WO2012089730A1 - Verfahren zur reinigung von partikelfiltern - Google Patents

Verfahren zur reinigung von partikelfiltern Download PDF

Info

Publication number
WO2012089730A1
WO2012089730A1 PCT/EP2011/074089 EP2011074089W WO2012089730A1 WO 2012089730 A1 WO2012089730 A1 WO 2012089730A1 EP 2011074089 W EP2011074089 W EP 2011074089W WO 2012089730 A1 WO2012089730 A1 WO 2012089730A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cleaning substance
cleaning
catalytically active
substance
Prior art date
Application number
PCT/EP2011/074089
Other languages
English (en)
French (fr)
Inventor
Jens Werner Kipp
Original Assignee
Jens Werner Kipp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010061598A external-priority patent/DE102010061598A1/de
Priority claimed from DE201110007941 external-priority patent/DE102011007941A1/de
Priority claimed from DE102011011342A external-priority patent/DE102011011342A1/de
Priority claimed from DE201110011997 external-priority patent/DE102011011997A1/de
Priority claimed from DE201110012567 external-priority patent/DE102011012567A1/de
Priority claimed from DE201110102218 external-priority patent/DE102011102218A1/de
Application filed by Jens Werner Kipp filed Critical Jens Werner Kipp
Priority to ES11802954.5T priority Critical patent/ES2545406T3/es
Priority to EP11802954.5A priority patent/EP2629877B1/de
Publication of WO2012089730A1 publication Critical patent/WO2012089730A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0237Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles for regenerating ex situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D41/00Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids
    • B01D41/04Regeneration of the filtering material or filter elements outside the filter for liquid or gaseous fluids of rigid self-supporting filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0233Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles periodically cleaning filter by blowing a gas through the filter in a direction opposite to exhaust flow, e.g. exposing filter to engine air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/029Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
    • F01N3/0293Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust injecting substances in exhaust stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea

Definitions

  • the invention relates to a method for cleaning particulate filters, which have a catalytically active surface, in particular of exhaust gas particulate filters for diesel engines.
  • An alternative to the thermal regeneration of the filter is the regeneration by means of N0 2 .
  • a catalyst material must be selected for the catalytically active layer of the filter, with which a high production rate of NO 2 is achieved.
  • the object of the invention is to provide a simple and economical method for cleaning exhaust gas filters.
  • Heating the cleaning substance on the catalytically active surface to a temperature above its evaporation or decomposition temperature.
  • the cleaning substance is applied to the catalytically active surfaces of the filter without the filter being rinsed with this substance. This significantly reduces the process time and material consumption.
  • the effect of the method is based on the fact that the cleaning substance interacts with the catalytically active surface, whereby the catalytically active material can possibly catalyze a decomposition of the cleaning substance and / or a reaction of this substance with the impurities adhering to the catalytically active surface.
  • the adsorption of the cleaning substance on the catalytically active surface loosened the adhesion of the impurities on this surface.
  • the cleaning substance is then removed together with the impurities or their decomposition products from the catalytically active surface. Since for this purpose the cleaning substance only needs to be heated to a maximum of 300 ° C, a significant energy saving is achieved and damage to the filter is avoided.
  • the cleaning substance may be a nonelectrolytic aqueous solution which is applied in liquid form to the catalytically active surface.
  • a nitrogen compound is considered to be "non-electrolytically” bezei- Chent when its dissociation constant is less than about 2 10 "5, which corresponds approximately to the Dissoziationskonstantenvon Essisgklare.
  • it may also be in the cleaning substance is a solid substance as a
  • the decomposition or vaporization temperature, at least for the main component of the cleaning substance, is preferably below 180 ° C., more preferably below 140 ° C.
  • the cleaning substance used may be a nitrogen-rich compound, especially a H 3 - precursor substance or a substance having the structural formula:
  • HH can be used, wherein R1 and R2 can be hydrogen or any other groups.
  • the cleaning substance should not be toxic and non-combustible. Suitable is, for example, carbonic acid diamide.
  • demineralized water should be used.
  • a blasting process by means of a carrier gas e.g. Compressed air
  • a spraying process can be used without the assistance of a carrier gas, or the liquid is pumped through the filter or simply depressurized into the filter or the filter is immersed in the liquid.
  • the filter is removed from the vehicle, impregnated with the cleaning substance and then heated in an oven.
  • the majority of the impurities passes into the gas phase and escapes together with the steam or the decomposition products of the cleaning substance.
  • the possibly remaining impurities are then only loose in the filter and can be easily removed, for example, by simply "tumbling" of the filter, by vibration, knocking, sucking or blowing out by means of compressed air.
  • the filter can remain installed in the vehicle.
  • the cleaning substance is then introduced at a time into the filter, preferably in the form of an aqueous solution, to which the filter after prolonged operation of the vehicle engine still has a relatively high temperature. While some of the water evaporates, the catalytically active surface of the filter cools down so that the active component of the cleaning substance can deposit thereon. After completion of the liquid supply then stored in the catalyst residual heat causes the active surfaces to heat again and the evaporation or decomposition of the cleaning substance is effected.
  • Fig. 1 is a schematic section through a filter during a first
  • FIG. 2 shows a drying step for the filter
  • Fig. 4 is a schematic diagram of a modified embodiment of the method.
  • the filter 10 shown in Fig. 1 for example, an exhaust filter of a diesel engine with a diesel engine, has at both ends open housing 12 made of metal, the walls of which are lined with heat-resistant mats 14 and which accommodates a filter body 16 of porous ceramic material whose filter effective Surfaces 18 have a catalytically active coating. After prolonged use of the filter, the surfaces 18 are afflicted with soot particles, not shown.
  • the filter 10 is removed from the exhaust system of the vehicle, and with a jet nozzle 20, a mixture of liquid and compressed air at least from one end, for example from the inlet end, or preferably from both ends into the filter body 16 is irradiated.
  • the liquid is, for example, demineralized water in which a cleaning substance is dissolved.
  • the filter 10 is introduced into an oven 22 (FIG. 2) and gently dried at a temperature of for example 140 to 180 °.
  • the drying temperature should be above the boiling point of the previously irradiated liquid (and the dissolved substances). The liquid is thus evaporated and escapes through openings 24 from the oven. The drying process is continued until all the liquid has evaporated.
  • the coating on the catalytically active surfaces on the walls of the filter body 16 is chemically / catalytically decomposed. Any remaining residue breaks down into small particles that easily separate from the walls of the filter material.
  • the filter 10 has a temperature sensor 30 which serves to monitor the temperature of the filter during operation of the motor vehicle.
  • the filter is detachably arranged in the wall of the housing 12. Since the liquid with the aid of the jet nozzle 20 is irradiated from the at least one open end into the filter body, the temperature sensor 30 need not be removed during the cleaning process.
  • a solid cleaning substance can be irradiated as granules in the filter.
  • FIG. 4 illustrates a method variant in which the filter 10 does not need to be removed from the exhaust system of the vehicle.
  • an engine 32 and an exhaust system 34 of the vehicle are shown schematically.
  • the exhaust system 34 includes an exhaust pipe 36 and a muffler 38, in which the filter 10 is arranged so that it is traversed by the exhaust gases of the engine 32.
  • a connection point 40 is provided, which optionally allows the connection of a jet unit 42 or a suction unit 44.
  • the jet unit 42 is connected with a clamp 46 to the open end of the exhaust pipe 36, while the suction unit 44 is connected to the connection point 40.
  • the cleaning of the filter 10 is performed after the ceramic material of this filter has been heated to its operating temperature by prolonged operation of the motor 32.
  • a carrier gas for example, compressed air
  • the jet unit 42 also has a supply line 48, via which the cleaning substance is metered in liquid form, as a solution in the compressed air flow.
  • the finely atomized cleaning substance settles on the catalytically active surfaces of the filter. So that the cleaning substance penetrates evenly and completely into the filter, the duration of the blasting process and the volume of the carrier gas are so dimensioned that the entire filter 10 is at least briefly exposed to a pressure of at least 1 kPa (0.01 bar).
  • the jet unit 42 is connected to the connection point 40 and the suction unit 44 to the end of the exhaust pipe, so that the cleaning substance from the opposite end enters into the filter 10. It is also possible to carry out the procedure in several steps, in which the cleaning substance alternately enters the filter from opposite sides.
  • the impurities on the catalytically active surfaces of the filter 10 are completely chemically decomposed and vaporized, can be completely dispensed with an extraction.
  • the cleaning substance and / or the compressed air can be pre-heated.
  • the embodiment shown in FIG. 4, in which the filter 10 does not need to be removed, is particularly advantageous in the case of powerful diesel engines, for example for marine engines.

Abstract

Verfahren zur Reinigung von Partikelfiltern (10), die eine katalytisch aktive Oberfläche (18) aufweisen, gekennzeichnet durch die folgenden Schritte: Einwirkenlassen einer an der katalytisch aktiven Oberfläche (18) adsorbierbaren Reinigungssubstanz, die eine Verdampfungs- oder Zersetzungstemperatur von mehr als 100° C und weniger als 300° C hat und als Hauptkomponente eine Stickstoffverbindung enthält, auf die katalytisch aktive Oberfläche, und Erhitzen der Reinigungssubstanz auf der katalytisch aktiven Oberfläche (18) auf eine Temperatur oberhalb ihrer Verdampfungs- oder Zersetzungstemperatur.

