WO2012117673A1 - Digital microscope - Google Patents

Digital microscope Download PDF

Info

Publication number
WO2012117673A1
WO2012117673A1 PCT/JP2012/000823 JP2012000823W WO2012117673A1 WO 2012117673 A1 WO2012117673 A1 WO 2012117673A1 JP 2012000823 W JP2012000823 W JP 2012000823W WO 2012117673 A1 WO2012117673 A1 WO 2012117673A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
unit
sample
image
digital microscope
Prior art date
Application number
PCT/JP2012/000823
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 上代
Original Assignee
株式会社ハイロックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハイロックス filed Critical 株式会社ハイロックス
Publication of WO2012117673A1 publication Critical patent/WO2012117673A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only

Definitions

  • the present invention relates to a digital microscope that displays an image picked up by an image pickup device such as a CCD on a monitor.
  • Patent Document 1 a digital microscope has been known in which a sample is imaged by an image sensor such as a CCD and the captured image is displayed on a monitor.
  • lamps such as halogen lamps have been used as light sources for such digital microscopes.
  • an object of the present invention is to provide a digital microscope that has not existed before.
  • the digital microscope of the present invention includes a light emitting diode, an optical system for irradiating the sample with light emitted from the light emitting diode, and an imaging unit that images the sample by photoelectrically converting light reflected or scattered from the sample.
  • a control unit that controls the imaging unit so that the sample is imaged a plurality of times, and a display unit that displays an image captured by the imaging unit.
  • Light emitting diodes have a shorter time from when they are lit until the illuminance is stabilized, compared to halogen lamps. According to the configuration of the present invention, since the light emitting diode is used as the light source, it is possible to take an image under the same irradiation condition even if imaging is performed a plurality of times immediately after lighting, and an image captured under the same irradiation condition is displayed on the display unit. can do.
  • the display unit may display the images at the same time by arranging or synthesizing images based on the imaging data captured at different times. Thus, even when images taken at different times are displayed at the same time, since the images are taken under the same irradiation conditions, a sense of incongruity caused by the difference in the imaging conditions is unlikely to occur.
  • the digital microscope according to the present invention includes an image processing unit that performs a process of connecting a plurality of images captured while shifting a position to be captured by the imaging unit, and the display unit is connected by the image processing unit. An image may be displayed. Further, the control unit may perform control to move a stage on which the sample is placed so as to image the sample while shifting a position to be imaged.
  • the digital microscope of the present invention includes an operation unit that accepts setting of an imaging schedule, and a storage unit that stores the imaging schedule received by the operation unit, and the imaging unit stores the imaging schedule stored in the storage unit. Imaging may be performed based on this.
  • the light emitting diode may be turned on immediately before imaging by the imaging unit, and the light emitting diode may be turned off after the imaging.
  • the brightness level of the light emitting diode is stable immediately after lighting, it is possible to save power by lighting it immediately before imaging.
  • a light emitting diode as a light source, it is possible to capture images under the same irradiation conditions even after multiple times of imaging with a time interval immediately after lighting, and display the image on the display unit.
  • FIG. 1 It is a figure which shows the external appearance of the digital microscope of embodiment. It is a figure which shows the structure of an imaging device typically. It is a figure which shows the structure of a main body apparatus. It is a figure which shows operation
  • FIG. 1 is a diagram illustrating an appearance of a digital microscope according to the embodiment.
  • the digital microscope 1 includes an imaging device 10 that images a sample, and a main body device 30 that processes and manages the captured image.
  • the imaging device 10 and the main device 30 are connected by an optical fiber bundle 19 and a data cable 20.
  • the digital microscope 1 integrates the imaging device 10 and the main body device 30 and displays a captured image on the imaging device 10. You may provide the function to process and the screen which displays an image.
  • the optical fiber bundle 19 supplies light from the light source of the main body device 30 to the imaging device 10.
  • the data cable 20 transmits image data captured by the imaging device 10 and data indicating the zoom magnification and the position of the stage 11 to the main body device 30.
  • one data cable 20 is shown. However, a cable for transmitting image data, a cable for transmitting zoom magnification data, and a cable for transmitting data indicating the position of the stage 11 may be provided. Good.
  • FIG. 2 is a diagram schematically illustrating the configuration of the imaging device 10.
  • the imaging device 10 basically has the same configuration as the optical microscope.
  • the imaging device 10 includes a stage 11 on which a sample is placed, and an imaging element 15 that images the sample placed on the stage 11.
  • imaging optical axis A On the optical axis connecting the stage 11 and the image sensor 15 (hereinafter referred to as “imaging optical axis A”), the objective lens 12, the half mirror 13, and the magnifying optical system 14 are arranged.
  • the half mirror 13 reflects light incident from the direction perpendicular to the imaging optical axis A.
  • the reflected light is irradiated on the stage 11 as bright field irradiation light.
  • the half mirror 13 is reflected or scattered by the sample on the stage 11 and transmits light traveling toward the image sensor 15.
  • a ring lens 16 is attached to the objective lens 12.
  • An optical fiber is connected to the ring lens 16, and light is supplied through the optical fiber.
  • the ring lens 16 supplies dark field illumination light to the stage 11 from the side.
  • a ring-shaped prism (not shown) is attached to the ring lens 16, and the light from the ring lens 16 is directed to the sample placed on the stage 11 by the prism.
  • the optical fiber bundle 19 that connects the main body device 30 and the imaging device 10 is branched in the imaging device 10.
  • Two optical fiber bundles 17 and 18 are arranged adjacent to each other in the same direction in the vicinity of the light output end of the optical fiber bundle 19.
  • the light exit end of the optical fiber bundle 19 and the light entrance ends of the optical fiber bundles 17 and 18 face each other, and light emitted from the optical fiber bundle 19 enters the optical fiber bundles 17 and 18.
  • One of the two optical fiber bundles 17 and 18 is an optical fiber bundle 17 that supplies light to the half mirror 13.
  • An irradiation optical system 21 including a plurality of lenses and mirrors is disposed at the light output end of the optical fiber bundle 17.
  • the other optical fiber bundle 18 is an optical fiber that supplies light to the ring lens 16.
  • the optical fiber bundle 18 extends to the objective lens 12 to which the ring lens 16 is attached.
  • the optical fiber bundle 19 is held by a holding member 22 (see FIG. 2).
  • This holding member 22 slides by operation of the operation part 23 (refer FIG. 1).
  • the direction of sliding is within the plane where the light exit end of the optical fiber bundle 19 and the light entrance ends of the optical fiber bundle 17 and the optical fiber bundle 18 are opposed to each other, and the center of the light entrance end of the optical fiber bundle 17 and the optical fiber.
