WO2012090470A1 - Three-dimensional image display device and three-dimensional image display method - Google Patents

Three-dimensional image display device and three-dimensional image display method Download PDF

Info

Publication number
WO2012090470A1
WO2012090470A1 PCT/JP2011/007263 JP2011007263W WO2012090470A1 WO 2012090470 A1 WO2012090470 A1 WO 2012090470A1 JP 2011007263 W JP2011007263 W JP 2011007263W WO 2012090470 A1 WO2012090470 A1 WO 2012090470A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
image display
dimensional image
half mirror
display light
Prior art date
Application number
PCT/JP2011/007263
Other languages
French (fr)
Japanese (ja)
Inventor
孝夫 桑原
大田 恭義
哲郎 楠木
靖子 八尋
神谷 毅
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012090470A1 publication Critical patent/WO2012090470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/133Equalising the characteristics of different image components, e.g. their average brightness or colour balance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the present invention relates to a stereoscopic image display device and a stereoscopic image display method for displaying a stereoscopically viewable stereoscopic image.
  • stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images.
  • a stereoscopic image that can be viewed stereoscopically is generated based on a plurality of images with parallax obtained by photographing the same subject from different directions.
  • the colors of the plurality of images are changed. For example, by superimposing different colors such as red and blue, or by superimposing different images in different polarization directions, a plurality of images can be combined to generate a stereoscopic image.
  • a stereoscopic image is displayed, and the stereoscopic image displayed using the stereoscopic glasses that separate the images such as red-blue glasses and polarized glasses is fused with the auto-focus function of the eyes, whereby the image is displayed.
  • Stereoscopic viewing is possible (anaglyph method, polarization filter method). It is also possible to display a stereoscopic image by using stereoscopic glasses and alternately displaying a parallax image for the left eye and a parallax image for the right eye (time division method).
  • Such generation of stereoscopic images is used not only in the fields of digital cameras and televisions, but also in the field of radiographic imaging. That is, the patient is irradiated with radiation from different directions, the radiation transmitted through the subject is detected by a radiation image detector, and a plurality of radiation images having parallax are obtained, and these radiations are acquired. A stereoscopic image is generated based on the image. By generating a stereoscopic image in this way, the observer can observe a radiological image with a sense of depth, which is more suitable for diagnosis. A radiographic image can be observed.
  • a stereoscopic image display apparatus capable of observing a stereoscopic image as described above, in Patent Document 1, two monitors are arranged side by side, and a lower monitor is disposed between the two monitors.
  • a beam splitter mirror that transmits the display light from the upper monitor and reflects the display light from the upper monitor is disposed, and the display light of the images displayed on the two monitors by the beam splitter is overlapped to reach the observer.
  • the stereoscopic image display device various adjustments are made in order to perform quality control (QC: Quality Control) in accordance with the standard of quality guidelines.
  • QC Quality Control
  • the stereoscopic image display device when stereoscopically viewing a stereoscopic image, if the luminance of the parallax image for the left eye and the parallax image for the right eye becomes unbalanced, a comfortable stereoscopic vision may not be obtained. Therefore, it is necessary to adjust in advance so that the luminance characteristics of the monitor that displays the left-eye parallax image and the monitor that displays the right-eye parallax image are the same.
  • Patent Document 2 describes a method of adjusting the luminance characteristics of two monitors by adjusting the backlight of one monitor. This adjustment is performed for each displayed image, and monitor quality control is performed. There is no mention about it.
  • the monitor for displaying the left-eye parallax image and the right-eye display If the luminance characteristics of the monitor displaying the parallax image are the same, the brightness of the display light of the left-eye parallax image and the right-eye parallax image respectively reaching the left and right eyes of the viewer, that is, the brightness of the left and right eyes of the viewer
  • the degree of feeling may vary.
  • the present invention has been made in view of the above circumstances, and provides a stereoscopic image display apparatus and a stereoscopic image display method that enable an observer to easily stereoscopically view a stereoscopic image when observing a monitor on which the stereoscopic image is displayed.
  • the purpose is to provide.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device including a two-dimensional image display unit that displays parallax images for each of the shooting directions acquired by shooting subjects from different shooting directions.
  • a plurality of divided partial areas obtained by dividing a predetermined partial area set in advance and the other areas are set in the two-dimensional image display unit that displays a parallax image in one shooting direction;
  • a plurality of divided partial areas obtained by dividing a corresponding partial area corresponding to the predetermined partial area set in advance in the two-dimensional image display unit that displays the parallax image in the other shooting direction and other areas are set;
  • the luminance is adjusted so that the luminance of the display light in the predetermined partial area becomes the same value as the luminance of the display light in the corresponding partial area, and the luminance of the display light in each of the divided partial areas is adjusted in the predetermined partial area.
  • a luminance adjustment unit that adjusts the luminance for each of the divided partial regions so as to be the same as the lumina
  • the two-dimensional image display unit includes two two-dimensional image display units that display parallax images for each photographing direction, and one of the two-dimensional image display units.
  • a half mirror that transmits display light and reflects display light from the other two-dimensional image display unit in the same direction as the transmitted display light; It is preferable that the subject is stereoscopically viewed with display light of a parallax image for each shooting direction that is transmitted and reflected by the half mirror.
  • the stereoscopic image display method of the present invention includes two two-dimensional image display units for displaying parallax images for each of the photographing directions acquired by photographing subjects from different photographing directions, and the one of the two-dimensional images.
  • a half mirror that transmits display light from the display unit and reflects display light from the other two-dimensional image display unit in the same direction as the transmitted display light;
  • a plurality of divided partial areas obtained by dividing a predetermined partial area set in advance in one of the two-dimensional image display units and other areas are set, Setting a plurality of divided partial areas obtained by dividing the corresponding partial area corresponding to the predetermined partial area set in advance on the other two-dimensional image display unit and other areas;
  • the luminance is adjusted so that the luminance of the display light transmitted or reflected by the half mirror of the predetermined partial region becomes the same value
  • luminance means the brightness of the screen when an image is displayed on the two-dimensional image display unit.
  • the predetermined partial region is a region where the deformation of the half mirror is small.
  • the predetermined partial area is the brightest area.
  • a plurality of predetermined partial areas set in advance in the two-dimensional image display unit that displays the parallax image in one shooting direction and other areas are divided.
  • the two-dimensional image display unit that displays the parallax image in one shooting direction and the parallax image in the other shooting direction
  • the observer can observe the monitor on which the stereoscopic image is displayed. In this case, flicker or the like is eliminated and the stereoscopic image can be easily viewed stereoscopically.
  • FIG. 1 is a schematic configuration diagram of a stereoscopic image display apparatus according to an embodiment of the present invention.
  • the block diagram which shows the internal structure of the stereoscopic vision image display apparatus concerning one Embodiment of this invention.
  • FIG. 1 is a diagram illustrating a schematic configuration of the stereoscopic image display device 10
  • FIG. 2 is a block diagram illustrating an internal configuration of the stereoscopic image display device 10.
  • the stereoscopic image display device 10 includes a computer 11 and a monitor 12 that displays two parallax images as shown in FIG.
  • the computer 11 is installed with a program for causing the monitor 12 of the present embodiment to function as a stereoscopic display device.
  • the monitor 12 displays the left-eye parallax image and the right-eye parallax image, thereby enabling stereoscopic viewing of the subject in the left-eye parallax image and the right-eye parallax image.
  • the monitor 12 is configured by combining an upper monitor 13 and a lower monitor 14 that are inclined forward.
  • a half mirror 15 is disposed between the upper monitor 13 and the lower monitor 14.
  • the upper monitor 13 displays the right-eye parallax image on the display screen 13a
  • the lower monitor 14 displays the left-eye parallax image on the display screen 14a.
  • the display lights of the two monitors 13 and 14 are polarized so as to be orthogonal to each other, and the display light from the upper monitor 13 is reflected by the half mirror 45 and displayed from the lower monitor 14 as indicated by the solid line in the figure.
  • the light passes through the half mirror 15 as indicated by a broken line in the figure.
  • the half mirror 15 is arranged at an angle such that the parallax image for the left eye and the parallax image for the right eye overlap during observation.
  • the observer wears polarized glasses having a right-eye polarizing lens polarized to observe the right-eye parallax image and a left-eye polarizing lens polarized to observe the left-eye parallax image, thereby providing two parallax images. Can be observed with the left and right eyes, and the subject in the parallax image can be stereoscopically viewed.
  • the configuration for stereoscopically viewing the subject in the parallax image is not limited to the above configuration, and the left-eye parallax image and the right-eye displayed alternately by wearing glasses with a shutter function. You may employ
  • the computer 11 includes a central processing unit (CPU), a storage device such as a semiconductor memory, a hard disk, and an SSD.
  • the computer 11 includes an input unit 16.
  • the input unit 16 receives an input of start and end of display, an observation condition, an operation instruction, and the like from an observer, and an external recording device, a mammography device, It also functions as an interface for wireless communication or wired communication for inputting data such as a parallax image file connected to a radiation image capturing apparatus or the like, and an interface for receiving input from a luminance sensor (not shown).