Description

VERFAHREN ZUR REINIGUNG VON PARTIKELFILTERN
Die Erfindung betrifft ein Verfahren zur Reinigung von Partikelfiltern, die eine kataly- tisch aktive Oberfläche aufweisen, insbesondere von Abgaspartikelfiltern für Dieselmo- toren.
Fahrzeuge und Arbeitsmaschinen, die durch Dieselmotoren angetrieben werden, müssen mit einem Abgaspartikelfilter ausgestattet werden. Der heutige Standard wird mit EURO 5 bezeichnet, die nächste Stufe wird mit EURO 6 bezeichnet und in Kürze eingeführt. Trotz vieler technischer Fortschritte besteht für diese Filter ein Reinigungsbedarf. Der Reinigungsbedarf wird umso höher, je mehr Kurzstrecken gefahren werden. Der Dieselmotor erreicht auf diesen Strecken dann nicht die Temperaturen, die eine Verbrennung der Abgaspartikel, zumeist Ruß, gewährleisten. Die Reinigung der Filter wird zumeist durchgeführt, indem die Filter nach dem Ausbau aus dem Fahrzeug in einem geeigneten Ofen bis auf ca. 600° erhitzt werden, um den Ruß zu verbrennen. Hierbei kommt es oft zu einem Verzug des Filtergehäuses, dass den Wiedereinbau erschwert. Die im Filter verbleibende Asche wird dann z.B. mit Druckluft ausgeblasen. Dazu muss zumindest bei Filtern von Kraftfahrzeugen zumeist das Filtergehäuse geöffnet werden, damit man eine Düse auf die Filterflächen richten kann. Das Verfahren ist aufwändig und zeitraubend, zumal oft mehrere Brenn- und Ausblasgänge erforderlich sind, um einen akzeptablen Reinigungserfolg zu erzielen.
Aus WO 2008/131 573 AI ist ein Verfahren bekannt, mit dem der Filter bei laufendem Betrieb des Fahrzeugs kontinuierlich regeneriert werden kann. Da die Abgastemperatur im Normalbetrieb des Motors nicht für eine thermische Regeneration des Filters ausreicht, wird stromaufwärts des Filters ein zusätzlicher Brennstoff eingedüst, der an der katalytisch aktiven Oberfläche katalytisch oxidiert wird. Durch die bei dieser Reaktion entstehende Wärme wird die Abtastemperatur im Filter so weit erhöht, dass der Ruß verbrannt werden kann.
Eine Alternative zur thermischen Regeneration des Filters ist die Regeneration mittels N02. Für die Durchführung dieses Verfahrens muss für die katalytisch aktive Schicht des Filters ein Katalysatormaterial gewählt werden, mit dem eine hohe Produktionsrate an NO2 erreicht wird.
Aus DE 103 21 2990 AI ist ein Verfahren bekannt, bei dem der Filter mit einer Reinigungsflüssigkeit gespült und danach durch Erhitzen getrocknet wird.
Aufgabe der Erfindung ist es ein einfaches und wirtschaftliches Verfahren zur Reinigung von Abgasfiltern zu schaffen.
Diese Aufgabe wird gelöst durch ein Verfahren mit den folgenden Schritten:
Einwirkenlassen einer an der katalytisch aktiven Oberfläche adsorbierbaren Reinigungssubstanz, die eine Verdampfungs- oder Zersetzungstemperatur von mehr als 100° C und weniger als 300° C hat und als Hauptkomponente eine Stickstoffverbindung enthält, auf die katalytisch aktive Oberfläche, und
Erhitzen der Reinigungssubstanz auf der katalytisch aktiven Oberfläche auf eine Temperatur oberhalb ihrer Verdampfungs- oder Zersetzungstemperatur.
Bei dem erfindungsgemäßen Verfahren wird die Reinigungssubstanz auf die katalytisch aktiven Oberflächen des Filters aufgebracht, ohne dass der Filter mit dieser Substanz gespült wird. Dadurch werden die Verfahrensdauer und der Materialverbrauch deutlich reduziert. Die Wirkung des Verfahrens beruht darauf, dass die Reinigungssubstanz mit der katalytisch aktiven Oberfläche in Wechselwirkung tritt, wobei das katalytisch aktive Material ggf. eine Zersetzung der Reinigungssubstanz und/oder eine Reaktion dieser Substanz mit den auf der katalytisch aktiven Oberfläche haftenden Verunreinigungen katalysieren kann. In jedem Fall wird durch die Adsorption der Reinigungssubstanz an der katalytisch aktiven Oberfläche die Haftung der Verunreinigungen an dieser Oberfläche gelockert. Durch die Erhitzung wird die Reinigungssubstanz dann zusammen mit den Verunreinigungen oder deren Zersetzungsprodukten von der katalytisch aktiven Oberfläche entfernt. Da zu diesem Zweck die Reinigungssubstanz nur auf maximal 300°C erhitzt zu werden braucht, wird auch eine deutliche Energieersparnis erreicht und eine Schädigung des Filters vermieden.