WO2012121222A2 - Intermediate image generation method, intermediate image generation device, three-dimensional image generation method, three-dimensional image generation device, and three-dimensional image generation system - Google Patents

Intermediate image generation method, intermediate image generation device, three-dimensional image generation method, three-dimensional image generation device, and three-dimensional image generation system Download PDF

Info

Publication number
WO2012121222A2
WO2012121222A2 PCT/JP2012/055591 JP2012055591W WO2012121222A2 WO 2012121222 A2 WO2012121222 A2 WO 2012121222A2 JP 2012055591 W JP2012055591 W JP 2012055591W WO 2012121222 A2 WO2012121222 A2 WO 2012121222A2
Authority
WO
WIPO (PCT)
Prior art keywords
rgby
viewpoints
image
staircase
viewpoint
Prior art date
Application number
PCT/JP2012/055591
Other languages
French (fr)
Japanese (ja)
Other versions
WO2012121222A3 (en
Inventor
吉田 健治
Original Assignee
Yoshida Kenji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Kenji filed Critical Yoshida Kenji
Publication of WO2012121222A2 publication Critical patent/WO2012121222A2/en
Publication of WO2012121222A3 publication Critical patent/WO2012121222A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Definitions

  • the present invention relates to a method and apparatus for converting a plurality of viewpoint images taken from a plurality of viewpoints to generate an intermediate image and a stereoscopic image, a system for generating a stereoscopic image using them, and an apparatus for displaying the stereoscopic image And about.
  • a display screen is configured by arranging images taken from a plurality of viewpoints obliquely in units of pixels or sub-pixels for each viewpoint, and a stereoscopic image is visually recognized by providing a barrier in front of the display screen.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 2 discloses that the pixel arrangement of an image is converted into a pixel arrangement corresponding to a parallax barrier type stereoscopic image display device.
  • This technique is disclosed in paragraph 0088 and FIG. Paragraph 0088 and FIG. 1 disclose a stereoscopic image display apparatus provided with an image composition circuit as a technical solution for converting the pixel arrangement of an image into a stereoscopic display in the apparatus.
  • Non-Patent Document 1 discloses software for converting a pixel arrangement of an image for stereoscopic display to be executed on a personal computer.
  • a large-scale stereoscopic image display system that is, a special and expensive graphic board capable of executing complex arithmetic processing for generating a stereoscopic image from a captured image at high speed is installed.
  • a computer is an essential element.
  • a large-scale stereoscopic image display system that is, a special and expensive graphic board capable of executing complex arithmetic processing for generating a stereoscopic image from a captured image at high speed is installed.
  • a computer is an essential element.
  • Patent Documents 3 to 5 disclose processing methods for converting three primary color signals composed of RGB into signals of four primary colors such as RGBY or five primary colors.
  • an image in which the images of the respective viewpoints are arranged in a tile shape often has a resolution and an aspect ratio different from that of a stereoscopic image, that is, the resolution of an autostereoscopic display.
  • a stereoscopic image that is, the resolution of an autostereoscopic display.
  • a high-speed transmission network is required to compress and transmit, and a larger-capacity storage medium is required.
  • the biggest problem is that it is not possible to provide images for each viewpoint for generating stereoscopic images in a standard format for storing and transmitting video on Blu-ray or STB. is there.
  • the present invention generates a high-speed special computer or the like by generating in advance an intermediate image having the same resolution as that of the stereoscopic image that is the final output image and collecting pixels for each viewpoint. It is possible to generate a stereoscopic image by simply changing the arrangement of pixels without using it, and using an intermediate image in which the images of each viewpoint are arranged in a tile shape, standard image output devices such as Blu-ray and STB and image distribution It is a technical object to realize a stereoscopic image generation system that generates a stereoscopic image from the intermediate image output or transmitted by a server in a standard format by a simple and inexpensive stereoscopic image generation apparatus (converter).
  • the first invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints.
  • An RGBY staircase in which RGBY staircase-arranged pixel units in which subpixels made of RGBY are arranged in four rows diagonally at a corner in an oblique direction are connected in a horizontal direction from the first viewpoint to the N viewpoint.
  • the R, G, B, and Y values of the sub-pixels constituting the RGBY step arrangement pixel unit are converted into the RGBY step arrangement pixel unit.
  • the second invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints.
  • the N viewpoints are 3n + 1 (n is a natural number) viewpoints
  • RGB staircase-arranged pixel units in which RGB subpixels are arranged in three rows in a diagonal direction in contact with corners are arranged in the horizontal direction.
  • the R value and G value of each of the sub-pixels constituting the RGB staircase-arranged pixel unit are generated.
  • RGB staircase-arranged pixel unit of the stereoscopic image and the plurality of intermediate images are generated by arranging according to an arrangement rule for collectively arranging the plurality of viewpoints and generating the intermediate image for each of the plurality of viewpoints.
  • An intermediate image generation method characterized by:
  • the third invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints.
  • the N viewpoints are 4n + 1 (n is a natural number) viewpoints
  • RGBY staircase-arranged pixel units in which RGBY sub-pixels are arranged in four rows in contact with diagonal corners are arranged in the horizontal direction.
  • the R value and G value of each of the sub-pixels constituting the RGBY staircase-arranged pixel unit are generated.
  • B value, and Y value are arranged in the vicinity of the corresponding positions in the plurality of viewpoint images corresponding to the arrangement positions of the sub-pixels constituting the RGBY staircase arrangement pixel unit. Obtained by interpolating from the RGBY values of the sub-pixels constituting at least one pixel unit, and arranging the sub-pixels constituting the RGBY stepped pixel unit in the horizontal direction in the order of R, G, B, Y.
  • An RGBY parallel arrangement pixel unit is arranged according to an arrangement rule for collectively arranging the plurality of viewpoints, and the intermediate image for each of the plurality of viewpoints is generated, whereby the RGBY staircase arrangement pixel unit of the stereoscopic image and The total number of the RGBY parallel arrangement pixel units of the plurality of intermediate images, or the total number of sub-pixels constituting each of the plurality of intermediate images is the same, and the plurality of intermediate images are divided into the number of viewpoints in the horizontal direction as image frames.
  • An intermediate image generation method characterized by being arranged in a plurality of belts.
  • the fourth invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints.
  • the N viewpoints are (3 + m) n + 1 (n and m are natural numbers) viewpoints, and RGB and other m sub-pixels are arranged in 3 + m rows diagonally in contact with corners.
  • the staircase-arranged pixel unit is configured to generate the stereoscopic image by repeatedly arranging the staircase-arranged pixel blocks in which the staircase-arranged pixel units arranged in the horizontal direction from the 1st viewpoint to the Nth viewpoint are arranged repeatedly.
  • the R value, G value, B value, and other color values of each of the subpixels are assigned to the plurality of viewpoint images corresponding to the arrangement positions of the subpixels constituting the staircase arrangement pixel unit.
  • R, G, B, and other colors in the horizontal direction are obtained by interpolating from the values of subpixels constituting at least one or more pixel units arranged in the vicinity of the corresponding position.
  • the staircase arrangement of the three-dimensional image is generated by arranging the parallel arrangement pixel units arranged in the order of the plurality of viewpoints according to an arrangement rule for collectively arranging the plurality of viewpoints and generating the intermediate image for each of the plurality of viewpoints.
  • the total number of pixel units and the total number of pixel units arranged in parallel in the plurality of intermediate images, or the total number of sub-pixels constituting each pixel unit, and the plurality of intermediate images are divided into the number of viewpoints in the horizontal direction as image frames.
  • An intermediate image generation method characterized by being arranged in a plurality of belt shapes.
  • the fifth invention of the present application is an intermediate image for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints.
  • the values of the sub-pixels constituting the pixel unit are configured as the pixel unit.
  • the parallel arrangement pixel units in which the sub-pixels constituting the pixel unit are arranged in a horizontal direction are arranged in accordance with an arrangement rule for collectively arranging the plurality of viewpoints, and the intermediate images for the plurality of viewpoints are arranged.
  • An intermediate image generation method characterized in that, by generating, the total number of pixel units of the stereoscopic image and the parallel arrangement pixel units of the plurality of intermediate images, or the total number of sub-pixels constituting each, is the same. .
  • the present invention it is possible to generate a compressible intermediate image with the minimum necessary resolution so that the total number of pixels constituting the image for each viewpoint is the same as the number of pixels of the stereoscopic image, and to configure such an intermediate image.
  • 3D images can be generated at high speed without using a special computer by only rearranging (mapping) the subpixels to be used, and images of each viewpoint are arranged in tiles according to the present invention.
  • the resolution and aspect ratio of the intermediate image and the autostereoscopic display (stereoscopic image) become the same, and the intermediate image is output or transmitted in a standard format by a standard image output device such as Blu-ray or STB or an image distribution server.
  • a standard image output device such as Blu-ray or STB or an image distribution server.
  • FIG. 1 is a block diagram schematically showing the configuration of an intermediate image generation device 101, the configuration of a stereoscopic image generation device 201, and the configuration of a stereoscopic image generation system 301 according to the present invention.
  • the intermediate image generation apparatus 101 in FIG. 1A includes a central processing unit (part 1) 1011 and a storage unit (part 1) 1012.
  • the storage device (part 1) 1012 stores a plurality of viewpoint images 601 taken and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints.
  • the generation of the viewpoint image 601 includes capturing the object 8012 from different viewpoints using a plurality of cameras 801 and drawing using computer graphics.
  • the central processing unit (part 1) 1011 performs a plurality of arithmetic processes from a plurality of viewpoint images 601 stored in the storage unit (part 1) 1012 to generate an intermediate image 401.
  • ⁇ Configuration of stereoscopic image generation apparatus> 1B includes a central processing unit (part 2) 2011 and a storage device (part 2) 2012.
  • the central processing unit (part 2) 2011 stores the plurality of input intermediate images 401 in the storage unit (part 2) 2012 (frame buffer), converts the pixel arrangement, and generates a stereoscopic image 501.
  • ⁇ Configuration of stereoscopic image generation system> 1C includes a first information processing apparatus 3011 and a second information processing apparatus 3012.
  • the first information processing apparatus 3011 includes a central processing unit (part 3) 30111
  • the second information processing device 3012 includes a central processing unit (part 4) 30121, a storage unit (part 4) 30122, a decompression unit 30123, and a receiving unit. 30124.
  • the compression device 30113 performs irreversible compression of the plurality of intermediate images 401 by a predetermined method.
  • JPEG is used for still images
  • MPEG-2, MPEG-4, etc. are used for moving images.
  • the transmission device 30114 transmits the plurality of intermediate images 401 compressed by the compression device 30113 to the second information processing device 3012.
  • a transmission method in addition to wired transmission via a USB port, wireless transmission such as optical communication, BLUETOOTH (registered trademark), and wireless LAN can be considered.
  • the reception device 30124 receives a plurality of intermediate images 401 transmitted by the transmission device 30114.
  • the decompressing device 30123 decompresses the plurality of intermediate images 401 compressed by the compressing device 30113.
  • FIG. 2A is a flowchart of information processing executed by the intermediate image generation apparatus 101 in FIG.
  • a central processing unit (part 1) 1011 provided in the intermediate image generation apparatus 101 is operated by a user (an object 8012 by a camera 801 from a plurality of viewpoints from one viewpoint to N viewpoints).
  • control information means a scanning method such as NTSC or PAL, a transmission method such as interlace or progressive, the number of viewpoints, resolution, pixel arrangement method, and the like.
  • the control information is input by a user operation using a keyboard, a mouse, or the like further provided in the intermediate image generating apparatus 101. As a result, the format is determined.
  • Step S203 As a result of the determination in step S202, when control information is input, the central processing unit (part 1) 1011 generates a stereoscopic image 501 based on the control information (step S203).
  • the stereoscopic image 501 refers to an image having a stereoscopically visible subpixel arrangement that is finally presented to the user.
  • the RGB staircase-arranged pixel units 5011 arranged in three rows with the sub-pixels in contact with the corners in the diagonal direction from the first viewpoint to the Nth It is desirable to configure the stereoscopic image 501 by repeatedly arranging RGB staircase-arranged pixel blocks 5012 arranged in a continuous manner up to the viewpoint.
  • subpixels constituting one pixel may include C (cyan), M (magenta), Y (yellow), W (white), or other colors in addition to RGB.
  • RGB includes “RGBY”, “RGBW”, “RGBYW”, “RGBCMY”, and the like.
  • the generation of the stereoscopic image 501 based on the control information is, for example, when the resolution of the display on which the stereoscopic image 501 is scheduled to be displayed is 1980 ⁇ 1080, that is, the stereoscopic image 501 having a resolution suitable for output, that is, A stereoscopic image 501 having a resolution of 1980 ⁇ 1080 is generated.
  • the generation of the stereoscopic image 501 performed in step S203 will be described later.
  • the central processing unit (part 1) 1011 generates a plurality of intermediate images 401 from the generated stereoscopic image 501 (step S204).
  • the intermediate image 401 is an image used to generate the stereoscopic image 501, and each of the plurality of intermediate images 401 includes R, G, B, and R subpixels that constitute the RGB staircase arranged pixel unit 5011 in the horizontal direction.
  • RGB parallel arrangement pixel units 4011 arranged in order of other sub-pixels if necessary are arranged together for each of a plurality of viewpoints.
  • a stereoscopic image 501 is generated or assumed in advance from a plurality of viewpoint images 601 photographed or drawn from a plurality of viewpoints, and an intermediate image 401 is generated based on the stereoscopic image 501.
  • the generation of the intermediate image 401 performed in step S204 will be described in detail below as in step S203.
  • Step S205 the central processing unit (part 1) 1011 stores the intermediate image 401 generated in step S204 in the storage unit (part 1) 1012 (step S205).
  • step S205 When the intermediate image 401 is stored in step S205, this process ends.
  • ⁇ Supplement of intermediate image generation device> You may return to step S203 again after a process is complete
  • the control information of each time No input is required, and usability can be expected to improve.
  • the mode is changed by a specific operation such as a keyboard, and the stereoscopic image 501 and the intermediate image 401 are repeated. You may link with the process which produces
  • step S204 the following processing may be performed assuming the stereoscopic image 501 without actually generating the stereoscopic image 501.
  • FIG. 2C is a flowchart of information processing executed by the stereoscopic image generation system 301 in FIG.
  • step S204 in FIG. 2 (a) is basically the same as the processing up to step S204 in FIG. 2 (a), and redundant description of the same components is omitted, and only different parts are described below.
  • the first information processing apparatus 3011 and the second information processing apparatus 3012 include a compression apparatus 30113, a transmission apparatus 30114, a decompression apparatus 30123, and a reception apparatus 30124, respectively, in the intermediate image generation apparatus 101 used in FIG. An information processing apparatus further provided.
  • Step S205 First, the central processing unit (No. 3) 30111 of the first information processing device 3011 compresses the plurality of intermediate images 401 generated in step S204 by the compression device 30113 (step S205).
  • Step S206 Next, the plurality of intermediate images 401 compressed in step S205 are stored in the storage device (part 3) 30112 (step S206).
  • (Part 3) 30111 transmits a plurality of intermediate images 401 that have been compressed and stored from the transmission device 30114 to the second information processing device 3012 (step S207).
  • Step S208> The central processing unit (part 4) 30121 of the second information processing device 3012 receives the plurality of intermediate images 401 transmitted from the first information processing device 3011 in step S207 by the reception device 30124 (step S208).
  • Step S209 the central processing unit (part 4) 30121 decompresses the received plurality of intermediate images 401 by the decompression device 30123 (step S209).
  • Step S210 the central processing unit (part 4) 30121 generates a stereoscopic image 501 that is finally output to the user from the plurality of decompressed intermediate images 401 (step S210).
  • the stereoscopic image 501 in step S210 and the stereoscopic image 501 in step S203 are the same.
  • the generation of the intermediate image 401 performed in step S210 will be described in detail below in the same manner as in steps S203 and S204.
  • step S210 When the three-dimensional image 501 is generated in step S210, this process ends.
  • the generated intermediate image 401 may be output to the stereoscopic image display device 701. Further, when the intermediate image 401 is continuously transmitted from the first information processing apparatus 3011, the processing from step S208 to step S210 may be performed continuously. According to the system in the illustrated example (c), for example, a plurality of cameras 801 are installed at any point and shooting is performed continuously, and a plurality of images generated one after another by the first information processing apparatus 3011 are performed. An intermediate image 401 in which images for each viewpoint are arranged in a tile shape can be distributed all over the world in an existing format so that many users can view the stereoscopic image 501 simultaneously and in real time.
  • the first information processing apparatus 3011 is equipped with an expensive graphic board, a high-speed CPU, or the like in order to generate a plurality of intermediate images 401 in real time, and a plurality of second information used by the user.
  • a relatively low-speed CPU is installed in the processing device 3012, an unprecedented stereoscopic image viewing environment utilizing the characteristics of a plurality of intermediate images 401 capable of generating a stereoscopic image 501 only by changing the arrangement of pixels.
  • This can be realized with existing formats. That is, the generation of a compressible intermediate image 401 and the formation of such an intermediate image 401 with the minimum necessary resolution in which the total number of pixels constituting the image for each viewpoint is the same as the number of pixels of the stereoscopic image 501.
  • a stereoscopic image 501 that can be stereoscopically viewed only by subpixel rearrangement (mapping) can be generated at high speed without using a special computer.
  • Embodiments of a method for generating a plurality of intermediate images 401 according to the present invention will be described with reference to FIGS.
  • FIG. 3 shows an example in which a certain object 8012 is photographed by a camera 801 from a plurality of different viewpoints, and a viewpoint image 601 for each viewpoint is generated. Since the gazing point 8011 is captured from the six viewpoints using the camera 801, six viewpoint images 601 are obtained. Note that the resolution of the viewpoint image 601 at this time is arbitrary. Note that the cameras 801 may be arranged horizontally so that the optical axes of the respective cameras 801 are directed toward the gazing point 8011.
  • the standard of image signals that are widely used expresses colors with three primary colors of RGB.
  • the three-dimensional image display device 701 expresses colors with the four primary colors of RGBY, or when expressed with five or more primary colors
  • Japanese Patent Laid-Open No. 2001-2001 306023 (Seiko Epson Corporation), Special Table 2004-529396 (Genoa Technologies Limited, etc.), Japanese Patent Application Laid-Open No. 2001-209047 (Sharp Corporation), etc. Performs conversion to a signal of more than four primary colors.
  • FIG. 4 shows an example of generating a stereoscopic image 501 having a sub-pixel arrangement for finally outputting on the display from the plurality of viewpoint images 601 taken in FIG.
  • an RGB value of the RGB staircase-arranged pixel unit 5011 is obtained by interpolating from the RGB values of sub-pixels constituting at least one or more pixel units arranged in the vicinity of the corresponding position.
  • the central processing unit (part 1) 1011 described above first determines the sub-pixel arrangement of the stereoscopic image 501 according to the resolution of the display that performs the final output input in step S202 of FIG.
  • the sub-pixel arrangement of the stereoscopic image 501 is the one shown in FIG.
  • the sub-pixel is a vertically long rectangle with a ratio of 1: 3
  • three sub-pixels that are most appropriately stereoscopically viewable are arranged in 3 rows and 1 column in contact with the corner in an oblique direction.
  • a stereoscopic image 501 having a subpixel arrangement is assumed.
  • an RGB staircase arranged pixel block 5012 corresponding to the number of viewpoints as shown in FIG.
  • the RGB staircase-arranged pixel block 5012 is an RGB staircase-arranged pixel unit 5011 in which subpixels are arranged in 3 rows with diagonal corners in contact with corners and arranged in a horizontal direction from 1 viewpoint to N viewpoints. Point to.
  • a group of pixels composed of 18 subpixels is an RGB staircase arranged pixel block 5012.
  • the RGB staircase arrangement pixel block 5012 is repeatedly arranged to form the stereoscopic image 501, and the RGB values of the sub-pixels constituting the RGB staircase arrangement pixel unit 5011 are acquired.
  • the acquisition of RGB values is desirably performed based on any of the RGB staircase-arranged pixel units 5011 in the RGB staircase-arranged pixel block 5012, and the coordinate values on the stereoscopic image 501 of the subpixels constituting the RGB staircase-arranged pixel unit 5011.
  • the coordinate values on the stereoscopic image 501 have a horizontal axis on the stereoscopic image 501 as U and a vertical axis as V in the sub-pixel coordinate system.
  • the subpixel arranged at the uppermost stage of the first viewpoint can be expressed as (U, V) as shown in the figure.
  • the coordinate values on the viewpoint image 601 are x as the horizontal axis and y as the vertical axis in the pixel coordinate system, and the coordinate values of the pixels on the viewpoint image 601 of the first viewpoint as a reference in this embodiment are as shown in the figure. (X, y).
  • the stereoscopic image 501 and the plurality of viewpoint images 601 have different numbers of subpixels, and the stereoscopic image 501 uses a subpixel coordinate system and the viewpoint image 601 uses a pixel coordinate system.
  • the following conversion formula is required.
  • the total number of sub-pixels constituting the stereoscopic image 501 in the horizontal direction is W
  • the total number in the vertical direction is H
  • the total number of pixels constituting the viewpoint image 601 in the first viewpoint in the horizontal direction is a
  • the total number in the vertical direction is b.
  • RGB values can be obtained for each sub-pixel unit, and a higher-definition stereoscopic image 501 is generated than when the RGB value is obtained for each pixel unit. can do.
  • the RGB values of other sub-pixels constituting the same RGB staircase-arranged pixel unit 5011 are similarly obtained by interpolation from neighboring pixel units.
  • interpolation methods There are various interpolation methods, and any interpolation method may be used as long as it is an appropriate interpolation method.
  • the RGB values of the sub-pixels constituting the RGB staircase arranged pixel unit 5011 other than the RGB staircase arranged pixel unit 5011 of the first viewpoint as a reference are calculated.
  • the RGB values are calculated from the pixels of the other viewpoint image 601 at the same position as the coordinate values on the viewpoint image 601 corresponding to the coordinate values of the sub-pixels constituting the RGB staircase arranged pixel unit 5011.
  • the correspondence between the plurality of viewpoint images 601 and the stereoscopic image 501 is, for example, as illustrated in FIG.
  • the RGB values of the sub-pixels constituting the stereoscopic image 501 are acquired by interpolation calculation, and the stereoscopic image 501 is generated or assumed.
  • the stereoscopic image 501 is assumed, since the intermediate image 401 is directly generated (step S204) without generating the stereoscopic image 501 from the plurality of viewpoint images 601, interpolation calculation for acquiring RGB values, It is necessary to rearrange the sub-pixels constituting the RGB staircase arrangement pixel unit 5011 of the stereoscopic image 501 obtained by the interpolation calculation to obtain the RGB parallel arrangement pixel unit 4011 of the plurality of intermediate images 401.
  • step S204 generation of the intermediate image 401 performed in step S204 will be described in detail.
  • FIG. 6 is a diagram illustrating an example of generating a plurality of intermediate images 401 from the stereoscopic image 501.
  • the six intermediate images 401 are generated by arranging them for each viewpoint.
  • the RGB parallel arrangement pixel unit 4011 arranges the sub-pixels peeking from the slits arranged in a staircase shape or the holes arranged in a staircase shape as shown in the figure. This is performed for all the RGB staircase-arranged pixel units 5011. It should be noted that the generation of the plurality of intermediate images 401 from the stereoscopic image 501 is desirably performed using the intermediate image generation table 4013.
  • FIG. 7 is a diagram illustrating the intermediate image generation table 4013.
  • FIG. 7A shows which viewpoint image the subpixel on the stereoscopic image 501 displays, which of R, G, and B is displayed, and the subpixel coordinates on the stereoscopic image 501.
  • This is a table showing coordinate values in the system.
  • the sub-pixel at the upper left corner is (1I1) because it is located in the first column of the first row counting from the upper left corner.
  • FIG. 7B shows at which point the subpixels constituting the intermediate image 401 correspond to the subpixels arranged in the subpixel coordinate system on the stereoscopic image 501.
  • the subpixel at the upper left corner of the first viewpoint corresponds to the subpixels of 1, (1I1), R located at the upper left corner of the stereoscopic image 501, and the subpixel is on the intermediate image 401. Will be placed.
  • the sub-pixel at the upper left corner of the intermediate image 401 at the second viewpoint corresponds to the sub-pixel at the position (2C1) on the stereoscopic image 501, and one column in the second row on the stereoscopic image 501.
  • Sub-pixels arranged in the eyes are arranged on the intermediate image 401.
  • the RGB staircase-arranged pixel unit 5011 having the sub-pixel does not have a sub-pixel having a B value
  • the RGB parallel-arranged pixel unit constituting the intermediate image 401 disposed at the upper left corner of the second viewpoint Similarly, a sub-pixel having a B value is not arranged in 4011.
  • the RGB staircase-arranged pixel unit 5011 from the first viewpoint to the sixth viewpoint is rearranged in the horizontal direction to form the RGB parallel-arranged pixel unit 4011, and the RGB staircase-arranged pixel located at the upper left corner
  • the arrangement change of the block 5012 is completed, the arrangement of subpixels constituting the adjacent RGB staircase arrangement pixel block 5012 is also changed as shown in the figure.
  • the intermediate image generation table 4013 is preferably stored in the storage device (part 1) 1012 of the intermediate image generation apparatus 101. As a result, when the stereoscopic image 501 is generated using the intermediate image generation apparatus 101, the table can be used as the stereoscopic image generation table 5013 without creating a table again.
  • FIG. 8 is a diagram showing an example of the arrangement of the image frames 4012 of the intermediate image 401 that is particularly desirable in the embodiment according to the present invention.
  • an intermediate image 401 for each viewpoint includes, for example, a first viewpoint image in the first column of the first row, a second viewpoint image in the first column of the second row, and a first row of the third row.
  • the third viewpoint image in the column, the fourth viewpoint image in the second column of the first row, the fifth viewpoint image in the second column of the second row, and the sixth viewpoint image in the second column of the third row. are arranged in tiles.
  • the total number of subpixels constituting the stereoscopic image 501 and the total number of subpixels on the image frame 4012 in which the intermediate image 401 is arranged in a tile shape are the same both vertically and horizontally, and there is no useless pixel. Since the pixels for each viewpoint are arranged together, there is no interference between different viewpoints, and irreversible compression can be used.
  • a standard video reproduction device such as Blu-ray or STB or video
  • a practical 3D image display system that can easily generate a 3D image 501 by a 3D image generation device (converter) from an intermediate image 401 output or transmitted in a standard format by a distribution server at a very low price. Can be provided.
  • FIG. 9 is a diagram showing an example in which a plurality of viewpoint images 601 are arranged as they are in a tile-shaped image frame 4012, and is a diagram for comparing the intermediate image 401 with the image frame 4012 described above.
  • the resolution of the display that finally outputs is 16: 9
  • the aspect ratio of the viewpoint image 601 for one viewpoint in FIG. 9A is also 16: 9
  • the entire image frame 4012 is 32:27.
  • the image frame 4012 having the same resolution in both the vertical and horizontal directions as the stereoscopic image 501 can be generated. If a plurality of viewpoint images 601 are arranged as they are in a tile-shaped image frame 4012 as in the prior art so that the aspect ratio and resolution of the stereoscopic image 501 are the same, paste margins are provided on both sides of the image for each viewpoint. In addition, the aspect ratio must be the same, and the resolution of the images at each viewpoint must be reduced so that the resolutions are the same when arranged in tiles. As a result, the viewpoint image 601 for generating the stereoscopic image 501 has a low resolution, and the image quality of the stereoscopic image 501 is significantly reduced. On the other hand, in the present invention, since the intermediate image 401 is generated from the high-quality viewpoint images 601, it is possible to completely maintain the resolution that is indispensable for generating a stereoscopic image.
  • FIG. 10 is a diagram illustrating an example of an image frame 4012 including a plurality of intermediate images 401.
  • An image frame 4012 when a stereoscopic image 501 is generated from two viewpoints to five viewpoints and seven viewpoints to eleven viewpoints is shown, and if the pixels of each viewpoint are arranged in a tile shape in the frame, the aspect ratio with the stereoscopic image 501 is shown. Can create the same image file.
  • the stereoscopic image 501 is composed of two viewpoints
  • 2/3 of the one-view intermediate image 401 is displayed on the first row tile
  • one viewpoint intermediate image 401 is displayed on the second row first tile.
  • 1/3 of the two-viewpoint intermediate image 401 is placed on the second tile connected to 1/3
  • 2/3 of the two-viewpoint intermediate image 401 is placed on the third row tile.
  • the intermediate image 401 of each viewpoint is arranged on each row tile.
  • the 1st to 3rd viewpoint intermediate images 401 and the 1st to 3rd viewpoint intermediate images 401 are connected to the first tile of each line from the first line to the 2nd viewpoint.
  • the intermediate images 401 of the remaining viewpoints are arranged on the tiles arranged in three rows.
  • the intermediate images 401 with 4 to 6 viewpoints are arranged on the tiles No.
  • the intermediate images 401 with the remaining viewpoints are arranged on the tiles arranged in the first to third rows connected to the intermediate images 401 with the 4 to 6 viewpoints.
  • the stereoscopic image 501 is composed of 10 or more viewpoints
  • a part or all of the intermediate image 401 is arranged on the tiles in each row in order from one viewpoint.
  • the intermediate image 401 is divided and arranged in the horizontal direction by the number of viewpoints.
  • a belt-like format may be used.
  • the number of viewpoints of the intermediate image 401 is 4 viewpoints (see FIG. 12), 7 viewpoints (see FIG. 13), 10 viewpoints, 12 viewpoints, etc. , “3n + 1 (n is a natural number)” viewpoint is preferable.
  • the sub-pixels constituting one pixel are composed of four colors including R, G and B plus one other color (C (cyan), M (magenta), Y (yellow), W (white), etc.))
  • the number of viewpoints of the intermediate image 401 is preferably “4n + 1 (n is a natural number)” viewpoints such as 5 viewpoints (see FIG. 14), 9 viewpoints (see FIG. 15), and 13 viewpoints.
  • the number of viewpoints of the intermediate image 401 is “(3 + m) n + 1 (n is a natural number). It is preferable to take a viewpoint.
  • the irreversible compression affects the pixels only at both ends of each viewpoint image, so that the stereoscopic image 501 is displayed more clearly.
  • FIG. 16 is a diagram illustrating an arrangement example of the RGB staircase arrangement pixel unit 5011.
  • FIG. 16A is a diagram showing an example of an RGB staircase-arranged pixel unit 5011 in which subpixels constituting a pixel unit of a viewpoint image 601 from 1 viewpoint to 6 viewpoints are arranged in a staircase in contact with a corner in an oblique direction. It is composed of 3 subpixels in 3 rows and 1 column.
  • the RGB parallel-arranged pixel unit 4011 is configured by arranging the sub-pixels constituting the RGB staircase-arranged pixel unit 5011 in the horizontal direction.
  • the RGB staircase-arranged pixel unit 5011 of the same viewpoint arranged in a staircase shape in contact with the RGB staircase-arranged pixel unit 5011 at the corner is also arranged in the horizontal direction as shown in FIG.
  • the intermediate image 401 is configured by arranging the RGB parallel arranged pixel units 4011 in a stepwise manner in contact with each other at a corner in an oblique direction.
  • FIG. 16B is a diagram illustrating an example of an RGB staircase-arranged pixel unit 5011 configured by 6 subpixels in 3 rows and 2 columns.
  • a collection of subpixels in the first column constituting the RGB staircase-arranged pixel unit 5011 is first arranged in the horizontal direction, and the RGB parallel-arranged pixel unit 4011 is first arranged.
  • the group of subpixels in the second column is arranged so as to be further connected to the RGB parallel arrangement pixel unit 4011 in the horizontal direction.
  • the RGB parallel-arranged pixel unit 4011 is arranged side by side, and a collection of subpixels in the second column is arranged so as to be further connected to the RGB parallel-arranged pixel unit 4011 in the horizontal direction.
  • FIG. 16C is a diagram illustrating an example of an RGB staircase-arranged pixel unit 5011 configured by nine subpixels in three rows and three columns.
  • the collection of subpixels in the first column constituting the RGB staircase-arranged pixel unit 5011 is first arranged in the horizontal direction in parallel with RGB.
  • An arrangement pixel unit 4011 is configured, and a group of subpixels constituting the RGB staircase arrangement pixel unit 5011 in the second column is arranged so as to be connected to the RGB parallel arrangement pixel unit 4011 in the horizontal direction.
  • a group of sub-pixels constituting the RGB staircase-arranged pixel unit 5011 in the third column is arranged so as to be connected to the parallel-arranged pixel unit 4011 in the horizontal direction.
  • the RGB staircase arrangement pixel unit 5011 shown in FIG. 16 it is desirable to acquire RGB values from a plurality of viewpoint images 601 for each subpixel as shown in FIG. This prevents a decrease in resolution (for example, in FIG. 16B, the horizontal resolution is halved compared to FIG. 16A) due to the calculation and acquisition of RGB values in pixel units.
  • a clear stereoscopic image 501 can be provided to the user.
  • the subpixel is usually a vertically long rectangle at a ratio of 1: 3, but the shape of the subpixel is a circle, a circle, a V shape, or a shape obtained by rotating W by 90 degrees (see FIG. There are various shapes such as those shown in Fig. 56).
  • the RGB staircase-arranged pixel unit 5011 in which three sub-pixels are arranged in a row may not be easily visible.
  • a mask with a wide slit and hole width of the parallax barrier 704 for peeking at the stereoscopic image 501 and an arrangement interval thereof is created, and accordingly, three subpixels are displayed so that a stereoscopic image can be displayed appropriately.
  • RGB subpixels are arranged in the vertical direction.
  • FIG. 60 is a diagram illustrating how the stereoscopic image 501 in which RGB subpixels are arranged in the horizontal direction is viewed in the horizontal direction.
  • the GB sub-pixel is visually recognized through the parallax barrier 704 having a vertical slit, and the R sub-pixel is lost, so that the stereoscopic image 501 is not properly viewed.
  • a set of RGB sub-pixels is visually recognized from the second viewpoint 709 located farther from the stereoscopic image display device 701 than the first viewpoint 708. Therefore, the stereoscopic image 501 is properly viewed from the second viewpoint 709.
  • the R subpixel is further visually recognized from the third viewpoint 710 located farther from the stereoscopic image display device 701 than the second viewpoint. Therefore, the stereoscopic image 501 viewed from the third viewpoint 710 is visually recognized as reddish, and is not properly viewed.
  • the stereoscopic image 501 is generated by subpixels constituting the RGB parallel arrangement pixel unit 4011 of the intermediate image 401 transmitted from the optical disk such as BLU-RAY DISC (registered trademark), the server, or the first information processing apparatus described above. This is performed by changing the arrangement of the above to the arrangement for stereoscopic viewing. That is, the subpixels constituting the RGB parallel arrangement pixel unit 4011 are rearranged in a staircase shape again to constitute the RGB staircase arrangement pixel unit 5011. In this case, a stereoscopic image relating the positions of these subpixels is performed. It is desirable to use the generation table 5013. Since the intermediate image generation table 4013 shown in FIG. 7 associates the positions of the subpixels constituting the RGB parallel arrangement pixel unit 4011 with the positions of the subpixels constituting the RGB staircase arrangement pixel unit 5011, the three-dimensional image generation is performed. The table 5013 can be used.
  • the RGB staircase arrangement pixel unit 5011 can be generated again in accordance with the reverse order of the arrangement rules shown in the intermediate image generation table 4013 in FIG.
  • a stereoscopic image generation table 5013 shown in FIG. 62 may be used.
  • the “8-viewpoint tile format” in the upper part of FIG. 62 is the intermediate image 401, and the “8-viewpoint parallax stereoscopic image” indicates the stereoscopic image 501.
  • the R value of the pixel coordinates (for example, (x i , y j ) of the first viewpoint) of the intermediate image 401 is acquired with reference to the stereoscopic image generation table 5013, Rendering is performed as an R value of the pixel coordinates (X m , Y n ) of the associated stereoscopic image 501.
  • drawing of the R subpixels on the stereoscopic image 501 is completed.
  • Similar processing is performed for the G subpixel, the B subpixel, and the Y subpixel, and the generation of the stereoscopic image 501 is completed.
  • a stereoscopic image generation table 5013 shown in FIG. 63 is used.
  • the “4-view belt format” in the upper part of FIG. 62 is the intermediate image 401, and the “4-view parallax stereoscopic image” indicates the stereoscopic image 501.
  • the method of generating the stereoscopic image 501 is the same as that in the case of the 8-view tile format shown in FIG. That is, the method for generating the stereoscopic image 501 using the stereoscopic image generation table 5013 does not depend on the number of viewpoints and the format of the intermediate image 401, and can be implemented with appropriate changes.
  • the stereoscopic image generation table 5013 shown in FIGS. 62 and 63 is characterized in that it is created separately for each of R, G, B, and (Y) sub-pixels, and the memory access size can be reduced.
  • FIG. 17 is an external view showing an example of an embodiment of a stereoscopic image generating apparatus 201 according to the present invention.
  • a stereoscopic image generating apparatus 201 is electrically connected by a video cable 702 between a general image output apparatus 1001 and a general stereoscopic image display apparatus 701 (display).
  • a general image output apparatus 1001 Connected to and used to receive images of a plurality of viewpoints transmitted as image signals (image input signals) from the image output apparatus 1001, and control information (scanning method, number of viewpoints, resolution, pixel arrangement method, etc.) set in advance Information) is converted into a pixel arrangement for stereoscopic image display, and the image after the pixel arrangement conversion is transmitted to the stereoscopic image display device 701 as an image signal (image output signal).
  • the video cable 702 that electrically connects the stereoscopic image generation apparatus 201, the image output apparatus 1001, and the stereoscopic image display apparatus 701 is specifically the 3D image output apparatus 1001 and the stereoscopic output of the standard such as VDI and HMVI.
  • a cable for electrically connecting the image display device 701 and transmitting an image signal a cable that has been widely used can be used.
  • FIG. 18 is an external view showing an example of another embodiment of the stereoscopic image generating apparatus 201 according to the present invention.
  • the stereoscopic image generating apparatus 201 receives a control signal by further electrically connecting either one or both of the image output apparatus 1001 and the stereoscopic image display apparatus 701 with a control cable 703. May be.
  • the control signal means a signal that gives control information other than an image such as a scanning method, a resolution, the number of viewpoints, and a pixel arrangement method to the stereoscopic image generating apparatus 201.
  • control cable 703 is a widely used control cable 703 that electrically connects the image output device 1001 of the standard such as i / LINK or serial and the stereoscopic image display device 701. be able to.
  • the video cable 702 and the control cable 703 have been described as separate cables in the figure, but these cables may be bundled to form one cable.
  • the transmission of the intermediate image 401 (image signal) and the transmission of the control signal are those that have been widely used as standard wireless communication means such as wireless LAN, Bluetooth (registered trademark), UWB instead of the cable. It may be used.
  • the image output apparatus 1001 uses the existing image output technology as it is.
  • the image output apparatus 1001 is an existing set-top box that acquires moving images by terrestrial, satellite broadcasting, streaming from the Internet, or download, or a stand-alone DVD player or Blu-ray (registered trademark) player. It is preferable to use a playback device such as a device having a recording function.
  • the stereoscopic image display device 701 (display) be used as it is without any improvement on the existing stereoscopic image display device. That is, the stereoscopic image display device 701 is an autostereoscopic image display device such as a liquid crystal display, a plasma display, or an organic EL display that employs an existing parallax barrier method or lenticular method, or a two-viewpoint image at high speed. It is preferable that they are displayed alternately and viewed through shutter-type glasses.
  • the stereoscopic image generating apparatus 201 according to the present invention can be used in addition to the above-described stereoscopic image display apparatus.
  • FIG. 19 is a diagram showing an example of a multi-viewpoint image received as an image signal by the stereoscopic image generating apparatus 201 according to the present invention.
  • This is a recommended standardized tile format for multi-viewpoint images according to the present invention, in which only pixels to be read out from multi-viewpoint images are arranged for conversion to a pixel arrangement for stereoscopic image display.
  • a predetermined compressed file is generated after being arranged in a tile format.
  • the resolution is arbitrary, and usually the compression standard MPG2, which is lossy compression, is often used.
  • an intermediate image 401 may be generated in a tile format corresponding to an arbitrary number of viewpoints based on the present invention to form a multi-viewpoint image.
  • an image having an arbitrary resolution with a 16: 9 aspect ratio is set to horizontal 960 pixels and each vertical 360 pixels. It is desirable to create an intermediate image 401 of the viewpoint and convert it to a pixel arrangement for stereoscopic image display.
  • the resolution of the six-view tile image is 1920 ⁇ 1080, and the tile image can be received as a high-definition image and converted into a stereoscopic image with the least image quality loss.
  • FIG. 20 is a diagram showing an example of a moving image of a plurality of viewpoints received as a moving image signal by the stereoscopic image generating apparatus 201 according to the present invention.
  • a moving image is well known and can be created by multi-streaming of the compression standard MPG4.
  • a plurality of moving images synchronized with one file can be recorded.
  • the received intermediate image 401 from one viewpoint to N viewpoints is stored in a storage unit in a predetermined arrangement, and converted into a pixel arrangement for stereoscopic image display.
  • FIG. 21 is a diagram showing an example of a moving image of a plurality of viewpoints received as a moving image signal by the stereoscopic image generating apparatus 201 according to the present invention.
  • the moving images of multiple viewpoints are repeatedly formed in the time direction by assigning the moving images of the respective viewpoints to each successive frame.
  • the received intermediate images 401 from one viewpoint to N viewpoints are sequentially stored in the storage means and converted into a pixel arrangement for stereoscopic image display.
  • FIG. 22 is a diagram showing a first example of a multi-viewpoint intermediate image 401 in which pixel information 4014 is embedded, which is received as an image signal by the stereoscopic image generating apparatus 201 according to the present invention.
  • the pixel information is a predetermined encryption and defines information such as 2D image distinction, resolution, and the number of viewpoints. It is embedded in order to notify a stereoscopic image generation device or a converter (stereoscopic image generation device) whether a stereoscopic image or a normal image.
  • FIG. 5A is a diagram showing an embedding position of the pixel information 4014 on the image.
  • the pixel information 4014 is embedded in the upper left corner of the image.
  • the embedding position of the pixel information 4014 is based on a predefined arrangement pattern, it is not always necessary to be at the upper left end, but the end of the image is an image output device connected to the stereoscopic image generating device 201. Since it is a portion that overlaps the monitor frame 1001 and is invisible to the user, there is an advantage that even if the pixel information 4014 is embedded, the display of the stereoscopic image to the user is not affected.
  • FIG. 4B is an enlarged view showing embedded pixel information 4014.
  • the pixel information 4014 is embedded in the horizontal line without any gap. However, although not shown, it may be embedded at a predetermined interval.
  • FIG. 23 is a diagram showing a second example of the multi-viewpoint intermediate image 401 in which the pixel information 4014 is embedded, which is received by the stereoscopic image generating apparatus 201 according to the present invention as an image signal.
  • (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image.
  • FIG. 5B is an enlarged view of a portion where pixel information 4014 is embedded.
  • a pixel matrix 4015 in which a plurality of pixel information 4014 defined as the same image information is continuously arranged in the XY direction is embedded.
  • FIG. 10C is an enlarged view showing one of the pixel matrices 4015 in FIG. A 3 ⁇ 3 matrix surrounded by a central thick frame is a pixel matrix 4015, and nine pieces of pixel information Cm ⁇ n in which the same image information is defined are arranged.
  • image information is analyzed from pixel information 4014 at the center of the pixel matrix 4015 indicated by a circle. Note that it is appropriate to specify the position of the pixel information 4014 at the center of the pixel matrix 4015 by specifying the XY coordinates of the pixel information 4014 based on a predefined arrangement pattern. However, the image information may be obtained from an average value of a plurality of pieces of pixel information 4014 in the pixel matrix 4015.
  • FIG. 24 is a diagram showing a third embodiment of a multi-viewpoint intermediate image 401 in which pixel information 4014 is embedded, which is received as an image signal by the stereoscopic image generating apparatus 201 according to the present invention.
  • (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image.
  • FIG. 5B is an enlarged view of a portion where pixel information 4014 is embedded.
  • FIG. 10C is an enlarged view showing one of the pixel matrices 4015 in FIG.
  • pixel information 4014 defined as image information is arranged at the center of the pixel matrix 4015, and the pixel matrix 4015 has an intermediate portion between the pixel adjacent to the pixel matrix 4015 and the pixel information 4014.
  • Value pixel information 4014 is embedded.
  • FIG. 25 is a diagram showing a fourth example of the multi-viewpoint intermediate image 401 embedded with the pixel information 4014 received by the stereoscopic image generating apparatus 201 according to the present invention as an image signal.
  • (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image.
  • FIG. 5B is an enlarged view of a portion where pixel information 4014 is embedded.
  • the pixel matrix 4015 is 2 ⁇ 3, and compared with the pixel matrix 4015 of the third embodiment, the pixel information 4014 in the upper row is removed and arranged at the upper end of the image. Yes.
  • This embodiment is suitable because the influence on the image is reduced when the area occupied by the pixel matrix 4015 is reduced.
  • FIG. 10C is an enlarged view showing one of the pixel matrices 4015 in FIG.
  • the pixel information 4014 defining the image information is arranged at the center of the row above the pixel matrix 4015.
  • the pixel information 4014 is an intermediate value between the pixel adjacent to the pixel matrix 4015 and the pixel information 4014 on the outer periphery of the pixel matrix 4015. Pixels that are interpolated with predetermined weights are arranged on both pixels.
  • weighting means multiplying the value of the pixel information 4014 by a predetermined number when obtaining an intermediate value in order to analyze the image information defined by the pixel information 4014 more reliably.
  • the weighting is doubled the value of the pixel information 4014, but may be tripled or quadrupled as necessary. It should be noted that weighting is possible in the third embodiment.
  • FIG. 26 and FIG. 27 are diagrams for explaining what kind of information the image information actually means in the above embodiment.
  • codes C 0 to C 23 are used as determination codes (headers).
  • the combination of the RGB values of the determination code is a combination that is not possible in the natural world, so that the central processing unit (part 2) 2011 indicates that the pixel information is embedded as defining image information. Be able to recognize.
  • Codes C 24 to C 29 are used for parity check as shown in FIG.
  • Codes C30 to C89 mean control information as specifically shown in FIG.
  • Codes C 90 to C 95 are used for parity check as shown in FIG.
  • the pixel information 4014 it is possible to determine whether an image received as a video signal is a normal planar image or a plurality of intermediate images 401. This is because when the image input to the stereoscopic image generating apparatus 201 is a normal planar image, it is necessary to output the image directly to the stereoscopic image display apparatus 701 without performing processing such as pixel arrangement conversion. . Note that since the RGB value of the pixel information 4014 changes due to irreversible compression as described above, it is preferable to analyze the image information with reference to only the upper bits of a predetermined number of digits.
  • the central processing unit (part 2) 2011 identifies the position where the pixel information 4014 is embedded based on a predetermined arrangement pattern, determines the presence or absence of a header for collating image information, and if there is a header, the image information Is analyzed.
  • FIG. 28 is a flowchart showing a method of discriminating between a normal planar image and a multi-viewpoint intermediate image 401 by always embedding pixel information 4014 defined as image information in the multi-viewpoint intermediate image 401.
  • the frames before and after the frame at the moment when the intermediate image 401 of the multiple viewpoints starts and the frames before and after the frame at the time of the end of the intermediate image 401 of the multiple viewpoints may be embedded.
  • the central processing unit (part 2) 2011 when receiving an image, analyzes the presence / absence of a header at a predetermined position for each frame based on a predetermined pixel arrangement pattern defined in advance.
  • the frame When there is a header, the frame is an intermediate image 401 frame of a plurality of viewpoints, and image information 4013 is defined in the frame. Therefore, the central processing unit (part 2) 2011 analyzes the image information 4013. To do.
  • the central processing unit (part 2) 2011 does not analyze the image information 4013. When the above analysis ends, the central processing unit (part 2) 2011 proceeds to analysis of the next frame.
  • a predetermined optimum stereoscopic visible position and a predetermined oblique moire elimination position are set at positions where the most people can be stored, and from these values, Since it is possible to determine the distance from the image display surface of the display to the parallax barrier 704 and the interval between the one or more visible light transmission portions 7041 in the horizontal direction by reverse calculation, the moire elimination position in a predetermined oblique direction In this case, the image presentation target person can always visually recognize the predetermined position of the pixel displaying the image of the predetermined viewpoint through the visible light transmitting portion 7041 of the parallax barrier 704, and the moire elimination position is completely at the predetermined moire elimination position. Will be eliminated.
  • the “visible light transmitting portion 7041” is a portion that transmits visible light that is provided on a surface of the parallax barrier 704 that does not transmit visible light. That is, the “visible light transmitting portion 7041” referred to in the present invention is a shape in which the edge of the slit is linear, stepped, zigzag, or a continuous shape of arc or elliptical arc (gum shape). Also good. Further, the shape of the arrangement of the slits may be a sine arc. Further, the visible light transmitting portion 7041 may be a hole type independently disposed on the parallax barrier 704.
  • not transmitting visible light means any one of the optical characteristics of (1) absorbing visible light, (2) diffusely reflecting visible light, and (3) specularly reflecting visible light.
  • the “optimal stereoscopic view position” is a position where the person who presents the image can obtain the stereoscopic effect particularly effectively.
  • both eyes of the image presentation target person visually recognize the center of the stereoscopic display pixel 707 for the viewpoint to be visually recognized through the visible light transmission unit 7041 of the parallax barrier 704.
  • the “moire elimination position” refers to a position at which a subject can be made to visually recognize a stereoscopic image effectively in a form in which moiré is completely reduced, and an image is displayed at a predetermined moire elimination position.
  • the presentation target person can visually recognize a predetermined position of the stereoscopic display pixel 707 that always displays an image of a predetermined viewpoint through the visible light transmitting portion 7041 of the parallax barrier 704 with either the left or right eye.
  • the concept of the moire elimination position includes an oblique direction moire elimination position and a horizontal direction moire elimination position, which will be described later.
  • a position where the three-dimensional image can be viewed effectively optimum three-dimensional visible position
  • a position where the moire in the oblique direction can be eliminated oblique moire elimination position
  • a position where the moire in the horizontal direction can be eliminated horizontal direction
  • the moire elimination position is another concept, and the distance from these positions to the parallax barrier 704 is not necessarily the same.
  • the moiré elimination position and the optimum stereoscopic visible position at different distances, for example, the moiré elimination position at a distance farther from the parallax barrier 704 than the optimum stereoscopic visibility position, the image presentation target person who is far away first.
  • a 3D image in which moiré has been eliminated can be viewed without causing the image presentation subject to feel the moire stress, thereby drawing the attention of the image presentation subject and approaching the optimal stereoscopic viewing position. It is also conceivable to make a stereoscopic image with a particularly high stereoscopic effect visible.
  • Vh is the width of the effective visible region that is visible with one eye through the visible light transmitting portion 7041 having the width Sh
  • ⁇ Ph is the distance between the centers of the stereoscopic display pixels 707 that display the images of the adjacent viewpoints
  • Z is the display image.
  • the distance from the display surface to the parallax barrier 704, L1 is the distance from the image presentation target person to the parallax barrier 704 at the optimum stereoscopic view position
  • W is the distance between the pupils of the left and right eyes of the image presentation target person
  • K is The distance between the gazing points of both eyes of the image presentation target person is shown.
  • a one-dot chain line extending from one eye of the image presentation target person toward the display indicates a gaze line of the image presentation target person.
  • the optimal stereoscopic viewing position may be a position where the image presentation target person wants to visually recognize the autostereoscopic image particularly effectively in consideration of the application and installation location of the stereoscopic image display device. That is, the distance L1 from the optimal stereoscopic view position to the parallax barrier 704 can take an arbitrary value.
  • the distance W between the eyes of the left and right eyes of the image presentation subject is 60 to 65 mm if the main subject of the stereoscopic image is Western, 65 to 70 mm if Asian, and 50 if children. What is necessary is just to set and calculate to about ⁇ 60 mm.
  • the distance ⁇ Ph between the centers of the stereoscopic display pixels 707 that display the images of the adjacent viewpoints constitutes one stereoscopic display pixel 707 with three subpixels as illustrated in FIG.
  • the value of ⁇ Ph when subpixels are arranged in a stepwise manner in an oblique direction is 1Ph.
  • the value of the width Vh of the effective visible region that is visually recognized with one eye of the image presentation target person through the visible light transmitting portion 7041 of the parallax barrier 704 is determined.
  • the effective visible region refers to a region on the image display surface that can be visually recognized through the visible light transmitting portion 7041 of the parallax barrier 704 at the optimal stereoscopic viewing position. That is, it is the range of the display intended to be visually recognized by the image presentation target person at the optimum stereoscopic visible position.
  • the width Vh of the effective visible region occurs when a person moves, when the image changes from one viewpoint to another, and when the left and right eyes view an image of the opposite viewpoint.
  • the stereoscopic display pixel 707 that displays images of adjacent viewpoints that should be visually recognized by both eyes is mainly used for the right and left stereoscopic display. This is the horizontal width that is necessary for visually recognizing a part of the pixel 707 to generate an appropriate view mix and visually recognizing with one eye of the image display surface.
  • the stereoscopic display pixel 707 is different from the stereoscopic display pixel 707 that displays an image of an adjacent viewpoint that should be visually recognized by both eyes. Since 707 (especially, the same image is visually recognized with both eyes covered), the stereoscopic effect is poor. On the other hand, when the value of Vh is small, the stereoscopic effect of the image is enhanced and the stereoscopic image is clearly displayed, but the jump point is increased. However, the above effect is greatly different depending on the shape and arrangement of the slit or visible light transmitting portion 7041.
  • the effective visible region width is appropriately widened according to the usage of the stereoscopic image, etc., so that the stereoscopic image can be provided more effectively in accordance with the demand and situation of the image presentation target person. be able to.
  • the gaze line (FIG. 29, one-dot chain line) of the image presentation target person visually recognizes the center of each of the stereoscopic display pixels 707.
  • the distance K between the gazing points of the eyes is the same value as ⁇ Ph.
  • the value of the distance Z from the image display surface of the display to the parallax barrier 704 is obtained based on the determined value of the effective visible region width Vh.
  • Z is calculated by the following formula.
  • Z is the distance from the display surface to the parallax barrier 704 even when processing such as transfer prevention is performed on the display surface of the stereoscopic image display device or when a transparent sheet such as reflection prevention is pasted. To do.
  • the value of the lateral width Sh of the visible light transmitting portion 7041 is obtained.
  • L1 is expressed as the following formula.
  • the height Sh of the visible light transmitting portion 7041 is expressed by the following mathematical formula.
  • the value of Sh can be obtained from the values of W, ⁇ Ph, and Vh.
  • the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704, is a stepped shape or a shape in which an arc, an elliptical arc, a polygon is continuous, or the parallax
  • the shape of the visible light transmitting portion 7041 constituting the barrier 704 is a hole shape formed independently, the continuous visible light transmitting portion 7041 of the shape or the visible light transmitting portion of the plurality of holes.
  • a height Sv of 7041 is obtained.
  • the height Vv of the effective visible region of the parallax barrier 704 is the range of the display that is visually recognized through the visible light transmitting portion 7041 having the height Sv at the optimum stereoscopic viewing position, and the value is set for the autostereoscopic display. It can be set to a predetermined value in accordance with conditions such as a place to perform.
  • the value of the effective visible region may be reduced.
  • one unit of edges of a plurality of continuous slits or a visible light transmitting portion 7041 may be used for one subpixel, or two or more.
  • One continuous visible light transmitting portion 7041 having the shape or the plurality of hole-shaped visible light transmitting portions 7041 may be used for each of the sub-pixels.
  • the height Vv of the effective visible region is the height of the visible light transmitting portion 7041. This refers to the range of the display that can be seen through.
  • the height Sv of the visible light transmitting portion 7041 is expressed by the following equation.
  • the value of the height Sv of the visible light transmitting portion 7041 can be calculated backward by first determining the value of the effective visible region height Vv.
  • the height Sv of the visible light transmitting portion 7041 can also be obtained by the following formula based on the interval Hv of the visible light transmitting portion 7041.
  • the value of ⁇ (1/2 in the drawing) is determined and substituted into the above equation.
  • the height of the visible light transmitting portion 7041 can be obtained.
  • the distance from the predetermined oblique direction moire elimination position to the parallax barrier 704 is based on L2, and the interval between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction. Find Hh.
  • the image presentation target person configures the RGB staircase-arranged pixel block 13 at the left end of the display through the visible light transmitting portion 7041 of the parallax barrier 704 with one eye (left eye) at a predetermined oblique direction moire elimination position.
  • 3D display pixels and the 3D display pixels constituting the RGB staircase-arranged pixel block 13 at the right end of the display are visually recognized, and the 3D display pixels viewed by the image presentation target person are images of the same viewpoint. Is displayed.
  • the image presentation target person does not visually recognize the moire on the screen.
  • the parallax to the RGB staircase arranged pixel block 13 at the right end of the display is set.
  • the number Mh of the visible light transmitting portions 7041 in the horizontal direction between the barrier 704 and the visible light transmitting portion 7041 is expressed by the following formula using the number N of viewpoints for displaying a stereoscopic image and the horizontal resolution Ir. Can do.
  • 3Ir obtained by multiplying the horizontal resolution Ir by 3 (R, G, B) is the number of sub-pixels in the horizontal direction.
  • the number of viewpoints is assumed to be 7
  • the sub-pixel on the right end of the display does not display the image of the seventh viewpoint, which is the last viewpoint of the viewpoint.
  • adding 1 at the end is an integer obtained by subtracting 1 from the total number of subpixels even when the subpixel displaying the image of the first viewpoint is not at the right end of the display. This is to compensate for the lack of one Mh value.
  • the stereoscopic display pixels that display an image of the same viewpoint as this, and the RGB at the right end of the display is a value obtained by multiplying Hh (the interval between the visible light transmitting portions 7041 in the horizontal direction) by (Mh ⁇ 1).
  • the distance to the center of the RGB staircase arranged pixel block 13 at the right end of the display which is a stereoscopic display pixel that displays the image of the image, is adjacent to N as the number of viewpoints of the image for generating a naked-eye stereoscopic image This can be expressed by the following equation using the distance ⁇ Ph between the centers of the stereoscopic display pixels for displaying the viewpoint image.
  • the value of the interval Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction is obtained. be able to.
  • the distance from the position where one moire in the oblique direction is generated to the parallax barrier 704, and the parallax barrier 704 is closer to the parallax barrier 704 out of the two kinds of positions.
  • the person who presents the image can display the RGB staircase-arranged pixel block 13 at the left end of the display in the same manner as the predetermined oblique moire elimination position (L2). 3D are displayed through the visible light transmitting portion 7041 of the parallax barrier 704 while displaying the image for the first viewpoint among the three-dimensional display pixels constituting the image. As the viewpoint shifts to the right, the visible light transmission is performed.
  • the stereoscopic display pixels for the other viewpoints are not visually recognized but the stereoscopic display pixels for the other viewpoints. It becomes Kukoto.
  • the right edge of the display passes through the visible light transmitting portion 7041 through which visible light is transmitted when viewing the stereoscopic display pixel for the first viewpoint in the RGB staircase arranged pixel block 13 at the right edge of the display at the point L2.
  • the virtual pixel 705 is assumed on the right side of the three-dimensional display, the stereoscopic display pixel (virtual) for the first viewpoint is visually recognized again. Since such a cycle occurs once, it is considered that moire occurs once in L2n.
  • Hh can be obtained by the following equation.
  • Hh Similarly to the determination of the value of Hh based on L2n, it is the distance from the position where one moire in the oblique direction occurs to the parallax barrier 704, and more The value of Hh can be obtained based on a predetermined distance L2f from a position far from the lux barrier 704 to the parallax barrier 704.
  • the person who presents the image displays the 3D display pixel constituting the RGB staircase arrangement pixel block 13 at the left end of the display in the same way as the predetermined moire elimination position (L2) in the diagonal direction.
  • the one that displays the image for the first viewpoint is visually recognized through the visible light transmission unit 7041 of the parallax barrier 704.
  • the viewpoint shifts to the right the image for the first viewpoint is displayed through the visible light transmission unit 7041.
  • the stereoscopic display pixels for other viewpoints are visually recognized.
  • the right edge of the display passes through the visible light transmitting portion 7041 through which visible light is transmitted when viewing the stereoscopic display pixel for the first viewpoint in the RGB staircase arranged pixel block 13 at the right edge of the display at the point L2.
  • the stereoscopic display pixel 2 for the first viewpoint in the RGB staircase-arranged pixel block 13 adjacent to the left of the RGB staircase-arranged pixel block 13 is visually recognized. Since such a cycle occurs once, it is considered that moire occurs once in L2f.
  • the distance Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction is obtained based on this value.
  • the distance Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction can be obtained based on the value of the point (L2n ⁇ L2f) where one moire occurs.
  • the area from the point L2n to the point L2f can be designated as a moire appropriate elimination region, and a point where the stereoscopic image can be visually recognized particularly effectively can be clearly shown to the image presentation target person.
  • the moiré elimination area in a range where the most people can be collected, it is possible to attract the attention of the image presentation target person.
  • the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which an arc, an elliptical arc, a polygon is continuous, or the parallax Based on the value of the distance L3 from the predetermined moire elimination position in the horizontal direction to the parallax barrier 704 when the shape of the visible light transmitting portion 7041 constituting the barrier 704 is a hole shape formed independently.
  • a method of determining the value of the interval Hv between the continuous visible light transmitting portions 7041 or the plurality of hole-shaped visible light transmitting portions 7041 connected in the vertical direction of the parallax barrier 704 will be described.
  • the alternate long and short dash line in FIG. 39 indicates the gaze line of the image presentation target person
  • K indicates the distance between the upper and lower gaze points of the image presentation target person.
  • the value of the distance L3 from the parallax barrier 704 to a predetermined horizontal moiré elimination position is determined depending on what distance from the display the user wants to provide a stereoscopic image in a form in which moiré is particularly eliminated.
  • represents the number of visible light transmitting portions 7041 corresponding to one subpixel in the vertical direction. For example, as shown in FIGS. When the visible light transmitting portion 7041 is formed, ⁇ is 1. Further, as shown in FIGS. 40B and 40E, when two visible light transmitting portions 7041 are formed for one subpixel, ⁇ is two. Furthermore, as shown in FIGS. 40C and 40F, when one visible light transmitting portion 7041 is formed for three subpixels, ⁇ is 1 /.
  • is a unit of the continuous visible light transmitting portion 7041 having the shape corresponding to one subpixel or the number of the visible light transmitting portions 7041 having the plurality of hole shapes in the vertical direction.
  • the number of visible light transmitting portions 7041 provided for one subpixel is desirably an integer. In the case where one visible light transmitting portion 7041 is provided for a plurality of subpixels, it is desirable to provide an integer number of visible light transmitting portions 7041 for one stereoscopic display pixel.
  • the value of the interval Hv of the continuous unit or the visible light transmitting portion 7041 is obtained.
  • the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which an arc, an elliptical arc, a polygon is continuous, or the parallax.
  • the shape of the visible light transmitting portion 7041 constituting the barrier 704 is a hole shape formed independently, the distance from the position where one horizontal moire occurs to the parallax barrier 704, Based on the value of L3n, a predetermined distance from the position closer to the parallax barrier 704 to the parallax barrier 704 is connected in the vertical direction of the parallax barrier 704 among the two types of the near and far positions.
  • the image presentation target person visually recognizes the subpixel at the lower end of the display through the visible light transmitting portion 7041 of the parallax barrier 704 in the same manner as the predetermined horizontal moire elimination position (L3).
  • the viewpoint shifts upward, not the sub-pixel that should be visually recognized at the point of L3 but the sub-pixel above it is visually recognized through the visible light transmitting portion 7041.
  • a virtual subpixel 706 is assumed above the upper end of the display through the visible light transmitting portion 7041 through which visible light is transmitted when the subpixel at the upper end of the display is viewed at the point of L3, the virtual subpixel 706 will be visually recognized. Since such a cycle occurs once, it is considered that moire occurs once in L3n.
  • the continuous visible light transmission of the shape in the vertical direction from the visible light transmission portion 7041 having the shape corresponding to the sub-pixel at the upper end of the display to the visible light transmission portion 7041 having the shape corresponding to the sub-pixel at the lower end of the display One unit of the portion 7041 or the number Mv of the plurality of hole-shaped visible light transmitting portions 7041 will be described.
  • Mv is for stereoscopic display in which an image presentation target person displays an image of the same viewpoint on a display at one point in a predetermined horizontal moire elimination position (L3). This is the number of visible light transmitting portions 7041 of the parallax barrier 704 necessary for visually recognizing all of the pixels and obtaining a stereoscopic image effect.
  • the number of units of the visible light transmitting portion 7041 having the continuous shape means, for example, when the shape of the slit that is the visible light transmitting portion 7041 of the parallax barrier 704 is an elliptical arc. Means the number of the three-dimensional display pixels displaying the image of the same viewpoint on the corresponding slits. Also. “The number of the plurality of hole-shaped visible light transmitting portions 7041” means that the number of the hole-shaped visible light transmitting portions 7041 corresponding to the arrangement of the three-dimensional display pixels displaying the same viewpoint image is formed. It means the number. Jr indicates the vertical resolution of the display.
  • Mv can be expressed by the equation Jr ⁇ ⁇ .
  • the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which arcs, elliptical arcs, and polygons are continuous, or visible light constituting the parallax barrier 704.
  • the shape of the transmission part 7041 is a hole shape formed independently, it is the distance from the position where one moire in the horizontal direction occurs to the parallax barrier 704, and the two kinds of the near and near positions Among them, the continuous visible light having the shape connected to the parallax barrier 704 in a vertical direction based on the value of L3f from a position farther from the parallax barrier 704 to the parallax barrier 704.
  • a method of obtaining the value of the interval Hv between the transmission part 7041 or the plurality of hole-shaped visible light transmission parts 7041 will be described.
  • the image presentation target person visually recognizes the subpixel at the lower end of the display through the visible light transmitting portion 7041 of the parallax barrier 704 in the same manner as the predetermined horizontal moire elimination position (L3).
  • the viewpoint shifts upward, not the sub-pixel that should be visually recognized at the point L3 but the sub-pixel below it is visually recognized through the visible light transmitting portion 7041.
  • the subpixel below the upper end of the display is viewed through the visible light transmitting portion 7041 through which visible light passes when the subpixel at the upper end of the display is viewed at the point L3. Since such a cycle occurs once, it is considered that moire occurs once in L3n.
  • Hv Hpv / ⁇ ( ⁇ is a natural number), where Hpv is the interval between subpixels connected in the vertical direction.
  • L3n and L3f can be determined based on the value of L3. This will be described with reference to FIGS. 46 to 48.
  • FIG. 46 The values of L3n and L3f can be determined based on the value of L3. This will be described with reference to FIGS. 46 to 48.
  • FIG. 46 The values of L3n and L3f can be determined based on the value of L3. This will be described with reference to FIGS. 46 to 48.
  • the distance from the lower end of the display to the upper end of the display is obtained. Therefore, the distance from the center of the subpixel at the lower end of the display to the center of the virtual subpixel 706 above the upper end of the display can also be expressed as (Pv ⁇ Jr).
  • the parallax barrier 704 that is visible when the image presentation target person visually recognizes the stereoscopic image is more visible than the number of subpixels in the vertical direction.
  • the number of the light transmission parts 7041 is one, the person who presents the image is viewing all the sub-pixels through the visible light transmission part 7041.
  • L3n is a point where a cycle of moire generation in the vertical direction occurs once.
  • L3n is represented by the following equation.
  • the visible light of the parallax barrier 704 that is transmitted when the image presentation target person visually recognizes the stereoscopic image is determined from the number of vertical subpixels. Although the number of the transmissive portions 7041 is one, the image presentation target person visually recognizes all the sub-pixels through the visible light transmissive portion 7041.
  • L3f can be expressed by the following equation if the same idea as the equation for obtaining L3n is used.
  • the range from the L3n to the L3f is a moire appropriate elimination region in the vertical direction.
  • the horizontal resolution Ir is 1920 and the vertical resolution Jr is 1080.
  • the horizontal width Ph of the subpixel is 0.15375 mm
  • the distance L1 from the parallax barrier 704 to the optimal stereoscopic view position is 2500 mm
  • the number of viewpoints N is 5, and the distance W between the eyes of the left and right eyes of the image presentation subject is 65 mm.
  • the horizontal resolution Ir is 1920
  • the vertical resolution Jr is 1080.
  • the distances L2 and L3 from the parallax barrier 704 to the moire elimination positions in the oblique direction and the horizontal direction are also set to 2500 mm.
  • L1, L2, and L3 are the same value, but L1, L2, and L3 are not necessarily the same value.
  • the distance ⁇ Ph between the centers of the stereoscopic display pixels that display the images of the adjacent viewpoints is 1 Ph, and the effective visible region that is visually recognized with one eye of the image presentation target person through the visible light transmitting portion 7041 of the parallax barrier 704.
  • the width Vh is 1.2 Ph.
  • Sh is obtained based on the obtained values of Z and Vh.
  • the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which arcs, elliptical arcs, and polygons are continuous, or visible light constituting the parallax barrier 704.
  • the shape of the transmitting portion 7041 is a hole shape formed independently, the value of the height Sv of the visible light transmitting portion 7041 having the continuous shape or the visible light transmitting portion 7041 having the plurality of holes. Ask for.
  • the value of the height Vv of the effective visible region of the parallax barrier 704 is ⁇ ⁇ Pv.
  • is a coefficient indicating the range of the sub-pixels visible through Sv, that is, the ratio of the height Vv of the effective visible region to the sub-pixel height Pv. In other words, the aperture ratio of the parallax barrier 704 in the vertical direction. In this embodiment, ⁇ is 0.9.
  • one unit of the visible light transmitting portion 7041 having the above-described shape corresponding to one subpixel or the number ⁇ in the vertical direction of the plurality of hole-shaped visible light transmitting portions 7041 is 1.
  • Vv is as follows.
  • the value of Sv is the following value.
  • the interval Hh between the plurality of slit regions constituting the parallax barrier 704 adjacent in the horizontal direction is as follows. Ask for.
  • the value of the interval Hh between the plurality of slit regions constituting the parallax barrier 704 adjacent in the horizontal direction is the distance from the position where one moire in the oblique direction occurs to the parallax barrier 704, and two kinds of perspective , A predetermined distance L2n from a position closer to the parallax barrier 704 to the parallax barrier 704, or a predetermined distance L2f from a position further to the parallax barrier 704 to the parallax barrier 704. It can also be obtained from the value of.
  • the value of Hh is obtained by setting the predetermined value of L2n to 1000 mm and the value of L2f to 3000 mm.
  • the parallax barrier 704 is visible to the RGB staircase arrangement pixel unit at the right end of the display.
  • the value of the number Mh of visible light transmitting portions 7041 in the horizontal direction between the light transmitting portions 7041 can be obtained by the following equation.
  • the value of Hh can be obtained by the following equation.
  • L2n can be determined based on the value of the moire elimination position L2 in the oblique direction.
  • the value of L2n is as follows.
  • the value of L2f can be determined based on the value of the moire elimination position L2 in the oblique direction.
  • the value of L2f is as follows.
  • the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which arcs, elliptical arcs, and polygons are continuous, or visible light constituting the parallax barrier 704.
  • the shape of the transmissive portion 7041 is a hole shape formed independently, the visible light transmissive portion 7041 having the continuous shape or the visible light transmissive portion 7041 having the plurality of holes connected in the vertical direction.
  • the value of the interval Hv is obtained as follows.
  • the value of the interval Hv between the continuous visible light transmitting portions 7041 or the plurality of hole-shaped visible light transmitting portions 7041 connected in the vertical direction varies from the position where one horizontal moire occurs. It is a distance to the lux barrier 704, and a predetermined distance L3n from a position closer to the parallax barrier 704 to the parallax barrier 704, or more to the parallax barrier 704. A predetermined distance from a distant position to the parallax barrier 704 can also be obtained based on the value of L3f.
  • the value of Hv is obtained by setting the predetermined value of L3n to 1000 mm and the value of L3f to 3000 mm.
  • the visible light transmission portion 7041 having the shape corresponding to the sub pixel at the upper end of the display from the visible light transmitting portion 7041 corresponding to the sub pixel at the upper end of the display at the predetermined horizontal direction moire elimination position since the ⁇ value is 1, the visible light transmission portion 7041 having the shape corresponding to the sub pixel at the upper end of the display from the visible light transmitting portion 7041 corresponding to the sub pixel at the upper end of the display at the predetermined horizontal direction moire elimination position.
  • the unit Mv of the visible light transmitting portion 7041 having the continuous shape in the vertical direction up to the portion 7041 or the number Mv of the plurality of hole-shaped visible light transmitting portions 7041 is as follows.
  • the value of Hv can be obtained by the following equation.
  • L3n can be determined based on the value of the moire elimination position L3 in the horizontal direction.
  • L3n is as follows.
  • L3f can also be determined based on the value of the moire elimination position L3 in the horizontal direction.
  • the value of L3f is as follows.
  • the shortest distance L1n of the appropriate stereoscopic visible region is the following value.
  • the longest distance L1f of the appropriate stereoscopic visible region is the following value.
  • the appropriate stereoscopic visible region is 2078 mm to 4988 mm.
  • L1n L1 has a relationship of approximately 0.8: 1.
  • the L1n (the shortest distance to the optimum stereoscopic visible region), the L2n (the shortest distance to the moire appropriate elimination area in the oblique direction), and the L3n (the shortest distance to the moire appropriate elimination area in the horizontal direction).
  • (distance) is set to the same distance.
  • L1n, L2n, and L3n are different concepts as described above, they are not limited to the case where all of them are set to the same distance as described in the present embodiment.
  • the horizontal resolution Ir is 1920
  • the vertical resolution Jr is 1080
  • the horizontal width Ph of the subpixel is 0.15375 mm
  • the height of the subpixel is 0.46125 mm
  • the number of viewpoints N is 5.
  • the distance W between the pupils of the right and left eyes of the viewpoint and the image presentation subject is 65 mm
  • the distance from the parallax barrier 704 to the optimum stereoscopic view position is 2500 mm
  • the distance ⁇ Ph is 0.15375 mm
  • the width Vh of the effective visible region visually recognized with one eye of the image presentation subject through the visible light transmitting portion 7041 of the parallax barrier 704 is 0.1845 mm
  • the visible light transmitting portion of the parallax barrier 704 The height Vv of the effective visible region visually recognized by the image presentation target person through 7041 is 0.415125 mm.
  • the parallax barrier 704 is visible to the RGB staircase arranged pixel block at the right end of the display.
  • the number Mh of the visible light transmitting portions 7041 in the horizontal direction up to the light transmitting portion 7041 is 1152
  • the number ⁇ in the left-right direction of the visible light transmitting portion 7041 corresponding to one subpixel is 1, and one sub A unit ⁇ of the visible light transmitting portion 7041 having the shape corresponding to the pixel or the number ⁇ in the vertical direction of the plurality of hole-shaped visible light transmitting portions 7041 is 1.
  • L1n L1n
  • L1n can be obtained by the following equation using Z, W, and Vh.
  • L1n has the following value.
  • L1f (the longest distance to the appropriate stereoscopic visible region) is the following value.
  • the appropriate stereoscopic visible region is 2078 mm to 4988 mm.
  • L2n and L3n are also set to 2078 mm, which is the same distance as L1n.
  • the value of Z can be obtained based on the value of L1n.
  • Z has the following value.
  • the value of Hh can be obtained based on the value of L2n.
  • Hh has the following value.
  • the value of Hv can be obtained based on the value of L3n.
  • Hv has the following value.
  • the width Sh of the visible light transmitting portion 7041 of the parallax barrier 704 is obtained.
  • Sh has the following value.
  • the height Sv of the visible light transmitting portion 7041 of the parallax barrier 704 is obtained.
  • Sv has the following value.
  • 49 to 54 are diagrams for explaining an example of the shape of the slit of the parallax barrier 704.
  • FIG. 49 to 54 are diagrams for explaining an example of the shape of the slit of the parallax barrier 704.
  • FIG. 49 is a diagram showing a case where the shape of the edge of the slit is stepped.
  • the case where the shape of the edge of the slit is stepped means the case as shown in FIG. 49A, and the case where the shape of the edge of the slit is an arc is shown in FIG. 49B. Say such a case.
  • the case where the shape of the edge of the slit is an elliptical arc refers to a case as shown as an example in FIGS. 50 (a) and 50 (b).
  • the case where the shape of the slit edge is a shape in which polygonal openings are continuous refers to a case as shown as an example in FIGS. 51 (a) and 51 (b).
  • the visible light transmitting portion 7041 is a hole-shaped opening formed with a plurality of independent shapes is the periphery of the visible light transmitting portion 7041 as shown as an example in FIGS. 52, 53, and 54. Is a hole surrounded by the mask portion of the parallax barrier 704.
  • the present invention makes it possible to provide a highly practical stereoscopic image display system that is optimal for the development of stereoscopic technology at a very low price.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Processing Or Creating Images (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Image Processing (AREA)

