WO2012116555A1 - 非连续接收方法及装置 - Google Patents

非连续接收方法及装置 Download PDF

Info

Publication number
WO2012116555A1
WO2012116555A1 PCT/CN2011/082300 CN2011082300W WO2012116555A1 WO 2012116555 A1 WO2012116555 A1 WO 2012116555A1 CN 2011082300 W CN2011082300 W CN 2011082300W WO 2012116555 A1 WO2012116555 A1 WO 2012116555A1
Authority
WO
WIPO (PCT)
Prior art keywords
ondurationtimer
user equipment
discontinuous reception
information
starts
Prior art date
Application number
PCT/CN2011/082300
Other languages
English (en)
French (fr)
Inventor
邓云
戴谦
毛磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012116555A1 publication Critical patent/WO2012116555A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a technique for discontinuous reception, and more particularly to a discontinuous reception method and apparatus for extending an existing discontinuous reception mechanism. Background technique
  • H2H Human to Human
  • M2M Machine to Machine
  • M2M applications include industrial applications, home applications, personal applications, etc. Among them, industry applications include traffic monitoring, alarm systems, marine rescue, vending machines, car payment, etc. Home applications include automatic meter reading, temperature control, etc. Applications include life testing, remote diagnosis, and more.
  • M2M objects are machine-to-machine, person-to-machine, and data communication between one or more machines is defined as Machine Type Communication (MTC). Less human interaction is required.
  • MTC Machine Type Communication
  • the machine participating in the MTC is an MTC device or an MTC device (MTC Device).
  • MTC Device MTC device
  • the MTC device can communicate with other MTC devices or MTC servers through a Public Land Mobile-communication Network (PLMN).
  • PLMN Public Land Mobile-communication Network
  • the existing communication system can be optimized according to its characteristics to meet the MTC application requirements and has no impact on the common user equipment (UE, User Equipment) in the existing network.
  • MTC devices are numerous, the amount of data transmitted per time is small, the transmission interval is large, and some MTC devices are relatively fixed in position. According to statistics, the number of MTC devices installed in a certain urban area will reach 3,000. If so many MTC devices are launched in a centralized manner, such as in the case of fires, earthquakes, etc., the network will be given Come a big shock.
  • MME Mobility Management Entity
  • the base station needs to dynamically adjust the access control parameters based on its own load state, reject or release a part of the terminals, so as to properly control the load.
  • FIG. 1 is a schematic diagram according to the prior art. Schematic diagram of the DRX state. As shown in Figure 1, in the DRX state, the terminal is allowed to monitor the PDCCH discontinuously; otherwise, the UE needs to continuously monitor the PDCCH. The terminal may perform PDCCH signaling according to the PDCCH during the monitoring of the PDCCH.
  • the allocated resources either receive data on the PDSCH according to the pre-configured resources or transmit data on a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the base station configures a timer such as a duration timer (onDurationTimer) and a DRX activity timer (drx-InactivityTimer) for the terminal, and the terminal obtains the start subframe of the OnDuration according to the calculation expression predefined by the protocol.
  • a timer such as a duration timer (onDurationTimer) and a DRX activity timer (drx-InactivityTimer) for the terminal, and the terminal obtains the start subframe of the OnDuration according to the calculation expression predefined by the protocol.
  • the terminal needs to be enabled on the onDurationTimer, and then the terminal is in the active state for a period of time (Active Time, the terminal needs to continuously monitor the PDCCH, and the time of the Active Time can be greater than or equal to the onDurationTimer; after the active state ends, the terminal enters the inactive state (the terminal does not need to monitor the PDCCH)
  • the terminal obtains the starting subframe of the next OnDuration according to the calculation expression predefined by the protocol, enters the active state again, and so on, until the base station terminates the DRX state.
  • the DRX cycle can be configured for a maximum of 2560 milliseconds, and other lengths can be 2048 milliseconds, 1024 milliseconds, or 512 milliseconds.
  • 2560 is a divisor of 10240.
  • the system frame number (SFN, System Frame Number) of the existing system ranges from 0 to 1023, and each SFN corresponds to a radio frame of 10 milliseconds length. Flip every 1024 radio frames (re-from 0 to 1023).
  • the DRX start time that is, the start time of OnDuration
  • the DRX cycle must be a divisor of 10240.
  • an MTC device for car monitoring needs to periodically send a status report, and the client needs to periodically receive a status report. Due to differences in the use and scenarios of monitoring, the periods in which these MTC devices send or receive data vary widely, such as from 1 minute to an hour.
  • the base station Since this part of the MTC device will continuously transmit or receive data, the base station will maintain the wireless connection of these devices; and in order to save power consumption, the base station configures these MTC devices into the DRX state, but due to the existing DRX cycle length limitation, these MTC devices Will be frequently in OnDuration, which will consume a large part of the energy of the terminal, for which you need to consider extending DRX Week
  • the method of the period enables the network side to set the time when the terminal is in an active state more reasonably, which is beneficial to the power saving of the terminal. Summary of the invention
  • a discontinuous reception method includes:
  • the user equipment is shielded at least once in the discontinuous reception state according to the indication of the network side.
  • the user equipment at least masks the startup of the OnDurationTimer in the discontinuous reception state according to the network side indication, as follows:
  • the user equipment receives information sent by the network side for extending the non-active time in the discontinuous reception state, and performs masking initiated by the ⁇ F OnDurationTimer according to the information for extending the inactivity time in the discontinuous reception state.
  • the method further includes:
  • the network side sends the information for extending the inactivity time in the discontinuous reception state to the user equipment by using RRC (Radio Resource Control) signaling or media access layer control MAC signaling.
  • RRC Radio Resource Control
  • the information for extending the inactivity time in the discontinuous reception state is duration information indicating that the user equipment masks the OnDurationTimer activation, or information indicating the number of times the user equipment masks the OnDurationTimer activation.
  • the performing the masking of the OnDurationTimer startup is:
  • the user equipment starts timing when entering the inactive state, and maintains the duration indicated by the network side. After the inactive state, the discontinuous reception mechanism is started again;
  • the user equipment starts timing after acquiring the duration information, and masks activation of the OnDurationTimer after the user equipment is in an inactive state, until the duration is reached, and then starts the discontinuous reception mechanism.
  • the information for extending the inactivity time in the discontinuous reception state is a mask indicating that the user equipment masks the OnDurationTimer startup time, and the performing the masking on the OnDurationTimer is:
  • the OnDurationTimer that masks the number of times or the number of times is added once or the number of times is reduced, and the discontinuous reception mechanism is started.
  • the method further includes:
  • the user equipment performs masking of the OnDurationTimer activation using the duration information or the number of times information only when the long period is in effect.
  • the user equipment comprises a person-to-person communication H2H device and/or a machine type communication MTC device.
  • a discontinuous receiving device includes a receiving unit and a shielding unit, wherein
  • a receiving unit configured to receive, by the network side, indication information used to block OnDurationTimer startup;
  • a shielding unit configured to mask at least one startup of the OnDurationTimer in the discontinuous reception state according to the indication information.
