、前記被測定光の入射位置から干渉位置までの間に、複数の光学素子によって形成される2個の光路を備え、前記2個の光路のそれぞれが仮に同一の媒質で形成されている場合に前記2個の光路間の光路差がゼロとなるように前記複数の光学素子を配置した場合において実際には前記光路間に位相差を持つ有位相差干渉計と、前記被測定光の各波長成分の初期位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置を検出するセンターバースト位置検出部と、前記有位相差干渉計によって得られた前記被測定光のインターフェログラムを、前記センターバースト位置検出部によって検出されたセンターバーストの位置に基づいてフーリエ変換を行うことによって前記被測定光のスペクトルを求めるスペクトル演算部とを備える。 A Fourier transform spectrometer according to one aspect includes two optical paths formed by a plurality of optical elements between a measurement light incident position and an interference position where the measurement target light is incident. When the plurality of optical elements are arranged so that the optical path difference between the two optical paths is zero when each of the two optical paths is formed of the same medium, the optical path is actually A phase difference interferometer having a phase difference therebetween, a center burst position detector for detecting a position of a center burst in an interferogram when the initial phase difference of each wavelength component of the light to be measured is zero, and An interferogram of the measured light obtained by the phase difference interferometer is Fourier-transformed based on the center burst position detected by the center burst position detector. And a spectrum calculating unit for obtaining the spectrum of said light to be measured by performing.
 そして、他の一態様にかかるフーリエ変換型分光方法は、測定対象の被測定光の入射位置から干渉位置までの間に、複数の光学素子によって形成される2個の光路を備え、前記2個の光路のそれぞれが仮に同一の媒質で形成されている場合に前記2個の光路間の光路差がゼロとなるように前記複数の光学素子を配置した場合において実際には前記光路間に位相差を持つ有位相差干渉計によって、測定対象の被測定光のインターフェログラムを得るインターフェログラム取得工程と、前記被測定光の各波長成分の位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置を検出するセンターバースト位置検出工程と、前記インターフェログラム取得工程で得られた前記被測定光のインターフェログラムを、前記センターバースト位置検出工程によって検出されたセンターバーストの位置に基づいてフーリエ変換を行うことによって前記被測定光のスペクトルを求めるスペクトル演算工程とを備える。 The Fourier transform type spectroscopic method according to another aspect includes two optical paths formed by a plurality of optical elements between the incident position of the measurement target light to be measured and the interference position. In the case where the plurality of optical elements are arranged such that the optical path difference between the two optical paths is zero when each of the optical paths is formed of the same medium, the phase difference between the optical paths is actually An interferogram acquisition step of obtaining an interferogram of the light to be measured by a phase difference interferometer having a center, and a center in the interferogram when the phase difference of each wavelength component of the light to be measured is zero A center burst position detecting step for detecting a burst position and an interferogram of the measured light obtained in the interferogram acquiring step And a spectrum calculation step of obtaining a spectrum of the light to be measured by performing a Fourier transform on the basis of the detected center burst position by the burst position detecting step.