Abstract

In conventional three-dimensional image generation systems, in order to suppress image quality degradation as much as possible, complicated interpolation calculations are carried out in real-time from multiple-viewpoint original images, it is necessary to generate three-dimensional images, resource consumption is high and extremely specialised and expensive computers, etcetera, are required. Also, the inability to output or send multiple-viewpoint original images in a standard format represents a great problem for the spread of three-dimensional image display technology. In this completely new three-dimensional image generation system, by generating in advance an intermediate image which has the same resolution as a three-dimensional image and in which the pixels for each viewpoint have been compiled, a three-dimensional image can be generated by converting pixel arrangement and without using high-speed specialised computers or the like, and by using an intermediate image in which multiple-viewpoint images are arranged in a tile-shape, an intermediate image which is outputted or sent in a standard format by a standard image output device or image delivery server is used to generate a three-dimensional image by means of a simple and low-cost three-dimensional image generation device

Description

中間画像生成方法、中間画像生成装置、立体画像生成方法、立体画像生成装置、立体画像生成システムIntermediate image generation method, intermediate image generation device, stereoscopic image generation method, stereoscopic image generation device, stereoscopic image generation system
 本発明は、複数の視点から撮影された複数の視点画像を変換し、中間画像、立体画像を生成する方法、装置およびそれらを利用した立体画像を生成するシステムと、該立体画像を表示する装置とに関する。 The present invention relates to a method and apparatus for converting a plurality of viewpoint images taken from a plurality of viewpoints to generate an intermediate image and a stereoscopic image, a system for generating a stereoscopic image using them, and an apparatus for displaying the stereoscopic image And about.
 従来、複数視点から撮影された画像を視点毎にピクセル単位あるいはサブピクセル単位で斜め方向に配列して表示画面を構成し、その前面にバリアを配置して視差を与えて立体画像を視認させる技術が広く利用されている(例えば、特許文献1)。 Conventionally, a display screen is configured by arranging images taken from a plurality of viewpoints obliquely in units of pixels or sub-pixels for each viewpoint, and a stereoscopic image is visually recognized by providing a barrier in front of the display screen. Is widely used (for example, Patent Document 1).
 また、画像の画素配置を立体画像表示装置に対応した画素配置に変換する既存の技術として、特許文献2には画像の画素配置をパララックスバリア方式の立体画像表示装置に対応した画素配置に変換する技術が段落0088および図1に開示されている。この段落0088および図1には、装置内に画像の画素配置を立体表示用に変換する技術的解決手段として、画像合成回路が備えられた立体画像表示装置が開示されている。 In addition, as an existing technique for converting the pixel arrangement of an image into a pixel arrangement corresponding to a stereoscopic image display device, Patent Document 2 discloses that the pixel arrangement of an image is converted into a pixel arrangement corresponding to a parallax barrier type stereoscopic image display device. This technique is disclosed in paragraph 0088 and FIG. Paragraph 0088 and FIG. 1 disclose a stereoscopic image display apparatus provided with an image composition circuit as a technical solution for converting the pixel arrangement of an image into a stereoscopic display in the apparatus.
 また、非特許文献1には、パーソナルコンピュータ上において実行する、映像の画素配置を立体表示用に変換するためのソフトウェアが開示されている。 Further, Non-Patent Document 1 discloses software for converting a pixel arrangement of an image for stereoscopic display to be executed on a personal computer.
 このような立体画像の生成過程においては、一般的に大規模な立体画像表示システム、すなわち、撮影画像から立体画像生成のための複雑な演算処理を高速で実行できる特殊で高価なグラフィックボードを搭載したコンピュータ等が必須の要素となっている。 In such a stereoscopic image generation process, generally a large-scale stereoscopic image display system, that is, a special and expensive graphic board capable of executing complex arithmetic processing for generating a stereoscopic image from a captured image at high speed is installed. A computer is an essential element.
 このような立体画像の生成過程においては、一般的に大規模な立体画像表示システム、すなわち、撮影画像から立体画像生成のための複雑な演算処理を高速で実行できる特殊で高価なグラフィックボードを搭載したコンピュータ等が必須の要素となっている。 In such a stereoscopic image generation process, generally a large-scale stereoscopic image display system, that is, a special and expensive graphic board capable of executing complex arithmetic processing for generating a stereoscopic image from a captured image at high speed is installed. A computer is an essential element.
 特許文献3乃至5はRGBからなる三原色信号を、RGBY等の四原色、あるいは五原色の信号へと変換する処理方法が開示されている。 Patent Documents 3 to 5 disclose processing methods for converting three primary color signals composed of RGB into signals of four primary colors such as RGBY or five primary colors.
特開2004-191570JP 2004-191570 A 特開2004-179806JP-A-2004-179806 特開2001-306023JP 2001-306023 A 特表2004-529396Special table 2004-529396 特開2001-209047JP 2001-209047 A
 しかしながら、上述のように立体画像の提供には、高速のCPU、大容量のメモリ、高性能グラフィックボードなど、リソースの消費が大きく非常に特殊で高価なコンピュータ等が必要であり、立体画像表示技術の普及にあたっての大きな課題となっていた。 However, as described above, providing a stereoscopic image requires a very special and expensive computer with high resource consumption, such as a high-speed CPU, a large-capacity memory, and a high-performance graphic board. It has become a big issue in the spread of.
 また、すでに立体視可能な画像ファイルを圧縮した場合、それぞれの視点毎に撮影された画像がピクセルまたはサブピクセル毎に連続して配置されているため、互いに干渉し合い、解凍して再生する際には、もはや立体視できない程度にまで歪んでしまうという問題があり、立体画像は圧縮することができない。従って、視点毎の画像を圧縮して送信したり、記憶媒体に記憶させておき、立体画像の生成の際に視点毎の画像を解凍し、複雑な補間計算を高速で行い、立体画像を生成する必要があった。 In addition, when an image file that can be stereoscopically viewed is compressed, the images taken for each viewpoint are arranged consecutively for each pixel or sub-pixel, so they interfere with each other and are decompressed and played back. However, there is a problem that the image is distorted to such an extent that it can no longer be stereoscopically viewed, and a stereoscopic image cannot be compressed. Therefore, images for each viewpoint are compressed and transmitted, or stored in a storage medium, and images for each viewpoint are decompressed when generating stereoscopic images, and complex interpolation calculations are performed at high speed to generate stereoscopic images. There was a need to do.
 さらに、各視点の画像をタイル状に配置した画像は、解像度やアスペクト比が立体画像、すなわち裸眼立体ディスプレイの解像度とは異なる場合が多い。特に立体画像が生成された際の画質をできる限り高品質に近づけるため、各視点の画像において一定以上の解像度が必要になるため、タイル状に配置した画像は裸眼立体ディスプレイの解像度と比べ、非常に大きくなる。そのため、圧縮して送信するには、高スピードの送信網が必要であり、より大容量の記憶媒体が必要となる。もちろ、各視点の画像をタイル状に配置せず、独立した画像であっても、トータルでは全く同じ問題を抱えることになる。
このことから、最も大きな問題は、ブルーレイやSTBなどで映像を記憶したり、送信したりする場合の標準的なフォーマットで、立体画像生成のための視点毎の画像を提供することができないことである。
Furthermore, an image in which the images of the respective viewpoints are arranged in a tile shape often has a resolution and an aspect ratio different from that of a stereoscopic image, that is, the resolution of an autostereoscopic display. In particular, in order to bring the image quality when a stereoscopic image is generated as close as possible to the highest quality, it is necessary to have a certain resolution or higher for each viewpoint image. Become bigger. For this reason, a high-speed transmission network is required to compress and transmit, and a larger-capacity storage medium is required. Of course, even if the images for each viewpoint are not arranged in a tile shape and are independent images, the total problem is the same.
Therefore, the biggest problem is that it is not possible to provide images for each viewpoint for generating stereoscopic images in a standard format for storing and transmitting video on Blu-ray or STB. is there.
 そこで、本発明は上記課題を解決するため、最終出力画像である立体画像と同一の解像度を有し、視点毎の画素をまとめた中間画像を予め生成することで、高速で特殊なコンピュータ等を使用せずに画素の配置変換のみで立体画像の生成が可能であり、さらに各視点の画像をタイル状に配置した中間画像を用いれば、ブルーレイやSTBなどの標準的な画像出力装置や画像配信サーバーにより標準的なフォーマットで出力または送信した当該中間画像を、簡易で安価な立体画像生成装置(コンバーター)により立体画像を生成する立体画像生成システムを実現することを技術的課題とする。 Therefore, in order to solve the above-described problem, the present invention generates a high-speed special computer or the like by generating in advance an intermediate image having the same resolution as that of the stereoscopic image that is the final output image and collecting pixels for each viewpoint. It is possible to generate a stereoscopic image by simply changing the arrangement of pixels without using it, and using an intermediate image in which the images of each viewpoint are arranged in a tile shape, standard image output devices such as Blu-ray and STB and image distribution It is a technical object to realize a stereoscopic image generation system that generates a stereoscopic image from the intermediate image output or transmitted by a server in a standard format by a simple and inexpensive stereoscopic image generation apparatus (converter).
 本願発明の課題解決手段について下記に説明する。本願は複数の独立請求項にかかる発明を備えるが、発明者が意図する技術思想は下記の5つである。 The problem solving means of the present invention will be described below. The present application includes inventions according to a plurality of independent claims, and the technical ideas intended by the inventor are the following five.
 本願第1の発明は、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、RGBYからなるサブピクセルが斜め方向にコーナーで接して4行で配列されたRGBY階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGBY階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGBY値から補間して求め、該RGBY階段配置画素ユニットを構成するサブピクセルを水平方向にRGBYの順に並べて配列したRGBY並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、該立体画像の該RGBY階段配置画素ユニットと該複数の中間画像の該RGBY並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となることを特徴とする中間画像生成方法、である。 The first invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. An RGBY staircase in which RGBY staircase-arranged pixel units in which subpixels made of RGBY are arranged in four rows diagonally at a corner in an oblique direction are connected in a horizontal direction from the first viewpoint to the N viewpoint. In order to generate the stereoscopic image by repeatedly arranging the arrangement pixel blocks, the R, G, B, and Y values of the sub-pixels constituting the RGBY step arrangement pixel unit are converted into the RGBY step arrangement pixel unit. Constituting at least one or more pixel units arranged in the vicinity of the corresponding positions in the plurality of viewpoint images corresponding to the arrangement positions of the sub-pixels constituting An arrangement in which RGBY parallel arrangement pixel units obtained by interpolating from RGBY values of subpixels and arranging the subpixels constituting the RGBY staircase arrangement pixel unit in the order of RGBY in the horizontal direction are arranged together for each of the plurality of viewpoints. By arranging according to the rules and generating the intermediate image for each of the plurality of viewpoints, the total number of the RGBY staircase arranged pixel units of the stereoscopic image and the RGBY parallel arranged pixel units of the plurality of intermediate images, or each of them An intermediate image generation method characterized in that the total number of sub-pixels constituting the same number is the same.
 本願第2の発明は、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、前記N視点は3n+1(nは自然数)視点であり、RGBからなるサブピクセルが斜め方向にコーナーで接して3行で配列されたRGB階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGB階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、該RGB階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値を、該RGB階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGB値から補間して求め、該RGB階段配置画素ユニットを構成するサブピクセルを水平方向にR、G、Bの順に並べて配列したRGB並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、該立体画像の該RGB階段配置画素ユニットと該複数の中間画像の該RGB並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となり、さらに、前記複数の中間画像を、画像フレームとして横方向に視点の数だけ分割された複数のベルト状に配置する、ことを特徴とする中間画像生成方法、である。 The second invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. In the generation method, the N viewpoints are 3n + 1 (n is a natural number) viewpoints, and RGB staircase-arranged pixel units in which RGB subpixels are arranged in three rows in a diagonal direction in contact with corners are arranged in the horizontal direction. In order to generate the stereoscopic image by repeatedly arranging the RGB staircase-arranged pixel blocks arranged in a sequence from 1 viewpoint to N viewpoints, the R value and G value of each of the sub-pixels constituting the RGB staircase-arranged pixel unit are generated. , B values corresponding to the arrangement positions of the sub-pixels constituting the RGB staircase arrangement pixel unit, at least arranged in the vicinity of the corresponding positions in the plurality of viewpoint images An RGB parallel arrangement pixel unit obtained by interpolating RGB values of subpixels constituting one or more pixel units and arranging the subpixels constituting the RGB staircase arrangement pixel unit in the horizontal direction in the order of R, G, B The RGB staircase-arranged pixel unit of the stereoscopic image and the plurality of intermediate images are generated by arranging according to an arrangement rule for collectively arranging the plurality of viewpoints and generating the intermediate image for each of the plurality of viewpoints. The total number of RGB parallel-arranged pixel units or the total number of sub-pixels constituting each is the same, and the plurality of intermediate images are arranged in the form of a plurality of belts divided by the number of viewpoints in the horizontal direction as image frames. An intermediate image generation method characterized by:
 本願第3の発明は、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、前記N視点は4n+1(nは自然数)視点であり、RGBYからなるサブピクセルが斜め方向にコーナーで接して4行で配列されたRGBY階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGBY階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGBY値から補間して求め、該RGBY階段配置画素ユニットを構成するサブピクセルを水平方向にR、G、B、Y、の順に並べて配列したRGBY並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、該立体画像の該RGBY階段配置画素ユニットと該複数の中間画像の該RGBY並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となり、さらに、前記複数の中間画像を、画像フレームとして横方向に視点の数だけ分割された複数のベルト状に配置する、ことを特徴とする中間画像生成方法、である。 The third invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. In the generation method, the N viewpoints are 4n + 1 (n is a natural number) viewpoints, and RGBY staircase-arranged pixel units in which RGBY sub-pixels are arranged in four rows in contact with diagonal corners are arranged in the horizontal direction. In order to generate the stereoscopic image by repeatedly arranging the RGBY staircase-arranged pixel blocks arranged in a concatenation from 1 viewpoint to N viewpoints, the R value and G value of each of the sub-pixels constituting the RGBY staircase-arranged pixel unit are generated. , B value, and Y value are arranged in the vicinity of the corresponding positions in the plurality of viewpoint images corresponding to the arrangement positions of the sub-pixels constituting the RGBY staircase arrangement pixel unit. Obtained by interpolating from the RGBY values of the sub-pixels constituting at least one pixel unit, and arranging the sub-pixels constituting the RGBY stepped pixel unit in the horizontal direction in the order of R, G, B, Y. An RGBY parallel arrangement pixel unit is arranged according to an arrangement rule for collectively arranging the plurality of viewpoints, and the intermediate image for each of the plurality of viewpoints is generated, whereby the RGBY staircase arrangement pixel unit of the stereoscopic image and The total number of the RGBY parallel arrangement pixel units of the plurality of intermediate images, or the total number of sub-pixels constituting each of the plurality of intermediate images is the same, and the plurality of intermediate images are divided into the number of viewpoints in the horizontal direction as image frames. An intermediate image generation method characterized by being arranged in a plurality of belts.
 本願第4の発明は、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、前記N視点は(3+m)n+1(n、mは自然数)視点であり、RGB、およびその他のm個の色からなるサブピクセルが斜め方向にコーナーで接して3+m行で配列された階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列した階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、該階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、およびその他の色の値を、該階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルの値から補間して求め、該階段配置画素ユニットを構成するサブピクセルを水平方向にR、G、B、その他の色の順に並べて配列した並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、該立体画像の該階段配置画素ユニットと該複数の中間画像の該並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となり、さらに、前記複数の中間画像を、画像フレームとして横方向に視点の数だけ分割された複数のベルト状に配置する、ことを特徴とする中間画像生成方法、である。 The fourth invention of the present application is an intermediate image that generates a plurality of intermediate images used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. In the generation method, the N viewpoints are (3 + m) n + 1 (n and m are natural numbers) viewpoints, and RGB and other m sub-pixels are arranged in 3 + m rows diagonally in contact with corners. The staircase-arranged pixel unit is configured to generate the stereoscopic image by repeatedly arranging the staircase-arranged pixel blocks in which the staircase-arranged pixel units arranged in the horizontal direction from the 1st viewpoint to the Nth viewpoint are arranged repeatedly. The R value, G value, B value, and other color values of each of the subpixels are assigned to the plurality of viewpoint images corresponding to the arrangement positions of the subpixels constituting the staircase arrangement pixel unit. R, G, B, and other colors in the horizontal direction are obtained by interpolating from the values of subpixels constituting at least one or more pixel units arranged in the vicinity of the corresponding position. The staircase arrangement of the three-dimensional image is generated by arranging the parallel arrangement pixel units arranged in the order of the plurality of viewpoints according to an arrangement rule for collectively arranging the plurality of viewpoints and generating the intermediate image for each of the plurality of viewpoints. The total number of pixel units and the total number of pixel units arranged in parallel in the plurality of intermediate images, or the total number of sub-pixels constituting each pixel unit, and the plurality of intermediate images are divided into the number of viewpoints in the horizontal direction as image frames. An intermediate image generation method, characterized by being arranged in a plurality of belt shapes.
 本願第5の発明は、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、RGB、またはRGBにC、M、Y、Wまたは他の色の内、少なくとも1色を加えたものからなるサブピクセルが垂直方向に連接して配列した画素ユニットを、水平方向に該1視点からN視点までを連接して配列した画素ブロックを繰り返し配置して該立体画像を生成するために、該画素ユニットを構成するサブピクセルの各々の値を、該画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルの値から補間して求め、該画素ユニットを構成するサブピクセルを水平方向に並べて配列した並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、該立体画像の画素ユニットと該複数の中間画像の並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となることを特徴とする中間画像生成方法、である。 The fifth invention of the present application is an intermediate image for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. A method of generating a pixel unit in which sub-pixels composed of RGB or RGB plus at least one of C, M, Y, W or other colors are connected in the vertical direction. In order to generate the three-dimensional image by repeatedly arranging pixel blocks connected in a direction from the 1 viewpoint to the N viewpoint, the values of the sub-pixels constituting the pixel unit are configured as the pixel unit. And interpolating from the values of the sub-pixels constituting at least one or more pixel units arranged in the vicinity of the corresponding positions in the plurality of viewpoint images corresponding to the arrangement positions of the sub-pixels. The parallel arrangement pixel units in which the sub-pixels constituting the pixel unit are arranged in a horizontal direction are arranged in accordance with an arrangement rule for collectively arranging the plurality of viewpoints, and the intermediate images for the plurality of viewpoints are arranged. An intermediate image generation method, characterized in that, by generating, the total number of pixel units of the stereoscopic image and the parallel arrangement pixel units of the plurality of intermediate images, or the total number of sub-pixels constituting each, is the same. .
 本発明によれば、視点毎の画像を構成する画素数の合計が立体画像の画素数と同一となる最小限必要な解像度で、圧縮可能な中間画像の生成と、そのような中間画像を構成するサブピクセルの配置換え(マッピング)のみで立体視が可能な立体画像とを高速で特殊なコンピュータを使用せず生成することができ、さらに本発明に基づいて各視点の画像をタイル状に配置することにより中間画像と裸眼立体ディスプレイ(立体画像)の解像度・アスペクト比が同一となり、ブルーレイやSTBなどの標準的な画像出力装置や画像配信サーバーにより標準的なフォーマットで出力または送信された中間画像を、立体画像生成装置(コンバーター)で簡易に立体画像を生成できる、実用性に富んだ立体画像表示システムを非常に安価な価格で提供することが可能となる。 According to the present invention, it is possible to generate a compressible intermediate image with the minimum necessary resolution so that the total number of pixels constituting the image for each viewpoint is the same as the number of pixels of the stereoscopic image, and to configure such an intermediate image. 3D images can be generated at high speed without using a special computer by only rearranging (mapping) the subpixels to be used, and images of each viewpoint are arranged in tiles according to the present invention. By doing so, the resolution and aspect ratio of the intermediate image and the autostereoscopic display (stereoscopic image) become the same, and the intermediate image is output or transmitted in a standard format by a standard image output device such as Blu-ray or STB or an image distribution server. Provides a practical 3D image display system that can easily generate 3D images with a 3D image generation device (converter) at a very low price. Theft is possible.
中間画像生成装置、立体画像生成装置および立体画像生成システムの構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of an intermediate | middle image generation apparatus, a stereo image generation apparatus, and a stereo image generation system. 中間画像生成装置、立体画像生成システムによって実行される情報処理のフローチャートを示す図である。It is a figure which shows the flowchart of the information processing performed by an intermediate image generation apparatus and a stereo image generation system. 中間画像の生成方法についての実施形態を説明する図である。It is a figure explaining embodiment about the production | generation method of an intermediate image. 中間画像の生成方法についての実施形態を説明する図である。It is a figure explaining embodiment about the production | generation method of an intermediate image. 中間画像の生成方法についての実施形態を説明する図である。It is a figure explaining embodiment about the production | generation method of an intermediate image. 中間画像の生成方法についての実施形態を説明する図である。It is a figure explaining embodiment about the production | generation method of an intermediate image. 中間画像生成テーブルについて説明する図である。It is a figure explaining an intermediate image generation table. 中間画像の画像フレームの配置の例を示す図である。It is a figure which shows the example of arrangement | positioning of the image frame of an intermediate image. 画像フレームの差異を説明する図である。It is a figure explaining the difference of an image frame. 複数の中間画像からなる画像フレームの例を示す図である。It is a figure which shows the example of the image frame which consists of a some intermediate | middle image. 5視点フォーマットの画像フレームを示す図である。It is a figure which shows the image frame of a 5 viewpoint format. ベルト状フォーマットの画像フレームの例を示す図である。It is a figure which shows the example of the image frame of a belt-like format. ベルト状フォーマットの画像フレームの例を示す図である。It is a figure which shows the example of the image frame of a belt-like format. ベルト状フォーマットの画像フレームの例を示す図である。It is a figure which shows the example of the image frame of a belt-like format. ベルト状フォーマットの画像フレームの例を示す図である。It is a figure which shows the example of the image frame of a belt-like format. RGB階段配置画素ユニットの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of RGB staircase arrangement pixel units. 立体画像生成装置の実施形態の一例を示す外観図である。It is an external view which shows an example of embodiment of a stereo image production | generation apparatus. 立体画像生成装置の他の実施形態の一例を示す外観図である。It is an external view which shows an example of other embodiment of a stereo image production | generation apparatus. 複数視点の画像の例を示す図である。It is a figure which shows the example of the image of a several viewpoint. 複数視点の動画像の例を示す図である。It is a figure which shows the example of the moving image of multiple viewpoints. 複数視点の動画像の例を示す図である。It is a figure which shows the example of the moving image of multiple viewpoints. 複数視点の中間画像の第一の実施例を示す図である。It is a figure which shows the 1st Example of the intermediate image of a several viewpoint. 複数視点の中間画像の第二の実施例を示す図である。It is a figure which shows the 2nd Example of the intermediate image of a several viewpoint. 複数視点の中間画像の第三の実施例を示す図である。It is a figure which shows the 3rd Example of the intermediate image of a several viewpoint. 複数視点の中間画像の第四の実施例を示す図である。It is a figure which shows the 4th Example of the intermediate image of a several viewpoint. 画像情報が実際にどのような情報を意味するものであるのか説明する図である。It is a figure explaining what kind of information the image information actually means. 画像情報が実際にどのような情報を意味するものであるのか説明する図である。It is a figure explaining what kind of information the image information actually means. 平面画像と複数視点の中間画像の判別を行う方法を示したフローチャートを示す図である。It is a figure which shows the flowchart which showed the method of discriminating a planar image and the intermediate image of several viewpoints. 可視光透過部の横幅Shの適正値について説明する図である。It is a figure explaining the appropriate value of lateral width Sh of a visible light transmission part. 可視光透過部の横幅Shの適正値について説明する図である。It is a figure explaining the appropriate value of lateral width Sh of a visible light transmission part. 可視光透過部の高さSvを求める例を説明する図である。It is a figure explaining the example which calculates | requires height Sv of a visible light transmission part. 可視光透過部の高さSvを求める例を説明する図である。It is a figure explaining the example which calculates | requires height Sv of a visible light transmission part. 複数の可視光透過部の間隔Hhを求める例を説明する図である。It is a figure explaining the example which calculates | requires the space | interval Hh of a some visible light transmissive part. 複数の可視光透過部の間隔Hhを求める例を説明する図である。It is a figure explaining the example which calculates | requires the space | interval Hh of a some visible light transmissive part. 複数の可視光透過部の間隔Hhを求める例を示す図である。It is a figure which shows the example which calculates | requires the space | interval Hh of a some visible light transmissive part. 複数の可視光透過部の間隔Hhを求める例を示す図である。It is a figure which shows the example which calculates | requires the space | interval Hh of a some visible light transmissive part. モアレについて説明する図である。It is a figure explaining a moire. L2、L2n、L2fの相対的な関係を説明する図である。It is a figure explaining the relative relationship of L2, L2n, and L2f. 可視光透過部の間隔Hvの値を求める方法について説明する図である。It is a figure explaining the method of calculating | requiring the value of the space | interval Hv of a visible light transmissive part. 可視光透過部とピクセルとの関係を説明する図である。It is a figure explaining the relationship between a visible light transmissive part and a pixel. 注視点間距離KとL3の関係を説明する図である。It is a figure explaining the relationship between the distance K between gazing points, and L3. 可視光透過部の間隔Hvの値を求める方法について説明する図である。It is a figure explaining the method of calculating | requiring the value of the space | interval Hv of a visible light transmissive part. 可視光透過部の間隔Hvの値を求める方法について説明する図である。It is a figure explaining the method of calculating | requiring the value of the space | interval Hv of a visible light transmissive part. 可視光透過部の数について説明する図である。It is a figure explaining the number of visible light transmission parts. [Hv×(Mv-1)]と[(Jr-1/β)×Pv]の関係を説明する図である。It is a figure explaining the relationship between [Hv × (Mv−1)] and [(Jr−1 / β) × Pv]. L3nおよびL3fの値を求める例を示す図である。It is a figure which shows the example which calculates | requires the value of L3n and L3f. L3nおよびL3fの値を求める例を示す図である。It is a figure which shows the example which calculates | requires the value of L3n and L3f. L3nおよびL3fの値を求める例を示す図である。It is a figure which shows the example which calculates | requires the value of L3n and L3f. パララックスバリアのスリットの形状の一例について説明する図である。It is a figure explaining an example of the shape of the slit of a parallax barrier. パララックスバリアのスリットの形状の一例について説明する図である。It is a figure explaining an example of the shape of the slit of a parallax barrier. パララックスバリアのスリットの形状の一例について説明する図である。It is a figure explaining an example of the shape of the slit of a parallax barrier. パララックスバリアのスリットの形状の一例について説明する図である。It is a figure explaining an example of the shape of the slit of a parallax barrier. パララックスバリアのスリットの形状の一例について説明する図である。It is a figure explaining an example of the shape of the slit of a parallax barrier. パララックスバリアのスリットの形状の一例について説明する図である。It is a figure explaining an example of the shape of the slit of a parallax barrier. モアレ適正解消領域について説明する図である。It is a figure explaining a moire appropriate cancellation area. 裸眼立体画像表示装置におけるサブピクセルの形状の例を示す図である。It is a figure which shows the example of the shape of the sub pixel in an autostereoscopic image display apparatus. RGBサブピクセルを垂直方向に配置する立体画像を示す図である。It is a figure which shows the stereo image which arrange | positions a RGB sub pixel in the orthogonal | vertical direction. RGBサブピクセルを垂直方向に配置する立体画像を示す図である。It is a figure which shows the stereo image which arrange | positions a RGB sub pixel in the orthogonal | vertical direction. RGBサブピクセルを水平方向に配置する立体画像を示す図である。It is a figure which shows the stereo image which arrange | positions a RGB sub pixel in a horizontal direction. RGBサブピクセルを水平方向に配置した立体画像の水平方向における見え方を示す図である。It is a figure which shows the appearance in the horizontal direction of the stereo image which has arrange | positioned RGB sub pixel in the horizontal direction. RGBサブピクセルを水平方向に配置した立体画像の水平方向における見え方を示す図である。It is a figure which shows the appearance in the horizontal direction of the stereo image which has arrange | positioned RGB sub pixel in the horizontal direction. 立体画像生成テーブルについて説明する図である。It is a figure explaining a stereo image production | generation table. 立体画像生成テーブルについて説明する図である。It is a figure explaining a stereo image production | generation table.
 本発明の実施形態について説明する。 Embodiments of the present invention will be described.
 図1は、本発明に係る中間画像生成装置101の構成、立体画像生成装置201の構成、および立体画像生成システム301の構成を概略的に示すブロック図である。 FIG. 1 is a block diagram schematically showing the configuration of an intermediate image generation device 101, the configuration of a stereoscopic image generation device 201, and the configuration of a stereoscopic image generation system 301 according to the present invention.
 <中間画像生成装置の構成>
図1(a)の中間画像生成装置101は、中央処理装置(その1)1011、記憶装置(その1)1012を備える。
<Configuration of intermediate image generation apparatus>
The intermediate image generation apparatus 101 in FIG. 1A includes a central processing unit (part 1) 1011 and a storage unit (part 1) 1012.
 <記憶装置(その1)1012>
記憶装置(その1)1012は、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像601を記憶する。視点画像601の生成には、複数台のカメラ801を用いて異なる視点から対象物8012を撮影するほか、コンピュータグラフィックスを用いて描画することが挙げられる。
<Storage device (part 1) 1012>
The storage device (part 1) 1012 stores a plurality of viewpoint images 601 taken and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. The generation of the viewpoint image 601 includes capturing the object 8012 from different viewpoints using a plurality of cameras 801 and drawing using computer graphics.
 <中央処理装置(その1)1011>
中央処理装置(その1)1011は、記憶装置(その1)1012に記憶された複数の視点画像601から複数の演算処理を行って中間画像401を生成する。
<Central processing unit (1) 1011>
The central processing unit (part 1) 1011 performs a plurality of arithmetic processes from a plurality of viewpoint images 601 stored in the storage unit (part 1) 1012 to generate an intermediate image 401.
 <立体画像生成装置の構成>
 図1(b)の立体画像生成装置201は、中央処理装置(その2)2011、記憶装置(その2)2012を備える。
<Configuration of stereoscopic image generation apparatus>
1B includes a central processing unit (part 2) 2011 and a storage device (part 2) 2012.
 <中央処理装置(その2)2011>
中央処理装置(その2)2011は、入力された複数の中間画像401を、記憶装置(その2)2012(フレームバッファ)に記憶させ、画素配置の変換を行って立体画像501を生成する。
<Central processing unit (2) 2011>
The central processing unit (part 2) 2011 stores the plurality of input intermediate images 401 in the storage unit (part 2) 2012 (frame buffer), converts the pixel arrangement, and generates a stereoscopic image 501.
 <立体画像生成システムの構成>
図1(c)の立体画像生成システム301は、第一の情報処理装置3011、第二の情報処理装置3012から構成され、第一の情報処理装置3011は、中央処理装置(その3)30111、記憶装置(その3)30112、圧縮装置30113、送信装置30114を備え、第二の情報処理装置3012は、中央処理装置(その4)30121、記憶装置(その4)30122、解凍装置30123、受信装置30124を備える。
<Configuration of stereoscopic image generation system>
1C includes a first information processing apparatus 3011 and a second information processing apparatus 3012. The first information processing apparatus 3011 includes a central processing unit (part 3) 30111, The second information processing device 3012 includes a central processing unit (part 4) 30121, a storage unit (part 4) 30122, a decompression unit 30123, and a receiving unit. 30124.
 <圧縮装置30113>
圧縮装置30113は、所定の方式で複数の中間画像401の非可逆圧縮を行う。圧縮の方式としては、静止画像では、JPEG、動画像では、MPEG-2、MPEG-4などの代表的な方式により行う。
<Compression device 30113>
The compression device 30113 performs irreversible compression of the plurality of intermediate images 401 by a predetermined method. As a compression method, JPEG is used for still images, and MPEG-2, MPEG-4, etc. are used for moving images.
 <送信装置30114>
送信装置30114は、圧縮装置30113により圧縮した複数の中間画像401を第二の情報処理装置3012に送信する。送信の方式としては、USBポートを介した有線による送信の他、光通信、BLUETOOTH(登録商標)、無線LANなどの無線による送信が考えられる。
<Transmitter 30114>
The transmission device 30114 transmits the plurality of intermediate images 401 compressed by the compression device 30113 to the second information processing device 3012. As a transmission method, in addition to wired transmission via a USB port, wireless transmission such as optical communication, BLUETOOTH (registered trademark), and wireless LAN can be considered.
 <受信装置30124>
受信装置30124は、送信装置30114により送信された複数の中間画像401の受信を行う。
<Reception device 30124>
The reception device 30124 receives a plurality of intermediate images 401 transmitted by the transmission device 30114.
 <解凍装置30123>
解凍装置30123は、圧縮装置30113により圧縮された複数の中間画像401の解凍を行う。
<Defroster 30123>
The decompressing device 30123 decompresses the plurality of intermediate images 401 compressed by the compressing device 30113.
 <中間画像生成装置における中間画像の生成工程>
中間画像生成装置101によって実行される中間画像401の生成工程について説明する。
<Intermediate Image Generation Process in Intermediate Image Generation Device>
A generation process of the intermediate image 401 executed by the intermediate image generation apparatus 101 will be described.
 図2(a)は、図1(a)の中間画像生成装置101によって実行される情報処理のフローチャートである。 FIG. 2A is a flowchart of information processing executed by the intermediate image generation apparatus 101 in FIG.
 <ステップS201>
図2(a)において、まず、中間画像生成装置101に備えられた中央処理装置(その1)1011は、ユーザによる操作(1視点からN視点までの複数の視点からのカメラ801による対象物8012の撮影、または1視点からN視点までの複数の視点からのコンピュータグラフィックスによる描画)に応じて入力された複数の視点画像601を、中間画像生成装置101に備えられた記憶装置(その1)1012に記憶する(ステップS201)。
<Step S201>
In FIG. 2A, first, a central processing unit (part 1) 1011 provided in the intermediate image generation apparatus 101 is operated by a user (an object 8012 by a camera 801 from a plurality of viewpoints from one viewpoint to N viewpoints). Storage device (part 1) provided in the intermediate image generation apparatus 101 with a plurality of viewpoint images 601 input in response to the shooting of the image or the drawing by computer graphics from a plurality of viewpoints from one viewpoint to N viewpoints) 1012 (step S201).
 <ステップS202>
次いで、中央処理装置(その1)1011は、制御情報の入力があるか否かを判別する(ステップS202)。制御情報とは、NTSC、PALといった走査方式、インターレス、プログレッシブといった送信方式、視点数、解像度、画素配置方法等を意味する。制御情報の入力は、中間画像生成装置101にさらに備えられたキーボードやマウス等を使用してユーザの操作により行う。これにより、フォーマットが定まることになる。
<Step S202>
Next, the central processing unit (part 1) 1011 determines whether or not there is an input of control information (step S202). The control information means a scanning method such as NTSC or PAL, a transmission method such as interlace or progressive, the number of viewpoints, resolution, pixel arrangement method, and the like. The control information is input by a user operation using a keyboard, a mouse, or the like further provided in the intermediate image generating apparatus 101. As a result, the format is determined.
 <ステップS203>
ステップS202の判別の結果、制御情報の入力があると、該中央処理装置(その1)1011は、制御情報に基づく立体画像501の生成を行う(ステップS203)。ここで、立体画像501とは、ユーザに最終的に提示する立体視可能なサブピクセル配置を有する画像をいう。
<Step S203>
As a result of the determination in step S202, when control information is input, the central processing unit (part 1) 1011 generates a stereoscopic image 501 based on the control information (step S203). Here, the stereoscopic image 501 refers to an image having a stereoscopically visible subpixel arrangement that is finally presented to the user.
 パララックスバリア等を用いた裸眼立体視の場合には、サブピクセルを斜め方向にコーナーで接して3行で配列されたRGB階段配置画素ユニット5011を、水平方向に第1の視点から第Nの視点までを連接して配列したRGB階段配置画素ブロック5012を繰り返し配置して立体画像501を構成することが望ましい。 In the case of autostereoscopic viewing using a parallax barrier or the like, the RGB staircase-arranged pixel units 5011 arranged in three rows with the sub-pixels in contact with the corners in the diagonal direction from the first viewpoint to the Nth It is desirable to configure the stereoscopic image 501 by repeatedly arranging RGB staircase-arranged pixel blocks 5012 arranged in a continuous manner up to the viewpoint.
 ここで、1画素を構成するサブピクセルはRGBの他、C(シアン)、M(マゼンタ)、Y(イエロー)、あるいはW(ホワイト)、またはその他の色を備える場合があることは周知技術であるが、本明細書においては「RGB」と呼称する場合、「RGBY」や「RGBW」、「RGBYW」、「RGBCMY」等を含むものとする。 Here, it is a well-known technique that subpixels constituting one pixel may include C (cyan), M (magenta), Y (yellow), W (white), or other colors in addition to RGB. However, in this specification, the term “RGB” includes “RGBY”, “RGBW”, “RGBYW”, “RGBCMY”, and the like.