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Bei der Reinigungssubstanz kann es sich um eine nichtelektrolytische wässrige Lösung handeln, die in flüssiger Form auf die katalytisch aktive Oberfläche aufgebracht wird. In diesem Zusammenhang wird eine Stickstoffverbindung als "nichtelektrolytisch" bezei- chent werden, wenn ihre Dissoziationskonstante kleiner als etwa 2 10"5 ist, was etwa der Dissoziationskonstantenvon Essisgsäure entspricht. Es kann sich bei der Reinigungssubstanz jedoch auch um eine feste Substanz handeln, die als feinkörniges Granulat oder durch Bedampfen auf die Katalysatoroberfläche aufgebracht wird. Die Zerset- zungs- oder Verdampfungstemperatur, zumindest für die Hauptkomponente der Reinigungssubstanz, liegt vorzugsweise unter 180°C, besonders bevorzugt unter 140°C. Als Reinigungssubstanz kann eine stickstoffreiche Verbindung, insbsondere eine H3- Vorläufersub stanz oder eine Substanz mit der Strukturformel:
O C
/ \
Figure imgf000004_0001
H H verwendet werden, wobei Rl und R2 Wasserstoff oder irgendwelche anderen Gruppen sein können. Die Reinigungssubstanz sollte nicht toxisch und nicht brennbar sein. Geeignet ist z.B. Kohlensäurediamid. Zum Ansetzen der wässrigen Lösung sollte entmine- ralisiertes Wasser verwendet werden.
Zum Imprägnieren des Filters mit der Reinigungssubstanz kann ein Strahlverfahren mittels eines Trägergases, z.B. Druckluft, eingesetzt werden, dem die flüssige Lösung oder das Granulat zugesetzt wird. Wahlweise kann auch ein Sprühverfahren ohne die Unterstützung durch ein Trägergas eingesetzt werden, oder die Flüssigkeit wird durch den Filter gepumpt oder einfach drucklos in den Filter eingegossen oder der Filter wird in die Flüssigkeit getaucht.
In einer Ausführungsform wird der Filter aus dem Fahrzeug ausgebaut, mit der Reinigungssubstanz imprägniert und anschließend in einem Ofen erhitzt. Der größte Teil der Verunreinigungen geht dabei in die Gasphase über und entweicht zusammen mit dem dampf bzw. den Zersetzungsprodukten der Reinigungssubstanz. Die eventuell noch verbleibenden Verunreinigungen liegen dann nur noch lose im Filter und können problemlos entfernt werden, beispielsweise durch einfaches "Stürzen" des Filters, durch Vibration, Klopfen, Aussaugen oder Ausblasen mittels Druckluft.
Bei einer anderen Variante des Verfahrens kann der Filter im Fahrzeug eingebaut blei- ben. Die Reinigungssubstanz wird dann zu einem Zeitpunkt in den Filter eingebracht, vorzugsweise in der Form einer wässrigen Lösung, zu dem der Filter nach längerem Betrieb des Fahrzeugmotors noch eine relativ hohe Temperatur hat. Während ein Teil des Wassers verdampft, kühlt sich die katalytisch aktive Oberfläche des Filters ab, so dass sich die aktive Komponente der Reinigungssubstanz darauf niederschlagen kann. Nach Beendigung der Flüssigkeitszufuhr bewirkt dann die im Katalysator gespeicherte Restwärme, dass sich die aktiven Oberflächen wieder erwärmen und die Verdampfung oder Zersetzung der Reinigungssubstanz bewirkt wird. Im folgenden wird ein Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 einen schematischen Schnitt durch einen Filter während eines ersten
Schrittes des erfindungsgemäßen Verfahrens;
Fig. 2 einen Trocknungsschritt für den Filter;
Fig. 3 einen Schritt zur mechanischen Trockenreinigung des Filters; und
Fig. 4 eine Prinzipskizze zu einer abgewandelten Ausführungsform des Verfahrens.
Der in Fig. 1 gezeigte Filter 10, beispielsweise ein Abgasfilter eines Pkw mit Dieselmotor, weist ein an beiden Enden offenes Gehäuse 12 aus Metall auf, dessen Wände innen mit hitzebeständigen Matten 14 ausgekleidet sind und das einen Filterkörper 16 aus porösem Keramikmaterial aufnimmt, dessen filterwirksame Oberflächen 18 eine kataly- tisch aktive Beschichtung aufweisen. Nach längerem Gebrauch des Filters sind die Oberflächen 18 mit nicht gezeigten Rußpartikeln behaftet.