  • This is a linear direction connecting the centers of the light incident ends of the bundle 18.
  • the movement amount of the optical fiber bundle 19 is determined according to the operation amount of the operation unit 23 provided in the imaging device 10.
  • the operation unit 23 is a dial-type operation unit 23 as shown in FIG.
  • the digital microscope 1 capable of performing both bright field illumination and dark field illumination is taken as an example.
  • the present invention may be applied to a digital microscope that performs only bright field illumination or only dark field illumination. Is possible.
  • FIG. 3 is a diagram illustrating a configuration of the main body device 30 of the digital microscope 1.
  • the main unit 30 includes a display unit 31 that displays an image, an operation unit 32 that receives input of necessary information, a storage unit 33 that stores an image captured by the imaging device 10, and a light emitting diode as a light source. 34 and a control unit 35 that controls the operation of the main body device 30.
  • the light emitting diode 34 is connected to the open end of the optical fiber bundle 19 through a collimating lens.
  • the collimating lens is arranged so that the light emitted from the light emitting diode 34 is matched with N / A at the opening end of the optical fiber bundle 19.
  • the control unit 35 includes a lighting control unit 36 that controls the lighting of the light emitting diode 34, a stage control unit 37 that controls the operation of the stage 11, an image sensor control unit 38 that controls the image sensor 15, and a captured image. It has an image processing unit 39 that performs processing, and a timer management unit 40 that manages imaging timing.
  • a lighting control unit 36 that controls the lighting of the light emitting diode 34
  • a stage control unit 37 that controls the operation of the stage 11
  • an image sensor control unit 38 that controls the image sensor 15, and a captured image.
  • It has an image processing unit 39 that performs processing, and a timer management unit 40 that manages imaging timing.
  • the control unit 35 has a function for operating the digital microscope 1 in addition to the functions described here. is doing.
  • the image processing unit 39 has an image processing function such as enlarging or reducing a captured image, or generating a stereoscopic image of a sample using images captured from a plurality of directions.
  • An image processing function such as enlarging or reducing a captured image, or generating a stereoscopic image of a sample using images captured from a plurality of directions.
  • One has a tiling function. Tiling is a function that generates a large image by stitching together aligned images.
  • FIG. 4 is a flowchart showing the tiling process.
  • the control unit 35 of the main body device 30 causes the imaging device 15 to perform imaging under the control of the imaging device control unit 38 while gradually moving the stage 11 on which the sample is placed by the stage control unit 37.
  • the main device 30 stores the captured image in the storage unit 33 (S10). Thereby, a plurality of images with continuous imaging regions are obtained.
  • the image processing unit 39 performs image matching between adjacent images and obtains corresponding pixels (S12). At this time, by predicting the range in which the corresponding pixel exists based on the movement amount of the stage 11 when the image is captured, the matching range can be limited, and the calculation amount can be reduced. Subsequently, the image processing unit 39 synthesizes adjacent images so that corresponding pixels match based on the matching result (S14). The image processing unit 39 determines whether or not the synthesis of all captured images has been completed (S16), and if it is determined that the synthesis of all images has not been completed (NO in S16), the next image The synthesis process is performed. If it is determined that all the images have been combined (YES in S16), the tiling process ends.
  • one tiling image can be generated from a plurality of images captured while moving the stage 11.
  • the stage 11 is moved under the control of the stage control unit 37, and an image in which a position to be imaged is shifted is captured.
  • the stage 11 may be moved manually.
  • the image processing unit 39 manually obtains corresponding pixels from a plurality of images picked up by moving the stage 11 and synthesizes adjacent images.
  • the timer management unit 40 manages the timing of imaging with a timer.
  • the timer management unit 40 transmits a signal instructing the imaging timing to the imaging element 15.
  • By managing the imaging timing by the timer management unit 40 it is possible to realize timer imaging that performs imaging at a predetermined timing.
  • FIG. 5 is a flowchart showing the timer imaging process.
  • the main body device 30 receives an input of setting values (for example, an imaging interval and an end time) that define imaging timing (S20).
  • setting values for example, an imaging interval and an end time
  • the main body device 30 stores the setting value in the storage unit 33.
  • the timer management unit 40 refers to the setting value stored in the storage unit 33 and determines whether or not the imaging time has come (S22).
  • the timer management unit 40 transmits an imaging instruction signal to the image sensor 15 and performs imaging (S24).
  • the timer management unit 40 determines whether or not the end time has come (S26). If the end time has come (YES in S26), the timer imaging ends. If it is not the end time (NO in S26), the process returns to the determination of whether or not the imaging time has come, and the timer imaging is continued.
  • the configuration of the digital microscope 1 according to the present embodiment has been described above. Since the digital microscope 1 of the present embodiment uses the light emitting diode 34 as a light source, the time required for the illuminance to stabilize is shorter than that of a conventionally used halogen lamp. Thereby, even when imaging is performed at different times immediately after lighting, an image with the same irradiation condition is obtained.
  • the display unit 31 displays a plurality of images taken at different times. However, since the irradiation conditions are the same, the display unit 31 can appropriately compare or appropriately combine the images.
  • FIG. 6A is a diagram showing a problem of a tiling image generated using an image captured by the conventional digital microscope 1
  • FIG. 6B is a tie generated using an image captured by the digital microscope 1 of the present embodiment. It is a figure which shows a ring image.
  • the digital microscope 1 can perform imaging under the same irradiation condition even after a long time, in the timer imaging that performs imaging at a predetermined interval, the temporal change of the sample can be performed under the same irradiation condition. An image suitable for observation can be taken.
  • the present invention has an effect of being able to capture images under the same irradiation conditions even when captured multiple times at intervals, and is useful as a digital microscope that displays captured images on a display unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A digital microscope (1) includes: a light emitting diode (34); an optical system for irradiating a sample with light emitted from the light emitting diode (34); an image capturing element that captures an image of the sample by subjecting the light reflected or scattered by the sample to optical-electrical conversion; a control unit (35) that controls the image capturing element so as to capture images of the sample a plurality of times; and a display unit (31) that displays the images captured by the image capturing element. Thus, an unprecedented digital microscope is provided by solving the problem that illuminance does not become stable in a certain period of time after the light source is lit up.