 RGB階段配置画素ユニット5011を構成するサブピクセルの代表的な配置には、例えば図16において示すものが考えられる。制御情報に基づく立体画像501の生成とは、例えば立体画像501の表示を予定しているディスプレイの解像度が1980×1080である場合には、出力を行うのに適した解像度の立体画像501、すなわち1980×1080の解像度を有する立体画像501の生成が行われる。なお、ステップS203で行われる立体画像501の生成については後述する。 As a typical arrangement of the sub-pixels constituting the RGB staircase arrangement pixel unit 5011, for example, the one shown in FIG. The generation of the stereoscopic image 501 based on the control information is, for example, when the resolution of the display on which the stereoscopic image 501 is scheduled to be displayed is 1980 × 1080, that is, the stereoscopic image 501 having a resolution suitable for output, that is, A stereoscopic image 501 having a resolution of 1980 × 1080 is generated. The generation of the stereoscopic image 501 performed in step S203 will be described later.
 <ステップS204>
次いで、中央処理装置(その1)1011は、生成された立体画像501から複数の中間画像401を生成する(ステップS204)。中間画像401とは、立体画像501を生成するために用いられる画像であり、複数の中間画像401のそれぞれは、RGB階段配置画素ユニット5011を構成するサブピクセルを水平方向にR、G、B、および必要であればその他のサブピクセル、の順に並べて配列したRGB並列配置画素ユニットが4011、複数の視点毎にまとめて配置されている。本発明においては、複数の視点で撮影または描画された複数の視点画像601から予め立体画像501を生成または想定し、該立体画像501に基づいて中間画像401の生成を行っていく。ステップS204で行われる中間画像401の生成についてもステップS203と同様に下記に詳述する。
<Step S204>
Next, the central processing unit (part 1) 1011 generates a plurality of intermediate images 401 from the generated stereoscopic image 501 (step S204). The intermediate image 401 is an image used to generate the stereoscopic image 501, and each of the plurality of intermediate images 401 includes R, G, B, and R subpixels that constitute the RGB staircase arranged pixel unit 5011 in the horizontal direction. In addition, RGB parallel arrangement pixel units 4011 arranged in order of other sub-pixels if necessary are arranged together for each of a plurality of viewpoints. In the present invention, a stereoscopic image 501 is generated or assumed in advance from a plurality of viewpoint images 601 photographed or drawn from a plurality of viewpoints, and an intermediate image 401 is generated based on the stereoscopic image 501. The generation of the intermediate image 401 performed in step S204 will be described in detail below as in step S203.
 <ステップS205>
次いで、中央処理装置(その1)1011は、ステップS204において生成された中間画像401を記憶装置(その1)1012に記憶する(ステップS205)。
<Step S205>
Next, the central processing unit (part 1) 1011 stores the intermediate image 401 generated in step S204 in the storage unit (part 1) 1012 (step S205).
 ステップS205において中間画像401が記憶されると、本処理が終了する。 When the intermediate image 401 is stored in step S205, this process ends.
 <中間画像生成装置の補足>
処理が終了した後、再びステップS203に戻ってもよい。例えば、同一の制御情報に基づいて繰り返し立体画像501、中間画像401の生成を行うような場合(視点画像601が次々に中間画像生成装置101に入力される場合)には、毎回の制御情報の入力は必要なく、ユーザビリティの向上が期待できる。この場合、連続して立体画像501、中間画像401の生成を行うことを中間画像生成装置101に認識させるために、キーボード等の特定の動作によりモード変更を行い、繰り返し立体画像501、中間画像401の生成を行う処理に関連付けてもよい。
<Supplement of intermediate image generation device>
You may return to step S203 again after a process is complete | finished. For example, when the stereoscopic image 501 and the intermediate image 401 are repeatedly generated based on the same control information (when the viewpoint image 601 is input to the intermediate image generation apparatus 101 one after another), the control information of each time No input is required, and usability can be expected to improve. In this case, in order to cause the intermediate image generating apparatus 101 to recognize that the stereoscopic image 501 and the intermediate image 401 are continuously generated, the mode is changed by a specific operation such as a keyboard, and the stereoscopic image 501 and the intermediate image 401 are repeated. You may link with the process which produces | generates.
 なお、図2(b)図示例のように、ステップS204において、実際に立体画像501の生成を行わずに立体画像501を想定して以下の処理を行ってもよい。 Note that, as illustrated in FIG. 2B, in step S204, the following processing may be performed assuming the stereoscopic image 501 without actually generating the stereoscopic image 501.
 <立体画像生成システムにおける立体画像の生成工程>
立体画像生成システム301によって実行される立体画像501の生成工程について説明する。
<Stereoscopic Image Generation Process in Stereoscopic Image Generation System>
A generation process of the stereoscopic image 501 executed by the stereoscopic image generation system 301 will be described.
 図2(c)は、図1(b)の立体画像生成システム301によって実行される情報処理のフローチャートである。 FIG. 2C is a flowchart of information processing executed by the stereoscopic image generation system 301 in FIG.
 図2(c)は、図2(a)のステップS204までの処理とその構成が基本的に同じであり、同一の構成要素については重複説明を省略し、以下に異なる部分についてのみ説明する。 2 (c) is basically the same as the processing up to step S204 in FIG. 2 (a), and redundant description of the same components is omitted, and only different parts are described below.
 第一の情報処理装置3011および第二の情報処理装置3012は、それぞれ図2(a)に用いられている中間画像生成装置101に圧縮装置30113、送信装置30114と解凍装置30123、受信装置30124をさらに備えた情報処理装置である。 The first information processing apparatus 3011 and the second information processing apparatus 3012 include a compression apparatus 30113, a transmission apparatus 30114, a decompression apparatus 30123, and a reception apparatus 30124, respectively, in the intermediate image generation apparatus 101 used in FIG. An information processing apparatus further provided.
 <ステップS205>
まず、第一の情報処理装置3011の中央処理装置(その3)30111は、ステップS204で生成された複数の中間画像401の圧縮を圧縮装置30113により行う(ステップS205)。
<Step S205>
First, the central processing unit (No. 3) 30111 of the first information processing device 3011 compresses the plurality of intermediate images 401 generated in step S204 by the compression device 30113 (step S205).
 <ステップS206>
次いで、ステップS205で圧縮された複数の中間画像401を記憶装置(その3)30112に記憶する(ステップS206)。
<Step S206>
Next, the plurality of intermediate images 401 compressed in step S205 are stored in the storage device (part 3) 30112 (step S206).
 <ステップS207>
次いで、該(その3)30111は、圧縮し記憶された複数の中間画像401を送信装置30114から第二の情報処理装置3012へ送信を行う(ステップS207)。
<Step S207>
Next, (Part 3) 30111 transmits a plurality of intermediate images 401 that have been compressed and stored from the transmission device 30114 to the second information processing device 3012 (step S207).
 <ステップS208>
第二の情報処理装置3012の中央処理装置(その4)30121は、ステップS207で第一の情報処理装置3011から送信された複数の中間画像401を受信装置30124により受信する(ステップS208)。
<Step S208>
The central processing unit (part 4) 30121 of the second information processing device 3012 receives the plurality of intermediate images 401 transmitted from the first information processing device 3011 in step S207 by the reception device 30124 (step S208).
 <ステップS209>
次いで、該中央処理装置(その4)30121は、受信した複数の中間画像401を解凍装置30123により解凍する(ステップS209)。
<Step S209>
Next, the central processing unit (part 4) 30121 decompresses the received plurality of intermediate images 401 by the decompression device 30123 (step S209).
 <ステップS210>
次いで、該中央処理装置(その4)30121は、解凍した複数の中間画像401から最終的にユーザに出力される立体画像501の生成を行う(ステップS210)。ステップS210における立体画像501とステップS203における立体画像501は同一のものである。ステップS210で行われる中間画像401の生成についてもステップS203、ステップS204と同様に下記に詳述する。
<Step S210>
Next, the central processing unit (part 4) 30121 generates a stereoscopic image 501 that is finally output to the user from the plurality of decompressed intermediate images 401 (step S210). The stereoscopic image 501 in step S210 and the stereoscopic image 501 in step S203 are the same. The generation of the intermediate image 401 performed in step S210 will be described in detail below in the same manner as in steps S203 and S204.
 ステップS210において立体画像501が生成されると、本処理が終了する。 When the three-dimensional image 501 is generated in step S210, this process ends.
 <立体画像生成システムの補足>
処理が終了した後、生成された中間画像401を立体画像表示装置701に出力してもよい。また、第一の情報処理装置3011から継続して中間画像401が送信される場合には、ステップS208からステップS210の処理を連続して行ってもよい。本図示例(c)におけるシステムによれば、例えばいずれかの地点において複数のカメラ801を設置して撮影を連続して行っておき、第一の情報処理装置3011で次々に生成される複数の視点毎の画像がタイル状に配置された中間画像401を既存のフォーマットで世界中に配信して多くのユーザに同時に、かつリアルタイムで立体画像501を視認させることが可能となる。
<Supplement of stereoscopic image generation system>
After the processing is completed, the generated intermediate image 401 may be output to the stereoscopic image display device 701. Further, when the intermediate image 401 is continuously transmitted from the first information processing apparatus 3011, the processing from step S208 to step S210 may be performed continuously. According to the system in the illustrated example (c), for example, a plurality of cameras 801 are installed at any point and shooting is performed continuously, and a plurality of images generated one after another by the first information processing apparatus 3011 are performed. An intermediate image 401 in which images for each viewpoint are arranged in a tile shape can be distributed all over the world in an existing format so that many users can view the stereoscopic image 501 simultaneously and in real time.
 すなわち、第一の情報処理装置3011にはリアルタイムで複数の中間画像401の生成処理を行うために高価なグラフィックボードや高速のCPUなどを搭載させておき、ユーザが使用する複数の第二の情報処理装置3012には比較的低速のCPUを搭載させておけば、ピクセルの配置変更だけで立体画像501の生成が可能な複数の中間画像401の特性を活かした今までにない立体画像視聴環境を既存のフォーマットで実現可能となる。つまり、視点毎の画像を構成する画素数の合計が立体画像501の画素数と同一となる最小限必要な解像度で、圧縮可能な中間画像401の生成と、そのような中間画像401を構成するサブピクセルの配置換え(マッピング)のみで立体視が可能な立体画像501とを高速で特殊なコンピュータを使用せず生成することができる。 That is, the first information processing apparatus 3011 is equipped with an expensive graphic board, a high-speed CPU, or the like in order to generate a plurality of intermediate images 401 in real time, and a plurality of second information used by the user. If a relatively low-speed CPU is installed in the processing device 3012, an unprecedented stereoscopic image viewing environment utilizing the characteristics of a plurality of intermediate images 401 capable of generating a stereoscopic image 501 only by changing the arrangement of pixels. This can be realized with existing formats. That is, the generation of a compressible intermediate image 401 and the formation of such an intermediate image 401 with the minimum necessary resolution in which the total number of pixels constituting the image for each viewpoint is the same as the number of pixels of the stereoscopic image 501. A stereoscopic image 501 that can be stereoscopically viewed only by subpixel rearrangement (mapping) can be generated at high speed without using a special computer.
 図3~図6を参照して、本発明に係る複数の中間画像401の生成方法についての実施形態を説明する。 Embodiments of a method for generating a plurality of intermediate images 401 according to the present invention will be described with reference to FIGS.
 図3は、ある対象物8012を、複数の異なる視点からカメラ801で撮影し、視点毎の視点画像601を生成する例を示している。6つの視点からカメラ801を用いて注視点8011を撮影しているため、6つの視点画像601が得られる。なお、この時点における視点画像601の解像度は任意である。なお、カメラ801は水平に並べ、それぞれのカメラ801の光軸が注視点8011に向かうように配置してもよい。 FIG. 3 shows an example in which a certain object 8012 is photographed by a camera 801 from a plurality of different viewpoints, and a viewpoint image 601 for each viewpoint is generated. Since the gazing point 8011 is captured from the six viewpoints using the camera 801, six viewpoint images 601 are obtained. Note that the resolution of the viewpoint image 601 at this time is arbitrary. Note that the cameras 801 may be arranged horizontally so that the optical axes of the respective cameras 801 are directed toward the gazing point 8011.
 なお、一般に普及する画像信号の規格は色をRGBの三原色により表現するが、立体画像表示装置701においてRGBYの四原色により色を表現する場合、あるいは五原色以上により表現する場合、特開2001-306023(セイコーエプソン株式会社)、特表2004-529396(ゲノア・テクノロジーズ・リミテッド他)、特開2001-209047(シャープ株式会社)、等に記載される周知の方法によりRGBの信号を、RGBY等の四原色以上の信号へと変換する処理を行う。 In general, the standard of image signals that are widely used expresses colors with three primary colors of RGB. However, when the three-dimensional image display device 701 expresses colors with the four primary colors of RGBY, or when expressed with five or more primary colors, Japanese Patent Laid-Open No. 2001-2001 306023 (Seiko Epson Corporation), Special Table 2004-529396 (Genoa Technologies Limited, etc.), Japanese Patent Application Laid-Open No. 2001-209047 (Sharp Corporation), etc. Performs conversion to a signal of more than four primary colors.
 図4は、図3で撮影された複数の視点画像601から、最終的にディスプレイ上に出力するためのサブピクセル配置を有する立体画像501を生成する例を示している。本図示例では、対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGB値から補間して、RGB階段配置画素ユニット5011のRGB値を求める例を示している。 FIG. 4 shows an example of generating a stereoscopic image 501 having a sub-pixel arrangement for finally outputting on the display from the plurality of viewpoint images 601 taken in FIG. In the illustrated example, an RGB value of the RGB staircase-arranged pixel unit 5011 is obtained by interpolating from the RGB values of sub-pixels constituting at least one or more pixel units arranged in the vicinity of the corresponding position.
 以下、図5を参照しながら、図2のステップS203で行われる立体画像の生成について詳述する。 Hereinafter, the generation of the stereoscopic image performed in step S203 of FIG. 2 will be described in detail with reference to FIG.
 立体画像501を生成する際、前述した中央処理装置(その1)1011は、まず図2のステップS202で入力された最終出力を行うディスプレイの解像度に従って、立体画像501のサブピクセル配置を決定する。立体画像501のサブピクセル配置については、例えば図16で図示されているものを用いる。本図示例では、サブピクセルが1対3の比率で縦長の長方形である場合において、最も適切に立体視が可能な3個のサブピクセルが斜め方向にコーナーで接して3行1列で配列されたサブピクセルの配置を有する立体画像501を想定する。 When generating the stereoscopic image 501, the central processing unit (part 1) 1011 described above first determines the sub-pixel arrangement of the stereoscopic image 501 according to the resolution of the display that performs the final output input in step S202 of FIG. For example, the sub-pixel arrangement of the stereoscopic image 501 is the one shown in FIG. In the illustrated example, when the sub-pixel is a vertically long rectangle with a ratio of 1: 3, three sub-pixels that are most appropriately stereoscopically viewable are arranged in 3 rows and 1 column in contact with the corner in an oblique direction. A stereoscopic image 501 having a subpixel arrangement is assumed.
 次いで、図5図示例(a)に示すような視点数に応じたRGB階段配置画素ブロック5012を想定する。RGB階段配置画素ブロック5012とは、サブピクセルを斜め方向にコーナーで接して3行で配列されたRGB階段配置画素ユニット5011を、水平方向に1視点からN視点までを連接して配列したものを指す。図5図示例(a)では、図3で6視点から対象物8012を撮影しているため、18個のサブピクセルで構成される画素の集まりをRGB階段配置画素ブロック5012としている。 Next, an RGB staircase arranged pixel block 5012 corresponding to the number of viewpoints as shown in FIG. The RGB staircase-arranged pixel block 5012 is an RGB staircase-arranged pixel unit 5011 in which subpixels are arranged in 3 rows with diagonal corners in contact with corners and arranged in a horizontal direction from 1 viewpoint to N viewpoints. Point to. In the example (a) illustrated in FIG. 5, since the object 8012 is photographed from six viewpoints in FIG. 3, a group of pixels composed of 18 subpixels is an RGB staircase arranged pixel block 5012.
 次いで、RGB階段配置画素ブロック5012を繰り返し配置して立体画像501を構成し、RGB階段配置画素ユニット5011を構成するサブピクセルの各々のRGB値を取得していく。RGB値の取得は、RGB階段配置画素ブロック5012内のいずれかのRGB階段配置画素ユニット5011を基準として行うことが望ましく、RGB階段配置画素ユニット5011を構成するサブピクセルの立体画像501上の座標値と対応する視点画像601上の座標値に配置されたサブピクセルのRGB値から取得する。図5(a)に図示されているように、立体画像501上の座標値は、サブピクセル座標系として立体画像501上の横軸をU、縦軸をVとしており、本実施例において基準となる第一視点の最上段に配置されているサブピクセルは、図のように(U,V)と表すことができる。 Next, the RGB staircase arrangement pixel block 5012 is repeatedly arranged to form the stereoscopic image 501, and the RGB values of the sub-pixels constituting the RGB staircase arrangement pixel unit 5011 are acquired. The acquisition of RGB values is desirably performed based on any of the RGB staircase-arranged pixel units 5011 in the RGB staircase-arranged pixel block 5012, and the coordinate values on the stereoscopic image 501 of the subpixels constituting the RGB staircase-arranged pixel unit 5011. Are obtained from the RGB values of the sub-pixels arranged at the coordinate values on the viewpoint image 601 corresponding thereto. As shown in FIG. 5 (a), the coordinate values on the stereoscopic image 501 have a horizontal axis on the stereoscopic image 501 as U and a vertical axis as V in the sub-pixel coordinate system. The subpixel arranged at the uppermost stage of the first viewpoint can be expressed as (U, V) as shown in the figure.
 次いで、第1視点から撮影した視点画像601の対応する座標値を算出する。 Next, the corresponding coordinate value of the viewpoint image 601 taken from the first viewpoint is calculated.
 視点画像601上の座標値は、ピクセル座標系として横軸をx、縦軸をyとしており、本実施例において基準となる第一視点の視点画像601上におけるピクセルの座標値は、図のように(x,y)と表すことができる。 The coordinate values on the viewpoint image 601 are x as the horizontal axis and y as the vertical axis in the pixel coordinate system, and the coordinate values of the pixels on the viewpoint image 601 of the first viewpoint as a reference in this embodiment are as shown in the figure. (X, y).
 通常、立体画像501と複数の視点画像601とでは、それぞれを構成するサブピクセル数が異なっており、また立体画像501上ではサブピクセル座標系、視点画像601上ではピクセル座標系を用いるため、所定の変換式が必要である。 In general, the stereoscopic image 501 and the plurality of viewpoint images 601 have different numbers of subpixels, and the stereoscopic image 501 uses a subpixel coordinate system and the viewpoint image 601 uses a pixel coordinate system. The following conversion formula is required.
 そこで、立体画像501を構成するサブピクセルの水平方向における総数をW、垂直方向における総数をH、第一視点における視点画像601を構成するピクセルの水平方向における総数をa、垂直方向における総数をbとした場合において、サブピクセル座標系からピクセル座標系への変換は、 Therefore, the total number of sub-pixels constituting the stereoscopic image 501 in the horizontal direction is W, the total number in the vertical direction is H, the total number of pixels constituting the viewpoint image 601 in the first viewpoint in the horizontal direction is a, and the total number in the vertical direction is b. The conversion from the sub-pixel coordinate system to the pixel coordinate system is
Figure JPOXMLDOC01-appb-M000001
で求めることができる。
Figure JPOXMLDOC01-appb-M000001
Can be obtained.
 立体画像501上の座標値をサブピクセル座標系で表すことで、一つ一つのサブピクセル単位でRGB値を求めることができ、ピクセル単位でRGB値を求めるよりも高精細な立体画像501を生成することができる。 By representing the coordinate values on the stereoscopic image 501 in the sub-pixel coordinate system, RGB values can be obtained for each sub-pixel unit, and a higher-definition stereoscopic image 501 is generated than when the RGB value is obtained for each pixel unit. can do.
 この際、W:H=a:bとなるように、aおよびbを設定することが望ましい。もちろん、変形されても視点画像601を最大限表示したい場合は、その限りではない。 At this time, it is desirable to set a and b so that W: H = a: b. Of course, this is not the case when it is desired to display the viewpoint image 601 as much as possible even if it is deformed.
 しかしながら、図5(c)に示すように、ピクセル座標系ではそれぞれのピクセルの中心点しか定義されていないため、例えば(x,y)が図のような位置にある場合、立体画像501上のサブピクセルのRGB値を直接求めることができない。従って、当該(x,y)が属するピクセルの近辺に配置された画素ユニットから補間して求める。
先ず、α=x-x1、β=x2-x、γ=y-y1、δ=y3-y、
視点画像601のピクセルの中心点であるP1~4のRGB値をそれぞれC1~4とすると、PのRGB値は、線形補間により次式で表わされる。
However, as shown in FIG. 5C, since only the center point of each pixel is defined in the pixel coordinate system, for example, when (x, y) is at the position shown in the figure, The RGB value of the subpixel cannot be obtained directly. Therefore, it is obtained by interpolation from the pixel unit arranged in the vicinity of the pixel to which the (x, y) belongs.
First, α = x−x1, β = x2−x, γ = y−y1, δ = y3−y,
If the RGB values of P1 to P4 that are the center points of the pixels of the viewpoint image 601 are C1 to C4, respectively, the RGB values of P are expressed by the following equation by linear interpolation.
Figure JPOXMLDOC01-appb-M000002
ここで、計算対象となる立体画像501のサブピクセルが示すR、G、B、のいずれかのみのRGB値を求めればよい。なお、α+β=γ+δ=1であれば、
Figure JPOXMLDOC01-appb-M000002
Here, it is only necessary to obtain RGB values of only one of R, G, and B indicated by the subpixels of the stereoscopic image 501 to be calculated. If α + β = γ + δ = 1,
Figure JPOXMLDOC01-appb-M000003
となる。
Figure JPOXMLDOC01-appb-M000003
It becomes.
 次いで、同一のRGB階段配置画素ユニット5011を構成する他のサブピクセルのRGB値も同様に近辺の画素ユニットから補間して求める。なお、補間方法は様々な方法があり、適正な補間方法であれば、どのような補間方法を使用してもよい。 Next, the RGB values of other sub-pixels constituting the same RGB staircase-arranged pixel unit 5011 are similarly obtained by interpolation from neighboring pixel units. There are various interpolation methods, and any interpolation method may be used as long as it is an appropriate interpolation method.
 次いで、基準とした第一視点のRGB階段配置画素ユニット5011以外のRGB階段配置画素ユニット5011を構成するサブピクセルのRGB値を算出していく。この場合、基準としたRGB階段配置画素ユニット5011を構成するサブピクセルの座標値を基準として算出することが望ましい。すなわち、例えばパララックスバリアを用いた6視点からなる立体画像を生成する時、画像提示対象者により同一のスリットまたは穴からのぞかれる複数視点の画像はそれぞれ対応している必要があるため、基準としたRGB階段配置画素ユニット5011を構成するサブピクセルの座標値と対応する視点画像601上の座標値と同一の位置にある他の視点画像601のピクセルからRGB値の算出を行う。複数の視点画像601と立体画像501の対応関係は、例えば図4図示例のようになる。 Next, the RGB values of the sub-pixels constituting the RGB staircase arranged pixel unit 5011 other than the RGB staircase arranged pixel unit 5011 of the first viewpoint as a reference are calculated. In this case, it is desirable to calculate based on the coordinate values of the sub-pixels constituting the RGB staircase arrangement pixel unit 5011 as a reference. That is, for example, when generating a stereoscopic image consisting of 6 viewpoints using a parallax barrier, images from multiple viewpoints that are viewed from the same slit or hole by the image presentation target person need to correspond to each other. The RGB values are calculated from the pixels of the other viewpoint image 601 at the same position as the coordinate values on the viewpoint image 601 corresponding to the coordinate values of the sub-pixels constituting the RGB staircase arranged pixel unit 5011. The correspondence between the plurality of viewpoint images 601 and the stereoscopic image 501 is, for example, as illustrated in FIG.
 以上のように補間計算により立体画像501を構成するサブピクセルのRGB値を取得し、立体画像501を生成または想定する。立体画像501を想定する場合には、複数の視点画像601から立体画像501を生成せずに直接中間画像401の生成(ステップS204)が行われるため、RGB値の取得のための補間計算や、その補間計算により得られた立体画像501のRGB階段配置画素ユニット5011を構成するサブピクセルを並べ替えて複数の中間画像401のRGB並列配置画素ユニット4011を求める必要がある。 As described above, the RGB values of the sub-pixels constituting the stereoscopic image 501 are acquired by interpolation calculation, and the stereoscopic image 501 is generated or assumed. When the stereoscopic image 501 is assumed, since the intermediate image 401 is directly generated (step S204) without generating the stereoscopic image 501 from the plurality of viewpoint images 601, interpolation calculation for acquiring RGB values, It is necessary to rearrange the sub-pixels constituting the RGB staircase arrangement pixel unit 5011 of the stereoscopic image 501 obtained by the interpolation calculation to obtain the RGB parallel arrangement pixel unit 4011 of the plurality of intermediate images 401.
 このように、RGB階段配置画素ユニット5011を構成するいずれかのサブピクセルを基準として他のサブピクセルのRGB値を求めることで、現実に基づいたシャープな立体画像501を表現することができる。その他、代表点を定めずに全てのサブピクセルのRGB値をそれぞれ求めた場合には、視点の移り変わりが滑らかな立体画像501を得ることができる。これらは、立体画像501を提示する状況、目的に合わせて適宜変更することが望ましい。 In this way, by obtaining the RGB values of other subpixels based on any of the subpixels constituting the RGB staircase-arranged pixel unit 5011, a sharp stereoscopic image 501 based on reality can be expressed. In addition, when the RGB values of all the subpixels are obtained without determining the representative points, a stereoscopic image 501 with a smooth change of viewpoint can be obtained. It is desirable to change these appropriately according to the situation and purpose of presenting the stereoscopic image 501.
 次いで、ステップS204で行われる中間画像401の生成について詳述する。 Next, generation of the intermediate image 401 performed in step S204 will be described in detail.
 図6は、立体画像501から複数の中間画像401を生成する例を示す図である。 FIG. 6 is a diagram illustrating an example of generating a plurality of intermediate images 401 from the stereoscopic image 501.
 本図示例では、図4で生成された立体画像501のRGB階段配置画素ユニット5011を構成するサブピクセルを水平方向にR、G、B、の順に並べて配列したRGB並列配置画素ユニット4011を、複数の視点毎にまとめて配置して、6つの中間画像401を生成している。 In the illustrated example, a plurality of RGB parallel arrangement pixel units 4011 in which subpixels constituting the RGB staircase arrangement pixel unit 5011 of the stereoscopic image 501 generated in FIG. 4 are arranged in the horizontal order in the order of R, G, B are provided. The six intermediate images 401 are generated by arranging them for each viewpoint.
 RGB並列配置画素ユニット4011は、図のように階段状に並べられたスリットや階段状に並べられた穴から覗くサブピクセルをまとめて配列する。これを全てのRGB階段配置画素ユニット5011について行っていく。なお、立体画像501から複数の中間画像401の生成は、中間画像生成テーブル4013を用いて行うことが望ましい。 The RGB parallel arrangement pixel unit 4011 arranges the sub-pixels peeking from the slits arranged in a staircase shape or the holes arranged in a staircase shape as shown in the figure. This is performed for all the RGB staircase-arranged pixel units 5011. It should be noted that the generation of the plurality of intermediate images 401 from the stereoscopic image 501 is desirably performed using the intermediate image generation table 4013.
 図7は、中間画像生成テーブル4013について説明する図である。 FIG. 7 is a diagram illustrating the intermediate image generation table 4013.
 図7(a)は、立体画像501上のサブピクセルがいずれの視点画像を表示しているのか、R、G、B、のいずれを表示しているのか、および立体画像501上のサブピクセル座標系における座標値を示すテーブルであり、例えば一番左上隅のサブピクセルは、左上端から数えて一行目の一列目に位置するので、(1I1)となる。 FIG. 7A shows which viewpoint image the subpixel on the stereoscopic image 501 displays, which of R, G, and B is displayed, and the subpixel coordinates on the stereoscopic image 501. This is a table showing coordinate values in the system. For example, the sub-pixel at the upper left corner is (1I1) because it is located in the first column of the first row counting from the upper left corner.
 図7(b)は、中間画像401を構成するサブピクセルが、立体画像501上のサブピクセル座標系において、どこの地点に配置されているサブピクセルと対応しているのかを示している。例えば、第一視点の一番左上隅のサブピクセルは、立体画像501の一番左上隅に位置する1、(1I1)、Rのサブピクセルと対応しており、当該サブピクセルが中間画像401上に配置されることになる。同様に、第二視点の中間画像401の一番左上隅のサブピクセルは、立体画像501上の(2C1)の位置にあるサブピクセルと対応しており、立体画像501上の2行目の一列目に配置されているサブピクセルが中間画像401上に配置されることになる。なお、当該サブピクセルを有するRGB階段配置画素ユニット5011にはB値を有するサブピクセルが存在しないため、第二視点の一番左上隅に配置されている中間画像401を構成するRGB並列配置画素ユニット4011にも同様にB値を有するサブピクセルが配置されないことになる。 FIG. 7B shows at which point the subpixels constituting the intermediate image 401 correspond to the subpixels arranged in the subpixel coordinate system on the stereoscopic image 501. For example, the subpixel at the upper left corner of the first viewpoint corresponds to the subpixels of 1, (1I1), R located at the upper left corner of the stereoscopic image 501, and the subpixel is on the intermediate image 401. Will be placed. Similarly, the sub-pixel at the upper left corner of the intermediate image 401 at the second viewpoint corresponds to the sub-pixel at the position (2C1) on the stereoscopic image 501, and one column in the second row on the stereoscopic image 501. Sub-pixels arranged in the eyes are arranged on the intermediate image 401. In addition, since the RGB staircase-arranged pixel unit 5011 having the sub-pixel does not have a sub-pixel having a B value, the RGB parallel-arranged pixel unit constituting the intermediate image 401 disposed at the upper left corner of the second viewpoint Similarly, a sub-pixel having a B value is not arranged in 4011.
 このようにして、第一視点から第六視点までのRGB階段配置画素ユニット5011を水平方向に並べ替えてRGB並列配置画素ユニット4011を構成していき、一番左上隅に位置するRGB階段配置画素ブロック5012の配置変更が終了したら、続けて隣り合うRGB階段配置画素ブロック5012を構成するサブピクセルの配置も図のように変更していく。 In this way, the RGB staircase-arranged pixel unit 5011 from the first viewpoint to the sixth viewpoint is rearranged in the horizontal direction to form the RGB parallel-arranged pixel unit 4011, and the RGB staircase-arranged pixel located at the upper left corner When the arrangement change of the block 5012 is completed, the arrangement of subpixels constituting the adjacent RGB staircase arrangement pixel block 5012 is also changed as shown in the figure.
 このように、立体画像501のRGB階段配置画素ユニット5011を構成するサブピクセルの位置と、複数の視点毎の中間画像401のRGB並列配置画素ユニット4011を構成するサブピクセルの位置とを関連付ける中間画像生成テーブル4013を予め作成しておけば、立体画像501を構成するサブピクセルの配置変更を行うだけで複雑な補間のための演算処理を要せずに視点毎の中間画像401を生成することができる。 As described above, the intermediate image that associates the position of the sub-pixel constituting the RGB staircase-arranged pixel unit 5011 of the stereoscopic image 501 with the position of the sub-pixel constituting the RGB parallel-arranged pixel unit 4011 of the intermediate image 401 for each of a plurality of viewpoints. If the generation table 4013 is created in advance, it is possible to generate the intermediate image 401 for each viewpoint by simply changing the arrangement of the subpixels constituting the stereoscopic image 501 without requiring complicated calculation processing for interpolation. it can.
 なお、当該中間画像生成テーブル4013は、中間画像生成装置101の記憶装置(その1)1012に記憶しておくことが望ましい。これにより、中間画像生成装置101を使用して立体画像501の生成を行う場合に再度テーブルを作成することなく、当該テーブルを立体画像生成テーブル5013として用いることが可能となる。 The intermediate image generation table 4013 is preferably stored in the storage device (part 1) 1012 of the intermediate image generation apparatus 101. As a result, when the stereoscopic image 501 is generated using the intermediate image generation apparatus 101, the table can be used as the stereoscopic image generation table 5013 without creating a table again.
 <タイルフォーマット>
図8は、本発明に係る実施例において、特に望ましい中間画像401の画像フレーム4012の配置の例を示す図である。当該画像フレーム4012においては、視点毎の中間画像401が、例えば第一行の第一列に第一視点の画像、第二行の第一列に第二視点の画像、第三行の第一列に第三視点の画像、第一行の第二列に第四視点の画像、第二行の第二列に第五視点の画像、第三行の第二列に第六視点の画像が、タイル状に配置されている。
<Tile format>
FIG. 8 is a diagram showing an example of the arrangement of the image frames 4012 of the intermediate image 401 that is particularly desirable in the embodiment according to the present invention. In the image frame 4012, an intermediate image 401 for each viewpoint includes, for example, a first viewpoint image in the first column of the first row, a second viewpoint image in the first column of the second row, and a first row of the third row. The third viewpoint image in the column, the fourth viewpoint image in the second column of the first row, the fifth viewpoint image in the second column of the second row, and the sixth viewpoint image in the second column of the third row. Are arranged in tiles.
 これにより、立体画像501を構成するサブピクセルの総数と中間画像401がタイル状に配置された画像フレーム4012上にあるサブピクセルの総数とが縦横ともに同一となり、無駄な画素が存在せず、また視点毎の画素をまとめて配置しているので、異なる視点間での干渉がなく、非可逆性圧縮を用いることができる。このように中間画像401がタイル状に配置された画像フレーム4012と裸眼立体ディスプレイ(立体画像501)の解像度・アスペクト比が同一となることから、ブルーレイやSTBなどの標準的な映像再生装置や映像配信サーバーにより標準的なフォーマットで出力または送信された中間画像401を、立体画像生成装置(コンバーター)で簡易に立体画像501を生成できる、実用性に富んだ立体画像表示システムを非常に安価な価格で提供することが可能となる。 As a result, the total number of subpixels constituting the stereoscopic image 501 and the total number of subpixels on the image frame 4012 in which the intermediate image 401 is arranged in a tile shape are the same both vertically and horizontally, and there is no useless pixel. Since the pixels for each viewpoint are arranged together, there is no interference between different viewpoints, and irreversible compression can be used. Since the resolution and aspect ratio of the image frame 4012 in which the intermediate image 401 is arranged in a tile shape and the autostereoscopic display (stereoscopic image 501) are the same, a standard video reproduction device such as Blu-ray or STB or video A practical 3D image display system that can easily generate a 3D image 501 by a 3D image generation device (converter) from an intermediate image 401 output or transmitted in a standard format by a distribution server at a very low price. Can be provided.
 図9は、複数の視点画像601をそのままタイル状の画像フレーム4012に配置した例を示す図であり、前述した中間画像401の画像フレーム4012との対比を行う図である。 FIG. 9 is a diagram showing an example in which a plurality of viewpoint images 601 are arranged as they are in a tile-shaped image frame 4012, and is a diagram for comparing the intermediate image 401 with the image frame 4012 described above.
 最終的に出力を行うディスプレイの解像度が16:9の場合、図9(a)における一視点分の視点画像601の縦横比も16:9となり、画像フレーム4012全体では32:27となる。 When the resolution of the display that finally outputs is 16: 9, the aspect ratio of the viewpoint image 601 for one viewpoint in FIG. 9A is also 16: 9, and the entire image frame 4012 is 32:27.
 一方、複数の中間画像401をタイル状の画像フレーム4012に配置した場合(図9(b))、立体画像501においては、RGB階段配置画素ユニット5011を構成する3行のサブピクセルを水平方向に並べてRGB並列配置画素ユニット4011を構成するので、垂直方向の総ピクセル数は1/3となる。さらに、視点数が例えば6の場合、水平方向の総ピクセル数は、 On the other hand, when a plurality of intermediate images 401 are arranged in the tile-shaped image frame 4012 (FIG. 9B), in the stereoscopic image 501, three rows of sub-pixels constituting the RGB staircase arrangement pixel unit 5011 are arranged in the horizontal direction. Since the RGB parallel arrangement pixel units 4011 are arranged side by side, the total number of pixels in the vertical direction is 1/3. Furthermore, when the number of viewpoints is 6, for example, the total number of pixels in the horizontal direction is
Figure JPOXMLDOC01-appb-M000004
となる。立体画像501の縦横をそれぞれH、Wとすると、中間画像401を図8図示例と同様に3行×2列のタイルを有する画像フレーム4012に配置した場合、縦方向においては、
Figure JPOXMLDOC01-appb-M000004
It becomes. Assuming that the vertical and horizontal directions of the stereoscopic image 501 are H and W, respectively, when the intermediate image 401 is arranged in an image frame 4012 having tiles of 3 rows × 2 columns as in the example shown in FIG.
Figure JPOXMLDOC01-appb-M000005
横方向においては、
Figure JPOXMLDOC01-appb-M000005
In the horizontal direction,
Figure JPOXMLDOC01-appb-M000006
となり、立体画像501と縦横方向ともに同一の解像度を有する画像フレーム4012を生成することができる。もし、従来のように複数の視点画像601をそのままタイル状の画像フレーム4012で、立体画像501の縦横比および解像度を同一となるように配置する場合、視点毎の画像の両サイドに糊代を付け加えて縦横比を同一にし、さらに各視点の画像の解像度を落としてタイル状に配置した際に解像度が同一となるようにする必要がある。この結果、立体画像501を生成するための視点画像601が低解像度となり、立体画像501の画質が著しく低下してしまう。一方、本発明では、高画質の各視点画像601から中間画像401を生成しているため、立体画像生成において必要不可欠な解像度を完全に保つことができる。
Figure JPOXMLDOC01-appb-M000006
Thus, the image frame 4012 having the same resolution in both the vertical and horizontal directions as the stereoscopic image 501 can be generated. If a plurality of viewpoint images 601 are arranged as they are in a tile-shaped image frame 4012 as in the prior art so that the aspect ratio and resolution of the stereoscopic image 501 are the same, paste margins are provided on both sides of the image for each viewpoint. In addition, the aspect ratio must be the same, and the resolution of the images at each viewpoint must be reduced so that the resolutions are the same when arranged in tiles. As a result, the viewpoint image 601 for generating the stereoscopic image 501 has a low resolution, and the image quality of the stereoscopic image 501 is significantly reduced. On the other hand, in the present invention, since the intermediate image 401 is generated from the high-quality viewpoint images 601, it is possible to completely maintain the resolution that is indispensable for generating a stereoscopic image.
 図10は、複数の中間画像401からなる画像フレーム4012の例を示す図である。それぞれ2視点~5視点、7視点~11視点で立体画像501が生成される場合の画像フレーム4012を示しており、当該フレームに各視点の画素をタイル状に配置すれば立体画像501とアスペクト比が同一の画像ファイルを作成することができる。 FIG. 10 is a diagram illustrating an example of an image frame 4012 including a plurality of intermediate images 401. An image frame 4012 when a stereoscopic image 501 is generated from two viewpoints to five viewpoints and seven viewpoints to eleven viewpoints is shown, and if the pixels of each viewpoint are arranged in a tile shape in the frame, the aspect ratio with the stereoscopic image 501 is shown. Can create the same image file.
 すなわち、立体画像501が2視点から構成される場合には、第一行のタイルに1視点の中間画像401の2/3と、第二行の第1のタイルに1視点の中間画像401の1/3と連接した第2のタイルに2視点の中間画像401の1/3と、第三行のタイルに2視点の該中間画像401の2/3を配置する。また、立体画像501が3視点から構成される場合には、各行のタイルに各視点の中間画像401を配置する。また、立体画像501が4~6視点で構成される場合には、各行の先頭のタイルに1~3視点の中間画像401と、1~3視点の中間画像401に連接した第一行から第三行に配置されたタイルに残りの視点の中間画像401を配置する。立体画像501が7~9視点で構成される場合においては、各行の先頭のタイルに1~3視点の中間画像401と、1~3視点の中間画像401に連接した第一行から第三行のタイルに4~6視点の中間画像401と、4~6視点の中間画像401に連接した第一行から第三行に配置されたタイルに残りの視点の中間画像401を配置する。同様に、立体画像501が10視点以上から構成される場合においても、1視点から順に各行のタイルに中間画像401の一部または全部を配置する。 That is, when the stereoscopic image 501 is composed of two viewpoints, 2/3 of the one-view intermediate image 401 is displayed on the first row tile, and one viewpoint intermediate image 401 is displayed on the second row first tile. 1/3 of the two-viewpoint intermediate image 401 is placed on the second tile connected to 1/3, and 2/3 of the two-viewpoint intermediate image 401 is placed on the third row tile. Further, when the stereoscopic image 501 is composed of three viewpoints, the intermediate image 401 of each viewpoint is arranged on each row tile. Also, when the stereoscopic image 501 is composed of 4 to 6 viewpoints, the 1st to 3rd viewpoint intermediate images 401 and the 1st to 3rd viewpoint intermediate images 401 are connected to the first tile of each line from the first line to the 2nd viewpoint. The intermediate images 401 of the remaining viewpoints are arranged on the tiles arranged in three rows. When the stereoscopic image 501 is composed of 7 to 9 viewpoints, the first to third rows connected to the first to third viewpoint intermediate images 401 and the first to third viewpoint intermediate images 401 on the first tile of each row. The intermediate images 401 with 4 to 6 viewpoints are arranged on the tiles No. 4 and the intermediate images 401 with the remaining viewpoints are arranged on the tiles arranged in the first to third rows connected to the intermediate images 401 with the 4 to 6 viewpoints. Similarly, even when the stereoscopic image 501 is composed of 10 or more viewpoints, a part or all of the intermediate image 401 is arranged on the tiles in each row in order from one viewpoint.
 これにより、立体画像501と縦横方向ともに同一の解像度を有する画像フレーム4012を生成することができる。 Thereby, it is possible to generate an image frame 4012 having the same resolution as that of the stereoscopic image 501 in both the vertical and horizontal directions.
 <ベルト状フォーマット>
中間画像401はタイルフォーマットの他に、水平方向に視点の数だけ分割して配置した。ベルト状フォーマットとしてもよい。
<Belt format>
In addition to the tile format, the intermediate image 401 is divided and arranged in the horizontal direction by the number of viewpoints. A belt-like format may be used.
 ベルト状フォーマットにおける、立体画像表示装置701の1ピクセルを構成するサブピクセルと、中間画像401の視点数と、の関係において特に好ましい組み合わせについて説明する。 A particularly preferable combination in the relationship between the sub-pixels constituting one pixel of the stereoscopic image display device 701 and the number of viewpoints of the intermediate image 401 in the belt-like format will be described.
 <RGBの場合>
1画素を構成するサブピクセルが、R、G、Bの3色からなる場合、中間画像401の視点数は4視点(図12参照)、7視点(図13参照)、10視点、12視点等、「3n+1(nは自然数)」視点とすることが好ましい。
<In the case of RGB>