 このような構成のフーリエ変換型分光計およびフーリエ変換型分光方法では、有位相差干渉計によって被測定光の干渉光が生成されているので、そのインターフェログラムの1または複数のピークにおける最大の振幅Xは、前記位相差を補償した通常の干渉計によって生成された被測定光の干渉光に対応するインターフェログラムの1または複数のピークにおける最大の振幅Yよりも小さくなる(X<Y)。このため、干渉光を受光して得られた電気信号をアナログ信号からディジタル信号へ変換するZビットのアナログ-ディジタル変換器(AD変換器)を用いる場合に、ゼロレベル付近の電気信号に対して相対的により多くのA/Dカウントが割り当てられる(2/X>2/Y)。したがって、このような構成のフーリエ変換型分光計およびフーリエ変換型分光方法は、AD変換器が用いられる場合に、1個のAD変換器でもインターフェログラムのゼロレベル付近における微小な信号もより高分解能で検出することができる。 In the Fourier transform spectrometer and the Fourier transform spectroscopic method having such a configuration, since the interference light of the light to be measured is generated by the phase difference interferometer, the maximum in one or a plurality of peaks of the interferogram is obtained. The amplitude X is smaller than the maximum amplitude Y at one or more peaks of the interferogram corresponding to the interference light of the measured light generated by the normal interferometer that compensates for the phase difference (X <Y). . For this reason, when using a Z-bit analog-digital converter (AD converter) that converts an electrical signal obtained by receiving interference light from an analog signal to a digital signal, Relatively more A / D counts are assigned (2 Z / X> 2 Z / Y). Therefore, when the AD converter is used, the Fourier transform spectrometer and the Fourier transform spectroscopic method having such a configuration have a higher minute signal near the zero level of the interferogram even with one AD converter. It can be detected with resolution.
 また、他の一態様では、上述のフーリエ変換型分光計において、前記有位相差干渉計は、前記2個の光路を通過するそれぞれの光において、光路延長を伴う屈折領域数の差が2以上となるように、少なくとも一方の光路中に透明基板から成る光学素子を備える。 According to another aspect, in the above-described Fourier transform spectrometer, the phase difference interferometer has a difference in the number of refraction regions accompanying optical path extension of 2 or more in each light passing through the two optical paths. Thus, an optical element made of a transparent substrate is provided in at least one of the optical paths.
 このような構成のフーリエ変換型分光計は、少なくとも一方の光路中に透明基板を配置することで、簡易に有位相差干渉計を構成することができる。 A Fourier transform spectrometer having such a configuration can easily form a phase difference interferometer by disposing a transparent substrate in at least one optical path.
 また、他の一態様では、上述のフーリエ変換型分光計において、前記有位相差干渉計は、半透鏡と、固定鏡と、光軸方向に移動する移動鏡とを前記複数の光学素子として備え、前記被測定光を前記半透鏡で2個の第1および第2被測定光に分岐して前記固定鏡および前記移動鏡にそれぞれ入射させ、前記固定鏡で反射された前記第1被測定光および前記移動鏡で反射された前記第2被測定光を前記半透鏡で互いに干渉させるマイケルソン干渉計であって、前記半透鏡は、透明基板と、前記透明基板の一方主面に形成された半透鏡面とを備える。 According to another aspect, in the Fourier transform spectrometer described above, the phase difference interferometer includes a semi-transparent mirror, a fixed mirror, and a movable mirror that moves in the optical axis direction as the plurality of optical elements. The measurement light is split into two first and second measurement light beams by the semi-transparent mirror, and is incident on the fixed mirror and the movable mirror, respectively, and is reflected by the fixed mirror. And a Michelson interferometer that causes the second measured light reflected by the movable mirror to interfere with each other by the semi-transparent mirror, wherein the semi-transparent mirror is formed on one main surface of the transparent substrate and the transparent substrate. A semi-transparent mirror surface.
 このような構成のフーリエ変換型分光計は、半透鏡面を一方主面に形成した透明基板を備える通常の半透鏡を用いたごく一般的なマイケルソン干渉計において、通常用いられる位相補償を行うための位相差板を備えないことで、前記有位相差干渉計を簡単に構成することができる。 The Fourier transform spectrometer having such a configuration performs phase compensation normally used in a general Michelson interferometer using a normal semi-transmission mirror including a transparent substrate having a semi-transmission surface formed on one main surface. Therefore, the phase difference interferometer can be easily configured.
 また、他の一態様では、上述のフーリエ変換型分光計において、前記被測定光を前記半透鏡で2個の第1および第2被測定光に分岐する場合において、前記半透鏡を透過した前記半透鏡の透過側に配置される第1位相差板をさらに備える。 Further, in another aspect, in the above-described Fourier transform spectrometer, when the light to be measured is branched into two first and second light to be measured by the semi-transparent mirror, the semi-transparent mirror is transmitted. A first retardation plate is further provided on the transmission side of the semi-transparent mirror.