  • the indication information is information for extending an inactivity time in a discontinuous reception state
  • the masking unit further performs masking of the OnDurationTimer initiation based on the information for extending the inactivity time in the discontinuous reception state.
  • the information for extending the inactivity time in the discontinuous reception state is information indicating that the user equipment masks the OnDurationTimer startup time, or is information indicating that the user equipment masks the OnDurationTimer startup.
  • the information for extending the inactivity time in the discontinuous reception state is when the user equipment is shielded from the duration information of the OnDurationTimer startup.
  • the shielding unit starts timing when the user equipment enters an inactive state, and after maintaining the inactive state of the duration indicated by the network side, starts a discontinuous reception mechanism;
  • the shielding unit starts timing after the user equipment acquires the duration information, and masks startup of the OnDurationTimer after the user equipment is in an inactive state, until the duration is reached, and then starts a discontinuous reception mechanism. .
  • the information for extending the inactivity time in the discontinuous reception state is information indicating that the user equipment masks the number of times the OnDurationTimer is started.
  • the shielding unit After the user equipment receives the value and enters the inactive state, the shielding unit starts the OnDurationTimer that masks the number of times or the number of times of the force port once or the number of times is reduced, and then starts the discontinuous reception mechanism.
  • a discontinuous receiving device includes:
  • a sending unit configured to send an indication for shielding the OnDurationTimer from starting.
  • the user equipment in the discontinuous reception state is controlled by the OnDurationTimer, so that the OnDuration is masked more than once, so that the period in which the user equipment in the discontinuous reception state listens to the PDCCH becomes Longer, meaning that the user equipment will be inactive for a longer period of time, thus making the user equipment more power efficient.
  • FIG. 1 is a schematic diagram of a DRX state according to the prior art
  • FIG. 2 is a schematic diagram of an extended DRX state in the present invention
  • 3 is a flowchart of a discontinuous reception method according to an embodiment of the present invention.
  • 4 is a schematic view showing the structure of a discontinuous receiving device of the present invention. detailed description
  • the basic idea of the present invention is that the user equipment in the discontinuous reception state is controlled by the OnDurationTimer to prevent the start of the OnDurationTimer from being masked more than once, so that the user equipment in the discontinuous reception state listens to the PDCCH. The cycle will become longer.
  • This embodiment uses an MTC device as an example for long-term evolution (LTE, Long-Term).
  • LTE long-term evolution
  • Long-Term Long-Term
  • the MTC device accesses the LTE network through the base station 1 and is in a connected state. Since the MTC device sends data to the network without interruption, the base station 1 configures the discontinuous reception state (DRX state) for the MTC device, and the base station 1
  • the DRX related parameters such as a duration timer (OnDurationTimer), a DRX activity timer (DRX-Inactivity Timer), and a DRX retransmission timer (such as a duration timer (OnDurationTimer), a DRX activity timer), may be configured by RRC signaling, such as RRC Connection Reconfiguration.
  • DRX cycle can contain two cycles, one is called long-period longDRX-Cycle, which is called short-cycle shortDRX-Cycle; or only longDRX-Cycle), DRX start offset value ( drxStartOffset ).
  • the MTC device will cycle with longDRX-Cycle or shortDRX-Cycle, "wake up periodically" to monitor the PDCCH, and at least “wake up” the OnDurationTimer length at a time (at this point the MTC device starts).
  • the time when the MTC device is active is called Active Time, and the Active Time time can be greater than or equal to onDurationTimer.
  • the time during which the MTC device wakes up to monitor the PDCCH is also called OnDuration.
  • the MTC device If the MTC device does not receive the PDCCH (including uplink or downlink) indicated by the base station during the operation of the onDurationTimer, the MTC device enters an inactive state after the onDurationTimer times out, and the Active Time duration is equal to the length of time indicated by the onDurationTimer. .
  • the MTC device receives the PDCCH (uplink or downlink) indicated by the base station (network side) that needs to transmit data, and the MTC device needs to start the DRX activity timer, and the MTC device starts data transmission with the base station, because there may be Retransmission and the need to transmit more data, the duration of Active Time may be greater than the length of time indicated by onDurationTimer.
  • the base station configuring the DRX state for the MTC device can reduce the power consumption of the MTC device, and the MTC device does not have to detect the PDCCH in the inactive state, because the base station does not schedule the MTC device at this time.
  • the period during which the MTC device does not continuously transmit data is long (the length of the DRX cycle configured by the base station for the MTC device is 2560 milliseconds).
  • the base station newly adds time length information for extending the inactivity time in the discontinuous reception state for the MTC device, and the base station can pass the existing RRC signaling.
  • the RRC connection reconfiguration signaling sends the time length information to the MTC device.
  • the time length information refers to specific time information, such as 1 minute. After receiving the time length information, the MTC device enters the inactive state.
  • the MTC device does not Need to wake up to monitor the PDCCH, that is, the MTC device does not need to pass the formula [ ( SFN x 10 ) +subframe number] modulo before the timer expires.
  • FIG. 2 is a schematic diagram of an extended DRX state in the present invention, and describes a processing mechanism for extending an inactive state timer in a discontinuous reception state, as shown in FIG. 2, by adding a new timer.
  • TO avoids the MTC device waking up to monitor the PDCCH multiple times, can effectively save the power consumption of the MTC device, and adopts the method of adding a new timer to be compatible with the existing DRX mechanism and the modification of the protocol. Smaller.
  • the method for extending the length of the inactive time in the discontinuous reception state is added to achieve the purpose of extending the DRX cycle.
  • the timing of starting the timer TO by the MTC device may start to start the timer TO after receiving the RRC signaling including the time length information.
  • the MTC device does not have to detect the starting subframe of the OnDuration, that is, if the network side is received
  • the activation state is maintained until the MTC device enters the inactive state
  • the inactive state is maintained until the network side indicates
  • the duration indicated by the network side will be much longer than the duration of the OnDurationTimer, as the length of the foregoing indication is 1 minute or longer; or, when the MTC device detects the OnDuration start subframe and starts the OnDurationTimer, Start TO, in the active state, the existing mechanism remains unchanged, when the MTC device After entering the inactive state, if the TO does not time out, the MTC device does not need to detect the start subframe of OnDuration again (that is, the mask of OnDurationTimer is implemented).
  • This embodiment describes the MTC device.
  • the above technical solution is also applicable to the H2H device.
  • the implementation details are not described in the present invention.
  • the H2H device is taken as an example.
  • the H2H device accesses the network through the base station 2 and is in a connected state. Since the H2H device receives the data sent by the network side without interruption, the base station 2 is an H2H device.
  • the discontinuous reception state (DRX state) is configured, and the base station 2 can configure DRX related parameters for the H2H device through RRC signaling, such as RRC connection reconfiguration.
  • the base station 2 can learn that the network side sends data to the H2H device every 5 minutes. Therefore, the base station 2 configures a DRX period of 2560 milliseconds for the H2H device, and the base station newly configures a value for the H2H device. In this embodiment, the base station 2 has a Number value of 116. The H2H device receives the value and saves it.