  • the input unit 16 includes, for example, an input device such as a keyboard and a mouse and data transmission / reception means such as a USB port.
  • the control unit 11a outputs a predetermined control signal to each of the above-described units 11b to 11e to control the entire system.
  • the storage unit 11b stores the image signals of the left-eye parallax image and the right-eye parallax image captured from different viewpoints and the image signal of the brightness adjustment image input from the input unit 16.
  • the display control unit 11c controls the monitor 12 to display the left-eye parallax image and the right-eye parallax image or the brightness adjustment image read from the storage unit 11b.
  • the luminance adjusting unit 11d adjusts the luminance characteristics of the monitor 12 based on an input from a luminance sensor (not shown), and a specific adjustment method will be described in detail later.
  • a luminance sensor has sensitivity in the visible light region, and a silicon photodiode or the like can be used.
  • the region setting unit 11e sets a plurality of partial regions on the display screen (two-dimensional image display unit) 13a of the upper monitor 13 (to be described later) of the monitor 12 and the display screen (two-dimensional image display unit) 14a of the lower monitor 14. is there.
  • FIG. 3 is a diagram for explaining a luminance adjustment method
  • FIG. 4 is a diagram for explaining another luminance adjustment method.
  • the area setting unit 11e divides the display screen 13a of the upper monitor 13 into nine equal parts and presets a predetermined partial area 13A in the center area of the display screen 13a indicated by hatching in the drawing. Further, the display screen 14a of the lower monitor 14 is equally divided into nine similarly to the upper monitor 13, and the corresponding partial area 14A is set in the area corresponding to the predetermined partial area 13A in the center of the display screen 14a.
  • an area divided into eight areas other than the predetermined partial area 13A on the display screen 13a of the upper monitor 13 is set as divided partial areas 13B1 to 13B8, and other than the corresponding partial area 14A on the display screen 14a of the lower monitor 14
  • the regions divided into eight in this region are set as divided partial regions 14B1 to 14B8.
  • the predetermined partial area is set on the display screen 13a of the upper monitor 13, and the corresponding partial area is set on the display screen 14a of the lower monitor 14.
  • the present invention is not limited to this, and the predetermined partial area is not limited to this.
  • the partial area may be set on the display screen 14 a of the lower monitor 14, and the corresponding partial area may be set on the display screen 13 a of the upper monitor 13.
  • areas other than the predetermined partial area 13A and the predetermined partial area 13A that is, the divided partial areas 13B1 to 13B8 and the divided partial areas 14B1 to 14B8 other than the corresponding partial area 14A and the corresponding partial area 14A are displayed on the display screens 13a and 14a.
  • the predetermined partial area 13A and the corresponding partial area 14A are areas having different sizes from the divided partial areas 13B1 to 13B8 and 14B1 to 14B8. It may be set.
  • the divided partial areas 13B1 to 13B8 and 14B1 to 14B8 do not necessarily have to be equally divided as long as the corresponding divided partial areas have the same size on the display screen 13a and the display screen 14a.
  • the predetermined partial area 13A is set near the center of the display screen 13a.
  • the present invention is not limited to this, for example, an area where the mechanical deformation of the half mirror 15 is small, specifically, As shown in FIG. 1, the partial region 13B6 or the partial region 13B8, which is the region closest to the upper both ends of the half mirror 15 supported by the upper and lower monitors 13 and 14, may be used as the predetermined partial region.
  • the corresponding partial area of the display screen 14a of the lower monitor 14 corresponding to the partial area 13B6 or the partial area 13B8 is the partial area 14B6 or the partial area 14B8, and the partial area 14B6 or the partial area 14B8 is the partial area 13B6 or the partial area. Similar to 13B8, since it is an area where mechanical deformation of the half mirror 15 is not easy, stable brightness adjustment can be performed.
  • the display screen 13a of the upper monitor 13 is divided into a plurality of regions (16 in this embodiment), and the luminance of the display light reflected from the half mirror 15 is divided for each of the divided partial regions 13C1 to 13C16. Measurement may be performed, and the brightest area among the divided partial areas 13C1 to 13C16 may be set as the predetermined partial area. Since the radiation image is easier to see and diagnose when the monitor brightness is higher, the brightest area of the divided partial areas 13C1 to 13C16 is set as the predetermined partial area so that the brightness of the monitor is increased. It is possible to adjust the brightness suitable for diagnosis.
  • the luminance of the monitor is suppressed to about 80% at the time of shipment in consideration of the deterioration of the monitor. Therefore, even when the brightest area is set as the predetermined partial area, the reduced luminance is used. Thus, it is possible to adjust to increase the luminance.
  • FIG. 5 is a flowchart showing processing performed in the present embodiment.
  • the control unit 11a reads a white image that is an image for brightness adjustment stored in the storage unit 11b, outputs the white image to the display control unit 11c, and the display control unit 11c is input.
  • White images are displayed on the display screen 13a of the upper monitor 13 and the display screen 14a of the lower monitor 14 respectively (S11).
  • the area setting unit 11e sets the predetermined partial area 13A and the divided partial areas 13B1 to 13B8 on the display screen 13a of the upper monitor 13 as described above, and sets the predetermined partial area 13A on the display screen 14a of the lower monitor 14. Corresponding corresponding partial areas 14A and divided partial areas 14B1 to 14B8 are set (S12).
  • the luminance of the display light reflected by the half mirror 15 in the predetermined partial area 13A and the luminance of the display light transmitted through the half mirror in the corresponding partial area 14A are measured (S13).
  • the luminance at a position corresponding to the predetermined partial region 13A may be measured using a luminance meter.
  • the luminance adjusting unit 11d adjusts the luminance so that the luminance of the display light reflected from the half mirror 15 in the predetermined partial region 13A becomes the same value as the luminance of the display light transmitted through the half mirror 15 in the corresponding partial region 14A.
  • the brightness is adjusted by adjusting the light amount of the backlight that illuminates the predetermined partial region 13A among the backlights that illuminate the display screen 13a of the monitor 13.
  • the brightness adjustment in this embodiment is performed by adjusting the light amount of the backlight.
  • the present invention is not limited to this, and for example, light is absorbed for each partial area of the display screens 13a and 14a. A filter or the like may be provided, or the image data value displayed on the monitor may be adjusted.
  • the luminance adjusting unit 11d applies the divided partial areas 13B1 to 13B8 and 14B1 to 14B8 to the divided partial areas 13B1 to 13B8 of the display screen 13a of the monitor 13 and the divided partial areas 14B1 to 14B8 of the display screen 14 of the monitor 14, respectively.
  • the luminance is adjusted so that the luminance of the display light transmitted or reflected by the half mirror 15 becomes the same value as the luminance of the display light reflected by the adjusted half mirror 15 in the predetermined partial region 13A (S15).
  • the brightness characteristics variation (brightness unevenness) in the display screens 13a and 14a is larger than the brightness of the entire display screens 13a and 14a of the monitors 13 and 14 is adjusted. Can be reduced.
  • control unit 11a determines whether or not the luminance adjustment of all the areas has been completed (S16). When the luminance adjustment of all the areas has been completed (S16; YES), all the processes are ended, If the luminance adjustment of all the areas has not been completed (S16; NO), the process proceeds to step S15, and the processes after step S15 are repeated. In this way, a series of processing is performed by the stereoscopic image display apparatus 10 of the present embodiment.
  • the predetermined partial region 13A preset on the display screen 13a of the upper monitor 13 and a plurality of regions obtained by dividing the other regions are divided.
  • Divided partial areas 13B1 to 13B8 are set, and a corresponding partial area 14A corresponding to the predetermined partial area 13A and a plurality of divided partial areas 14B1 to 14B8 obtained by dividing the other areas are set on the display screen 14a of the lower monitor 14.
  • the luminance is adjusted so that the luminance of the display light reflected from the half mirror 15 in the predetermined partial area 13A becomes the same value as the luminance of the display light transmitted through the half mirror in the corresponding partial area 14A, and the divided partial areas 13B1 to 13B1.
  • the brightness of the display light transmitted or reflected by the half mirror 15 of 13B8, 14B1 to 14B8 is adjusted after the adjustment of the predetermined partial area 13A. Since the luminance is adjusted for each of the divided partial areas 13B1 to 13B8 and 14B1 to 14B8 so as to be the same as the luminance of the display light reflected from the display 15, the luminance characteristics of the display screens 13a and 14a of the upper and lower monitors 13 and 14 are adjusted.
  • each of the display screens 13a and 14a can be reduced, so that flickering is eliminated when an observer observes a monitor on which a stereoscopic image is displayed.
  • a stereoscopic image can be easily stereoscopically viewed.
  • the brightness adjustment image is a white image.
  • the present invention is not limited to this, and a pattern image generated in advance for brightness adjustment may be used.
  • the stereoscopic image display device using the half mirror is used.
  • the present invention is not limited to this, and a stereoscopic image display device using a lenticular lens may be adopted. In this case, the brightness of the area for displaying the image for the left eye and the area for displaying the image for the right eye is adjusted in the display scene.
  • the stereoscopic image display device 10 that displays a stereoscopic image based on a parallax image acquired by shooting subjects from different shooting directions has been described.
  • the present invention is not limited to this.
  • the present invention can also be applied to a radiographic image display apparatus that displays a stereoscopic image based on a radiographic image obtained by irradiating a subject such as a breast, chest, or head from different imaging directions. .
  • flickering is eliminated when an observer observes a monitor on which a stereoscopic image is displayed, and the stereoscopic image can be easily viewed stereoscopically.
  • the diagnostic efficiency of the person can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

