WO2012086604A1 - Cleaning device - Google Patents

Cleaning device Download PDF

Info

Publication number
WO2012086604A1
WO2012086604A1 PCT/JP2011/079412 JP2011079412W WO2012086604A1 WO 2012086604 A1 WO2012086604 A1 WO 2012086604A1 JP 2011079412 W JP2011079412 W JP 2011079412W WO 2012086604 A1 WO2012086604 A1 WO 2012086604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning device
brushes
frame
auxiliary foot
auxiliary
Prior art date
Application number
PCT/JP2011/079412
Other languages
French (fr)
Japanese (ja)
Inventor
公祐 竹内
史紀 牧野
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2012549805A priority Critical patent/JPWO2012086604A1/en
Publication of WO2012086604A1 publication Critical patent/WO2012086604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • A47L11/283Floor-scrubbing machines, motor-driven having rotary tools the tools being disc brushes
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present invention relates to a cleaning device having a brush rotatably connected to a frame, and more particularly to a cleaning device capable of cleaning a place with a step or a groove.
  • Non-Patent Document 1 an omnidirectional moving floor polishing robot having two rotating brushes attached to a robot body via a gimbal mechanism is known (for example, see Non-Patent Document 1).
  • This floor polishing robot uses an electric motor to control the rotation direction of the two rotating brushes and the inclination angle of the respective rotation shafts with respect to the floor surface, and to change these two directions according to the rotation direction and the inclination angle.
  • By using the rotational friction force between the two rotating brushes and the floor surface it is possible to move in a desired direction while polishing the floor surface.
  • Non-Patent Document 1 has a problem that it can clean only a flat surface without a step or a groove.
  • an object of the present invention is to provide a cleaning device capable of cleaning a place with a step or a groove.
  • a cleaning device includes a brush, a frame that rotatably supports the brush, an auxiliary foot, and the frame, and the auxiliary foot is attached to the frame.
  • the present invention can provide a cleaning device that can clean a place with a step or a groove.
  • FIG. 1 It is the schematic of the cleaning apparatus which concerns on the Example of this invention. It is the figure which looked at the cleaning apparatus of FIG. 1 from a different angle. It is a perspective view of the drive part couple
  • FIG. 12 is a top view of the stair-climbing auxiliary mechanism in FIG. 11. It is a perspective view of a rotating brush grounding auxiliary mechanism. It is a figure for demonstrating the stair-lifting method of the cleaning apparatus of FIG. It is a figure for demonstrating the stair-lifting method of the cleaning apparatus of FIG. It is the schematic of the cleaning apparatus provided with the active balancer mechanism which concerns on the Example of this invention. It is a figure for demonstrating the stair raising / lowering method of the cleaning apparatus of FIG. It is a figure for demonstrating the stair raising / lowering method of the cleaning apparatus of FIG. It is the schematic of the cleaning apparatus provided with the auxiliary
  • FIG. 1 is a schematic view of a cleaning device according to an embodiment of the present invention
  • FIG. 1 (A) shows a top view
  • FIG. 1 (B) is seen from the direction of arrow 1B in FIG. 1 (A).
  • a side view is shown.
  • FIG. 2 is a view of the cleaning device of FIG. 1 as seen from a different angle
  • FIG. 2 (A) shows a top view
  • FIG. 2 (B) shows from the direction of arrow 2B in FIG. 2 (A).
  • FIG. 2C is a view corresponding to FIG. 2B and shows a state in which one of the rotating brushes is inclined with respect to the floor surface.
  • the cleaning device EQ is a device that can move in any direction with these three rotating brushes while polishing the floor with three rotating brushes (polishers), and mainly includes three rotating brushes B1, B2, B3, It has two drive units D1, D2, D3, a frame FR, and a control device CD.
  • the cleaning device EQ may be manually operated by an operator using an operation unit attached to a cord extending from the frame FR, or remotely operated by an operator via wireless communication.
  • the robot is a robot-type cleaning device that cleans the floor surface while moving autonomously based on a cleaning map (described later) stored in the control device CD or the like.
  • the rotary brushes B1, B2, and B3 are circular in top view, and rotate around the rotation axes ⁇ 1, ⁇ 2, and ⁇ 3 that can be inclined with respect to the frame FR, and the inclination axes ⁇ 1 that are orthogonal to the rotation axes ⁇ 1, ⁇ 2, and ⁇ 3. , ⁇ 2, and ⁇ 3.
  • the rotating brushes B1, B2, and B3 are made of, for example, natural fiber, chemical fiber, sponge, rubber, or the like.
  • the top view of the rotating brush portions B1, B2, and B3 may be other shapes such as a rectangle, an ellipse, and a polygon.
  • FIG. 2C shows a state in which the rotary brush B2 is inclined by an angle ⁇ around the tilt axis ⁇ 2, and a state in which a high friction region HF2 is generated between the floor surface and a part of the rotary brush B2. Show. Note that, even when the rotating brush B2 is tilted, at least most of the bottom surface of the rotating brush is in contact with the floor surface, and at least most of the bottom surface of the rotating brush polishes the floor. It shall be possible.
  • the driving units D1, D2, and D3 are members for individually rotating or tilting the rotating brushes B1, B2, and B3.
  • the rotating motor, the tilting motor, the rotating shaft, the tilting shaft, and the rotational force of the rotating motor are used.
  • a gear mechanism that transmits to the rotating shaft and a gear mechanism that transmits the rotational force of the tilting motor to the tilting shaft (details will be described later).
  • the frame FR is a member that couples the three rotary brushes B1, B2, and B3 via the three drive units D1, D2, and D3 while maintaining the relative positions between the three rotary brushes B1, B2, and B3.
  • each of the three frame arms has a three-pronged shape composed of three frame arms having the same length extending outward (radially) at an angle of 120 degrees from the center.
  • the driving units D1, D2, and D3 are coupled to the end portions of the two.
  • the angle between each of the three frame arms may be an angle other than 120 degrees (that is, each may be a different angle), and the length of each of the three frame arms is Each may be different.
  • the tilt axes ⁇ 1, ⁇ 2, and ⁇ 3 extend in a direction orthogonal to the extending direction of each of the three frame arms, but may extend in a direction other than the orthogonal direction.
  • the frame FR does not necessarily have a three-pronged shape, and may have an arbitrary shape such as a plate shape or a frame shape.
  • the control device CD is a member for controlling the movement of the cleaning device EQ, for example, a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc.
  • a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc.
  • the three rotating brushes B1, B2, B3 The rotation and inclination of each are controlled (details will be described later).
  • FIGS. 3 shows a perspective view of the drive unit D1 coupled to the rotary brush B1
  • FIG. 4 shows a side view of the drive unit D1
  • FIG. 5 shows a top view of the drive unit D1
  • FIG. 5 is a sectional view taken along line VI-VI in FIG.
  • the drive units D2 and D3 have the same configuration as that of the drive unit D1, and illustration thereof is omitted.
  • the drive unit D1 includes a rotation motor RM1 that rotationally drives a drive gear G12 that meshes with a driven gear G11 fixed to a rotation shaft SFT11 extending in the direction of the rotation axis ⁇ 1, and an inclined shaft. and an inclination motor TM1 that rotationally drives a drive gear G14 meshed with a driven gear G13 fixed to an inclination shaft SFT12 extending in the ⁇ 1 direction.
  • the inclined shaft SFT12 is composed of two coaxial shaft members SFT12-1 and SFT12-2 divided by the rotating shaft SFT11, and is arranged between the inclined shaft ⁇ 1 and the rotating brush B1. Although the distance is shortened, it may be composed of one shaft member.
  • the drive unit D1 uses a tilt mechanism composed of the tilt motor TM1, the tilt shaft SFT12, the driven gear G13, and the drive gear G14, and other actuators such as an electric cylinder, a pneumatic cylinder, a hydraulic cylinder, and a linear motor. You may make it comprise with the mechanism which was.
  • the drive unit D1 may drive the rotary shaft SFT11 and the inclined shaft SFT12 via another transmission mechanism such as a belt pulley mechanism or a wire pulley mechanism without using a gear mechanism.
  • An actuator may be directly connected to the shaft SFT12 for driving.
  • FIG. 7 is a functional block diagram of the cleaning device EQ, and the control device CD is connected to each of the drive units D1, D2, and D3 in a wired or wireless manner.
  • the control device CD includes a position detection device PS, an attitude detection device AS, and a storage device SD.
  • the program corresponding to the movement control unit MC is read from the ROM and expanded on the RAM, and the position detection device PS and the attitude detection device AS. Based on the detection value output from each and the information stored in the storage device SD, the CPU is caused to execute processing corresponding to the movement control unit MC.
  • the position detection device PS is a device for detecting the position of the cleaning device EQ. For example, the position (latitude, longitude, altitude) of the cleaning device EQ based on a GPS signal received by a GPS (Global Positioning System) receiver. Is detected.
  • GPS Global Positioning System
  • the position detection device PS may be an RF tag reader for reading position information stored in the RF tag from an RF tag embedded in a floor surface to be cleaned or a wall surface around the floor surface. It may be a laser sensor that detects the distance up to.
  • the posture detection device AS is a device for detecting the posture of the cleaning device EQ, and detects the posture of the cleaning device EQ based on the detection value of a triaxial angular velocity (gyro) sensor, for example.
  • a triaxial angular velocity (gyro) sensor for example.
  • the storage device SD is a device for storing various types of information.
  • the storage device SD is a non-volatile storage medium such as a hard disk or a flash memory
  • the cleaning map SD1 stores the shape and size of the floor surface to be cleaned.
  • the cleaning map SD1 is preferably information stored in advance in the storage device SD in accordance with the floor surface to be cleaned.
  • the cleaning device EQ automatically uses a laser sensor or the like before starting cleaning or during cleaning. May be generated.
  • the driving unit D1 includes a rotation motor RM1, a rotation detector RS1, an inclination motor TM1, and an inclination detector TS1. The same applies to the drive units D2 and D3.
  • the rotation detector RS1 is a device for detecting the rotation state (rotation direction, rotation angle, rotation speed, etc.) of the rotation brush B1 by the rotation motor RM1, and is an encoder, for example, and its detection value. Is repeatedly output to the control device CD at a predetermined sampling period as rotation state information.
  • the inclination detector TS1 is a device for detecting the state of inclination of the rotating brush B1 by the inclination motor TM1 (inclination direction, inclination angle, inclination speed, etc.), for example, an encoder, and its detection value. Are repeatedly output to the control device CD at a predetermined sampling period as the tilt state information.
  • the movement control unit MC of the control device CD is a functional element for autonomously operating the cleaning device EQ, and includes the detection values of the position detection device PS and the posture detection device AS and the cleaning map SD1 read from the storage device SD. Based on this, the target rotation state and the target inclination state of each of the rotating brushes B1, B2, and B3 are determined, and a control signal including information on the determined target rotation state and the target inclination state is supplied to each of the driving units D1, D2, and D3. Output.
  • the movement control unit MC receives the rotation state information and the inclination state information of the rotating brushes B1, B2, and B3 output from the driving units D1, D2, and D3, respectively, at a predetermined sampling period, and rotates the rotating brush B1,
  • Each of the rotating brushes B1, B2, and B3 is independently feedback controlled so that each of B2 and B3 is in the target rotation state and the target inclination state.
  • FIG. 8 is a diagram illustrating an example of movement of the cleaning device EQ by the movement control unit MC.
  • FIG. 8A illustrates a state when the cleaning device EQ is moved upward in the drawing, and FIG. These show the state at the time of moving the cleaning apparatus EQ to the left of a figure.
  • Each of the rotating brushes B1, B2, B3 has a common diameter, and is disposed at an equal distance in a direction separated from the center of the cleaning device EQ by an angle of 120 degrees, and each of the inclined axes ⁇ 1, ⁇ 2, ⁇ 3. Form an equilateral triangle in a top view.
  • the movement control unit MC is configured to rotate the rotation brushes B1, B2, While the target rotation states (rotation speed and rotation direction) of B3 are the same, the target inclination angle of the rotary brush B1 is set to 0 degree (the angle at which the bottom surface of the rotary brush B1 is horizontal to the floor surface), and the rotary brush
  • the target inclination angle of B2 is a predetermined positive value
  • the target inclination angle of the rotating brush B3 is a predetermined negative value having the same absolute value as the predetermined positive value.
  • the inclination angle is a positive value when the bottom surface of each of the rotating brushes B1, B2, and B3 is increased on the inner side (center side) of the cleaning device EQ, and the inclination angle is increased when the respective bottom surface is increased on the outer side of the cleaning device EQ. Negative value.
  • the movement control unit MC outputs a control signal to the drive unit D1, and rotates the rotary brush B1 counterclockwise around the rotation axis ⁇ 1 at a predetermined rotation speed while rotating the rotary brush B1 to the tilt axis. Do not tilt around ⁇ 1. As a result, the rotary brush B1 tries to continue cleaning the floor surface while remaining in place without generating a propulsive force in any direction.
  • the movement control unit MC outputs a control signal to the drive unit D2, and rotates the rotating brush B2 around the rotation axis ⁇ 2 at a predetermined rotational speed in a counterclockwise direction, while rotating the rotating brush B2 to the tilt axis ⁇ 2. Is inclined so that its bottom surface is raised inside the cleaning device EQ.
  • the rotary brush B2 forms a high friction region HF2 (see FIG. 2C) between a part of the outer side of the rotary brush B2 and the floor surface, and the rotation direction (counterclockwise) is at the high friction region HF2.
  • Propulsive force F2 along the direction of the tilt axis ⁇ 2 (towards the upper left in the figure) is generated by locally generating a friction reaction force in the opposite direction (clockwise) to the rotation direction.
  • the movement control unit MC outputs a control signal to the drive unit D3, and rotates the rotating brush B3 around the rotation axis ⁇ 3 at a predetermined rotation speed in a counterclockwise direction, while rotating the rotating brush B3 with the tilt axis.
  • the bottom surface of ⁇ 3 is inclined so as to be higher outside the cleaning device EQ.
  • the rotary brush B3 forms a high friction region HF3 between a part of the inner side of the rotary brush B3 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) at the high friction region HF3. Is generated locally to generate a propulsive force F3 along the direction of the tilt axis ⁇ 3 (pointing to the upper right in the figure).
  • the cleaning device EQ has a rotating brush as viewed from the center of the cleaning device EQ by a propulsive resultant force TF that is a resultant force of the propulsive force F2 generated by the rotating brush B2 and the propelling force F3 generated by the rotating brush B3. It will move in the same direction as B1 exists.
  • the movement control unit MC is driven by the drive unit D1.
  • a control signal is output to the rotating brush B1 while rotating the rotating brush B1 counterclockwise around the rotation axis ⁇ 1 at a predetermined rotation speed, and the bottom surface of the rotating brush B1 around the inclined axis ⁇ 1 is outside the cleaning device EQ. Try to tilt it so that it gets higher.
  • the rotary brush B1 forms a high friction region HF1 between a part of the inside of the rotary brush B1 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) in the high friction region HF1. Is generated locally to generate a propulsive force F1 along the direction of the tilt axis ⁇ 1 (toward the left in the figure).
  • the movement control unit MC outputs a control signal to the driving unit D2, and rotates the rotating brush B2 around the rotation axis ⁇ 2 counterclockwise at a predetermined rotation speed while rotating the rotating brush B2 with the tilt axis.
  • the bottom surface of ⁇ 2 is inclined so as to be higher inside the cleaning device EQ.
  • the rotary brush B2 forms a high friction region HF2 between a part of the outer side of the rotary brush B2 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) at the high friction region HF2.
  • the inclination angle of the rotary brush B2 is set to about half of the inclination angle of the rotary brush B1
  • the propulsive force F2 is set to about half of the propulsive force F1.
  • the movement control unit MC outputs a control signal to the drive unit D3, and rotates the rotating brush B3 around the rotation axis ⁇ 3 at a predetermined rotation speed in a counterclockwise direction, while rotating the rotating brush B3 with the tilt axis.
  • the bottom surface of ⁇ 3 is inclined so as to be higher inside the cleaning device EQ.
  • the rotating brush B3 forms a high friction region HF3 between a part of the outer side of the rotating brush B3 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) at the high friction region HF3.
  • the inclination angle of the rotary brush B3 is set to about half of the inclination angle of the rotary brush B1
  • the propulsive force F3 is set to about half of the propulsive force F1.
  • the cleaning device EQ has a thrust resultant force TF that is a resultant force of the thrust F1 generated by the rotating brush B1, the thrust F2 generated by the rotating brush B2, and the thrust F3 generated by the rotating brush B3.
  • the movement is in a direction (left direction) perpendicular to the direction in which the rotary brush B1 exists.
  • the cleaning device EQ can improve the installation stability compared to the configuration including two rotary brushes by the configuration in which the positions of the three rotary brushes B1, B2, and B3 form a triangle, A fall can be prevented when receiving external force.
  • the cleaning apparatus EQ improves the installation stability by the configuration in which the positions of the three rotary brushes B1, B2, and B3 form a triangle, the manufacturing tolerance and the assembly tolerance thereof are compared with the configuration having four rotary brushes. Can be relaxed. This is because high-precision component processing and high-precision assembly are required to ensure that all four rotating brushes are securely installed on the floor without floating from the floor.
  • the present invention does not exclude a configuration including four or more rotating brushes.
  • the cleaning device EQ performs cleaning while appropriately setting the diameters and relative positions of the three rotating brushes B1, B2, and B3 so that the three rotating brushes B1, B2, and B3 are not in contact with each other.
  • the device EQ can be arranged so that there is no gap when viewed from the side when viewed from the direction of movement of the apparatus EQ, and it is possible to prevent the occurrence of unpolished portions between the polished areas regardless of the direction of movement. be able to.
  • the cleaning device EQ can be moved in any direction by including one rotation motor and one inclination motor in each of the drive units D1, D2, and D3 (by providing a total of six drive shafts). Therefore, it has two rotating brushes using a gimbal mechanism (mechanism with one rotary motor and two tilt motors in each drive unit) (compared with a total of six drive shafts) compared to a conventional cleaning device However, the number of drive shafts is not increased.
  • FIG. 9 is a schematic view of the cleaning device EQ1
  • FIG. 9A shows a top view thereof
  • FIG. 9B shows a side view seen from the direction of the arrow 9B in FIG. 9A.
  • the cleaning device EQ1 is different from the above-described cleaning device EQ in that it includes a stair climbing auxiliary mechanism SLM, a rotating brush grounding auxiliary mechanism GSM, and a support polygon enlarging mechanism SMM, but is common in other points. Therefore, the difference will be described in detail while omitting the description of the common points.
  • the stair climbing auxiliary mechanism SLM is an auxiliary mechanism for allowing the cleaning device EQ1 to clean each step surface of the staircase while moving up and down the staircase.
  • the stair-climbing auxiliary mechanism SLM is coupled to the frame FR, and supports the auxiliary foot FT so that the auxiliary foot FT can be moved closer to or away from the frame FR.
  • the stair climbing auxiliary mechanism SLM is controlled by the control device CD.
  • the control device CD causes the cleaning device EQ1 to walk with the three rotary brushes B1, B2, B3 and the auxiliary foot FT while operating the stair-climbing auxiliary mechanism SLM to raise and lower the stairs.
  • the auxiliary foot FT is a member that forms a support polygon while being in contact with the floor surface.
  • the auxiliary foot FT has a horseshoe shape, and the two brushes B2 can be received between the two claws (extension portions).
  • the distance between the claws (extending portions) is configured to be larger than the diameter of the rotating brush B2, and the movable range in the direction of the rotating brush B2 is increased.
  • the auxiliary foot FT does not necessarily have a shape that can receive the rotary brush B2, but in that case, the movable range in the direction of the rotary brush B2 is further narrowed.
  • the “support polygon” is a convex polygon formed by a side in which a ground contact point group between the cleaning device EQ1 and the floor surface is formed in a convex shape, and includes a curve.
  • FIG. 10 is an explanatory diagram of a support polygon.
  • FIG. 10A shows a support polygon (shaded hatching area) formed by the auxiliary feet FT (broken line area), and
  • FIG. 10 shows a support polygon formed by the foot FT and one additional ground contact point AP1 (a point extending from the cleaning device EQ1 where another member other than the auxiliary foot FT contacts the floor).
  • (C) shows a support polygon formed by the auxiliary foot FT and two additional contact points AP2 and AP3.
  • the supporting polygon formed by the auxiliary foot FT extends to the supporting polygon including the additional grounding point.
  • the area will be enlarged. If the additional grounding point is not on the plane on which the supporting polygon formed by the auxiliary foot FT is located, the supporting polygon including the additional grounding point will be referred to as the additional grounding point. It corresponds to a support polygon formed by a point projected on a plane (a point connecting a straight line connecting the center of gravity of the cleaning device EQ1 and its additional grounding point and the plane) and the auxiliary foot FT.
  • auxiliary foot FT may have another shape such as a U-shape, a C-shape, an H-shape, an E-shape, etc. as a shape that can receive the rotating brush in the support polygon. .
  • the turning drive unit RD1 is a drive unit for turning the auxiliary foot FT with respect to the link member LK1, and includes, for example, an electric motor and a gear.
  • the turning drive unit RD2 is a drive unit for turning the link member LK1 with respect to the link member LK2
  • the turning drive unit RD3 is a drive unit for turning the link member LK2 with respect to the frame FR. is there.
  • the stair climbing auxiliary mechanism SLM forms a three-degree-of-freedom drive mechanism by the three turning drive units RD1, RD2, and RD3.
  • the stair-climbing auxiliary mechanism SLM may be configured by a mechanism using other actuators such as an electric cylinder, a pneumatic cylinder, a hydraulic cylinder, and a linear motor.
  • the stair-climbing auxiliary mechanism SLM turns the auxiliary foot FT, the link member LK1, or the link member LK2 via another transmission mechanism such as a belt pulley mechanism or a wire pulley mechanism without using a gear mechanism.
  • the actuator may be directly connected to the auxiliary foot FT, the link member LK1, or the link member LK2 to be turned.
  • FIG. 11 to 13 are diagrams for explaining details of an example of the stair-climbing auxiliary mechanism SLM.
  • FIG. 11 is a perspective view of the stair-climbing auxiliary mechanism SLM, and FIG. A side view of the mechanism SLM is shown, and FIG. 13 is a top view of the stair-climbing auxiliary mechanism SLM.
  • the turning drive unit RD1 (see FIG. 12) of the stair-climbing auxiliary mechanism SLM is driven by the driven gear G15 fixed to the auxiliary foot FT and the driven gear G15.
  • the gear G16 and the turning motor AM1 fixed to the link member LK1 that rotationally drives the drive gear G16.
  • the turning drive unit RD2 includes a driven gear G17 fixed to the link member LK1, a drive gear G18 meshed with the driven gear G17, and a turning motor AM2 fixed to the link member LK2 that rotationally drives the drive gear G18. It consists of.
  • the turning drive unit RD3 is fixed to a frame FR that rotates and drives a driven gear G19 fixed to the link member LK2, a drive gear (not shown) engaged with the driven gear G19, and the drive gear. And a turning motor (not shown).
  • the rotating brush grounding auxiliary mechanism GSM (see FIG. 9A) is a mechanism for making the bottom surface of the rotating brush parallel to the floor surface when the frame FR of the cleaning device EQ1 is inclined with respect to the floor surface.
  • the rotating brush whose rotational axis is not orthogonal to the traveling direction (the rotating brush in FIG. 9) B1 and B3) are passive rotating shafts.
  • FIG. 14 is a perspective view showing an example of the rotating brush grounding assist mechanism GSM.
  • the rotating brush grounding assisting mechanism GSM is a rotating brush grounding assisting mechanism for the rotating brush B1, and the driving for the rotating brush B1.
  • This is a passive rotating shaft that rotates around the longitudinal axis ⁇ 1 of the frame arm connected to the portion D1, and has a rotating portion RP and a non-rotating portion NRP.
  • the rotating part RP of the rotating brush grounding auxiliary mechanism GSM is such that the frame FR is lifted by the stair climbing auxiliary mechanism SLM and the rotating brush B1 floats in the air, and then the frame FR is lowered and the rotating brush B1 contacts the floor again. In doing so, the reaction force received from the floor surface passively rotates with respect to the non-rotating portion NRP so that the bottom surface of the rotating brush B1 is parallel to the floor surface (step surface of the staircase).