Description

デジタル顕微鏡Digital microscope 関連する出願Related applications
 本出願では、2011年3月3日に日本国に出願された特許出願番号2011-046470の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。 This application claims the benefit of Patent Application No. 2011-046470 filed in Japan on March 3, 2011, the contents of which are incorporated herein by reference.
 本発明は、CCD等の撮像素子によって撮像した画像をモニタに表示するデジタル顕微鏡に関する。 The present invention relates to a digital microscope that displays an image picked up by an image pickup device such as a CCD on a monitor.
 従来から、例えば、特許文献1に示すように、CCD等の撮像素子によって試料を撮像し、撮像した画像をモニタに表示するデジタル顕微鏡が知られていた。このようなデジタル顕微鏡の光源として、従来は、ハロゲンランプ等のランプが用いられていた。 Conventionally, for example, as shown in Patent Document 1, a digital microscope has been known in which a sample is imaged by an image sensor such as a CCD and the captured image is displayed on a monitor. Conventionally, lamps such as halogen lamps have been used as light sources for such digital microscopes.
特開2000-214790号公報JP 2000-214790 A
 ところで、ハロゲンランプは、ランプを点灯してから安定するまでにある程度の時間(製品によっても異なるが、およそ5~10分程度)を要する。このため、ランプの点灯後の一定の時間内に、複数の画像を撮像するときには、同じ条件で撮像できない場合があった。本発明は、上記背景に鑑み、従来にはなかったデジタル顕微鏡を提供することを目的とする。 By the way, halogen lamps require a certain amount of time (approximately 5 to 10 minutes depending on the product) to stabilize after the lamps are turned on. For this reason, when a plurality of images are captured within a certain period of time after the lamp is turned on, there are cases in which it is impossible to capture under the same conditions. In view of the above background, an object of the present invention is to provide a digital microscope that has not existed before.
 本発明のデジタル顕微鏡は、発光ダイオードと、発光ダイオードから出射された光を試料に照射するための光学系と、試料にて反射または散乱した光を光電変換して前記試料を撮像する撮像部と、前記試料を複数回撮像するように前記撮像部を制御する制御部と、前記撮像部にて撮像された画像を表示する表示部とを備える。 The digital microscope of the present invention includes a light emitting diode, an optical system for irradiating the sample with light emitted from the light emitting diode, and an imaging unit that images the sample by photoelectrically converting light reflected or scattered from the sample. A control unit that controls the imaging unit so that the sample is imaged a plurality of times, and a display unit that displays an image captured by the imaging unit.
 発光ダイオードは、ハロゲンランプに比べて、点灯してから照度が安定するまでの時間が短い。本発明の構成によれば、光源として発光ダイオードを用いているので、点灯後すぐに複数回の撮像を行っても同じ照射条件で撮像でき、同じ照射条件で撮像した画像を表示部にて表示することができる。表示部は、異なる時刻に撮像された撮像データに基づく画像を並べるまたは合成するなどして、同時に表示してもよい。このように異なる時刻に撮像された画像が同時に表示されるときにも、同じ照射条件で撮像しているので、撮像条件の差に起因する違和感が生じにくい。 発 光 Light emitting diodes have a shorter time from when they are lit until the illuminance is stabilized, compared to halogen lamps. According to the configuration of the present invention, since the light emitting diode is used as the light source, it is possible to take an image under the same irradiation condition even if imaging is performed a plurality of times immediately after lighting, and an image captured under the same irradiation condition is displayed on the display unit. can do. The display unit may display the images at the same time by arranging or synthesizing images based on the imaging data captured at different times. Thus, even when images taken at different times are displayed at the same time, since the images are taken under the same irradiation conditions, a sense of incongruity caused by the difference in the imaging conditions is unlikely to occur.
 本発明のデジタル顕微鏡は、前記撮像部にて撮像する箇所をずらしつつ撮像された複数の画像をつなぎ合わせる処理を行う画像処理部を備え、前記表示部は、前記画像処理部にてつなぎ合わされた画像を表示してもよい。また、前記制御部は、撮像する箇所をずらしつつ前記試料を撮像するように前記試料を載置したステージを移動する制御を行ってもよい。 The digital microscope according to the present invention includes an image processing unit that performs a process of connecting a plurality of images captured while shifting a position to be captured by the imaging unit, and the display unit is connected by the image processing unit. An image may be displayed. Further, the control unit may perform control to move a stage on which the sample is placed so as to image the sample while shifting a position to be imaged.
 撮像する箇所(撮像領域)を少しずつずらした複数の画像をつなぎ合わせて、広範囲の画像を作成するいわゆる「タイリング」を行う場合には、複数の各画像を同じ条件で撮像することが必要である。本発明の構成によれば、同じ照射条件で撮像した複数の画像をつなぎ合わせることができるので、適切なタイリング画像を生成することができる。 When performing so-called “tiling” to create a wide range of images by joining together multiple images with slightly different locations (imaging areas), it is necessary to capture multiple images under the same conditions. It is. According to the configuration of the present invention, since a plurality of images captured under the same irradiation condition can be connected, an appropriate tiling image can be generated.
 本発明のデジタル顕微鏡は、撮像スケジュールの設定を受け付ける操作部と、前記操作部にて受け付けた撮像スケジュールを記憶する記憶部とを備え、前記撮像部は、前記記憶部に記憶された撮像スケジュールに基づいて撮像を行ってもよい。 The digital microscope of the present invention includes an operation unit that accepts setting of an imaging schedule, and a storage unit that stores the imaging schedule received by the operation unit, and the imaging unit stores the imaging schedule stored in the storage unit. Imaging may be performed based on this.