[Problem] To make it easy for a viewer to view a three-dimensional image in a three-dimensional manner when watching a monitor on which a three-dimensional image is displayed, in a three-dimensional image display device. [Solution] Adjust the luminance such that the luminance of display light which has reflected from a half mirror (15) in a specified partial region (13A) is the same value as the luminance of display light which has passed through a half mirror (15) in a corresponding partial region (14A); and adjust the luminance for each separate partial region (13B1)-(13B8), (14B1)-(14B8) such that the luminance of the display light which has either reflected from or has passed through the half mirror (15) in the separate partial regions (13B1)-(13B8), (14B1)-(14B8), is the same as the adjusted luminance of the display light which has reflected from the half mirror (15) in the specified partial region (13A).

Description

立体視画像表示装置および立体視画像表示方法Stereoscopic image display device and stereoscopic image display method
 本発明は、立体視可能な立体視画像を表示する立体視画像表示装置および立体視画像表示方法に関するものである。 The present invention relates to a stereoscopic image display device and a stereoscopic image display method for displaying a stereoscopically viewable stereoscopic image.
 従来、複数の画像を組み合わせて表示することにより、視差を利用して立体視できることが知られている。このような立体視できる立体視画像は、同一の被写体を異なる方向から撮影して取得された互いに視差のある複数の画像に基づいて生成されており、具体的には、複数の画像の色を例えば赤と青のように異ならせて重ね合わせたり、複数の画像の偏光方向を異ならせて重ね合わせたりすることにより、複数の画像を合成して立体視画像を生成することができる。この場合、立体視画像を表示して、赤青眼鏡や偏光眼鏡等の画像を分離する立体視眼鏡を用いて表示された立体視画像を目の自動焦点機能により融合視することにより、画像を立体視することができる(アナグリフ方式、偏光フィルタ方式)。また立体視眼鏡を使用し、左目用視差画像と右目用視差画像を交互に表示することにより、立体視画像を表示することも可能である(時分割方式)。 Conventionally, it is known that stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images. Such a stereoscopic image that can be viewed stereoscopically is generated based on a plurality of images with parallax obtained by photographing the same subject from different directions. Specifically, the colors of the plurality of images are changed. For example, by superimposing different colors such as red and blue, or by superimposing different images in different polarization directions, a plurality of images can be combined to generate a stereoscopic image. In this case, a stereoscopic image is displayed, and the stereoscopic image displayed using the stereoscopic glasses that separate the images such as red-blue glasses and polarized glasses is fused with the auto-focus function of the eyes, whereby the image is displayed. Stereoscopic viewing is possible (anaglyph method, polarization filter method). It is also possible to display a stereoscopic image by using stereoscopic glasses and alternately displaying a parallax image for the left eye and a parallax image for the right eye (time division method).
 このような立体視画像の生成は、デジタルカメラやテレビなどの分野だけでなく、放射線画像撮影の分野においても利用されている。すなわち、被検者に対して互いに異なる方向から放射線を照射し、その被検者を透過した放射線を放射線画像検出器によりそれぞれ検出して互いに視差のある複数の放射線画像を取得し、これらの放射線画像に基づいて立体視画像を生成することが行われており、このように立体視画像を生成することによって観察者は奥行感のある放射線画像を観察することができて、より診断に適した放射線画像を観察することができる。 Such generation of stereoscopic images is used not only in the fields of digital cameras and televisions, but also in the field of radiographic imaging. That is, the patient is irradiated with radiation from different directions, the radiation transmitted through the subject is detected by a radiation image detector, and a plurality of radiation images having parallax are obtained, and these radiations are acquired. A stereoscopic image is generated based on the image. By generating a stereoscopic image in this way, the observer can observe a radiological image with a sense of depth, which is more suitable for diagnosis. A radiographic image can be observed.
 上記のような立体視画像を観察することができる立体視画像表示装置においては、特許文献1に、2つのモニタが上下に並んで配設され、この2つのモニタの間に、下側のモニタからの表示光を透過し、上側のモニタからの表示光を反射するビームスプリッターミラーが配設されて、ビームスプリッターによって2つのモニタにそれぞれ表示された画像の表示光を重ねて観察者に到達させることにより画像を立体視する立体視画像表示装置が開示されている。 In a stereoscopic image display apparatus capable of observing a stereoscopic image as described above, in Patent Document 1, two monitors are arranged side by side, and a lower monitor is disposed between the two monitors. A beam splitter mirror that transmits the display light from the upper monitor and reflects the display light from the upper monitor is disposed, and the display light of the images displayed on the two monitors by the beam splitter is overlapped to reach the observer. Thus, a stereoscopic image display device that stereoscopically displays an image is disclosed.
 一方、上記立体視画像表示装置においては、品質に関するガイドラインの基準に沿った品質管理(QC;Quality Control)をすべく、様々な調整が行われている。上記立体視画像表示装置においては、立体視画像を立体視する際に、左目用視差画像と右目用視差画像の輝度がアンバランスになってしまうと、快適な立体視を得られない場合があるため、予め左目用視差画像を表示するモニタと右目用視差画像を表示するモニタの輝度特性が同じになるように調整する必要がある。特許文献2には一方のモニタのバックライトを調整することで2つのモニタの輝度特性を調整する方法が記載されているが、この調整は表示される画像毎に行われるものでありモニタ品質管理に関することは記載されていない。 On the other hand, in the stereoscopic image display device, various adjustments are made in order to perform quality control (QC: Quality Control) in accordance with the standard of quality guidelines. In the stereoscopic image display device, when stereoscopically viewing a stereoscopic image, if the luminance of the parallax image for the left eye and the parallax image for the right eye becomes unbalanced, a comfortable stereoscopic vision may not be obtained. Therefore, it is necessary to adjust in advance so that the luminance characteristics of the monitor that displays the left-eye parallax image and the monitor that displays the right-eye parallax image are the same. Patent Document 2 describes a method of adjusting the luminance characteristics of two monitors by adjusting the backlight of one monitor. This adjustment is performed for each displayed image, and monitor quality control is performed. There is no mention about it.
特開2010-187916号公報JP 2010-187916 A 特開平7-270750号公報JP-A-7-270750
 特許文献1に開示されたビームスプリッターミラーを備えた立体視画像表示装置においては、ビームスプリッターミラーにおける画像の表示光の反射率と透過率が異なるため、左目用視差画像を表示するモニタと右目用視差画像を表示するモニタの輝度特性を同じにしただけでは、観察者の左右の目にそれぞれ到達する左目用視差画像と右目用視差画像の表示光の輝度すなわち観察者の左目と右目とで明るさを感じる度合いがばらついてしまうことがある。 In the stereoscopic image display device provided with the beam splitter mirror disclosed in Patent Document 1, since the reflectance and transmittance of the display light of the image in the beam splitter mirror are different, the monitor for displaying the left-eye parallax image and the right-eye display If the luminance characteristics of the monitor displaying the parallax image are the same, the brightness of the display light of the left-eye parallax image and the right-eye parallax image respectively reaching the left and right eyes of the viewer, that is, the brightness of the left and right eyes of the viewer The degree of feeling may vary.
 またモニタの画面全体の輝度特性を調整しただけでは、各モニタの画面内の輝度特性のばらつき、すなわち輝度ムラに対応することが困難であり、各モニタで輝度ムラが発生すると、画像を立体視するときにちらつき等が生じてしまい画像を立体視し難い場合がある。 In addition, it is difficult to deal with variations in luminance characteristics within each monitor screen, i.e., luminance unevenness, simply by adjusting the luminance characteristics of the entire monitor screen. In some cases, flickering or the like occurs and it is difficult to stereoscopically view the image.
 本発明は上記の事情に鑑みなされたものであり、観察者が立体視画像が表示されたモニタを観察するときに立体視画像を立体視し易い立体視画像表示装置及び立体視画像表示方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a stereoscopic image display apparatus and a stereoscopic image display method that enable an observer to easily stereoscopically view a stereoscopic image when observing a monitor on which the stereoscopic image is displayed. The purpose is to provide.
 本発明の立体視画像表示装置は、互いに異なる撮影方向から被写体を撮影することにより取得された前記撮影方向毎の視差画像を表示する2次元画像表示部を備えた立体視画像表示装置において、
 一方の撮影方向の視差画像を表示する前記2次元画像表示部に予め設定された所定部分領域とそれ以外の領域を分割した複数の分割部分領域が設定されており、
 他方の撮影方向の視差画像を表示する前記2次元画像表示部に予め設定された前記所定部分領域に対応する対応部分領域とそれ以外の領域を分割した複数の分割部分領域が設定されており、
 前記所定部分領域の表示光の輝度が前記対応部分領域の表示光の輝度と同じ値になるように輝度を調整すると共に、各前記分割部分領域の表示光の輝度が、前記所定部分領域の調整後の表示光の輝度と同じになるように前記分割部分領域毎に輝度を調整する輝度調整部を備えていることを特徴とするものである。
The stereoscopic image display device of the present invention is a stereoscopic image display device including a two-dimensional image display unit that displays parallax images for each of the shooting directions acquired by shooting subjects from different shooting directions.
A plurality of divided partial areas obtained by dividing a predetermined partial area set in advance and the other areas are set in the two-dimensional image display unit that displays a parallax image in one shooting direction;
A plurality of divided partial areas obtained by dividing a corresponding partial area corresponding to the predetermined partial area set in advance in the two-dimensional image display unit that displays the parallax image in the other shooting direction and other areas are set;
The luminance is adjusted so that the luminance of the display light in the predetermined partial area becomes the same value as the luminance of the display light in the corresponding partial area, and the luminance of the display light in each of the divided partial areas is adjusted in the predetermined partial area. A luminance adjustment unit that adjusts the luminance for each of the divided partial regions so as to be the same as the luminance of the subsequent display light is provided.
 なお本発明の立体視画像表示装置においては、前記2次元画像表示部が、前記撮影方向毎の視差画像をそれぞれ表示する2つの2次元画像表示部と、一方の前記2次元画像表示部からの表示光を透過すると共に他方の前記2次元画像表示部からの表示光を前記透過した表示光と同方向に反射するハーフミラーとを備え、
 該ハーフミラーを透過及び反射した前記撮影方向毎の視差画像の表示光によって前記被写体を立体視することが好ましい。