When the sub-pixels constituting one pixel are composed of three colors of R, G, and B, the number of viewpoints of the intermediate image 401 is 4 viewpoints (see FIG. 12), 7 viewpoints (see FIG. 13), 10 viewpoints, 12 viewpoints, etc. , “3n + 1 (n is a natural number)” viewpoint is preferable.
 視点数を3n+1とすることにより、非可逆性圧縮による画素への影響は各視点画像の両端にのみ生じるため、立体画像501はより鮮明に表示される。 By setting the number of viewpoints to 3n + 1, the effect on the pixels due to irreversible compression occurs only at both ends of each viewpoint image, so that the stereoscopic image 501 is displayed more clearly.
 <RGB+1の場合>
1画素を構成するサブピクセルが、R、G、Bの3色にその他の1色(C(シアン)、M(マゼンタ)、Y(イエロー)、W(ホワイト)等)を加えた4色からなる場合、中間画像401の視点数は5視点(図14参照)、9視点(図15参照)、13視点等、「4n+1(nは自然数)」視点とすることが好ましい。
<RGB + 1>
The sub-pixels constituting one pixel are composed of four colors including R, G and B plus one other color (C (cyan), M (magenta), Y (yellow), W (white), etc.)) In this case, the number of viewpoints of the intermediate image 401 is preferably “4n + 1 (n is a natural number)” viewpoints such as 5 viewpoints (see FIG. 14), 9 viewpoints (see FIG. 15), and 13 viewpoints.
 視点数を4n+1とすることにより、非可逆性圧縮による画素への影響は各視点画像の両端にのみ生じるため、立体画像501はより鮮明に表示される。 By setting the number of viewpoints to 4n + 1, the effect on the pixels due to irreversible compression occurs only at both ends of each viewpoint image, so that the stereoscopic image 501 is displayed more clearly.
 <RGB+mの場合>
1画素を構成するサブピクセルが、R、G、Bの3色にその他のm個の色を加えた3+m色からなる場合、中間画像401の視点数は「(3+m)n+1(nは自然数)」視点とすることが好ましい。
<In the case of RGB + m>
When the sub-pixels constituting one pixel are composed of 3 + m colors obtained by adding the other m colors to R, G, and B, the number of viewpoints of the intermediate image 401 is “(3 + m) n + 1 (n is a natural number). It is preferable to take a viewpoint.
 視点数を(3+m)n+1とすることにより、非可逆性圧縮による画素への影響は各視点画像の両端にのみ生じるため、立体画像501はより鮮明に表示される。
By setting the number of viewpoints to (3 + m) n + 1, the irreversible compression affects the pixels only at both ends of each viewpoint image, so that the stereoscopic image 501 is displayed more clearly.
 <RGB階段配置画素ユニット>
図16は、RGB階段配置画素ユニット5011の配置例を示す図である。
<RGB staircase arrangement pixel unit>
FIG. 16 is a diagram illustrating an arrangement example of the RGB staircase arrangement pixel unit 5011.
 図16(a)は、1視点から6視点までの視点画像601の画素ユニットを構成するサブピクセルを、斜め方向にコーナーで接して階段状に配列したRGB階段配置画素ユニット5011の例を示す図であり、3行1列で3個のサブピクセルから構成されている。当該RGB階段配置画素ユニット5011を有する立体画像501を中間画像401に変換する場合、RGB階段配置画素ユニット5011を構成するサブピクセルを水平方向に並べてRGB並列配置画素ユニット4011を構成する。次いで、当該RGB階段配置画素ユニット5011にコーナーで接して階段状に配列されている同一視点のRGB階段配置画素ユニット5011についても、図のように、水平方向に並べてRGB並列配置画素ユニット4011を構成し、そのRGB並列配置画素ユニット4011を斜め方向にコーナーで接して階段状に並べて中間画像401を構成する。 FIG. 16A is a diagram showing an example of an RGB staircase-arranged pixel unit 5011 in which subpixels constituting a pixel unit of a viewpoint image 601 from 1 viewpoint to 6 viewpoints are arranged in a staircase in contact with a corner in an oblique direction. It is composed of 3 subpixels in 3 rows and 1 column. When the stereoscopic image 501 having the RGB staircase-arranged pixel unit 5011 is converted into the intermediate image 401, the RGB parallel-arranged pixel unit 4011 is configured by arranging the sub-pixels constituting the RGB staircase-arranged pixel unit 5011 in the horizontal direction. Next, the RGB staircase-arranged pixel unit 5011 of the same viewpoint arranged in a staircase shape in contact with the RGB staircase-arranged pixel unit 5011 at the corner is also arranged in the horizontal direction as shown in FIG. Then, the intermediate image 401 is configured by arranging the RGB parallel arranged pixel units 4011 in a stepwise manner in contact with each other at a corner in an oblique direction.
 図16(b)は、3行2列で6個のサブピクセルから構成されるRGB階段配置画素ユニット5011の例を示す図である。当該RGB階段配置画素ユニット5011を有する立体画像501を中間画像401に変換する場合、RGB階段配置画素ユニット5011を構成する1列目のサブピクセルの集まりをまず水平方向に並べてRGB並列配置画素ユニット4011を構成し、そのRGB並列配置画素ユニット4011にさらに水平方向に連接するように、2列目のサブピクセルの集まりを並べる。次いで、当該RGB階段配置画素ユニット5011にコーナーで接して階段状に配列されている同一視点のRGB階段配置画素ユニット5011についても、図のように、1列目のサブピクセルの集まりをまず水平方向に並べてRGB並列配置画素ユニット4011を構成し、そのRGB並列配置画素ユニット4011にさらに水平方向に連接するように、2列目のサブピクセルの集まりを並べる。 FIG. 16B is a diagram illustrating an example of an RGB staircase-arranged pixel unit 5011 configured by 6 subpixels in 3 rows and 2 columns. When the stereoscopic image 501 having the RGB staircase-arranged pixel unit 5011 is converted into the intermediate image 401, a collection of subpixels in the first column constituting the RGB staircase-arranged pixel unit 5011 is first arranged in the horizontal direction, and the RGB parallel-arranged pixel unit 4011 is first arranged. And the group of subpixels in the second column is arranged so as to be further connected to the RGB parallel arrangement pixel unit 4011 in the horizontal direction. Next, as for the RGB staircase-arranged pixel unit 5011 of the same viewpoint arranged in a staircase in contact with the RGB staircase-arranged pixel unit 5011 at the corner, as shown in FIG. The RGB parallel-arranged pixel unit 4011 is arranged side by side, and a collection of subpixels in the second column is arranged so as to be further connected to the RGB parallel-arranged pixel unit 4011 in the horizontal direction.
 図16(c)は、3行3列で9個のサブピクセルから構成されるRGB階段配置画素ユニット5011の例を示す図である。当該RGB階段配置画素ユニット5011を有する立体画像501を中間画像401に変換する場合についても同様に、RGB階段配置画素ユニット5011を構成する1列目のサブピクセルの集まりをまず水平方向に並べてRGB並列配置画素ユニット4011を構成し、そのRGB並列配置画素ユニット4011に水平方向に連接するように、2列目のRGB階段配置画素ユニット5011を構成するサブピクセルの集まりを並べ、さらに2列目のRGB並列配置画素ユニット4011に水平方向に連接するように3列目のRGB階段配置画素ユニット5011を構成するサブピクセルの集まりを並べる。 FIG. 16C is a diagram illustrating an example of an RGB staircase-arranged pixel unit 5011 configured by nine subpixels in three rows and three columns. Similarly, when converting the stereoscopic image 501 having the RGB staircase-arranged pixel unit 5011 into the intermediate image 401, the collection of subpixels in the first column constituting the RGB staircase-arranged pixel unit 5011 is first arranged in the horizontal direction in parallel with RGB. An arrangement pixel unit 4011 is configured, and a group of subpixels constituting the RGB staircase arrangement pixel unit 5011 in the second column is arranged so as to be connected to the RGB parallel arrangement pixel unit 4011 in the horizontal direction. A group of sub-pixels constituting the RGB staircase-arranged pixel unit 5011 in the third column is arranged so as to be connected to the parallel-arranged pixel unit 4011 in the horizontal direction.
 図16に示したRGB階段配置画素ユニット5011の配列例においては、図5のように、それぞれのサブピクセル毎に複数の視点画像601からRGB値を取得することが望ましい。これにより、ピクセル単位でRGB値を計算して取得することに起因する解像度の低下(例えば、図16(b)では、図16(a)に対して水平解像度が1/2になる)を防止することができ、ユーザに鮮明な立体画像501を提供することができる。サブピクセルは、通常、1対3の比率で縦長の長方形である場合が多いが、サブピクセルの形状が、円形や、くの字、V型、Wを90度回転させたような形状(図56図示例参照)等、様々な形状のものがあり、その形状によって、3個のサブピクセルが1列に並んだRGB階段配置画素ユニット5011では立体が見えにくい場合がある。その場合は、立体画像501を覗き見るためのパララックスバリア704のスリットまたは穴の幅と、その配置間隔を大きくしたマスクを作成し、それに伴い適切に立体が表示できるよう3個のサブピクセルが(b)のように2列または、(c)のように3列に並んだRGB階段配置画素ユニット5011を生成することが望ましい。 In the arrangement example of the RGB staircase arrangement pixel unit 5011 shown in FIG. 16, it is desirable to acquire RGB values from a plurality of viewpoint images 601 for each subpixel as shown in FIG. This prevents a decrease in resolution (for example, in FIG. 16B, the horizontal resolution is halved compared to FIG. 16A) due to the calculation and acquisition of RGB values in pixel units. And a clear stereoscopic image 501 can be provided to the user. The subpixel is usually a vertically long rectangle at a ratio of 1: 3, but the shape of the subpixel is a circle, a circle, a V shape, or a shape obtained by rotating W by 90 degrees (see FIG. There are various shapes such as those shown in Fig. 56). Depending on the shape, the RGB staircase-arranged pixel unit 5011 in which three sub-pixels are arranged in a row may not be easily visible. In that case, a mask with a wide slit and hole width of the parallax barrier 704 for peeking at the stereoscopic image 501 and an arrangement interval thereof is created, and accordingly, three subpixels are displayed so that a stereoscopic image can be displayed appropriately. It is desirable to generate RGB staircase-arranged pixel units 5011 arranged in two rows as shown in (b) or three rows as shown in (c).
 ただし、元の解像度が高ければ、解像度が低減しても立体画像501を視認するには十分な解像度が確保されるため、立体画像501においてRGBサブピクセルを垂直方向(図57、58)あるいは水平方向(図59)に配置することとしてもよい。この場合、パララックスバリア704のスリットは垂直方向に設けられる。 However, if the original resolution is high, a sufficient resolution for visually recognizing the stereoscopic image 501 is ensured even if the resolution is reduced. It is good also as arrange | positioning in a direction (FIG. 59). In this case, the slit of the parallax barrier 704 is provided in the vertical direction.
 また、好ましくはRGBサブピクセルを垂直方向に配置する。 Also preferably, RGB subpixels are arranged in the vertical direction.
 図60はRGBサブピクセルを水平方向に配置した立体画像501の、水平方向における見え方を示す図である。 FIG. 60 is a diagram illustrating how the stereoscopic image 501 in which RGB subpixels are arranged in the horizontal direction is viewed in the horizontal direction.
 第1のビューポイント708からは垂直方向のスリットを有するパララックスバリア704を介してGBサブピクセルが視認され、Rサブピクセルが欠落するため、立体画像501は適正に視認されない。 From the first viewpoint 708, the GB sub-pixel is visually recognized through the parallax barrier 704 having a vertical slit, and the R sub-pixel is lost, so that the stereoscopic image 501 is not properly viewed.
 第1のビューポイント708よりも立体画像表示装置701から遠い位置にある第2のビューポイント709からは1組のRGBサブピクセルが、欠落なく視認される。したがって、第2のビューポイント709からは立体画像501が適正に視認される。 A set of RGB sub-pixels is visually recognized from the second viewpoint 709 located farther from the stereoscopic image display device 701 than the first viewpoint 708. Therefore, the stereoscopic image 501 is properly viewed from the second viewpoint 709.
 第2のビューポイントよりもさらに立体画像表示装置701から遠い位置にある第3のビューポイント710からは1組のRGBサブピクセルに加えてRサブピクセルがさらに視認される。したがって、第3のビューポイント710から見る立体画像501は赤みがかって視認され、適正に視認されない。 In addition to the set of RGB subpixels, the R subpixel is further visually recognized from the third viewpoint 710 located farther from the stereoscopic image display device 701 than the second viewpoint. Therefore, the stereoscopic image 501 viewed from the third viewpoint 710 is visually recognized as reddish, and is not properly viewed.
 この点、図61に示すように1組のRGBサブピクセルを垂直方向に配置すれば、水平方向からは常に少なくとも1組のR、G、Bのサブピクセルが欠落なく視認されるため、どのビューポイントからも立体画像501は適正に視認される。 In this regard, as shown in FIG. 61, if a set of RGB sub-pixels is arranged in the vertical direction, at least one set of R, G, B sub-pixels is always visible from the horizontal direction without omission. The three-dimensional image 501 is properly viewed from the point.
 次いで、図2のステップS210で行われる、複数の視点毎の中間画像401から最終的に出力される立体画像501の生成について詳述する。 Next, the generation of the stereoscopic image 501 that is finally output from the intermediate image 401 for each of a plurality of viewpoints performed in step S210 in FIG. 2 will be described in detail.
 立体画像501の生成は、BLU―RAY DISC(登録商標)等の光ディスクや、サーバーもしくは前述した第一の情報処理装置から送信されてきた中間画像401のRGB並列配置画素ユニット4011を構成するサブピクセルの配置を立体視のための配置に変更することにより行う。すなわち、RGB並列配置画素ユニット4011を構成するサブピクセルを、再度階段状に並べ替えてRGB階段配置画素ユニット5011として構成することにより行うが、この場合、それらのサブピクセルの位置を関係付ける立体画像生成テーブル5013を用いることが望ましい。図7で示した中間画像生成テーブル4013は、RGB並列配置画素ユニット4011を構成するサブピクセルの位置と、RGB階段配置画素ユニット5011を構成するサブピクセルの位置を関係付けているため、立体画像生成テーブル5013として用いることが可能である。 The stereoscopic image 501 is generated by subpixels constituting the RGB parallel arrangement pixel unit 4011 of the intermediate image 401 transmitted from the optical disk such as BLU-RAY DISC (registered trademark), the server, or the first information processing apparatus described above. This is performed by changing the arrangement of the above to the arrangement for stereoscopic viewing. That is, the subpixels constituting the RGB parallel arrangement pixel unit 4011 are rearranged in a staircase shape again to constitute the RGB staircase arrangement pixel unit 5011. In this case, a stereoscopic image relating the positions of these subpixels is performed. It is desirable to use the generation table 5013. Since the intermediate image generation table 4013 shown in FIG. 7 associates the positions of the subpixels constituting the RGB parallel arrangement pixel unit 4011 with the positions of the subpixels constituting the RGB staircase arrangement pixel unit 5011, the three-dimensional image generation is performed. The table 5013 can be used.
 すなわち、図7の中間画像生成テーブル4013に示された配置規則の逆順に従って再びRGB階段配置画素ユニット5011を生成し、立体画像501を生成することができる。 That is, the RGB staircase arrangement pixel unit 5011 can be generated again in accordance with the reverse order of the arrangement rules shown in the intermediate image generation table 4013 in FIG.
 また、別の実施例として、タイルフォーマットの中間画像401より立体画像501を生成する場合は、図62に示す立体画像生成テーブル5013を用いてもよい。 As another example, when generating the stereoscopic image 501 from the intermediate image 401 in the tile format, a stereoscopic image generation table 5013 shown in FIG. 62 may be used.
 図62について詳細に説明すると、図62上段の「8視点タイルフォーマット」が中間画像401であり、「8視点パララックス立体画像」が立体画像501を示している。図62下段の「Rの座標変換テーブル」、「Gの座標変換テーブル」、「Bの座標変換テーブル」、「Yの座標変換テーブル」、が立体画像生成テーブル5013を示している。 62 will be described in detail. The “8-viewpoint tile format” in the upper part of FIG. 62 is the intermediate image 401, and the “8-viewpoint parallax stereoscopic image” indicates the stereoscopic image 501. The “R coordinate conversion table”, “G coordinate conversion table”, “B coordinate conversion table”, and “Y coordinate conversion table” in the lower part of FIG.
 立体画像501を生成する際には、立体画像生成テーブル5013を参照して、中間画像401のピクセル座標(例えば1視点目の(x,y))のR値を取得し、当該座標と対応付けられている立体画像501のピクセル座標(X,Y)のR値として描画する。この処理を各視点の全ての座標に対して行うことにより、立体画像501に対するRサブピクセルの描画が完了する。Gサブピクセル、Bサブピクセル、Yサブピクセル、に対しても同様の処理を行い、立体画像501の生成が完了する。 When generating the stereoscopic image 501, the R value of the pixel coordinates (for example, (x i , y j ) of the first viewpoint) of the intermediate image 401 is acquired with reference to the stereoscopic image generation table 5013, Rendering is performed as an R value of the pixel coordinates (X m , Y n ) of the associated stereoscopic image 501. By performing this process for all the coordinates of each viewpoint, drawing of the R subpixels on the stereoscopic image 501 is completed. Similar processing is performed for the G subpixel, the B subpixel, and the Y subpixel, and the generation of the stereoscopic image 501 is completed.
 ベルト状フォーマットの中間画像401より立体画像501を生成する場合は、図
63に示す立体画像生成テーブル5013を用いる。
When the stereoscopic image 501 is generated from the intermediate image 401 in the belt-like format, a stereoscopic image generation table 5013 shown in FIG. 63 is used.
 図63について詳細に説明すると、図62上段の「4視点ベルトフォーマット」が中間画像401であり、「4視点パララックス立体画像」が立体画像501を示している。図62下段の「Rの座標変換テーブル」、「Gの座標変換テーブル」、「Bの座標変換テーブル」、が立体画像生成テーブル5013を示している。 63 will be described in detail. The “4-view belt format” in the upper part of FIG. 62 is the intermediate image 401, and the “4-view parallax stereoscopic image” indicates the stereoscopic image 501. The “R coordinate conversion table”, “G coordinate conversion table”, and “B coordinate conversion table” in the lower part of FIG.
 立体画像501の生成方法自体は図62の8視点タイルフォーマットの場合と共通であるから説明は省略する。すなわち、立体画像生成テーブル5013を用いた立体画像501の生成方法は、視点数と中間画像401のフォーマットに依存するものではなく、適宜変更して実施可能なのである。 The method of generating the stereoscopic image 501 is the same as that in the case of the 8-view tile format shown in FIG. That is, the method for generating the stereoscopic image 501 using the stereoscopic image generation table 5013 does not depend on the number of viewpoints and the format of the intermediate image 401, and can be implemented with appropriate changes.
 図62、図63に示す立体画像生成テーブル5013は、R、G、B、(Y)のサブピクセル毎に別々に作成することに特徴があり、メモリのアクセスサイズを小さくでき、最初にRのテーブルで、R値を全てマッピングし、順次G、B、(Y)と使用することにより、各テーブルを主記憶上に展開し易くなり、主記憶の容量を低減し、処理速度を向上させることができる。 The stereoscopic image generation table 5013 shown in FIGS. 62 and 63 is characterized in that it is created separately for each of R, G, B, and (Y) sub-pixels, and the memory access size can be reduced. By mapping all R values in a table and using them sequentially with G, B, (Y), it becomes easier to expand each table on the main memory, reducing the capacity of the main memory, and improving the processing speed. Can do.
 <立体画像生成装置>
図17は、本発明にかかる立体画像生成装置201の実施形態の一例を示す外観図である。
<Stereoscopic image generation device>
FIG. 17 is an external view showing an example of an embodiment of a stereoscopic image generating apparatus 201 according to the present invention.
 同図に示すように、当該実施形態にかかる立体画像生成装置201は、一般的な画像出力装置1001と、一般的な立体画像表示装置701(ディスプレイ)と、の間に映像ケーブル702によって電気的に接続して用い、画像出力装置1001から画像信号(画像入力信号)として送信された複数視点の画像を受信し、予め設定された制御情報(走査方式、視点数、解像度、画素配置法等の情報)に基づいて立体画像表示用の画素配置に変換し、画素配置変換後の画像を画像信号(画像出力信号)として立体画像表示装置701に送信する。 As shown in the figure, a stereoscopic image generating apparatus 201 according to this embodiment is electrically connected by a video cable 702 between a general image output apparatus 1001 and a general stereoscopic image display apparatus 701 (display). Connected to and used to receive images of a plurality of viewpoints transmitted as image signals (image input signals) from the image output apparatus 1001, and control information (scanning method, number of viewpoints, resolution, pixel arrangement method, etc.) set in advance Information) is converted into a pixel arrangement for stereoscopic image display, and the image after the pixel arrangement conversion is transmitted to the stereoscopic image display device 701 as an image signal (image output signal).
 ここで、立体画像生成装置201、画像出力装置1001、立体画像表示装置701を電気的に接続する映像ケーブル702とは、具体的には、VDI、HMVI等の規格の、画像出力装置1001と立体画像表示装置701を電気的に接続して、画像信号を送信するケーブルとして従来から普及しているものを用いることができる。 Here, the video cable 702 that electrically connects the stereoscopic image generation apparatus 201, the image output apparatus 1001, and the stereoscopic image display apparatus 701 is specifically the 3D image output apparatus 1001 and the stereoscopic output of the standard such as VDI and HMVI. As a cable for electrically connecting the image display device 701 and transmitting an image signal, a cable that has been widely used can be used.
 図18は、本発明にかかる立体画像生成装置201の他の実施形態の一例を示す外観図である。 FIG. 18 is an external view showing an example of another embodiment of the stereoscopic image generating apparatus 201 according to the present invention.
 同図に示すように、立体画像生成装置201は、画像出力装置1001と、立体画像表示装置701とのいずれか一方または両方と制御ケーブル703によってさらに電気的に接続することにより、制御信号を受信してもよい。制御信号とは、立体画像生成装置201に対して、走査方式、解像度、視点数、画素配置方法等の画像以外の制御情報を与える信号を意味する。 As shown in the figure, the stereoscopic image generating apparatus 201 receives a control signal by further electrically connecting either one or both of the image output apparatus 1001 and the stereoscopic image display apparatus 701 with a control cable 703. May be. The control signal means a signal that gives control information other than an image such as a scanning method, a resolution, the number of viewpoints, and a pixel arrangement method to the stereoscopic image generating apparatus 201.
 ここで、制御ケーブル703は具体的には、i・LINK、シリアル等の規格の画像出力装置1001と立体画像表示装置701を電気的に接続する制御ケーブル703として従来から普及しているものを用いることができる。 Here, specifically, the control cable 703 is a widely used control cable 703 that electrically connects the image output device 1001 of the standard such as i / LINK or serial and the stereoscopic image display device 701. be able to.
 ただし、説明の便宜を図るため同図においては映像ケーブル702と制御ケーブル703は別のケーブルであるものとして説明したが、これらのケーブルを束ねて一つのケーブルとしてもよい。 However, for convenience of explanation, the video cable 702 and the control cable 703 have been described as separate cables in the figure, but these cables may be bundled to form one cable.
 なお、中間画像401(画像信号)の送信および制御信号の送信は、上記ケーブルに代えて無線LAN、Bluetooth(登録商標)、UWB、等の規格の無線通信手段として従来から普及しているものを用いてもよい。 The transmission of the intermediate image 401 (image signal) and the transmission of the control signal are those that have been widely used as standard wireless communication means such as wireless LAN, Bluetooth (registered trademark), UWB instead of the cable. It may be used.
 なお、画像出力装置1001は既存の画像出力技術をそのまま流用することが本発明の趣旨に照らして最も好ましい。すなわち、画像出力装置1001とは、既存の、動画像を地上波、衛星放送、インターネット上からのストリーミングまたはダウンロードにより取得するセットトップボックス、もしくはスタンドアローンのDVDプレーヤー、Blu-ray(登録商標)プレーヤー等の再生機器(録画機能を持つものも含める)であることが好ましい。 In view of the gist of the present invention, it is most preferable that the image output apparatus 1001 uses the existing image output technology as it is. In other words, the image output apparatus 1001 is an existing set-top box that acquires moving images by terrestrial, satellite broadcasting, streaming from the Internet, or download, or a stand-alone DVD player or Blu-ray (registered trademark) player. It is preferable to use a playback device such as a device having a recording function.
 また、立体画像表示装置701(ディスプレイ)は既存の立体画像表示装置に何ら改良を加えることなく、そのまま流用することが、本発明の趣旨に照らして最も好ましい。すなわち、立体画像表示装置701とは、既存の、パララックスバリア方式、レンチキュラー方式等を採用した、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の、裸眼立体画像表示装置あるいは、2視点画像を高速で交互に表示して、シャッター方式のメガネを通して視認するもの等であることが好ましい。ただし、上記の立体画像表示装置以外にも本発明にかかる立体画像生成装置201を用いることができることはいうまでもない。 Further, it is most preferable in view of the gist of the present invention that the stereoscopic image display device 701 (display) be used as it is without any improvement on the existing stereoscopic image display device. That is, the stereoscopic image display device 701 is an autostereoscopic image display device such as a liquid crystal display, a plasma display, or an organic EL display that employs an existing parallax barrier method or lenticular method, or a two-viewpoint image at high speed. It is preferable that they are displayed alternately and viewed through shutter-type glasses. However, it goes without saying that the stereoscopic image generating apparatus 201 according to the present invention can be used in addition to the above-described stereoscopic image display apparatus.
 図19は本発明にかかる立体画像生成装置201が画像信号として受信する複数視点の画像の実施例を示す図である。本発明にかかる推奨の複数視点の画像の標準化タイルフォーマットであり、立体画像表示用の画素配置に変換するために複数視点の画像から読み出す画素のみが配置されている。通常、タイルフォーマットに配置した上で、所定の圧縮ファイルを生成する。解像度は任意であり、通常、非可逆性圧縮である圧縮規格MPG2を使用する場合が多い。図示しないが、本発明に基づいて任意の視点数に対応するタイルフォーマットで中間画像401を生成して複数視点の画像としてよい。特に、1画素のRGBを構成する3サブピクセルを3行3列で斜めに配置した画素配置方法で、16:9のアスペクト比で任意の解像度の画像を水平960画素に、垂直360画素で各視点の中間画像401を作成して、立体画像表示用の画素配置に変換することが望ましい。これにより、6視点のタイル画像の解像度は、1920×1080となり、ハイビジョンの画像としてタイル画像を受信し、最も画質欠落のない立体画像に変換できる。 FIG. 19 is a diagram showing an example of a multi-viewpoint image received as an image signal by the stereoscopic image generating apparatus 201 according to the present invention. This is a recommended standardized tile format for multi-viewpoint images according to the present invention, in which only pixels to be read out from multi-viewpoint images are arranged for conversion to a pixel arrangement for stereoscopic image display. Usually, a predetermined compressed file is generated after being arranged in a tile format. The resolution is arbitrary, and usually the compression standard MPG2, which is lossy compression, is often used. Although not shown, an intermediate image 401 may be generated in a tile format corresponding to an arbitrary number of viewpoints based on the present invention to form a multi-viewpoint image. In particular, in a pixel arrangement method in which three sub-pixels constituting RGB of one pixel are arranged diagonally in 3 rows and 3 columns, an image having an arbitrary resolution with a 16: 9 aspect ratio is set to horizontal 960 pixels and each vertical 360 pixels. It is desirable to create an intermediate image 401 of the viewpoint and convert it to a pixel arrangement for stereoscopic image display. As a result, the resolution of the six-view tile image is 1920 × 1080, and the tile image can be received as a high-definition image and converted into a stereoscopic image with the least image quality loss.
 図20は本発明にかかる立体画像生成装置201が動画像信号として受信する複数視点の動画像の実施例を示す図である。かかる動画像は周知であり、圧縮規格MPG4のマルチストリーミングにより作成することが可能である。1ファイルに同期が取られた複数の動画像を記録できる。受信された1視点からN視点までの中間画像401を記憶手段に所定の配置で記憶して、立体画像表示用の画素配置に変換する。 FIG. 20 is a diagram showing an example of a moving image of a plurality of viewpoints received as a moving image signal by the stereoscopic image generating apparatus 201 according to the present invention. Such a moving image is well known and can be created by multi-streaming of the compression standard MPG4. A plurality of moving images synchronized with one file can be recorded. The received intermediate image 401 from one viewpoint to N viewpoints is stored in a storage unit in a predetermined arrangement, and converted into a pixel arrangement for stereoscopic image display.
 図21は本発明にかかる立体画像生成装置201が動画像信号として受信する複数視点の動画像の実施例を示す図である。複数視点の動画像は、各視点の動画像を連続する各フレームに割り当て、時間方向に繰り返し形成されている。受信された1視点からN視点までの中間画像401を順々に記憶手段に記憶して、立体画像表示用の画素配置に変換する。 FIG. 21 is a diagram showing an example of a moving image of a plurality of viewpoints received as a moving image signal by the stereoscopic image generating apparatus 201 according to the present invention. The moving images of multiple viewpoints are repeatedly formed in the time direction by assigning the moving images of the respective viewpoints to each successive frame. The received intermediate images 401 from one viewpoint to N viewpoints are sequentially stored in the storage means and converted into a pixel arrangement for stereoscopic image display.
 図22は本発明にかかる立体画像生成装置201が画像信号として受信する、画素情報4014が埋め込まれた複数視点の中間画像401の第一の実施例を示す図である。画素情報とは、所定の暗号であり、2Dの画像の区別や、解像度、視点数などの情報が定義されている。立体画像か通常画像かを立体画像生成装置やコンバーター(立体画像生成装置)に対して知らせるために埋め込まれるものである。 FIG. 22 is a diagram showing a first example of a multi-viewpoint intermediate image 401 in which pixel information 4014 is embedded, which is received as an image signal by the stereoscopic image generating apparatus 201 according to the present invention. The pixel information is a predetermined encryption and defines information such as 2D image distinction, resolution, and the number of viewpoints. It is embedded in order to notify a stereoscopic image generation device or a converter (stereoscopic image generation device) whether a stereoscopic image or a normal image.
 同図(a)は、画像上における画素情報4014の埋め込み位置を示す図である。同図(a)によれば、画素情報4014は画像の左上端部に埋め込まれている。ただし、画素情報4014の埋め込み位置は予め定義された配置パターンに基づくものであるため、常に左上端部である必要はないが、画像の端部は立体画像生成装置201と接続される画像出力装置1001のモニタフレームと重畳する部分であってユーザには見えないため、画素情報4014を埋め込んでもユーザに対する立体画像の表示に影響を与えないというメリットがある。 (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image. According to FIG. 5A, the pixel information 4014 is embedded in the upper left corner of the image. However, since the embedding position of the pixel information 4014 is based on a predefined arrangement pattern, it is not always necessary to be at the upper left end, but the end of the image is an image output device connected to the stereoscopic image generating device 201. Since it is a portion that overlaps the monitor frame 1001 and is invisible to the user, there is an advantage that even if the pixel information 4014 is embedded, the display of the stereoscopic image to the user is not affected.
 同図(b)は、埋め込まれた画素情報4014を示す拡大図である。同図(b)によれば、画素情報4014は横一列に隙間無く埋め込まれている。ただし、図示はしないが所定の間隔をおいて埋め込んでもよい。 FIG. 4B is an enlarged view showing embedded pixel information 4014. According to FIG. 5B, the pixel information 4014 is embedded in the horizontal line without any gap. However, although not shown, it may be embedded at a predetermined interval.
 図23は本発明にかかる立体画像生成装置201が画像信号として受信する、画素情報4014が埋め込まれた複数視点の中間画像401の第二の実施例を示す図である。 FIG. 23 is a diagram showing a second example of the multi-viewpoint intermediate image 401 in which the pixel information 4014 is embedded, which is received by the stereoscopic image generating apparatus 201 according to the present invention as an image signal.
 同図(a)は、画像上における画素情報4014の埋め込み位置を示す図である。 (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image.
 同図(b)は、画素情報4014の埋め込まれた部分を拡大した図である。第二の実施例においては、同一の画像情報として定義された画素情報4014がXY方向に連続して複数配置された画素マトリクス4015が埋め込まれている。 FIG. 5B is an enlarged view of a portion where pixel information 4014 is embedded. In the second embodiment, a pixel matrix 4015 in which a plurality of pixel information 4014 defined as the same image information is continuously arranged in the XY direction is embedded.
 同図(c)は、同図(b)の画素マトリクス4015の1つを示す拡大図である。中央の太枠で囲まれた3×3のマトリクスが、画素マトリクス4015であり、同一の画像情報が定義された画素情報Cm・nが9個配置されている。本発明にかかる立体画像生成装置201においては丸印で示す画素マトリクス4015中央の画素情報4014から画像情報を解析する。なお、かかる画素マトリクス4015中央の画素情報4014の位置は、予め定義された配置パターンに基づき、画素情報4014のXY座標を特定することにより、位置を特定するのが適当である。ただし、画素マトリクス4015中の複数の画素情報4014の平均値から画像情報を求めてもよい。 FIG. 10C is an enlarged view showing one of the pixel matrices 4015 in FIG. A 3 × 3 matrix surrounded by a central thick frame is a pixel matrix 4015, and nine pieces of pixel information Cm · n in which the same image information is defined are arranged. In the stereoscopic image generating apparatus 201 according to the present invention, image information is analyzed from pixel information 4014 at the center of the pixel matrix 4015 indicated by a circle. Note that it is appropriate to specify the position of the pixel information 4014 at the center of the pixel matrix 4015 by specifying the XY coordinates of the pixel information 4014 based on a predefined arrangement pattern. However, the image information may be obtained from an average value of a plurality of pieces of pixel information 4014 in the pixel matrix 4015.
 図24は本発明にかかる立体画像生成装置201が画像信号として受信する、画素情報4014が埋め込まれた複数視点の中間画像401の第三の実施例を示す図である。 FIG. 24 is a diagram showing a third embodiment of a multi-viewpoint intermediate image 401 in which pixel information 4014 is embedded, which is received as an image signal by the stereoscopic image generating apparatus 201 according to the present invention.
 同図(a)は、画像上における画素情報4014の埋め込み位置を示す図である。 (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image.
 同図(b)は、画素情報4014の埋め込まれた部分を拡大した図である。 FIG. 5B is an enlarged view of a portion where pixel information 4014 is embedded.
 同図(c)は、同図(b)の画素マトリクス4015の1つを示す拡大図である。第三の実施例においては、画像情報として定義された画素情報4014が画素マトリクス4015中央に配置され、画素マトリクス4015の外周部分に、画素マトリクス4015に隣接する画素と、画素情報4014と、の中間値の画素情報4014が埋め込まれている。 FIG. 10C is an enlarged view showing one of the pixel matrices 4015 in FIG. In the third embodiment, pixel information 4014 defined as image information is arranged at the center of the pixel matrix 4015, and the pixel matrix 4015 has an intermediate portion between the pixel adjacent to the pixel matrix 4015 and the pixel information 4014. Value pixel information 4014 is embedded.
 図25は本発明にかかる立体画像生成装置201が画像信号として受信する、画素情報4014が埋め込まれた複数視点の中間画像401の第四の実施例を示す図である。 FIG. 25 is a diagram showing a fourth example of the multi-viewpoint intermediate image 401 embedded with the pixel information 4014 received by the stereoscopic image generating apparatus 201 according to the present invention as an image signal.
 同図(a)は、画像上における画素情報4014の埋め込み位置を示す図である。 (A) in the figure is a diagram showing an embedding position of the pixel information 4014 on the image.
 同図(b)は、画素情報4014の埋め込まれた部分を拡大した図である。第四の実施例においては、画素マトリクス4015が2×3からなり、第三の実施例の画素マトリクス4015と比較すると上の一行の画素情報4014が除かれて、画像の上端部に配置されている。画素マトリクス4015の占める面積が小さくなると、画像に与える影響も小さくなるため、かかる実施例は好適である。 FIG. 5B is an enlarged view of a portion where pixel information 4014 is embedded. In the fourth embodiment, the pixel matrix 4015 is 2 × 3, and compared with the pixel matrix 4015 of the third embodiment, the pixel information 4014 in the upper row is removed and arranged at the upper end of the image. Yes. This embodiment is suitable because the influence on the image is reduced when the area occupied by the pixel matrix 4015 is reduced.
 同図(c)は、同図(b)の画素マトリクス4015の1つを示す拡大図である。画像情報を定義した画素情報4014は画素マトリクス4015の上の行中央部分に配置され、画素マトリクス4015の外周部分に、画素マトリクス4015に隣接する画素と、画素情報4014と、の中間値の画素または両画素に所定の重み付けをして補間した画素が配置されている。 FIG. 10C is an enlarged view showing one of the pixel matrices 4015 in FIG. The pixel information 4014 defining the image information is arranged at the center of the row above the pixel matrix 4015. The pixel information 4014 is an intermediate value between the pixel adjacent to the pixel matrix 4015 and the pixel information 4014 on the outer periphery of the pixel matrix 4015. Pixels that are interpolated with predetermined weights are arranged on both pixels.
 ここで、重み付けとは、画素情報4014が定義する画像情報をより確実に解析するため、中間値を求める際に画素情報4014の値を所定数倍することを意味する。同図(c)によれば重み付けは画素情報4014の値を2倍しているが、必要に応じて3倍、4倍、としてもよい。なお、第三の実施例においても重み付けは可能である点を補足しておく。 Here, weighting means multiplying the value of the pixel information 4014 by a predetermined number when obtaining an intermediate value in order to analyze the image information defined by the pixel information 4014 more reliably. According to FIG. 5C, the weighting is doubled the value of the pixel information 4014, but may be tripled or quadrupled as necessary. It should be noted that weighting is possible in the third embodiment.
 図26、図27は上記の実施例において画像情報が実際にどのような情報を意味するものであるのか説明する図である。図26によれば、コードCからC23までは判定コード(ヘッダー)として用いる。かかる判定コードのRGB値の組み合わせは、自然界ではおよそあり得ない組み合わせとすることにより、画素情報が画像情報を定義するものとして埋め込まれたものであることを、中央処理装置(その2)2011が認識することができるようになる。 FIG. 26 and FIG. 27 are diagrams for explaining what kind of information the image information actually means in the above embodiment. According to FIG. 26, codes C 0 to C 23 are used as determination codes (headers). The combination of the RGB values of the determination code is a combination that is not possible in the natural world, so that the central processing unit (part 2) 2011 indicates that the pixel information is embedded as defining image information. Be able to recognize.
 コードC24からC29までは図26に示す通りのパリティチェックに用いる。コードC30からC89までは図27に具体的に示すように、制御情報を意味する。コードC90からC95は図27に示すように、パリティチェックに用いる。 Codes C 24 to C 29 are used for parity check as shown in FIG. Codes C30 to C89 mean control information as specifically shown in FIG. Codes C 90 to C 95 are used for parity check as shown in FIG.
 以上のように、画素情報4014を用いることで、映像信号として受信した画像が通常の平面画像であるのか、複数の中間画像401であるのかを判別することが可能となる。これは、立体画像生成装置201に入力された画像が通常の平面画像である場合、ピクセルの配置の変換等の処理を行わずに、立体画像表示装置701にそのまま出力する必要があるためである。なお、画素情報4014のRGB値は、前述のように非可逆性圧縮により変化するため、所定の桁数の上位ビットのみを参照して画像情報を解析することが好ましい。中央処理装置(その2)2011は、所定の配置パターンに基づいて画素情報4014の埋め込まれた位置を特定して、画像情報を照合するヘッダーの有無を判別して、ヘッダーがあるときは画像情報を解析する。 As described above, by using the pixel information 4014, it is possible to determine whether an image received as a video signal is a normal planar image or a plurality of intermediate images 401. This is because when the image input to the stereoscopic image generating apparatus 201 is a normal planar image, it is necessary to output the image directly to the stereoscopic image display apparatus 701 without performing processing such as pixel arrangement conversion. . Note that since the RGB value of the pixel information 4014 changes due to irreversible compression as described above, it is preferable to analyze the image information with reference to only the upper bits of a predetermined number of digits. The central processing unit (part 2) 2011 identifies the position where the pixel information 4014 is embedded based on a predetermined arrangement pattern, determines the presence or absence of a header for collating image information, and if there is a header, the image information Is analyzed.
 図28は、複数視点の中間画像401に常に画像情報として定義された画素情報4014を埋め込むことにより、通常の平面画像と複数視点の中間画像401の判別を行う方法を示したフローチャートである。 FIG. 28 is a flowchart showing a method of discriminating between a normal planar image and a multi-viewpoint intermediate image 401 by always embedding pixel information 4014 defined as image information in the multi-viewpoint intermediate image 401.
 ただし、非可逆性圧縮による時間方向からの影響を防ぐため、複数視点の中間画像401が開始する瞬間のフレームの前後のフレームと、複数視点の中間画像401が終了する瞬間のフレームの前後のフレームと、にそれぞれと同一の画像情報として定義された画素情報4014を埋め込んでもよい。 However, in order to prevent the influence from the time direction due to irreversible compression, the frames before and after the frame at the moment when the intermediate image 401 of the multiple viewpoints starts and the frames before and after the frame at the time of the end of the intermediate image 401 of the multiple viewpoints In addition, pixel information 4014 defined as the same image information may be embedded.
 同図によれば、中央処理装置(その2)2011は、画像を受信すると、あらかじめ定義された所定の画素配置パターンに基づいて、所定位置のヘッダーの有無をフレームごとに解析する。(1)ヘッダーがあるときは、そのフレームは複数視点の中間画像401フレームであり、そのフレームには画像情報4013が定義されているため、中央処理装置(その2)2011は画像情報4013を解析する。(2)ヘッダーがないときは、そのフレームは通常の平面画像フレームであり、そのフレームには画像情報が定義されていないため、中央処理装置(その2)2011は画像情報4013を解析しない。上記の解析が終了すると、中央処理装置(その2)2011は次のフレームの解析に移る。 Referring to the figure, when receiving an image, the central processing unit (part 2) 2011 analyzes the presence / absence of a header at a predetermined position for each frame based on a predetermined pixel arrangement pattern defined in advance. (1) When there is a header, the frame is an intermediate image 401 frame of a plurality of viewpoints, and image information 4013 is defined in the frame. Therefore, the central processing unit (part 2) 2011 analyzes the image information 4013. To do. (2) When there is no header, the frame is a normal planar image frame, and image information is not defined in the frame, so the central processing unit (part 2) 2011 does not analyze the image information 4013. When the above analysis ends, the central processing unit (part 2) 2011 proceeds to analysis of the next frame.
 <裸眼立体画像表示装置>
次に、図29~図55を参照して、本発明に係る立体画像生成方法により生成された立体画像を出力する、パララックスバリア704を有する裸眼立体画像表示装置701について説明する。
<Autostereoscopic image display device>
Next, an autostereoscopic image display device 701 having a parallax barrier 704 that outputs a stereoscopic image generated by the stereoscopic image generation method according to the present invention will be described with reference to FIGS.