 このような構成のフーリエ変換型分光計は、前記半透鏡の透過側に第1位相差板をさらに備えるので、前記有位相差干渉計における前記光路間の前記位相差をさらに大きくすることができる。 Since the Fourier transform spectrometer having such a configuration further includes the first phase difference plate on the transmission side of the semi-transparent mirror, the phase difference between the optical paths in the phase difference interferometer can be further increased. .
 また、他の一態様では、上述のフーリエ変換型分光計において、前記被測定光を前記半透鏡で2個の第1および第2被測定光に分岐する場合において、前記半透鏡で反射された前記半透鏡の反射側に配置される第2位相差板をさらに備え、前記第2位相差板は、前記半透鏡で生じる位相差と異なる位相差を生じさせる。 According to another aspect, in the above-described Fourier transform spectrometer, when the light to be measured is branched into two first and second light to be measured by the semi-transparent mirror, the light is reflected by the semi-transparent mirror. A second retardation plate is further provided on the reflection side of the semi-transparent mirror, and the second retardation plate generates a phase difference different from the phase difference generated in the semi-transparent mirror.
 このような構成のフーリエ変換型分光計は、前記半透鏡の反射側に第2位相差板をさらに備えるので、前記有位相差干渉計における前記光路間の前記位相差をさらに大きくすることができる。 Since the Fourier transform spectrometer having such a configuration further includes a second phase difference plate on the reflection side of the semi-transparent mirror, the phase difference between the optical paths in the phase difference interferometer can be further increased. .
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記センターバースト位置検出部は、所定の線幅を持つレーザ光を前記有位相差干渉計に入射させることによって得られた前記レーザ光の干渉光における光強度の包絡線を検波し、前記検波された包絡線の極大値を与える位置を前記センターバーストの位置として検出することを特徴とする。 According to another aspect, in the above-described Fourier transform spectrometer, the center burst position detection unit is obtained by causing a laser beam having a predetermined line width to enter the phase difference interferometer. An envelope of light intensity in the interference light of the laser beam is detected, and a position that gives a maximum value of the detected envelope is detected as the position of the center burst.
 このような構成のフーリエ変換型分光計は、所定の線幅を持つレーザ光の干渉光における光強度の包絡線を検波することによって前記センターバーストの位置を検出するので、より簡易な回路構成で検波回路を構成することができる。 Since the Fourier transform spectrometer having such a configuration detects the position of the center burst by detecting the envelope of the light intensity in the interference light of the laser beam having a predetermined line width, it has a simpler circuit configuration. A detection circuit can be configured.
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記有位相差干渉計によって得られた前記被測定光の干渉光を受光して前記被測定光の干渉光における光強度を出力する第1受光部と、前記第1受光部の出力をアナログ信号からディジタル信号へ変換して前記被測定光のインターフェログラムを出力するアナログ-ディジタル変換部と、後記第2受光部の出力のゼロクロスを検出し、前記検出したゼロクロスタイミングをサンプリングタイミングとして前記アナログ-ディジタル変換部へ出力するゼロクロス検出部とをさらに備え、前記センターバースト位置検出部は、所定の線幅を持つレーザ光を前記有位相差干渉計に入射させる位置測定用光源と、前記有位相差干渉計によって得られた前記レーザ光の干渉光を受光して前記レーザ光の干渉光における光強度を出力する第2受光部と、前記第2受光部の出力の包絡線を検波する包絡線検波部と、前記包絡線検波部で検波された包絡線の極大値を与える位置を前記センターバーストの位置として検出するセンターバースト位置演算部とを備える。 Further, in another aspect, in the above-described Fourier transform spectrometer, the interference light of the measurement light obtained by the phase difference interferometer is received, and the light intensity of the interference light of the measurement light is measured. A first light receiving unit for outputting, an analog-digital converting unit for converting the output of the first light receiving unit from an analog signal to a digital signal and outputting an interferogram of the light to be measured, and an output of the second light receiving unit to be described later And a zero-cross detector that outputs the detected zero-cross timing as a sampling timing to the analog-digital converter, and the center burst position detector includes a laser beam having a predetermined line width. A position measuring light source incident on the phase difference interferometer and the interference light of the laser beam obtained by the phase difference interferometer are received. Then, a second light receiving unit that outputs light intensity in the interference light of the laser light, an envelope detection unit that detects an envelope of the output of the second light receiving unit, and an envelope detected by the envelope detection unit And a center burst position calculation unit that detects a position that gives a local maximum value as the position of the center burst.