In the stereoscopic image display device of the present invention, the two-dimensional image display unit includes two two-dimensional image display units that display parallax images for each photographing direction, and one of the two-dimensional image display units. A half mirror that transmits display light and reflects display light from the other two-dimensional image display unit in the same direction as the transmitted display light;
It is preferable that the subject is stereoscopically viewed with display light of a parallax image for each shooting direction that is transmitted and reflected by the half mirror.
 本発明の立体視画像表示方法は、互いに異なる撮影方向から被写体を撮影することにより取得された前記撮影方向毎の視差画像をそれぞれ表示する2つの2次元画像表示部と、 一方の前記2次元画像表示部からの表示光を透過すると共に他方の前記2次元画像表示部からの表示光を前記透過した表示光と同方向に反射するハーフミラーとを備え、
 該ハーフミラーを透過及び反射した前記撮影方向毎の視差画像の表示光によって前記被写体を立体視する立体視画像表示装置を使用した立体視画像表示方法において、
 一方の前記2次元画像表示部に予め設定された所定部分領域とそれ以外の領域を分割した複数の分割部分領域を設定し、
 他方の前記2次元画像表示部に予め設定された前記所定部分領域に対応する対応部分領域とそれ以外の領域を分割した複数の分割部分領域を設定して、
 前記所定部分領域の前記ハーフミラーを透過又は反射した表示光の輝度が前記対応部分領域の前記ハーフミラーを反射又は透過した表示光の輝度と同じ値になるように輝度を調整すると共に、各前記分割部分領域の前記ハーフミラーを透過又は反射した表示光の輝度が、前記所定部分領域の調整後の前記ハーフミラーを透過又は反射した表示光の輝度と同じになるように前記分割部分領域毎に輝度を調整することを特徴とする。
The stereoscopic image display method of the present invention includes two two-dimensional image display units for displaying parallax images for each of the photographing directions acquired by photographing subjects from different photographing directions, and the one of the two-dimensional images. A half mirror that transmits display light from the display unit and reflects display light from the other two-dimensional image display unit in the same direction as the transmitted display light;
In a stereoscopic image display method using a stereoscopic image display device that stereoscopically displays the subject by display light of a parallax image for each shooting direction transmitted and reflected by the half mirror,
A plurality of divided partial areas obtained by dividing a predetermined partial area set in advance in one of the two-dimensional image display units and other areas are set,
Setting a plurality of divided partial areas obtained by dividing the corresponding partial area corresponding to the predetermined partial area set in advance on the other two-dimensional image display unit and other areas;
The luminance is adjusted so that the luminance of the display light transmitted or reflected by the half mirror of the predetermined partial region becomes the same value as the luminance of the display light reflected or transmitted by the half mirror of the corresponding partial region, For each divided partial region, the luminance of the display light transmitted or reflected by the half mirror in the divided partial region is the same as the luminance of the display light transmitted or reflected by the half mirror after adjustment of the predetermined partial region. The brightness is adjusted.
 なお本発明の立体視画像表示装置及び立体視画像表示方法において、「輝度」は2次元画像表示部に画像を表示させたときの画面の明るさを意味するものである。 In the stereoscopic image display apparatus and stereoscopic image display method of the present invention, “luminance” means the brightness of the screen when an image is displayed on the two-dimensional image display unit.
 本発明の立体視画像表示装置及び立体視画像表示方法においては、前記所定部分領域が前記ハーフミラーの変形が少ない領域であることが好ましい。 In the stereoscopic image display device and the stereoscopic image display method of the present invention, it is preferable that the predetermined partial region is a region where the deformation of the half mirror is small.
 本発明の立体視画像表示装置及び立体視画像表示方法においては、前記所定部分領域が輝度の最も明るい領域であることが好ましい。 In the stereoscopic image display device and the stereoscopic image display method of the present invention, it is preferable that the predetermined partial area is the brightest area.
 本発明の立体視画像表示装置および立体視画像表示方法によれば、一方の撮影方向の視差画像を表示する2次元画像表示部に予め設定された所定部分領域とそれ以外の領域を分割した複数の分割部分領域を設定し、他方の撮影方向の視差画像を表示する2次元画像表示部に予め設定された所定部分領域に対応する対応部分領域とそれ以外の領域を分割した複数の分割部分領域を設定して、所定部分領域の表示光の輝度が対応部分領域の表示光の輝度と同じ値になるように輝度を調整すると共に、各分割部分領域の表示光の輝度が、所定部分領域の調整後の表示光の輝度と同じになるように分割部分領域毎に輝度を調整するようにしたので、一方の撮影方向の視差画像を表示する2次元画像表示部と他方の撮影方向の視差画像を表示する2次元画像表示部の輝度特性を同じにすると共に2次元画像表示部の表示画面内の輝度特性のばらつき(輝度ムラ)を低減することができるので、観察者が立体視画像が表示されたモニタを観察するときにちらつき等がなくなり、立体視画像を立体視し易くすることができる。 According to the stereoscopic image display apparatus and the stereoscopic image display method of the present invention, a plurality of predetermined partial areas set in advance in the two-dimensional image display unit that displays the parallax image in one shooting direction and other areas are divided. A plurality of divided partial areas obtained by dividing a corresponding partial area corresponding to a predetermined partial area set in advance in the two-dimensional image display unit that displays a parallax image in the other shooting direction and other areas. And adjusting the luminance so that the luminance of the display light in the predetermined partial area becomes the same value as the luminance of the display light in the corresponding partial area, and the luminance of the display light in each divided partial area Since the luminance is adjusted for each of the divided partial areas so as to be the same as the luminance of the display light after adjustment, the two-dimensional image display unit that displays the parallax image in one shooting direction and the parallax image in the other shooting direction Secondary to display Since the luminance characteristics of the image display unit can be made the same, and variations in luminance characteristics (brightness unevenness) in the display screen of the two-dimensional image display unit can be reduced, the observer can observe the monitor on which the stereoscopic image is displayed. In this case, flicker or the like is eliminated and the stereoscopic image can be easily viewed stereoscopically.
本発明の一実施形態にかかる立体視画像表示装置の概略構成図1 is a schematic configuration diagram of a stereoscopic image display apparatus according to an embodiment of the present invention. 本発明の一実施形態にかかる立体視画像表示装置の内部構成を示すブロック図The block diagram which shows the internal structure of the stereoscopic vision image display apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる輝度調整方法を説明する図The figure explaining the brightness | luminance adjustment method concerning one Embodiment of this invention. 本発明の一実施形態にかかる他の輝度調整方法を説明する図The figure explaining the other luminance adjustment method concerning one Embodiment of this invention. 本発明の一実施形態にかかる立体視画像表示装置の一連の処理のフローチャートThe flowchart of a series of processes of the stereoscopic vision image display apparatus concerning one Embodiment of this invention.
 以下、図面を参照して本発明の一実施形態としての立体視画像表示装置について説明する。まず、立体視画像表示装置全体の概略構成について説明する。図1は立体視画像表示装置10の概略構成を示す図、図2は立体視画像表示装置10の内部構成を示すブロック図である。 Hereinafter, a stereoscopic image display apparatus as an embodiment of the present invention will be described with reference to the drawings. First, a schematic configuration of the entire stereoscopic image display apparatus will be described. FIG. 1 is a diagram illustrating a schematic configuration of the stereoscopic image display device 10, and FIG. 2 is a block diagram illustrating an internal configuration of the stereoscopic image display device 10.
 本実施形態の立体視画像表示装置10は、図1に示すように、コンピュータ11と、2枚の視差画像を表示するモニタ12とを備える。コンピュータ11には、本実施形態のモニタ12を立体視可能な表示装置として機能させるためのプログラムがインストールされている。 The stereoscopic image display device 10 according to the present embodiment includes a computer 11 and a monitor 12 that displays two parallax images as shown in FIG. The computer 11 is installed with a program for causing the monitor 12 of the present embodiment to function as a stereoscopic display device.
 モニタ12は、左目用視差画像と右目用視差画像を表示することにより、左目用視差画像と右目用視差画像中の被写体を立体視可能にするものである。モニタ12は、図1に示すように、前方に傾斜した上側モニタ13と下側モニタ14とを組み合せて構成されている。そして、この上側モニタ13と下側モニタ14の間にハーフミラー15が配置されている。 The monitor 12 displays the left-eye parallax image and the right-eye parallax image, thereby enabling stereoscopic viewing of the subject in the left-eye parallax image and the right-eye parallax image. As shown in FIG. 1, the monitor 12 is configured by combining an upper monitor 13 and a lower monitor 14 that are inclined forward. A half mirror 15 is disposed between the upper monitor 13 and the lower monitor 14.
 上側モニタ13は表示画面13aに右目用視差画像、下側モニタ14は表示画面14aに左目用視差画像をそれぞれ表示するものである。2台のモニタ13,14の表示光は互いに直交するように偏光しており、上側モニタ13からの表示光は図中実線で示すようにハーフミラー45で反射し、下側モニタ14からの表示光は図中破線で示すようにハーフミラー15を透過する。ハーフミラー15は、観察の際に左目用視差画像と右目用視差画像とが重なるような角度で配置されている。 The upper monitor 13 displays the right-eye parallax image on the display screen 13a, and the lower monitor 14 displays the left-eye parallax image on the display screen 14a. The display lights of the two monitors 13 and 14 are polarized so as to be orthogonal to each other, and the display light from the upper monitor 13 is reflected by the half mirror 45 and displayed from the lower monitor 14 as indicated by the solid line in the figure. The light passes through the half mirror 15 as indicated by a broken line in the figure. The half mirror 15 is arranged at an angle such that the parallax image for the left eye and the parallax image for the right eye overlap during observation.