 従来から用いられていたパララックスバリア方式を採用した裸眼立体画像表示装置は、画像提示対象者が可視光透過部から視認可能な範囲が異なり、各可視光透過部を通過して画像提示対象者側に進む光の強度に差が生じ、光が干渉しあってスジ状の干渉縞(モアレ)が画像提示対象者により視認され、表示画像の画質低下という問題があった。 Conventionally used autostereoscopic image display devices adopting a parallax barrier method have different ranges in which an image presentation target person can visually recognize from a visible light transmission part, and pass through each visible light transmission part. There is a difference in the intensity of the light traveling to the side, the light interferes, and stripe-like interference fringes (moire) are visually recognized by the image presentation target person, resulting in a problem that the image quality of the display image is degraded.
 しかし、本実施形態に係る立体画像表示装置701の構成によれば、例えば、最も人溜まりのできる位置に所定の最適立体可視位置および所定の斜め方向のモアレ解消位置を設定し、これらの値から逆算してディスプレイの画像表示面からパララックスバリア704までの距離および一又は複数の可視光透過部7041の水平方向における隣り合う間隔を定めることが可能となるため、所定の斜め方向のモアレ解消位置において画像提示対象者は、パララックスバリア704の可視光透過部7041を通して、常に所定の視点の画像を表示するピクセルの所定位置を視認することができ、該所定のモアレ解消位置においては完全にモアレが解消されることになる。 However, according to the configuration of the stereoscopic image display device 701 according to the present embodiment, for example, a predetermined optimum stereoscopic visible position and a predetermined oblique moire elimination position are set at positions where the most people can be stored, and from these values, Since it is possible to determine the distance from the image display surface of the display to the parallax barrier 704 and the interval between the one or more visible light transmission portions 7041 in the horizontal direction by reverse calculation, the moire elimination position in a predetermined oblique direction In this case, the image presentation target person can always visually recognize the predetermined position of the pixel displaying the image of the predetermined viewpoint through the visible light transmitting portion 7041 of the parallax barrier 704, and the moire elimination position is completely at the predetermined moire elimination position. Will be eliminated.
 ここで、「可視光透過部7041」とは、パララックスバリア704を構成する可視光を透過しない面に設けられた可視光を透過する部分である。すなわち、本件発明にいう「可視光透過部7041」とは、そのスリットのエッジの形状が直線状、階段状、ジグザグ形状、または一定形状の円弧または楕円弧が連続した形状(団子形状)であっても良い。またスリットの配置の形状が正弦弧であっても良い。さらには、該可視光透過部7041はパララックスバリア704上に独立して配置された穴型であっても良い。 Here, the “visible light transmitting portion 7041” is a portion that transmits visible light that is provided on a surface of the parallax barrier 704 that does not transmit visible light. That is, the “visible light transmitting portion 7041” referred to in the present invention is a shape in which the edge of the slit is linear, stepped, zigzag, or a continuous shape of arc or elliptical arc (gum shape). Also good. Further, the shape of the arrangement of the slits may be a sine arc. Further, the visible light transmitting portion 7041 may be a hole type independently disposed on the parallax barrier 704.
 なお、可視光を透過しないとは、(1)可視光を吸収する、(2)可視光を拡散反射する、(3)可視光を鏡面反射する、のいずれかの光学的特性を意味する。 It should be noted that “not transmitting visible light” means any one of the optical characteristics of (1) absorbing visible light, (2) diffusely reflecting visible light, and (3) specularly reflecting visible light.
 また、「最適立体可視位置」とは、画像提示対象者は立体効果を特に効果的に得られる位置である。すなわち、最適立体可視位置においては、画像提示対象者の両眼それぞれが、パララックスバリア704の可視光透過部7041を通して視認すべき視点分の立体表示用のピクセル707の中心を視認する。 Also, the “optimal stereoscopic view position” is a position where the person who presents the image can obtain the stereoscopic effect particularly effectively. In other words, at the optimum stereoscopic view position, both eyes of the image presentation target person visually recognize the center of the stereoscopic display pixel 707 for the viewpoint to be visually recognized through the visible light transmission unit 7041 of the parallax barrier 704.
 また、「モアレ解消位置」とは、画像提示対象者に対して、完全にモアレを低減させたかたちで、効果的に立体画像を視認させることのできる位置をいい、所定のモアレ解消位置において画像提示対象者は、左右いずれかの眼によって、パララックスバリア704の可視光透過部7041を通して、常に所定の視点の画像を表示する立体表示用のピクセル707の所定位置を視認することができる。モアレ解消位置においては、画像提示対象者が、裸眼立体ディスプレイに対して平行に左右または上下に移動したとしても、モアレ解消の効果は変わらない。なお、モアレ解消位置という概念には、後述の斜め方向モアレ解消位置および水平方向モアレ解消位置が含まれる。 Further, the “moire elimination position” refers to a position at which a subject can be made to visually recognize a stereoscopic image effectively in a form in which moiré is completely reduced, and an image is displayed at a predetermined moire elimination position. The presentation target person can visually recognize a predetermined position of the stereoscopic display pixel 707 that always displays an image of a predetermined viewpoint through the visible light transmitting portion 7041 of the parallax barrier 704 with either the left or right eye. In the moiré elimination position, even if the image presentation subject moves to the left or right or up and down in parallel with the autostereoscopic display, the effect of moiré elimination does not change. The concept of the moire elimination position includes an oblique direction moire elimination position and a horizontal direction moire elimination position, which will be described later.
 ただし、特に立体を効果的に視認することができる位置(最適立体可視位置)と、斜め方向のモアレを解消できる位置(斜め方向モアレ解消位置)や、水平方向のモアレを解消できる位置(水平方向モアレ解消位置)は、別の概念であり、必ずしもこれらの位置からパララックスバリア704までの距離は同一でなくても良い。 However, a position where the three-dimensional image can be viewed effectively (optimum three-dimensional visible position), a position where the moire in the oblique direction can be eliminated (oblique moire elimination position), and a position where the moire in the horizontal direction can be eliminated (horizontal direction) The moire elimination position) is another concept, and the distance from these positions to the parallax barrier 704 is not necessarily the same.
 ただし、これらの所定のモアレ解消位置を最適立体可視位置と同一距離とすると、ディスプレイの全面で立体を最も効果的に視認できる。 However, if these predetermined moire elimination positions are the same distance as the optimal stereoscopic viewing position, the stereoscopic effect can be visually recognized most effectively on the entire surface of the display.
 このように、モアレ解消位置と最適立体可視位置とを別の距離、例えばモアレ解消位置を、最適立体可視位置よりパララックスバリア704から遠い距離に設定することにより、まず遠くにいる画像提示対象者に特にモアレが解消されている立体画像を、画像提示対象者に対してモアレのストレスを感じさせることなく視認させ、そうすることで画像提示対象者の注意を引き、最適立体可視位置まで近づいてもらい、特に立体効果の高い立体画像を視認させることも考えられる。 In this way, by setting the moiré elimination position and the optimum stereoscopic visible position at different distances, for example, the moiré elimination position at a distance farther from the parallax barrier 704 than the optimum stereoscopic visibility position, the image presentation target person who is far away first. In particular, a 3D image in which moiré has been eliminated can be viewed without causing the image presentation subject to feel the moire stress, thereby drawing the attention of the image presentation subject and approaching the optimal stereoscopic viewing position. It is also conceivable to make a stereoscopic image with a particularly high stereoscopic effect visible.
 まず、図29,図30を参照して、可視光透過部7041の横幅Shの適正値について説明する。 First, with reference to FIG. 29 and FIG. 30, an appropriate value of the lateral width Sh of the visible light transmitting portion 7041 will be described.
 Vhは幅Shの可視光透過部7041を通して片眼で視認される有効可視領域の幅、αPhは隣り合う視点の画像を表示する立体表示用のピクセル707の中心間の距離、Zはディスプレイの画像表示面から前記パララックスバリア704までの距離、L1は最適立体可視位置における画像提示対象者からパララックスバリア704までの距離、Wは画像提示対象者の左右の目の瞳間の距離、Kは画像提示対象者の両眼の注視点間距離をそれぞれ示す。また画像提示対象者の片眼からディスプレイに向かって伸びている一点鎖線は画像提示対象者の注視線を示す。 Vh is the width of the effective visible region that is visible with one eye through the visible light transmitting portion 7041 having the width Sh, αPh is the distance between the centers of the stereoscopic display pixels 707 that display the images of the adjacent viewpoints, and Z is the display image. The distance from the display surface to the parallax barrier 704, L1 is the distance from the image presentation target person to the parallax barrier 704 at the optimum stereoscopic view position, W is the distance between the pupils of the left and right eyes of the image presentation target person, and K is The distance between the gazing points of both eyes of the image presentation target person is shown. A one-dot chain line extending from one eye of the image presentation target person toward the display indicates a gaze line of the image presentation target person.
 例えば、最適立体可視位置は、立体画像表示装置の用途、設置場所等を考慮して、特に効果的に画像提示対象者に裸眼立体映画像を視認させたい位置とすれば良い。すなわち、最適立体可視位置からパララックスバリア704までの距離L1は任意の値を取ることができる。 For example, the optimal stereoscopic viewing position may be a position where the image presentation target person wants to visually recognize the autostereoscopic image particularly effectively in consideration of the application and installation location of the stereoscopic image display device. That is, the distance L1 from the optimal stereoscopic view position to the parallax barrier 704 can take an arbitrary value.
 また、画像提示対象者の左右の目の瞳間の距離Wは、その立体画像の主たる対象者が、欧米人であれば60~65mm、アジア人であれば65~70mm、子供であれば50~60mm程度に設定し計算すれば良い。 The distance W between the eyes of the left and right eyes of the image presentation subject is 60 to 65 mm if the main subject of the stereoscopic image is Western, 65 to 70 mm if Asian, and 50 if children. What is necessary is just to set and calculate to about ~ 60 mm.
 また、隣り合う視点の画像を表示する立体表示用のピクセル707の中心間の距離αPhは、図30に例示するように、例えば、3つのサブピクセルで1つの立体表示用のピクセル707を構成し、サブピクセルを階段状に斜め方向に連結して配置した場合のαPhの値は1Phとなる。 Further, the distance αPh between the centers of the stereoscopic display pixels 707 that display the images of the adjacent viewpoints, for example, constitutes one stereoscopic display pixel 707 with three subpixels as illustrated in FIG. The value of αPh when subpixels are arranged in a stepwise manner in an oblique direction is 1Ph.
 次に、パララックスバリア704の可視光透過部7041を通して画像提示対象者の片眼で視認される有効可視領域の幅Vhの値を決定する。 Next, the value of the width Vh of the effective visible region that is visually recognized with one eye of the image presentation target person through the visible light transmitting portion 7041 of the parallax barrier 704 is determined.
 有効可視領域とは、最適立体可視位置において、画像提示対象者が、パララックスバリア704の可視光透過部7041を通して視認することのできる画像表示面上の領域をいう。すなわち、最適立体可視位置において、画像提示対象者に対し視認させることを意図したディスプレイの範囲である。 The effective visible region refers to a region on the image display surface that can be visually recognized through the visible light transmitting portion 7041 of the parallax barrier 704 at the optimal stereoscopic viewing position. That is, it is the range of the display intended to be visually recognized by the image presentation target person at the optimum stereoscopic visible position.
 有効可視領域の幅Vhとは、人が移動した際に、他の視点の画像の視認への移り変わりの際の画像の乱れと、左右の眼が左右逆の視点の画像を視認する際に起きる、対象物の位置が前後に逆転するジャンプポイントを低減するために、本来両眼が視認すべき隣り合う視点の画像を表示する立体表示用のピクセル707を中心に、その左右の立体表示用のピクセル707の一部を視認して適度なビューミックスを生じさせるために必要な、画像表示面の片眼で視認させる水平方向の幅である。 The width Vh of the effective visible region occurs when a person moves, when the image changes from one viewpoint to another, and when the left and right eyes view an image of the opposite viewpoint. In order to reduce the jump point at which the position of the object reverses back and forth, the stereoscopic display pixel 707 that displays images of adjacent viewpoints that should be visually recognized by both eyes is mainly used for the right and left stereoscopic display. This is the horizontal width that is necessary for visually recognizing a part of the pixel 707 to generate an appropriate view mix and visually recognizing with one eye of the image display surface.
 したがって、Vhが大きいと視点の移り変わりとジャンプポイントの低減になるが、その分だけ本来両眼が視認すべき隣り合う視点の画像を表示する立体表示用のピクセル707とは異なる立体表示用のピクセル707(特に、両眼がだぶって同一の画像を視認する)を視認するため立体感が乏しくなる。一方、Vhの値が小さいと画像の立体感は強調され立体画像は鮮明に映るが、ジャンプポイントは大きくなる。ただし、以上の効果は、スリットもしくは可視光透過部7041の形状と配置によって大きく異なる。 Therefore, if Vh is large, the viewpoint is changed and the jump point is reduced. However, the stereoscopic display pixel 707 is different from the stereoscopic display pixel 707 that displays an image of an adjacent viewpoint that should be visually recognized by both eyes. Since 707 (especially, the same image is visually recognized with both eyes covered), the stereoscopic effect is poor. On the other hand, when the value of Vh is small, the stereoscopic effect of the image is enhanced and the stereoscopic image is clearly displayed, but the jump point is increased. However, the above effect is greatly different depending on the shape and arrangement of the slit or visible light transmitting portion 7041.
 このように、有効可視領域の幅の大きさを、立体画像の用途等に合わせて適宜広狭させることにより、画像提示対象者の需要や状況に対応させて、より効果的に立体画像を提供することができる。 In this way, the effective visible region width is appropriately widened according to the usage of the stereoscopic image, etc., so that the stereoscopic image can be provided more effectively in accordance with the demand and situation of the image presentation target person. be able to.
 なお、図29からもわかるように、最適立体可視位置においては、画像提示対象者の注視線(図29、一点鎖線)が各立体表示用のピクセル707の中心を視認するのであるから、左右の眼の注視点間距離Kは、αPhと同じ値となる。 As can be seen from FIG. 29, at the optimum stereoscopic visible position, the gaze line (FIG. 29, one-dot chain line) of the image presentation target person visually recognizes the center of each of the stereoscopic display pixels 707. The distance K between the gazing points of the eyes is the same value as αPh.
 次に、決定された有効可視領域の幅Vhの値に基づいて、ディスプレイの画像表示面からパララックスバリア704までの距離Zの値を求める。Zは次の式により算定される。 Next, the value of the distance Z from the image display surface of the display to the parallax barrier 704 is obtained based on the determined value of the effective visible region width Vh. Z is calculated by the following formula.
 なお、立体画像表示装置のディスプレイ面に移りこみ防止等の加工処理、または、写りこみ防止等の透明シートを貼りつけた場合であっても、Zはディスプレイ面からパララックスバリア704までの距離とする。 Note that Z is the distance from the display surface to the parallax barrier 704 even when processing such as transfer prevention is performed on the display surface of the stereoscopic image display device or when a transparent sheet such as reflection prevention is pasted. To do.
 図29からわかるように、Z:L1とαPh:Wとの間には、以下の数式により表される関係がある。 As can be seen from FIG. 29, there is a relationship represented by the following formula between Z: L1 and αPh: W.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 したがって、前記距離Zは以下の数式によって表される。 Therefore, the distance Z is expressed by the following mathematical formula.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 次に、決定された前記距離Zの値に基づいて、可視光透過部7041の横幅Shの値を求める。 Next, based on the determined value of the distance Z, the value of the lateral width Sh of the visible light transmitting portion 7041 is obtained.
 前記〈1〉の式から、L1は以下の数式のように表される。 From the formula <1>, L1 is expressed as the following formula.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、図29からわかるように、S:VhとL1:(L1+Z)の間には、以下の数式により表される関係がある。 Further, as can be seen from FIG. 29, there is a relationship represented by the following formula between S: Vh and L1: (L1 + Z).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 したがって、可視光透過部7041の高さShは以下の数式によって表される。 Therefore, the height Sh of the visible light transmitting portion 7041 is expressed by the following mathematical formula.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そこで、〈3〉に式に〈2〉の式を代入すると、Shは以下の数式によって表される。 Therefore, when the formula <2> is substituted into the formula <3>, Sh is represented by the following formula.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 このように、Shの値はW、αPh及びVhの値から求めることができる。 Thus, the value of Sh can be obtained from the values of W, αPh, and Vh.
 次に、図31を参照して、パララックスバリア704を構成する可視光透過部7041であるスリットのエッジの形状が、階段状もしくは円弧、楕円弧、多角形が連続した形状、または、前記パララックスバリア704を構成する可視光透過部7041の形状が、独立して複数形成された穴形状である場合の、前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の高さSvを求める。 Next, referring to FIG. 31, the shape of the edge of the slit, which is the visible light transmitting portion 7041 constituting the parallax barrier 704, is a stepped shape or a shape in which an arc, an elliptical arc, a polygon is continuous, or the parallax When the shape of the visible light transmitting portion 7041 constituting the barrier 704 is a hole shape formed independently, the continuous visible light transmitting portion 7041 of the shape or the visible light transmitting portion of the plurality of holes. A height Sv of 7041 is obtained.
 ここで、パララックスバリア704の有効可視領域の高さVvは、最適立体可視位置において、高さSvの可視光透過部7041を通して視認されるディスプレイの範囲であり、その値は裸眼立体ディスプレイを設置する場所等の条件に合わせて、所定の値とすることができる。 Here, the height Vv of the effective visible region of the parallax barrier 704 is the range of the display that is visually recognized through the visible light transmitting portion 7041 having the height Sv at the optimum stereoscopic viewing position, and the value is set for the autostereoscopic display. It can be set to a predetermined value in accordance with conditions such as a place to perform.
 例えば、パララックスバリア704の開口率を抑え、ディスプレイの照度を落としたいときには、有効可視領域の値は小さくすれば良い。 For example, when the aperture ratio of the parallax barrier 704 is suppressed and the illuminance of the display is reduced, the value of the effective visible region may be reduced.
 また、パララックスバリア704の開口率を調整する他の方法として、一つのサブピクセルに対し複数の連続するスリットのエッジの一単位または可視光透過部7041を用いるようにしても良いし、2以上のサブピクセルに対し、一の前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041を用いるようにしても良い。 As another method of adjusting the aperture ratio of the parallax barrier 704, one unit of edges of a plurality of continuous slits or a visible light transmitting portion 7041 may be used for one subpixel, or two or more. One continuous visible light transmitting portion 7041 having the shape or the plurality of hole-shaped visible light transmitting portions 7041 may be used for each of the sub-pixels.
 このように、一のサブピクセルに対する、可視光透過部7041の数の比率を、1:1以外とした場合であっても、前記有効可視領域の高さVvは、可視光透過部7041の高さを通して視認されるディスプレイの範囲を言う。 Thus, even when the ratio of the number of visible light transmitting portions 7041 to one subpixel is other than 1: 1, the height Vv of the effective visible region is the height of the visible light transmitting portion 7041. This refers to the range of the display that can be seen through.
 図31からわかるように、Sv:VvとL1:(L1+Z)との間には、以下の数式により表される関係がある。 As can be seen from FIG. 31, there is a relationship represented by the following mathematical formula between Sv: Vv and L1: (L1 + Z).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 したがって、可視光透過部7041の高さSvは以下の式により表される。 Therefore, the height Sv of the visible light transmitting portion 7041 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このように、可視光透過部7041の高さSvの値も、まず当該有効可視領域高さVvの値を決定することで逆算することが可能である。 Thus, the value of the height Sv of the visible light transmitting portion 7041 can be calculated backward by first determining the value of the effective visible region height Vv.
 また、可視光透過部7041の高さSvは、前記可視光透過部7041の間隔Hvに基づいて、以下の式により求めることもできる。 Further, the height Sv of the visible light transmitting portion 7041 can also be obtained by the following formula based on the interval Hv of the visible light transmitting portion 7041.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 すなわち、図32に示すように、まず、前記式に基づいて可視光透過部7041の間隔Hvを求めた後に、λの値(図面においては1/2)を決定し、前記式に代入することにより、前記可視光透過部7041の高さを求めることができる。 That is, as shown in FIG. 32, first, after obtaining the interval Hv of the visible light transmitting portion 7041 based on the above equation, the value of λ (1/2 in the drawing) is determined and substituted into the above equation. Thus, the height of the visible light transmitting portion 7041 can be obtained.
 次に図33を参照して、所定の斜め方向モアレ解消位置からパララックスバリア704までの距離をL2に基づき、水平方向に隣接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hhを求める。 Next, referring to FIG. 33, the distance from the predetermined oblique direction moire elimination position to the parallax barrier 704 is based on L2, and the interval between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction. Find Hh.
 図33では、画像提示対象者は、所定の斜め方向モアレ解消位置において、片眼(左眼)で、パララックスバリア704の可視光透過部7041を通して、ディスプレイ左端のRGB階段配置画素ブロック13を構成する立体表示用のピクセルと、ディスプレイ右端のRGB階段配置画素ブロック13を構成する立体表示用のピクセルを視認しており、画像提示対象者が視認している立体表示用のピクセルは同一視点の画像を表示するものである。 In FIG. 33, the image presentation target person configures the RGB staircase-arranged pixel block 13 at the left end of the display through the visible light transmitting portion 7041 of the parallax barrier 704 with one eye (left eye) at a predetermined oblique direction moire elimination position. 3D display pixels and the 3D display pixels constituting the RGB staircase-arranged pixel block 13 at the right end of the display are visually recognized, and the 3D display pixels viewed by the image presentation target person are images of the same viewpoint. Is displayed.
 このように、パララックスバリア704の可視光透過部7041を通して視認するサブピクセルが常に同一視点の画像を表示するものであれば、画像提示対象者が画面上のモアレを視認することはない。 As described above, if the sub-pixels that are visually recognized through the visible light transmitting portion 7041 of the parallax barrier 704 always display images of the same viewpoint, the image presentation target person does not visually recognize the moire on the screen.
 ここで、まず、所定の斜め方向モアレ解消位置における、ディスプレイ左端のRGB階段配置画素ブロック13に対する前記パララックスバリア704の可視光透過部7041から、ディスプレイ右端のRGB階段配置画素ブロック13に対する前記パララックスバリア704の可視光透過部7041までの間の、水平方向における可視光透過部7041の数Mhは、立体画像を表示するための視点数Nと、水平解像度Irを用いた以下の式により表すことができる。 Here, first, from the visible light transmitting portion 7041 of the parallax barrier 704 to the RGB staircase arranged pixel block 13 at the left end of the display at a predetermined oblique direction moire elimination position, the parallax to the RGB staircase arranged pixel block 13 at the right end of the display is set. The number Mh of the visible light transmitting portions 7041 in the horizontal direction between the barrier 704 and the visible light transmitting portion 7041 is expressed by the following formula using the number N of viewpoints for displaying a stereoscopic image and the horizontal resolution Ir. Can do.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 すなわち、水平解像度Irに3(R・G・B)を乗じた、3Irは水平方向におけるサブピクセルの数である。ここから1を引くのは、例えば図34において図示するように、視点数を仮に7とした場合、ディスプレイ右端のサブピクセルが該視点の最後の視点である第7視点の画像を表示せず、第1視点である場合があり、この場合には余った第1視点の画像を表示するサブピクセルの数を引いて計算をする必要があるからである。また、最後に1を足すのは、前記第1視点の画像を表示するサブピクセルがディスプレイ右端に余った場合以外の場合にも、全サブピクセル数から1を引いて整数化しているため、実際のMh値から1足りなくなるのでそれを補うためである。 That is, 3Ir obtained by multiplying the horizontal resolution Ir by 3 (R, G, B) is the number of sub-pixels in the horizontal direction. For example, as illustrated in FIG. 34, when the number of viewpoints is assumed to be 7, the sub-pixel on the right end of the display does not display the image of the seventh viewpoint, which is the last viewpoint of the viewpoint. This is because there is a case of the first viewpoint, and in this case, it is necessary to calculate by subtracting the number of sub-pixels that display the surplus image of the first viewpoint. In addition, adding 1 at the end is an integer obtained by subtracting 1 from the total number of subpixels even when the subpixel displaying the image of the first viewpoint is not at the right end of the display. This is to compensate for the lack of one Mh value.
 また、ディスプレイ左端のRGB階段配置画素ブロック13を構成する立体表示用のピクセルに対する可視光透過部7041の中心から、これと同一視点の画像を表示する立体表示用のピクセルであってディスプレイ右端のRGB階段配置画素ブロック13を構成するものに対する可視光透過部7041の中心までの距離は、Hh(水平方向における可視光透過部7041の間隔)に(Mh-1)を乗じた値となる。 In addition, from the center of the visible light transmitting portion 7041 for the stereoscopic display pixels constituting the RGB staircase arranged pixel block 13 at the left end of the display, the stereoscopic display pixels that display an image of the same viewpoint as this, and the RGB at the right end of the display The distance to the center of the visible light transmitting portion 7041 with respect to what constitutes the staircase arranged pixel block 13 is a value obtained by multiplying Hh (the interval between the visible light transmitting portions 7041 in the horizontal direction) by (Mh−1).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 さらに、水平方向において、画像提示対象者がパララックスバリア704の可視光透過部7041を通して視認する、ディスプレイ左端のRGB階段配置画素ブロック13を構成する立体表示用のピクセルの中心から、これと同一視点の画像を表示する立体表示用のピクセルであってディスプレイ右端のRGB階段配置画素ブロック13を構成するものの中心までの距離は、裸眼立体画像を生成するための画像の視点数をNと、隣り合う視点の画像を表示する立体表示用のピクセルの中心間の距離αPhを用いた以下の式により表すことができる。 Further, in the horizontal direction, from the center of the stereoscopic display pixels constituting the RGB staircase-arranged pixel block 13 at the left end of the display, which is viewed by the image presentation target person through the visible light transmitting unit 7041 of the parallax barrier 704, the same viewpoint as this The distance to the center of the RGB staircase arranged pixel block 13 at the right end of the display, which is a stereoscopic display pixel that displays the image of the image, is adjacent to N as the number of viewpoints of the image for generating a naked-eye stereoscopic image This can be expressed by the following equation using the distance αPh between the centers of the stereoscopic display pixels for displaying the viewpoint image.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 図33からわかるように、[Hh×(Mh-1)]:[N×(Mh-1)×αPh]とL2:(Z+L2)の間には以下の式により表すことができる関係がある。 As can be seen from FIG. 33, there is a relationship that can be expressed by the following equation between [Hh × (Mh−1)]: [N × (Mh−1) × αPh] and L2: (Z + L2).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 従って、Hhの値は以下の式により求めることができる。 Therefore, the value of Hh can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 このように、所定の斜め方向モアレ解消位置からパララックスバリア704までの距離をL2に基づき、水平方向に隣接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hhの値を求めることができる。 Thus, based on the distance L2 from the predetermined oblique moire elimination position to the parallax barrier 704, the value of the interval Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction is obtained. be able to.
 次に、図35及び図36を参照して、パララックスバリア704から、斜め方向のモアレが1本発生する地点までの距離に基づいて前記水平方向に隣接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hhを求める。 Next, referring to FIG. 35 and FIG. 36, a plurality of the parallax barriers 704 that are adjacent in the horizontal direction based on the distance from the parallax barrier 704 to the point where one moire in the oblique direction occurs. An interval Hh between the visible light transmitting portions 7041 is obtained.
 図35において例示する、斜め方向のモアレが一本発生する位置からパララックスバリア704までの距離であって、遠近二種の該位置のうち、より該パララックスバリア704に近い位置から、該パララックスバリア704までの所定の距離L2nにおいては、図37においても例示するように、画像提示対象者は、所定の斜め方向のモアレ解消位置(L2)と同様にディスプレイ左端のRGB階段配置画素ブロック13を構成する立体表示用のピクセルのうち第一視点用の画像を表示するものをパララックスバリア704の可視光透過部7041を通して視認しているが、視点が右方向にずれるにつれて、該可視光透過部7041を通して、第一視点用の立体表示用のピクセルではなく、他の視点用の立体表示用のピクセルを視認していくことになる。そして最終的には、L2の地点においてディスプレイ右端のRGB階段配置画素ブロック13のうち第一視点用の立体表示用のピクセルを視認する際に可視光が透過する可視光透過部7041を通して、ディスプレイ右端の右隣に仮想画素705を想定した場合、再び第一視点用の立体表示用のピクセル(仮想)を視認することとなる。この様なサイクルが一度発生しているため、L2nにおいてはモアレが一回発生していると考えられる。 35, the distance from the position where one moire in the oblique direction is generated to the parallax barrier 704, and the parallax barrier 704 is closer to the parallax barrier 704 out of the two kinds of positions. At the predetermined distance L2n to the lux barrier 704, as illustrated in FIG. 37, the person who presents the image can display the RGB staircase-arranged pixel block 13 at the left end of the display in the same manner as the predetermined oblique moire elimination position (L2). 3D are displayed through the visible light transmitting portion 7041 of the parallax barrier 704 while displaying the image for the first viewpoint among the three-dimensional display pixels constituting the image. As the viewpoint shifts to the right, the visible light transmission is performed. Through the unit 7041, the stereoscopic display pixels for the other viewpoints are not visually recognized but the stereoscopic display pixels for the other viewpoints. It becomes Kukoto. Finally, the right edge of the display passes through the visible light transmitting portion 7041 through which visible light is transmitted when viewing the stereoscopic display pixel for the first viewpoint in the RGB staircase arranged pixel block 13 at the right edge of the display at the point L2. When the virtual pixel 705 is assumed on the right side of the three-dimensional display, the stereoscopic display pixel (virtual) for the first viewpoint is visually recognized again. Since such a cycle occurs once, it is considered that moire occurs once in L2n.
 このようなL2nの値を所定の値とした場合に、この値に基づいて、前記水平方向に隣接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hhを求める。 When such a value of L2n is set to a predetermined value, an interval Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction is obtained based on this value.
 すなわち、図35からもわかるように、[Hh×(M-1)]:[N×M×αPh]とL2n:(Z+L2n)の間には以下の式に表されるような関係がある。 That is, as can be seen from FIG. 35, there is a relationship represented by the following equation between [Hh × (M−1)]: [N × M × αPh] and L2n: (Z + L2n).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 従って、Hhは以下の式により求めることができる。 Therefore, Hh can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 また、L2nに基づいてHhの値を求めるのと同様に、斜め方向のモアレが一本発生する位置からパララックスバリア704までの距離であって、遠近二種の該位置のうち、より該パララックスバリア704に遠い位置から、該パララックスバリア704までの所定の距離L2fに基づいて、該Hhの値を求めることができる。 Similarly to the determination of the value of Hh based on L2n, it is the distance from the position where one moire in the oblique direction occurs to the parallax barrier 704, and more The value of Hh can be obtained based on a predetermined distance L2f from a position far from the lux barrier 704 to the parallax barrier 704.
 図36において例示する、L2fの地点においては、画像提示対象者は、所定の斜め方向のモアレ解消位置(L2)と同様にディスプレイ左端のRGB階段配置画素ブロック13を構成する立体表示用のピクセルのうち第一視点用の画像を表示するものをパララックスバリア704の可視光透過部7041を通して視認しているが、視点が右方向にずれるにつれて、該可視光透過部7041を通して、第一視点用の立体表示用のピクセルではなく、他の視点用の立体表示用のピクセルを視認していくことになる。そして最終的には、L2の地点においてディスプレイ右端のRGB階段配置画素ブロック13のうち第一視点用の立体表示用のピクセルを視認する際に可視光が透過する可視光透過部7041を通して、ディスプレイ右端のRGB階段配置画素ブロック13の左隣のRGB階段配置画素ブロック13中の第一視点用の立体表示用のピクセル2を視認することとなる。この様なサイクルが一度発生しているため、L2fにおいてもモアレが一回発生していると考えられる。 In the point of L2f illustrated in FIG. 36, the person who presents the image displays the 3D display pixel constituting the RGB staircase arrangement pixel block 13 at the left end of the display in the same way as the predetermined moire elimination position (L2) in the diagonal direction. Among them, the one that displays the image for the first viewpoint is visually recognized through the visible light transmission unit 7041 of the parallax barrier 704. As the viewpoint shifts to the right, the image for the first viewpoint is displayed through the visible light transmission unit 7041. Instead of the stereoscopic display pixels, the stereoscopic display pixels for other viewpoints are visually recognized. Finally, the right edge of the display passes through the visible light transmitting portion 7041 through which visible light is transmitted when viewing the stereoscopic display pixel for the first viewpoint in the RGB staircase arranged pixel block 13 at the right edge of the display at the point L2. The stereoscopic display pixel 2 for the first viewpoint in the RGB staircase-arranged pixel block 13 adjacent to the left of the RGB staircase-arranged pixel block 13 is visually recognized. Since such a cycle occurs once, it is considered that moire occurs once in L2f.
 なお、図38においては、前記L2、L2n、L2fの相対的な関係を図示している。 In FIG. 38, the relative relationship between L2, L2n, and L2f is illustrated.
 このような、L2fの値を所定の値とした場合に、この値に基づいて、前記水平方向に隣接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hhを求める。 When the value of L2f is set to a predetermined value, the distance Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction is obtained based on this value.
 すなわち、図36からわかるように、[Hh×(M-1)]:[N×(M-2)×αPh]とZ:(Z+L2)の間には以下の式に表されるような関係がある。 That is, as can be seen from FIG. 36, there is a relationship represented by the following equation between [Hh × (M−1)]: [N × (M−2) × αPh] and Z: (Z + L2). There is.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 従って、Hhの値は以下の式により求めることができる。 Therefore, the value of Hh can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 このように、モアレが一本発生する地点(L2n・L2f)の値に基づいて、水平方向に隣接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hhを求めることができるため、例えば、L2nの地点からL2fの地点までの領域を、モアレ適正解消領域として、立体画像が特に効果的に視認できる地点を画像提示対象者に対して明示することもできる。さらに、該モアレ解消領域を最も人溜まりができる範囲に設定することにより、画像提示対象者の注意を引きつけることもできる。 As described above, the distance Hh between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 adjacent in the horizontal direction can be obtained based on the value of the point (L2n · L2f) where one moire occurs. For example, the area from the point L2n to the point L2f can be designated as a moire appropriate elimination region, and a point where the stereoscopic image can be visually recognized particularly effectively can be clearly shown to the image presentation target person. Furthermore, by setting the moiré elimination area in a range where the most people can be collected, it is possible to attract the attention of the image presentation target person.
 次に、図39を参照して、パララックスバリア704を構成する可視光透過部7041であるスリットのエッジの形状が、階段状もしくは円弧、楕円弧、多角形が連続した形状、または、前記パララックスバリア704を構成する可視光透過部7041の形状が、独立して複数形成された穴形状である場合に、所定の水平方向のモアレ解消位置から前記パララックスバリア704までの距離L3の値に基づいて、前記パララックスバリア704の垂直方向に連接する前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の間隔Hvの値を求める方法について説明する。 Next, referring to FIG. 39, the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which an arc, an elliptical arc, a polygon is continuous, or the parallax Based on the value of the distance L3 from the predetermined moire elimination position in the horizontal direction to the parallax barrier 704 when the shape of the visible light transmitting portion 7041 constituting the barrier 704 is a hole shape formed independently. A method of determining the value of the interval Hv between the continuous visible light transmitting portions 7041 or the plurality of hole-shaped visible light transmitting portions 7041 connected in the vertical direction of the parallax barrier 704 will be described.
 ここで、図39の一点鎖線は画像提示対象者の注視線を示し、Kは画像提示対象者の上下の注視点間距離を示す。 Here, the alternate long and short dash line in FIG. 39 indicates the gaze line of the image presentation target person, and K indicates the distance between the upper and lower gaze points of the image presentation target person.
 パララックスバリア704から所定の水平方向のモアレ解消位置までの距離L3の値は、ディスプレイからどの距離をもって画像提示対象者に特にモアレを解消した形で立体画像を提供したいかによって決まる。 The value of the distance L3 from the parallax barrier 704 to a predetermined horizontal moiré elimination position is determined depending on what distance from the display the user wants to provide a stereoscopic image in a form in which moiré is particularly eliminated.
 また、水平方向のモアレ解消位置において、画像提示対象者は常に、パララックスバリア704の可視光透過部7041を通してサブピクセルの中心を注視することとなるため、画像提示対象者の注視点間距離Kは、サブピクセルの高さPvに等しい。 In addition, since the image presentation target always gazes at the center of the sub-pixel through the visible light transmitting portion 7041 of the parallax barrier 704 at the horizontal moire elimination position, the distance between the gaze points of the image presentation target person K Is equal to the subpixel height Pv.
 また、βとは、一のサブピクセルに対応する可視光透過部7041の上下方向の数を表し、例えば、図40(a)(d)に示すように、1のサブピクセルに対して1の可視光透過部7041が形成されているような場合、βは1となる。また図40(b)(e)に示すように、1のサブピクセルに対して2の可視光透過部7041が形成されているような場合、βは2となる。さらに、図40(c)(f)に示すように、3のサブピクセル対して1の可視光透過部7041が形成されているような場合、βは1/3となる。 Further, β represents the number of visible light transmitting portions 7041 corresponding to one subpixel in the vertical direction. For example, as shown in FIGS. When the visible light transmitting portion 7041 is formed, β is 1. Further, as shown in FIGS. 40B and 40E, when two visible light transmitting portions 7041 are formed for one subpixel, β is two. Furthermore, as shown in FIGS. 40C and 40F, when one visible light transmitting portion 7041 is formed for three subpixels, β is 1 /.
 すなわちβとは、一のサブピクセルに対応する、連続する前記形状の可視光透過部7041の一単位または前記複数の穴形状の可視光透過部7041上下方向の数である。 That is, β is a unit of the continuous visible light transmitting portion 7041 having the shape corresponding to one subpixel or the number of the visible light transmitting portions 7041 having the plurality of hole shapes in the vertical direction.
 なお、1のサブピクセルに対して設けられる複数の可視光透過部7041は、整数個であることが望ましい。また、複数のサブピクセルに対し1の可視光透過部7041を設ける場合には、1の立体表示用のピクセルに対し、整数個の可視光透過部7041を設けることが望ましい。 Note that the number of visible light transmitting portions 7041 provided for one subpixel is desirably an integer. In the case where one visible light transmitting portion 7041 is provided for a plurality of subpixels, it is desirable to provide an integer number of visible light transmitting portions 7041 for one stereoscopic display pixel.
 ここで、該連続する一単位または該可視光透過部7041の間隔Hvの値を求める。 Here, the value of the interval Hv of the continuous unit or the visible light transmitting portion 7041 is obtained.
 図41からわかるように、Hv×β:L3における上下の注視点間距離K(=Pv)とL3:(L3+Z)の関係は以下の式により表すことができる。 As can be seen from FIG. 41, the relationship between the upper and lower gaze point distance K (= Pv) and L3: (L3 + Z) in Hv × β: L3 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 したがって、Hvは以下の式により表される。 Therefore, Hv is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 このように、所定の水平方向のモアレ解消位置において、L3の値から逆算して特にモアレを解消することのできるHvの値を定めることができる。 As described above, at a predetermined horizontal moire elimination position, it is possible to determine a value of Hv that can eliminate moire in particular by calculating backward from the value of L3.