 例えば、カビの繁殖の様子を撮像する場合などのように、撮像スケジュールに基づいて所定の時間をおいて繰り返し撮像を行う場合には、経時的な変化を適切に把握するために、同じ条件で撮像をすることが必要である。本発明の構成によれば、同じ照射条件で撮像を行えるので、撮像画像から試料の経時的な変化を適切に把握することができる。 For example, in the case of repeatedly capturing images at a predetermined time based on the imaging schedule, such as when capturing the state of mold propagation, under the same conditions in order to appropriately grasp changes over time It is necessary to take an image. According to the configuration of the present invention, since imaging can be performed under the same irradiation conditions, it is possible to appropriately grasp the temporal change of the sample from the captured image.
 本発明のデジタル顕微鏡は、前記撮像部にて撮像を行う直前に発光ダイオードを点灯させ、前記撮像後に発光ダイオードを消灯してもよい。 In the digital microscope of the present invention, the light emitting diode may be turned on immediately before imaging by the imaging unit, and the light emitting diode may be turned off after the imaging.
 発光ダイオードは、点灯直後から輝度レベルが安定しているので、撮像を行う直前に点灯することにより省電力化を図れる。 Since the brightness level of the light emitting diode is stable immediately after lighting, it is possible to save power by lighting it immediately before imaging.
 本発明は、光源として発光ダイオードを用いることにより、点灯直後から、時間間隔をあけて複数回の撮像を行っても同じ照射条件で撮像することができ、その画像を表示部に表示できるという効果を有する。 In the present invention, by using a light emitting diode as a light source, it is possible to capture images under the same irradiation conditions even after multiple times of imaging with a time interval immediately after lighting, and display the image on the display unit. Have
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。 As described below, there are other aspects of the present invention. Accordingly, the disclosure of the present invention is intended to provide part of the invention and is not intended to limit the scope of the invention described and claimed herein.
実施の形態のデジタル顕微鏡の外観を示す図である。It is a figure which shows the external appearance of the digital microscope of embodiment. 撮像機器の構成を模式的に示す図である。It is a figure which shows the structure of an imaging device typically. 本体装置の構成を示す図である。It is a figure which shows the structure of a main body apparatus. タイリング処理の動作を示す図である。It is a figure which shows operation | movement of a tiling process. タイマー撮像の動作を示す図である。It is a figure which shows the operation | movement of a timer imaging. 従来のタイリング画像を示す図である。It is a figure which shows the conventional tiling image. 本実施の形態のデジタル顕微鏡によるタイリング画像を示す図である。It is a figure which shows the tiling image by the digital microscope of this Embodiment.
 以下、図面を参照しながら、本発明の実施の形態にかかるデジタル顕微鏡について説明する。以下に説明する実施の形態は本発明の単なる例であり、本発明が様々な態様に変形することができる。従って、以下に開示する特定の構成および機能は、請求の範囲を限定するものではない。 Hereinafter, a digital microscope according to an embodiment of the present invention will be described with reference to the drawings. The embodiments described below are merely examples of the present invention, and the present invention can be modified in various ways. Accordingly, the specific configurations and functions disclosed below do not limit the scope of the claims.
 図1は、実施の形態のデジタル顕微鏡の外観を示す図である。デジタル顕微鏡1は、試料を撮像する撮像機器10と、撮像された画像の加工、管理等を行う本体装置30とを有する。撮像機器10と本体装置30とは、光ファイバ束19およびデータケーブル20によって接続されている。本実施の形態では、撮像機器10と本体装置30とが分離された態様について説明しているが、デジタル顕微鏡1は、撮像機器10と本体装置30とを一体とし、撮像機器10に撮像画像を処理する機能や画像を表示する画面を備えてもよい。 FIG. 1 is a diagram illustrating an appearance of a digital microscope according to the embodiment. The digital microscope 1 includes an imaging device 10 that images a sample, and a main body device 30 that processes and manages the captured image. The imaging device 10 and the main device 30 are connected by an optical fiber bundle 19 and a data cable 20. In the present embodiment, the aspect in which the imaging device 10 and the main body device 30 are separated is described. However, the digital microscope 1 integrates the imaging device 10 and the main body device 30 and displays a captured image on the imaging device 10. You may provide the function to process and the screen which displays an image.
 光ファイバ束19は、本体装置30が有する光源からの光を撮像機器10に供給する。データケーブル20は、撮像機器10で撮像した画像データ、および、ズーム倍率やステージ11の位置を示すデータを本体装置30に送信する。なお、図1では、1本のデータケーブル20を示しているが、画像データを送信するケーブル、ズーム倍率のデータを送信するケーブル、ステージ11の位置を示すデータを送信するケーブルをそれぞれ設けてもよい。 The optical fiber bundle 19 supplies light from the light source of the main body device 30 to the imaging device 10. The data cable 20 transmits image data captured by the imaging device 10 and data indicating the zoom magnification and the position of the stage 11 to the main body device 30. In FIG. 1, one data cable 20 is shown. However, a cable for transmitting image data, a cable for transmitting zoom magnification data, and a cable for transmitting data indicating the position of the stage 11 may be provided. Good.
 図2は、撮像機器10の構成を模式的に示す図である。撮像機器10は、基本的には光学顕微鏡と同じ構成を有している。撮像機器10は、試料を載置するステージ11と、ステージ11上に載置された試料を撮像する撮像素子15とを有している。ステージ11と撮像素子15とを結ぶ光軸(以下、「撮像光軸A」という)上には、対物レンズ12、ハーフミラー13、拡大光学系14が配置されている。 FIG. 2 is a diagram schematically illustrating the configuration of the imaging device 10. The imaging device 10 basically has the same configuration as the optical microscope. The imaging device 10 includes a stage 11 on which a sample is placed, and an imaging element 15 that images the sample placed on the stage 11. On the optical axis connecting the stage 11 and the image sensor 15 (hereinafter referred to as “imaging optical axis A”), the objective lens 12, the half mirror 13, and the magnifying optical system 14 are arranged.
