WO2012086467A1 - Glass melter, glass fiber production apparatus, and glass fiber production method - Google Patents

Glass melter, glass fiber production apparatus, and glass fiber production method Download PDF

Info

Publication number
WO2012086467A1
WO2012086467A1 PCT/JP2011/078792 JP2011078792W WO2012086467A1 WO 2012086467 A1 WO2012086467 A1 WO 2012086467A1 JP 2011078792 W JP2011078792 W JP 2011078792W WO 2012086467 A1 WO2012086467 A1 WO 2012086467A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
melting furnace
glass melting
inert gas
outlet
Prior art date
Application number
PCT/JP2011/078792
Other languages
French (fr)
Japanese (ja)
Inventor
鎌太郎 小川
中村 幸一
平山 紀夫
Original Assignee
日東紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東紡績株式会社 filed Critical 日東紡績株式会社
Priority to JP2012549739A priority Critical patent/JP5867413B2/en
Publication of WO2012086467A1 publication Critical patent/WO2012086467A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • C03B5/031Cold top tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Definitions

  • the present invention relates to a glass melting apparatus for melting a glass raw material, a glass fiber manufacturing apparatus and a glass fiber manufacturing method for manufacturing glass fiber using the glass melting apparatus.
  • a glass fiber manufacturing apparatus for manufacturing glass fibers is a fiber melting furnace that melts glass raw materials, a forerhas into which molten glass drawn from the glass melting furnace outlet is introduced, and a molten glass introduced into the foreher. And a fiberizing device for spinning glass fibers.
  • this glass melting furnace refractory bricks such as chrome bricks and zirconia bricks are generally used.
  • studies are being made to suppress energy consumption by melting at a higher temperature in a shorter time than the general glass melting temperature of 1400-1500 ° C. .
  • the brick used as the furnace melting material of the glass melting furnace is significantly eroded by the molten glass. Therefore, with the conventional melting furnace, the melting efficiency is increased by raising the furnace temperature. I can't raise it.
  • silica which is the main component of the glass composition, has a high melting point and is difficult to melt, heating at 1400-1500 ° C. takes a long time to melt the silica, and also causes unsolved problems.
  • Patent Document 1 describes that heating at 1550 to 1600 ° C. is necessary for melting high-strength glass mainly composed of MgO (magnesia), Al 2 O 3 (alumina), and SiO 2 (silica). However, even heating in this temperature range requires several hours for melting, and the melting efficiency cannot be increased.
  • MgO magnesia
  • Al 2 O 3 alumina
  • SiO 2 silicon
  • the present inventor has found that the melting efficiency can be dramatically increased by heating to 1723 ° C. or higher, which is the melting point of silica.
  • the present invention provides a glass melting apparatus, a glass fiber manufacturing apparatus, and a glass fiber manufacturing method capable of shortening the melting time of the glass raw material by heating above the melting point of silica and reducing unmelted glass raw material. For the purpose.
  • a glass melting apparatus comprises a glass melting furnace having a bottom wall and a side wall, and a molten glass outlet is formed on the bottom wall, covers the glass melting furnace, and glass raw material vertically above the glass melting furnace And a casing formed with a discharge port for discharging the molten glass drawn from the outlet vertically below the outlet, and inserted into the glass melting furnace from the ceiling of the casing by energization. And a heating electrode for heating the molten glass in the glass melting furnace, wherein the bottom wall and the inner surface of the side wall are coated with boron nitride.
  • the inner surfaces of the bottom wall and the side wall are coated with boron nitride having non-conductivity, so that the electrodes are energized to melt the glass raw material in the glass melting furnace.
  • the molten glass glass melt
  • the bottom wall and the inner surface of the side wall are coated with boron nitride, even if the molten glass in the glass melting furnace is heated to a high temperature, the carbon dioxide generated when the glass raw material supplied from the inlet is vitrified.
  • the glass melting furnace is made of a material having a melting point of 2000 ° C. or higher in a non-oxidizing atmosphere, so that the glass raw material can be melted at a temperature higher than the melting point of silica, which is the main raw material of glass. Therefore, the melting time of the glass raw material can be shortened, energy saving can be achieved, and unmelted glass raw material can be reduced.
  • the molten glass in the glass melting furnace can be directly heated, and the molten glass can be heated at an arbitrary position in the glass melting furnace. For this reason, regardless of the shape and size of the glass melting furnace, the molten glass can be efficiently heated, and in particular, it can be applied to a large glass melting furnace.
  • the casing further includes an inert gas supply means for supplying an inert gas
  • the casing includes an inert gas inlet for introducing the inert gas supplied from the inert gas supply means into the casing, and the casing.
  • an inert gas discharge port for discharging the introduced inert gas is formed.