  • the rotating brush grounding auxiliary mechanism GSM has a fixing mechanism (not shown) that fixes the rotating part RP to the non-rotating part NRP using electromagnetic force or the like, and the bottom surface of the rotating brush B1 is parallel to the floor surface. Be able to maintain the state
  • the rotating brush grounding auxiliary mechanism GSM may be a mechanism that actively rotates the rotating part RP with respect to the non-rotating part NRP by an electric actuator or the like.
  • the support polygon enlarging mechanism SMM (see FIG. 9A) is a mechanism for preventing the cleaning device EQ1 from toppling over when the rotating brush floating in the air is grounded.
  • SMM is a mechanism for preventing the cleaning device EQ1 from toppling over when the rotating brush floating in the air is grounded.
  • an L-shape extending from the frame FR is used.
  • a grounding roller GR that is rotatably attached to the tip of the stay member ST.
  • the grounding roller GR is positioned so that it slightly floats from the floor surface when the rotating brush B2 is in contact with the floor surface in an upright posture, and an arrow It is attached so as to be rotatable in the direction indicated by AR2 (details will be described later).
  • FIGS. 15A to 15F The movement of the stair climbing auxiliary mechanism SLM when the cleaning device EQ1 moves up and down the stairs is represented by the six states of FIGS. 15A to 15F.
  • FIG. 15 (F) When the cleaning device EQ1 moves up the stairs, FIG. It is assumed that the process proceeds in time series in the order of (A) to FIG. 15 (F). It is assumed that the movement of the stair climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning apparatus EQ1 descends the stairs.
  • each of FIGS. 15A to 15F is configured by a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ1 that moves up and down the stairs.
  • the rotating brushes B1 and B3 having the tilt axes ⁇ 1 and ⁇ 3 are once floated in the air and then grounded again.
  • the cleaning device EQ1 is in a state where the rotary brushes B1 and B3 and the auxiliary foot FT are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase.
  • the cleaning device EQ1 is configured so that the rotary brushes B1 and B3 are grounded at the first step of the staircase, and the rotary brush B2 is grounded at the second step of the staircase, and the turning drive unit RD2 , RD3 is driven to turn so that the auxiliary foot FT floats in the air.
  • the cleaning device EQ1 can clean the first step of the stairs with the rotating brushes B1 and B3 and the second step of the stairs with the rotating brush B2 by moving in the width direction of the stairs.
  • the cleaning device EQ1 further turns in a state where the rotary brushes B1 and B3 are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase.
  • the parts RD1, RD2, and RD3 are driven to turn so that the auxiliary foot FT is grounded at the second step of the stairs.
  • the cleaning device EQ1 drives the turning drive parts RD1, RD2, and RD3 to turn while the auxiliary foot FT is in contact with the second step of the staircase, and the main body part (for raising and lowering the staircase).
  • the portion other than the auxiliary mechanism SLM is raised by the height of one step in the posture shown in FIG. 15C (vertically moved upward (upward in the drawing)).
  • the cleaning device EQ1 keeps the auxiliary foot FT in contact with the second stage of the staircase and drives the turning drive parts RD1, RD2, and RD3 to turn and move the main body in the direction of travel (see FIG. 15E).
  • the tilting motor TM2 is rotated and the rotating brush B2 is tilted inward so that the grounding roller GR is grounded at the third stage of the staircase.
  • the cleaning device EQ1 has an acceleration within a predetermined range so that the ZMP (Zero (Moment Point) is maintained within the support polygon (see FIG. 10A) formed by the auxiliary foot FT. To move the main body horizontally.
  • ZMP Zero (Moment Point)
  • ZMP is a point where the resultant force of gravity and inertial force intersects the floor surface.
  • traveling reverse direction the more in the reverse direction to the traveling direction. Since the inertial force increases, the greater the acceleration, the more the ZMP position moves in the opposite direction of travel compared to when the acceleration is small.
  • the ZMP of the cleaning device EQ1 is at a stage where the horizontal movement distance of the main body portion is smaller, and the boundary of the supporting polygon on the traveling direction side (see the boundary line BL in FIG. 10A). .), The cleaning device EQ1 starts toppling.
  • the cleaning apparatus EQ1 can delay the deviation of the ZMP from the support polygon by the auxiliary foot FT by setting the acceleration of the main body to a value within a predetermined range (acceleration of the main body).
  • the ZMP can remain in the support polygon until the horizontal movement distance of the main body is greater than when the is small.
  • the cleaning device EQ1 decelerates the main body that moves horizontally in the traveling direction at a predetermined rate in order to ground the rotating brush B2 at the third stage of the staircase.
  • the support polygon enlarging mechanism SMM is a mechanism for enlarging the support polygon formed by the auxiliary feet FT.
  • the acceleration of a value within a predetermined range is set before the rotating brush B2 is grounded to the third step of the staircase. While the main body is moved horizontally in the traveling direction, the grounding roller GR is grounded at the third stage of the staircase, and the supporting polygon by the auxiliary foot FT is made by the grounding point of the grounding roller GR (see FIG. 10A). .) Is expanded to the support polygon (see FIG. 10B) including the grounding point of the grounding roller GR, and the ZMP of the cleaning device EQ1 that decelerates at a predetermined rate is included in the support polygon after the expansion. To prevent the cleaning device EQ1 from overturning.
  • the support polygon enlarging mechanism SMM causes the rotating brush B2 to come into contact with the third stage of the staircase before the rotating brush B2 (having a relatively high friction coefficient) contacts the ground (with a relatively low friction coefficient).
  • the frictional reaction force when B2 touches the third step of the staircase is suppressed, and the auxiliary foot located at the second step of the staircase is prevented from shifting backward (leftward in the figure) due to the frictional reaction force. Smooth grounding to the third stage of B2 stairs.
  • the cleaning device EQ1 is in a state where the rotating brushes B1 and B3 and the auxiliary foot FT are grounded at the second step of the staircase and the rotating brush B2 is grounded at the third step of the staircase. Except that the grounding position is one step higher, the state is the same as the state of FIG.
  • the cleaning device EQ1 can ascend the stairs so as to repeat the six states of FIG. 15 (A) to FIG. 15 (F).
  • the movement of the stair-climbing auxiliary mechanism SLM in FIG. 16 is represented by the six states of FIG. 16A to FIG. 16F as in FIG. 15, and when the cleaning device EQ1 ascends the stairs, FIG. It is assumed that the processing proceeds in time series in the order of (A) to FIG. 16 (F). It is assumed that the movement of the stair climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning apparatus EQ1 descends the stairs.
  • each of FIGS. 16A to 16F is configured by a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ1 that moves up and down the stairs.
  • the rotating brushes B1 and B3 having the tilt axes ⁇ 1 and ⁇ 3 are once floated in the air and then grounded again.
  • the cleaning device EQ1 grounds the rotating brushes B1, B3 and the auxiliary foot FT at the first step of the staircase, and the rotating brush B2 at the second step of the staircase, as in the state of FIG. 15 (A). Is grounded.
  • the cleaning device EQ1 rotates the turning drive units RD2 and RD3 while keeping the auxiliary foot FT in contact with the first step of the staircase, so that the main body (the stair climbing auxiliary mechanism SLM) is driven. 16) is raised by the height of one step of the stairs while keeping the posture shown in FIG. 16A (moving vertically upward (upward in the figure)).
  • the cleaning device EQ1 drives the turning drive parts RD1, RD2, and RD3 to turn in a traveling direction (FIG.
  • the ground roller GR is grounded at the third step of the stairs.
  • the cleaning device EQ1 is in a state where the rotary brushes B1 and B3 are grounded at the second stage of the staircase and the rotary brush B2 is grounded at the third stage of the staircase.
  • the cleaning device EQ1 is configured so that the rotary brushes B1 and B3 are grounded at the second stage of the staircase, and the rotary brush B2 is grounded at the third stage of the staircase.
  • RD2 and RD3 are swiveled to make the auxiliary foot FT float in the air.
  • the cleaning device EQ1 further turns in a state where the rotary brushes B1 and B3 are grounded at the second stage of the staircase and the rotary brush B2 is grounded at the third stage of the staircase.
  • the driving units RD1, RD2, and RD3 are driven to turn, and the second leg of the staircase can be grounded while the auxiliary foot FT is suspended in the air.
  • the cleaning device EQ1 can clean the second step of the staircase by the rotating brushes B1 and B3 and the third step of the staircase by the rotating brush B2 by moving in the width direction of the staircase.
  • the cleaning device EQ1 can be brought into the same state as the state of FIG. 16A except that the ground contact position is raised by one step by grounding the auxiliary foot FT at the second step of the staircase. .
  • the cleaning device EQ1 can ascend the stairs so as to repeat the six states of FIG. 16 (A) to FIG. 16 (F).
  • the cleaning device EQ1 can clean each step surface of the stairs in addition to cleaning a flat surface without a step by the stair climbing auxiliary mechanism SLM.
  • the cleaning device EQ1 is configured so that the bottom surfaces of the rotating brushes B1, B2, and B3 are parallel to the step surfaces of the staircase even when the main body portion is inclined with respect to the horizontal plane when the staircase is moved up and down by the rotating brush grounding auxiliary mechanism GSM.
  • the rotating brushes B1, B2, and B3 can be grounded in an upright posture on each step surface of the staircase.
  • the cleaning device EQ1 can keep the ZMP in the support polygon even when the stairs are raised and lowered by the support polygon expanding mechanism SMM, and can prevent the fall when the stairs are raised and lowered.
  • the cleaning device EQ1 drives the turning drive units RD1, RD2, and RD3 to rotate, vertically moves the main body, and then horizontally moves the main body.
  • the cleaning device EQ1 may execute the vertical movement and the horizontal movement of the main body at the same time. That is, the cleaning device EQ1 may move the main body portion obliquely upward so as to move away from the auxiliary foot FT. The same is true when the cleaning device EQ1 goes down the stairs.
  • FIG. 17 is a schematic diagram of the cleaning device EQ2, FIG. 17 (A) shows a top view thereof, and FIG. 17 (B) shows a side view seen from the direction of the arrow 16B in FIG. 17 (A).
  • the cleaning device EQ2 is different from the above-described cleaning device EQ1 in that it includes an active balancer mechanism AB and omits the support polygon enlarging mechanism SMM, but is common in other points. Therefore, the difference will be described in detail while omitting the description of the common points.
  • the active balancer mechanism AB is a mechanism for adjusting the position of the center of gravity GC of the cleaning device EQ2.
  • the weight WT is moved along the balancer rail BR by a ball screw mechanism or the like (not shown) using an electric motor. (See arrow AR3.)
  • the position of the center of gravity GC of the cleaning device EQ2 is moved to a desired position.
  • the above-described cleaning device EQ1 delays the ZMP from deviating from the support polygon formed by the auxiliary foot FT by horizontally moving the main body portion in the traveling direction at an acceleration within a predetermined range.
  • the cleaning device EQ2 uses the active balancer mechanism AB, the floor of the center of gravity GC is formed in the support polygon formed by the auxiliary foot FT regardless of the horizontal movement speed of the main body in the traveling direction. The surface projection point is kept to prevent falling.
  • FIGS. 18A to 18F The movement of the stair lift assist mechanism SLM when the cleaning device EQ2 moves up and down the stairs is represented by the six states of FIGS. 18A to 18F.
  • FIG. It is assumed that the processing proceeds in time series in the order of (A) to FIG. 18 (F). It is assumed that the movement of the stair climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning device EQ2 descends the stairs.
  • FIGS. 18A to 18F includes a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ2 that moves up and down the stairs, as in FIGS. Shall be.
  • the rotating brushes B1 and B3 having the tilt axes ⁇ 1 and ⁇ 3 are floated once in the air and then grounded again.
  • the cleaning device EQ2 is in a state where the rotary brushes B1 and B3 and the auxiliary foot FT are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase.
  • the cleaning device EQ2 is configured so that the rotary brushes B1 and B3 are grounded at the first stage of the staircase, and the rotary brush B2 is grounded at the second stage of the staircase. , RD3 is driven to turn so that the auxiliary foot FT floats in the air.
  • the cleaning device EQ2 can clean the first step of the staircase by the rotating brushes B1 and B3 and the second step of the staircase by the rotating brush B2 by moving in the width direction of the staircase.
  • the cleaning device EQ2 is further driven to turn while the rotary brushes B1 and B3 are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase.
  • the parts RD1, RD2, and RD3 are driven to turn so that the auxiliary foot FT is grounded at the second step of the stairs.
  • the cleaning device EQ2 uses the active balancer mechanism AB to move the weight WT along the balancer rail BR in the traveling direction (right direction in the figure) and move the position of the center of gravity GC in the traveling direction. This is because the position of the center of gravity GC is within the support polygon formed by the auxiliary foot FT in a top view.
  • the cleaning device EQ2 drives the turning drive units RD1, RD2, and RD3 while keeping the auxiliary foot FT in contact with the second step of the staircase, thereby turning the main body (for raising and lowering the staircase).
  • the portion other than the auxiliary mechanism SLM is raised by the height of one step in the posture shown in FIG. 18C (vertically moved upward (upward in the drawing)).
  • the cleaning device EQ2 keeps the auxiliary foot FT in contact with the second step of the staircase and drives the turning drive portions RD1, RD2, and RD3 to turn the main body portion in the traveling direction. Move.
  • the cleaning device EQ2 uses the active balancer mechanism AB to move the weight, which has been moved in the traveling direction, in the traveling reverse direction according to the degree of progress of the horizontal movement, and the position of the center of gravity GC is the auxiliary foot in top view. Stay within the FT support polygon.
  • the cleaning device EQ2 is in a state where the rotary brushes B1 and B3 and the auxiliary foot FT are grounded at the second step of the staircase, and the rotary brush B2 is grounded at the third step of the staircase. Except that the grounding position is one step higher, the state is the same as the state of FIG.
  • the cleaning device EQ2 can ascend the stairs so as to repeat the six states of FIG. 18 (A) to FIG. 18 (F).
  • the stair climbing method in FIG. 19 is mainly in that rotating brushes B1 and B3 are arranged in front of the traveling direction (upper stage side of the staircase), and rotating brush B2 is arranged rearward in the traveling direction (lower stage side of the staircase). This is different from the stair climbing method in FIG.
  • the movement of the stair-climbing auxiliary mechanism SLM in FIG. 19 is represented by the six states of FIGS. 19A to 19F as in FIG. 18, and when the cleaning device EQ2 moves up the stairs, FIG. It is assumed that the process proceeds in time series in the order of (A) to FIG. 19 (F). Note that the movement of the stair-climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning device EQ2 goes down the stairs, when going up the stairs.
  • each of FIGS. 19A to 19F is configured by a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ2 that moves up and down the stairs.
  • the rotating brushes B1 and B3 having the tilt axes ⁇ 1 and ⁇ 3 are once floated in the air and then grounded again.
  • the cleaning device EQ2 is in a state where the rotary brush B2 and the auxiliary foot FT are grounded at the first stage of the stairs and the rotary brushes B1 and B3 are grounded at the second stage of the stairs.
  • the cleaning device EQ2 is configured so that the rotary brush B2 is grounded at the first step of the staircase, and the rotary brushes B1 and B3 are grounded at the second step of the staircase. , RD2 and RD3 are driven to turn so that the auxiliary foot FT floats in the air.
  • the cleaning device EQ2 can clean the first step of the stairs with the rotating brush B2 and the second step of the stairs with the rotating brushes B1 and B3 by moving in the width direction of the stairs.
  • the cleaning device EQ2 is further driven to turn while the rotary brush B2 is grounded at the first step of the staircase and the rotary brushes B1 and B3 are grounded at the second step of the staircase.
  • the parts RD1, RD2, and RD3 are driven to turn so that the auxiliary foot FT is grounded at the second step of the stairs.
  • the cleaning device EQ2 uses the active balancer mechanism AB to move the weight WT along the balancer rail BR in the traveling direction (right direction in the figure) and move the position of the center of gravity GC in the traveling direction. This is because the position of the center of gravity GC is within the support polygon formed by the auxiliary foot FT in a top view.
  • the cleaning device EQ2 rotates the turning drive units RD1, RD2, and RD3 while keeping the auxiliary foot FT in contact with the second step of the staircase, and the main body portion (for raising and lowering the staircase).
  • the portion other than the auxiliary mechanism SLM) is raised by the height of one step in the posture shown in FIG. 19C (vertically moved upward (upward in the drawing)).
  • the cleaning device EQ2 keeps the auxiliary foot FT in contact with the second step of the staircase and drives the turning drive portions RD1, RD2, and RD3 to turn the main body portion in the traveling direction. Move.
  • the cleaning device EQ2 uses the active balancer mechanism AB to move the weight, which has been moved in the traveling direction, in the traveling reverse direction according to the degree of progress of the horizontal movement, and the position of the center of gravity GC is the auxiliary foot in top view. Stay within the FT support polygon.
  • the cleaning device EQ2 is in a state where the rotating brush B2 and the auxiliary foot FT are grounded at the second stage of the staircase, and the rotating brushes B1 and B3 are grounded at the third stage of the staircase. Except that the grounding position is one step higher, the state is the same as the state of FIG.
  • the cleaning device EQ2 can ascend the stairs so as to repeat the six states of FIG. 19 (A) to FIG. 19 (F).
  • the cleaning device EQ2 can keep the floor projection point of the center of gravity GC within the support polygon by the auxiliary foot FT even when the stairs are raised and lowered by the active balancer mechanism AB. Falling can be prevented.
  • the cleaning device EQ2 drives the turning drive units RD1, RD2, and RD3 to turn, vertically moves the main body, and then horizontally moves the main body.
  • the cleaning device EQ2 may execute the vertical movement and the horizontal movement of the main body at the same time. That is, the cleaning device EQ2 may move the main body portion obliquely upward so as to move away from the auxiliary foot FT. The same is true when the cleaning device EQ2 goes down the stairs.
  • FIG. 20 is a schematic view of the cleaning device EQ3
  • FIG. 20 (A) shows a top view thereof
  • FIG. 20 (B) shows a side view seen from the direction of the arrow 20B in FIG. 20 (A)
  • FIG. 20C shows a side view seen from the direction of the arrow 20C in FIG.
  • the cleaning device EQ3 is different from the cleaning device EQ1 in that it includes one rotating brush B4 instead of the three rotating brushes B1, B2, and B3, but is common in other points. Therefore, the difference will be described in detail while omitting the description of the common points.
  • the ring-shaped frame FR3 is coupled around the drive unit D4 of the rotating brush B4, and supports the rotating brush B4 so as not to tilt.
  • the frame FR3 is supported by a support body constituted by two drive wheels RL-1 and RL-3 and two driven wheels RL-2 and RL-4 via four support body attachment portions SP. Supported on the floor.
  • four support wheels are arranged in order at equal intervals (90-degree intervals) on the circumference of a circle around the rotation axis of the rotation brush B4 around the rotation brush B4. -1, driven wheel RL-2, driving wheel RL-3, and driven wheel RL-4.
  • the driving wheels RL-1 and RL-3 are arranged symmetrically with the rotating shaft of the rotating brush B4 interposed therebetween, and are driven to rotate independently by individual rotating motors (not shown).
  • the driven wheels RL-2 and RL-4 are casters arranged symmetrically with the rotation shaft of the rotating brush B4 interposed therebetween, and change the direction according to the moving direction or the rotating direction of the frame FR3 (cleaning device EQ3). It assists the movement of the frame FR3 (cleaning device EQ3) by the drive wheels RL-1 and RL-3, the super turning around the rotation axis, and the like.
  • the support constitutes a differential two-wheel mechanism that doubles as an anti-rotation mechanism and a movement mechanism, and enables non-holonomic omnidirectional movement.
  • the movement control unit MC of the control device CD receives the rotation state information output from each of the rotating brush B4 and the driving wheels RL-1 and RL-3, which are control targets, at a predetermined sampling period, and each of the control targets is a target.
  • Each of the controlled objects is independently feedback controlled so as to be in a rotating state.
  • the cleaning device EQ3 further includes a brush tilting mechanism, and the propulsive force by the rotating brush B4 can be used as a propulsive force that assists the propulsive force by the drive wheels RL-1 and RL-3.
  • the cleaning device EQ3 can also clean each step surface of the stairs in addition to cleaning the flat surface without steps by the stair climbing auxiliary mechanism SLM, similarly to the cleaning device EQ1.
  • the cleaning device EQ3 can hold the ZMP within the support polygon even when the stairs are raised and lowered by the support polygon enlarging mechanism SMM, and prevent the fall when the stairs are raised and lowered. Can do.
  • the cleaning device EQ3 may include an active balancer mechanism AB instead of the support polygon enlarging mechanism SMM.
  • the cleaning device EQ3 like the cleaning device EQ2, can keep the floor projection point of the center of gravity GC within the support polygon by the auxiliary foot FT by the active balancer mechanism AB even when the stairs are raised or lowered. It is possible to prevent a fall when the stairs are raised or lowered.
  • the tilt axes ⁇ 1, ⁇ 2, and ⁇ 3 form a regular triangle when viewed from the top, but if all of the tilt axes ⁇ 1, ⁇ 2, and ⁇ 3 are not parallel when viewed from the top, the regular triangle Other triangles may be formed.
  • the rotating brushes B1, B2, and B3 have a common diameter and rotate in a common direction at a common rotational speed, but may have different diameters and are different from each other. It may be one that rotates at a rotational speed, or one that rotates in either a clockwise or counterclockwise direction.
  • the movement controller MC determines the respective diameters, relative positions (for example, distances from the center of the cleaning device EQ), rotation speed, rotation direction, and the like of the rotation brushes B1, B2, and B3 and the tilt axes ⁇ 1, ⁇ 2, and ⁇ 3.
  • Information on the correspondence relationship between the propulsive forces acting in the respective directions of, or an arithmetic expression for deriving the propulsive force is stored in advance, and based on the information or the arithmetic expression, a desired propulsive resultant force ( A target rotation state and a target inclination state for realizing (movement in a desired direction) are derived.
  • the cleaning device EQ is described as autonomously determining the moving direction.
  • an operation unit for example, a cross cursor is provided
  • Controller may be determined manually by the operator, or the operator may determine the direction of movement by remote operation via a remote controller. .
  • the cleaning device EQ can rotate and tilt each of the three rotating brushes B1, B2, and B3, but two of the three rotating brushes B1, B2, and B3 can be rotated. It is good also as a structure which can be rotated and can be tilted and can only rotate the remaining one.
  • the stair climbing auxiliary mechanism SLM is mounted on the cleaning devices EQ1, EQ2 including the three rotating brushes B1, B2, B3, but includes two or four or more rotating brushes. 15 may be attached to the cleaning device.
  • the auxiliary foot leading type stair ascending / descending method as shown in FIG. 15 (the auxiliary foot FT on the upper step side of the two step surfaces where the rotating brush of the cleaning device contacts the ground)
  • the method of floating the main body of the cleaning device while grounding the device may be employed, and an auxiliary foot following type stair ascending / descending method as shown in FIG.
  • a method of floating the main body of the cleaning device while grounding the auxiliary foot FT on the lower side may be employed.
  • the stair climbing auxiliary mechanism SLM is described as assisting the stair lift of the cleaning devices EQ1, EQ2, EQ3, but the cleaning devices EQ1, EQ2, EQ3 straddle a groove or a step. You may make it assist.
  • the cleaning device EQ1 only includes the grounding roller GR for the rotating brush B2, but may include the grounding roller for the rotating brushes B1 and B3. This is to make the grounding of the rotating brushes B1 and B3 smoother.
  • the stair lifting / lowering auxiliary mechanism SLM operates so that the cleaning devices EQ1 and EQ2 can move up and down the stairs one step at a time, but the cleaning devices EQ1 and EQ2 operate so as to move up and down the stairs by two steps. You may do.
  • the stair lift assist mechanism SLM operates so that the cleaning devices EQ1, EQ2, EQ3 can move up and down a staircase having three or more step surfaces, but a staircase having only one step surface. Similarly, a staircase having two step surfaces can be raised and lowered.
  • the stair-climbing auxiliary mechanism SLM causes one of the three rotating brushes B1, B2, and B3 to be grounded to one of the two step surfaces, and the remaining two to be used. Operates so that the stairs can be raised and lowered while being grounded to the other of the two step surfaces, but the stairs can be raised and lowered step by step while all three rotating brushes B1, B2, and B3 are grounded to the same step surface. It may operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)
  • Manipulator (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