 ハーフミラー13は、撮像光軸Aに対して垂直方向から入射される光を反射する。反射された光は、明視野照射光としてステージ11に照射される。ハーフミラー13は、ステージ11上の試料によって反射または散乱され、撮像素子15へ向かう光を透過する。対物レンズ12には、リングレンズ16が取り付けられている。リングレンズ16には、光ファイバが接続されており、光ファイバを通じて光が供給される。リングレンズ16は、ステージ11に対して側方から暗視野照明光を供給する。リングレンズ16には、図示しないリング状のプリズムが取り付けられており、プリズムによってリングレンズ16からの光を、ステージ11に載置される試料に向ける。 The half mirror 13 reflects light incident from the direction perpendicular to the imaging optical axis A. The reflected light is irradiated on the stage 11 as bright field irradiation light. The half mirror 13 is reflected or scattered by the sample on the stage 11 and transmits light traveling toward the image sensor 15. A ring lens 16 is attached to the objective lens 12. An optical fiber is connected to the ring lens 16, and light is supplied through the optical fiber. The ring lens 16 supplies dark field illumination light to the stage 11 from the side. A ring-shaped prism (not shown) is attached to the ring lens 16, and the light from the ring lens 16 is directed to the sample placed on the stage 11 by the prism.
 本体装置30と撮像機器10とを接続する光ファイバ束19は、撮像機器10において分岐されている。光ファイバ束19の出光端の近傍には2本の光ファイバ束17,18が同方向を向けて隣接して配置されている。光ファイバ束19の出光端と光ファイバ束17,18の入光端とは対向しており、光ファイバ束19から出射した光が光ファイバ束17,18に入光する。2本の光ファイバ束17,18のうちの1本は、ハーフミラー13へ光を供給する光ファイバ束17である。この光ファイバ束17の出光端には、複数のレンズとミラーからなる照射光学系21が配置されている。他方の光ファイバ束18は、リングレンズ16へ光を供給する光ファイバである。この光ファイバ束18は、リングレンズ16が取り付けられた対物レンズ12に延びている。 The optical fiber bundle 19 that connects the main body device 30 and the imaging device 10 is branched in the imaging device 10. Two optical fiber bundles 17 and 18 are arranged adjacent to each other in the same direction in the vicinity of the light output end of the optical fiber bundle 19. The light exit end of the optical fiber bundle 19 and the light entrance ends of the optical fiber bundles 17 and 18 face each other, and light emitted from the optical fiber bundle 19 enters the optical fiber bundles 17 and 18. One of the two optical fiber bundles 17 and 18 is an optical fiber bundle 17 that supplies light to the half mirror 13. An irradiation optical system 21 including a plurality of lenses and mirrors is disposed at the light output end of the optical fiber bundle 17. The other optical fiber bundle 18 is an optical fiber that supplies light to the ring lens 16. The optical fiber bundle 18 extends to the objective lens 12 to which the ring lens 16 is attached.
 光ファイバ束19は、保持部材22によって保持されている(図2参照)。この保持部材22は、操作部23(図1参照)の操作によってスライドする。スライドの方向は、光ファイバ束19の出光端と光ファイバ束17及び光ファイバ束18の入光端とが対向した状態を保つ平面内で、光ファイバ束17の入光端の中心と光ファイバ束18の入光端の中心を結ぶ直線方向である。この構成により、光ファイバ束19から、光ファイバ束17及び光ファイバ束18に入光する光量を変えて、明視野照明光と暗視野照明光の混合割合を変えることができる。 The optical fiber bundle 19 is held by a holding member 22 (see FIG. 2). This holding member 22 slides by operation of the operation part 23 (refer FIG. 1). The direction of sliding is within the plane where the light exit end of the optical fiber bundle 19 and the light entrance ends of the optical fiber bundle 17 and the optical fiber bundle 18 are opposed to each other, and the center of the light entrance end of the optical fiber bundle 17 and the optical fiber. This is a linear direction connecting the centers of the light incident ends of the bundle 18. With this configuration, the amount of light entering the optical fiber bundle 17 and the optical fiber bundle 18 from the optical fiber bundle 19 can be changed to change the mixing ratio of the bright field illumination light and the dark field illumination light.
 光ファイバ束19の移動量は、撮像機器10に設けられた操作部23の操作量に応じて決まる。本実施の形態では、操作部23は、図1に示すようにダイヤル式の操作部23である。なお、本実施の形態では、明視野照射と暗視野照射の両方を行えるデジタル顕微鏡1を例としているが、本発明は、明視野照明のみ、もしくは暗視野照明のみ行うデジタル顕微鏡に適用することも可能である。 The movement amount of the optical fiber bundle 19 is determined according to the operation amount of the operation unit 23 provided in the imaging device 10. In the present embodiment, the operation unit 23 is a dial-type operation unit 23 as shown in FIG. In this embodiment, the digital microscope 1 capable of performing both bright field illumination and dark field illumination is taken as an example. However, the present invention may be applied to a digital microscope that performs only bright field illumination or only dark field illumination. Is possible.
 図3は、デジタル顕微鏡1の本体装置30の構成を示す図である。本体装置30は、画像を表示する表示部31と、必要な情報等の入力を受け付ける操作部32と、撮像機器10にて撮像された画像等を記憶する記憶部33と、光源としての発光ダイオード34と、本体装置30の動作を制御する制御部35とを有している。 FIG. 3 is a diagram illustrating a configuration of the main body device 30 of the digital microscope 1. The main unit 30 includes a display unit 31 that displays an image, an operation unit 32 that receives input of necessary information, a storage unit 33 that stores an image captured by the imaging device 10, and a light emitting diode as a light source. 34 and a control unit 35 that controls the operation of the main body device 30.