Zur Reinigung wird der Filter 10 aus der Abgasanlage des Fahrzeugs ausgebaut, und mit einer Strahldüse 20 wird ein Gemisch aus Flüssigkeit und Druckluft zumindest von einem Ende her, beispielsweise vom einlassseitigen Ende her, oder vorzugsweise von beiden Enden her in den Filterkörper 16 eingestrahlt. Bei der Flüssigkeit handelt es sich beispielsweise um entmineralisiertes Wasser, in dem eine Reinigungssubstanz gelöst ist.
Da die Flüssigkeit mit Hilfe der Strahldüse 20 direkt in den Filterkörper 16 eingestrahlt wird, läßt sich eine übermäßige Durchfeuchtung der Matten 14 vermeiden. Nachdem die Flüssigkeit eine gewisse Zeit auf die Rußschichten an den Wänden und in den Poren des Filterkörpers 16 eingewirkt hat, wird der Filter 10 in einen Ofen 22 (Fig. 2) eingebracht und schonend bei einer Temperatur von beispielsweise 140 bis 180° getrocknet. Die Trocknungstemperatur sollte oberhalb des Siedepunktes der zuvor einge- strahlten Flüssigkeit (und der darin gelösten Substanzen) liegen. Die Flüssigkeit wird somit verdampft und entweicht über Öffnungen 24 aus dem Ofen. Der Trocknungsvorgang wird so lange fortgesetzt, bis sämtliche Flüssigkeit verdampft ist.
Durch diese Behandlung wird der Belag an den katalytisch aktiven Oberflächen an den Wänden des Filterkörpers 16 chemisch/katalytisch zersetzt. Eventuell verbleibende Rückstände zerfallen in kleine Partikel, die sich leicht von den Wänden des Filtermaterials lösen.
Wie in Fig. 3 gezeigt ist, genügt es dann, den Filter 10 zu stürzen oder auf einer Unterlage 26 auszuklopfen, um die trockenen Verunreinigungen 28 aus dem Filter zu entfernen.
In dem hier gezeigten Beispiel weist der Filter 10 einen Temperatursensor 30 auf, der während des Betriebs des Kraftfahrzeugs dazu dient, die Temperatur des Filters zu überwachen. Der Filter ist lösbar in der Wand des Gehäuses 12 angeordnet. Da die Flüssigkeit mit Hilfe der Strahldüse 20 vom zumindest einem offenen Ende her in den Filterkörper eingestrahlt wird, braucht der Temperatursensor 30 bei dem Reinigungsver- fahren nicht ausgebaut zu werden.
Anstelle einer Flüssigkeit kann wahlweise auch eine feste Reinigungssubstanz als Granulat in den Filter eingestrahlt werden.
Fig. 4 illustriert eine Verfahrensvariante, bei der der Filter 10 nicht aus der Auspuffan- lage des Fahrzeugs ausgebaut zu werden braucht. In Fig. 4 sind schematisch ein Motor 32 sowie eine Auspuffanlage 34 des Fahrzeugs dargestellt. Die Auspuffanlage 34 umfasst ein Auspuffrohr 36 und einen Auspufftopf 38, in dem der Filter 10 so angeordnet ist, dass er von den Auspuffgasen des Motors 32 durchströmt wird. An einem Abschnitt des Auspuffrohres 36 zwischen dem Motor 32 und dem Auspufftopf 38 ist eine Anschlussstelle 40 vorgesehen, die wahlweise den An- schluss eines Strahlaggregats 42 oder eines Absaugaggregats 44 erlaubt. Im gezeigten Beispiel ist das Strahl aggregat 42 mit einer Schelle 46 an das offene Ende des Auspuffrohres 36 angeschlossen, während das Absaugaggregat 44 mit der Anschlussstelle 40 verbunden ist.
Die Reinigung des Filters 10 wird durchgeführt, nachdem das Keramikmaterial dieses Filters durch längeren Betrieb des Motors 32 auf seine Betriebstemperatur erhitzt wurde. Über das Strahl aggregat 42 wird ein Trägergas, beispielsweise Druckluft, in das Auspuffrohr 36 eingeleitet. Das Strahl aggregat 42 weist außerdem eine Zuleitung 48 auf, über welche die Reinigungssubstanz in flüssiger Form, als Lösung, in die Druckluftströmung eindosiert wird. Die fein zerstäubte Reinigungssubstanz lagert sich auf den katalytisch aktiven Oberflächen des Filters ab. Damit die Reinigungssubstanz gleichmäßig und vollständig in den Filter eindringt, werden die Dauer des Strahlvorgangs und das Volumen des Trägergases so bemessen, dass der gesamte Filter 10 zumindest kurzzeitig einem Druck von mindestens 1 kPa (0,01 bar) ausgesetzt wird. Anschließend wird die Zufuhr von Druckluft und Reinigungssubstanz beendet, und das Strahl aggregat 42 wird vom Ende des Auspuffrohres 36 gelöst. Die Restwärme des Partikelfilters 10 ist so groß, dass