A cleaning device (EQ) is provided with: rotating brushes (B1, B2, B3); a frame (FR) for rotatably supporting the rotating brushes (B1, B2, B3); an auxiliary leg (FT); an auxiliary mechanism (SLM) for climbing up and down stairs, joined to the frame (FR) and supporting the auxiliary leg (FT) so that the auxiliary leg (FT) can be brought close to and separated from the frame (FR); and a control device (CD) for operating the auxiliary mechanism (SLM) for climbing up and down stairs, thereby causing the cleaning device (EQ) to walk using the rotating brushes (B1, B2, B3) and the auxiliary leg (FT).

Description

清掃装置Cleaning device
 本発明は、フレームに回転可能に接続されたブラシを有する清掃装置に関し、特に、段差や溝等のある場所を清掃できる清掃装置に関する。 The present invention relates to a cleaning device having a brush rotatably connected to a frame, and more particularly to a cleaning device capable of cleaning a place with a step or a groove.
 従来、ジンバル機構を介してロボット本体に取り付けられる二つの回転ブラシを備えた全方向移動床磨きロボットが知られている(例えば、非特許文献1参照。)。 Conventionally, an omnidirectional moving floor polishing robot having two rotating brushes attached to a robot body via a gimbal mechanism is known (for example, see Non-Patent Document 1).
 この床磨きロボットは、電動モータを用いてそれら二つの回転ブラシの回転方向とそれぞれの回転軸の床面に対する傾斜角とを制御し、その回転方向とその傾斜角とに応じて変化するそれら二つの回転ブラシと床面との間の回転摩擦力を利用することによって床面を磨きながら所望の方向に移動することができる。 This floor polishing robot uses an electric motor to control the rotation direction of the two rotating brushes and the inclination angle of the respective rotation shafts with respect to the floor surface, and to change these two directions according to the rotation direction and the inclination angle. By using the rotational friction force between the two rotating brushes and the floor surface, it is possible to move in a desired direction while polishing the floor surface.
 しかしながら、非特許文献1の床磨きロボットは、段差や溝等のない平面しか清掃できないという問題がある。 However, the floor polishing robot of Non-Patent Document 1 has a problem that it can clean only a flat surface without a step or a groove.
 上述の問題に鑑み、本発明は、段差や溝等のある場所を清掃できる清掃装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a cleaning device capable of cleaning a place with a step or a groove.
 上述の目的を達成するために、本発明の実施例に係る清掃装置は、ブラシと、前記ブラシを回転可能に支持するフレームと、補助足と、前記フレームに結合され、前記補助足を前記フレームに近づけ或いは前記フレームから遠ざけることができるように前記補助足を支持する機構と、前記機構を動作させて前記ブラシと前記補助足とで清掃装置を歩行させる制御装置と、を備えることを特徴とする。 In order to achieve the above object, a cleaning device according to an embodiment of the present invention includes a brush, a frame that rotatably supports the brush, an auxiliary foot, and the frame, and the auxiliary foot is attached to the frame. A mechanism for supporting the auxiliary foot so as to be close to or away from the frame, and a control device for operating the mechanism to cause the cleaning device to walk with the brush and the auxiliary foot. To do.
 上述の手段により、本発明は、段差や溝等のある場所を清掃できる清掃装置を提供することができる。 By the above-mentioned means, the present invention can provide a cleaning device that can clean a place with a step or a groove.
本発明の実施例に係る清掃装置の概略図である。It is the schematic of the cleaning apparatus which concerns on the Example of this invention. 図1の清掃装置を異なる角度から見た図である。It is the figure which looked at the cleaning apparatus of FIG. 1 from a different angle. 回転ブラシに結合される駆動部の斜視図である。It is a perspective view of the drive part couple | bonded with a rotating brush. 図3の駆動部の側面図である。It is a side view of the drive part of FIG. 図3の駆動部の上面図である。FIG. 4 is a top view of the drive unit in FIG. 3. 図5におけるVI-VI線断面図である。FIG. 6 is a sectional view taken along line VI-VI in FIG. 5. 図1の清掃装置の機能ブロック図である。It is a functional block diagram of the cleaning apparatus of FIG. 移動制御部による清掃装置の移動の例を示す図である。It is a figure which shows the example of a movement of the cleaning apparatus by a movement control part. 本発明の実施例に係る階段昇降用補助機構を備えた清掃装置の概略図である。It is the schematic of the cleaning apparatus provided with the auxiliary | assistant mechanism for stair climbing which concerns on the Example of this invention. 支持多角形の説明図である。It is explanatory drawing of a support polygon. 階段昇降用補助機構の斜視図である。It is a perspective view of the auxiliary mechanism for raising and lowering stairs. 図11の階段昇降用補助機構の側面図である。It is a side view of the auxiliary mechanism for raising / lowering stairs of FIG. 図11の階段昇降用補助機構の上面図である。FIG. 12 is a top view of the stair-climbing auxiliary mechanism in FIG. 11. 回転ブラシ接地補助機構の斜視図である。It is a perspective view of a rotating brush grounding auxiliary mechanism. 図9の清掃装置の階段昇降方法を説明するための図である。It is a figure for demonstrating the stair-lifting method of the cleaning apparatus of FIG. 図9の清掃装置の階段昇降方法を説明するための図である。It is a figure for demonstrating the stair-lifting method of the cleaning apparatus of FIG. 本発明の実施例に係るアクティブバランサ機構を備えた清掃装置の概略図である。It is the schematic of the cleaning apparatus provided with the active balancer mechanism which concerns on the Example of this invention. 図17の清掃装置の階段昇降方法を説明するための図である。It is a figure for demonstrating the stair raising / lowering method of the cleaning apparatus of FIG. 図17の清掃装置の階段昇降方法を説明するための図である。It is a figure for demonstrating the stair raising / lowering method of the cleaning apparatus of FIG. 本発明の実施例に係る階段昇降用補助機構を備えた清掃装置の概略図である。It is the schematic of the cleaning apparatus provided with the auxiliary | assistant mechanism for stair climbing which concerns on the Example of this invention.
 以下、図面を参照しつつ、本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例に係る清掃装置の概略図であり、図1(A)は、上面図を示し、図1(B)は、図1(A)の矢印1B方向から見た側面図を示す。 FIG. 1 is a schematic view of a cleaning device according to an embodiment of the present invention, FIG. 1 (A) shows a top view, and FIG. 1 (B) is seen from the direction of arrow 1B in FIG. 1 (A). A side view is shown.
 また、図2は、図1の清掃装置を異なる角度から見た図であり、図2(A)は、上面図を示し、図2(B)は、図2(A)の矢印2B方向から見た側面図を示し、図2(C)は、図2(B)に対応する図であって、回転ブラシの一つを床面に対して傾斜させた状態を示す。 2 is a view of the cleaning device of FIG. 1 as seen from a different angle, FIG. 2 (A) shows a top view, and FIG. 2 (B) shows from the direction of arrow 2B in FIG. 2 (A). FIG. 2C is a view corresponding to FIG. 2B and shows a state in which one of the rotating brushes is inclined with respect to the floor surface.
 清掃装置EQは、三つの回転ブラシ(ポリッシャ)で床を磨きながらそれら三つの回転ブラシで任意の方向に移動可能な装置であって、主に、三つの回転ブラシB1、B2、B3と、三つの駆動部D1、D2、D3と、フレームFRと、制御装置CDとを有する。 The cleaning device EQ is a device that can move in any direction with these three rotating brushes while polishing the floor with three rotating brushes (polishers), and mainly includes three rotating brushes B1, B2, B3, It has two drive units D1, D2, D3, a frame FR, and a control device CD.
 また、清掃装置EQは、フレームFRから延びるコードに取り付けられた操作部を用いて操作者が手動で操作するものであってもよく、無線通信を介して操作者が遠隔操作するものであってもよいが、本実施例では、制御装置CD等に予め記憶された清掃マップ(後述)に基づいて自律的に移動しながら床面の清掃を行うロボット型の清掃装置であるものとする。 The cleaning device EQ may be manually operated by an operator using an operation unit attached to a cord extending from the frame FR, or remotely operated by an operator via wireless communication. However, in this embodiment, it is assumed that the robot is a robot-type cleaning device that cleans the floor surface while moving autonomously based on a cleaning map (described later) stored in the control device CD or the like.
 回転ブラシB1、B2、B3は、上面視で円形であり、フレームFRに対して傾斜可能な回転軸η1、η2、η3の周りを回転し、回転軸η1、η2、η3に直交する傾斜軸ξ1、ξ2、ξ3の周りを傾斜させられる。 The rotary brushes B1, B2, and B3 are circular in top view, and rotate around the rotation axes η1, η2, and η3 that can be inclined with respect to the frame FR, and the inclination axes ξ1 that are orthogonal to the rotation axes η1, η2, and η3. , Ξ2, and ξ3.
 本実施例において、回転ブラシB1、B2、B3は、例えば、天然繊維、化学繊維、スポンジ、ゴム等で形成される。なお、回転ブラシ部B1、B2、B3の上面視は、矩形、楕円形、多角形等の他の形状であってもよい。 In the present embodiment, the rotating brushes B1, B2, and B3 are made of, for example, natural fiber, chemical fiber, sponge, rubber, or the like. The top view of the rotating brush portions B1, B2, and B3 may be other shapes such as a rectangle, an ellipse, and a polygon.
 図2(C)は、回転ブラシB2を傾斜軸ξ2の周りに角度θだけ傾斜させた状態を示し、床面と回転ブラシB2の一部との間に高摩擦領域HF2を発生させた状態を示す。なお、回転ブラシB2は、傾斜させられた場合であっても、少なくとも回転ブラシの底面の大部分が床面と接触しているものとし、少なくとも回転ブラシの底面の大部分で床を磨くことができるものとする。 FIG. 2C shows a state in which the rotary brush B2 is inclined by an angle θ around the tilt axis ξ2, and a state in which a high friction region HF2 is generated between the floor surface and a part of the rotary brush B2. Show. Note that, even when the rotating brush B2 is tilted, at least most of the bottom surface of the rotating brush is in contact with the floor surface, and at least most of the bottom surface of the rotating brush polishes the floor. It shall be possible.
 駆動部D1、D2、D3は、回転ブラシB1、B2、B3を個別に回転させ或いは傾斜させるための部材であり、例えば、回転モータ、傾斜モータ、回転シャフト、傾斜シャフト、回転モータの回転力を回転シャフトに伝えるギア機構、及び、傾斜モータの回転力を傾斜シャフトに伝えるギア機構等で構成される(詳細は後述。)。 The driving units D1, D2, and D3 are members for individually rotating or tilting the rotating brushes B1, B2, and B3. For example, the rotating motor, the tilting motor, the rotating shaft, the tilting shaft, and the rotational force of the rotating motor are used. A gear mechanism that transmits to the rotating shaft and a gear mechanism that transmits the rotational force of the tilting motor to the tilting shaft (details will be described later).
 フレームFRは、三つの回転ブラシB1、B2、B3のそれぞれの間の相対位置を維持しながら三つの駆動部D1、D2、D3を介してそれら三つの回転ブラシB1、B2、B3を結合する部材であり、例えば、中心からそれぞれ120度の角度を隔てて外方に(放射状に)延びる同じ長さの三つのフレームアームで構成される三つ叉形状を有し、それら三つのフレームアームのそれぞれの端部に駆動部D1、D2、D3が結合される。 The frame FR is a member that couples the three rotary brushes B1, B2, and B3 via the three drive units D1, D2, and D3 while maintaining the relative positions between the three rotary brushes B1, B2, and B3. For example, each of the three frame arms has a three-pronged shape composed of three frame arms having the same length extending outward (radially) at an angle of 120 degrees from the center. The driving units D1, D2, and D3 are coupled to the end portions of the two.
 なお、三つのフレームアームのそれぞれの間の角度は、120度以外の他の角度であってもよく(すなわち、それぞれ異なる角度であってもよく)、三つのフレームアームのそれぞれの長さは、それぞれ異なるものであってもよい。 The angle between each of the three frame arms may be an angle other than 120 degrees (that is, each may be a different angle), and the length of each of the three frame arms is Each may be different.
 また、本実施例において、傾斜軸ξ1、ξ2、ξ3は、三つのフレームアームのそれぞれの延在方向と直交する方向に延びるが、直交する方向以外の方向に延びるものであってもよい。なお、傾斜軸ξ1、ξ2、ξ3のうちの隣り合う二つの傾斜軸の間の角度は、それぞれ60度であることが望ましい。 In the present embodiment, the tilt axes ξ1, ξ2, and ξ3 extend in a direction orthogonal to the extending direction of each of the three frame arms, but may extend in a direction other than the orthogonal direction. In addition, it is desirable that the angle between two adjacent tilt axes among the tilt axes ξ1, ξ2, and ξ3 is 60 degrees.
 また、フレームFRは、必ずしも三つ叉形状である必要はなく、プレート形状や枠形状等の任意の形状を有していてもよい。 Further, the frame FR does not necessarily have a three-pronged shape, and may have an arbitrary shape such as a plate shape or a frame shape.
 制御装置CDは、清掃装置EQの移動を制御するための部材であり、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えたコンピュータであって、操作者の指示に応じた方向に清掃装置EQを進行させるために、或いは、各種情報に基づいて自動的に導き出した方向に清掃装置EQを進行させるために、三つの回転ブラシB1、B2、B3のそれぞれの回転及び傾斜を制御する(詳細は後述。)。 The control device CD is a member for controlling the movement of the cleaning device EQ, for example, a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), etc. In order to advance the cleaning device EQ in the direction according to the operator's instruction, or to advance the cleaning device EQ in the direction automatically derived based on various information, the three rotating brushes B1, B2, B3 The rotation and inclination of each are controlled (details will be described later).
 次に、図3~図6を参照しながら、駆動部D1、D2、D3の詳細について説明する。なお、図3は、回転ブラシB1に結合される駆動部D1の斜視図を示し、図4は、駆動部D1の側面図を示し、図5は、駆動部D1の上面図を示し、図6は、図5におけるVI-VI線断面図を示す。また、駆動部D2及びD3は、駆動部D1と同じ構成を採るものとして、その図示を省略する。 Next, details of the drive units D1, D2, and D3 will be described with reference to FIGS. 3 shows a perspective view of the drive unit D1 coupled to the rotary brush B1, FIG. 4 shows a side view of the drive unit D1, FIG. 5 shows a top view of the drive unit D1, and FIG. FIG. 5 is a sectional view taken along line VI-VI in FIG. Further, the drive units D2 and D3 have the same configuration as that of the drive unit D1, and illustration thereof is omitted.
 図3~図6で示されるように、駆動部D1は、回転軸η1方向に延びる回転シャフトSFT11に固定された従動ギアG11にかみ合わされる駆動ギアG12を回転駆動する回転モータRM1と、傾斜軸ξ1方向に延びる傾斜シャフトSFT12に固定された従動ギアG13にかみ合わされる駆動ギアG14を回転駆動する傾斜モータTM1とを備える。 As shown in FIGS. 3 to 6, the drive unit D1 includes a rotation motor RM1 that rotationally drives a drive gear G12 that meshes with a driven gear G11 fixed to a rotation shaft SFT11 extending in the direction of the rotation axis η1, and an inclined shaft. and an inclination motor TM1 that rotationally drives a drive gear G14 meshed with a driven gear G13 fixed to an inclination shaft SFT12 extending in the ξ1 direction.
 なお、傾斜シャフトSFT12は、図6で示されるように、回転シャフトSFT11によって分断された二つの同軸のシャフト部材SFT12-1、SFT12-2で構成され、傾斜軸ξ1と回転ブラシB1との間の距離を短縮するようにしているが、一つのシャフト部材で構成されていてもよい。 As shown in FIG. 6, the inclined shaft SFT12 is composed of two coaxial shaft members SFT12-1 and SFT12-2 divided by the rotating shaft SFT11, and is arranged between the inclined shaft ξ1 and the rotating brush B1. Although the distance is shortened, it may be composed of one shaft member.
 また、駆動部D1は、傾斜モータTM1、傾斜シャフトSFT12、従動ギアG13、及び駆動ギアG14で構成される傾斜機構を、電動シリンダ、空気圧シリンダ、液圧シリンダ、リニアモータ等の他のアクチュエータを用いた機構で構成するようにしてもよい。 In addition, the drive unit D1 uses a tilt mechanism composed of the tilt motor TM1, the tilt shaft SFT12, the driven gear G13, and the drive gear G14, and other actuators such as an electric cylinder, a pneumatic cylinder, a hydraulic cylinder, and a linear motor. You may make it comprise with the mechanism which was.
 また、駆動部D1は、ギア機構を用いることなく、ベルトプーリ機構又はワイヤプーリ機構等の他の伝達機構を介して回転シャフトSFT11や傾斜シャフトSFT12を駆動するようにしてもよく、回転シャフトSFT11や傾斜シャフトSFT12にアクチュエータを直結して駆動するようにしてもよい。 Further, the drive unit D1 may drive the rotary shaft SFT11 and the inclined shaft SFT12 via another transmission mechanism such as a belt pulley mechanism or a wire pulley mechanism without using a gear mechanism. An actuator may be directly connected to the shaft SFT12 for driving.
 次に、図7を参照しながら、制御装置CDの詳細について説明する。なお、図7は、清掃装置EQの機能ブロック図であり、制御装置CDは、駆動部D1、D2、D3のそれぞれに有線又は無線で接続されるものとする。 Next, details of the control device CD will be described with reference to FIG. FIG. 7 is a functional block diagram of the cleaning device EQ, and the control device CD is connected to each of the drive units D1, D2, and D3 in a wired or wireless manner.
 制御装置CDは、位置検出装置PS、姿勢検出装置AS、及び記憶装置SDを備え、移動制御部MCに対応するプログラムをROMから読み出してRAM上に展開し、位置検出装置PS及び姿勢検出装置ASのそれぞれが出力する検出値と記憶装置SDに記憶された情報とに基づいて、移動制御部MCに対応する処理をCPUに実行させる。 The control device CD includes a position detection device PS, an attitude detection device AS, and a storage device SD. The program corresponding to the movement control unit MC is read from the ROM and expanded on the RAM, and the position detection device PS and the attitude detection device AS. Based on the detection value output from each and the information stored in the storage device SD, the CPU is caused to execute processing corresponding to the movement control unit MC.
 位置検出装置PSは、清掃装置EQの位置を検出するための装置であり、例えば、GPS(Global Positioning System)受信機が受信したGPS信号に基づいて清掃装置EQの位置(緯度、経度、高度)を検出する。 The position detection device PS is a device for detecting the position of the cleaning device EQ. For example, the position (latitude, longitude, altitude) of the cleaning device EQ based on a GPS signal received by a GPS (Global Positioning System) receiver. Is detected.
 また、位置検出装置PSは、清掃対象となる床面やその周囲の壁面に埋め込まれたRFタグからそのRFタグに記憶されている位置情報を読み取るためのRFタグリーダであってもよく、その壁面までの距離を検出するレーザセンサであってもよい。 Further, the position detection device PS may be an RF tag reader for reading position information stored in the RF tag from an RF tag embedded in a floor surface to be cleaned or a wall surface around the floor surface. It may be a laser sensor that detects the distance up to.
 姿勢検出装置ASは、清掃装置EQの姿勢を検出するための装置であり、例えば、3軸角速度(ジャイロ)センサの検出値に基づいて清掃装置EQの姿勢を検出する。 The posture detection device AS is a device for detecting the posture of the cleaning device EQ, and detects the posture of the cleaning device EQ based on the detection value of a triaxial angular velocity (gyro) sensor, for example.
 記憶装置SDは、各種情報を記憶するための装置であり、例えば、ハードディスクやフラッシュメモリ等の不揮発性記憶媒体であって、清掃対象となる床面の形状や大きさ等を記憶する清掃マップSD1を記憶する。 The storage device SD is a device for storing various types of information. For example, the storage device SD is a non-volatile storage medium such as a hard disk or a flash memory, and the cleaning map SD1 stores the shape and size of the floor surface to be cleaned. Remember.
 清掃マップSD1は、好適には、清掃対象となる床面に応じて記憶装置SDに予め記憶される情報であるが、レーザセンサ等を用いて清掃装置EQが清掃開始前或いは清掃中に自動的に生成するものであってもよい。 The cleaning map SD1 is preferably information stored in advance in the storage device SD in accordance with the floor surface to be cleaned. However, the cleaning device EQ automatically uses a laser sensor or the like before starting cleaning or during cleaning. May be generated.
 駆動部D1は、回転モータRM1、回転検出器RS1、傾斜モータTM1、及び傾斜検出器TS1を有する。駆動部D2及びD3についても同様である。 The driving unit D1 includes a rotation motor RM1, a rotation detector RS1, an inclination motor TM1, and an inclination detector TS1. The same applies to the drive units D2 and D3.
 回転検出器RS1は、回転モータRM1による回転ブラシB1の回転の状態(回転方向、回転角度、回転速度等である。)を検出するための装置であり、例えば、エンコーダであって、その検出値を回転状態情報として所定のサンプリング周期で繰り返し制御装置CDに対して出力する。 The rotation detector RS1 is a device for detecting the rotation state (rotation direction, rotation angle, rotation speed, etc.) of the rotation brush B1 by the rotation motor RM1, and is an encoder, for example, and its detection value. Is repeatedly output to the control device CD at a predetermined sampling period as rotation state information.
 傾斜検出器TS1は、傾斜モータTM1による回転ブラシB1の傾斜の状態(傾斜方向、傾斜角度、傾斜速度等である。)を検出するための装置であり、例えば、エンコーダであって、その検出値を傾斜状態情報として所定のサンプリング周期で繰り返し制御装置CDに対して出力する。 The inclination detector TS1 is a device for detecting the state of inclination of the rotating brush B1 by the inclination motor TM1 (inclination direction, inclination angle, inclination speed, etc.), for example, an encoder, and its detection value. Are repeatedly output to the control device CD at a predetermined sampling period as the tilt state information.
 制御装置CDの移動制御部MCは、清掃装置EQを自律的に動作させるための機能要素であり、位置検出装置PS及び姿勢検出装置ASの検出値と記憶装置SDから読み出した清掃マップSD1とに基づいて、回転ブラシB1、B2、B3のそれぞれの目標回転状態及び目標傾斜状態を決定し、決定した目標回転状態及び目標傾斜状態に関する情報を含む制御信号を駆動部D1、D2、D3のそれぞれに対して出力する。 The movement control unit MC of the control device CD is a functional element for autonomously operating the cleaning device EQ, and includes the detection values of the position detection device PS and the posture detection device AS and the cleaning map SD1 read from the storage device SD. Based on this, the target rotation state and the target inclination state of each of the rotating brushes B1, B2, and B3 are determined, and a control signal including information on the determined target rotation state and the target inclination state is supplied to each of the driving units D1, D2, and D3. Output.
 また、移動制御部MCは、駆動部D1、D2、D3のそれぞれが出力する回転ブラシB1、B2、B3のそれぞれの回転状態情報及び傾斜状態情報を所定のサンプリング周期で受信し、回転ブラシB1、B2、B3のそれぞれが目標回転状態及び目標傾斜状態となるよう、回転ブラシB1、B2、B3のそれぞれを独立にフィードバック制御する。 In addition, the movement control unit MC receives the rotation state information and the inclination state information of the rotating brushes B1, B2, and B3 output from the driving units D1, D2, and D3, respectively, at a predetermined sampling period, and rotates the rotating brush B1, Each of the rotating brushes B1, B2, and B3 is independently feedback controlled so that each of B2 and B3 is in the target rotation state and the target inclination state.
 図8は、移動制御部MCによる清掃装置EQの移動の例を示す図であり、図8(A)は、清掃装置EQを図の上方に移動させる際の状態を示し、図8(B)は、清掃装置EQを図の左方に移動させる際の状態を示す。 FIG. 8 is a diagram illustrating an example of movement of the cleaning device EQ by the movement control unit MC. FIG. 8A illustrates a state when the cleaning device EQ is moved upward in the drawing, and FIG. These show the state at the time of moving the cleaning apparatus EQ to the left of a figure.
 なお、回転ブラシB1、B2、B3のそれぞれは、その直径を共通とし、清掃装置EQの中心からそれぞれ120度の角度を隔てた方向で等距離に配置され、それぞれの傾斜軸ξ1、ξ2、ξ3が上面視で正三角形を形成するものとする。 Each of the rotating brushes B1, B2, B3 has a common diameter, and is disposed at an equal distance in a direction separated from the center of the cleaning device EQ by an angle of 120 degrees, and each of the inclined axes ξ1, ξ2, ξ3. Form an equilateral triangle in a top view.
 図8(A)で示されるように、清掃装置EQの中心から見て回転ブラシB1が存在する方向と同じ方向に清掃装置EQを移動させる場合、移動制御部MCは、回転ブラシB1、B2、B3のそれぞれの目標回転状態(回転速度及び回転方向)を共通としながら、回転ブラシB1の目標傾斜角を0度(回転ブラシB1の底面を床面に対して水平とする角度)とし、回転ブラシB2の目標傾斜角を所定の正値とし、回転ブラシB3の目標傾斜角をその所定の正値と同じ絶対値を有する所定の負値とする。なお、傾斜角は、回転ブラシB1、B2、B3のそれぞれの底面が清掃装置EQの内側(中心側)で高くなる場合を正値とし、それぞれの底面が清掃装置EQの外側で高くなる場合を負値とする。 As shown in FIG. 8A, when the cleaning device EQ is moved in the same direction as the rotation brush B1 is seen from the center of the cleaning device EQ, the movement control unit MC is configured to rotate the rotation brushes B1, B2, While the target rotation states (rotation speed and rotation direction) of B3 are the same, the target inclination angle of the rotary brush B1 is set to 0 degree (the angle at which the bottom surface of the rotary brush B1 is horizontal to the floor surface), and the rotary brush The target inclination angle of B2 is a predetermined positive value, and the target inclination angle of the rotating brush B3 is a predetermined negative value having the same absolute value as the predetermined positive value. Note that the inclination angle is a positive value when the bottom surface of each of the rotating brushes B1, B2, and B3 is increased on the inner side (center side) of the cleaning device EQ, and the inclination angle is increased when the respective bottom surface is increased on the outer side of the cleaning device EQ. Negative value.
 この場合、移動制御部MCは、駆動部D1に対して制御信号を出力し、回転ブラシB1を回転軸η1の周りで所定の回転速度で反時計回りに回転させながら、回転ブラシB1を傾斜軸ξ1の周りに傾けさせないようにする。その結果、回転ブラシB1は、何れの方向にも推進力を発生させることなく、その場に留まったまま床面の清掃を継続しようとする。 In this case, the movement control unit MC outputs a control signal to the drive unit D1, and rotates the rotary brush B1 counterclockwise around the rotation axis η1 at a predetermined rotation speed while rotating the rotary brush B1 to the tilt axis. Do not tilt around ξ1. As a result, the rotary brush B1 tries to continue cleaning the floor surface while remaining in place without generating a propulsive force in any direction.