  • FIG. 3 is a flowchart of a method for discontinuous reception according to an embodiment of the present invention. As shown in FIG. 3, when the H2H device is in an inactive state, the process of performing discontinuous reception specifically includes the following steps:
  • Step 301 The H2H device initializes the counter and sets the counter to 0.
  • Step 303 The H2H device adds 1 to the counter, and then performs step 304.
  • Step 304 The H2H device determines whether the counter reaches 116. If the counter does not reach 116, step 302 is performed; otherwise, the process ends.
  • the H2H device needs to continue to detect the start time of the OnDuration by using the above formula. After the H2H device detects the start time of the OnDuration, the H2H device needs to start the onDurationTimer, and the H2H device starts to monitor the PDCCH, and is in an active state, at this time, H2H.
  • the device operates according to the existing DRX mechanism.
  • the H2H device can be in an inactive state for a longer period of time, reducing power consumption.
  • the base station can reasonably set the value Number to satisfy different data transmission scenarios.
  • This embodiment describes the scenario of the H2H device, and is actually applicable to the MTC device.
  • the terminal needs to mask the OnDuration indicated by the number of times, and then enters the active state again.
  • other implementation manners may be used.
  • the terminal needs to mask Number+1 times OnDuration and then enter the active state again; or the terminal needs to mask Number-1 times OnDuration, and then enter the active state again.
  • Number+1 or Number-1 is used, mainly because of the air interface coding.
  • the air interface sometimes starts from 0, and sometimes starts from 1 to encode.
  • the MTC device is taken as an example.
  • the MTC device accesses the network through the base station 3 and is in a connected state. Since the MTC device receives data from the network side without interruption, the base station 3 configures the MTC device.
  • the non-continuous reception state (DRX state) the base station 3 can configure the DRX-related parameters for the MTC device by using the RRC signaling, such as the RRC connection reconfiguration.
  • the base station 3 is configured for the MTC device. Two DRX cycles, shortDRX-Cycle (128ms) and longDRX-Cycle (2048ms).
  • the base station 3 sends a new value Number to the MTC device through the Medium Access Control (MAC) control signaling, which indicates that the MTC device needs to be ignored. So many times OnDuration can enter the active state again.
  • MAC Medium Access Control
  • the base station 3 The short DRX-Cycle is configured for the MTC device, corresponding to shortDRX-Cycle, and the base station 3 is configured with a short cycle timer (drxShortCycleTimer). During the running of the timer, the MTC device uses shortDRX-Cycle; when the short cycle timer expires After that, the MTC device uses longDRX-Cycle.
  • drxShortCycleTimer a short cycle timer
  • the MTC device will receive data frequently, so MTC will not mask OnDuration. After detecting the start subframe of OnDuration, it will receive the PDCCH. Only when the MTC device enters the inactive state of longDRX-Cycle (in this case, when the long period is effective;), the MTC device blocks the OnDuration of the corresponding number of times, that is, the MTC device needs to ignore (or block) multiple times (equal to the The value) OnDuration will enter the active state again.
  • the MTC device needs to use the number in the inactive state of the shortDRX-Cycle, that is, ignore (or mask) so many OnDurations. Only enter the active state again. That is to say, even in a short period (when only shortDRX-Cycle is configured), it is possible to attempt to shield the onDurationTimer by the aforementioned technical solution of the present invention.
  • FIG. 4 is a schematic structural diagram of a discontinuous receiving apparatus of the present invention.
  • the discontinuous receiving apparatus of the present invention includes a receiving unit 41 and a shielding unit 42;
  • the receiving unit 41 is configured to receive indication information that is sent by the network side and is used to mask OnDurationTimer startup.
  • the shielding unit 42 is configured to block at least one startup of the OnDurationTimer in the discontinuous reception state according to the indication information.
  • the above indication information is information for extending the inactivity time in the discontinuous reception state; the masking unit 42 further performs masking of the OnDurationTimer activation based on the information for extending the inactivity time in the discontinuous reception state.
  • the foregoing information for extending the inactivity time in the discontinuous reception state is information indicating that the user equipment masks the OnDurationTimer startup time, or is information indicating that the user equipment masks the OnDurationTimer startup.
  • the above information for extending the inactivity time in the discontinuous reception state is when the user equipment is shielded from the duration of the OnDurationTimer startup.
  • the shielding unit 42 starts timing when the user equipment enters an inactive state, and after maintaining the inactive state of the duration indicated by the network side, starts the discontinuous reception mechanism;
  • the shielding unit 42 starts timing after the user equipment acquires the duration information, and blocks the startup of the OnDurationTimer after the user equipment is in an inactive state, until the duration is reached, and then starts the discontinuous reception mechanism. .
  • the information for extending the inactivity time in the discontinuous reception state is information indicating that the user equipment masks the number of times the OnDurationTimer is started.
  • the masking unit 42 After the user equipment receives the value and enters the inactive state, the masking unit 42 starts the OnDurationTimer that masks the number of times or the number of times is added once or the number of times is reduced, and then starts the discontinuous reception mechanism.
  • the above-mentioned network side refers to a network element capable of generating a discontinuous reception state for a user equipment in a wireless communication network, such as a base station in an LTE system or a radio network controller in a 3G network.
  • the masking unit 42 performs the masking of the OnDurationTimer activation using the duration information or the number of times information only when the long period is in effect. If only a long period is configured or only a short period is configured, the discontinuous reception of the user equipment can be controlled according to the technical solution of the present invention.
  • User equipment in the present invention especially an MTC device and/or an H2H device.
  • discontinuous receiving apparatus shown in FIG. 4 of the present invention is designed to implement the foregoing discontinuous receiving method of the present invention, and the implementation functions of the foregoing processing units may be With reference to the related description of the foregoing method, it can be understood by referring to the descriptions of Embodiment 1 to Embodiment 3 of the foregoing discontinuous reception method.
  • the functions of the various processing units in the figures may be implemented by a program running on a processor or by a specific logic circuit.