 図42及び図43を参照して、パララックスバリア704を構成する可視光透過部7041であるスリットのエッジの形状が、階段状もしくは円弧、楕円弧、多角形が連続した形状、または、前記パララックスバリア704を構成する可視光透過部7041の形状が、独立して複数形成された穴形状である場合に、水平方向のモアレが一本発生する位置からパララックスバリア704までの距離であって、遠近二種の該位置のうち、より該パララックスバリア704に近い位置から、該パララックスバリア704までの所定の距離をL3nの値に基づいて、前記パララックスバリア704の垂直方向に連接する前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の間隔Hvの値を求める方法について説明する。 42 and 43, the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which an arc, an elliptical arc, a polygon is continuous, or the parallax. When the shape of the visible light transmitting portion 7041 constituting the barrier 704 is a hole shape formed independently, the distance from the position where one horizontal moire occurs to the parallax barrier 704, Based on the value of L3n, a predetermined distance from the position closer to the parallax barrier 704 to the parallax barrier 704 is connected in the vertical direction of the parallax barrier 704 among the two types of the near and far positions. A method for obtaining a value of the interval Hv between the visible light transmitting portions 7041 having the continuous shape or the visible light transmitting portions 7041 having the plurality of holes. It described Te.
 図42において例示する、前記L3nにおいては、画像提示対象者は、所定の横向のモアレ解消位置(L3)と同様にディスプレイ下端のサブピクセルをパララックスバリア704の可視光透過部7041を通して視認しているが、視点が上方向にずれるにつれて、L3の地点において本来視認すべきサブピクセルではなく、その上方のサブピクセルを、可視光透過部7041を通して視認することとなる。そして最終的には、L3の地点においてディスプレイ上端のサブピクセルを視認する際に可視光が透過する可視光透過部7041を通して、ディスプレイ上端の上方に仮想サブピクセル706を想定した場合、該仮想サブピクセル706を視認することとなる。この様なサイクルが一度発生しているため、L3nにおいてはモアレが一回発生していると考えられる。 In L3n illustrated in FIG. 42, the image presentation target person visually recognizes the subpixel at the lower end of the display through the visible light transmitting portion 7041 of the parallax barrier 704 in the same manner as the predetermined horizontal moire elimination position (L3). However, as the viewpoint shifts upward, not the sub-pixel that should be visually recognized at the point of L3 but the sub-pixel above it is visually recognized through the visible light transmitting portion 7041. Finally, when a virtual subpixel 706 is assumed above the upper end of the display through the visible light transmitting portion 7041 through which visible light is transmitted when the subpixel at the upper end of the display is viewed at the point of L3, the virtual subpixel 706 will be visually recognized. Since such a cycle occurs once, it is considered that moire occurs once in L3n.
 まず、前記ディスプレイ上端のサブピクセルに対する前記形状の可視光透過部7041から、ディスプレイ下端のサブピクセルに対する前記形状の可視光透過部7041までの間の、垂直方向において前記連続する前記形状の可視光透過部7041の一単位または前記複数の穴形状の可視光透過部7041の数Mvについて説明する。 First, the continuous visible light transmission of the shape in the vertical direction from the visible light transmission portion 7041 having the shape corresponding to the sub-pixel at the upper end of the display to the visible light transmission portion 7041 having the shape corresponding to the sub-pixel at the lower end of the display. One unit of the portion 7041 or the number Mv of the plurality of hole-shaped visible light transmitting portions 7041 will be described.
 なお、Mvとは、図44(b)において示すように、所定の水平方向モアレ解消位置(L3)の一地点において、画像提示対象者が、ディスプレイ上の同一視点の画像を表示する立体表示用のピクセルを全て視認し、立体画像の効果を得るために必要な、パララックスバリア704の可視光透過部7041の数である。 As shown in FIG. 44B, Mv is for stereoscopic display in which an image presentation target person displays an image of the same viewpoint on a display at one point in a predetermined horizontal moire elimination position (L3). This is the number of visible light transmitting portions 7041 of the parallax barrier 704 necessary for visually recognizing all of the pixels and obtaining a stereoscopic image effect.
 ここにいう、「前記連続する前記形状の可視光透過部7041の一単位の数」とは、例えば、パララックスバリア704の可視光透過部7041であるスリットの形状が楕円弧である場合、当該楕円弧が、同一視点の画像を表示する立体表示用のピクセルの並びに対応した各スリット上にいくつ形成されているかという数を意味する。また。「前記複数の穴形状の可視光透過部7041の数」とは、当該穴形状の可視光透過部7041が、同一視点の画像を表示する立体表示用のピクセルの並びに対応していくつ形成されているかという数を意味する。また、Jrとはディスプレイの垂直解像度を示す。 Here, “the number of units of the visible light transmitting portion 7041 having the continuous shape” means, for example, when the shape of the slit that is the visible light transmitting portion 7041 of the parallax barrier 704 is an elliptical arc. Means the number of the three-dimensional display pixels displaying the image of the same viewpoint on the corresponding slits. Also. “The number of the plurality of hole-shaped visible light transmitting portions 7041” means that the number of the hole-shaped visible light transmitting portions 7041 corresponding to the arrangement of the three-dimensional display pixels displaying the same viewpoint image is formed. It means the number. Jr indicates the vertical resolution of the display.
 従って、Mvは、Jr×βという式によって表すことができる。 Therefore, Mv can be expressed by the equation Jr × β.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 L3nの値を所定の値とした場合に、この値に基づいて、前記垂直方向に連接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hvを求める。 When the value of L3n is a predetermined value, based on this value, the interval Hv between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 connected in the vertical direction is obtained.
 すなわち、図42からもわかるように、[Hv(Mv-1)]:[(Jr-1/β+1)×Pv]とZ:(Z+L3n)の間には以下の式に表されるような関係がある。 That is, as can be seen from FIG. 42, the relationship between [Hv (Mv−1)]: [(Jr−1 / β + 1) × Pv] and Z: (Z + L3n) is expressed by the following equation. There is.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 従って、Hvは以下の式により求めることができる。 Therefore, Hv can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 次に、パララックスバリア704を構成する可視光透過部7041であるスリットのエッジの形状が、階段状もしくは円弧、楕円弧、多角形が連続した形状、または、前記パララックスバリア704を構成する可視光透過部7041の形状が、独立して複数形成された穴形状である場合に、水平方向のモアレが一本発生する位置からパララックスバリア704までの距離であって、遠近二種の該位置のうち、より該パララックスバリア704に遠い位置から、該パララックスバリア704までの所定の距離をL3fの値に基づいて、前記パララックスバリア704の垂直方向に連接する前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の間隔Hvの値を求める方法について説明する。 Next, the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which arcs, elliptical arcs, and polygons are continuous, or visible light constituting the parallax barrier 704. When the shape of the transmission part 7041 is a hole shape formed independently, it is the distance from the position where one moire in the horizontal direction occurs to the parallax barrier 704, and the two kinds of the near and near positions Among them, the continuous visible light having the shape connected to the parallax barrier 704 in a vertical direction based on the value of L3f from a position farther from the parallax barrier 704 to the parallax barrier 704. A method of obtaining the value of the interval Hv between the transmission part 7041 or the plurality of hole-shaped visible light transmission parts 7041 will be described.
 図43において例示する、前記L3fにおいては、画像提示対象者は、所定の横向のモアレ解消位置(L3)と同様に、ディスプレイ下端のサブピクセルをパララックスバリア704の可視光透過部7041を通して視認しているが、視点が上方向にずれるにつれて、L3の地点において本来視認すべきサブピクセルではなく、その下方のサブピクセルを、可視光透過部7041を通して視認することとなる。そして最終的には、L3の地点においてディスプレイ上端のサブピクセルを視認する際に可視光が透過する可視光透過部7041を通して、ディスプレイ上端の下方のサブピクセルを視認することとなる。この様なサイクルが一度発生しているため、L3nにおいてはモアレが一回発生していると考えられる。 In the L3f illustrated in FIG. 43, the image presentation target person visually recognizes the subpixel at the lower end of the display through the visible light transmitting portion 7041 of the parallax barrier 704 in the same manner as the predetermined horizontal moire elimination position (L3). However, as the viewpoint shifts upward, not the sub-pixel that should be visually recognized at the point L3 but the sub-pixel below it is visually recognized through the visible light transmitting portion 7041. Finally, the subpixel below the upper end of the display is viewed through the visible light transmitting portion 7041 through which visible light passes when the subpixel at the upper end of the display is viewed at the point L3. Since such a cycle occurs once, it is considered that moire occurs once in L3n.
 このようなL3fの値を所定の値とした場合に、この値に基づいて、前記垂直方向に連接するパララックスバリア704を構成する複数の可視光透過部7041の間隔Hvを求める。 When such a value of L3f is set to a predetermined value, the interval Hv between the plurality of visible light transmitting portions 7041 constituting the parallax barrier 704 connected in the vertical direction is obtained based on this value.
 すなわち、図43からもわかるように、[Hv×(Mv-1)]:[(Jr-1/β-1)×Pv]とZ:(Z+L3f)の間には以下の式に表されるような関係がある。 That is, as can be seen from FIG. 43, a value between [Hv × (Mv−1)]: [(Jr−1 / β−1) × Pv] and Z: (Z + L3f) is expressed by the following equation. There is a relationship.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 従って、Hvは以下の式により求めることができる。 Therefore, Hv can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 なお、β=2の場合には[Hv×(Mv-1)]と[(Jr-1/β)×Pv]の関係は図45において示すような関係となる。 When β = 2, the relationship between [Hv × (Mv−1)] and [(Jr−1 / β) × Pv] is as shown in FIG.
 前記Hvの値は、垂直方向に連接するサブピクセルの間隔をHpvとした場合に、等式:Hv=Hpv/β(βは自然数)の関係を満足する値であることが望ましい。 The value of Hv is preferably a value that satisfies the relationship of the equation: Hv = Hpv / β (β is a natural number), where Hpv is the interval between subpixels connected in the vertical direction.
 前記L3nおよびL3fの値は、L3の値に基づいて定めることもできる。図46から図48を参照して説明する。 The values of L3n and L3f can be determined based on the value of L3. This will be described with reference to FIGS. 46 to 48. FIG.
 図46において、垂直解像度Jrに、各サブピクセルの高さPvを掛けると、ディスプレイ下端からディスプレイ上端までの距離となる。(Pv×Jr)よって、ディスプレイ下端のサブピクセルの中心から、ディスプレイ上端の上の仮想サブピクセル706の中心までの距離も、(Pv×Jr)と表すことができる。 46, when the vertical resolution Jr is multiplied by the height Pv of each sub-pixel, the distance from the lower end of the display to the upper end of the display is obtained. Therefore, the distance from the center of the subpixel at the lower end of the display to the center of the virtual subpixel 706 above the upper end of the display can also be expressed as (Pv × Jr).
 また、Jrに、垂直方向に連接する可視光透過部7041の間隔Hvを掛けると、モアレ解消位置において、ディスプレイ下端のサブピクセルに対応する可視光透過部7041の中心から、ディスプレイ上端の上の仮想サブピクセル706に対応する可視光透過部7041の中心までの距離となる。(Hv×Jr)
 次に、図47を参照して、前記L3nを求める。
Further, when Jr is multiplied by the interval Hv of the visible light transmitting portion 7041 connected in the vertical direction, at the moire elimination position, from the center of the visible light transmitting portion 7041 corresponding to the sub pixel at the lower end of the display, the virtual above the upper end of the display This is the distance to the center of the visible light transmitting portion 7041 corresponding to the subpixel 706. (Hv x Jr)
Next, referring to FIG. 47, L3n is obtained.
 L3nにおいては、画像提示対象者に垂直方向のモアレが1本視認されるため、垂直方向におけるサブピクセルの数より、画像提示対象者が立体画像を視認する際に透過するパララックスバリア704の可視光透過部7041の数が一つ少ないが、画像提示対象者は、該可視光透過部7041を通して全てのサブピクセルを視認していることとなる。 In L3n, one vertical moiré is visually recognized by the image presentation target person. Therefore, the parallax barrier 704 that is visible when the image presentation target person visually recognizes the stereoscopic image is more visible than the number of subpixels in the vertical direction. Although the number of the light transmission parts 7041 is one, the person who presents the image is viewing all the sub-pixels through the visible light transmission part 7041.
 したがって、L3nは垂直方向におけるモアレ発生のサイクルが一回発生した地点であるといえる。 Therefore, it can be said that L3n is a point where a cycle of moire generation in the vertical direction occurs once.
 すなわち、L3nにおいて、ディスプレイ下端のサブピクセルに対応するパララックスバリア704の可視光透過部7041の中心から、ディスプレイ上端の上の仮想サブピクセル706に対応するパララックスバリア704の可視光透過部7041までの距離は、Hv×(Jr-1)と表す事ができる。 That is, in L3n, from the center of the visible light transmitting portion 7041 of the parallax barrier 704 corresponding to the sub pixel at the lower end of the display to the visible light transmitting portion 7041 of the parallax barrier 704 corresponding to the virtual sub pixel 706 above the upper end of the display. Can be expressed as Hv × (Jr−1).
 ここで、前記(4)の式のHvを、これに代入すると、以下のように表す事ができる。 Here, by substituting Hv in the equation (4) above, it can be expressed as follows.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 また、図47からわかるように、
L3n:(L3n+Z)と
As can be seen from FIG.
L3n: (L3n + Z)
Figure JPOXMLDOC01-appb-M000033
の間には、以下の式に表されるような関係がある。
Figure JPOXMLDOC01-appb-M000033
There is a relationship represented by the following equation.
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
 したがって、L3nは以下の式により表される。
Figure JPOXMLDOC01-appb-M000039
Therefore, L3n is represented by the following equation.
Figure JPOXMLDOC01-appb-M000040
 次に、図48を参照して、L3の値に基づいて、L3fの値を求める。
Figure JPOXMLDOC01-appb-M000040
Next, referring to FIG. 48, the value of L3f is obtained based on the value of L3.
 L3fにおいても、画像提示対象者に垂直方向のモアレが1本視認されるため、垂直方向のサブピクセル数より、画像提示対象者が立体画像を視認する際に透過するパララックスバリア704の可視光透過部7041の数が一つ多いが、画像提示対象者は、該可視光透過部7041を通して全てのサブピクセルを視認していることとなる。 Even in L3f, since one vertical moiré is visually recognized by the image presentation target person, the visible light of the parallax barrier 704 that is transmitted when the image presentation target person visually recognizes the stereoscopic image is determined from the number of vertical subpixels. Although the number of the transmissive portions 7041 is one, the image presentation target person visually recognizes all the sub-pixels through the visible light transmissive portion 7041.
 すなわち、L3fにおいて、ディスプレイ下端のサブピクセルに対応するパララックスバリア704の可視光透過部7041の中心から、ディスプレイ上端の上の仮想サブピクセル706に対応するパララックスバリア704の可視光透過部7041までの距離は、Hv×(Jr+1)と表す事ができる。 That is, in L3f, from the center of the visible light transmitting portion 7041 of the parallax barrier 704 corresponding to the subpixel at the lower end of the display to the visible light transmitting portion 7041 of the parallax barrier 704 corresponding to the virtual subpixel 706 at the upper end of the display. Can be expressed as Hv × (Jr + 1).
 したがって、前記L3nを求める式と同様の考え方をすると、L3fは以下の式により表される。 Therefore, L3f can be expressed by the following equation if the same idea as the equation for obtaining L3n is used.
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 なお、前記L3nから前記L3fまでの範囲が、垂直方向における、モアレ適正解消領域である。 Note that the range from the L3n to the L3f is a moire appropriate elimination region in the vertical direction.
 ここで、フルハイビジョン40インチの裸眼立体ディスプレイの場合における実施形態を示す。この場合に、水平解像度Irは1920とし、垂直解像度Jrは1080とする。 Here, an embodiment in the case of a full-vision 40-inch autostereoscopic display will be described. In this case, the horizontal resolution Ir is 1920 and the vertical resolution Jr is 1080.
 サブピクセルの横幅Phは0.15375mm、パララックスバリア704から最適立体可視位置までの距離L1は2500mm、視点数Nは5視点、画像提示対象者の左右の目の瞳間の距離Wは65mm、水平解像度Irは1920、垂直解像度Jrは1080とする。また、パララックスバリア704から斜め方向および水平方向のモアレ解消位置までの距離L2およびL3も2500mmとする。なお、当該実施例においてはL1、L2、L3は同じ値であるが、必ずしもL1、L2、L3は同じ値である必要はない。 The horizontal width Ph of the subpixel is 0.15375 mm, the distance L1 from the parallax barrier 704 to the optimal stereoscopic view position is 2500 mm, the number of viewpoints N is 5, and the distance W between the eyes of the left and right eyes of the image presentation subject is 65 mm. The horizontal resolution Ir is 1920, and the vertical resolution Jr is 1080. Further, the distances L2 and L3 from the parallax barrier 704 to the moire elimination positions in the oblique direction and the horizontal direction are also set to 2500 mm. In this embodiment, L1, L2, and L3 are the same value, but L1, L2, and L3 are not necessarily the same value.
 また、隣り合う視点の画像を表示する立体表示用のピクセルの中心間の距離αPhは1Phとし、パララックスバリア704の可視光透過部7041を通して画像提示対象者の片眼で視認される有効可視領域の幅Vhは1.2Phとする。 Further, the distance αPh between the centers of the stereoscopic display pixels that display the images of the adjacent viewpoints is 1 Ph, and the effective visible region that is visually recognized with one eye of the image presentation target person through the visible light transmitting portion 7041 of the parallax barrier 704. The width Vh is 1.2 Ph.
 したがって、αPhとVhの値は以下の値である。 Therefore, the values of αPh and Vh are as follows.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 次に、前記距離Zの値が以下の式により求まる。 Next, the value of the distance Z is obtained by the following formula.
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
 次に、求められたZ、Vhの値に基づきShを求める。
Figure JPOXMLDOC01-appb-M000045
Next, Sh is obtained based on the obtained values of Z and Vh.
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 なお、Vhに対して、Shがどれだけ短いかは以下の式の通りである。 Note that how short Sh is with respect to Vh is as follows.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 次に、パララックスバリア704を構成する可視光透過部7041であるスリットのエッジの形状が、階段状もしくは円弧、楕円弧、多角形が連続した形状、または、前記パララックスバリア704を構成する可視光透過部7041の形状が、独立して複数形成された穴形状である場合に、前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の高さSvの値を求める。 Next, the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which arcs, elliptical arcs, and polygons are continuous, or visible light constituting the parallax barrier 704. When the shape of the transmitting portion 7041 is a hole shape formed independently, the value of the height Sv of the visible light transmitting portion 7041 having the continuous shape or the visible light transmitting portion 7041 having the plurality of holes. Ask for.
 パララックスバリア704の有効可視領域の高さVvの値は、ε×Pvとする。なお、εとは、Svを通して視認することのできるサブピクセルの範囲、すなわちサブピクセルの高さPvにおける有効可視領域の高さVvの割合を示す係数である。垂直方向におけるパララックスバリア704の開口率と言い換えることもできる。本実施例においてεは0.9とする。 The value of the height Vv of the effective visible region of the parallax barrier 704 is ε × Pv. Note that ε is a coefficient indicating the range of the sub-pixels visible through Sv, that is, the ratio of the height Vv of the effective visible region to the sub-pixel height Pv. In other words, the aperture ratio of the parallax barrier 704 in the vertical direction. In this embodiment, ε is 0.9.
 またここでは、RGBの3個のサブピクセルにおいて1画素が構成される裸眼立体ディスプレイであって、1画素が正方形である場合を想定しPvは3Ph(=0.46125)とする。 Further, here, it is assumed that the display is an autostereoscopic display in which one pixel is composed of three RGB sub-pixels, and Pv is 3Ph (= 0.40625) assuming that one pixel is a square.
 また、一のサブピクセルに対応する、連続する前記形状の可視光透過部7041の一単位または前記複数の穴形状の可視光透過部7041の上下方向の数βは1とする。 Also, one unit of the visible light transmitting portion 7041 having the above-described shape corresponding to one subpixel or the number β in the vertical direction of the plurality of hole-shaped visible light transmitting portions 7041 is 1.
 したがって、Vvの値は、以下の値となる。 Therefore, the value of Vv is as follows.
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 また、Svの値は、以下の値となる。 Moreover, the value of Sv is the following value.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 なお、Vvの値に対して、Svがどれだけ短いかは、以下の式の通りである。 It should be noted that how short Sv is with respect to the value of Vv is as follows.
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
 次に、所定の斜め方向モアレ解消位置からパララックスバリア704までの距離をL2の値に基づいて、水平方向に隣接する該パララックスバリア704を構成する複数のスリット領域の間隔Hhを以下のように求める。 Next, based on the value of the distance L2 from the predetermined oblique moire elimination position to the parallax barrier 704, the interval Hh between the plurality of slit regions constituting the parallax barrier 704 adjacent in the horizontal direction is as follows. Ask for.
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000053
 なお、N×αPhに対して、Hhがどれだけ短いかは以下の式の通りである。 Note that how short Hh is with respect to N × αPh is as follows.
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000054
 また、水平方向に隣接するパララックスバリア704を構成する複数のスリット領域の間隔Hhの値は、斜め方向のモアレが一本発生する位置からパララックスバリア704までの距離であって、遠近二種の該位置のうち、より該パララックスバリア704に近い位置から該パララックスバリア704までの所定の距離L2n、または、より該パララックスバリアに遠い位置から該パララックスバリア704までの所定の距離L2fの値からも求めることができる。 In addition, the value of the interval Hh between the plurality of slit regions constituting the parallax barrier 704 adjacent in the horizontal direction is the distance from the position where one moire in the oblique direction occurs to the parallax barrier 704, and two kinds of perspective , A predetermined distance L2n from a position closer to the parallax barrier 704 to the parallax barrier 704, or a predetermined distance L2f from a position further to the parallax barrier 704 to the parallax barrier 704. It can also be obtained from the value of.
 一例として、該L2nの所定の値を1000mm、該L2fの値を3000mmとして前記Hhの値を求める。 As an example, the value of Hh is obtained by setting the predetermined value of L2n to 1000 mm and the value of L2f to 3000 mm.
 まず、所定の斜め方向モアレ解消位置における、前記ディスプレイ左端のRGB階段配置画素ユニットに対する前記パララックスバリア704の可視光透過部7041から、ディスプレイ右端のRGB階段配置画素ユニットに対する前記パララックスバリア704の可視光透過部7041までの間の、水平方向における可視光透過部7041の数Mhの値は以下の式により求めることができる。 First, from a visible light transmitting portion 7041 of the parallax barrier 704 to the RGB staircase arrangement pixel unit at the left end of the display at a predetermined oblique moiré elimination position, the parallax barrier 704 is visible to the RGB staircase arrangement pixel unit at the right end of the display. The value of the number Mh of visible light transmitting portions 7041 in the horizontal direction between the light transmitting portions 7041 can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000056
 従って、前記L2nの値(1000mm)の値に基づいて、前記Hhの値は以下の式により求めることができる。 Therefore, based on the value of L2n (1000 mm), the value of Hh can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000058
 また、前記L2fの値(3000mm)の値に基づいて、前記Hhの値は以下の式により求めることができる。 Further, based on the value of L2f (3000 mm), the value of Hh can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000060
 なお、前記L2nの値は、前記斜め方向のモアレ解消位置L2の値に基づいて定めることもできる。 Note that the value of L2n can be determined based on the value of the moire elimination position L2 in the oblique direction.
 すなわち、前記L2の値を2500mmとした場合、前記L2nは以下の値となる。 That is, when the value of L2 is 2500 mm, the value of L2n is as follows.
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000062
Figure JPOXMLDOC01-appb-M000062
 また、前記L2fの値は、前記斜め方向のモアレ解消位置L2の値に基づいて定めることもできる。 Also, the value of L2f can be determined based on the value of the moire elimination position L2 in the oblique direction.
 すなわち、前記L2の値を2500mmとした場合、前記L2fは以下の値となる。 That is, when the value of L2 is 2500 mm, the value of L2f is as follows.
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000064
Figure JPOXMLDOC01-appb-M000064
 次に、パララックスバリア704を構成する可視光透過部7041であるスリットのエッジの形状が、階段状もしくは円弧、楕円弧、多角形が連続した形状、または、前記パララックスバリア704を構成する可視光透過部7041の形状が、独立して複数形成された穴形状である場合の、垂直方向に連接する、前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の間隔Hvの値を以下のように求める。 Next, the shape of the edge of the slit which is the visible light transmitting portion 7041 constituting the parallax barrier 704 is a stepped shape or a shape in which arcs, elliptical arcs, and polygons are continuous, or visible light constituting the parallax barrier 704. When the shape of the transmissive portion 7041 is a hole shape formed independently, the visible light transmissive portion 7041 having the continuous shape or the visible light transmissive portion 7041 having the plurality of holes connected in the vertical direction. The value of the interval Hv is obtained as follows.
 なお、本実施例において、パララックスバリア704の可視光透過部7041は、1のサブピクセルに対し、1つずつ設けられているものとし、前記βの値は1とする。 In this embodiment, it is assumed that one visible light transmitting portion 7041 of the parallax barrier 704 is provided for each subpixel, and the value of β is 1.
 よって、前記Hvの値は、以下のように求めることができる。 Therefore, the value of Hv can be obtained as follows.
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000066
 なお、Pvの値に対して、Hvがどれだけ短いかは、以下の式の通りである。 Note that how short Hv is with respect to the value of Pv is as follows.
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000067
 また、垂直方向に連接する、前記連続する前記形状の可視光透過部7041または前記複数の穴形状の可視光透過部7041の間隔Hvの値は、水平方向のモアレが一本発生する位置からパララックスバリア704までの距離であって、遠近二種の該位置のうち、より該パララックスバリア704に近い位置から該パララックスバリア704までの所定の距離L3n、または、より該パララックスバリア704に遠い位置から、該パララックスバリア704までの所定の距離をL3fの値に基づいて求めることもできる。 Further, the value of the interval Hv between the continuous visible light transmitting portions 7041 or the plurality of hole-shaped visible light transmitting portions 7041 connected in the vertical direction varies from the position where one horizontal moire occurs. It is a distance to the lux barrier 704, and a predetermined distance L3n from a position closer to the parallax barrier 704 to the parallax barrier 704, or more to the parallax barrier 704. A predetermined distance from a distant position to the parallax barrier 704 can also be obtained based on the value of L3f.
 一例として、該L3nの所定の値を1000mm、該L3fの値を3000mmとして前記Hvの値を求める。 As an example, the value of Hv is obtained by setting the predetermined value of L3n to 1000 mm and the value of L3f to 3000 mm.
 本実施例において前記β値は1とするため、所定の水平方向モアレ解消位置における、ディスプレイ上端のサブピクセルに対する前記形状の可視光透過部7041から、ディスプレイ下端のサブピクセルに対する前記形状の可視光透過部7041までの間の、垂直方向において前記連続する前記形状の可視光透過部7041の一単位または前記複数の穴形状の可視光透過部7041の数Mvの値は以下の値となる。 In the present embodiment, since the β value is 1, the visible light transmission portion 7041 having the shape corresponding to the sub pixel at the upper end of the display from the visible light transmitting portion 7041 corresponding to the sub pixel at the upper end of the display at the predetermined horizontal direction moire elimination position. The unit Mv of the visible light transmitting portion 7041 having the continuous shape in the vertical direction up to the portion 7041 or the number Mv of the plurality of hole-shaped visible light transmitting portions 7041 is as follows.
Figure JPOXMLDOC01-appb-M000068
Figure JPOXMLDOC01-appb-M000068
Figure JPOXMLDOC01-appb-M000069
Figure JPOXMLDOC01-appb-M000069
 前記L3nの値(1000mm)の値に基づいて、前記Hvの値は以下の式により求めることができる。 Based on the value of L3n (1000 mm), the value of Hv can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000070
Figure JPOXMLDOC01-appb-M000070
Figure JPOXMLDOC01-appb-M000071
Figure JPOXMLDOC01-appb-M000071
 また、前記L3fの値(3000mm)の値に基づいて、前記Hvの値は以下の式により求めることができる。 Further, based on the value of L3f (3000 mm), the value of Hv can be obtained by the following equation.
Figure JPOXMLDOC01-appb-M000072
Figure JPOXMLDOC01-appb-M000072
Figure JPOXMLDOC01-appb-M000073
Figure JPOXMLDOC01-appb-M000073
 なお、前記L3nの値は、前記水平方向のモアレ解消位置L3の値に基づいて定めることもできる。 Note that the value of L3n can be determined based on the value of the moire elimination position L3 in the horizontal direction.
 すなわち、前記L3の値を2500mmとした場合、前記L3nは以下の値となる。 That is, when the value of L3 is 2500 mm, L3n is as follows.
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000075
Figure JPOXMLDOC01-appb-M000075
 なお、前記L3fの値は、前記水平方向のモアレ解消位置L3の値に基づいて定めることもできる。 Note that the value of L3f can also be determined based on the value of the moire elimination position L3 in the horizontal direction.
 すなわち、前記L3の値を2500mmとした場合、前記L3fは以下の値となる。 That is, when the value of L3 is 2500 mm, the value of L3f is as follows.
Figure JPOXMLDOC01-appb-M000076
Figure JPOXMLDOC01-appb-M000076
Figure JPOXMLDOC01-appb-M000077
Figure JPOXMLDOC01-appb-M000077
 次に、適正立体可視領域を求める。 Next, an appropriate stereoscopic visible region is obtained.
 適正立体可視領域の最短距離L1nは以下の値となる。 The shortest distance L1n of the appropriate stereoscopic visible region is the following value.
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
Figure JPOXMLDOC01-appb-M000079
 適正立体可視領域の最長距離L1fは以下の値となる。 The longest distance L1f of the appropriate stereoscopic visible region is the following value.
Figure JPOXMLDOC01-appb-M000080
Figure JPOXMLDOC01-appb-M000080
Figure JPOXMLDOC01-appb-M000081
Figure JPOXMLDOC01-appb-M000081
 したがって、適正立体可視領域は2078mm~4988mmとなる。 Therefore, the appropriate stereoscopic visible region is 2078 mm to 4988 mm.
 なお、このようにVhを1.2Phとして計算する場合、L1n:L1は、およそ0.8:1の関係となる。 In addition, when calculating Vh as 1.2 Ph in this way, L1n: L1 has a relationship of approximately 0.8: 1.
 ここで、フルハイビジョン40インチの裸眼立体ディスプレイの場合における、第二の実施例を記載する。 Here, a second embodiment in the case of a full-high vision 40-inch autostereoscopic display will be described.
 第二の実施例では、前記L1n(最適立体可視領域までの最短距離)と、前記L2n(斜め方向のモアレ適正解消領域までの最短距離)、前記L3n(水平方向のモアレ適正解消領域までの最短距離)が同一距離に設定されている場合について説明する。 In the second embodiment, the L1n (the shortest distance to the optimum stereoscopic visible region), the L2n (the shortest distance to the moire appropriate elimination area in the oblique direction), and the L3n (the shortest distance to the moire appropriate elimination area in the horizontal direction). A case will be described in which (distance) is set to the same distance.
 なお、L1n、L2n、L3nは、前述したように、それぞれ別の概念であるため、本実施例に挙げるように、これら全てが同一距離の設定されている場合に限定されるものではない。 Since L1n, L2n, and L3n are different concepts as described above, they are not limited to the case where all of them are set to the same distance as described in the present embodiment.
 この場合も第一の実施例と同様に、水平解像度Irは1920、垂直解像度Jrは1080、サブピクセルの横幅Phは0.15375mm、サブピクセルの高さは、0.46125mm、視点数Nは5視点、画像提示対象者の左右の目の瞳間の距離Wは65mm、パララックスバリア704から最適立体可視位置までの距離は2500mm、隣り合う視点の画像を表示する立体表示用のピクセルの中心間の距離αPhは0.15375mm、パララックスバリア704の可視光透過部7041を通して画像提示対象者の片眼で視認される有効可視領域の幅Vhは0.1845mm、パララックスバリア704の可視光透過部7041を通して画像提示対象者に視認される有効可視領域の高さVvは0.415125mmとする。 In this case, as in the first embodiment, the horizontal resolution Ir is 1920, the vertical resolution Jr is 1080, the horizontal width Ph of the subpixel is 0.15375 mm, the height of the subpixel is 0.46125 mm, and the number of viewpoints N is 5. The distance W between the pupils of the right and left eyes of the viewpoint and the image presentation subject is 65 mm, the distance from the parallax barrier 704 to the optimum stereoscopic view position is 2500 mm, and between the centers of the pixels for stereoscopic display displaying the images of the adjacent viewpoints The distance αPh is 0.15375 mm, the width Vh of the effective visible region visually recognized with one eye of the image presentation subject through the visible light transmitting portion 7041 of the parallax barrier 704 is 0.1845 mm, and the visible light transmitting portion of the parallax barrier 704 The height Vv of the effective visible region visually recognized by the image presentation target person through 7041 is 0.415125 mm.
 また、所定の斜め方向モアレ解消位置における、前記ディスプレイ左端のRGB階段配置画素ブロックに対する前記パララックスバリア704の可視光透過部7041から、ディスプレイ右端のRGB階段配置画素ブロックに対する前記パララックスバリア704の可視光透過部7041までの間の、水平方向における可視光透過部7041の数Mhの値は1152個、一のサブピクセルに対応する可視光透過部7041の左右方向の数γは1、一のサブピクセルに対応する連続する前記形状の可視光透過部7041の一単位または前記複数の穴形状の可視光透過部7041の上下方向の数βは1とする。 In addition, from a visible light transmitting portion 7041 of the parallax barrier 704 to the RGB staircase arranged pixel block at the left end of the display at a predetermined oblique direction moire elimination position, the parallax barrier 704 is visible to the RGB staircase arranged pixel block at the right end of the display. The number Mh of the visible light transmitting portions 7041 in the horizontal direction up to the light transmitting portion 7041 is 1152, the number γ in the left-right direction of the visible light transmitting portion 7041 corresponding to one subpixel is 1, and one sub A unit β of the visible light transmitting portion 7041 having the shape corresponding to the pixel or the number β in the vertical direction of the plurality of hole-shaped visible light transmitting portions 7041 is 1.
 まず、L1nであるが、L1nは前記Z、W、Vhを用いた以下の式により求めることができる。 First, it is L1n, but L1n can be obtained by the following equation using Z, W, and Vh.
Figure JPOXMLDOC01-appb-M000082
Figure JPOXMLDOC01-appb-M000082
 従って、L1nは、以下の値となる。 Therefore, L1n has the following value.
Figure JPOXMLDOC01-appb-M000083
Figure JPOXMLDOC01-appb-M000083
 なお、この場合L1f(適正立体可視位領域までの最長距離)は以下の値となる。 In this case, L1f (the longest distance to the appropriate stereoscopic visible region) is the following value.
Figure JPOXMLDOC01-appb-M000084
Figure JPOXMLDOC01-appb-M000084
Figure JPOXMLDOC01-appb-M000085
Figure JPOXMLDOC01-appb-M000085
 すなわち、適正立体可視領域は、2078mm~4988mmである。 That is, the appropriate stereoscopic visible region is 2078 mm to 4988 mm.
 そこで、前記L2nと前記L3nも、L1nと同一の距離である2078mmに設定されているものとする。 Therefore, it is assumed that L2n and L3n are also set to 2078 mm, which is the same distance as L1n.
 次に、ディスプレイの画像表示面からパララックスバリア704までの距離Zを求める。 Next, the distance Z from the image display surface of the display to the parallax barrier 704 is obtained.
 前記Zの値は、L1nの値に基づいて求めることができる。 The value of Z can be obtained based on the value of L1n.
Figure JPOXMLDOC01-appb-M000086
Figure JPOXMLDOC01-appb-M000086
 従って、Zは、以下の値となる。 Therefore, Z has the following value.
Figure JPOXMLDOC01-appb-M000087
Figure JPOXMLDOC01-appb-M000087
 次に、前記水平方向に隣接する可視光透過部7041の間隔Hhを求める。 Next, an interval Hh between visible light transmitting portions 7041 adjacent in the horizontal direction is obtained.
 前記Hhの値は、L2nの値に基づいて求めることができる。 The value of Hh can be obtained based on the value of L2n.
Figure JPOXMLDOC01-appb-M000088
 従って、Hhは、以下の値となる。
Figure JPOXMLDOC01-appb-M000088
Therefore, Hh has the following value.
Figure JPOXMLDOC01-appb-M000089
Figure JPOXMLDOC01-appb-M000089
 次に、前記垂直方向に連接する可視光透過部7041の間隔Hvを求める。 Next, an interval Hv between the visible light transmitting portions 7041 connected in the vertical direction is obtained.
 前記Hvの値は、L3nの値に基づいて求めることができる。 The value of Hv can be obtained based on the value of L3n.
Figure JPOXMLDOC01-appb-M000090
Figure JPOXMLDOC01-appb-M000090
 従って、Hvは、以下の値となる。 Therefore, Hv has the following value.
Figure JPOXMLDOC01-appb-M000091
Figure JPOXMLDOC01-appb-M000091
 次に、パララックスバリア704の可視光透過部7041の幅Shを求める。 Next, the width Sh of the visible light transmitting portion 7041 of the parallax barrier 704 is obtained.
 前記Shの値は、以下の式に基づいて求めることができる。 The value of Sh can be obtained based on the following equation.
Figure JPOXMLDOC01-appb-M000092
Figure JPOXMLDOC01-appb-M000092
 従って、Shは、以下の値となる。 Therefore, Sh has the following value.
Figure JPOXMLDOC01-appb-M000093
Figure JPOXMLDOC01-appb-M000093
 次に、パララックスバリア704の可視光透過部7041の高さSvを求める。 Next, the height Sv of the visible light transmitting portion 7041 of the parallax barrier 704 is obtained.
 前記Svの値は、以下の式に基づいて求めることができる。 The value of Sv can be obtained based on the following equation.
Figure JPOXMLDOC01-appb-M000094
 従って、Svは、以下の値となる。
Figure JPOXMLDOC01-appb-M000094
Accordingly, Sv has the following value.
Figure JPOXMLDOC01-appb-M000095
Figure JPOXMLDOC01-appb-M000095
 図49~図54は、パララックスバリア704のスリットの形状の一例について説明する図である。 49 to 54 are diagrams for explaining an example of the shape of the slit of the parallax barrier 704. FIG.
 図49は、スリットのエッジの形状が階段状である場合を示す図である。ここで、スリットのエッジの形状が階段状である場合とは、図49(a)に示すような場合を言い、スリットのエッジの形状が円弧である場合とは、図49(b)において示すような場合を言う。 FIG. 49 is a diagram showing a case where the shape of the edge of the slit is stepped. Here, the case where the shape of the edge of the slit is stepped means the case as shown in FIG. 49A, and the case where the shape of the edge of the slit is an arc is shown in FIG. 49B. Say such a case.
 また、スリットのエッジの形状が楕円弧である場合とは、図50(a)(b)において一例として示すような場合を言う。 Further, the case where the shape of the edge of the slit is an elliptical arc refers to a case as shown as an example in FIGS. 50 (a) and 50 (b).
 また、スリットのエッジの形状が多角形の開口部が連続した形状である場合とは、図51(a)(b)において一例として示すような場合を言う。 Also, the case where the shape of the slit edge is a shape in which polygonal openings are continuous refers to a case as shown as an example in FIGS. 51 (a) and 51 (b).
 また、可視光透過部7041の形状が独立して複数形成された穴形状の開口部である場合とは、図52、図53および図54において一例として示すように該可視光透過部7041の周囲がパララックスバリア704のマスク部によって囲まれた穴である状態のことである。 Further, the case where the visible light transmitting portion 7041 is a hole-shaped opening formed with a plurality of independent shapes is the periphery of the visible light transmitting portion 7041 as shown as an example in FIGS. 52, 53, and 54. Is a hole surrounded by the mask portion of the parallax barrier 704.
 本発明の実施形態についての説明は以上であるが、本発明は上記実施形態に限定されるものではなく、請求項に示した範囲で種々の組み合わせが可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The description of the embodiments of the present invention has been given above, but the present invention is not limited to the above-described embodiments, and various combinations are possible within the scope shown in the claims, and are disclosed in different embodiments. Embodiments obtained by appropriately combining technical means are also included in the technical scope of the present invention.
 本発明により、立体技術の発展に最適な実用性に富んだ立体画像表示システムを非常に安価な価格で提供することが可能となる。 The present invention makes it possible to provide a highly practical stereoscopic image display system that is optimal for the development of stereoscopic technology at a very low price.
101 中間画像生成装置
1011 中央処理装置(その1)
1012 記憶装置(その1)
201 立体画像生成装置
2011 中央処理装置(その2)
2012 記憶装置(その2)
301 立体画像生成システム
3011 第一の情報処理装置
30111 中央処理装置(その3)
30112 記憶装置(その3)
30113 圧縮装置
30114 送信装置
3012 第二の情報処理装置
30121 中央処理装置(その4)
30122 記憶装置(その4)
30123 解凍装置
30124 受信装置
401 中間画像
4011 RGB並列配置画素ユニット
4012 画像フレーム
4013 中間画像生成テーブル
4014 画素情報
4015 画素マトリクス
501 立体画像
5011 RGB階段配置画素ユニット
5012 RGB階段配置画素ブロック
5013 立体画像生成テーブル
601 視点画像
701 立体画像表示装置
702 映像ケーブル
703 制御ケーブル
704 パララックスバリア
7041 可視光透過部
705 仮想画素
706 仮想サブピクセル
707 立体表示用のピクセル
708 第1のビューポイント
709 第2のビューポイント
710 第3のビューポイント
801 カメラ
8011 注視点
8012 対象物
1001 画像出力装置
101 Intermediate Image Generation Device 1011 Central Processing Unit (Part 1)
1012 Storage device (1)
201 stereoscopic image generation apparatus 2011 central processing unit (2)
2012 Storage device (2)
301 stereoscopic image generation system 3011 first information processing apparatus 30111 central processing unit (part 3)
30112 Storage device (3)
30113 Compression device 30114 Transmission device 3012 Second information processing device 30121 Central processing unit (Part 4)
30122 Storage device (part 4)
30123 Decompression device 30124 Reception device 401 Intermediate image 4011 RGB parallel arrangement pixel unit 4012 Image frame 4013 Intermediate image generation table 4014 Pixel information 4015 Pixel matrix 501 Stereo image 5011 RGB staircase arrangement pixel unit 5012 RGB staircase arrangement pixel block 5013 Stereo image generation table 601 Viewpoint image 701 Stereoscopic image display device 702 Video cable 703 Control cable 704 Parallax barrier 7041 Visible light transmission unit 705 Virtual pixel 706 Virtual subpixel 707 Stereoscopic display pixel 708 First viewpoint 709 Second viewpoint 710 Third Viewpoint 801 Camera 8011 Gaze point 8012 Object 1001 Image output device