 一方、移動制御部MCは、駆動部D2に対して制御信号を出力し、回転ブラシB2を回転軸η2の周りで所定の回転速度で反時計回りに回転させながら、回転ブラシB2を傾斜軸ξ2の周りにその底面が清掃装置EQの内側で高くなるように傾けさせるようにする。その結果、回転ブラシB2は、その外側の一部と床面との間に高摩擦領域HF2(図2(C)参照。)を形成し、その高摩擦領域HF2のところでその回転方向(反時計回り)と反対向き(時計回り)の摩擦反力を局所的に発生させることによって傾斜軸ξ2の方向に沿った(図の左上を向く)推進力F2を発生させる。 On the other hand, the movement control unit MC outputs a control signal to the drive unit D2, and rotates the rotating brush B2 around the rotation axis η2 at a predetermined rotational speed in a counterclockwise direction, while rotating the rotating brush B2 to the tilt axis ξ2. Is inclined so that its bottom surface is raised inside the cleaning device EQ. As a result, the rotary brush B2 forms a high friction region HF2 (see FIG. 2C) between a part of the outer side of the rotary brush B2 and the floor surface, and the rotation direction (counterclockwise) is at the high friction region HF2. Propulsive force F2 along the direction of the tilt axis ξ2 (towards the upper left in the figure) is generated by locally generating a friction reaction force in the opposite direction (clockwise) to the rotation direction.
 同様に、移動制御部MCは、駆動部D3に対して制御信号を出力し、回転ブラシB3を回転軸η3の周りで所定の回転速度で反時計回りに回転させながら、回転ブラシB3を傾斜軸ξ3の周りにその底面が清掃装置EQの外側で高くなるように傾けさせるようにする。その結果、回転ブラシB3は、その内側の一部と床面との間に高摩擦領域HF3を形成し、その高摩擦領域HF3のところでその回転方向(反時計回り)と反対向き(時計回り)の摩擦反力を局所的に発生させることによって傾斜軸ξ3の方向に沿った(図の右上を向く)推進力F3を発生させる。 Similarly, the movement control unit MC outputs a control signal to the drive unit D3, and rotates the rotating brush B3 around the rotation axis η3 at a predetermined rotation speed in a counterclockwise direction, while rotating the rotating brush B3 with the tilt axis. The bottom surface of ξ3 is inclined so as to be higher outside the cleaning device EQ. As a result, the rotary brush B3 forms a high friction region HF3 between a part of the inner side of the rotary brush B3 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) at the high friction region HF3. Is generated locally to generate a propulsive force F3 along the direction of the tilt axis ξ3 (pointing to the upper right in the figure).
 その結果、清掃装置EQは、回転ブラシB2が発生させた推進力F2と、回転ブラシB3が発生させた推進力F3との合力である推進合力TFにより、清掃装置EQの中心から見て回転ブラシB1が存在する方向と同じ方向に移動することとなる。 As a result, the cleaning device EQ has a rotating brush as viewed from the center of the cleaning device EQ by a propulsive resultant force TF that is a resultant force of the propulsive force F2 generated by the rotating brush B2 and the propelling force F3 generated by the rotating brush B3. It will move in the same direction as B1 exists.
 また、図8(B)で示されるように、清掃装置EQの中心から見て回転ブラシB1が存在する方向に垂直な方向に清掃装置EQを移動させる場合、移動制御部MCは、駆動部D1に対して制御信号を出力し、回転ブラシB1を回転軸η1の周りで所定の回転速度で反時計回りに回転させながら、回転ブラシB1を傾斜軸ξ1の周りにその底面が清掃装置EQの外側で高くなるように傾けさせるようにする。その結果、回転ブラシB1は、その内側の一部と床面との間に高摩擦領域HF1を形成し、その高摩擦領域HF1のところでその回転方向(反時計回り)と反対向き(時計回り)の摩擦反力を局所的に発生させることによって傾斜軸ξ1の方向に沿った(図の左を向く)推進力F1を発生させる。 Further, as shown in FIG. 8B, when the cleaning device EQ is moved in a direction perpendicular to the direction in which the rotary brush B1 exists when viewed from the center of the cleaning device EQ, the movement control unit MC is driven by the drive unit D1. A control signal is output to the rotating brush B1 while rotating the rotating brush B1 counterclockwise around the rotation axis η1 at a predetermined rotation speed, and the bottom surface of the rotating brush B1 around the inclined axis ξ1 is outside the cleaning device EQ. Try to tilt it so that it gets higher. As a result, the rotary brush B1 forms a high friction region HF1 between a part of the inside of the rotary brush B1 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) in the high friction region HF1. Is generated locally to generate a propulsive force F1 along the direction of the tilt axis ξ1 (toward the left in the figure).
 同様に、移動制御部MCは、駆動部D2に対して制御信号を出力し、回転ブラシB2を回転軸η2の周りで所定の回転速度で反時計回りに回転させながら、回転ブラシB2を傾斜軸ξ2の周りにその底面が清掃装置EQの内側で高くなるように傾けさせるようにする。その結果、回転ブラシB2は、その外側の一部と床面との間に高摩擦領域HF2を形成し、その高摩擦領域HF2のところでその回転方向(反時計回り)と反対向き(時計回り)の摩擦反力を局所的に発生させることによって傾斜軸ξ2の方向に沿った(図の左上を向く)推進力F2を発生させる。この際、回転ブラシB2の傾斜角は、回転ブラシB1の傾斜角の半分程度とし、推進力F2が推進力F1の半分程度となるようにする。 Similarly, the movement control unit MC outputs a control signal to the driving unit D2, and rotates the rotating brush B2 around the rotation axis η2 counterclockwise at a predetermined rotation speed while rotating the rotating brush B2 with the tilt axis. The bottom surface of ξ2 is inclined so as to be higher inside the cleaning device EQ. As a result, the rotary brush B2 forms a high friction region HF2 between a part of the outer side of the rotary brush B2 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) at the high friction region HF2. Is generated locally to generate a propulsive force F2 along the direction of the tilt axis ξ2 (pointing to the upper left in the figure). At this time, the inclination angle of the rotary brush B2 is set to about half of the inclination angle of the rotary brush B1, and the propulsive force F2 is set to about half of the propulsive force F1.
 同様に、移動制御部MCは、駆動部D3に対して制御信号を出力し、回転ブラシB3を回転軸η3の周りで所定の回転速度で反時計回りに回転させながら、回転ブラシB3を傾斜軸ξ3の周りにその底面が清掃装置EQの内側で高くなるように傾けさせるようにする。その結果、回転ブラシB3は、その外側の一部と床面との間に高摩擦領域HF3を形成し、その高摩擦領域HF3のところでその回転方向(反時計回り)と反対向き(時計回り)の摩擦反力を局所的に発生させることによって傾斜軸ξ3の方向に沿った(図の左下を向く)推進力F3を発生させる。この際、回転ブラシB3の傾斜角は、回転ブラシB1の傾斜角の半分程度とし、推進力F3が推進力F1の半分程度となるようにする。 Similarly, the movement control unit MC outputs a control signal to the drive unit D3, and rotates the rotating brush B3 around the rotation axis η3 at a predetermined rotation speed in a counterclockwise direction, while rotating the rotating brush B3 with the tilt axis. The bottom surface of ξ3 is inclined so as to be higher inside the cleaning device EQ. As a result, the rotating brush B3 forms a high friction region HF3 between a part of the outer side of the rotating brush B3 and the floor surface, and the rotation direction (counterclockwise) is opposite (clockwise) at the high friction region HF3. Is generated locally to generate a propulsive force F3 along the direction of the tilt axis ξ3 (pointing to the lower left of the figure). At this time, the inclination angle of the rotary brush B3 is set to about half of the inclination angle of the rotary brush B1, and the propulsive force F3 is set to about half of the propulsive force F1.
 その結果、清掃装置EQは、回転ブラシB1が発生させた推進力F1と、回転ブラシB2が発生させた推進力F2と、回転ブラシB3が発生させた推進力F3との合力である推進合力TFにより、清掃装置EQの中心から見て回転ブラシB1が存在する方向に垂直な方向(左方向)に移動することとなる。 As a result, the cleaning device EQ has a thrust resultant force TF that is a resultant force of the thrust F1 generated by the rotating brush B1, the thrust F2 generated by the rotating brush B2, and the thrust F3 generated by the rotating brush B3. As a result, when viewed from the center of the cleaning device EQ, the movement is in a direction (left direction) perpendicular to the direction in which the rotary brush B1 exists.
 以上の構成により、清掃装置EQは、三つの回転ブラシB1、B2、B3の位置が三角形を形成する構成によって、二つの回転ブラシを備えた構成に比べ、設置安定性を向上させることができ、外力を受けた場合の転倒を防止することができる。 With the above configuration, the cleaning device EQ can improve the installation stability compared to the configuration including two rotary brushes by the configuration in which the positions of the three rotary brushes B1, B2, and B3 form a triangle, A fall can be prevented when receiving external force.
 また、清掃装置EQは、三つの回転ブラシB1、B2、B3の位置が三角形を形成する構成によって設置安定性を向上させるので、四つの回転ブラシを備える構成に比べ、その製造公差及びその組立公差を緩和することができる。四つの回転ブラシの全てを床面から浮かせることなく確実に床面に設置させるには高精度の部品加工及び高精度の組立が要求されるからである。但し、本発明は、四つ以上の回転ブラシを備える構成を排除するものではない。 Moreover, since the cleaning apparatus EQ improves the installation stability by the configuration in which the positions of the three rotary brushes B1, B2, and B3 form a triangle, the manufacturing tolerance and the assembly tolerance thereof are compared with the configuration having four rotary brushes. Can be relaxed. This is because high-precision component processing and high-precision assembly are required to ensure that all four rotating brushes are securely installed on the floor without floating from the floor. However, the present invention does not exclude a configuration including four or more rotating brushes.
 また、清掃装置EQは、三つの回転ブラシB1、B2、B3のそれぞれの直径及び相対位置を適切に設定することによって、三つの回転ブラシB1、B2、B3のそれぞれを互いに非接触としながら、清掃装置EQの移動方向から見て側面視で隙間がないように配置することができ、何れの方向に移動する場合であっても磨き済み領域の間に磨き残しを発生させてしまうのを防止することができる。 In addition, the cleaning device EQ performs cleaning while appropriately setting the diameters and relative positions of the three rotating brushes B1, B2, and B3 so that the three rotating brushes B1, B2, and B3 are not in contact with each other. The device EQ can be arranged so that there is no gap when viewed from the side when viewed from the direction of movement of the apparatus EQ, and it is possible to prevent the occurrence of unpolished portions between the polished areas regardless of the direction of movement. be able to.
 また、清掃装置EQは、駆動部D1、D2、D3のそれぞれに一つの回転モータと一つの傾斜モータとを備えることによって(合計で六つの駆動軸を備えることによって)任意の方向に移動可能とするので、ジンバル機構(各駆動部に一つの回転モータと二つの傾斜モータとを備える機構)を利用した二つの回転ブラシを有する(合計で六つの駆動軸を備える)従来の清掃装置に比べても駆動軸数を増大させることはない。 Further, the cleaning device EQ can be moved in any direction by including one rotation motor and one inclination motor in each of the drive units D1, D2, and D3 (by providing a total of six drive shafts). Therefore, it has two rotating brushes using a gimbal mechanism (mechanism with one rotary motor and two tilt motors in each drive unit) (compared with a total of six drive shafts) compared to a conventional cleaning device However, the number of drive shafts is not increased.
 次に、図9~図16を参照しながら、本発明の実施例に係る、階段昇降用補助機構SLMを備えた清掃装置EQ1について説明する。 Next, with reference to FIGS. 9 to 16, a description will be given of the cleaning device EQ1 including the stair-lifting auxiliary mechanism SLM according to the embodiment of the present invention.
 図9は、清掃装置EQ1の概略図であり、図9(A)は、その上面図を示し、図9(B)は、図9(A)の矢印9B方向から見た側面図を示す。 FIG. 9 is a schematic view of the cleaning device EQ1, FIG. 9A shows a top view thereof, and FIG. 9B shows a side view seen from the direction of the arrow 9B in FIG. 9A.
 清掃装置EQ1は、階段昇降用補助機構SLMと、回転ブラシ接地補助機構GSMと、支持多角形拡大機構SMMとを備える点で、上述の清掃装置EQと相違するが、その他の点で共通する。そのため、共通点の説明を省略しながら、相違点を詳細に説明することとする。 The cleaning device EQ1 is different from the above-described cleaning device EQ in that it includes a stair climbing auxiliary mechanism SLM, a rotating brush grounding auxiliary mechanism GSM, and a support polygon enlarging mechanism SMM, but is common in other points. Therefore, the difference will be described in detail while omitting the description of the common points.
 階段昇降用補助機構SLMは、清掃装置EQ1が階段を昇降しながら階段の各ステップ面を清掃できるようにするための補助機構であり、例えば、補助足FT、二つのリンク部材LK1、LK2、及び、三つの旋回駆動部RD1、RD2、RD3で構成される。 The stair climbing auxiliary mechanism SLM is an auxiliary mechanism for allowing the cleaning device EQ1 to clean each step surface of the staircase while moving up and down the staircase. For example, the auxiliary foot FT, the two link members LK1, LK2, and , Three turning drive units RD1, RD2, and RD3.
 階段昇降用補助機構SLMは、フレームFRに結合され、補助足FTをフレームFRに近づけ或いはフレームFRから遠ざけることができるように補助足FTを支持する。 The stair-climbing auxiliary mechanism SLM is coupled to the frame FR, and supports the auxiliary foot FT so that the auxiliary foot FT can be moved closer to or away from the frame FR.
 本実施例では、階段昇降用補助機構SLMは、制御装置CDによって制御される。制御装置CDは、階段昇降用補助機構SLMを動作させながら、三つの回転ブラシB1、B2、B3と補助足FTとで清掃装置EQ1を歩行させ、階段を昇降させる。 In the present embodiment, the stair climbing auxiliary mechanism SLM is controlled by the control device CD. The control device CD causes the cleaning device EQ1 to walk with the three rotary brushes B1, B2, B3 and the auxiliary foot FT while operating the stair-climbing auxiliary mechanism SLM to raise and lower the stairs.
 補助足FTは、床面と接触しながら支持多角形を形成する部材であり、例えば、馬蹄形を有し、その二つの爪(延在部)の間に回転ブラシB2を受け入れられるようその二つの爪(延在部)の間の距離が回転ブラシB2の直径よりも大きくなるように構成され、回転ブラシB2方向におけるその可動範囲を増大させるようにする。なお、補助足FTは、必ずしも回転ブラシB2を受け入れられる形状である必要はないが、その場合には回転ブラシB2方向におけるその可動範囲がより狭められることとなる。 The auxiliary foot FT is a member that forms a support polygon while being in contact with the floor surface. For example, the auxiliary foot FT has a horseshoe shape, and the two brushes B2 can be received between the two claws (extension portions). The distance between the claws (extending portions) is configured to be larger than the diameter of the rotating brush B2, and the movable range in the direction of the rotating brush B2 is increased. The auxiliary foot FT does not necessarily have a shape that can receive the rotary brush B2, but in that case, the movable range in the direction of the rotary brush B2 is further narrowed.
 また、「支持多角形」は、清掃装置EQ1と床面と間の接地点群を凸状に張った辺で構成される凸多角形であり、曲線を含む概念である。 Further, the “support polygon” is a convex polygon formed by a side in which a ground contact point group between the cleaning device EQ1 and the floor surface is formed in a convex shape, and includes a curve.
 図10は、支持多角形の説明図であり、図10(A)は、補助足FT(破線領域)によって形成される支持多角形(斜線ハッチング領域)を示し、図10(B)は、補助足FTと一つの付加的な接地点AP1(清掃装置EQ1から延びる、補助足FT以外の別の部材が床面と接触する点である。)とによって形成される支持多角形を示し、図10(C)は、補助足FTと二つの付加的な接地点AP2、AP3とによって形成される支持多角形を示す。 FIG. 10 is an explanatory diagram of a support polygon. FIG. 10A shows a support polygon (shaded hatching area) formed by the auxiliary feet FT (broken line area), and FIG. FIG. 10 shows a support polygon formed by the foot FT and one additional ground contact point AP1 (a point extending from the cleaning device EQ1 where another member other than the auxiliary foot FT contacts the floor). (C) shows a support polygon formed by the auxiliary foot FT and two additional contact points AP2 and AP3.
 このように、補助足FTによって形成される支持多角形は、その支持多角形の外に付加的な接地点が追加された場合には、その付加的な接地点を含む支持多角形にまでその領域が拡大されることとなる。なお、その付加的な接地点が、補助足FTによって形成される支持多角形が位置する平面上にない場合、その付加的な接地点を含む支持多角形は、その付加的な接地点をその平面上に投影した点(清掃装置EQ1の重心とその付加的な接地点とを結ぶ直線がその平面と交差する点)と補助足FTとによって形成される支持多角形に相当するものとする。 As described above, when an additional grounding point is added outside the supporting polygon, the supporting polygon formed by the auxiliary foot FT extends to the supporting polygon including the additional grounding point. The area will be enlarged. If the additional grounding point is not on the plane on which the supporting polygon formed by the auxiliary foot FT is located, the supporting polygon including the additional grounding point will be referred to as the additional grounding point. It corresponds to a support polygon formed by a point projected on a plane (a point connecting a straight line connecting the center of gravity of the cleaning device EQ1 and its additional grounding point and the plane) and the auxiliary foot FT.
 また、補助足FTは、その支持多角形の中に回転ブラシを受け入れられる形状として、U字型、C字型、H字型、E字型等の他の形状を有するものであってもよい。 Further, the auxiliary foot FT may have another shape such as a U-shape, a C-shape, an H-shape, an E-shape, etc. as a shape that can receive the rotating brush in the support polygon. .
 旋回駆動部RD1は、リンク部材LK1に対して補助足FTを旋回させるための駆動部であり、例えば、電動モータ及びギアで構成される。 The turning drive unit RD1 is a drive unit for turning the auxiliary foot FT with respect to the link member LK1, and includes, for example, an electric motor and a gear.
 同様に、旋回駆動部RD2は、リンク部材LK2に対してリンク部材LK1を旋回させるための駆動部であり、旋回駆動部RD3は、フレームFRに対してリンク部材LK2を旋回させるための駆動部である。 Similarly, the turning drive unit RD2 is a drive unit for turning the link member LK1 with respect to the link member LK2, and the turning drive unit RD3 is a drive unit for turning the link member LK2 with respect to the frame FR. is there.
 このようにして、階段昇降用補助機構SLMは、三つの旋回駆動部RD1、RD2、RD3によって三自由度駆動機構を構成する。 Thus, the stair climbing auxiliary mechanism SLM forms a three-degree-of-freedom drive mechanism by the three turning drive units RD1, RD2, and RD3.
 なお、階段昇降用補助機構SLMは、電動シリンダ、空気圧シリンダ、液圧シリンダ、リニアモータ等の他のアクチュエータを用いた機構で構成されるものであってもよい。 The stair-climbing auxiliary mechanism SLM may be configured by a mechanism using other actuators such as an electric cylinder, a pneumatic cylinder, a hydraulic cylinder, and a linear motor.
 また、階段昇降用補助機構SLMは、ギア機構を用いることなく、ベルトプーリ機構又はワイヤプーリ機構等の他の伝達機構を介して、補助足FT、リンク部材LK1、又はリンク部材LK2を旋回させるようにしてもよく、補助足FT、リンク部材LK1、又はリンク部材LK2にアクチュエータを直結して旋回させるようにしてもよい。 Further, the stair-climbing auxiliary mechanism SLM turns the auxiliary foot FT, the link member LK1, or the link member LK2 via another transmission mechanism such as a belt pulley mechanism or a wire pulley mechanism without using a gear mechanism. Alternatively, the actuator may be directly connected to the auxiliary foot FT, the link member LK1, or the link member LK2 to be turned.
 図11~図13は、階段昇降用補助機構SLMの一例の詳細を説明するための図であり、図11は、階段昇降用補助機構SLMの斜視図を示し、図12は、階段昇降用補助機構SLMの側面図を示し、図13は、階段昇降用補助機構SLMの上面図を示す。 11 to 13 are diagrams for explaining details of an example of the stair-climbing auxiliary mechanism SLM. FIG. 11 is a perspective view of the stair-climbing auxiliary mechanism SLM, and FIG. A side view of the mechanism SLM is shown, and FIG. 13 is a top view of the stair-climbing auxiliary mechanism SLM.
 図11~図13で示されるように、階段昇降用補助機構SLMの旋回駆動部RD1(図12参照。)は、補助足FTに固定された従動ギアG15と、従動ギアG15にかみ合わされる駆動ギアG16と、駆動ギアG16を回転駆動する、リンク部材LK1に固定された旋回モータAM1とで構成される。 As shown in FIGS. 11 to 13, the turning drive unit RD1 (see FIG. 12) of the stair-climbing auxiliary mechanism SLM is driven by the driven gear G15 fixed to the auxiliary foot FT and the driven gear G15. The gear G16 and the turning motor AM1 fixed to the link member LK1 that rotationally drives the drive gear G16.
 また、旋回駆動部RD2は、リンク部材LK1に固定された従動ギアG17と、従動ギアG17にかみ合わされる駆動ギアG18と、駆動ギアG18を回転駆動する、リンク部材LK2に固定された旋回モータAM2とで構成される。 Further, the turning drive unit RD2 includes a driven gear G17 fixed to the link member LK1, a drive gear G18 meshed with the driven gear G17, and a turning motor AM2 fixed to the link member LK2 that rotationally drives the drive gear G18. It consists of.
 また、旋回駆動部RD3は、リンク部材LK2に固定された従動ギアG19と、従動ギアG19にかみ合わされる駆動ギア(図示せず。)と、その駆動ギアを回転駆動する、フレームFRに固定された旋回モータ(図示せず。)とで構成される。 Further, the turning drive unit RD3 is fixed to a frame FR that rotates and drives a driven gear G19 fixed to the link member LK2, a drive gear (not shown) engaged with the driven gear G19, and the drive gear. And a turning motor (not shown).
 回転ブラシ接地補助機構GSM(図9(A)参照。)は、清掃装置EQ1のフレームFRが床面に対して傾斜した場合に、回転ブラシの底面を床面に平行にするための機構であり、例えば、清掃装置EQ1が矢印AR1方向に進行する場合(階段、段差、又は不整地等の非平面を移動する場合)にその傾斜軸がその進行方向と直交しない回転ブラシ(図9の回転ブラシB1、B3)に対して搭載される受動回転軸である。 The rotating brush grounding auxiliary mechanism GSM (see FIG. 9A) is a mechanism for making the bottom surface of the rotating brush parallel to the floor surface when the frame FR of the cleaning device EQ1 is inclined with respect to the floor surface. For example, when the cleaning device EQ1 travels in the direction of the arrow AR1 (when moving on a non-planar surface such as a staircase, a step, or rough terrain), the rotating brush whose rotational axis is not orthogonal to the traveling direction (the rotating brush in FIG. 9) B1 and B3) are passive rotating shafts.
 図14は、回転ブラシ接地補助機構GSMの一例を示す斜視図であり、図14において、回転ブラシ接地補助機構GSMは、回転ブラシB1用の回転ブラシ接地補助機構であり、回転ブラシB1用の駆動部D1に接続されるフレームアームの長手軸ζ1の周りを回転する受動回転軸であって、回転部RP及び非回転部NRPを有する。 FIG. 14 is a perspective view showing an example of the rotating brush grounding assist mechanism GSM. In FIG. 14, the rotating brush grounding assisting mechanism GSM is a rotating brush grounding assisting mechanism for the rotating brush B1, and the driving for the rotating brush B1. This is a passive rotating shaft that rotates around the longitudinal axis ζ1 of the frame arm connected to the portion D1, and has a rotating portion RP and a non-rotating portion NRP.
 回転ブラシ接地補助機構GSMの回転部RPは、階段昇降用補助機構SLMによってフレームFRが持ち上げられて回転ブラシB1が宙に浮き、その後、フレームFRが降ろされて回転ブラシB1が再び床面に接地する際に、その床面から受ける反力によって、非回転部NRPに対して受動的に回転し、回転ブラシB1の底面が床面(階段のステップ面)と平行になるようにする。 The rotating part RP of the rotating brush grounding auxiliary mechanism GSM is such that the frame FR is lifted by the stair climbing auxiliary mechanism SLM and the rotating brush B1 floats in the air, and then the frame FR is lowered and the rotating brush B1 contacts the floor again. In doing so, the reaction force received from the floor surface passively rotates with respect to the non-rotating portion NRP so that the bottom surface of the rotating brush B1 is parallel to the floor surface (step surface of the staircase).
 なお、回転ブラシ接地補助機構GSMは、電磁力等を用い非回転部NRPに対して回転部RPを固定する固定機構(図示せず。)を有し、回転ブラシB1の底面が床面と平行になった状態を維持できるようにする。 The rotating brush grounding auxiliary mechanism GSM has a fixing mechanism (not shown) that fixes the rotating part RP to the non-rotating part NRP using electromagnetic force or the like, and the bottom surface of the rotating brush B1 is parallel to the floor surface. Be able to maintain the state
 また、回転ブラシ接地補助機構GSMは、電動アクチュエータ等により非回転部NRPに対して回転部RPを能動的に回転させる機構であってもよい。 Further, the rotating brush grounding auxiliary mechanism GSM may be a mechanism that actively rotates the rotating part RP with respect to the non-rotating part NRP by an electric actuator or the like.
 支持多角形拡大機構SMM(図9(A)参照。)は、宙に浮いた回転ブラシを接地させる際の清掃装置EQ1の転倒を防止するための機構であり、例えば、フレームFRから延びるL字状のステー部材STと、ステー部材STの先端に回転可能に取り付けられる接地ローラGRとで構成される。 The support polygon enlarging mechanism SMM (see FIG. 9A) is a mechanism for preventing the cleaning device EQ1 from toppling over when the rotating brush floating in the air is grounded. For example, an L-shape extending from the frame FR is used. And a grounding roller GR that is rotatably attached to the tip of the stay member ST.
 図9(B)で示されるように、接地ローラGRは、回転ブラシB2が床面に正立姿勢で接地しているときにその床面から僅かに浮いた位置となるように、且つ、矢印AR2で示される方向に回転可能となるように取り付けられる(詳細は後述。)。 As shown in FIG. 9B, the grounding roller GR is positioned so that it slightly floats from the floor surface when the rotating brush B2 is in contact with the floor surface in an upright posture, and an arrow It is attached so as to be rotatable in the direction indicated by AR2 (details will be described later).
 次に、図15を参照しながら、清掃装置EQ1の階段昇降方法について説明する。 Next, a method for raising and lowering the stairs of the cleaning device EQ1 will be described with reference to FIG.
 清掃装置EQ1が階段を昇降する際の階段昇降用補助機構SLMの動きは、図15(A)~図15(F)の六つの状態で表され、清掃装置EQ1が階段を昇る場合、図15(A)~図15(F)の順で時系列に進行するものとする。なお、階段昇降用補助機構SLMの動きは、清掃装置EQ1が階段を降りる場合には、階段を昇る場合とは逆の順番で時系列に進行するものとする。 The movement of the stair climbing auxiliary mechanism SLM when the cleaning device EQ1 moves up and down the stairs is represented by the six states of FIGS. 15A to 15F. When the cleaning device EQ1 moves up the stairs, FIG. It is assumed that the process proceeds in time series in the order of (A) to FIG. 15 (F). It is assumed that the movement of the stair climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning apparatus EQ1 descends the stairs.