  • the present invention also describes another discontinuous receiving apparatus, including a transmitting unit for transmitting indication information for masking OnDurationTimer activation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种非连续接收方法,包括:用户设备根据网络侧指示,在非连续接收状态下至少屏蔽一次持续时间定时器OnDurationTimer的启动。本发明同时公开了一种实现上述方法的非连续接收装置,包括接收单元和屏蔽单元,接收单元,用于接收网络侧发送的用于屏蔽OnDurationTimer启动的指示信息;屏蔽单元,用于根据所述指示信息在非连续接收状态下至少屏蔽一次OnDurationTimer的启动。本发明能使处于非连续接收状态下的用户设备以更长的周期侦听PDCCH,从而使用户设备更省电。

Description

非连续接收方法及装置 技术领域
本发明涉及一种非连续接收的技术, 尤其涉及一种用于扩展现有的非 连续接收机制的非连续接收方法及装置。 背景技术
人与人之间的通信(H2H, Human to Human )是人通过对设备的操作 进行通信, 现有无线通信技术正是基于 H2H的通信而发展起来的。 而机器 对机器(M2M, Machine to Machine )狭义上的定义是机器到机器的通信, 广义上的定义是以机器终端智能交互为核心的、 网络化的应用与服务。 它 是基于智能机器终端, 以多种通信方式为接入手段, 为客户提供信息化解 决方案, 用于满足客户对监控、 指挥调度、 数据采集和测量等方面的信息 化需求。
无线技术的发展是 M2M市场发展的重要因素,它突破了传统通信方式 的时空限制和地域障碍, 使企业和公众摆脱了线缆束缚, 让客户更有效地 控制成本、 降低安装费用并且使用简单方便。 另外, 日益增长的需求推动 着 M2M不断向前发展,然而与信息处理能力及网络带宽不断增长相矛盾的 是,信息获取的手段远远落后,而 M2M很好地满足了这一需求,通过 M2M 可以实时监测外部环境, 实现大范围、 自动化的信息采集。 因此, M2M的 应用包括行业应用、 家庭应用、 个人应用等, 其中, 行业应用包括交通监 控、 告警系统、 海上救援、 自动售货机、 开车付费等, 家庭应用包括自动 抄表、 温度控制等, 个人应用包括生命检测、 远端诊断等。
M2M的对象为机器对机器、 人对机器, 一个或多个机器之间的数据通 信定义为机器类型通信(MTC, Machine Type Communication ), 这种情况 下较少需要人机互动。 参与 MTC的机器为 MTC设备或 MTC终端 (MTC Device )。 MTC设备可以通过公众陆地移动通信网络( PLMN , Public Land Mobile-communication Network )与其他 MTC设备或 MTC服务器进行通信。
?!入 MTC应用后, 可以根据其特点对现有的通信系统进行一些优化, 以满足 MTC 应用需求, 并且对现有网络中的普通用户设备(UE, User Equipment ) 不产生影响。 M2M应用的一些显著特点有: MTC设备数量很 多, 每次传输的数据量小, 传输间隔大, 部分 MTC设备位置相对固定。 据 统计, 在某市区一个小区范围内安装的 MTC设备将达到 3000个, 这么多 的 MTC设备, 如果比较集中的发起随机接入, 如在火灾、 地震等情况下同 时报警, 将给网络带来很大的沖击。 通常多个基站会连接到同一个核心网 网元如移动性管理实体 ( MME, Mobility Management Entity ), 当所有基站 内的众多 MTC设备均需要接入网络时, 例如断电后, 恢复供电时所有的 MTC设备需要注册到网络中, MME将承受巨大的信令沖击, 可能导致过 载。众多的 MTC设备接入网络时,将占用大量的随机接入资源和专用资源, 其中专用资源包括物理下行控制信道( PDCCH , Physical Downlink Control Channel ) 资源、 物理上行控制信道 (PUCCH , Physical Uplink Control Channel ) 资源、 物理下行共享信道(PDSCH, Physical Downlink Shared Channel )资源等,这可能导致这部分资源出现过载,进而影响到普通的 H2H 设备的业务应用。 因此基站需要基于自身的负载状态动态地调整接入控制 参数, 拒绝或释放一部分终端, 以便合理地控制负载。
对于已经接入网络的终端,比如某些 MTC设备需要周期性地上报或接 收一些数据, 基站会将这些 MTC 设备设置为非连续接收 (DRX , Discontinuous Reception )状态, 图 1为依据现有技术的 DRX状态示意图, 如图 1所示, 在 DRX状态下, 终端被允许不连续地监听 PDCCH; 否则 UE 需要连续监听 PDCCH。 终端在监听 PDCCH期间, 可以根据 PDCCH信令 所分配的资源或者根据预配置的资源在 PDSCH上接收数据或者在物理上 行共享信道( PUSCH, Physical Uplink Shared Channel )上发送数据。在 DRX 状态, 基站为终端配置了持续时间定时器(onDurationTimer ), DRX活动定 时器 ( drx-InactivityTimer )等定时器, 终端按照协议预定义的计算表达式 获得 OnDuration的起始子帧 (此时终端需要启动 onDurationTimer ), 然后 终端处于一段时间的激活态 (Active Time, 终端需要持续监听 PDCCH, Active Time的时间可以大于或等于 onDurationTimer; 在激活态结束后, 终 端进入非激活态 (终端不需要监听 PDCCH )。 终端会按照协议预定义的计 算表达式获得下一次 OnDuration的起始子帧,再次进入激活态,如此循环, 直至基站终止 DRX状态。
依据现有的协议, DRX周期最长可以配置为 2560毫秒,其他的长度可 以为 2048毫秒、 1024毫秒、 或 512毫秒等。 设置这些长度所考虑的一个因 素是, 2560为 10240的除数, 现有系统的系统帧号 ( SFN, System Frame Number )取值范围从 0到 1023,每个 SFN对应一个 10毫秒长度的无线帧, 每隔 1024个无线帧就翻转(重新从 0到 1023 )。为了防止 SFN翻转时, DRX 的起始时刻(即 OnDuration的起始时刻 )产生偏移,要求 DRX周期必须是 10240的除数。
引入 MTC设备后, 一些监控设备存在不连续发送或接收数据的需求, 如用于汽车监控的 MTC设备需要周期性地发送状态报告, 而客户端需要周 期性地接收状态报告。 由于监控的用途、 场景存在差异, 因此这些 MTC设 备发送或接收数据的周期相差很大, 比如从 1 分钟到一个小时不等。 由于 这部分 MTC设备将持续发送或接收数据, 因此基站将维持这些设备的无线 连接; 同时为了节省功率消耗, 基站将这些 MTC设备配置成 DRX状态, 然而由于现有 DRX 周期长度限制, 这些 MTC 设备将频繁地处于 OnDuration, 这将消耗终端的很大一部分能量, 为此需要考虑扩展 DRX周 期的方法, 使得网络侧可以更合理地设置终端处于激活状态的时间, 有利 于终端的省电。 发明内容
有鉴于此, 本发明的主要目的在于提供一种非连续接收方法及装置, 能使处于非连续接收状态下的用户设备更省电。
为达到上述目的, 本发明的技术方案是这样实现的:
一种非连续接收方法, 包括:
用户设备根据网络侧指示, 在非连续接收状态下至少屏蔽一次
OnDurationTimer的启动。
优选地, 所述用户设备根据网络侧指示, 在非连续接收状态下至少屏 蔽一次 OnDurationTimer的启动, 为:
所述用户设备接收所述网络侧发送的用于延长非连续接收状态中非激 活时间的信息, 并根据所述用于延长非连续接收状态中非激活时间的信息 执行^ f OnDurationTimer启动的屏蔽。
优选地, 所述方法还包括:
所述网络侧通过无线资源控制 (RRC, Radio Resource Control )信令、 或媒质接入层控制 MAC信令向所述用户设备发送所述用于延长非连续接 收状态中非激活时间的信息。
优选地, 所述用于延长非连续接收状态中非激活时间的信息为指示所 述用户设备屏蔽 OnDurationTimer启动的时长信息,或为指示所述用户设备 屏蔽 OnDurationTimer启动的次数信息。
优选地, 所述用于延长非连续接收状态中非激活时间的信息为指示所 述用户设备屏蔽 OnDurationTimer 启动的时长信息时, 所述执行对 OnDurationTimer启动的屏蔽, 为:
所述用户设备进入非激活态时开始计时, 维持所述网络侧指示的时长 的非激活状态后, 再启动非连续接收机制;
或者, 所述用户设备在获取所述时长信息后开始计时, 并在所述用户 设备处于非激活状态后屏蔽所述 OnDurationTimer的启动,直到达到所述时 长, 再启动非连续接收机制。
优选地, 所述用于延长非连续接收状态中非激活时间的信息为指示所 述用户设备屏蔽 OnDurationTimer 启动的次数信息时, 所述执行对 OnDurationTimer启动的屏蔽, 为:
所述用户设备接收到所述数值、 进入非激活态后, 屏蔽所述次数或所 述次数加一次或所述次数减一次的 OnDurationTimer启动,再启动非连续接 收机制。
优选地, 所述方法还包括:
在配置非连续接收的长周期和短周期的情况下, 所述用户设备仅在所 述长周期生效时利用所述时长信息或次数信息执行对 OnDurationTimer 启 动的屏蔽。
优选地,所述用户设备包括人与人之间的通信 H2H设备和 /或机器类型 通信 MTC设备。
一种非连续接收装置, 包括接收单元和屏蔽单元, 其中,
接收单元,用于接收网络侧发送的用于屏蔽 OnDurationTimer启动的指 示信息;
屏蔽单元, 用于根据所述指示信息在非连续接收状态下至少屏蔽一次 OnDurationTimer的启动。
优选地, 所述指示信息为用于延长非连续接收状态中非激活时间的信 息;
所述屏蔽单元进一步根据所述用于延长非连续接收状态中非激活时间 的信息执行对 OnDurationTimer启动的屏蔽。 优选地, 所述用于延长非连续接收状态中非激活时间的信息为指示所 述用户设备屏蔽 OnDurationTimer启动的时长信息,或为指示所述用户设备 屏蔽 OnDurationTimer启动的次数信息。
优选地, 所述用于延长非连续接收状态中非激活时间的信息为指示所 述用户设备屏蔽 OnDurationTimer启动的时长信息时,
所述屏蔽单元在所述用户设备进入非激活态时开始计时, 维持所述网 络侧指示的时长的非激活状态后, 再启动非连续接收机制;
或者, 所述屏蔽单元在所述用户设备获取所述时长信息后开始计时, 并在所述用户设备处于非激活状态后屏蔽所述 OnDurationTimer的启动,直 到达到所述时长, 再启动非连续接收机制。
优选地, 所述用于延长非连续接收状态中非激活时间的信息为指示所 述用户设备屏蔽 OnDurationTimer启动的次数信息时,
所述屏蔽单元在所述用户设备接收到所述数值、 进入非激活态后, 屏 蔽所述次数或所述次数力口一次或所述次数减一次的 OnDurationTimer启动, 再启动非连续接收机制。
一种非连续接收装置, 包括:
发送单元, 用于发送用于屏蔽 OnDurationTimer启动的指示信息。 本发明中, 对于处于非连续接收状态下的用户设备, 通过对其 OnDurationTimer启动进行控制, 使该 OnDuration被屏蔽一次以上, 从而使 处于非连续接收状态下的用户设备侦听 PDCCH的周期会变得更长,也就是 说用户设备将更长时间地处于非激活状态, 从而使用户设备更省电。 附图说明
图 1为依据现有技术的 DRX状态示意图;
图 2为本发明中扩展后的 DRX状态示意图;
图 3为本发明一实施例的非连续接收方法流程图; 图 4为本发明非连续接收装置的组成结构示意图。 具体实施方式
本发明的基本思想为, 对于处于非连续接收状态下的用户设备, 通过 对其 OnDurationTimer启动进行控制, 使该 OnDurationTimer的启动被屏蔽 一次以上,从而使处于非连续接收状态下的用户设备侦听 PDCCH的周期会 变得更长。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
实施例一
本实施例以 MTC设备为例进行说明, 在长期演进(LTE, Long-Term
Evolution ) 系统中, MTC设备通过基站 1接入 LTE网络并处于连接状态, 由于 MTC设备会不间断地向网络发送数据, 因此基站 1为 MTC设备配置 了非连续接收状态( DRX状态),基站 1可以通过 RRC信令如 RRC连接重 配置( RRC Connection Reconfiguration )为 MTC设备配置 DRX相关的参数, 如持续 时 间 定 时 器 ( OnDurationTimer ) 、 DRX 活动 定时 器 ( drx-Inactivity Timer )、 DRX重传定时器 ( drx-RetransmissionTimer )、 DRX 周期(可以包含两种周期, 一种称之为长周期 longDRX-Cycle, —种称之为 短周期 shortDRX-Cycle; 或者仅包含 longDRX-Cycle )、 DRX起始偏移值 ( drxStartOffset )。 MTC设备获得 DRX的配置参数后, 在满足公式 [ ( SFN X 10 ) +subframe number] modulo ( longDRX-Cycle ) ^drxStartOffset的子巾贞; 或者在满足公式[ ( SFN X 10 ) + subframe number] modulo ( shortDRX-Cycle ) =( drxStartOffset ) modulo ( shortDRX-Cycle )的子巾贞 ,启动 OnDurationTimer , 其中 SFN是系统帧号, subframe number是子帧号, modulo表示耳 4莫运算。 MTC设备会以 longDRX-Cycle或 shortDRX-Cycle为周期, "定时醒来" 监 听 PDCCH, 每次至少 "醒" OnDurationTimer长度(此时 MTC设备开始处 于激活态, MTC设备处于激活状态的时间称为 Active Time, Active Time 时间可以大于或等于 onDurationTimer )。 MTC设备在醒来监听 PDCCH的 这段时间也称为 OnDuration。如果 MTC设备在 onDurationTimer运行期间, 没有接收到基站指示的需要传递数据的 PDCCH(包括上行或下行),则 MTC 设备在 onDurationTimer超时后, 进入非激活态, 此时 Active Time时长等 于 onDurationTimer指示的时间长度。 口果 MTC设备在 onDurationTimer运 行期间, 接收到基站(网络侧 )指示的需要传递数据的 PDCCH (上行或下 行), MTC设备需要启动 DRX活动定时器, MTC设备开始与基站进行数 据传输, 由于可能存在重传以及需要传输较多的数据, 此时 Active Time的 时长可能大于 onDurationTimer指示的时间长度。基站为 MTC设备配置 DRX 状态可以减少 MTC设备的耗电量,MTC设备在非激活态不必检测 PDCCH, 因为此时基站不会调度该 MTC设备。