Claims (20)

  1.  1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、
     RGBYからなるサブピクセルが斜め方向にコーナーで接して4行で配列されたRGBY階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGBY階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、
     該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGBY値から補間して求め、
     該RGBY階段配置画素ユニットを構成するサブピクセルを水平方向にRGBYの順に並べて配列したRGBY並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、
     該立体画像の該RGBY階段配置画素ユニットと該複数の中間画像の該RGBY並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となる
    ことを特徴とする中間画像生成方法。
    An intermediate image generation method for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints,
    RGBY staircase-arranged pixel units in which RGBY sub-pixels are arranged in 4 rows diagonally in contact with corners in an oblique direction, and RGBY staircase-arranged pixel blocks in which the 1 to N viewpoints are connected in a horizontal direction are repeatedly arranged. In order to generate the stereoscopic image,
    The plurality of viewpoint images in which the R value, G value, B value, and Y value of each of the sub-pixels constituting the RGBY staircase-arranged pixel unit correspond to the arrangement positions of the sub-pixels that constitute the RGBY staircase-arranged pixel unit. And interpolating from RGBY values of sub-pixels constituting at least one pixel unit arranged in the vicinity of the corresponding position in
    An RGBY parallel arrangement pixel unit in which subpixels constituting the RGBY staircase arrangement pixel unit are arranged in the order of RGBY in the horizontal direction is arranged in accordance with an arrangement rule for collectively arranging the plurality of viewpoints. By generating the intermediate image of
    An intermediate image generation method, wherein the total number of RGBY staircase arranged pixel units of the stereoscopic image and the plurality of intermediate image RGBY parallel arranged pixel units, or the total number of subpixels constituting each of them are the same.
  2.  前記RGBY階段配置画素ユニットは、
     各行毎のサブピクセルが1列であり、R値、G値、B値、Y値を有する4個の該サブピクセルから構成されており、
     前記RGBY並列配置画素ユニットは、
     1行に、該4個のサブピクセルがRGBYの順に4列並べて配列されている
    ことを特徴とする請求項1記載の中間画像生成方法。
    The RGBY staircase arrangement pixel unit is:
    The subpixel for each row is one column, and is composed of four subpixels having R value, G value, B value, and Y value,
    The RGBY parallel arrangement pixel unit is:
    2. The intermediate image generation method according to claim 1, wherein the four sub-pixels are arranged in four rows in the order of RGBY in one row.
  3.  前記RGBY階段配置画素ユニットは、
     各行毎のサブピクセルが2列であり、該2列の各列はR値、G値、B値、Y値を有する4個の該サブピクセルから構成されており、
     前記RGBY並列配置画素ユニットは、
     1行に、該RGBY階段配置画素ユニットの第一列に4行で配列された4個のサブピクセルがRGBYの順に4列並べて配列され、該配列に水平方向に連接して、該RGBY階段配置画素ユニットの第二列に4行で配列された4個のサブピクセルがRGBYの順に4列並べて配列されている
    ことを特徴とする請求項1記載の中間画像生成方法。
    The RGBY staircase arrangement pixel unit is:
    There are two columns of subpixels for each row, and each column of the two columns is composed of four subpixels having an R value, a G value, a B value, and a Y value.
    The RGBY parallel arrangement pixel unit is:
    In one row, four subpixels arranged in four rows in the first column of the RGBY staircase arrangement pixel unit are arranged in four rows in the order of RGBY, and the RGBY staircase arrangement is connected to the arrangement in the horizontal direction. 2. The intermediate image generating method according to claim 1, wherein four sub-pixels arranged in four rows in the second column of the pixel unit are arranged in four columns in the order of RGBY.
  4.  前記RGBY階段配置画素ユニットは、
     各行毎のサブピクセルが3列であり、該3列の各列はR値、G値、B値、Y値を有する4個の該サブピクセルから構成されており、
     前記RGBY並列配置画素ユニットは、
     1行に、該RGBY階段配置画素ユニットの第一列に4行で配列された4個のサブピクセルがRGBYの順に並べて配列され、該配列に水平方向に連接して、該RGBY階段配置画素ユニットの第二列に4行で配列された4個のサブピクセルがRGBYの順に並べて配列され、該配列にさらに連接して、該RGBY階段配置画素ユニットの第三列に配列された4個のサブピクセルがRGBYの順に並べて配列されている
    ことを特徴とする請求項1記載の中間画像生成方法。
    The RGBY staircase arrangement pixel unit is:
    There are three subpixels for each row, and each column of the three columns is composed of four subpixels having an R value, a G value, a B value, and a Y value.
    The RGBY parallel arrangement pixel unit is:
    In one row, four sub-pixels arranged in four rows in the first column of the RGBY staircase-arranged pixel unit are arranged in the order of RGBY, and are connected in the horizontal direction to the RGBY staircase-arranged pixel unit. 4 sub-pixels arranged in 4 rows in the second column of the RGBY are arranged in the order of RGBY, and are further connected to the 4 sub-pixels arranged in the third column of the RGBY staircase arrangement pixel unit. 2. The intermediate image generation method according to claim 1, wherein the pixels are arranged in the order of RGBY.
  5.  前記RGBY階段配置画素ユニットは、
     各行毎のサブピクセルが4列であり、該4列の各列はR値、G値、B値、Y値を有する4個の該サブピクセルから構成されており、
     前記RGBY並列配置画素ユニットは、
     1行に、該RGBY階段配置画素ユニットの第一列に4行で配列された4個のサブピクセルがRGBYの順に並べて配列され、該配列に水平方向に連接して、該RGBY階段配置画素ユニットの第二列に4行で配列された4個のサブピクセルがRGBYの順に並べて配列され、該配列にさらに連接して、該RGBY階段配置画素ユニットの第三列に配列された4個のサブピクセルがRGBYの順に並べて配列され、RGBY並列配置画素ユニットの場合、該配列にさらに連接して、該RGBY階段配置画素ユニットの第四列に配列された4個のサブピクセルがRGBYの順に並べて配列されている
    ことを特徴とする請求項1記載の中間画像生成方法。
    The RGBY staircase arrangement pixel unit is:
    There are four subpixels for each row, and each column of the four columns is composed of four subpixels having an R value, a G value, a B value, and a Y value.
    The RGBY parallel arrangement pixel unit is:
    In one row, four sub-pixels arranged in four rows in the first column of the RGBY staircase-arranged pixel unit are arranged in the order of RGBY, and are connected in the horizontal direction to the RGBY staircase-arranged pixel unit. 4 sub-pixels arranged in 4 rows in the second column of the RGBY are arranged in the order of RGBY, and are further connected to the 4 sub-pixels arranged in the third column of the RGBY staircase arrangement pixel unit. The pixels are arranged in the order of RGBY, and in the case of the RGBY parallel arrangement pixel unit, the four subpixels arranged in the fourth column of the RGBY staircase arrangement pixel unit are arranged in the order of RGBY. The intermediate image generation method according to claim 1, wherein:
  6.  前記複数の中間画像を、画像フレームとして少なくとも縦方向に四等分割された第一行乃至第四行からなる複数のタイル状に配置することによって、
     前記RGBY階段配置画素ユニットを構成するサブピクセルと、前記RGBY並列配置画素ユニットを構成するサブピクセルと、が、
     前記立体画像と該複数の中間画像が配置された該画像フレームにおいて、縦横方向ともに同数となる
    ことを特徴とする請求項1記載の中間画像生成方法。
    By arranging the plurality of intermediate images in a plurality of tiles composed of a first row to a fourth row that are at least vertically divided into four as image frames,
    Subpixels constituting the RGBY staircase arranged pixel unit, and subpixels constituting the RGBY parallel arranged pixel unit,
    The intermediate image generation method according to claim 1, wherein the number of the stereoscopic images and the plurality of intermediate images are the same in both vertical and horizontal directions.
  7.  前記RGBY並列配置画素ユニットであって、
     前記複数の視点が2視点である場合においては、前記第一行および第二行のタイルに1視点の前記中間画像と、前記第三行および第四行のタイルに2視点の該中間画像を、
    前記複数の視点が3視点である場合においては、前記第一行のタイルに1視点の該中間画像の3/4と、前記第二行の第1のタイルに1視点の該中間画像の1/4と、これに連接した第2のタイルに2視点の該中間画像の1/2と、前記第三行の第1のタイルに2視点の該中間画像の1/2と、これに連接した第2のタイルに3視点の該中間画像の1/4と、前記第四行のタイルに2視点の該中間画像の3/4を、
     前記複数の視点が4視点である場合においては、各行のタイルに各視点の中間画像を、
    前記複数の視点が5~8視点である場合においては、各行の先頭のタイルに1~4視点の該中間画像と、1~4視点の該中間画像に連接した第一行から第四行に配置されたタイルに残りの視点の該中間画像を、
     前記複数の視点が9~12視点である場合においては、各行の先頭のタイルに1~4視点の該中間画像と、1~4視点の該中間画像に連接した該第一行から該第四行のタイルに5~8視点の該中間画像と、9~12視点の該中間画像に連接した第一行から第四行に配置されたタイルに残りの視点の該中間画像を、
    配置し、
     前記複数の視点が13視点以上である場合においては、同様に1視点から順に各行のタイルに該中間画像の一部または全部を配置する
    ことを特徴とする請求項5記載の中間画像生成方法。
    The RGBY parallel arrangement pixel unit,
    When the plurality of viewpoints are two viewpoints, the intermediate image of one viewpoint is assigned to the tiles of the first row and the second row, and the intermediate image of two viewpoints is assigned to the tiles of the third row and the fourth row. ,
    In the case where the plurality of viewpoints are three viewpoints, 3/4 of the intermediate image of one viewpoint in the first row tile and 1 of the intermediate image of one viewpoint in the first tile of the second row. / 4, 1/2 of the intermediate image of 2 viewpoints to the second tile connected to this, 1/2 of the intermediate image of 2 viewpoints to the first tile of the third row, and connected to this 1/4 of the intermediate image of 3 viewpoints in the second tile, and 3/4 of the intermediate image of 2 viewpoints in the fourth row tile,
    In the case where the plurality of viewpoints are four viewpoints, an intermediate image of each viewpoint is displayed on each row tile.
    When the plurality of viewpoints are 5 to 8 viewpoints, the intermediate image of 1 to 4 viewpoints and the first line to the 4th line connected to the intermediate images of 1 to 4 viewpoints on the first tile of each line The intermediate image of the remaining viewpoint is placed on the placed tile.
    When the plurality of viewpoints are 9 to 12 viewpoints, the intermediate image of 1 to 4 viewpoints and the first line to the 4th viewpoint connected to the intermediate image of 1 to 4 viewpoints on the first tile of each line. The intermediate images of 5 to 8 viewpoints on the tiles in the row, and the intermediate images of the remaining viewpoints on the tiles arranged in the first to fourth rows connected to the intermediate images of the 9 to 12 viewpoints,
    Place and
    The intermediate image generation method according to claim 5, wherein when the plurality of viewpoints are 13 viewpoints or more, a part or all of the intermediate images are similarly arranged on tiles in each row in order from one viewpoint.
  8.  前記配置規則に代えて、前記立体画像の前記RGBY階段配置画素ユニットを構成するサブピクセルの位置と、該複数の視点毎の中間画像の前記RGBY並列配置画素ユニットを構成するサブピクセルの位置とを関連付ける、予め作成された中間画像生成テーブルを参照して、該RGBY階段配置画素ユニットを構成するサブピクセルを配列して該RGBY並列配置画素ユニットを生成する
    ことを特徴とする請求項1記載の中間画像生成方法。
    Instead of the arrangement rule, the position of subpixels constituting the RGBY staircase arrangement pixel unit of the stereoscopic image and the position of subpixels constituting the RGBY parallel arrangement pixel unit of the intermediate image for each of the plurality of viewpoints. 2. The intermediate according to claim 1, wherein the RGBY parallel arrangement pixel unit is generated by arranging subpixels constituting the RGBY staircase arrangement pixel unit with reference to an intermediate image generation table that is created in advance and associated with each other. Image generation method.
  9.  前記複数の視点画像のそれぞれと前記立体画像が同一のアスペクト比である場合において、
     前記RGBY階段配置画素ブロックを構成する前記1視点からN視点までの前記RGBY階段配置画素ユニットのうち、
     予め定められた基準視点の該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該基準視点の視点画像における対応位置近辺に配置された画素ユニットを構成するサブピクセルのRGBY値から補間して求め、
    該基準視点以外の視点の該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該基準視点の該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該基準視点以外の視点の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルの該視点画像のRGBY値から補間して求める
    ことを特徴とする請求項1記載の中間画像生成方法。
    In the case where each of the plurality of viewpoint images and the stereoscopic image have the same aspect ratio,
    Among the RGBY staircase arrangement pixel units from the 1 viewpoint to the N viewpoints constituting the RGBY staircase arrangement pixel block,
    Corresponding R value, G value, B value, and Y value of each of the sub-pixels constituting the RGBY staircase-arranged pixel unit at a predetermined reference viewpoint to the positions of the sub-pixels constituting the RGBY staircase-arranged pixel unit And interpolating from the RGBY values of the sub-pixels constituting the pixel unit arranged in the vicinity of the corresponding position in the viewpoint image of the reference viewpoint,
    The R value, G value, B value, and Y value of each of the sub-pixels constituting the RGBY staircase-arranged pixel unit of the viewpoint other than the reference viewpoint are determined as the sub-pixels constituting the RGBY-stair-arrangement pixel unit of the reference viewpoint. It is obtained by interpolating from RGBY values of the viewpoint image of the sub-pixels constituting at least one or more pixel units arranged in the vicinity of the corresponding position in the viewpoint image of the viewpoint other than the reference viewpoint corresponding to the arrangement position. The intermediate image generation method according to claim 1.
  10.  請求項1記載の方法により複数の中間画像を生成するための中間画像生成装置であって、
     該中間画像生成装置は、
     少なくとも中央処理装置と記憶装置を備えており、
     該中央処理装置は、
     サブピクセルが斜め方向にコーナーで接して4行で配列されたRGBY階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGBY階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該記憶装置に記憶された該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGBY値から補間して求め、
     該RGBY階段配置画素ユニットを構成するサブピクセルを水平方向にRGBYの順に並べて配列したRGBY並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置し、
     該立体画像の該RGBY階段配置画素ユニットと、その総数、またはそれぞれを構成するサブピクセルの総数が同数である該RGBY並列配置画素ユニットから構成される該複数の視点毎の中間画像を生成する
    ことを特徴とする中間画像生成装置。
    An intermediate image generation device for generating a plurality of intermediate images by the method according to claim 1,
    The intermediate image generation device includes:
    At least a central processing unit and a storage device,
    The central processing unit
    An RGBY staircase-arranged pixel unit in which subpixels are arranged in four rows with diagonally touching corners is arranged repeatedly, and RGBY staircase-arranged pixel blocks in which the 1st to Nth viewpoints are connected in the horizontal direction are repeatedly arranged. In order to generate a stereoscopic image, the R value, the G value, the B value, and the Y value of each of the subpixels constituting the RGBY staircase arrangement pixel unit are set as the arrangement positions of the subpixels constituting the RGBY staircase arrangement pixel unit. Corresponding, obtained by interpolating from RGBY values of subpixels constituting at least one pixel unit arranged in the vicinity of the corresponding position in the plurality of viewpoint images stored in the storage device,
    An RGBY parallel arrangement pixel unit in which subpixels constituting the RGBY staircase arrangement pixel unit are arranged in the horizontal direction in the order of RGBY is arranged in accordance with an arrangement rule for collectively arranging the plurality of viewpoints,
    Generating an intermediate image for each of the plurality of viewpoints composed of the RGBY staircase-arranged pixel units of the stereoscopic image and the RGBY parallel-arranged pixel units having the same total number or the total number of sub-pixels constituting each. An intermediate image generating apparatus characterized by the above.
  11.  請求項1記載の方法により生成された複数の中間画像から立体画像を生成する方法であって、
     前記複数の視点毎の中間画像から前記配置規則の逆順に従って、前記RGBY並列配置画素ユニットを構成するサブピクセルを前記RGBY階段配置画素ユニットとして配置して該立体画像を生成する
    ことを特徴とする立体画像生成方法。
    A method for generating a stereoscopic image from a plurality of intermediate images generated by the method according to claim 1,
    A stereoscopic image is generated by arranging subpixels constituting the RGBY parallel arrangement pixel unit as the RGBY step arrangement pixel unit from the intermediate images for each of the plurality of viewpoints according to the reverse order of the arrangement rule. Image generation method.
  12.  請求項11記載の立体画像生成方法において、
     前記配置規則に代えて、前記複数の視点毎の中間画像の前記RGBY並列配置画素ユニットを構成するサブピクセルの位置と、前記立体画像の前記RGBY階段配置画素ユニットを構成するサブピクセルの位置とを関連付ける、予め作成された立体画像生成テーブルを参照して、
     該RGBY並列配置画素ユニットを構成するサブピクセルを該RGBY階段配置画素ユニットとして配置する
    ことを特徴とする立体画像生成方法。
    The three-dimensional image generation method according to claim 11, wherein
    Instead of the arrangement rule, the position of subpixels constituting the RGBY parallel arrangement pixel unit of the intermediate image for each of the plurality of viewpoints and the position of subpixels constituting the RGBY step arrangement pixel unit of the stereoscopic image Refer to the stereoscopic image generation table created in advance,
    A stereoscopic image generation method, wherein subpixels constituting the RGBY parallel arrangement pixel unit are arranged as the RGBY staircase arrangement pixel unit.
  13.  請求項11記載の方法により複数の中間画像から立体画像を生成するための立体画像生成装置であって、
     該立体画像生成装置は、
     少なくとも中央処理装置と記憶装置を備えており、
     該中央処理装置は、
     前記複数の視点毎の中間画像を該記憶装置に記憶し、
     該複数の視点毎の中間画像から前記配置規則の逆順に従って、前記RGBY並列配置画素ユニットを構成するサブピクセルを前記RGBY階段配置画素ユニットとして配置して該立体画像を生成する
    ことを特徴とする立体画像生成装置。
    A stereoscopic image generating apparatus for generating a stereoscopic image from a plurality of intermediate images by the method according to claim 11,
    The stereoscopic image generating device
    At least a central processing unit and a storage device,
    The central processing unit
    Storing an intermediate image for each of the plurality of viewpoints in the storage device;
    A stereoscopic image is generated by arranging subpixels constituting the RGBY parallel arrangement pixel unit as the RGBY step arrangement pixel unit from the intermediate image for each of the plurality of viewpoints according to the reverse order of the arrangement rule. Image generation device.
  14.  少なくとも中央処理装置と記憶装置と圧縮装置と送信装置を備える、1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する第一の情報処理装置と、
     少なくとも中央処理装置と記憶装置と解凍装置と受信装置を備える、該複数の中間画像から立体画像を生成する第二の情報処理装置と、を備える立体画像生成システムであって、
     該第一の情報処理装置の該中央処理装置は、
     RGBYからなるサブピクセルを斜め方向にコーナーで接して4行で配列されたRGBY階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGBY階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、
     該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該第一の情報処理装置の記憶装置に記憶された該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGBY値から補間して求め、該RGBY階段配置画素ユニットを構成するサブピクセルを水平方向にRGBYの順に並べて配列したRGBY並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置し、
     該立体画像の該RGBY階段配置画素ユニットと、その総数、またはそれぞれを構成するピクセル数が同数である該RGBY並列配置画素ユニットから構成される該複数の視点毎の中間画像を生成し、該複数の視点毎の中間画像を該圧縮装置により圧縮して、該送信装置により第二の情報処理装置に送信し、
     該第二の情報処理装置の該中央処理装置は、
     該第一の情報処理装置から送信された該複数の視点毎の中間画像を該受信装置により受信して、該複数の中間画像を解凍装置により解凍し、該解凍装置により解凍された該複数の視点毎の中間画像から該配置規則の逆順に従って、該RGBY並列配置画素ユニットを構成するサブピクセルを該RGBY階段配置画素ユニットとして配置して該立体画像を生成する
    ことを特徴とする立体画像生成システム。
    At least a central processing unit, a storage device, a compression device, and a transmission device are used to generate a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints. A first information processing device for generating a plurality of intermediate images;
    A stereoscopic image generation system comprising: a second information processing device that generates a stereoscopic image from the plurality of intermediate images, comprising at least a central processing unit, a storage device, a decompression device, and a reception device;
    The central processing unit of the first information processing device is:
    RGBY staircase-arranged pixel blocks in which RGBY subpixels are arranged in 4 rows by diagonally touching corners at RGB corners, and RGBY staircase-arranged pixel blocks are arranged repeatedly in a horizontal direction from the 1 viewpoint to the N viewpoint. In order to generate the stereoscopic image,
    The first information corresponding to the arrangement position of the sub-pixels constituting the RGBY staircase arrangement pixel unit, the R value, the G value, the B value, and the Y value of each of the subpixels constituting the RGBY staircase arrangement pixel unit The RGBY staircase-arranged pixel unit is configured by interpolating from RGBY values of sub-pixels constituting at least one pixel unit arranged in the vicinity of the corresponding position in the plurality of viewpoint images stored in the storage device of the processing device. The RGBY parallel arrangement pixel units in which the subpixels to be arranged in the order of RGBY in the horizontal direction are arranged according to an arrangement rule for collectively arranging the plurality of viewpoints,
    Generating an intermediate image for each of the plurality of viewpoints composed of the RGBY staircase-arranged pixel units of the stereoscopic image and the RGBY parallel-arranged pixel units having the same total number or the number of pixels constituting each of the RGBY staircase-arranged pixel units; The intermediate image for each viewpoint is compressed by the compression device and transmitted to the second information processing device by the transmission device,
    The central processing unit of the second information processing device is:
    The intermediate images for each of the plurality of viewpoints transmitted from the first information processing device are received by the receiving device, the plurality of intermediate images are decompressed by a decompressing device, and the plurality of decompressed by the decompressing device A three-dimensional image generation system characterized in that sub-pixels constituting the RGBY parallel arrangement pixel unit are arranged as the RGBY step arrangement pixel unit from the intermediate image for each viewpoint according to the reverse order of the arrangement rule to generate the three-dimensional image. .
  15.  1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、
     前記N視点は3n+1(nは自然数)視点であり、
     RGBからなるサブピクセルが斜め方向にコーナーで接して3行で配列されたRGB階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGB階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、
     該RGB階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値を、該RGB階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGB値から補間して求め、
     該RGB階段配置画素ユニットを構成するサブピクセルを水平方向にR、G、Bの順に並べて配列したRGB並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、
     該立体画像の該RGB階段配置画素ユニットと該複数の中間画像の該RGB並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となり、
     さらに、前記複数の中間画像を、画像フレームとして横方向に視点の数だけ分割された複数のベルト状に配置する、
    ことを特徴とする中間画像生成方法。
    An intermediate image generation method for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints,
    The N viewpoints are 3n + 1 (n is a natural number) viewpoints,
    RGB staircase-arranged pixel units in which RGB subpixels are arranged in 3 rows with diagonally touching corners in an oblique direction, and RGB staircase-arranged pixel blocks in which the 1 to N viewpoints are connected in a horizontal direction are repeatedly arranged. In order to generate the stereoscopic image,
    Corresponding positions in the plurality of viewpoint images in which the R value, G value, and B value of each of the sub-pixels constituting the RGB staircase-arranged pixel unit correspond to the arrangement positions of the sub-pixels constituting the RGB staircase-arranged pixel unit Obtained by interpolating from RGB values of subpixels constituting at least one or more pixel units arranged in the vicinity,
    An RGB parallel arrangement pixel unit in which subpixels constituting the RGB staircase arrangement pixel unit are arranged in the order of R, G, and B in the horizontal direction is arranged according to an arrangement rule for collectively arranging the plurality of viewpoints. By generating the intermediate image for each of a plurality of viewpoints,
    The total number of the RGB staircase arranged pixel units of the stereoscopic image and the RGB parallel arranged pixel units of the plurality of intermediate images, or the total number of subpixels constituting each,
    Further, the plurality of intermediate images are arranged in a plurality of belts divided by the number of viewpoints in the horizontal direction as image frames.
    An intermediate image generation method characterized by the above.
  16.  1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、
     前記N視点は4n+1(nは自然数)視点であり、
     RGBYからなるサブピクセルが斜め方向にコーナーで接して4行で配列されたRGBY階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列したRGBY階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、
     該RGBY階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、Y値を、該RGBY階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルのRGBY値から補間して求め、
     該RGBY階段配置画素ユニットを構成するサブピクセルを水平方向にR、G、B、Y、の順に並べて配列したRGBY並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、
     該立体画像の該RGBY階段配置画素ユニットと該複数の中間画像の該RGBY並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となり、
     さらに、前記複数の中間画像を、画像フレームとして横方向に視点の数だけ分割された複数のベルト状に配置する、
    ことを特徴とする中間画像生成方法。
    An intermediate image generation method for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints,
    The N viewpoints are 4n + 1 (n is a natural number) viewpoints,
    RGBY staircase-arranged pixel units in which RGBY sub-pixels are arranged in 4 rows diagonally in contact with corners in an oblique direction, and RGBY staircase-arranged pixel blocks in which the 1 to N viewpoints are connected in a horizontal direction are repeatedly arranged. In order to generate the stereoscopic image,
    The plurality of viewpoint images in which the R value, G value, B value, and Y value of each of the sub-pixels constituting the RGBY staircase-arranged pixel unit correspond to the arrangement positions of the sub-pixels that constitute the RGBY staircase-arranged pixel unit. And interpolating from RGBY values of sub-pixels constituting at least one pixel unit arranged in the vicinity of the corresponding position in
    An RGBY parallel arrangement pixel unit in which subpixels constituting the RGBY staircase arrangement pixel unit are arranged in the order of R, G, B, and Y in the horizontal direction is arranged according to an arrangement rule for collectively arranging the plurality of viewpoints. By generating the intermediate image for each of the plurality of viewpoints,
    The total number of the RGBY staircase arranged pixel units of the stereoscopic image and the RGBY parallel arranged pixel units of the plurality of intermediate images, or the total number of sub-pixels constituting each,
    Further, the plurality of intermediate images are arranged in a plurality of belts divided by the number of viewpoints in the horizontal direction as image frames.
    An intermediate image generation method characterized by the above.
  17.  1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、
     前記N視点は(3+m)n+1(n、mは自然数)視点であり、
     RGB、およびその他のm個の色からなるサブピクセルが斜め方向にコーナーで接して3+m行で配列された階段配置画素ユニットを、水平方向に該1視点からN視点までを連接して配列した階段配置画素ブロックを繰り返し配置して該立体画像を生成するために、
     該階段配置画素ユニットを構成するサブピクセルの各々のR値、G値、B値、およびその他の色の値を、該階段配置画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルの値から補間して求め、
     該階段配置画素ユニットを構成するサブピクセルを水平方向にR、G、B、その他の色の順に並べて配列した並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、
     該立体画像の該階段配置画素ユニットと該複数の中間画像の該並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となり、
     さらに、前記複数の中間画像を、画像フレームとして横方向に視点の数だけ分割された複数のベルト状に配置する、
    ことを特徴とする中間画像生成方法。
    An intermediate image generation method for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints,
    The N viewpoints are (3 + m) n + 1 (n and m are natural numbers) viewpoints,
    A staircase in which staircase-arranged pixel units in which RGB and other m sub-pixels are arranged in 3 + m rows in contact with corners in an oblique direction are connected in a horizontal direction from the 1 viewpoint to the N viewpoint. In order to generate the stereoscopic image by repeatedly arranging the arrangement pixel blocks,
    The R value, G value, B value, and other color values of each of the sub-pixels constituting the staircase-arranged pixel unit correspond to the arrangement positions of the sub-pixels constituting the staircase-arranged pixel unit. Obtained by interpolating from the values of sub-pixels constituting at least one or more pixel units arranged in the vicinity of the corresponding position in the viewpoint image,
    A parallel arrangement pixel unit in which the subpixels constituting the staircase arrangement pixel unit are arranged in the order of R, G, B, and other colors in the horizontal direction is arranged according to an arrangement rule for arranging the plurality of viewpoints collectively. By generating the intermediate image for each of the plurality of viewpoints,
    The total number of the staircase arranged pixel units of the stereoscopic image and the parallel arranged pixel units of the plurality of intermediate images, or the total number of subpixels constituting each,
    Further, the plurality of intermediate images are arranged in a plurality of belts divided by the number of viewpoints in the horizontal direction as image frames.
    An intermediate image generation method characterized by the above.
  18.  前記サブピクセルは、RGBYに代えて、RGBC、RGBM、RGBWのいずれかからなる、請求項1から9いずれかに記載の中間画像生成方法、請求項10記載の中間画像生成装置、請求項11から12いずれかに記載の立体画像生成方法、請求項13記載の立体画像生成装置、請求項14記載の立体画像生成システム、請求項16記載の中間画像生成方法。 The intermediate image generation method according to claim 1, the intermediate image generation apparatus according to claim 10, and the intermediate image generation apparatus according to claim 11, wherein the subpixel includes any of RGBC, RGBM, and RGBW instead of RGBY. The stereoscopic image generation method according to claim 12, the stereoscopic image generation device according to claim 13, the stereoscopic image generation system according to claim 14, and the intermediate image generation method according to claim 16.
  19.  前記サブピクセルは、RGBにC、M、Y、Wまたは他の色の内、少なくとも1色を加えたものからなる、請求項1から9いずれかに記載の中間画像生成方法、請求項10記載の中間画像生成装置、請求項11から12いずれかに記載の立体画像生成方法、請求項13記載の立体画像生成装置、請求項14記載の立体画像生成システム。 The intermediate image generation method according to claim 1, wherein the sub-pixel is formed by adding at least one of RGB among C, M, Y, W, or other colors. An intermediate image generation apparatus according to claim 11, a stereoscopic image generation method according to any one of claims 11 to 12, a stereoscopic image generation apparatus according to claim 13, and a stereoscopic image generation system according to claim 14.
  20.  1視点からN視点までの複数の視点で撮影および/または描画した複数の視点画像から変換される立体画像を生成するために用いられる複数の中間画像を生成する中間画像生成方法であって、
     RGB、またはRGBにC、M、Y、Wまたは他の色の内、少なくとも1色を加えたものからなるサブピクセルが垂直方向に連接して配列した画素ユニットを、水平方向に該1視点からN視点までを連接して配列した画素ブロックを繰り返し配置して該立体画像を生成するために、
     該画素ユニットを構成するサブピクセルの各々の値を、該画素ユニットを構成するサブピクセルの配置位置に対応する、該複数の視点画像における対応位置近辺に配置された少なくとも1以上の画素ユニットを構成するサブピクセルの値から補間して求め、
     該画素ユニットを構成するサブピクセルを水平方向に並べて配列した並列配置画素ユニットを、該複数の視点毎にまとめて配置する配置規則に従って配置して、該複数の視点毎の該中間画像を生成することによって、
     該立体画像の画素ユニットと該複数の中間画像の並列配置画素ユニットの総数、またはそれぞれを構成するサブピクセルの総数が同数となる
    ことを特徴とする中間画像生成方法。
    An intermediate image generation method for generating a plurality of intermediate images used for generating a stereoscopic image converted from a plurality of viewpoint images photographed and / or drawn from a plurality of viewpoints from one viewpoint to N viewpoints,
    A pixel unit in which sub-pixels composed of RGB or RGB and at least one of C, M, Y, W, or other colors are connected in the vertical direction is arranged from the one viewpoint in the horizontal direction. In order to repeatedly arrange pixel blocks arranged up to N viewpoints and generate the stereoscopic image,
    At least one or more pixel units arranged in the vicinity of corresponding positions in the plurality of viewpoint images, each value of the sub-pixels constituting the pixel unit corresponding to the arrangement position of the sub-pixels constituting the pixel unit. Interpolated from the subpixel values to be
    A parallel arrangement pixel unit in which sub-pixels constituting the pixel unit are arranged in a horizontal direction is arranged according to an arrangement rule for arranging the sub-pixels for each of the plurality of viewpoints, and the intermediate image for each of the plurality of viewpoints is generated. By
    A method for generating an intermediate image, characterized in that the total number of pixel units of the stereoscopic image and the plurality of intermediate image pixel units arranged in parallel, or the total number of sub-pixels constituting each unit is the same.
PCT/JP2012/055591 2011-03-07 2012-03-05 Intermediate image generation method, intermediate image generation device, three-dimensional image generation method, three-dimensional image generation device, and three-dimensional image generation system WO2012121222A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-049688 2011-03-07
JP2011049688A JP5881959B2 (en) 2011-03-07 2011-03-07 Intermediate image generation method, intermediate image generation device, stereoscopic image generation method, stereoscopic image generation device, stereoscopic image generation system