 マイケルソン干渉計では移動鏡の位置を検出するために、例えば、レーザ光の干渉光が利用され、前記レーザ光の干渉光におけるゼロクロスタイミングがサンプリングタイミングとされる。上記構成のフーリエ変換型分光計では、このレーザ光が前記所定の線幅を持つレーザ光とされ、前記センターバーストの位置を検出するための構成として、移動鏡の位置を検出するための一部の構成が流用される。例えば、前記位置測定用光源から前記第2受光部までの構成が共用され、第2受光部の出力がゼロクロス検出部および包絡線検波部のそれぞれに出力される。このため、上記構成のフーリエ変換型分光計は、より少ない回路構成で前記センターバーストの位置を検出することができる。 In the Michelson interferometer, in order to detect the position of the movable mirror, for example, interference light of a laser beam is used, and a zero cross timing in the interference light of the laser beam is set as a sampling timing. In the Fourier transform spectrometer having the above configuration, the laser beam is a laser beam having the predetermined line width, and a part for detecting the position of the movable mirror is used as a configuration for detecting the position of the center burst. The configuration of is diverted. For example, the configuration from the position measurement light source to the second light receiving unit is shared, and the output of the second light receiving unit is output to each of the zero cross detection unit and the envelope detection unit. For this reason, the Fourier transform spectrometer having the above configuration can detect the position of the center burst with a smaller circuit configuration.
 また、他の一態様では、上述のフーリエ変換型分光計において、前記位置測定用光源は、単色レーザ光を高周波重畳することによって前記所定の線幅を持つレーザ光を放射するレーザ装置である。 In another aspect, in the above-described Fourier transform spectrometer, the position measurement light source is a laser device that emits laser light having the predetermined line width by superimposing monochromatic laser light at high frequency.
 上記構成によれば、より簡易に前記所定の線幅を持つレーザ光を放射する位置測定用光源が構成される。 According to the above configuration, a position measurement light source that emits laser light having the predetermined line width is configured more simply.
 また、他の一態様では、上述のフーリエ変換型分光計において、前記位置測定用光源は、前記所定の線幅を持つレーザ光を放射する半導体レーザである。 In another aspect, in the above-described Fourier transform spectrometer, the position measurement light source is a semiconductor laser that emits laser light having the predetermined line width.
 上記構成によれば、より簡易に前記所定の線幅を持つレーザ光を放射する位置測定用光源が構成される。 According to the above configuration, a position measurement light source that emits laser light having the predetermined line width is configured more simply.
 また、他の一態様では、これら上述のフーリエ変換型分光計において、前記センターバースト位置演算部は、前記包絡線検波部で検波された包絡線の差分情報に基づいて前記包絡線検波部で検波された包絡線の極大値を与える位置を前記センターバーストの位置として検出する。 According to another aspect, in the above-described Fourier transform spectrometer, the center burst position calculation unit is detected by the envelope detection unit based on difference information of the envelope detected by the envelope detection unit. A position that gives the maximum value of the envelope is detected as the position of the center burst.