由于该 MTC设备不连续发送数据的周期较长(基站为该 MTC设备配 置的 DRX周期长度是 2560毫秒)。 为了避免终端持续地醒来监听 PDCCH 而耗费电量, 本发明中, 基站为 MTC设备新增配置了用于延长非连续接收 状态中非激活时间的时间长度信息,基站可以通过现有的 RRC信令如 RRC 连接重配置信令向该 MTC设备发送时间长度信息, 在本实施例中, 时间长 度信息即指具体的时间信息如 1分钟; MTC设备接收到该时间长度信息后, 在进入非激活态时, 启动时长等于所述时间信息( 1分钟 )的定时器 TO (此 处用 TO表示该定时器, 本发明不限定该定时器的名称), 在该定时器没有 超时前, 该 MTC设备不需要醒来监听 PDCCH, 也即 MTC设备在该定时 器超时之前, 不需要通过公式[ ( SFN x 10 ) +subframe number] modulo
( longDRX-Cycle ) = drxStartOffset确定 OnDuration的起始子帧; 或者不需 要通过公式 [ ( SFN X 10 ) +subframe number] modulo ( shortDRX-Cycle ) =
( drxStartOffset ) modulo ( shortDRX-Cycle )确定 OnDuration的起始子帧。 在该定时器超时后, MTC设备需要通过上述公式重新确定 OnDuration的起 始子帧再次进入非连续接收状态, 当该 MTC设备再次进入非激活态时, 需 要再次重启定时器 TO, 在该定时器没有超时前, 不需要监听 PDCCH, 继 续维持非激活态。
图 2为本发明中扩展后的 DRX状态示意图,描述了本发明在非连续接 收状态下新增了用于延长非激活状态定时器的处理机制, 如图 2所示, 通 过新增的定时器(TO ), 避免了 MTC设备多次醒来监听 PDCCH的动作, 可以有效地节省 MTC设备的功率消耗, 同时采用新增定时器的方法可以很 好地兼容现有的 DRX机制, 对协议的改动较小。
本实施例采用新增延长非连续接收状态中非激活时间的时间长度信息 的方法实现了扩展 DRX周期的目的,事实上本实施例还有其他的实现方式, 如 MTC设备启动定时器 TO的时机, MTC设备可以在接收到包含时间长度 信息的 RRC信令之后就开始启动定时器 TO, 在 TO定时器运行期间, MTC 设备不必检测 OnDuration的起始子帧, 也就说, 如果接收到网络侧发送的 延长非连续接收状态中非激活时间的时间长度信息时, MTC设备当前就处 于激活状态时, 将保持该激活状态, 直到 MTC设备进入非激活状态后, 维 持该非激活状态直到网络侧指示的时长到时, 此时, 网络侧指示的时长将 远大于 OnDurationTimer的时长,如前述指示的时长为 1分钟或更长;或者, MTC设备在探测到 OnDuration起始子帧并启动 OnDurationTimer时, 同时 启动 TO, 在激活态, 现有机制保持不变, 当 MTC设备进入非激活态后, 如果 TO没有超时, MTC设备不需要再次探测 OnDuration的起始子帧 (即 实现了对 OnDurationTimer的屏蔽)。
本实施例描述了 MTC设备, 上述技术方案同样适用于 H2H设备, 本 发明不再赘述其实现细节。
实施例二 本实施例以 H2H设备为例进行说明 , 在长期演进系统中 , H2H设备通 过基站 2接入网络并处于连接状态, 由于 H2H设备会不间断地接收网络侧 发送的数据, 因此基站 2为 H2H设备配置了非连续接收状态( DRX状态), 基站 2可以通过 RRC信令如 RRC连接重配置为 H2H设备配置 DRX相关 的参数。
基站 2可以通过统计的方式获知网络侧每隔 5分钟向该 H2H设备发送 数据, 因此基站 2为该 H2H设备配置了长度为 2560毫秒的 DRX周期, 同 时基站为 H2H设备新增配置了一个数值 Number, 在本实施例中, 基站 2 配置的 Number值为 116。 H2H设备接收到该数值后进行保存。
图 3为本发明一实施例的非连续接收方法流程图,如图 3所示,当 H2H 设备处于非激活态时, 执行非连续接收的流程具体包括以下步驟:
步驟 301、 H2H设备初始化计数器, 将计数器设置为 0。
步驟 302、 H2H设备检测 OnDuration的起始子帧, H2H设备需要通过 公式 [ ( SFN X 10 ) + subframe number] modulo ( longDRX-Cycle ) =drxStartOffset确定 OnDuration的起始子帧; 或者通过公式 [ ( SFN χ 10 ) +subframe number] modulo ( shortDRX-Cycle ) = ( drxStartOffset ) modulo ( shortDRX-Cycle )确定 OnDuration 的起始子帧。 如果 H2H设备检测到 OnDuration的起始子帧,执行步驟 303。此处在 H2H设备探测到 OnDuration 的起始子帧时, 不启动 onDurationTimer, 即 H2H设备依然维持非激活态。
步驟 303、 H2H设备将计数器加 1 , 然后执行步驟 304。
步驟 304、 H2H设备判断计数器是否达到 116 , 如果没有达到 116 , 则 执行步驟 302; 否则流程结束。
然后 H2H设备需要继续通过上述公式检测 OnDuration的起始时刻,当 H2H 设备检测到 OnDuration 的起始时刻后, H2H 设备需要启动 onDurationTimer, H2H设备开始监听 PDCCH , 处于激活状态, 此时 H2H 设备按照现有的 DRX机制运行。
当 H2H设备再次进入非激活态时, H2H设备重新执行如图 3所示的流 程。
这样, H2H设备可以更长时间地处于非激活态, 减少了功率消耗。 并 且基站可以合理地设置数值 Number来满足不同数据传输的场景。
本实施例描述了 H2H设备的场景, 事实上对于 MTC设备同样适用。 本实施例中,终端需要屏蔽 Number所指示次数的 OnDuration, 然后再 次进入激活态。 本实施例可以采用其他的实现方式, 如终端需要屏蔽 Number+1 次 OnDuration , 然后再次进入激活态; 或者终端需要屏蔽 Number- 1 次 OnDuration , 然后再次进入激活态。 采用 Number+1 或者 Number-1 , 主要是因为空口编码的原因, 空口有时从 0开始编码, 有时从 1 开始编码。
实施例三
本实施例以 MTC设备为例进行说明, 在长期演进系统中, MTC设备 通过基站 3接入网络并处于连接状态,由于 MTC设备会不间断地从网络侧 接收数据, 因此基站 3为 MTC设备配置了非连续接收状态 ( DRX状态 ), 基站 3 可以通过 RRC 信令如 RRC 连接重配置 ( RRC Connection Reconfiguration )为 MTC设备配置 DRX相关的参数, 在本实施例中, 基站 3为该 MTC设备配置了两个 DRX周期, shortDRX-Cycle ( 128毫秒)和 longDRX-Cycle ( 2048毫秒)。
同时为了满足该 MTC设备以间隔较长时间地监听 PDCCH, 基站 3通 过媒质接入层( MAC, Medium Access Control )控制信令向该 MTC设备发 送新增的数值 Number, 该 Number表示 MTC 设备需要忽略这么多次 OnDuration才能再次进入激活态。
由于 MTC设备可能在一段时间内会经常有数据接收或发送, 因此基站 3为该 MTC设备配置了 shortDRX-Cycle, 对应于 shortDRX-Cycle, 基站 3 会配置一个短周期定时器 (drxShortCycleTimer ), 在该定时器运行期间, MTC设备使用 shortDRX-Cycle; 当短周期定时器超时后, MTC设备使用 longDRX-Cycle。
在 shortDRX-Cycle使用期间, 可能 MTC设备会经常接收数据, 因此 MTC不会屏蔽 OnDuration, 在探测到 OnDuration的起始子帧后, 就会接收 PDCCH。 只有当 MTC设备进入 longDRX-Cycle的非激活态 (此时指长周 期生效时;), MTC设备才屏蔽所述数值对应次数的 OnDuration, 即该 MTC 设备需要忽略(或屏蔽) 多次(等于所述数值) OnDuration 才会再次进入 激活态。