die katalytisch aktiven Oberflächen, die zuvor durch die Druckluft, die Reinigungssubstanz und - bei Verwendung einer wässrigen Lösung - durch das Wasser auf unter 100° C abgekühlt wurden, sich wieder auf eine Temperatur erhitzen, die oberhalb der Verdampfungs- oder Zersetzungstemperatur der Reinigungssubstanz liegt. Auf diese Weise werden die Verunreinigungen von den Oberflächen 18 des Filters gelöst, so dass sie mit dem Absaugaggregat 44 abgesaugt werden können. In einer modifizierten Ausführungsform wird das Strahl aggregat 42 an die Anschlussstelle 40 angeschlossen und das Absaugaggregat 44 an das Ende des Auspuffrohres, so dass die Reinigungssubstanz vom entgegengesetzten Ende her in den Filter 10 eintritt. Es ist auch möglich, die Prozedur in mehreren Schritten durchzuführen, bei denen die Reinigungssubstanz abwechselnd von entgegengesetzten Seiten her in den Filter eintritt.
Sofern die Verunreinigungen auf den katalytisch aktiven Oberflächen des Filters 10 vollständig chemisch zersetzt und verdampft werden, kann auf eine Absaugung auch ganz verzichtet werden.
Um eine zu starke Auskühlung des Filters zu verhindern, können die Reinigungssubstanz und/oder die Druckluft vor erhitzt werden.
Die in Fig. 4 gezeigte Ausführungsform, bei der der Filter 10 nicht ausgebaut zu werden braucht, ist insbesondere bei leistungsstarken Dieselmotoren, beispielsweise für Schiffsantriebe von Vorteil.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Reinigung von Partikelfiltern (10), die eine katalytisch aktive Oberfläche (18) aufweisen, gekennzeichnet durch die folgenden Schritte:
- Einwirkenlassen einer an der katalytisch aktiven Oberfläche (18) adsorbierbaren Reinigungssubstanz, die eine Verdampfungs- oder Zersetzungstemperatur von mehr als 100° C und weniger als 300° C hat und als Hauptkomponente eine Stickstoffverbindung enthält, auf die katalytisch aktive Oberfläche, und
Erhitzen der Reinigungssubstanz auf der katalytisch aktiven Oberfläche (18) auf eine Temperatur oberhalb ihrer Verdampfungs- oder Zersetzungstemperatur.
2. Verfahren nach Anspruch 1, bei dem die Reinigungssubstanz eine Verdampfungs- oder Zersetzungstemperatur von weniger als 180° hat.
3. Verfahren nach Anspruch 2, bei dem die Reinigungssubstanz eine Verdampfungs- oder Zersetzungstemperatur von weniger als 140° hat.
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Reinigungssubstanz eine NH3-Vorläufersubstanz ist.
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Reinigungssubstanz in flüssiger Form in den Filter (10) eingebracht wird.
6. Verfahren nach Anspruch 5, bei dem die Reinigungssubstanz in Wasser gelöst ist.
7. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Reinigungssubstanz mittels eines Strahl aggregats (18; 42) in den Filter (10) eingestrahlt wird.
8. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Filter (10) nach dem Einbringen der Reinigungssubstanz auf eine Temperatur oberhalb der Ver- dampfungs- oder Zersetzungstemperatur der Reinigungssubstanz erhitzt wird.
9. Verfahren nach Anspruch 8, bei dem der Filter (10) in einem Ofen (22) erhitzt wird.
10. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die Reinigungssubstanz in den Filter (10) eingebracht wird, während der Filter eine Temperatur oberhalb der Ver- dampfungs- oder Zersetzungstemperatur der Reinigungssubstanz hat, wobei die Temperatur der katalytisch aktiven Oberfläche (18) durch das Einbringen der Reinigungssubstanz vorübergehend unter die Verdampfungs- oder Zersetzungstemperatur gesenkt wird.
11. Verfahren nach einem der vorstehenden Ansprüche, bei dem nach dem Erhitzen der Reinigungssubstanz eine mechanische Trockenreinigung des Filters (10) erfolgt.
PCT/EP2011/074089 2010-12-28 2011-12-27 Verfahren zur reinigung von partikelfiltern WO2012089730A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES11802954.5T ES2545406T3 (es) 2010-12-28 2011-12-27 Procedimiento para la limpieza de filtros de partículas
EP11802954.5A EP2629877B1 (de) 2010-12-28 2011-12-27 Verfahren zur reinigung von partikelfiltern