 観察者は、右目用視差画像を観察するように偏光した右目用偏光レンズと左目用視差画像を観察するように偏光した左目用偏光レンズを有する偏光メガネを装着することにより、2枚の視差画像を左右の目でそれぞれ観察することができ、視差画像中の被写体を立体視することができる。なお、視差画像中の被写体を立体視するための構成は、上記の構成に限定されるものではなく、シャッタ機能を備えたメガネを装着することにより、交互に表示された左目用視差画像と右目用視差画像を左右の目でそれぞれ観察するシャッタ方式を採用してもよい。 The observer wears polarized glasses having a right-eye polarizing lens polarized to observe the right-eye parallax image and a left-eye polarizing lens polarized to observe the left-eye parallax image, thereby providing two parallax images. Can be observed with the left and right eyes, and the subject in the parallax image can be stereoscopically viewed. Note that the configuration for stereoscopically viewing the subject in the parallax image is not limited to the above configuration, and the left-eye parallax image and the right-eye displayed alternately by wearing glasses with a shutter function. You may employ | adopt the shutter system which observes the parallax image for images with the left and right eyes, respectively.
 コンピュータ11は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイス等を備えており、これらのハードウェアによって、図2に示すような制御部11a、記憶部11b、表示制御部11c、輝度調整部11dおよび領域設定部11eを構成している。また、コンピュータ11は入力部16を備えており、入力部16は、観察者からの表示開始および終了、観察条件などの入力や操作指示の入力などを受け付けると共に外部記録装置や乳房画像撮影装置、放射線画像撮影装置等と接続されて視差画像ファイル等のデータを入力する無線通信又は有線通信のインターフェース、図示しない輝度センサからの入力を受け付けるインターフェースとしても機能する。この入力部16は、たとえば、キーボードやマウスなどの入力デバイス及びUSBポート等のデータ送受信手段によって構成されるものである。 The computer 11 includes a central processing unit (CPU), a storage device such as a semiconductor memory, a hard disk, and an SSD. The control unit 11a, the storage unit 11b, and the display control unit as illustrated in FIG. 11c, a luminance adjustment unit 11d, and a region setting unit 11e. In addition, the computer 11 includes an input unit 16. The input unit 16 receives an input of start and end of display, an observation condition, an operation instruction, and the like from an observer, and an external recording device, a mammography device, It also functions as an interface for wireless communication or wired communication for inputting data such as a parallax image file connected to a radiation image capturing apparatus or the like, and an interface for receiving input from a luminance sensor (not shown). The input unit 16 includes, for example, an input device such as a keyboard and a mouse and data transmission / reception means such as a USB port.
 制御部11aは、上述した各部11b~11eに対して所定の制御信号を出力し、システム全体の制御を行うものである。 The control unit 11a outputs a predetermined control signal to each of the above-described units 11b to 11e to control the entire system.
 記憶部11bは、入力部16から入力された、異なる視点で撮影された左目用視差画像と右目用視差画像の画像信号や輝度調整用画像の画像信号を記憶するものである。 The storage unit 11b stores the image signals of the left-eye parallax image and the right-eye parallax image captured from different viewpoints and the image signal of the brightness adjustment image input from the input unit 16.
 表示制御部11cは、記憶部11bから読み出された左目用視差画像と右目用視差画像又は輝度調整用画像を表示するようモニタ12を制御するものである。 The display control unit 11c controls the monitor 12 to display the left-eye parallax image and the right-eye parallax image or the brightness adjustment image read from the storage unit 11b.
 輝度調整部11dは、図示しない輝度センサからの入力に基づいてモニタ12の輝度特性を調整するものであり、具体的な調整方法については後で詳細に説明する。なお輝度センサは、可視光領域に感度があるものであり、シリコンフォトダイオード等を使用することができる。 The luminance adjusting unit 11d adjusts the luminance characteristics of the monitor 12 based on an input from a luminance sensor (not shown), and a specific adjustment method will be described in detail later. Note that the luminance sensor has sensitivity in the visible light region, and a silicon photodiode or the like can be used.
 領域設定部11eはモニタ12の後述する上側モニタ13の表示画面(2次元画像表示部)13a及び下側モニタ14の表示画面(2次元画像表示部)14aにおいて複数の部分領域を設定するものである。ここで図3に輝度調整方法を説明する図、図4に他の輝度調整方法を説明する図を示す。 The region setting unit 11e sets a plurality of partial regions on the display screen (two-dimensional image display unit) 13a of the upper monitor 13 (to be described later) of the monitor 12 and the display screen (two-dimensional image display unit) 14a of the lower monitor 14. is there. Here, FIG. 3 is a diagram for explaining a luminance adjustment method, and FIG. 4 is a diagram for explaining another luminance adjustment method.
 領域設定部11eは、図3に示すように、上側モニタ13の表示画面13aを9つに等分割して図中斜線で示す表示画面13aの中央の領域に所定部分領域13Aを予め設定する。また下側モニタ14の表示画面14aも上記上側モニタ13と同様に9つに等分割して、表示画面14aの中央の所定部分領域13Aに対応する領域に対応部分領域14Aを設定する。そして上側モニタ13の表示画面13aの所定部分領域13A以外の領域で8つに分割されている領域を分割部分領域13B1~13B8に設定すると共に下側モニタ14の表示画面14aの対応部分領域14A以外の領域で8つに分割されている領域を分割部分領域14B1~14B8に設定する。 As shown in FIG. 3, the area setting unit 11e divides the display screen 13a of the upper monitor 13 into nine equal parts and presets a predetermined partial area 13A in the center area of the display screen 13a indicated by hatching in the drawing. Further, the display screen 14a of the lower monitor 14 is equally divided into nine similarly to the upper monitor 13, and the corresponding partial area 14A is set in the area corresponding to the predetermined partial area 13A in the center of the display screen 14a. Then, an area divided into eight areas other than the predetermined partial area 13A on the display screen 13a of the upper monitor 13 is set as divided partial areas 13B1 to 13B8, and other than the corresponding partial area 14A on the display screen 14a of the lower monitor 14 The regions divided into eight in this region are set as divided partial regions 14B1 to 14B8.
 なお本実施形態においては、所定部分領域を上側モニタ13の表示画面13aに、対応部分領域を下側モニタ14の表示画面14aにそれぞれ設定したが、本発明はこれに限られるものではなく、所定部分領域を下側モニタ14の表示画面14aに、対応部分領域を上側モニタ13の表示画面13aにそれぞれ設定しても良い。 In the present embodiment, the predetermined partial area is set on the display screen 13a of the upper monitor 13, and the corresponding partial area is set on the display screen 14a of the lower monitor 14. However, the present invention is not limited to this, and the predetermined partial area is not limited to this. The partial area may be set on the display screen 14 a of the lower monitor 14, and the corresponding partial area may be set on the display screen 13 a of the upper monitor 13.
 また本実施形態においては所定部分領域13Aと所定部分領域13A以外の領域すなわち分割部分領域13B1~13B8及び対応部分領域14Aと対応部分領域14A以外の分割部分領域14B1~14B8が表示画面13a,14aを等分割するように設定されているが、本発明はこれに限られるものではなく、所定部分領域13A及び対応部分領域14Aが分割部分領域13B1~13B8,14B1~14B8とは異なる大きさの領域で設定されていてもよい。また分割部分領域13B1~13B8,14B1~14B8は表示画面13aと表示画面14aとで対応する分割部分領域の大きさが同じであれば必ずしも等分割されている必要はない。 In the present embodiment, areas other than the predetermined partial area 13A and the predetermined partial area 13A, that is, the divided partial areas 13B1 to 13B8 and the divided partial areas 14B1 to 14B8 other than the corresponding partial area 14A and the corresponding partial area 14A are displayed on the display screens 13a and 14a. However, the present invention is not limited to this, and the predetermined partial area 13A and the corresponding partial area 14A are areas having different sizes from the divided partial areas 13B1 to 13B8 and 14B1 to 14B8. It may be set. The divided partial areas 13B1 to 13B8 and 14B1 to 14B8 do not necessarily have to be equally divided as long as the corresponding divided partial areas have the same size on the display screen 13a and the display screen 14a.
 また本実施形態においては所定部分領域13Aを表示画面13aの中央付近に設定したが、本発明はこれに限られるものではなく、例えば、ハーフミラー15の機構的な変形が少ない領域、具体的には図1に示すように、上下両方のモニタ13,14に支持されているハーフミラー15の上方両端側に最も近い領域である部分領域13B6又は部分領域13B8を所定部分領域としてもよい。この場合、部分領域13B6又は部分領域13B8に対応する下側モニタ14の表示画面14aの対応部分領域は部分領域14B6又は部分領域14B8となり、部分領域14B6又は部分領域14B8は、部分領域13B6又は部分領域13B8と同様にハーフミラー15の機構的な変形がすくない領域であるため、安定した輝度調整を行うことができる。 In the present embodiment, the predetermined partial area 13A is set near the center of the display screen 13a. However, the present invention is not limited to this, for example, an area where the mechanical deformation of the half mirror 15 is small, specifically, As shown in FIG. 1, the partial region 13B6 or the partial region 13B8, which is the region closest to the upper both ends of the half mirror 15 supported by the upper and lower monitors 13 and 14, may be used as the predetermined partial region. In this case, the corresponding partial area of the display screen 14a of the lower monitor 14 corresponding to the partial area 13B6 or the partial area 13B8 is the partial area 14B6 or the partial area 14B8, and the partial area 14B6 or the partial area 14B8 is the partial area 13B6 or the partial area. Similar to 13B8, since it is an area where mechanical deformation of the half mirror 15 is not easy, stable brightness adjustment can be performed.
 また図4に示すように、上側モニタ13の表示画面13aを複数の領域(本実施形態では16)に分割して、分割部分領域13C1~13C16毎にハーフミラー15を反射した表示光の輝度を測定しておき、分割部分領域13C1~13C16の中で最も明るい領域を所定部分領域としてもよい。モニタの輝度が高い方が放射線画像が見やすく、診断しやすいので、このように分割部分領域13C1~13C16の中で最も明るい領域を所定部分領域とすることで、モニタの輝度が高くなるように輝度調整することができ、診断に適した輝度とすることができる。通常、モニタの輝度は出荷時はモニタの劣化を考慮して8割程度の輝度に抑えられているので、最も明るい領域を所定部分領域とした場合も、抑えられている2割の輝度を使うことで、輝度を高くする調整をすることが可能である。 Further, as shown in FIG. 4, the display screen 13a of the upper monitor 13 is divided into a plurality of regions (16 in this embodiment), and the luminance of the display light reflected from the half mirror 15 is divided for each of the divided partial regions 13C1 to 13C16. Measurement may be performed, and the brightest area among the divided partial areas 13C1 to 13C16 may be set as the predetermined partial area. Since the radiation image is easier to see and diagnose when the monitor brightness is higher, the brightest area of the divided partial areas 13C1 to 13C16 is set as the predetermined partial area so that the brightness of the monitor is increased. It is possible to adjust the brightness suitable for diagnosis. Normally, the luminance of the monitor is suppressed to about 80% at the time of shipment in consideration of the deterioration of the monitor. Therefore, even when the brightest area is set as the predetermined partial area, the reduced luminance is used. Thus, it is possible to adjust to increase the luminance.