本实施例还有其他的实现方式, 基站 3 如果仅为 MTC 设备配置 shortDRX-Cycle和 Number, 则 MTC设备需要在 shortDRX-Cycle的非激活 态使用该 Number, 即忽略 (或屏蔽)这么多次 OnDuration才再次进入激活 态。 也就说, 即使在短周期(当仅配置了 shortDRX-Cycle时), 也可以尝试 利用本发明前述的技术方案实现对 onDurationTimer的屏蔽。
本实施例描述了 MTC设备的场景, 事实上对于 H2H设备同样适用。 图 4为本发明非连续接收装置的组成结构示意图, 如图 4所示, 本发 明非连续接收装置包括接收单元 41和屏蔽单元 42; 其中,
接收单元 41 , 用于接收网络侧发送的用于屏蔽 OnDurationTimer启动 的指示信息;
屏蔽单元 42, 用于根据所述指示信息在非连续接收状态下至少屏蔽一 次 OnDurationTimer的启动。
上述指示信息为用于延长非连续接收状态中非激活时间的信息; 上述屏蔽单元 42进一步根据所述用于延长非连续接收状态中非激活时 间的信息执行对 OnDurationTimer启动的屏蔽。 上述用于延长非连续接收状态中非激活时间的信息为指示所述用户设 备屏蔽 OnDurationTimer 启动的时长信息, 或为指示所述用户设备屏蔽 OnDurationTimer启动的次数信息。
上述用于延长非连续接收状态中非激活时间的信息为指示所述用户设 备屏蔽 OnDurationTimer启动的时长信息时,
上述屏蔽单元 42在所述用户设备进入非激活态时开始计时, 维持所述 网络侧指示的时长的非激活状态后, 再启动非连续接收机制;
或者,上述屏蔽单元 42在所述用户设备获取所述时长信息后开始计时, 并在所述用户设备处于非激活状态后屏蔽所述 OnDurationTimer的启动,直 到达到所述时长, 再启动非连续接收机制。
所述用于延长非连续接收状态中非激活时间的信息为指示所述用户设 备屏蔽 OnDurationTimer启动的次数信息时,
上述屏蔽单元 42在所述用户设备接收到所述数值、 进入非激活态后, 屏蔽所述次数或所述次数加一次或所述次数减一次的 OnDurationTimer 启 动, 再启动非连续接收机制。
需要说明的是, 上述的网络侧是指无线通信网络中能生成针对用户设 备的非连续接收状态进行控制的网元如 LTE系统中的基站或 3G网络中的 无线网络控制器等。
并且, 在为用户设备在配置了非连续接收的长周期和短周期的情况下, 上述屏蔽单元 42仅在所述长周期生效时利用所述时长信息或次数信息执行 对 OnDurationTimer启动的屏蔽。 如果仅配置了长周期或仅配置了短周期, 则均可依本发明的技术方案对用户设备的非连续接收进行控制。
本发明中的用户设备, 尤指 MTC设备和 /或 H2H设备等。
本领域技术人员应当理解, 本发明图 4所示的非连续接收装置是为实 现前述的本发明非连续接收方法而设计的, 上述各处理单元的实现功能可 参照前述方法的相关描述而理解, 具体可参见前述非连续接收方法的实施 例一至实施例三的描述而理解。 图中的各处理单元的功能可通过运行于处 理器上的程序而实现, 也可通过具体的逻辑电路而实现。
本发明还记载了另外一种非连续接收装置, 包括发送单元, 该发送单 元用于发送用于屏蔽 OnDurationTimer启动的指示信息。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种非连续接收方法, 其特征在于, 所述方法包括:
用户设备根据网络侧指示, 在非连续接收状态下至少屏蔽一次持续时 间定时器 OnDurationTimer的启动。
2、 根据权利要求 1所述的方法, 其特征在于, 所述用户设备根据网络 侧指示, 在非连续接收状态下至少屏蔽一次 OnDurationTimer的启动, 为: 所述用户设备接收所述网络侧发送的用于延长非连续接收状态中非激 活时间的信息, 并根据所述用于延长非连续接收状态中非激活时间的信息 执行^ f OnDurationTimer启动的屏蔽。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 所述网络侧通过无线资源控制 RRC信令、 或媒质接入层控制 MAC信 令向所述用户设备发送所述用于延长非连续接收状态中非激活时间的信
4、 根据权利要求 3所述的方法, 其特征在于, 所述用于延长非连续接 收状态中非激活时间的信息为指示所述用户设备屏蔽 OnDurationTimer 启 动的时长信息,或为指示所述用户设备屏蔽 OnDurationTimer启动的次数信
5、 根据权利要求 4所述的方法, 其特征在于, 所述用于延长非连续接 收状态中非激活时间的信息为指示所述用户设备屏蔽 OnDurationTimer 启 动的时长信息时, 所述执行对 OnDurationTimer启动的屏蔽, 为:
所述用户设备进入非激活态时开始计时, 维持所述网络侧指示的时长 的非激活状态后, 再启动非连续接收机制;
或者, 所述用户设备在获取所述时长信息后开始计时, 并在所述用户 设备处于非激活状态后屏蔽所述 OnDurationTimer的启动,直到达到所述时 长, 再启动非连续接收机制。
6、 根据权利要求 4所述的方法, 其特征在于, 所述用于延长非连续接 收状态中非激活时间的信息为指示所述用户设备屏蔽 OnDurationTimer 启 动的次数信息时, 所述执行对 OnDurationTimer启动的屏蔽, 为:
所述用户设备接收到所述数值、 进入非激活态后, 屏蔽所述次数或所 述次数加一次或所述次数减一次的 OnDurationTimer的启动,再启动非连续 接收机制。
7、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 在配置非连续接收的长周期和短周期的情况下, 所述用户设备仅在所 述长周期生效时利用所述时长信息或次数信息执行对 OnDurationTimer 启 动的屏蔽。
8、 根据权利要求 1所述的方法, 其特征在于, 所述用户设备包括人与 人之间的通信 H2H设备和 /或机器类型通信 MTC设备。
9、 一种非连续接收装置, 其特征在于, 所述装置包括接收单元和屏蔽 单元, 其中,
接收单元,用于接收网络侧发送的用于屏蔽 OnDurationTimer启动的指 示信息;
屏蔽单元, 用于根据所述指示信息在非连续接收状态下至少屏蔽一次 OnDurationTimer的启动。
10、 根据权利要求 9所述的装置, 其特征在于, 所述指示信息为用于 延长非连续接收状态中非激活时间的信息;
所述屏蔽单元进一步根据所述用于延长非连续接收状态中非激活时间 的信息执行对 OnDurationTimer启动的屏蔽。
11、 根据权利要求 9或 10所述的装置, 其特征在于, 所述用于延长非 连续接收状态中非激活时间的信息为指示所述用户设备屏蔽 OnDurationTimer 启动的时长信息, 或为指示所述用户设备屏蔽 OnDurationTimer启动的次数信息。
12、 根据权利要求 11所述的装置, 其特征在于, 所述用于延长非连续 接收状态中非激活时间的信息为指示所述用户设备屏蔽 OnDurationTimer 启动的时长信息时,
所述屏蔽单元在所述用户设备进入非激活态时开始计时, 维持所述网 络侧指示的时长的非激活状态后, 再启动非连续接收机制;
或者, 所述屏蔽单元在所述用户设备获取所述时长信息后开始计时, 并在所述用户设备处于非激活状态后屏蔽所述 OnDurationTimer的启动,直 到达到所述时长, 再启动非连续接收机制。
13、 根据权利要求 11所述的装置, 其特征在于, 所述用于延长非连续 接收状态中非激活时间的信息为指示所述用户设备屏蔽 OnDurationTimer 启动的次数信息时,
所述屏蔽单元在所述用户设备接收到所述数值、 进入非激活态后, 屏 蔽所述次数或所述次数加一次或所述次数减一次的 OnDurationTimer 的启 动, 再启动非连续接收机制。
14、 一种非连续接收装置, 其特征在于, 所述装置包括:
发送单元, 用于发送用于屏蔽 OnDurationTimer启动的指示信息。