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
DE102010061598A DE102010061598A1 (de) 2010-12-28 2010-12-28 Verfahren zur Reinigung von Partikelfiltern
DE102010061598.6 2010-12-28
DE102011007941.6 2011-01-03
DE201110007941 DE102011007941A1 (de) 2011-01-03 2011-01-03 Reinigung von Dieselabgaspartikelfiltern ohne Ausbau aus dem Fahrzeug bzw. der Maschine bei Unterdrucksetzung des gesamten Filters durch ein Trägergas + einer rußzersetzende Flüssigkeit und nachfolgender Trocknung weitgehend durch die Eigenwärme des Filters
DE102011011342.8 2011-02-16
DE102011011342A DE102011011342A1 (de) 2011-02-16 2011-02-16 Reinigung von Dieselabgaspartikelfiltern ohne Ausbau aus dem Fahrzeug bzw. der Maschine bei Unterdrucksetzung des gesamten Dieselabgaspartikelfilters durch ein Trägergas + einer ruß-/aschelösenden Flüssigkeit und nachfolgender Trocknung weitgehend durch die Eigenwärme des Dieselabgaspartikelfilters
DE102011011997.3 2011-02-23
DE201110011997 DE102011011997A1 (de) 2011-02-23 2011-02-23 Reinigung von Dieselabgaspartikelfiltern ohne Ausbau aus dem Fahrzeug bzw. der Maschine bei Unterdrucksetzung des gesamten Filters durch ein Trägergas + einer ruß-/aschelösenden Flüssigkeit bzw. Granulates und nachfolgender Trocknung weitgehend durch die Eigenwärme des Filters.
DE201110012567 DE102011012567A1 (de) 2011-02-26 2011-02-26 Reinigung von oberflächenbeschichteten Dieselabgaspartikelfiltern nach dem Ausbau aus dem Fahrzeug bzw Arbeitsmaschine mittels einer in Verbindung mit der Oberflächenbeschichtung ruß-/ascheaufspaltenden Flüssigkeit oder eines Granulates und nachfolgender Trocknung mit Verdampfung/Verdunstung
DE102011012567.1 2011-02-26
DE201110102218 DE102011102218A1 (de) 2011-05-21 2011-05-21 Reinigung von beschichteten Dieselabgaspartikelfiltern / Katalysatoren ohne Ausbau aus dem Fahrzeug bzw. der Arbeitsmaschine mittels einer in Verbindung mit der Oberflächenbeschichtung der Filter / Katalysatoren ruß-/ascheaufspaltenden Flüssigkeit oder eines Granulates und nachfolgender Trocknung mit Verdampfung / Verdunstung.
DE102011102218.3 2011-05-21
EP2011063988 2011-08-12
EPPCT/EP2011/063988 2011-08-12