  • a glass fiber manufacturing apparatus is introduced into any one of the glass melting apparatuses described above, a storage tank into which molten glass disposed below the glass melting furnace and drawn from the outlet is introduced, and the storage tank. And a fiberizing apparatus for fiberizing and spinning the molten glass.
  • the time for melting the glass raw material in the lath melting apparatus can be shortened and unmelted glass raw material can be reduced. Can produce glass fiber quickly and with high quality.
  • a glass fiber manufacturing method is a glass fiber manufacturing method using the above-described glass fiber manufacturing apparatus, in which a glass raw material is charged into a glass melting furnace through a charging port, and a heating electrode is energized to generate glass. Melting the glass raw material put into the melting furnace, drawing the molten glass from the outlet and introducing it into the storage tank, and fiberizing the molten glass introduced into the storage tank with a fiberizer to produce glass fibers Features.
  • the time for melting the glass raw material in the glass melting apparatus can be shortened, and the remaining unmelted glass raw material can be reduced, so that quick and high-quality glass fiber is manufactured. can do.
  • the inside of the casing is preferably an inert gas atmosphere.
  • the inside of a casing since the whole glass melting furnace is isolated from air
  • the molten glass can be heated to 1700 to 2000 ° C. by energizing the heating electrode.
  • the melting time of the glass raw material can be drastically shortened because it is melted by the single silica as the main component of the glass.
  • the glass melting apparatus can be heated to the melting point of silica or more, the melting time of the glass raw material can be shortened and the unmelted glass raw material can be reduced.
  • FIG. 1 is a schematic diagram of a glass fiber manufacturing apparatus according to the first embodiment.
  • the glass fiber manufacturing apparatus 1 which concerns on 1st Embodiment is provided with the glass melting apparatus 10 mounted in the floor 2, and the fiberization equipment 30 arrange
  • the fiberization equipment 30 arrange
  • the glass melting apparatus 10 includes a glass melting furnace 11 that melts a glass raw material such as a glass raw material powder or a glass lump, and a casing 18 that covers the glass melting furnace 11.
  • the glass raw material powder is a powdery mixture of clay, limestone, dolomite, colemanite, silica sand, alumina, calcium carbonate, sodium carbonate, etc., and the glass lump is once cooled with molten glass obtained by melting the glass raw material powder. Solid marbled or cullet shaped.
  • the glass melting furnace 11 is formed in a box shape opened upward by a bottom wall 12 and a side wall 13 erected on the bottom wall 12.
  • the bottom wall 12 and the side wall 13 are made of a furnace material such as molybdenum, and the inner surfaces of the bottom wall 12 and the side wall 13 are covered with boron nitride.
  • Such a glass melting furnace 11 is divided by an upper partition plate 16 and is arranged in a first region A for melting the glass raw material placed and disposed below the inlet 19 into which the glass raw material is introduced.
  • the second region B in which the outlet 15 for drawing the molten glass from the glass melting furnace 11 is formed on the bottom wall 12 is formed.
  • the second region B is entirely or partially higher than the first region A in order to block impurities accumulated at the bottom of the furnace body and lengthen the moving path of the molten glass.
  • the bottom wall 12 of the glass melting furnace 11 is formed with a rising portion 12a rising from the first region A to the second region B at the boundary between the first region A and the second region B.
  • the inner surface of the outlet 15 is also covered with boron nitride.
  • the upper partition plate 16 is installed on the upper part of the glass melting furnace 11 so that the upper surface is higher than the molten glass liquid level and the lower surface does not touch the bottom wall 12, and near the liquid surface of the molten glass (the glass melting furnace 11 This is a partition plate that allows the molten glass to pass through only from the bottom of the furnace of the glass melting furnace 11.
  • the upper partition plate 16 is made of a furnace material such as molybdenum similarly to the bottom wall 12 and the side wall 13 of the glass melting furnace 11, and the surface of the upper partition plate 16 is covered with boron nitride.
  • the upper partition plate 16 is formed in a flat plate shape that abuts against a pair of opposing side walls 13 to partition the first region A and the second region B, and a space is formed between the bottom wall 12 and the upper partition plate 16. Yes. For this reason, the molten glass melted in the first region A can move to the second region B by diving in a space formed below the upper partition plate 16.
  • a plurality of heating electrodes 14 are inserted into the glass melting furnace 11 from above.
  • the heating electrode 14 is made of a material (high temperature resistant material) that can withstand high temperatures such as molybdenum and tungsten, and is connected to a power source 17 that supplies electricity.
  • the heating electrode 14 is preferably cylindrical from the viewpoint of insertion / extraction with respect to the glass melting apparatus 10, but can be deformed into various shapes without particular limitation.
  • the glass raw material charged into the glass melting furnace 11 can be heated and melted by directly energizing the glass raw material with the heating electrode 14.