 また、図15(A)~図15(F)のそれぞれは、階段を昇降する清掃装置EQ1の上面図(上図)と側面図(下図)との組み合わせで構成されるものとする。 Further, each of FIGS. 15A to 15F is configured by a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ1 that moves up and down the stairs.
 なお、図15において、進行方向に対して非垂直となる傾斜軸ξ1、ξ3(図9(A)参照。)を有する回転ブラシB1、B3は、一度宙に浮いた後で再び接地する際に、回転ブラシ接地補助機構GSMにより、その底面が床面に対して水平となるように、回転ブラシB1、B3用の駆動部D1、D3を接続するフレームアームの長手軸ζ1、ζ3(図9(A)参照。)の周りを受動的に或いは能動的に揺動する。 In FIG. 15, the rotating brushes B1 and B3 having the tilt axes ξ1 and ξ3 (see FIG. 9A) that are non-perpendicular to the traveling direction are once floated in the air and then grounded again. The longitudinal axis ζ1, ζ3 of the frame arm that connects the drive parts D1, D3 for the rotating brushes B1, B3 so that the bottom surface thereof is horizontal with respect to the floor surface by the rotating brush grounding auxiliary mechanism GSM (FIG. 9 ( Swing passively or actively around A).
 図15(A)において、清掃装置EQ1は、階段の一段目に回転ブラシB1、B3と補助足FTとを接地させ、階段の二段目に回転ブラシB2を接地させた状態となっている。 In FIG. 15A, the cleaning device EQ1 is in a state where the rotary brushes B1 and B3 and the auxiliary foot FT are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase.
 図15(B)において、清掃装置EQ1は、階段の一段目に回転ブラシB1、B3を接地させ、且つ、階段の二段目に回転ブラシB2を接地させたままの状態で、旋回駆動部RD2、RD3を旋回駆動させて補助足FTを宙に浮かせるようにする。 In FIG. 15 (B), the cleaning device EQ1 is configured so that the rotary brushes B1 and B3 are grounded at the first step of the staircase, and the rotary brush B2 is grounded at the second step of the staircase, and the turning drive unit RD2 , RD3 is driven to turn so that the auxiliary foot FT floats in the air.
 この状態において、清掃装置EQ1は、階段の幅方向に移動することによって、回転ブラシB1、B3により階段の一段目を、そして、回転ブラシB2により階段の二段目を清掃可能である。 In this state, the cleaning device EQ1 can clean the first step of the stairs with the rotating brushes B1 and B3 and the second step of the stairs with the rotating brush B2 by moving in the width direction of the stairs.
 図15(C)において、清掃装置EQ1は、更に、階段の一段目に回転ブラシB1、B3を接地させ、且つ、階段の二段目に回転ブラシB2を接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて補助足FTを階段の二段目に接地させるようにする。 In FIG. 15 (C), the cleaning device EQ1 further turns in a state where the rotary brushes B1 and B3 are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase. The parts RD1, RD2, and RD3 are driven to turn so that the auxiliary foot FT is grounded at the second step of the stairs.
 図15(D)において、清掃装置EQ1は、補助足FTを階段の二段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて、本体部(階段昇降用補助機構SLM以外の部分)を図15(C)の姿勢のまま階段一段分の高さだけ上昇させるようにする(上方(図中上方向)に鉛直移動させるようにする。)。 In FIG. 15D, the cleaning device EQ1 drives the turning drive parts RD1, RD2, and RD3 to turn while the auxiliary foot FT is in contact with the second step of the staircase, and the main body part (for raising and lowering the staircase). The portion other than the auxiliary mechanism SLM is raised by the height of one step in the posture shown in FIG. 15C (vertically moved upward (upward in the drawing)).
 図15(E)において、清掃装置EQ1は、補助足FTを階段の二段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて本体部を進行方向(図中右方向)に水平移動させ、且つ、傾斜モータTM2を回転させて回転ブラシB2を内側に傾け、接地ローラGRを階段の三段目に接地させるようにする。 In FIG. 15 (E), the cleaning device EQ1 keeps the auxiliary foot FT in contact with the second stage of the staircase and drives the turning drive parts RD1, RD2, and RD3 to turn and move the main body in the direction of travel (see FIG. 15E). In the middle right direction, the tilting motor TM2 is rotated and the rotating brush B2 is tilted inward so that the grounding roller GR is grounded at the third stage of the staircase.
 この場合、清掃装置EQ1は、そのZMP(Zero Moment Point)が、補助足FTによって形成される支持多角形(図10(A)参照。)内に維持されるよう、所定範囲内の値の加速度で本体部を進行方向に水平移動させる。 In this case, the cleaning device EQ1 has an acceleration within a predetermined range so that the ZMP (Zero (Moment Point) is maintained within the support polygon (see FIG. 10A) formed by the auxiliary foot FT. To move the main body horizontally.
 「ZMP」は、重力と慣性力との合力が床面と交差する点であり、例えば、進行方向における加速度が大きい程、進行方向に対する逆方向(以下、「進行逆方向」とする。)の慣性力が大きくなるため、加速度が大きい程、ZMPの位置は、加速度が小さい場合に比べ、進行逆方向に移動することとなる。 “ZMP” is a point where the resultant force of gravity and inertial force intersects the floor surface. For example, the greater the acceleration in the traveling direction, the more in the reverse direction to the traveling direction (hereinafter referred to as “traveling reverse direction”). Since the inertial force increases, the greater the acceleration, the more the ZMP position moves in the opposite direction of travel compared to when the acceleration is small.
 そのため、本体部の加速度が小さい程、清掃装置EQ1のZMPは、本体部の水平移動距離がより小さい段階で、その支持多角形の進行方向側の境界(図10(A)の境界線BL参照。)から逸脱し、清掃装置EQ1は、転倒を開始することとなる。 Therefore, as the acceleration of the main body portion is smaller, the ZMP of the cleaning device EQ1 is at a stage where the horizontal movement distance of the main body portion is smaller, and the boundary of the supporting polygon on the traveling direction side (see the boundary line BL in FIG. 10A). .), The cleaning device EQ1 starts toppling.
 この関係から、清掃装置EQ1は、本体部の加速度を所定範囲内の値の加速度とすることで、そのZMPが補助足FTによる支持多角形から逸脱するのを遅らせることができる(本体部の加速度が小さい場合に比べ、その本体部の水平移動距離がより大きくなるまでそのZMPをその支持多角形内に留まらせることができる。)。 From this relationship, the cleaning apparatus EQ1 can delay the deviation of the ZMP from the support polygon by the auxiliary foot FT by setting the acceleration of the main body to a value within a predetermined range (acceleration of the main body). The ZMP can remain in the support polygon until the horizontal movement distance of the main body is greater than when the is small.
 その後、清掃装置EQ1は、回転ブラシB2を階段の三段目に接地させるために、進行方向に水平移動する本体部を所定の割合で減速させるようにする。 Thereafter, the cleaning device EQ1 decelerates the main body that moves horizontally in the traveling direction at a predetermined rate in order to ground the rotating brush B2 at the third stage of the staircase.
 本体部を減速させると、進行方向を向く慣性力が発生し、ZMPは、補助足FTによる支持多角形を進行方向側に大きく逸脱し、清掃装置EQ1は、転倒を開始することとなる。 When the main body is decelerated, an inertial force directed in the traveling direction is generated, the ZMP greatly deviates from the support polygon by the auxiliary foot FT toward the traveling direction, and the cleaning device EQ1 starts toppling.
 支持多角形拡大機構SMMは、補助足FTによる支持多角形を拡大するための機構であり、回転ブラシB2を階段の三段目に接地させる前に、好適には、所定範囲内の値の加速度で本体部を進行方向に水平移動させている間に、接地ローラGRを階段の三段目に接地させ、その接地ローラGRの接地点により補助足FTによる支持多角形(図10(A)参照。)を、その接地ローラGRの接地点を含む支持多角形(図10(B)参照。)にまで拡大し、所定の割合で減速する清掃装置EQ1のZMPをその拡大後の支持多角形内に留めて清掃装置EQ1の転倒を抑えるようにする。 The support polygon enlarging mechanism SMM is a mechanism for enlarging the support polygon formed by the auxiliary feet FT. Preferably, the acceleration of a value within a predetermined range is set before the rotating brush B2 is grounded to the third step of the staircase. While the main body is moved horizontally in the traveling direction, the grounding roller GR is grounded at the third stage of the staircase, and the supporting polygon by the auxiliary foot FT is made by the grounding point of the grounding roller GR (see FIG. 10A). .) Is expanded to the support polygon (see FIG. 10B) including the grounding point of the grounding roller GR, and the ZMP of the cleaning device EQ1 that decelerates at a predetermined rate is included in the support polygon after the expansion. To prevent the cleaning device EQ1 from overturning.
 また、支持多角形拡大機構SMMは、(摩擦係数が比較的高い)回転ブラシB2の接地前に(摩擦係数が比較的低い)接地ローラGRを階段の三段目に接地させることによって、回転ブラシB2が階段の三段目に接地する際の摩擦反力を抑え、階段の二段目に位置する補助足がその摩擦反力によって後方(図中左方向)にずれるのを防止し、回転ブラシB2の階段の三段目への接地を円滑にする。 Further, the support polygon enlarging mechanism SMM causes the rotating brush B2 to come into contact with the third stage of the staircase before the rotating brush B2 (having a relatively high friction coefficient) contacts the ground (with a relatively low friction coefficient). The frictional reaction force when B2 touches the third step of the staircase is suppressed, and the auxiliary foot located at the second step of the staircase is prevented from shifting backward (leftward in the figure) due to the frictional reaction force. Smooth grounding to the third stage of B2 stairs.
 図15(F)において、清掃装置EQ1は、階段の二段目に回転ブラシB1、B3と補助足FTとを接地させ、階段の三段目に回転ブラシB2を接地させた状態となっており、接地位置が一段高いのを除き、図15(A)の状態と同じ状態となっている。 In FIG. 15 (F), the cleaning device EQ1 is in a state where the rotating brushes B1 and B3 and the auxiliary foot FT are grounded at the second step of the staircase and the rotating brush B2 is grounded at the third step of the staircase. Except that the grounding position is one step higher, the state is the same as the state of FIG.
 このようにして、清掃装置EQ1は、図15(A)~図15(F)の六つの状態を繰り返すようにして階段を昇ることができる。 In this way, the cleaning device EQ1 can ascend the stairs so as to repeat the six states of FIG. 15 (A) to FIG. 15 (F).
 次に、図16を参照しながら、清掃装置EQ1の別の階段昇降方法について説明する。 Next, another method for raising and lowering the stairs of the cleaning apparatus EQ1 will be described with reference to FIG.
 図16における階段昇降用補助機構SLMの動きは、補助足FTの使い方が図15における階段昇降用補助機構SLMの動きと相違する。 16 is different from the movement of the stair climbing auxiliary mechanism SLM in FIG. 15 in the use of the auxiliary foot FT.
 図16における階段昇降用補助機構SLMの動きは、図15の場合と同様、図16(A)~図16(F)の六つの状態で表され、清掃装置EQ1が階段を昇る場合、図16(A)~図16(F)の順で時系列に進行するものとする。なお、階段昇降用補助機構SLMの動きは、清掃装置EQ1が階段を降りる場合には、階段を昇る場合とは逆の順番で時系列に進行するものとする。 The movement of the stair-climbing auxiliary mechanism SLM in FIG. 16 is represented by the six states of FIG. 16A to FIG. 16F as in FIG. 15, and when the cleaning device EQ1 ascends the stairs, FIG. It is assumed that the processing proceeds in time series in the order of (A) to FIG. 16 (F). It is assumed that the movement of the stair climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning apparatus EQ1 descends the stairs.
 また、図16(A)~図16(F)のそれぞれは、階段を昇降する清掃装置EQ1の上面図(上図)と側面図(下図)との組み合わせで構成されるものとする。 Further, each of FIGS. 16A to 16F is configured by a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ1 that moves up and down the stairs.
 また、図16において、進行方向に対して非垂直となる傾斜軸ξ1、ξ3(図9(A)参照。)を有する回転ブラシB1、B3は、一度宙に浮いた後で再び接地する際に、回転ブラシ接地補助機構GSMにより、その底面が床面に対して水平となるように、回転ブラシB1、B3用の駆動部D1、D3を接続するフレームアームの長手軸ζ1、ζ3(図9(A)参照。)の周りを受動的に或いは能動的に揺動する。 Further, in FIG. 16, the rotating brushes B1 and B3 having the tilt axes ξ1 and ξ3 (see FIG. 9A) that are non-perpendicular to the traveling direction are once floated in the air and then grounded again. The longitudinal axis ζ1, ζ3 of the frame arm that connects the drive parts D1, D3 for the rotating brushes B1, B3 so that the bottom surface thereof is horizontal with respect to the floor surface by the rotating brush grounding auxiliary mechanism GSM (FIG. 9 ( Swing passively or actively around A).
 図16(A)において、清掃装置EQ1は、図15(A)の状態と同様、階段の一段目に回転ブラシB1、B3と補助足FTとを接地させ、階段の二段目に回転ブラシB2を接地させた状態となっている。 In FIG. 16 (A), the cleaning device EQ1 grounds the rotating brushes B1, B3 and the auxiliary foot FT at the first step of the staircase, and the rotating brush B2 at the second step of the staircase, as in the state of FIG. 15 (A). Is grounded.
 図16(B)において、清掃装置EQ1は、補助足FTを階段の一段目に接地させたままの状態で、旋回駆動部RD2、RD3を旋回駆動させて、本体部(階段昇降用補助機構SLM以外の部分)を図16(A)の姿勢のまま階段一段分の高さだけ上昇させるようにする(上方(図中上方向)に鉛直移動させるようにする。)。 In FIG. 16 (B), the cleaning device EQ1 rotates the turning drive units RD2 and RD3 while keeping the auxiliary foot FT in contact with the first step of the staircase, so that the main body (the stair climbing auxiliary mechanism SLM) is driven. 16) is raised by the height of one step of the stairs while keeping the posture shown in FIG. 16A (moving vertically upward (upward in the figure)).
 図16(C)において、清掃装置EQ1は、補助足FTを階段の一段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて、本体部を進行方向(図中右方向)に水平移動させ、接地ローラGRを階段の三段目に接地させるようにする。 In FIG. 16 (C), the cleaning device EQ1 drives the turning drive parts RD1, RD2, and RD3 to turn in a traveling direction (FIG. The ground roller GR is grounded at the third step of the stairs.
 図16(D)において、清掃装置EQ1は、階段の二段目に回転ブラシB1、B3を接地させ、階段の三段目に回転ブラシB2を接地させた状態となる。 16D, the cleaning device EQ1 is in a state where the rotary brushes B1 and B3 are grounded at the second stage of the staircase and the rotary brush B2 is grounded at the third stage of the staircase.
 図16(E)において、清掃装置EQ1は、階段の二段目に回転ブラシB1、B3を接地させ、且つ、階段の三段目に回転ブラシB2を接地させたままの状態で、旋回駆動部RD2、RD3を旋回駆動させて補助足FTを宙に浮かせるようにする。 In FIG. 16 (E), the cleaning device EQ1 is configured so that the rotary brushes B1 and B3 are grounded at the second stage of the staircase, and the rotary brush B2 is grounded at the third stage of the staircase. RD2 and RD3 are swiveled to make the auxiliary foot FT float in the air.
 図16(F)において、清掃装置EQ1は、更に、階段の二段目に回転ブラシB1、B3を接地させ、且つ、階段の三段目に回転ブラシB2を接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて補助足FTを宙に浮かせたまま階段の二段目に接地可能な状態となる。 In FIG. 16 (F), the cleaning device EQ1 further turns in a state where the rotary brushes B1 and B3 are grounded at the second stage of the staircase and the rotary brush B2 is grounded at the third stage of the staircase. The driving units RD1, RD2, and RD3 are driven to turn, and the second leg of the staircase can be grounded while the auxiliary foot FT is suspended in the air.
 この状態において、清掃装置EQ1は、階段の幅方向に移動することによって、回転ブラシB1、B3により階段の二段目を、そして、回転ブラシB2により階段の三段目を清掃可能である。 In this state, the cleaning device EQ1 can clean the second step of the staircase by the rotating brushes B1 and B3 and the third step of the staircase by the rotating brush B2 by moving in the width direction of the staircase.
 また、この状態において、清掃装置EQ1は、補助足FTを階段の二段目に接地させることによって、接地位置が一段高いのを除き、図16(A)の状態と同じ状態とすることができる。 Further, in this state, the cleaning device EQ1 can be brought into the same state as the state of FIG. 16A except that the ground contact position is raised by one step by grounding the auxiliary foot FT at the second step of the staircase. .
 このようにして、清掃装置EQ1は、図16(A)~図16(F)の六つの状態を繰り返すようにして階段を昇ることができる。 In this way, the cleaning device EQ1 can ascend the stairs so as to repeat the six states of FIG. 16 (A) to FIG. 16 (F).
 以上の構成により、清掃装置EQ1は、階段昇降用補助機構SLMにより、段差のない平面を清掃することに加え、階段の各ステップ面を清掃することも可能となる。 With the above-described configuration, the cleaning device EQ1 can clean each step surface of the stairs in addition to cleaning a flat surface without a step by the stair climbing auxiliary mechanism SLM.
 また、清掃装置EQ1は、回転ブラシ接地補助機構GSMにより、階段昇降時に本体部が水平面に対して傾斜した場合であっても、回転ブラシB1、B2、B3の底面を階段の各ステップ面に平行にすることができ、回転ブラシB1、B2、B3を階段の各ステップ面に正立姿勢で接地させることができる。 In addition, the cleaning device EQ1 is configured so that the bottom surfaces of the rotating brushes B1, B2, and B3 are parallel to the step surfaces of the staircase even when the main body portion is inclined with respect to the horizontal plane when the staircase is moved up and down by the rotating brush grounding auxiliary mechanism GSM. The rotating brushes B1, B2, and B3 can be grounded in an upright posture on each step surface of the staircase.
 また、清掃装置EQ1は、支持多角形拡大機構SMMにより、階段昇降時であってもそのZMPを支持多角形内に留めることができ、階段昇降時の転倒を防止することができる。 Further, the cleaning device EQ1 can keep the ZMP in the support polygon even when the stairs are raised and lowered by the support polygon expanding mechanism SMM, and can prevent the fall when the stairs are raised and lowered.
 なお、上述の実施例では、清掃装置EQ1は、旋回駆動部RD1、RD2、RD3を旋回駆動させて、本体部を鉛直移動させた後、本体部を水平移動させる。しかしながら、清掃装置EQ1は、本体部の鉛直移動と水平移動とを同時に実行してもよい。すなわち、清掃装置EQ1は、補助足FTから遠ざかるように本体部を斜め上方に移動させてもよい。清掃装置EQ1が階段を降りる場合も同様である。 In the above-described embodiment, the cleaning device EQ1 drives the turning drive units RD1, RD2, and RD3 to rotate, vertically moves the main body, and then horizontally moves the main body. However, the cleaning device EQ1 may execute the vertical movement and the horizontal movement of the main body at the same time. That is, the cleaning device EQ1 may move the main body portion obliquely upward so as to move away from the auxiliary foot FT. The same is true when the cleaning device EQ1 goes down the stairs.
 次に、図17を参照しながら、本発明の実施例に係る、アクティブバランサ機構ABを備えた清掃装置EQ2について説明する。 Next, a cleaning device EQ2 including an active balancer mechanism AB according to an embodiment of the present invention will be described with reference to FIG.
 図17は、清掃装置EQ2の概略図であり、図17(A)は、その上面図を示し、図17(B)は、図17(A)の矢印16B方向から見た側面図を示す。 FIG. 17 is a schematic diagram of the cleaning device EQ2, FIG. 17 (A) shows a top view thereof, and FIG. 17 (B) shows a side view seen from the direction of the arrow 16B in FIG. 17 (A).
 清掃装置EQ2は、アクティブバランサ機構ABを備え、支持多角形拡大機構SMMを省略している点で、上述の清掃装置EQ1と相違するが、その他の点で共通する。そのため、共通点の説明を省略しながら、相違点を詳細に説明することとする。 The cleaning device EQ2 is different from the above-described cleaning device EQ1 in that it includes an active balancer mechanism AB and omits the support polygon enlarging mechanism SMM, but is common in other points. Therefore, the difference will be described in detail while omitting the description of the common points.
 アクティブバランサ機構ABは、清掃装置EQ2の重心GCの位置を調節するための機構であり、例えば、電動モータを用いたボールねじ機構等(図示せず。)によって重りWTをバランサレールBRに沿って(矢印AR3参照。)移動させることにより、清掃装置EQ2の重心GCの位置を所望の位置に移動させるようにする。 The active balancer mechanism AB is a mechanism for adjusting the position of the center of gravity GC of the cleaning device EQ2. For example, the weight WT is moved along the balancer rail BR by a ball screw mechanism or the like (not shown) using an electric motor. (See arrow AR3.) By moving, the position of the center of gravity GC of the cleaning device EQ2 is moved to a desired position.
 上述の清掃装置EQ1は、所定範囲内の値の加速度で本体部を進行方向に水平移動させることによって、補助足FTによって形成される支持多角形内からそのZMPが逸脱するのを遅らせるようにして転倒を防止するが、清掃装置EQ2は、アクティブバランサ機構ABを用いることによって、進行方向における本体部の水平移動速度にかかわらず、補助足FTによって形成される支持多角形内にその重心GCの床面投影点を留まらせて転倒を防止する。 The above-described cleaning device EQ1 delays the ZMP from deviating from the support polygon formed by the auxiliary foot FT by horizontally moving the main body portion in the traveling direction at an acceleration within a predetermined range. Although the cleaning device EQ2 uses the active balancer mechanism AB, the floor of the center of gravity GC is formed in the support polygon formed by the auxiliary foot FT regardless of the horizontal movement speed of the main body in the traveling direction. The surface projection point is kept to prevent falling.
 次に、図18を参照しながら、清掃装置EQ2の階段昇降方法について説明する。 Next, a method for raising and lowering the stairs of the cleaning device EQ2 will be described with reference to FIG.
 清掃装置EQ2が階段を昇降する際の階段昇降用補助機構SLMの動きは、図18(A)~図18(F)の六つの状態で表され、清掃装置EQ2が階段を昇る場合、図18(A)~図18(F)の順で時系列に進行するものとする。なお、階段昇降用補助機構SLMの動きは、清掃装置EQ2が階段を降りる場合には、階段を昇る場合とは逆の順番で時系列に進行するものとする。 The movement of the stair lift assist mechanism SLM when the cleaning device EQ2 moves up and down the stairs is represented by the six states of FIGS. 18A to 18F. When the cleaning device EQ2 moves up the stairs, FIG. It is assumed that the processing proceeds in time series in the order of (A) to FIG. 18 (F). It is assumed that the movement of the stair climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning device EQ2 descends the stairs.
 また、図18(A)~図18(F)のそれぞれは、図15及び図16と同様、階段を昇降する清掃装置EQ2の上面図(上図)と側面図(下図)との組み合わせで構成されるものとする。 Each of FIGS. 18A to 18F includes a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ2 that moves up and down the stairs, as in FIGS. Shall be.
 なお、図18において、進行方向に対して非垂直となる傾斜軸ξ1、ξ3(図9(A)参照。)を有する回転ブラシB1、B3は、一度宙に浮いた後で再び接地する際に、回転ブラシ接地補助機構GSMにより、その底面が床面に対して水平となるように、回転ブラシB1、B3用の駆動部D1、D3を接続するフレームアームの長手軸ζ1、ζ3(図9(A)参照。)の周りを受動的に或いは能動的に揺動する。 In FIG. 18, the rotating brushes B1 and B3 having the tilt axes ξ1 and ξ3 (see FIG. 9A) that are non-perpendicular to the traveling direction are floated once in the air and then grounded again. The longitudinal axis ζ1, ζ3 of the frame arm that connects the drive parts D1, D3 for the rotating brushes B1, B3 so that the bottom surface thereof is horizontal with respect to the floor surface by the rotating brush grounding auxiliary mechanism GSM (FIG. 9 ( Swing passively or actively around A).
 図18(A)において、清掃装置EQ2は、階段の一段目に回転ブラシB1、B3と補助足FTとを接地させ、階段の二段目に回転ブラシB2を接地させた状態となっている。 18A, the cleaning device EQ2 is in a state where the rotary brushes B1 and B3 and the auxiliary foot FT are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase.
 図18(B)において、清掃装置EQ2は、階段の一段目に回転ブラシB1、B3を接地させ、且つ、階段の二段目に回転ブラシB2を接地させたままの状態で、旋回駆動部RD2、RD3を旋回駆動させて補助足FTを宙に浮かせるようにする。 In FIG. 18B, the cleaning device EQ2 is configured so that the rotary brushes B1 and B3 are grounded at the first stage of the staircase, and the rotary brush B2 is grounded at the second stage of the staircase. , RD3 is driven to turn so that the auxiliary foot FT floats in the air.
 この状態において、清掃装置EQ2は、階段の幅方向に移動することによって、回転ブラシB1、B3により階段の一段目を、そして、回転ブラシB2により階段の二段目を清掃可能である。 In this state, the cleaning device EQ2 can clean the first step of the staircase by the rotating brushes B1 and B3 and the second step of the staircase by the rotating brush B2 by moving in the width direction of the staircase.
 図18(C)において、清掃装置EQ2は、更に、階段の一段目に回転ブラシB1、B3を接地させ、且つ、階段の二段目に回転ブラシB2を接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて補助足FTを階段の二段目に接地させるようにする。 In FIG. 18C, the cleaning device EQ2 is further driven to turn while the rotary brushes B1 and B3 are grounded at the first step of the staircase and the rotary brush B2 is grounded at the second step of the staircase. The parts RD1, RD2, and RD3 are driven to turn so that the auxiliary foot FT is grounded at the second step of the stairs.
 このとき、清掃装置EQ2は、アクティブバランサ機構ABにより、重りWTをバランサレールBRに沿って進行方向(図中右方向)に移動させ、重心GCの位置を進行方向に移動させるようにする。重心GCの位置が、上面視で、補助足FTによる支持多角形内に入るようにするためである。 At this time, the cleaning device EQ2 uses the active balancer mechanism AB to move the weight WT along the balancer rail BR in the traveling direction (right direction in the figure) and move the position of the center of gravity GC in the traveling direction. This is because the position of the center of gravity GC is within the support polygon formed by the auxiliary foot FT in a top view.
 図18(D)において、清掃装置EQ2は、補助足FTを階段の二段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて、本体部(階段昇降用補助機構SLM以外の部分)を図18(C)の姿勢のまま階段一段分の高さだけ上昇させるようにする(上方(図中上方向)に鉛直移動させるようにする。)。 In FIG. 18D, the cleaning device EQ2 drives the turning drive units RD1, RD2, and RD3 while keeping the auxiliary foot FT in contact with the second step of the staircase, thereby turning the main body (for raising and lowering the staircase). The portion other than the auxiliary mechanism SLM is raised by the height of one step in the posture shown in FIG. 18C (vertically moved upward (upward in the drawing)).