 発光ダイオード34は、コリメートレンズを介して、光ファイバ束19の開口端と接続されている。コリメートレンズは、発光ダイオード34からの出射光を光ファイバ束19の開口端のN/Aに合わせるように配置されている。 The light emitting diode 34 is connected to the open end of the optical fiber bundle 19 through a collimating lens. The collimating lens is arranged so that the light emitted from the light emitting diode 34 is matched with N / A at the opening end of the optical fiber bundle 19.
 制御部35は、発光ダイオード34の点灯を制御する点灯制御部36と、ステージ11の動作を制御するステージ制御部37と、撮像素子15を制御する撮像素子制御部38と、撮像された画像に対して処理を行う画像処理部39と、撮像タイミングを管理するタイマー管理部40とを有している。ここでは、本実施の形態のデジタル顕微鏡1の説明に必要な構成に言及しているが、制御部35は、ここに記載した機能の他にも、デジタル顕微鏡1を動作させるための機能を有している。 The control unit 35 includes a lighting control unit 36 that controls the lighting of the light emitting diode 34, a stage control unit 37 that controls the operation of the stage 11, an image sensor control unit 38 that controls the image sensor 15, and a captured image. It has an image processing unit 39 that performs processing, and a timer management unit 40 that manages imaging timing. Here, reference is made to the configuration necessary for the description of the digital microscope 1 of the present embodiment, but the control unit 35 has a function for operating the digital microscope 1 in addition to the functions described here. is doing.
 画像処理部39は、撮像した画像を拡大、縮小したり、複数の方向から撮像した画像を用いて試料の立体画像を生成したりするなどの画像処理機能を有するが、このような画像処理の一つとしてタイリング機能を有する。タイリングとは、並んだ画像をつなぎ合わせて大きな画像を生成する機能である。 The image processing unit 39 has an image processing function such as enlarging or reducing a captured image, or generating a stereoscopic image of a sample using images captured from a plurality of directions. One has a tiling function. Tiling is a function that generates a large image by stitching together aligned images.
 図4は、タイリングの処理を示すフローチャートである。まず、本体装置30の制御部35は、ステージ制御部37により試料を載置したステージ11を少しずつ移動しながら、撮像素子制御部38の制御により撮像素子15に撮像を行わせる。そして、本体装置30は、撮像した画像を記憶部33に記憶していく(S10)。これにより、撮像領域が連続した複数の画像が得られる。 FIG. 4 is a flowchart showing the tiling process. First, the control unit 35 of the main body device 30 causes the imaging device 15 to perform imaging under the control of the imaging device control unit 38 while gradually moving the stage 11 on which the sample is placed by the stage control unit 37. Then, the main device 30 stores the captured image in the storage unit 33 (S10). Thereby, a plurality of images with continuous imaging regions are obtained.
 次に、画像処理部39は、隣接する画像どうしで画像マッチングを行い、対応する画素を求める(S12)。このとき、画像を撮像した際のステージ11の移動量に基づいて対応画素が存在する範囲を予測することにより、マッチングを行う範囲を限定することができ、計算量を低減できる。続いて、画像処理部39は、マッチングの結果に基づいて、対応する画素が一致するようにして、隣接する画像どうしを合成する(S14)。画像処理部39は、撮像した全画像の合成が終了したか否かを判定し(S16)、全画像の合成が終了していないと判定された場合には(S16でNO)、次の画像の合成処理を行う。全画像の合成が終了したと判定された場合には(S16でYES)、タイリング処理を終了する。以上の動作により、ステージ11を移動しつつ撮像した複数の画像から、ひとつのタイリング画像を生成することができる。なお、本実施の形態では、ステージ制御部37による制御によってステージ11を移動させ、撮像する箇所をずらした画像を撮像する例について説明したが、ステージ11は手動によって移動することとしてもよい。この場合にも、画像処理部39は、手動でステージ11を移動して撮像した複数の画像から対応画素を求め、隣接する画像どうしを合成する。 Next, the image processing unit 39 performs image matching between adjacent images and obtains corresponding pixels (S12). At this time, by predicting the range in which the corresponding pixel exists based on the movement amount of the stage 11 when the image is captured, the matching range can be limited, and the calculation amount can be reduced. Subsequently, the image processing unit 39 synthesizes adjacent images so that corresponding pixels match based on the matching result (S14). The image processing unit 39 determines whether or not the synthesis of all captured images has been completed (S16), and if it is determined that the synthesis of all images has not been completed (NO in S16), the next image The synthesis process is performed. If it is determined that all the images have been combined (YES in S16), the tiling process ends. With the above operation, one tiling image can be generated from a plurality of images captured while moving the stage 11. In the present embodiment, an example has been described in which the stage 11 is moved under the control of the stage control unit 37, and an image in which a position to be imaged is shifted is captured. However, the stage 11 may be moved manually. Also in this case, the image processing unit 39 manually obtains corresponding pixels from a plurality of images picked up by moving the stage 11 and synthesizes adjacent images.
 タイマー管理部40は、撮像を行うタイミングをタイマーによって管理する。タイマー管理部40は、撮像素子15に対して撮像タイミングを指示する信号を送信する。タイマー管理部40により撮像タイミングを管理することにより、あらかじめ定められたタイミングで撮像を行うタイマー撮像を実現できる。 The timer management unit 40 manages the timing of imaging with a timer. The timer management unit 40 transmits a signal instructing the imaging timing to the imaging element 15. By managing the imaging timing by the timer management unit 40, it is possible to realize timer imaging that performs imaging at a predetermined timing.