 次いで、本実施形態において行われる処理について説明する。図5は本実施形態において行われる処理を示すフローチャートである。まず制御部11aが、図5に示すように、記憶部11bに記憶された輝度調整用の画像である白の画像を読み出して、表示制御部11cに出力し、表示制御部11cが入力された白の画像を上側モニタ13の表示画面13aと下側モニタ14の表示画面14aにそれぞれ表示させる(S11)。 Next, processing performed in this embodiment will be described. FIG. 5 is a flowchart showing processing performed in the present embodiment. First, as shown in FIG. 5, the control unit 11a reads a white image that is an image for brightness adjustment stored in the storage unit 11b, outputs the white image to the display control unit 11c, and the display control unit 11c is input. White images are displayed on the display screen 13a of the upper monitor 13 and the display screen 14a of the lower monitor 14 respectively (S11).
 次に領域設定部11eが上述したようにして上側モニタ13の表示画面13aにおいて所定部分領域13A及び分割部分領域13B1~13B8をそれぞれ設定すると共に下側モニタ14の表示画面14aにおいて所定部分領域13Aに対応する対応部分領域14A及び分割部分領域14B1~14B8をそれぞれ設定する(S12)。 Next, the area setting unit 11e sets the predetermined partial area 13A and the divided partial areas 13B1 to 13B8 on the display screen 13a of the upper monitor 13 as described above, and sets the predetermined partial area 13A on the display screen 14a of the lower monitor 14. Corresponding corresponding partial areas 14A and divided partial areas 14B1 to 14B8 are set (S12).
 次に図示しない輝度センサを使用して所定部分領域13Aのハーフミラー15を反射した表示光の輝度及び対応部分領域14Aのハーフミラーを透過した表示光の輝度を測定する(S13)。輝度の測定方法としては、輝度計を用いて、例えば、所定部分領域13Aに対応する位置の輝度を測定するようにすればよい。 Next, using a luminance sensor (not shown), the luminance of the display light reflected by the half mirror 15 in the predetermined partial area 13A and the luminance of the display light transmitted through the half mirror in the corresponding partial area 14A are measured (S13). As a method for measuring the luminance, for example, the luminance at a position corresponding to the predetermined partial region 13A may be measured using a luminance meter.
 次に輝度調整部11dが、所定部分領域13Aのハーフミラー15を反射した表示光の輝度が対応部分領域14Aのハーフミラー15を透過した表示光の輝度と同じ値になるように輝度を調整する(S14)。輝度の調整は、モニタ13の表示画面13aを照明するバックライトのうち所定部分領域13Aを照明するバックライトの光量を調整することにより行う。なお本実施形態での輝度の調整はバックライトの光量を調整することにより行うものとしたが、本発明はこれに限られるものではなく、例えば表示画面13a,14aの部分領域毎に光を吸収するフィルタ等を設けるようにしてもよいし、モニタに表示する画像データ値を調整してもよい。 Next, the luminance adjusting unit 11d adjusts the luminance so that the luminance of the display light reflected from the half mirror 15 in the predetermined partial region 13A becomes the same value as the luminance of the display light transmitted through the half mirror 15 in the corresponding partial region 14A. (S14). The brightness is adjusted by adjusting the light amount of the backlight that illuminates the predetermined partial region 13A among the backlights that illuminate the display screen 13a of the monitor 13. The brightness adjustment in this embodiment is performed by adjusting the light amount of the backlight. However, the present invention is not limited to this, and for example, light is absorbed for each partial area of the display screens 13a and 14a. A filter or the like may be provided, or the image data value displayed on the monitor may be adjusted.
 次に輝度調整部11dが、モニタ13の表示画面13aの分割部分領域13B1~13B8及びモニタ14の表示画面14の分割部分領域14B1~14B8の各々について、各分割部分領域13B1~13B8,14B1~14B8のハーフミラー15を透過又は反射した表示光の輝度が、所定部分領域13Aの上記調整後のハーフミラー15を反射した表示光の輝度と同じ値になるように輝度を調整する(S15)。 Next, the luminance adjusting unit 11d applies the divided partial areas 13B1 to 13B8 and 14B1 to 14B8 to the divided partial areas 13B1 to 13B8 of the display screen 13a of the monitor 13 and the divided partial areas 14B1 to 14B8 of the display screen 14 of the monitor 14, respectively. The luminance is adjusted so that the luminance of the display light transmitted or reflected by the half mirror 15 becomes the same value as the luminance of the display light reflected by the adjusted half mirror 15 in the predetermined partial region 13A (S15).
 このように分割された領域毎に輝度の調整を行うことにより、各モニタ13,14の表示画面13a,14a全体の輝度を調整するよりも表示画面13a,14aにおける輝度特性のばらつき(輝度ムラ)を低減することができる。 By adjusting the brightness for each of the divided areas as described above, the brightness characteristics variation (brightness unevenness) in the display screens 13a and 14a is larger than the brightness of the entire display screens 13a and 14a of the monitors 13 and 14 is adjusted. Can be reduced.
 そして制御部11aは全ての領域の輝度調整が終了したか否かを判別し(S16)、全ての領域の輝度調整が終了している場合(S16;YES)は、全ての処理を終了させ、全ての領域の輝度調整が終了していない場合(S16;NO)は、処理をステップS15へ移行してステップS15以降の処理を繰り返し行う。このようにして本実施形態の立体視画像表示装置10による一連の処理を行う。 Then, the control unit 11a determines whether or not the luminance adjustment of all the areas has been completed (S16). When the luminance adjustment of all the areas has been completed (S16; YES), all the processes are ended, If the luminance adjustment of all the areas has not been completed (S16; NO), the process proceeds to step S15, and the processes after step S15 are repeated. In this way, a series of processing is performed by the stereoscopic image display apparatus 10 of the present embodiment.
 以上のように本実施形態の立体視画像表示装置10及び立体視画像表示方法によれば、上側モニタ13の表示画面13aに予め設定された所定部分領域13Aとそれ以外の領域を分割した複数の分割部分領域13B1~13B8を設定し、下側モニタ14の表示画面14aに所定部分領域13Aに対応する対応部分領域14Aとそれ以外の領域を分割した複数の分割部分領域14B1~14B8を設定して、所定部分領域13Aのハーフミラー15を反射した表示光の輝度が対応部分領域14Aのハーフミラーを透過した表示光の輝度と同じ値になるように輝度を調整すると共に、各分割部分領域13B1~13B8,14B1~14B8のハーフミラー15を透過又は反射した表示光の輝度が、所定部分領域13Aの調整後のハーフミラー15を反射した表示光の輝度と同じになるように分割部分領域13B1~13B8,14B1~14B8毎に輝度を調整するようにしたので、上下のモニタ13,14の表示画面13a,14aの輝度特性を同じにすると共に各表示画面13a,14a内の輝度特性のばらつき(輝度ムラ)を低減することができるので、観察者が立体視画像が表示されたモニタを観察するときにちらつき等がなくなり、立体視画像を立体視し易くすることができる。 As described above, according to the stereoscopic image display device 10 and the stereoscopic image display method of the present embodiment, the predetermined partial region 13A preset on the display screen 13a of the upper monitor 13 and a plurality of regions obtained by dividing the other regions are divided. Divided partial areas 13B1 to 13B8 are set, and a corresponding partial area 14A corresponding to the predetermined partial area 13A and a plurality of divided partial areas 14B1 to 14B8 obtained by dividing the other areas are set on the display screen 14a of the lower monitor 14. The luminance is adjusted so that the luminance of the display light reflected from the half mirror 15 in the predetermined partial area 13A becomes the same value as the luminance of the display light transmitted through the half mirror in the corresponding partial area 14A, and the divided partial areas 13B1 to 13B1. The brightness of the display light transmitted or reflected by the half mirror 15 of 13B8, 14B1 to 14B8 is adjusted after the adjustment of the predetermined partial area 13A. Since the luminance is adjusted for each of the divided partial areas 13B1 to 13B8 and 14B1 to 14B8 so as to be the same as the luminance of the display light reflected from the display 15, the luminance characteristics of the display screens 13a and 14a of the upper and lower monitors 13 and 14 are adjusted. And the variation in luminance characteristics (brightness unevenness) in each of the display screens 13a and 14a can be reduced, so that flickering is eliminated when an observer observes a monitor on which a stereoscopic image is displayed. A stereoscopic image can be easily stereoscopically viewed.
 なお上述した実施形態では、輝度調整用の画像を白画像としたが、本発明はこれに限られるものではなく、予め輝度調整用に生成されたパターン画像を使用するようにしてもよい。また上述した実施形態では、ハーフミラーを用いた立体視画像表示装置としたが、本発明はこれに限られるものではなく、レンチキュラーレンズを用いた立体視画像表示装置を採用してもよい。この場合、表示場面において左目用の画像を表示する領域と右目用の画像を表示する領域との輝度を調整する。 In the above-described embodiment, the brightness adjustment image is a white image. However, the present invention is not limited to this, and a pattern image generated in advance for brightness adjustment may be used. In the above-described embodiment, the stereoscopic image display device using the half mirror is used. However, the present invention is not limited to this, and a stereoscopic image display device using a lenticular lens may be adopted. In this case, the brightness of the area for displaying the image for the left eye and the area for displaying the image for the right eye is adjusted in the display scene.
 また上述した実施形態では、互いに異なる撮影方向から被写体を撮影することにより取得した視差画像に基づく立体視画像を表示する立体視画像表示装置10について説明したが、本発明はこれに限られるものではなく、例えば乳房や胸部、頭部等の被写体へ互いに異なる撮影方向から放射線を照射することにより取得した放射線画像に基づく立体視画像を表示する放射線画像表示装置にも本発明を適用することができる。なお放射線画像表示装置に本発明を適用することにより、観察者が立体視画像が表示されたモニタを観察するときにちらつき等がなくなり、立体視画像を立体視し易くすることができるので、観察者の診断効率を向上させることができる。 In the above-described embodiment, the stereoscopic image display device 10 that displays a stereoscopic image based on a parallax image acquired by shooting subjects from different shooting directions has been described. However, the present invention is not limited to this. For example, the present invention can also be applied to a radiographic image display apparatus that displays a stereoscopic image based on a radiographic image obtained by irradiating a subject such as a breast, chest, or head from different imaging directions. . By applying the present invention to the radiation image display device, flickering is eliminated when an observer observes a monitor on which a stereoscopic image is displayed, and the stereoscopic image can be easily viewed stereoscopically. The diagnostic efficiency of the person can be improved.