 図18(E)において、清掃装置EQ2は、補助足FTを階段の二段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて本体部を進行方向に水平移動させる。 In FIG. 18 (E), the cleaning device EQ2 keeps the auxiliary foot FT in contact with the second step of the staircase and drives the turning drive portions RD1, RD2, and RD3 to turn the main body portion in the traveling direction. Move.
 このとき、清掃装置EQ2は、アクティブバランサ機構ABにより、その水平移動の進行度合いに応じて、進行方向に移動させてある重りを進行逆方向に移動させ、重心GCの位置が上面視で補助足FTによる支持多角形内に留まるようにする。 At this time, the cleaning device EQ2 uses the active balancer mechanism AB to move the weight, which has been moved in the traveling direction, in the traveling reverse direction according to the degree of progress of the horizontal movement, and the position of the center of gravity GC is the auxiliary foot in top view. Stay within the FT support polygon.
 図18(F)において、清掃装置EQ2は、階段の二段目に回転ブラシB1、B3と補助足FTとを接地させ、階段の三段目に回転ブラシB2を接地させた状態となっており、接地位置が一段高いのを除き、図18(A)の状態と同じ状態となっている。 In FIG. 18 (F), the cleaning device EQ2 is in a state where the rotary brushes B1 and B3 and the auxiliary foot FT are grounded at the second step of the staircase, and the rotary brush B2 is grounded at the third step of the staircase. Except that the grounding position is one step higher, the state is the same as the state of FIG.
 このようにして、清掃装置EQ2は、図18(A)~図18(F)の六つの状態を繰り返すようにして階段を昇ることができる。 In this way, the cleaning device EQ2 can ascend the stairs so as to repeat the six states of FIG. 18 (A) to FIG. 18 (F).
 次に、図19を参照しながら、清掃装置EQ2の別の階段昇降方法について説明する。 Next, another method for raising and lowering the stairs of the cleaning device EQ2 will be described with reference to FIG.
 図19における階段昇降方法は、主に、進行方向前方(階段の上段側)に回転ブラシB1、B3を配置し、進行方向後方(階段の下段側)に回転ブラシB2を配置する点で、図18における階段昇降方法と相違する。 The stair climbing method in FIG. 19 is mainly in that rotating brushes B1 and B3 are arranged in front of the traveling direction (upper stage side of the staircase), and rotating brush B2 is arranged rearward in the traveling direction (lower stage side of the staircase). This is different from the stair climbing method in FIG.
 図19における階段昇降用補助機構SLMの動きは、図18の場合と同様、図19(A)~図19(F)の六つの状態で表され、清掃装置EQ2が階段を昇る場合、図19(A)~図19(F)の順で時系列に進行するものとする。なお、階段昇降用補助機構SLMの動きは、清掃装置EQ2が階段を降りる場合には、階段を昇る場合とは逆の順番で時系列に進行するものとする。 The movement of the stair-climbing auxiliary mechanism SLM in FIG. 19 is represented by the six states of FIGS. 19A to 19F as in FIG. 18, and when the cleaning device EQ2 moves up the stairs, FIG. It is assumed that the process proceeds in time series in the order of (A) to FIG. 19 (F). Note that the movement of the stair-climbing auxiliary mechanism SLM proceeds in chronological order in the reverse order to that when the cleaning device EQ2 goes down the stairs, when going up the stairs.
 また、図19(A)~図19(F)のそれぞれは、階段を昇降する清掃装置EQ2の上面図(上図)と側面図(下図)との組み合わせで構成されるものとする。 Further, each of FIGS. 19A to 19F is configured by a combination of a top view (upper view) and a side view (lower view) of the cleaning device EQ2 that moves up and down the stairs.
 また、図19において、進行方向に対して非垂直となる傾斜軸ξ1、ξ3(図9(A)参照。)を有する回転ブラシB1、B3は、一度宙に浮いた後で再び接地する際に、回転ブラシ接地補助機構GSMにより、その底面が床面に対して水平となるように、回転ブラシB1、B3用の駆動部D1、D3を接続するフレームアームの長手軸ζ1、ζ3(図9(A)参照。)の周りを受動的に或いは能動的に揺動する。 In FIG. 19, the rotating brushes B1 and B3 having the tilt axes ξ1 and ξ3 (see FIG. 9A) that are non-perpendicular to the traveling direction are once floated in the air and then grounded again. The longitudinal axis ζ1, ζ3 of the frame arm that connects the drive parts D1, D3 for the rotating brushes B1, B3 so that the bottom surface thereof is horizontal with respect to the floor surface by the rotating brush grounding auxiliary mechanism GSM (FIG. 9 ( Swing passively or actively around A).
 図19(A)において、清掃装置EQ2は、階段の一段目に回転ブラシB2と補助足FTとを接地させ、階段の二段目に回転ブラシB1、B3を接地させた状態となっている。 In FIG. 19A, the cleaning device EQ2 is in a state where the rotary brush B2 and the auxiliary foot FT are grounded at the first stage of the stairs and the rotary brushes B1 and B3 are grounded at the second stage of the stairs.
 図19(B)において、清掃装置EQ2は、階段の一段目に回転ブラシB2を接地させ、且つ、階段の二段目に回転ブラシB1、B3を接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて補助足FTを宙に浮かせるようにする。 In FIG. 19 (B), the cleaning device EQ2 is configured so that the rotary brush B2 is grounded at the first step of the staircase, and the rotary brushes B1 and B3 are grounded at the second step of the staircase. , RD2 and RD3 are driven to turn so that the auxiliary foot FT floats in the air.
 この状態において、清掃装置EQ2は、階段の幅方向に移動することによって、回転ブラシB2により階段の一段目を、そして、回転ブラシB1、B3により階段の二段目を清掃可能である。 In this state, the cleaning device EQ2 can clean the first step of the stairs with the rotating brush B2 and the second step of the stairs with the rotating brushes B1 and B3 by moving in the width direction of the stairs.
 図19(C)において、清掃装置EQ2は、更に、階段の一段目に回転ブラシB2を接地させ、且つ、階段の二段目に回転ブラシB1、B3を接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて補助足FTを階段の二段目に接地させるようにする。 In FIG. 19C, the cleaning device EQ2 is further driven to turn while the rotary brush B2 is grounded at the first step of the staircase and the rotary brushes B1 and B3 are grounded at the second step of the staircase. The parts RD1, RD2, and RD3 are driven to turn so that the auxiliary foot FT is grounded at the second step of the stairs.
 このとき、清掃装置EQ2は、アクティブバランサ機構ABにより、重りWTをバランサレールBRに沿って進行方向(図中右方向)に移動させ、重心GCの位置を進行方向に移動させるようにする。重心GCの位置が、上面視で、補助足FTによる支持多角形内に入るようにするためである。 At this time, the cleaning device EQ2 uses the active balancer mechanism AB to move the weight WT along the balancer rail BR in the traveling direction (right direction in the figure) and move the position of the center of gravity GC in the traveling direction. This is because the position of the center of gravity GC is within the support polygon formed by the auxiliary foot FT in a top view.
 図19(D)において、清掃装置EQ2は、補助足FTを階段の二段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて、本体部(階段昇降用補助機構SLM以外の部分)を図19(C)の姿勢のまま階段一段分の高さだけ上昇させるようにする(上方(図中上方向)に鉛直移動させるようにする。)。 In FIG. 19D, the cleaning device EQ2 rotates the turning drive units RD1, RD2, and RD3 while keeping the auxiliary foot FT in contact with the second step of the staircase, and the main body portion (for raising and lowering the staircase). The portion other than the auxiliary mechanism SLM) is raised by the height of one step in the posture shown in FIG. 19C (vertically moved upward (upward in the drawing)).
 図19(E)において、清掃装置EQ2は、補助足FTを階段の二段目に接地させたままの状態で、旋回駆動部RD1、RD2、RD3を旋回駆動させて本体部を進行方向に水平移動させる。 In FIG. 19 (E), the cleaning device EQ2 keeps the auxiliary foot FT in contact with the second step of the staircase and drives the turning drive portions RD1, RD2, and RD3 to turn the main body portion in the traveling direction. Move.
 このとき、清掃装置EQ2は、アクティブバランサ機構ABにより、その水平移動の進行度合いに応じて、進行方向に移動させてある重りを進行逆方向に移動させ、重心GCの位置が上面視で補助足FTによる支持多角形内に留まるようにする。 At this time, the cleaning device EQ2 uses the active balancer mechanism AB to move the weight, which has been moved in the traveling direction, in the traveling reverse direction according to the degree of progress of the horizontal movement, and the position of the center of gravity GC is the auxiliary foot in top view. Stay within the FT support polygon.
 図19(F)において、清掃装置EQ2は、階段の二段目に回転ブラシB2と補助足FTとを接地させ、階段の三段目に回転ブラシB1、B3を接地させた状態となっており、接地位置が一段高いのを除き、図19(A)の状態と同じ状態となっている。 In FIG. 19F, the cleaning device EQ2 is in a state where the rotating brush B2 and the auxiliary foot FT are grounded at the second stage of the staircase, and the rotating brushes B1 and B3 are grounded at the third stage of the staircase. Except that the grounding position is one step higher, the state is the same as the state of FIG.
 このようにして、清掃装置EQ2は、図19(A)~図19(F)の六つの状態を繰り返すようにして階段を昇ることができる。 In this way, the cleaning device EQ2 can ascend the stairs so as to repeat the six states of FIG. 19 (A) to FIG. 19 (F).
 以上の構成により、清掃装置EQ2は、アクティブバランサ機構ABにより、階段昇降時であってもその重心GCの床面投影点を補助足FTによる支持多角形内に留めることができ、階段昇降時の転倒を防止することができる。 With the above configuration, the cleaning device EQ2 can keep the floor projection point of the center of gravity GC within the support polygon by the auxiliary foot FT even when the stairs are raised and lowered by the active balancer mechanism AB. Falling can be prevented.
 なお、上述の実施例では、清掃装置EQ2は、旋回駆動部RD1、RD2、RD3を旋回駆動させて、本体部を鉛直移動させた後、本体部を水平移動させる。しかしながら、清掃装置EQ2は、本体部の鉛直移動と水平移動とを同時に実行してもよい。すなわち、清掃装置EQ2は、補助足FTから遠ざかるように本体部を斜め上方に移動させてもよい。清掃装置EQ2が階段を降りる場合も同様である。 In the above-described embodiment, the cleaning device EQ2 drives the turning drive units RD1, RD2, and RD3 to turn, vertically moves the main body, and then horizontally moves the main body. However, the cleaning device EQ2 may execute the vertical movement and the horizontal movement of the main body at the same time. That is, the cleaning device EQ2 may move the main body portion obliquely upward so as to move away from the auxiliary foot FT. The same is true when the cleaning device EQ2 goes down the stairs.
 次に、図20を参照しながら、本発明の実施例に係る清掃装置EQ3について説明する。 Next, a cleaning device EQ3 according to an embodiment of the present invention will be described with reference to FIG.
 図20は、清掃装置EQ3の概略図であり、図20(A)は、その上面図を示し、図20(B)は、図20(A)の矢印20B方向から見た側面図を示し、図20(C)は、図20(A)の矢印20C方向から見た側面図を示す。 20 is a schematic view of the cleaning device EQ3, FIG. 20 (A) shows a top view thereof, FIG. 20 (B) shows a side view seen from the direction of the arrow 20B in FIG. 20 (A), FIG. 20C shows a side view seen from the direction of the arrow 20C in FIG.
 清掃装置EQ3は、三つの回転ブラシB1、B2、B3の代わりに、一つの回転ブラシB4を備える点で、清掃装置EQ1と相違するが、その他の点で共通する。そのため、共通点の説明を省略しながら、相違点を詳細に説明する。 The cleaning device EQ3 is different from the cleaning device EQ1 in that it includes one rotating brush B4 instead of the three rotating brushes B1, B2, and B3, but is common in other points. Therefore, the difference will be described in detail while omitting the description of the common points.
 清掃装置EQ3において、リング状のフレームFR3は、回転ブラシB4の駆動部D4の周りに結合され、回転ブラシB4を傾斜不能に支持する。また、フレームFR3は、4本の支持体取付部SPを介して、2つの駆動輪RL-1、RL-3と、2つの従動輪RL-2、RL-4とで構成される支持体によって床面上に支持される。 In the cleaning device EQ3, the ring-shaped frame FR3 is coupled around the drive unit D4 of the rotating brush B4, and supports the rotating brush B4 so as not to tilt. The frame FR3 is supported by a support body constituted by two drive wheels RL-1 and RL-3 and two driven wheels RL-2 and RL-4 via four support body attachment portions SP. Supported on the floor.
 具体的には、支持体は、回転ブラシB4の周りに、回転ブラシB4の回転軸を中心とする円の円周上に等間隔(90度間隔)に順番に4つ配置される駆動輪RL-1、従動輪RL-2、駆動輪RL-3、及び従動輪RL-4で構成される。 Specifically, four support wheels are arranged in order at equal intervals (90-degree intervals) on the circumference of a circle around the rotation axis of the rotation brush B4 around the rotation brush B4. -1, driven wheel RL-2, driving wheel RL-3, and driven wheel RL-4.
 駆動輪RL-1、RL-3は、回転ブラシB4の回転軸を挟んで対称的に配置され、個別の回転モータ(図示せず。)によって独立に回転駆動される。 The driving wheels RL-1 and RL-3 are arranged symmetrically with the rotating shaft of the rotating brush B4 interposed therebetween, and are driven to rotate independently by individual rotating motors (not shown).
 従動輪RL-2、RL-4は、回転ブラシB4の回転軸を挟んで対称的に配置されるキャスターであり、フレームFR3(清掃装置EQ3)の移動方向又は回転方向に合わせて向きを変えることができ、駆動輪RL-1、RL-3によるフレームFR3(清掃装置EQ3)の移動、及び、回転軸周りの超信地旋回等を補助する。 The driven wheels RL-2 and RL-4 are casters arranged symmetrically with the rotation shaft of the rotating brush B4 interposed therebetween, and change the direction according to the moving direction or the rotating direction of the frame FR3 (cleaning device EQ3). It assists the movement of the frame FR3 (cleaning device EQ3) by the drive wheels RL-1 and RL-3, the super turning around the rotation axis, and the like.
 このようにして、支持体は、回転防止機構及び移動機構を兼ねる差動2輪機構を構成し、非ホロノミックな全方位移動を可能にする。 Thus, the support constitutes a differential two-wheel mechanism that doubles as an anti-rotation mechanism and a movement mechanism, and enables non-holonomic omnidirectional movement.
 制御装置CDの移動制御部MCは、制御対象である回転ブラシB4、駆動輪RL-1、RL-3のそれぞれが出力する回転状態情報を所定のサンプリング周期で受信し、制御対象のそれぞれが目標回転状態となるよう、制御対象のそれぞれを独立にフィードバック制御する。 The movement control unit MC of the control device CD receives the rotation state information output from each of the rotating brush B4 and the driving wheels RL-1 and RL-3, which are control targets, at a predetermined sampling period, and each of the control targets is a target. Each of the controlled objects is independently feedback controlled so as to be in a rotating state.
 また、清掃装置EQ3は、ブラシ傾け機構を更に備え、駆動輪RL-1、RL-3による推進力をアシストする推進力として回転ブラシB4による推進力を利用することもできる。 Further, the cleaning device EQ3 further includes a brush tilting mechanism, and the propulsive force by the rotating brush B4 can be used as a propulsive force that assists the propulsive force by the drive wheels RL-1 and RL-3.
 以上の構成により、清掃装置EQ3は、清掃装置EQ1と同様、階段昇降用補助機構SLMにより、段差のない平面を清掃することに加え、階段の各ステップ面を清掃することも可能となる。 With the above configuration, the cleaning device EQ3 can also clean each step surface of the stairs in addition to cleaning the flat surface without steps by the stair climbing auxiliary mechanism SLM, similarly to the cleaning device EQ1.
 また、清掃装置EQ3は、清掃装置EQ1と同様、支持多角形拡大機構SMMにより、階段昇降時であってもそのZMPを支持多角形内に留めることができ、階段昇降時の転倒を防止することができる。 In addition, the cleaning device EQ3, like the cleaning device EQ1, can hold the ZMP within the support polygon even when the stairs are raised and lowered by the support polygon enlarging mechanism SMM, and prevent the fall when the stairs are raised and lowered. Can do.
 また、清掃装置EQ3は、支持多角形拡大機構SMMの代わりに、アクティブバランサ機構ABを備えるようにしてもよい。その場合、清掃装置EQ3は、清掃装置EQ2と同様、アクティブバランサ機構ABにより、階段昇降時であってもその重心GCの床面投影点を補助足FTによる支持多角形内に留めることができ、階段昇降時の転倒を防止することができる。 Further, the cleaning device EQ3 may include an active balancer mechanism AB instead of the support polygon enlarging mechanism SMM. In that case, the cleaning device EQ3, like the cleaning device EQ2, can keep the floor projection point of the center of gravity GC within the support polygon by the auxiliary foot FT by the active balancer mechanism AB even when the stairs are raised or lowered. It is possible to prevent a fall when the stairs are raised or lowered.
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.
 例えば、上述の実施例において、傾斜軸ξ1、ξ2、ξ3は、上面視で正三角形を形成するが、傾斜軸ξ1、ξ2、ξ3の全てが上面視で平行となるものでなければ、正三角形以外の他の三角形を形成するものであってもよい。 For example, in the above-described embodiment, the tilt axes ξ1, ξ2, and ξ3 form a regular triangle when viewed from the top, but if all of the tilt axes ξ1, ξ2, and ξ3 are not parallel when viewed from the top, the regular triangle Other triangles may be formed.
 また、上述の実施例において、回転ブラシB1、B2、B3は、共通の直径を有し、共通の回転速度で共通の方向に回転するが、それぞれ異なる直径を有していてもよく、それぞれ異なる回転速度で回転するものであってもよく、時計回り及び反時計回りの何れの方向に回転するものであってもよい。 In the above-described embodiments, the rotating brushes B1, B2, and B3 have a common diameter and rotate in a common direction at a common rotational speed, but may have different diameters and are different from each other. It may be one that rotates at a rotational speed, or one that rotates in either a clockwise or counterclockwise direction.
 この場合、移動制御部MCは、回転ブラシB1、B2、B3のそれぞれの直径、相対位置(例えば、清掃装置EQの中心からの距離)、回転速度、回転方向等と傾斜軸ξ1、ξ2、ξ3のそれぞれの方向に作用する推進力との間の対応関係に関する情報、又はその推進力を導き出すための演算式を予め記憶しており、それらの情報又は演算式に基づいて、所望の推進合力(所望の方向への移動)を実現するための目標回転状態及び目標傾斜状態を導き出すようにする。 In this case, the movement controller MC determines the respective diameters, relative positions (for example, distances from the center of the cleaning device EQ), rotation speed, rotation direction, and the like of the rotation brushes B1, B2, and B3 and the tilt axes ξ1, ξ2, and ξ3. Information on the correspondence relationship between the propulsive forces acting in the respective directions of, or an arithmetic expression for deriving the propulsive force is stored in advance, and based on the information or the arithmetic expression, a desired propulsive resultant force ( A target rotation state and a target inclination state for realizing (movement in a desired direction) are derived.
 また、上述の実施例において、清掃装置EQは、自律的に移動方向を決定するものとして説明されているが、清掃装置EQから延びるコード等に接続される操作部(例えば、十字カーソルを備えたコントローラである。)を操作者が手動で操作することによってその移動方向を決定するものであってもよく、操作者がリモコンを介した遠隔操作によってその移動方向を決定するものであってもよい。 In the above-described embodiment, the cleaning device EQ is described as autonomously determining the moving direction. However, an operation unit (for example, a cross cursor is provided) connected to a cord or the like extending from the cleaning device EQ. Controller may be determined manually by the operator, or the operator may determine the direction of movement by remote operation via a remote controller. .
 また、上述の実施例において、清掃装置EQは、三つの回転ブラシB1、B2、B3のそれぞれを回転可能で且つ傾斜可能とするが、三つの回転ブラシB1、B2、B3のうちの二つを回転可能で且つ傾斜可能とし、残りの一つを回転のみ可能な構成としてもよい。 In the above-described embodiment, the cleaning device EQ can rotate and tilt each of the three rotating brushes B1, B2, and B3, but two of the three rotating brushes B1, B2, and B3 can be rotated. It is good also as a structure which can be rotated and can be tilted and can only rotate the remaining one.
 また、上述の実施例において、階段昇降用補助機構SLMは、三つの回転ブラシB1、B2、B3を備えた清掃装置EQ1、EQ2に装着されるが、二つ又は四つ以上の回転ブラシを備えた清掃装置に装着されてもよく、その場合、図15に示すような補助足先行型の階段昇降方法(清掃装置の回転ブラシが接地する二段のステップ面のうちの上段側に補助足FTを接地させながら清掃装置の本体部を浮かせる方法)が採用されてもよく、図16に示すような補助足追従型の階段昇降方法(清掃装置の回転ブラシが接地する二段のステップ面のうちの下段側に補助足FTを接地させながら清掃装置の本体部を浮かせる方法)が採用されてもよい。単一の回転ブラシB4を備えた清掃装置EQ3についても同様である。 Further, in the above-described embodiment, the stair climbing auxiliary mechanism SLM is mounted on the cleaning devices EQ1, EQ2 including the three rotating brushes B1, B2, B3, but includes two or four or more rotating brushes. 15 may be attached to the cleaning device. In this case, the auxiliary foot leading type stair ascending / descending method as shown in FIG. 15 (the auxiliary foot FT on the upper step side of the two step surfaces where the rotating brush of the cleaning device contacts the ground) The method of floating the main body of the cleaning device while grounding the device may be employed, and an auxiliary foot following type stair ascending / descending method as shown in FIG. 16 (of the two step surfaces where the rotating brush of the cleaning device contacts the ground) A method of floating the main body of the cleaning device while grounding the auxiliary foot FT on the lower side may be employed. The same applies to the cleaning device EQ3 provided with a single rotating brush B4.
 また、上述の実施例において、階段昇降用補助機構SLMは、清掃装置EQ1、EQ2、EQ3の階段昇降を補助するものとして説明されるが、清掃装置EQ1、EQ2、EQ3が溝や段差を跨ぐのを補助するようにしてもよい。 Further, in the above-described embodiment, the stair climbing auxiliary mechanism SLM is described as assisting the stair lift of the cleaning devices EQ1, EQ2, EQ3, but the cleaning devices EQ1, EQ2, EQ3 straddle a groove or a step. You may make it assist.
 また、上述の実施例において、清掃装置EQ1は、回転ブラシB2のための接地ローラGRを備えるのみであるが、回転ブラシB1、B3のための接地ローラを備えるようにしてもよい。回転ブラシB1、B3の接地をより円滑なものとするためである。 In the above-described embodiment, the cleaning device EQ1 only includes the grounding roller GR for the rotating brush B2, but may include the grounding roller for the rotating brushes B1 and B3. This is to make the grounding of the rotating brushes B1 and B3 smoother.
 また、上述の実施例において、階段昇降用補助機構SLMは、清掃装置EQ1、EQ2が一段ずつ階段を昇降できるように動作するが、清掃装置EQ1、EQ2が二段ずつ階段を昇降できるように動作するものであってもよい。 Further, in the above-described embodiment, the stair lifting / lowering auxiliary mechanism SLM operates so that the cleaning devices EQ1 and EQ2 can move up and down the stairs one step at a time, but the cleaning devices EQ1 and EQ2 operate so as to move up and down the stairs by two steps. You may do.
 また、上述の実施例において、階段昇降用補助機構SLMは、清掃装置EQ1、EQ2、EQ3が三段以上のステップ面を有する階段を昇降できるように動作するが、一段のみのステップ面を有する階段、及び、二段のステップ面を有する階段についても、同様に昇降可能である。 In the above-described embodiment, the stair lift assist mechanism SLM operates so that the cleaning devices EQ1, EQ2, EQ3 can move up and down a staircase having three or more step surfaces, but a staircase having only one step surface. Similarly, a staircase having two step surfaces can be raised and lowered.
 また、上述の実施例において、階段昇降用補助機構SLMは、三つの回転ブラシB1、B2、B3のうちの一つを二段のステップ面のうちの一方に接地させ、残りの二つをそれら二段のステップ面のうちの他方に接地させながら階段を昇降できるように動作するが、三つの回転ブラシB1、B2、B3の全てを同じステップ面に接地させながら階段を一段ずつ昇降できるように動作するものであってもよい。 Further, in the above-described embodiment, the stair-climbing auxiliary mechanism SLM causes one of the three rotating brushes B1, B2, and B3 to be grounded to one of the two step surfaces, and the remaining two to be used. Operates so that the stairs can be raised and lowered while being grounded to the other of the two step surfaces, but the stairs can be raised and lowered step by step while all three rotating brushes B1, B2, and B3 are grounded to the same step surface. It may operate.
 また、本願は、2010年12月24日に出願した日本国特許出願2010-288898号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。 Further, this application claims priority based on Japanese Patent Application No. 2010-288898 filed on Dec. 24, 2010, the entire contents of which are incorporated herein by reference.
 AB・・・アクティブバランサ機構 AM1、AM2・・・旋回モータ AS・・・姿勢検出装置 B1、B2、B3、B4・・・回転ブラシ BR・・・バランサレール CD・・・制御装置 D1、D2、D3、D4・・・駆動部 EQ、EQ1、EQ2、EQ3・・・清掃装置 F1、F2、F3・・・推進力 FR、FR3・・・フレーム G11、G13、G15、G17、G19・・・従動ギア G12、G14、G16、G18・・・駆動ギア GR・・・接地ローラ GSM・・・回転ブラシ接地補助機構 LK1、LK2・・・リンク部材 MC・・・移動制御部 NRP・・・非回転部 PS・・・位置検出装置 RD1、RD2、RD3・・・旋回駆動部 RL-1、RL-3・・・駆動輪 RL-2、RL-4・・・従動輪 RM1、RM2、RM3・・・回転モータ RP・・・回転部 RS1、RS2、RS3・・・回転検出器 SD・・・記憶装置 SD1・・・清掃マップ SFT11・・・回転シャフト SFT12、SFT12-1、SFT12-2・・・傾斜シャフト SLM・・・階段昇降用補助機構 SMM・・・支持多角形拡大機構 SP・・・支持体取付部 ST・・・ステー部材 TF・・・推進合力 TM1、TM2、TM3・・・傾斜モータ TS1、TS2、TS3・・・傾斜検出器 WT・・・重り η1、η2、η3・・・回転軸 ξ1、ξ2、ξ3・・・傾斜軸 ζ1、ζ3・・・長手軸 AB ... Active balancer mechanism AM1, AM2 ... Turning motor AS ... Attitude detection device B1, B2, B3, B4 ... Rotating brush BR ... Balancer rail CD ... Control device D1, D2, D3, D4 ... Drive unit EQ, EQ1, EQ2, EQ3 ... Cleaning devices F1, F2, F3 ... Propulsion FR, FR3 ... Frame G11, G13, G15, G17, G19 ... Follower Gear G12, G14, G16, G18 ... Drive gear GR ... Grounding roller GSM ... Rotating brush grounding assist mechanism LK1, LK2 ... Link member MC ... Movement control part NRP ... Non-rotating part PS: Position detection device RD1, RD2, RD3 ... Turning drive unit RL-1, RL-3 ... Drive wheels RL-2, RL-4 -Follower wheel RM1, RM2, RM3 ... Rotating motor RP ... Rotating part RS1, RS2, RS3 ... Rotation detector SD ... Storage device SD1 ... Cleaning map SFT11 ... Rotating shaft SFT12, SFT12-1, SFT12-2 ... Inclined shaft SLM ... Auxiliary mechanism for stair climbing SMM ... Support polygon enlargement mechanism SP ... Support attachment part ST ... Stay member TF ... Propulsion resultant force TM1, TM2, TM3 ... tilt motor TS1, TS2, TS3 ... tilt detector WT ... weight η1, η2, η3 ... rotation axis ξ1, ξ2, ξ3 ... tilt axis ζ1, ζ3 ..Long axis