 図5は、タイマー撮像の処理を示すフローチャートである。まず、本体装置30は、撮像タイミングを規定する設定値(例えば、撮像間隔と終了時刻)の入力を受け付ける(S20)。操作部32より設定値が入力されると、本体装置30は、設定値を記憶部33に記憶しておく。タイマー管理部40は、記憶部33に記憶された設定値を参照し、撮像時刻が到来したか否かを判定する(S22)。撮像時刻が到来した場合(S22でYES)、タイマー管理部40は、撮像素子15に撮像指示信号を送信し、撮像を行う(S24)。タイマー管理部40は、終了時刻になったか否かを判定し(S26)、終了時刻になった場合には(S26でYES)、タイマー撮像を終了する。終了時刻になっていない場合には(S26でNO)、撮像時刻が到来したか否かの判定に戻り、タイマー撮像を継続して行う。 FIG. 5 is a flowchart showing the timer imaging process. First, the main body device 30 receives an input of setting values (for example, an imaging interval and an end time) that define imaging timing (S20). When a setting value is input from the operation unit 32, the main body device 30 stores the setting value in the storage unit 33. The timer management unit 40 refers to the setting value stored in the storage unit 33 and determines whether or not the imaging time has come (S22). When the imaging time has arrived (YES in S22), the timer management unit 40 transmits an imaging instruction signal to the image sensor 15 and performs imaging (S24). The timer management unit 40 determines whether or not the end time has come (S26). If the end time has come (YES in S26), the timer imaging ends. If it is not the end time (NO in S26), the process returns to the determination of whether or not the imaging time has come, and the timer imaging is continued.
 以上、本実施の形態のデジタル顕微鏡1の構成について説明した。本実施の形態のデジタル顕微鏡1は、光源として発光ダイオード34を用いているので、従来用いられていたハロゲンランプに比べて、照度が安定するまでに要する時間が短い。これにより、点灯直後の異なる時刻に撮像を行った場合にも、同じ照射条件の画像が得られる。表示部31は、異なる時刻に撮像した複数の画像を表示するが、照射条件が同じであるため、適切に比較を行ったり、適切に合成したりすることができる。 The configuration of the digital microscope 1 according to the present embodiment has been described above. Since the digital microscope 1 of the present embodiment uses the light emitting diode 34 as a light source, the time required for the illuminance to stabilize is shorter than that of a conventionally used halogen lamp. Thereby, even when imaging is performed at different times immediately after lighting, an image with the same irradiation condition is obtained. The display unit 31 displays a plurality of images taken at different times. However, since the irradiation conditions are the same, the display unit 31 can appropriately compare or appropriately combine the images.
 本実施の形態のデジタル顕微鏡1は、同じ照射条件で撮像した複数の画像を用いてタイリングを行うので、適切なタイリング画像を生成することができる。図6Aは、従来のデジタル顕微鏡1で撮像した画像を用いて生成したタイリング画像の問題点を示す図、図6Bは、本実施の形態のデジタル顕微鏡1で撮像した画像を用いて生成したタイリング画像を示す図である。 Since the digital microscope 1 according to the present embodiment performs tiling using a plurality of images captured under the same irradiation conditions, an appropriate tiling image can be generated. FIG. 6A is a diagram showing a problem of a tiling image generated using an image captured by the conventional digital microscope 1, and FIG. 6B is a tie generated using an image captured by the digital microscope 1 of the present embodiment. It is a figure which shows a ring image.
 図6Aに示すように、従来のデジタル顕微鏡1では、光源の点灯後一定の時間が経過するまでは照度が安定しないので、輝度レベルが低くなったところでは、画像が暗くなってしまう。このような箇所がある場合に、当該箇所の輝度補正を行うことは好ましくない。なぜなら、照度が安定しなかったために暗くなっているのか、実際に何らかの欠陥があったのかを判別することは困難であり、画像の補正を行ってしまうと、実際に存在する欠陥を見落としてしまう可能性があるためである。従って、一部に欠陥がある場合には、タイリング画像を構成する全画像を撮り直すことが必要になり、非常に効率が悪い。これに対し、本実施の形態のデジタル顕微鏡1では、図6Bに示すように、同じ輝度レベルで撮像した画像をつなぎ合わせて適切なタイリング画像を生成することができる。 As shown in FIG. 6A, in the conventional digital microscope 1, since the illuminance is not stable until a certain time has elapsed after the light source is turned on, the image becomes dark when the luminance level is low. When there is such a part, it is not preferable to perform luminance correction of the part. Because it is difficult to determine whether the brightness is dark because the illuminance was unstable or whether there was any defect, and if the image is corrected, the defect that actually exists is overlooked This is because there is a possibility. Therefore, if there is a defect in a part, it is necessary to retake all the images constituting the tiling image, which is very inefficient. On the other hand, in the digital microscope 1 according to the present embodiment, as shown in FIG. 6B, it is possible to generate an appropriate tiling image by connecting images captured at the same luminance level.
 本実施の形態のデジタル顕微鏡1は、時間をおいても同じ照射条件で撮像を行うことができるので、所定の間隔で撮像を行うタイマー撮像において、同一の照射条件により、試料の経時的変化の観察に適した画像を撮像することができる。 Since the digital microscope 1 according to the present embodiment can perform imaging under the same irradiation condition even after a long time, in the timer imaging that performs imaging at a predetermined interval, the temporal change of the sample can be performed under the same irradiation condition. An image suitable for observation can be taken.
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能であり、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。 Although the presently preferred embodiments of the present invention have been described above, various modifications can be made to the present embodiments, and such modifications are within the true spirit and scope of the present invention. It is intended that the appended claims include all modifications.
 以上、本発明は、時間間隔をあけて複数回撮像しても同じ照射条件で撮像を行えるという効果を有し、撮像した画像を表示部に表示するデジタル顕微鏡として有用である。 As described above, the present invention has an effect of being able to capture images under the same irradiation conditions even when captured multiple times at intervals, and is useful as a digital microscope that displays captured images on a display unit.
10 撮像機器
11 ステージ
12 対物レンズ
13 ハーフミラー
14 拡大光学系
15 撮像素子
16 リングレンズ
17~19 光ファイバ束
20 データケーブル
21 照射光学系
22 保持部材
23 操作部
30 本体装置
31 表示部
32 操作部
33 記憶部
34 発光ダイオード
35 制御部
36 点灯制御部
37 ステージ制御部
38 撮像素子制御部
39 画像処理部
40 タイマー管理部
 