Claims (7)

  1.  互いに異なる撮影方向から被写体を撮影することにより取得された前記撮影方向毎の視差画像を表示する2次元画像表示部を備えた立体視画像表示装置において、
     一方の撮影方向の視差画像を表示する前記2次元画像表示部に予め設定された所定部分領域とそれ以外の領域を分割した複数の分割部分領域が設定されており、
     他方の撮影方向の視差画像を表示する前記2次元画像表示部に予め設定された前記所定部分領域に対応する対応部分領域とそれ以外の領域を分割した複数の分割部分領域が設定されており、
     前記所定部分領域の表示光の輝度が前記対応部分領域の表示光の輝度と同じ値になるように輝度を調整すると共に、各前記分割部分領域の表示光の輝度が、前記所定部分領域の調整後の表示光の輝度と同じになるように前記分割部分領域毎に輝度を調整する輝度調整部を備えていることを特徴とする立体視画像表示装置。
    In a stereoscopic image display device including a two-dimensional image display unit that displays a parallax image for each of the shooting directions acquired by shooting a subject from different shooting directions,
    A plurality of divided partial areas obtained by dividing a predetermined partial area set in advance and the other areas are set in the two-dimensional image display unit that displays a parallax image in one shooting direction;
    A plurality of divided partial areas obtained by dividing a corresponding partial area corresponding to the predetermined partial area set in advance in the two-dimensional image display unit that displays the parallax image in the other shooting direction and other areas are set;
    The luminance is adjusted so that the luminance of the display light in the predetermined partial area becomes the same value as the luminance of the display light in the corresponding partial area, and the luminance of the display light in each of the divided partial areas is adjusted in the predetermined partial area. A stereoscopic image display device comprising a luminance adjusting unit that adjusts the luminance for each of the divided partial regions so that the luminance is the same as the luminance of subsequent display light.
  2.  前記2次元画像表示部が、前記撮影方向毎の視差画像をそれぞれ表示する2つの2次元画像表示部と、一方の前記2次元画像表示部からの表示光を透過すると共に他方の前記2次元画像表示部からの表示光を前記透過した表示光と同方向に反射するハーフミラーとを備え、
     該ハーフミラーを透過及び反射した前記撮影方向毎の視差画像の表示光によって前記被写体を立体視することを特徴とする請求項1に記載の立体視画像表示装置。
    The two-dimensional image display unit transmits two display images from the two-dimensional image display unit and two two-dimensional image display units that display parallax images for each photographing direction, and the other two-dimensional image. A half mirror that reflects display light from the display unit in the same direction as the transmitted display light;
    The stereoscopic image display apparatus according to claim 1, wherein the subject is stereoscopically viewed with display light of a parallax image for each shooting direction that is transmitted and reflected by the half mirror.
  3.  前記所定部分領域が前記ハーフミラーの変形が少ない領域であることを特徴とする請求項2に記載の立体視画像表示装置。 3. The stereoscopic image display device according to claim 2, wherein the predetermined partial region is a region where the deformation of the half mirror is small.
  4.  前記所定部分領域が輝度の最も明るい領域であることを特徴とする請求項1または2に記載の立体視画像表示装置。 3. The stereoscopic image display device according to claim 1, wherein the predetermined partial region is a brightest region.
  5.  互いに異なる撮影方向から被写体を撮影することにより取得された前記撮影方向毎の視差画像をそれぞれ表示する2つの2次元画像表示部と、
     一方の前記2次元画像表示部からの表示光を透過すると共に他方の前記2次元画像表示部からの表示光を前記透過した表示光と同方向に反射するハーフミラーとを備え、
     該ハーフミラーを透過及び反射した前記撮影方向毎の視差画像の表示光によって前記被写体を立体視する立体視画像表示装置を使用した立体視画像表示方法において、
     一方の前記2次元画像表示部に予め設定された所定部分領域とそれ以外の領域を分割した複数の分割部分領域を設定し、
     他方の前記2次元画像表示部に予め設定された前記所定部分領域に対応する対応部分領域とそれ以外の領域を分割した複数の分割部分領域を設定して、
     前記所定部分領域の前記ハーフミラーを透過又は反射した表示光の輝度が前記対応部分領域の前記ハーフミラーを反射又は透過した表示光の輝度と同じ値になるように輝度を調整すると共に、各前記分割部分領域の前記ハーフミラーを透過又は反射した表示光の輝度が、前記所定部分領域の調整後の前記ハーフミラーを透過又は反射した表示光の輝度と同じになるように前記分割部分領域毎に輝度を調整することを特徴とする立体視画像表示方法。
    Two two-dimensional image display units for displaying parallax images for each of the shooting directions acquired by shooting subjects from different shooting directions;
    A half mirror that transmits display light from one of the two-dimensional image display units and reflects display light from the other two-dimensional image display unit in the same direction as the transmitted display light;
    In a stereoscopic image display method using a stereoscopic image display device that stereoscopically displays the subject by display light of a parallax image for each shooting direction transmitted and reflected by the half mirror,
    A plurality of divided partial areas obtained by dividing a predetermined partial area set in advance in one of the two-dimensional image display units and other areas are set,
    Setting a plurality of divided partial areas obtained by dividing the corresponding partial area corresponding to the predetermined partial area set in advance on the other two-dimensional image display unit and other areas;
    The luminance is adjusted so that the luminance of the display light transmitted or reflected by the half mirror of the predetermined partial region becomes the same value as the luminance of the display light reflected or transmitted by the half mirror of the corresponding partial region, For each divided partial region, the luminance of the display light transmitted or reflected by the half mirror in the divided partial region is the same as the luminance of the display light transmitted or reflected by the half mirror after adjustment of the predetermined partial region. A stereoscopic image display method characterized by adjusting brightness.
  6.  前記所定部分領域が前記ハーフミラーの変形が少ない領域であることを特徴とする請求項5に記載の立体視画像表示方法。 The stereoscopic image display method according to claim 5, wherein the predetermined partial region is a region where the deformation of the half mirror is small.
  7.  前記所定部分領域が輝度の最も明るい領域であることを特徴とする請求項5に記載の立体視画像表示方法。 6. The stereoscopic image display method according to claim 5, wherein the predetermined partial region is a brightest region.
PCT/JP2011/007263 2010-12-27 2011-12-26 Three-dimensional image display device and three-dimensional image display method WO2012090470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-289836 2010-12-27
JP2010289836A JP2012137612A (en) 2010-12-27 2010-12-27 Stereoscopic image display device and stereoscopic image display method