Claims (10)

  1.  ブラシと、
     前記ブラシを回転可能に支持するフレームと、
     補助足と、
     前記フレームに結合され、前記補助足を前記フレームに近づけ或いは前記フレームから遠ざけることができるように前記補助足を支持する機構と、
     前記機構を動作させて前記ブラシと前記補助足とで清掃装置を歩行させる制御装置と、
     を備える清掃装置。
    Brush and
    A frame that rotatably supports the brush;
    An auxiliary foot,
    A mechanism coupled to the frame and supporting the auxiliary foot so that the auxiliary foot can be moved closer to or away from the frame;
    A control device for operating the mechanism to cause the cleaning device to walk with the brush and the auxiliary foot;
    A cleaning device comprising:
  2.  フレームと、該フレームに接続される1又は複数のブラシと、該フレームに接続される補助足とを有する清掃装置であって、
     前記1又は複数のブラシのうちの少なくとも一つが第一面に接地し前記補助足が浮いた第一状態から、前記補助足が第二面に接地した第二状態、前記1又は複数のブラシの全てが浮いた第三状態、及び、前記1又は複数のブラシのうちの前記少なくとも一つが第三面に接地し前記補助足が前記第二面に接地した第四状態を経て、前記1又は複数のブラシのうちの前記少なくとも一つが前記第三面に接地し前記補助足が浮いた第五状態に、当該清掃装置の状態を移行させる機構を備える、
     ことを特徴とする請求項1に記載の清掃装置。
    A cleaning device having a frame, one or more brushes connected to the frame, and auxiliary feet connected to the frame,
    From a first state in which at least one of the one or more brushes contacts the first surface and the auxiliary foot floats, a second state in which the auxiliary foot contacts the second surface, the one or more brushes Through the third state where all floats and the fourth state where the at least one of the one or more brushes contacts the third surface and the auxiliary foot contacts the second surface, the one or more A mechanism for shifting the state of the cleaning device to a fifth state in which at least one of the brushes contacts the third surface and the auxiliary foot floats;
    The cleaning apparatus according to claim 1.
  3.  前記第二面は、前記第一面又は前記第三面と同一平面である、
     ことを特徴とする請求項2に記載の清掃装置。
    The second surface is flush with the first surface or the third surface.
    The cleaning apparatus according to claim 2.
  4.  前記複数のブラシのそれぞれは、前記フレームに対して回転可能で且つ傾斜可能であり、
     前記複数のブラシのうち、非平面移動時の移動方向に垂直でない傾斜軸を有するブラシは、前記フレームに対して、前記傾斜軸に垂直で且つ回転軸に平行でない揺動軸の周りを揺動可能である、
     ことを特徴とする請求項1乃至3の何れか一項に記載の清掃装置。
    Each of the plurality of brushes is rotatable and tiltable with respect to the frame;
    Of the plurality of brushes, a brush having a tilt axis that is not perpendicular to the moving direction during non-planar movement swings around a swing axis that is perpendicular to the tilt axis and not parallel to the rotation axis with respect to the frame. Is possible,
    The cleaning device according to any one of claims 1 to 3, wherein
  5.  前記補助足は、二つの延在部を備え、前記1又は複数のブラシのうちの一つの外形の少なくとも一部を該二つの延在部の間に受け入れる、
     ことを特徴とする請求項1乃至4の何れか一項に記載の清掃装置。
    The auxiliary foot includes two extending portions, and receives at least a part of the outer shape of one of the one or more brushes between the two extending portions.
    The cleaning device according to any one of claims 1 to 4, wherein
  6.  前記機構は、三自由度駆動機構である、
     ことを特徴とする請求項1乃至5の何れか一項に記載の清掃装置。
    The mechanism is a three-degree-of-freedom drive mechanism.
    The cleaning device according to any one of claims 1 to 5, wherein
  7.  前記三自由度駆動機構は、3つの旋回駆動部を有する、
     ことを特徴とする請求項6に記載の清掃装置。
    The three-degree-of-freedom drive mechanism has three swivel drive units.
    The cleaning apparatus according to claim 6.
  8.  前記三自由度駆動機構は、第一リンク部材に対して前記補助足を旋回させる第一旋回駆動部と、第二リンク部材に対して前記第一リンク部材を旋回させるための第二旋回駆動部と、前記フレームに対して前記第二リンク部材を旋回させるための第三旋回駆動部とを有する、
     ことを特徴とする請求項6に記載の清掃装置。
    The three-degree-of-freedom drive mechanism includes a first turning drive unit for turning the auxiliary foot with respect to the first link member, and a second turning drive unit for turning the first link member with respect to the second link member. And a third turning drive unit for turning the second link member with respect to the frame,
    The cleaning apparatus according to claim 6.
  9.  当該清掃装置の重心を変位させて、上面視で該重心を前記補助足の支持多角形内に維持するアクティブバランサ機構を備える、
     ことを特徴とする請求項1乃至8の何れか一項に記載の清掃装置。
    An active balancer mechanism is provided that displaces the center of gravity of the cleaning device and maintains the center of gravity within the support polygon of the auxiliary foot when viewed from above.
    The cleaning device according to any one of claims 1 to 8, wherein
  10.  フレームと、該フレームに接続される1又は複数のブラシと、該フレームに接続される補助足とを有する清掃装置であって、
     前記1又は複数のブラシのうちの少なくとも一つが第一面に接地し前記補助足が浮いた第一状態から、前記補助足が第一面に接地した第二状態、前記1又は複数のブラシの全てが浮いた第三状態、及び、前記1又は複数のブラシのうちの前記少なくとも一つが第二面に接地し前記補助足が前記第一面に接地した第四状態を経て、前記1又は複数のブラシのうちの前記少なくとも一つが前記第二面に接地し前記補助足が浮いた第五状態に、当該清掃装置の状態を移行させる機構を備える、
     ことを特徴とする清掃装置。
    A cleaning device having a frame, one or more brushes connected to the frame, and auxiliary feet connected to the frame,
    From a first state in which at least one of the one or more brushes contacts the first surface and the auxiliary foot floats, a second state in which the auxiliary foot contacts the first surface, the one or more brushes Through the third state in which all floats and the fourth state in which the at least one of the one or more brushes contacts the second surface and the auxiliary foot contacts the first surface, the one or more A mechanism for shifting the state of the cleaning device to a fifth state in which at least one of the brushes contacts the second surface and the auxiliary foot floats;
    The cleaning apparatus characterized by the above-mentioned.
PCT/JP2011/079412 2010-12-24 2011-12-19 Cleaning device WO2012086604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549805A JPWO2012086604A1 (en) 2010-12-24 2011-12-19 Cleaning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-288898 2010-12-24
JP2010288898 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086604A1 true WO2012086604A1 (en) 2012-06-28