 このような構成のフーリエ変換型分光計は、前記包絡線の極大値を与える位置をより精度よく検出することができ、仮に前記包絡線の変化が緩やかであるために前記包絡線の極大値が見分け難い場合であっても、前記包絡線の極大値を与える位置を検出することができる。 The Fourier transform spectrometer having such a configuration can detect the position where the maximum value of the envelope is given more accurately, and since the change of the envelope is gentle, the maximum value of the envelope is Even if it is difficult to distinguish, it is possible to detect the position that gives the maximum value of the envelope.
 この出願は、2011年3月17日に出願された日本国特許出願特願2011-058635を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2011-058635 filed on Mar. 17, 2011, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、フーリエ変換型分光計およびフーリエ変換型分光方法を提供することができる。 According to the present invention, a Fourier transform spectrometer and a Fourier transform spectrometer can be provided.

Claims (11)

  1.  測定対象の被測定光が入射され、前記被測定光の入射位置から干渉位置までの間に、複数の光学素子によって形成される2個の光路を備え、前記2個の光路のそれぞれが仮に同一の媒質で形成されている場合に前記2個の光路間の光路差がゼロとなるように前記複数の光学素子を配置した場合において実際には前記光路間に位相差を持つ有位相差干渉計と、
     前記被測定光の各波長成分の初期位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置を検出するセンターバースト位置検出部と、
     前記有位相差干渉計によって得られた前記被測定光のインターフェログラムを、前記センターバースト位置検出部によって検出されたセンターバーストの位置に基づいてフーリエ変換を行うことによって前記被測定光のスペクトルを求めるスペクトル演算部とを備えること
     を特徴とするフーリエ変換型分光計。
    A light to be measured to be measured is incident, and two optical paths formed by a plurality of optical elements are provided between an incident position of the measured light and an interference position, and each of the two optical paths is temporarily the same. In the case where the plurality of optical elements are arranged so that the optical path difference between the two optical paths is zero when the optical path is formed of the medium, a phase difference interferometer that actually has a phase difference between the optical paths. When,
    A center burst position detector for detecting the position of the center burst in the interferogram when the initial phase difference of each wavelength component of the measured light is zero;
    The spectrum of the measured light is obtained by performing Fourier transform on the interferogram of the measured light obtained by the phase difference interferometer based on the position of the center burst detected by the center burst position detector. A Fourier transform spectrometer characterized by comprising a required spectrum calculation unit.
  2.  前記有位相差干渉計は、前記2個の光路を通過するそれぞれの光において、光路延長を伴う屈折領域数の差が2以上となるように、少なくとも一方の光路中に透明基板から成る光学素子を備えること
     を特徴とする請求項1に記載のフーリエ変換型分光計。
    The phase difference interferometer is an optical element composed of a transparent substrate in at least one of the optical paths so that the difference in the number of refractive regions accompanying the optical path extension is 2 or more in each light passing through the two optical paths. The Fourier transform spectrometer according to claim 1, comprising:
  3.  前記有位相差干渉計は、半透鏡と、固定鏡と、光軸方向に移動する移動鏡とを前記複数の光学素子として備え、前記被測定光を前記半透鏡で2個の第1および第2被測定光に分岐して前記固定鏡および前記移動鏡にそれぞれ入射させ、前記固定鏡で反射された前記第1被測定光および前記移動鏡で反射された前記第2被測定光を前記半透鏡で互いに干渉させるマイケルソン干渉計であって、前記半透鏡は、透明基板と、前記透明基板の一方主面に形成された半透鏡面とを備えること
     を特徴とする請求項1に記載のフーリエ変換型分光計。
    The phase difference interferometer includes a semi-transparent mirror, a fixed mirror, and a movable mirror that moves in an optical axis direction as the plurality of optical elements, and the first and second optical elements are measured by the semi-transparent mirror. The first measured light reflected by the fixed mirror and the second measured light reflected by the movable mirror are split into the second measured light and incident on the fixed mirror and the movable mirror, respectively. It is a Michelson interferometer which makes it mutually interfere with a transparent mirror, Comprising: The said semi-transparent mirror is provided with the transparent substrate and the semi-transparent surface formed in one main surface of the said transparent substrate. Fourier transform spectrometer.