DESCRIPTION OF SYMBOLS 10 Image pick-up equipment 11 Stage 12 Objective lens 13 Half mirror 14 Magnification optical system 15 Image pick-up element 16 Ring lens 17-19 Optical fiber bundle 20 Data cable 21 Irradiation optical system 22 Holding member 23 Operation part 30 Main body apparatus 31 Display part 32 Operation part 33 Storage unit 34 Light emitting diode 35 Control unit 36 Lighting control unit 37 Stage control unit 38 Image sensor control unit 39 Image processing unit 40 Timer management unit

Claims (5)

  1.  発光ダイオードと、
     発光ダイオードから出射された光を試料に照射するための光学系と、
     試料にて反射または散乱した光を光電変換して前記試料を撮像する撮像部と、
     前記試料を複数回撮像するように前記撮像部を制御する制御部と、
     前記撮像部にて撮像された画像を表示する表示部と、
     を備えたデジタル顕微鏡。
    A light emitting diode;
    An optical system for irradiating the sample with light emitted from the light emitting diode;
    An imaging unit that photoelectrically converts light reflected or scattered by the sample and images the sample;
    A control unit that controls the imaging unit so as to image the sample a plurality of times;
    A display unit for displaying an image captured by the imaging unit;
    Digital microscope equipped with.
  2.  前記撮像部にて撮像する箇所をずらしつつ撮像された複数の画像をつなぎ合わせる処理を行う画像処理部を備え、
     前記表示部は、前記画像処理部にてつなぎ合わされた画像を表示する請求項1に記載のデジタル顕微鏡。
    An image processing unit that performs a process of stitching together a plurality of images captured while shifting the location to be imaged by the imaging unit;
    The digital microscope according to claim 1, wherein the display unit displays the images joined by the image processing unit.
  3.  前記制御部は、撮像する箇所をずらしつつ前記試料を撮像するように前記試料を載置したステージを移動する制御を行う請求項2に記載のデジタル顕微鏡。 3. The digital microscope according to claim 2, wherein the control unit performs control to move a stage on which the sample is placed so as to capture the sample while shifting a position to be imaged.
  4.  撮像スケジュールの設定を受け付ける操作部と、
     前記操作部にて受け付けた撮像スケジュールを記憶する記憶部と、
     を備え、
     前記撮像部は、前記記憶部に記憶された撮像スケジュールに基づいて撮像を行う請求項1に記載のデジタル顕微鏡。
    An operation unit for accepting an imaging schedule setting;
    A storage unit for storing an imaging schedule received by the operation unit;
    With
    The digital microscope according to claim 1, wherein the imaging unit performs imaging based on an imaging schedule stored in the storage unit.
  5.  前記撮像部にて撮像を行う直前に発光ダイオードを点灯させ、前記撮像後に発光ダイオードを消灯する請求項1ないし4のいずれかに記載のデジタル顕微鏡。 The digital microscope according to any one of claims 1 to 4, wherein a light emitting diode is turned on immediately before imaging is performed by the imaging unit, and the light emitting diode is turned off after the imaging.
PCT/JP2012/000823 2011-03-03 2012-02-08 Digital microscope WO2012117673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046470A JP2012185210A (en) 2011-03-03 2011-03-03 Digital microscope
JP2011-046470 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117673A1 true WO2012117673A1 (en) 2012-09-07

Family

ID=46757619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000823 WO2012117673A1 (en) 2011-03-03 2012-02-08 Digital microscope

Country Status (2)

Country Link
JP (1) JP2012185210A (en)
WO (1) WO2012117673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062061A (en) * 2013-08-21 2015-04-02 株式会社ミラック光学 Portable terminal adapter for microscope, and microscope imaging method using portable terminal adapter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195940A (en) * 2004-01-08 2005-07-21 Olympus Corp Fluorescence microscope
JP2005221708A (en) * 2004-02-05 2005-08-18 Olympus Corp Microscope photographing apparatus, method and program for adjusting brightness
JP2008139795A (en) * 2006-12-05 2008-06-19 Keyence Corp Magnified image observation apparatus, magnified image observation method, magnified image observation program, and computer-readable recording medium and program stored equipment
JP2009042462A (en) * 2007-08-08 2009-02-26 Nikon Corp Microscope apparatus, observation method, and observed image processing method
JP2009128881A (en) * 2007-11-28 2009-06-11 Keyence Corp Magnifying observation device
JP2009128726A (en) * 2007-11-26 2009-06-11 Keyence Corp Magnification observation device, magnified image observation method, magnified image observation program, and computer-readable recording medium
JP2010008856A (en) * 2008-06-30 2010-01-14 Olympus Corp Microscope imaging apparatus and microscope imaging system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195940A (en) * 2004-01-08 2005-07-21 Olympus Corp Fluorescence microscope
JP2005221708A (en) * 2004-02-05 2005-08-18 Olympus Corp Microscope photographing apparatus, method and program for adjusting brightness
JP2008139795A (en) * 2006-12-05 2008-06-19 Keyence Corp Magnified image observation apparatus, magnified image observation method, magnified image observation program, and computer-readable recording medium and program stored equipment
JP2009042462A (en) * 2007-08-08 2009-02-26 Nikon Corp Microscope apparatus, observation method, and observed image processing method
JP2009128726A (en) * 2007-11-26 2009-06-11 Keyence Corp Magnification observation device, magnified image observation method, magnified image observation program, and computer-readable recording medium
JP2009128881A (en) * 2007-11-28 2009-06-11 Keyence Corp Magnifying observation device
JP2010008856A (en) * 2008-06-30 2010-01-14 Olympus Corp Microscope imaging apparatus and microscope imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062061A (en) * 2013-08-21 2015-04-02 株式会社ミラック光学 Portable terminal adapter for microscope, and microscope imaging method using portable terminal adapter

Also Published As

Publication number Publication date
JP2012185210A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US20130077159A1 (en) Microscope system and illumination intensity adjusting method
US11432712B2 (en) Fluorescence imaging scope with dual mode focusing structures
CN102782552B (en) For providing the system of the zoom-focusing of two positions
US11366378B2 (en) Light source device, light source control method, and image acquisition system
JP2014228851A (en) Endoscope device, image acquisition method, and image acquisition program
US8254019B2 (en) Confocal microscope apparatus
WO2012117673A1 (en) Digital microscope
JP6733663B2 (en) Illumination light transmission device and illumination light transmission method
JP2008051772A (en) Fluorescence image acquisition device and fluorescence image acquisition method
JP2008304541A (en) Microscope imaging device
US20200286207A1 (en) Image processing device, image processing method, and computer readable recording medium
US7973432B2 (en) Microscope system and control method for same
JP2012181341A (en) Microscope device
JP5532318B2 (en) Microscope device and recording medium
US20230003990A1 (en) Observation apparatus
US10649197B2 (en) Magnified observation apparatus
US11071444B2 (en) Medical endoscope system providing enhanced illumination
JP6124718B2 (en) Imaging apparatus and control method thereof
JP2010154957A (en) Endoscope
US20210113292A1 (en) Surgical observation device and control method
WO2014155942A1 (en) Observation device, signal output method and signal generation program
US20200322509A1 (en) Endoscopic apparatus
JP2008092974A (en) Processor for electronic endoscope and electronic endoscope system
JP2011092345A (en) Endoscope apparatus
JP6061614B2 (en) Microscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752109

Country of ref document: EP

Kind code of ref document: A1