Publications (1)

Publication Number Publication Date
WO2012089730A1 true WO2012089730A1 (de) 2012-07-05

Family

ID=45440546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/074089 WO2012089730A1 (de) 2010-12-28 2011-12-27 Verfahren zur reinigung von partikelfiltern

Country Status (2)

Country Link
ES (1) ES2545406T3 (de)
WO (1) WO2012089730A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035268B2 (en) 2019-03-25 2021-06-15 Ngk Insulators, Ltd. Method for regenerating exhaust gas filter and exhaust gas filter impregnation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0132166A1 (de) * 1983-06-16 1985-01-23 Regie Nationale Des Usines Renault Regenierung von Staubfilter, insbesondere für Dieselmotoren
DE10048511A1 (de) * 2000-09-29 2002-04-18 Omg Ag & Co Kg Verfahren zur Verminderung von Kohlenmonoxid, Kohlenwasserstoffen und Partikel im mageren Abgas von Verbrennungsmotoren
FR2849672A1 (fr) * 2003-01-07 2004-07-09 Peugeot Citroen Automobiles Sa Filtre a particules pour ligne d'echappement, ligne d'echappement ainsi equipee, et systeme d'aide a la regeneration d'un tel filtre a particules
DE10321290A1 (de) 2003-05-13 2004-12-23 Daimlerchrysler Ag Verfahren zur Reinigung eines Partikelfilters und Reinigungsvorrichtung für einen Partikelfilter
DE102006032886A1 (de) * 2006-07-15 2008-01-17 Daimler Ag Partikelabscheider und Verfahren zur Regeneration eines Partikelabscheiders
WO2008131573A1 (de) 2007-04-25 2008-11-06 Hochschule Rapperswil Einrichtung und verfahren zur regeneration von partikelfiltern, sowie verwendung eines mediums zur regeneration von partikelfiltern, und nachfüllpackung mit dem medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0132166A1 (de) * 1983-06-16 1985-01-23 Regie Nationale Des Usines Renault Regenierung von Staubfilter, insbesondere für Dieselmotoren
DE10048511A1 (de) * 2000-09-29 2002-04-18 Omg Ag & Co Kg Verfahren zur Verminderung von Kohlenmonoxid, Kohlenwasserstoffen und Partikel im mageren Abgas von Verbrennungsmotoren
FR2849672A1 (fr) * 2003-01-07 2004-07-09 Peugeot Citroen Automobiles Sa Filtre a particules pour ligne d'echappement, ligne d'echappement ainsi equipee, et systeme d'aide a la regeneration d'un tel filtre a particules
DE10321290A1 (de) 2003-05-13 2004-12-23 Daimlerchrysler Ag Verfahren zur Reinigung eines Partikelfilters und Reinigungsvorrichtung für einen Partikelfilter
DE102006032886A1 (de) * 2006-07-15 2008-01-17 Daimler Ag Partikelabscheider und Verfahren zur Regeneration eines Partikelabscheiders
WO2008131573A1 (de) 2007-04-25 2008-11-06 Hochschule Rapperswil Einrichtung und verfahren zur regeneration von partikelfiltern, sowie verwendung eines mediums zur regeneration von partikelfiltern, und nachfüllpackung mit dem medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035268B2 (en) 2019-03-25 2021-06-15 Ngk Insulators, Ltd. Method for regenerating exhaust gas filter and exhaust gas filter impregnation system

Also Published As

Publication number Publication date
ES2545406T3 (es) 2015-09-10

Similar Documents

Publication Publication Date Title
DE10248586B4 (de) Aufprallmittel für ein selektives katalytisches Reduktionssystem
DE60037220T2 (de) Verfahren und Vorrichtung zur Reiningung eines Partikelfilters
DE602005002388T2 (de) Vorrichtung und Verfahren zur Reinigung von Abgas
EP1892396B1 (de) Abgasnachbehandlungssystem
EP1870155B1 (de) Regenerierung von NT-SCR-Katalysatoren
WO2013004634A2 (de) Ammoniakgasgenerator zur erzeugung von ammoniak zur reduzierung von stickoxiden in abgasen
DE102012006448B4 (de) Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
DE102006058554A1 (de) Abgasreinigungsvorrichtung
WO2010139429A1 (de) Abgasnachbehandlungssystem
DE102014002750A1 (de) Zersetzungskammer
EP2935106A1 (de) Ammoniakgasgenerator, verfahren zur herstellung von ammoniak sowie verwendung derselben zur reduktion von stickoxiden in abgasen
DE2259763B2 (de) Verfahren zur reinigung von stickstoffoxide enthaltenden gasen und vorrichtung zu dessen durchfuehrung
DE10242303A1 (de) Abgasreinigungsanlage und Verfahren zur Reinigung von Absagen
DE4410353A1 (de) Verfahren zur Herstellung eines Katalysators zur Partikelentfernung im Abgas aus Dieselkraftfahrzeugen und ein Verfahren zur Partikelentfernung unter Anwendung des Katalysators
WO2012089730A1 (de) Verfahren zur reinigung von partikelfiltern
DE60201143T2 (de) Verfahren und Vorrichtung zur Reinigung eines Partikelfilters eines Kraftfahrzeugs
EP2629877B1 (de) Verfahren zur reinigung von partikelfiltern
WO2006092190A1 (de) Verfahren zur abgasnachbehandlung bei dieselmotoren oder dergleichen, und vorrichtung zur durchführung dieses verfahrens
DE102004049289B4 (de) Abgasnachbehandlungssystem und Abgasnachbehandlungsverfahren für einen Verbrennungsmotor
DE60210631T2 (de) Verfahren zur Regenerierung einer Abgasfiltervorrichtung für Dieselmotoren und Vorrichtung dafür
EP1181966A1 (de) Verfahren und Vorrichtung zum Reinigen von Filtern
DE102014101634B4 (de) Nachbehandlungsvorrichtung, die Flüssigkeit verwendet
EP0577543B1 (de) Verfahren und Anlage zum Reinigen des einen Grossdieselmotor verlassenden Abgases
DE3821143C2 (de)
WO2001085311A1 (de) Verfahren und vorrichtung zur katalytischen umwandlung eines stoffs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11802954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011802954

Country of ref document: EP