  4.  前記被測定光を前記半透鏡で2個の第1および第2被測定光に分岐する場合において、前記半透鏡を透過した前記半透鏡の透過側に配置される第1位相差板をさらに備えること
     を特徴とする請求項3に記載のフーリエ変換型分光計。
    In the case where the light to be measured is branched into two first and second light to be measured by the semi-transparent mirror, a first retardation plate disposed on the transmission side of the semi-transparent mirror that has passed through the semi-transparent mirror is further provided. The Fourier transform spectrometer according to claim 3.
  5.  前記被測定光を前記半透鏡で2個の第1および第2被測定光に分岐する場合において、前記半透鏡で反射された前記半透鏡の反射側に配置される第2位相差板をさらに備え、
     前記第2位相差板は、前記半透鏡で生じる位相差と異なる位相差を生じさせること
     を特徴とする請求項3に記載のフーリエ変換型分光計。
    In the case where the light to be measured is branched into two first and second light to be measured by the semi-transparent mirror, a second retardation plate disposed on the reflection side of the semi-transparent mirror reflected by the semi-transparent mirror is further provided. Prepared,
    4. The Fourier transform spectrometer according to claim 3, wherein the second retardation plate generates a phase difference different from a phase difference generated in the semi-transparent mirror.
  6.  前記センターバースト位置検出部は、所定の線幅を持つレーザ光を前記有位相差干渉計に入射させることによって得られた前記レーザ光の干渉光における光強度の包絡線を検波し、前記検波された包絡線の極大値を与える位置を前記センターバーストの位置として検出すること
     を特徴とする請求項1に記載のフーリエ変換型分光計。
    The center burst position detection unit detects an envelope of light intensity in the interference light of the laser light obtained by making a laser beam having a predetermined line width incident on the phase difference interferometer, and detects the detected envelope. The Fourier transform spectrometer according to claim 1, wherein a position giving a maximum value of the envelope is detected as the position of the center burst.
  7.  前記有位相差干渉計によって得られた前記被測定光の干渉光を受光して前記被測定光の干渉光における光強度を出力する第1受光部と、
     前記第1受光部の出力をアナログ信号からディジタル信号へ変換して前記被測定光のインターフェログラムを出力するアナログ-ディジタル変換部と、
     後記第2受光部の出力のゼロクロスを検出し、前記検出したゼロクロスタイミングをサンプリングタイミングとして前記アナログ-ディジタル変換部へ出力するゼロクロス検出部とをさらに備え、
     前記センターバースト位置検出部は、所定の線幅を持つレーザ光を前記有位相差干渉計に入射させる位置測定用光源と、前記有位相差干渉計によって得られた前記レーザ光の干渉光を受光して前記レーザ光の干渉光における光強度を出力する第2受光部と、前記第2受光部の出力の包絡線を検波する包絡線検波部と、前記包絡線検波部で検波された包絡線の極大値を与える位置を前記センターバーストの位置として検出するセンターバースト位置演算部とを備えること
     を特徴とする請求項3に記載のフーリエ変換型分光計。
    A first light receiving unit that receives the interference light of the measurement light obtained by the phase difference interferometer and outputs the light intensity in the interference light of the measurement light;
    An analog-to-digital converter that converts an output of the first light receiving unit from an analog signal to a digital signal and outputs an interferogram of the light to be measured;
    A zero-cross detector that detects a zero-cross of the output of the second light-receiving unit to be described later and outputs the detected zero-cross timing to the analog-digital converter as a sampling timing;
    The center burst position detecting unit receives a laser beam having a predetermined line width on the phase difference interferometer, a position measurement light source, and the laser beam interference light obtained by the phase difference interferometer. Then, a second light receiving unit that outputs light intensity in the interference light of the laser light, an envelope detection unit that detects an envelope of the output of the second light receiving unit, and an envelope detected by the envelope detection unit The Fourier transform spectrometer according to claim 3, further comprising: a center burst position calculation unit that detects a position that gives a local maximum value as a position of the center burst.