PCT/CN2011/082300 2011-03-02 2011-11-16 非连续接收方法及装置 WO2012116555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100500600A CN102655668A (zh) 2011-03-02 2011-03-02 非连续接收方法及装置
CN201110050060.0 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012116555A1 true WO2012116555A1 (zh) 2012-09-07

Family

ID=46731182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082300 WO2012116555A1 (zh) 2011-03-02 2011-11-16 非连续接收方法及装置

Country Status (2)

Country Link
CN (1) CN102655668A (zh)
WO (1) WO2012116555A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9338070B2 (en) 2012-11-02 2016-05-10 Industrial Technology Research Institute System and method for operating M2M devices
WO2018126419A1 (zh) * 2017-01-05 2018-07-12 广东欧珀移动通信有限公司 用于非连续接收的信号传输方法、终端设备和网络设备
CN107197508B (zh) * 2017-05-17 2020-01-10 电子科技大学 一种基于csm机制drx的设备休眠方法
CN107182027B (zh) * 2017-06-05 2019-12-10 北京交通大学 基于分组的m2m通信非连续传输方法
CN109495925B (zh) * 2017-09-11 2021-09-24 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
CN111406394A (zh) * 2018-02-12 2020-07-10 Oppo广东移动通信有限公司 传输数据的方法和设备
CN110536381A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 接收配置和控制方法、装置、终端、基站及存储介质
CN111478784B (zh) * 2019-01-24 2022-03-11 华为技术有限公司 一种配置资源的确定方法及装置
CN110352616B (zh) * 2019-05-27 2024-01-30 北京小米移动软件有限公司 非连续接收方法和装置,电子设备和计算机可读存储介质
CN113133096B (zh) * 2020-01-15 2023-03-28 大唐移动通信设备有限公司 一种信息确定方法、装置、设备及计算机可读存储介质
KR102443862B1 (ko) * 2020-01-21 2022-09-16 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 주기적 송신에 관한 사이드링크 불연속 수신을 핸들링하기 위한 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291729A1 (en) * 2006-06-20 2007-12-20 Lars Dalsgaard Method and System for Providing Reply-Controlled Discontinuous Reception
CN101606426A (zh) * 2007-02-05 2009-12-16 高通股份有限公司 无线通信系统中的灵活dtx和drx
CN101925161A (zh) * 2009-06-11 2010-12-22 株式会社Ntt都科摩 无线通信系统中自适应调整非连续接收模式的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289891B2 (en) * 2008-05-09 2012-10-16 Samsung Electronics Co., Ltd. Flexible sleep mode for advanced wireless systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291729A1 (en) * 2006-06-20 2007-12-20 Lars Dalsgaard Method and System for Providing Reply-Controlled Discontinuous Reception
CN101606426A (zh) * 2007-02-05 2009-12-16 高通股份有限公司 无线通信系统中的灵活dtx和drx
CN101925161A (zh) * 2009-06-11 2010-12-22 株式会社Ntt都科摩 无线通信系统中自适应调整非连续接收模式的方法和装置

Also Published As

Publication number Publication date
CN102655668A (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2012116555A1 (zh) 非连续接收方法及装置
CN109219116B (zh) 一种终端设备的休眠方法及装置
CN107197508B (zh) 一种基于csm机制drx的设备休眠方法
JP6121467B2 (ja) 無線通信システムにおける不連続受信の制御方法及び装置
CN104219738B (zh) 非连续接收参数配置方法及装置
CN102932884B (zh) 一种实现drx的方法和系统
WO2020057489A1 (zh) 信道的监听、节能信号的处理方法、装置、终端及网络侧设备
WO2013020417A1 (zh) 一种非连续接收方法及系统
WO2016197366A1 (zh) 一种drx实现方法、配置方法及相关设备
CN102413587B (zh) 一种非连续接收的实现方法
WO2014161472A1 (zh) 一种进行寻呼的方法、装置及系统
WO2014182340A1 (en) Reduction of buffer overflow
WO2014161376A1 (zh) 一种激活时刻的计算方法及装置
WO2013020393A1 (zh) 一种非连续接收方法及系统
CN102487541A (zh) 一种ue省电的方法和系统
WO2011157159A2 (zh) 混合非连续接收方法及基站和用户设备
WO2013120385A1 (zh) 一种机器型通信终端的触发控制方法、装置及系统
WO2012109927A1 (zh) 一种终端发送数据的方法及装置
WO2013023483A1 (zh) 一种实现drx的方法和系统
EP4216662A1 (en) Method and device for configuring discontinuous reception, terminal, and readable storage medium
WO2013167068A2 (zh) 一种降低终端功耗的方法及装置
WO2014134807A1 (zh) 省电方法、用户设备及基站
US11812353B2 (en) Network assisted emergency monitoring
WO2020164118A1 (zh) 物理下行控制信道的检测方法、装置及终端
WO2018149280A1 (zh) 数据接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859819

Country of ref document: EP

Kind code of ref document: A1