Publications (1)

Publication Number Publication Date
WO2012090470A1 true WO2012090470A1 (en) 2012-07-05

Family

ID=46382607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007263 WO2012090470A1 (en) 2010-12-27 2011-12-26 Three-dimensional image display device and three-dimensional image display method

Country Status (2)

Country Link
JP (1) JP2012137612A (en)
WO (1) WO2012090470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008094A1 (en) * 2018-07-04 2020-01-09 Cristobal Ayala Guerrero Method for producing double-view stereoscopic images and films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270750A (en) * 1994-02-10 1995-10-20 Canon Inc Image display device
JP2010187916A (en) * 2009-02-18 2010-09-02 Fujifilm Corp Image processing device, image processing system, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270750A (en) * 1994-02-10 1995-10-20 Canon Inc Image display device
JP2010187916A (en) * 2009-02-18 2010-09-02 Fujifilm Corp Image processing device, image processing system, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008094A1 (en) * 2018-07-04 2020-01-09 Cristobal Ayala Guerrero Method for producing double-view stereoscopic images and films
ES2737452A1 (en) * 2018-07-04 2020-01-14 Guerrero Cristobal Ayala PROCEDURE FOR IMPLEMENTING STEREOSCOPIC IMAGES AND DOUBLE VISIONED FILMS (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JP2012137612A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US7440004B2 (en) 3-D imaging arrangements
US8208008B2 (en) Apparatus, method, and program for displaying stereoscopic images
US9225949B2 (en) Sensory unit for a 3-dimensional display
EP2536156B1 (en) Image processing system, image processing apparatus, and image processing method
US10681339B2 (en) Surgical microscope, image processing device, and image processing method
US20120075293A1 (en) Adjustment method of stereoscopic display, adjustment device used therefore, stereoscopic image display method, and display device use therefore
US9282881B2 (en) 3D image shooting apparatus and endoscope
KR20090106384A (en) Stereoscopic x-ray system and method
JP2013106189A (en) Imaging apparatus
US20130300737A1 (en) Stereoscopic image generating apparatus, stereoscopic image generating method, and stereoscopic image generating program
WO2013161485A1 (en) Electronic endoscope, image processing device, electronic endoscope system, and stereoscopic image generation method
WO2012081244A1 (en) Display device
RU2340116C1 (en) Method of playing back stereoscopic images from camcorder with converging axes
JP2011211488A (en) Image processing apparatus and method, and program
EP2544458A2 (en) Image processing apparatus, image processing method, and medical image diagnosis apparatus
WO2012090470A1 (en) Three-dimensional image display device and three-dimensional image display method
WO2012056695A1 (en) Three-dimensional image display device, method, and program
JP2012110645A (en) Device and method for displaying stereoscopic image
WO2012132379A1 (en) Image display device, display control device, display control method and programme
WO2012056677A1 (en) Three-dimensional image display device
WO2012056692A1 (en) 3d image display device and 3d image display method
WO2012043480A1 (en) Stereovision image display method and stereovision image display device
WO2012132443A1 (en) Image display device
JP5835980B2 (en) Image processing system, apparatus, method, and medical image diagnostic apparatus
WO2012029705A1 (en) Device and method for delivering images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854445

Country of ref document: EP

Kind code of ref document: A1