  8.  前記位置測定用光源は、単色レーザ光を高周波重畳することによって前記所定の線幅を持つレーザ光を放射するレーザ装置であること
     を特徴とする請求項7に記載のフーリエ変換型分光計。
    The Fourier transform spectrometer according to claim 7, wherein the position measuring light source is a laser device that emits laser light having the predetermined line width by superimposing monochromatic laser light at high frequency.
  9.  前記位置測定用光源は、前記所定の線幅を持つレーザ光を放射する半導体レーザであること
     を特徴とする請求項7に記載のフーリエ変換型分光計。
    The Fourier transform spectrometer according to claim 7, wherein the position measuring light source is a semiconductor laser that emits laser light having the predetermined line width.
  10.  前記センターバースト位置演算部は、前記包絡線検波部で検波された包絡線の差分情報に基づいて前記包絡線検波部で検波された包絡線の極大値を与える位置を前記センターバーストの位置として検出すること
     を特徴とする請求項7に記載のフーリエ変換型分光計。
    The center burst position calculation unit detects a position that gives a maximum value of the envelope detected by the envelope detection unit as the position of the center burst based on difference information of the envelope detected by the envelope detection unit The Fourier transform spectrometer according to claim 7, wherein:
  11.  測定対象の被測定光の入射位置から干渉位置までの間に、複数の光学素子によって形成される2個の光路を備え、前記2個の光路のそれぞれが仮に同一の媒質で形成されている場合に前記2個の光路間の光路差がゼロとなるように前記複数の光学素子を配置した場合において実際には前記光路間に位相差を持つ有位相差干渉計によって、測定対象の被測定光のインターフェログラムを得るインターフェログラム取得工程と、
     前記被測定光の各波長成分の位相差がゼロである場合のインターフェログラムにおけるセンターバーストの位置を検出するセンターバースト位置検出工程と、
     前記インターフェログラム取得工程で得られた前記被測定光のインターフェログラムを、前記センターバースト位置検出工程によって検出されたセンターバーストの位置に基づいてフーリエ変換を行うことによって前記被測定光のスペクトルを求めるスペクトル演算工程とを備えること
     を特徴とするフーリエ変換型分光方法。
    When two optical paths formed by a plurality of optical elements are provided between the incident position of the measured light to be measured and the interference position, and each of the two optical paths is temporarily formed of the same medium In the case where the plurality of optical elements are arranged so that the optical path difference between the two optical paths is zero, the measured light to be measured is actually measured by a phase difference interferometer having a phase difference between the optical paths. Interferogram acquisition step of obtaining an interferogram of,
    A center burst position detecting step for detecting the position of the center burst in the interferogram when the phase difference of each wavelength component of the measured light is zero;
    The spectrum of the light to be measured is obtained by performing Fourier transform on the interferogram of the light to be measured obtained in the interferogram acquisition step based on the position of the center burst detected by the center burst position detecting step. A Fourier transform type spectroscopic method, comprising: a required spectrum calculation step.