Family

ID=46313873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079412 WO2012086604A1 (en) 2010-12-24 2011-12-19 Cleaning device

Country Status (2)

Country Link
JP (1) JPWO2012086604A1 (en)
WO (1) WO2012086604A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2756787A1 (en) * 2013-01-16 2014-07-23 Samsung Electronics Co., Ltd Robot cleaner
CN104027043A (en) * 2014-05-09 2014-09-10 李佛妹 Corridor dust collector capable of intelligently climbing stairs
CN104207733A (en) * 2014-08-04 2014-12-17 南京信息工程大学 Negative-pressure adsorption type corridor cleaning robot
US8938850B1 (en) * 2013-06-20 2015-01-27 Arelis C. Velez Stair vacuum device
EP2875768A1 (en) * 2013-11-25 2015-05-27 Samsung Electronics Co., Ltd Robot cleaner
WO2015076593A1 (en) * 2013-11-20 2015-05-28 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
KR20150057959A (en) * 2013-11-20 2015-05-28 삼성전자주식회사 Cleaning robot and method for controlling the same
EP2888980A1 (en) * 2013-12-30 2015-07-01 Samsung Electronics Co., Ltd Robot cleaner
DE102014005815A1 (en) * 2014-04-24 2015-10-29 Falk Kühnert Mobile robot
JP2015534863A (en) * 2012-11-19 2015-12-07 ベットロック・アー・ゲー Floor cleaning equipment
CN105197123A (en) * 2014-05-08 2015-12-30 南通大学 Judgment method of walking up and down stairs of lifting telescopic corridor cleaning robot easy to operate
CN106175608A (en) * 2016-08-26 2016-12-07 朱景元 Intelligent stair sweeping robot and control method thereof and control system
CN108607823A (en) * 2016-12-13 2018-10-02 北京天诚同创电气有限公司 Photovoltaic cell board cleaning device and its excessively slope control method, control system and array
CN108742363A (en) * 2017-12-27 2018-11-06 彭乙轩 Intelligent stair cleaning systems based on teledata reparation
CN109008812A (en) * 2018-07-20 2018-12-18 李兆勇 A kind of old residential area stair step prosthetic appliance
CN110465929A (en) * 2019-08-26 2019-11-19 上海大学 A kind of soft pneumatic worm robot of horizontal Three Degree Of Freedom modularization and preparation method thereof
WO2020027469A1 (en) * 2018-07-30 2020-02-06 엘지전자 주식회사 Nozzle of cleaner and method for controlling same
CN111802964A (en) * 2020-07-13 2020-10-23 鲍茂食 Automatic stair cleaning device
CN112572630A (en) * 2020-11-05 2021-03-30 江苏金成源实业投资有限公司 Robot for stair transportation
US11109732B2 (en) 2015-09-23 2021-09-07 Lg Electronics Inc. Robot cleaner
CN113384730A (en) * 2021-06-16 2021-09-14 陕西中建建乐智能机器人股份有限公司 Robot for scrubbing and disinfecting seat
US11123869B2 (en) 2019-04-12 2021-09-21 Boston Dynamics, Inc. Robotically negotiating stairs
CN114305212A (en) * 2022-01-06 2022-04-12 西南大学 Automatic sweep cleaning device who drags stair bottom surface and side
US11599128B2 (en) 2020-04-22 2023-03-07 Boston Dynamics, Inc. Perception and fitting for a stair tracker
WO2024013691A1 (en) * 2022-07-15 2024-01-18 Dyson Technology Limited Dynamic stability of a robot manipulator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018267B1 (en) * 2015-07-24 2016-11-02 陳順源 Wall washer
CN107953347B (en) * 2017-12-29 2024-01-19 洛阳理工学院 Dual-purpose laborsaving car of level land and step and cleaning robot based on laborsaving car

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230551Y2 (en) * 1981-10-28 1987-08-05
JPH0625294U (en) * 1992-08-28 1994-04-05 新明和工業株式会社 Forklift with stair lift function
JP2000202792A (en) * 1999-01-14 2000-07-25 Sharp Corp Cleaning robot
JP2005111595A (en) * 2003-10-07 2005-04-28 Rikogaku Shinkokai Crawler type traveling robot
JP2005342818A (en) * 2004-06-01 2005-12-15 Furukawa Electric Co Ltd:The One-leg spherical wheel moving robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230551Y2 (en) * 1981-10-28 1987-08-05
JPH0625294U (en) * 1992-08-28 1994-04-05 新明和工業株式会社 Forklift with stair lift function
JP2000202792A (en) * 1999-01-14 2000-07-25 Sharp Corp Cleaning robot
JP2005111595A (en) * 2003-10-07 2005-04-28 Rikogaku Shinkokai Crawler type traveling robot
JP2005342818A (en) * 2004-06-01 2005-12-15 Furukawa Electric Co Ltd:The One-leg spherical wheel moving robot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOAKI KIYOHIRO: "The Non-Interference PID Control for Twin Brushes Polishing Robot", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 27, no. 6, 1 September 2009 (2009-09-01), pages 679 - 684 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534863A (en) * 2012-11-19 2015-12-07 ベットロック・アー・ゲー Floor cleaning equipment
US9560947B2 (en) 2013-01-16 2017-02-07 Samsung Electronics Co., Ltd. Robot cleaner
EP2756787A1 (en) * 2013-01-16 2014-07-23 Samsung Electronics Co., Ltd Robot cleaner
US8938850B1 (en) * 2013-06-20 2015-01-27 Arelis C. Velez Stair vacuum device
US9504367B2 (en) 2013-11-20 2016-11-29 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
EP3571974A3 (en) * 2013-11-20 2019-12-11 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
KR20150057959A (en) * 2013-11-20 2015-05-28 삼성전자주식회사 Cleaning robot and method for controlling the same
US9931011B2 (en) 2013-11-20 2018-04-03 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
WO2015076593A1 (en) * 2013-11-20 2015-05-28 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
EP3071088A4 (en) * 2013-11-20 2017-12-06 Samsung Electronics Co., Ltd. Cleaning robot and method for controlling the same
KR102278899B1 (en) * 2013-11-20 2021-07-20 삼성전자주식회사 Cleaning robot and method for controlling the same
KR20150060030A (en) * 2013-11-25 2015-06-03 삼성전자주식회사 Robot cleaner
EP2875768A1 (en) * 2013-11-25 2015-05-27 Samsung Electronics Co., Ltd Robot cleaner
US10149590B2 (en) 2013-11-25 2018-12-11 Samsung Electronics Co., Ltd. Robot cleaner
KR102083193B1 (en) 2013-11-25 2020-03-02 삼성전자주식회사 Robot cleaner
US20150143646A1 (en) * 2013-11-25 2015-05-28 Samsung Electronics Co., Ltd. Robot cleaner
KR20150078094A (en) * 2013-12-30 2015-07-08 삼성전자주식회사 Robot cleaner
US10034591B2 (en) 2013-12-30 2018-07-31 Samsung Electronics Co., Ltd. Robot cleaner
KR102117263B1 (en) 2013-12-30 2020-06-01 삼성전자주식회사 Robot cleaner
EP2888980A1 (en) * 2013-12-30 2015-07-01 Samsung Electronics Co., Ltd Robot cleaner
DE102014005815B4 (en) * 2014-04-24 2016-03-24 Falk Kühnert Mobile robot
DE102014005815A1 (en) * 2014-04-24 2015-10-29 Falk Kühnert Mobile robot
CN105197123A (en) * 2014-05-08 2015-12-30 南通大学 Judgment method of walking up and down stairs of lifting telescopic corridor cleaning robot easy to operate
CN104027043A (en) * 2014-05-09 2014-09-10 李佛妹 Corridor dust collector capable of intelligently climbing stairs
CN104207733A (en) * 2014-08-04 2014-12-17 南京信息工程大学 Negative-pressure adsorption type corridor cleaning robot
US11109732B2 (en) 2015-09-23 2021-09-07 Lg Electronics Inc. Robot cleaner
CN106175608A (en) * 2016-08-26 2016-12-07 朱景元 Intelligent stair sweeping robot and control method thereof and control system
CN106175608B (en) * 2016-08-26 2019-01-25 朱景元 Intelligent stair sweeping robot and its control method and control system
CN108607823A (en) * 2016-12-13 2018-10-02 北京天诚同创电气有限公司 Photovoltaic cell board cleaning device and its excessively slope control method, control system and array
CN108607823B (en) * 2016-12-13 2020-03-17 北京天诚同创电气有限公司 Photovoltaic cell panel cleaning device and slope-crossing control method, control system and array thereof
CN108742363A (en) * 2017-12-27 2018-11-06 彭乙轩 Intelligent stair cleaning systems based on teledata reparation
CN109008812A (en) * 2018-07-20 2018-12-18 李兆勇 A kind of old residential area stair step prosthetic appliance
AU2019313145B2 (en) * 2018-07-30 2023-02-02 Lg Electronics Inc. Nozzle of cleaner and method for controlling same
WO2020027469A1 (en) * 2018-07-30 2020-02-06 엘지전자 주식회사 Nozzle of cleaner and method for controlling same
US11660752B2 (en) 2019-04-12 2023-05-30 Boston Dynamics, Inc. Perception and fitting for a stair tracker
US11123869B2 (en) 2019-04-12 2021-09-21 Boston Dynamics, Inc. Robotically negotiating stairs
US11548151B2 (en) 2019-04-12 2023-01-10 Boston Dynamics, Inc. Robotically negotiating stairs
CN110465929B (en) * 2019-08-26 2020-10-16 上海大学 Horizontal three-degree-of-freedom modular soft pneumatic worm robot and manufacturing method thereof
CN110465929A (en) * 2019-08-26 2019-11-19 上海大学 A kind of soft pneumatic worm robot of horizontal Three Degree Of Freedom modularization and preparation method thereof
US11599128B2 (en) 2020-04-22 2023-03-07 Boston Dynamics, Inc. Perception and fitting for a stair tracker
CN111802964A (en) * 2020-07-13 2020-10-23 鲍茂食 Automatic stair cleaning device
CN112572630A (en) * 2020-11-05 2021-03-30 江苏金成源实业投资有限公司 Robot for stair transportation
CN113384730A (en) * 2021-06-16 2021-09-14 陕西中建建乐智能机器人股份有限公司 Robot for scrubbing and disinfecting seat
CN114305212A (en) * 2022-01-06 2022-04-12 西南大学 Automatic sweep cleaning device who drags stair bottom surface and side
WO2024013691A1 (en) * 2022-07-15 2024-01-18 Dyson Technology Limited Dynamic stability of a robot manipulator

Also Published As

Publication number Publication date
JPWO2012086604A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
WO2012086604A1 (en) Cleaning device
US8269447B2 (en) Magnetic spherical balancing robot drive
JP3277076B2 (en) Walking control device and walking control method for walking robot
JP2009113135A (en) Biped mobile mechanism
JP5946844B2 (en) Moving body
JP2003266337A (en) Bipedal walking robot
JP2014161991A (en) Robot movement mechanism and robot comprising the same
JP2008062306A (en) Combined leg type and wheel type traveling device
JP2008265697A (en) Inverted wheel type moving body and its control method
JP2003326478A (en) Robot with offset rotating articulate
JP2007237750A (en) Inverted pendulum type moving body
JP2008273344A (en) Inverted wheel type movable body and its control method
JP3129344B2 (en) Transition device
US7878276B2 (en) Ambulatory vehicle
WO2021157144A1 (en) Running device
JP2006315587A (en) Leg-wheel separate type robot
JP2005342818A (en) One-leg spherical wheel moving robot
WO2017116873A1 (en) Automatic balancing variable configuration articulated tracked transporter
JP2006055972A (en) Foot traveling mechanism and bipedal walking robot with the same
KR101173949B1 (en) Horizontal maintenance robot
JP2009035157A (en) Inverted wheel type mobile body, and method of controlling the same
JP2012130582A (en) Cleaning apparatus
JP2008272859A (en) Inverted moving body and movement stopping method of inverted moving body
KR20160003497A (en) Mobile platform of robot equipped with flipper
JPS60219170A (en) Active body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852149

Country of ref document: EP

Kind code of ref document: A1