Publications (2)

Publication Number Publication Date
WO2012121222A2 true WO2012121222A2 (en) 2012-09-13
WO2012121222A3 WO2012121222A3 (en) 2012-11-15

Family

ID=46798611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055591 WO2012121222A2 (en) 2011-03-07 2012-03-05 Intermediate image generation method, intermediate image generation device, three-dimensional image generation method, three-dimensional image generation device, and three-dimensional image generation system

Country Status (2)

Country Link
JP (1) JP5881959B2 (en)
WO (1) WO2012121222A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068766A4 (en) * 2019-12-05 2023-08-09 Beijing Ivisual 3D Technology Co., Ltd. Multi-viewpoint 3d display apparatus, display method and display screen correction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818655B2 (en) * 2011-11-22 2015-11-18 株式会社ジャパンディスプレイ Display control apparatus and method, and display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949986A (en) * 1995-07-04 1997-02-18 Sharp Corp Spatial optical modulator and directional display
WO2008139766A1 (en) * 2007-05-14 2008-11-20 Sharp Kabushiki Kaisha Display device and display method thereof
WO2010103860A2 (en) * 2009-03-12 2010-09-16 Yoshida Kenji Image-conversion device, image output device, image-conversion system, image, recording medium, image-conversion method, and image output method
JP2010282098A (en) * 2009-06-05 2010-12-16 Kenji Yoshida Parallax barrier and naked eye stereoscopic display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949986A (en) * 1995-07-04 1997-02-18 Sharp Corp Spatial optical modulator and directional display
WO2008139766A1 (en) * 2007-05-14 2008-11-20 Sharp Kabushiki Kaisha Display device and display method thereof
WO2010103860A2 (en) * 2009-03-12 2010-09-16 Yoshida Kenji Image-conversion device, image output device, image-conversion system, image, recording medium, image-conversion method, and image output method
JP2010282098A (en) * 2009-06-05 2010-12-16 Kenji Yoshida Parallax barrier and naked eye stereoscopic display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068766A4 (en) * 2019-12-05 2023-08-09 Beijing Ivisual 3D Technology Co., Ltd. Multi-viewpoint 3d display apparatus, display method and display screen correction method

Also Published As

Publication number Publication date
JP2012186739A (en) 2012-09-27
JP5881959B2 (en) 2016-03-09
WO2012121222A3 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP4712898B1 (en) Intermediate image generation method, intermediate image file, intermediate image generation device, stereoscopic image generation method, stereoscopic image generation device, autostereoscopic image display device, stereoscopic image generation system
JP5707315B2 (en) Video conversion device, video output device, video conversion system, video conversion method, and video output method
TWI413405B (en) Method and system for displaying 2d and 3d images simultaneously
US20080225113A1 (en) Three-dimensional image display device, method for displaying three-dimensional image, and structure of three-dimensional image data
US20140111627A1 (en) Multi-viewpoint image generation device and multi-viewpoint image generation method
JP2008067092A (en) Stereoscopic image display device and stereoscopic image display method
JP2009516205A (en) Method and mechanism for expressing at least one image area on autostereoscopic display device by monoscope method and information reproducing apparatus having the mechanism
KR20140089860A (en) Display apparatus and display method thereof
KR20110093828A (en) Method and system for encoding a 3d image signal, encoded 3d image signal, method and system for decoding a 3d image signal
CN102186091B (en) Grating-based video pixel arrangement method for multi-view stereoscopic mobile phone
TWI772997B (en) Multi-view 3D display screen, multi-view 3D display device
CN103581652A (en) Multi-view stereoscopic video data processing method and device
CN111323935A (en) N-viewpoint three-dimensional display device and driving method thereof
JP4703635B2 (en) Stereoscopic image generation method, apparatus thereof, and stereoscopic image display apparatus
JP5881959B2 (en) Intermediate image generation method, intermediate image generation device, stereoscopic image generation method, stereoscopic image generation device, stereoscopic image generation system
CN102630027A (en) Naked eye 3D display method and apparatus thereof
JP2008107764A (en) Display device, image processing method, and electronic apparatus
JP4478992B1 (en) Video conversion device, video output device, video conversion system, video, recording medium, and video conversion method
CN102164291B (en) Method and display system for simultaneously displaying two-dimensional (2D) image and three-dimensional (3D) image
US20120062559A1 (en) Method for Converting Two-Dimensional Image Into Stereo-Scopic Image, Method for Displaying Stereo-Scopic Image and Stereo-Scopic Image Display Apparatus for Performing the Method for Displaying Stereo-Scopic Image
JP2013183438A (en) Display device
JP5346089B2 (en) Rendering method
JP2015073273A (en) Method, device and system for packing and unpacking color frame and original depth frame
TWI393430B (en) Pixel data transforming method and apparatus for 3d display
Liao et al. Multi-view naked-eye stereoscopic image fusion method research

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754375

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754375

Country of ref document: EP

Kind code of ref document: A2