PCT/JP2012/001554 2011-03-17 2012-03-07 Fourier transform spectrometer and fourier transform spectrometry WO2012124294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013504551A JP5737386B2 (en) 2011-03-17 2012-03-07 Fourier transform spectrometer and Fourier transform spectroscopic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011058635 2011-03-17
JP2011-058635 2011-03-17

Publications (1)

Publication Number Publication Date
WO2012124294A1 true WO2012124294A1 (en) 2012-09-20

Family

ID=46830386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001554 WO2012124294A1 (en) 2011-03-17 2012-03-07 Fourier transform spectrometer and fourier transform spectrometry

Country Status (2)

Country Link
JP (1) JP5737386B2 (en)
WO (1) WO2012124294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919876A4 (en) * 2019-01-30 2022-11-30 Hamamatsu Photonics K.K. Optical module, signal processing system, and signal processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926358A (en) * 1995-07-13 1997-01-28 Jasco Corp Equipment for integrating interferogram
JPH10142056A (en) * 1996-11-12 1998-05-29 Kurabo Ind Ltd Rotary interferometer
JP2005521893A (en) * 2002-04-04 2005-07-21 インライト ソリューションズ インコーポレイテッド Vertical cavity surface emitting laser (VCSEL) as interferometer reference
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952266B2 (en) * 2003-01-15 2005-10-04 Inlight Solutions, Inc. Interferometer alignment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926358A (en) * 1995-07-13 1997-01-28 Jasco Corp Equipment for integrating interferogram
JPH10142056A (en) * 1996-11-12 1998-05-29 Kurabo Ind Ltd Rotary interferometer
JP2005521893A (en) * 2002-04-04 2005-07-21 インライト ソリューションズ インコーポレイテッド Vertical cavity surface emitting laser (VCSEL) as interferometer reference
WO2011074452A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Interferometer and fourier spectrometer using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919876A4 (en) * 2019-01-30 2022-11-30 Hamamatsu Photonics K.K. Optical module, signal processing system, and signal processing method
US11898841B2 (en) 2019-01-30 2024-02-13 Hamamatsu Photonics K.K. Optical module, signal processing system, and signal processing method

Also Published As

Publication number Publication date
JPWO2012124294A1 (en) 2014-07-17
JP5737386B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5725165B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
US7292347B2 (en) Dual laser high precision interferometer
CN102834764B (en) A kind of technology of the mirror position determined in optical interdferometer
KR20130018553A (en) Film thickness measurement apparatus
US8144332B2 (en) Temperature measurement apparatus and method
KR101566383B1 (en) Reflection-type Interference Apparatus using Optical Fibers for Measuring Geometrical Thickness and Refractive index
US20090231592A1 (en) Refractive spatial heterodyne spectrometer
US9658107B2 (en) Self calibration for mirror positioning in optical MEMS interferometers
US9658053B2 (en) Self calibration for mirror positioning in optical MEMS interferometers
WO2014117158A1 (en) Self calibration for mirror positioning in optical mems interferometers
JP5891955B2 (en) Timing generation apparatus for Fourier transform spectrometer and method, Fourier transform spectrometer and method
JP5737386B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
JP5915737B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
EP3390991B1 (en) Self calibration for mirror positioning in optical mems interferometers
WO2014199888A1 (en) Fourier transform spectrometer and spectroscopy and fourier transform spectrometer timing generation device
JP5846202B2 (en) Fourier transform spectrometer and Fourier transform spectroscopic method
CN211877754U (en) Hyperspectral system for gas concentration detection
JP5974929B2 (en) Stray light correction method and Fourier transform type spectroscopic device using the same
JP5835101B2 (en) Fourier transform spectrometer, Fourier transform spectroscopic method, and attachment for Fourier transform spectrometer
JP2006300661A (en) Interferometer and fourier spectral device
CN110849829A (en) Hyperspectral system for gas concentration detection
US6816264B1 (en) Systems and methods for amplified optical metrology
JP2014228281A (en) Fourier transform type spectrometer and method for calibrating fourier transform type spectrometer
EP2948812B1 (en) Self calibration for mirror positioning in optical mems interferometers
JP2024022043A (en) Optical device and spectroscopic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758133

Country of ref document: EP

Kind code of ref document: A1