  • the glass melting furnace 11 is also called a boosting furnace because it is heated by a heating electrode 14 inserted in the glass melting furnace 11, and is mainly a direct melt method (DM method) for melting glass raw material powder. Used for. However, you may use this glass melting furnace 11 for the marble melt method (MM method) etc. which fuse
  • DM method direct melt method
  • FIG. 2 is a top view of the glass melting furnace shown in FIG.
  • two heating electrodes 14 may be arranged in the first region A so as to sandwich the insertion port 19, and as shown in FIG.
  • three heating electrodes 14 may be disposed at a position surrounding the charging port 19, and as shown in FIG. 2C, two heating electrodes 14 are positioned at a position sandwiching the charging port 19 in the first region A.
  • two heating electrodes 14 may be arranged in the second region B.
  • the heating electrode 14 by arranging the heating electrode 14 at a position sandwiching the charging port 19, the glass raw material charged into the glass melting furnace 11 from the charging port 19 can be efficiently heated and melted.
  • the heating electrode 14 by disposing the heating electrode 14 in the second region B, it is possible to prevent the temperature of the molten glass from decreasing in the second region B without using other heating means. The temperature of the molten glass drawn out from the outlet 15 can be adjusted.
  • the heating electrode 14 has a property that electricity easily flows at the tip portion thereof, it is preferable to arrange the tip portion of the heating electrode 14 at a position where the glass raw material to be charged is accumulated. For example, since the glass raw material of the glass raw material powder is collected near the liquid surface of the molten glass, it is preferable to arrange the tip of the heating electrode 14 near the liquid surface of the molten glass. It is preferable to arrange the tip of the heating electrode 14 at the bottom of the glass melting furnace 11 in order to sink to the bottom of the furnace.
  • the casing 18 is disposed above the glass melting furnace 11 in the vertical direction, and is disposed on the top wall 18 a serving as the ceiling of the casing 18, the side wall 18 b covering the periphery of the glass melting furnace 11, and the lower side in the vertical direction of the glass melting furnace 11.
  • the bottom wall 18c is formed in a box shape and placed on the floor 2.
  • the top wall 18a holds a plurality of heating electrodes 14 inserted into the glass melting furnace 11, and the number and arrangement of the heating electrodes 14 can be easily changed by replacing the top wall 18a.
  • a charging port 19 for feeding a glass material into the glass melting furnace 11 is formed above the first region A in the glass melting furnace 11 in the vertical direction.
  • a screw charger 20 is connected to the charging port 19 for supplying a glass raw material to be charged into the glass melting furnace 11.
  • an inert gas inlet 21 for introducing an inert gas into the casing 18 is formed at a position higher than the liquid level of the molten glass.
  • An inert gas supply device 22 that supplies an inert gas to be introduced into the casing 18 is connected to the inert gas inlet 21.
  • the gas supplied from the inert gas supply device 22 is not particularly limited as long as it is a non-oxidizing gas.
  • argon gas or nitrogen gas can be used, and among them, continuously at low cost. Nitrogen gas is preferable in terms of stable supply.
  • a discharge port 23 for discharging the molten glass drawn out from the outlet 15 is formed below the outlet 15 of the glass melting furnace 11 in the vertical direction. Further, the discharge port 23 can discharge the inert gas simultaneously with the discharge of the molten glass.
  • a heat insulating material such as a refractory brick or a heat resistant board for insulating the glass melting furnace 11 is inserted.
  • the floor 2 is formed with a floor hole 3 for introducing the molten glass drawn from the outlet 15 of the glass melting furnace 11 into each fiberizing equipment 30.
  • the fiberizing facility 30 is a facility for fiberizing the molten glass drawn from the outlet 15 of the glass melting furnace 11.
  • This fiberizing equipment 30 includes a forehearth 31 into which the molten glass drawn from the outlet 15 is introduced, a bushing 32 for forming a large number of filaments from the molten glass in the forehearth 31, and a high speed by drawing the filament from the bushing 32.
  • a rotating drum 33 that winds up, an applicator 37 that applies a sizing agent to each filament drawn from the bushing 32, and a focusing roller 34 that focuses each filament.
  • the Fore Haas 31 is a storage tank in which the molten glass drawn out from the outlet 15 is introduced and the temperature of the molten glass is adjusted to adjust the viscosity of the molten glass to be easily fiberized.
  • the forehearth 31 is disposed below the floor hole 3 in the vertical direction, and is formed with an upper opening 35 into which the molten glass drawn from the outlet 15 is introduced.
  • the forehearth 31 is opened to the atmosphere by the upper opening 35.
  • the forehearth 31 includes a heating means for adjusting the temperature of the molten glass.
  • This heating means may be, for example, an electric heater 36 suspended from the ceiling surface of the forehearth 31, and any heating means capable of adjusting the temperature of molten glass such as a gas burner in place of the electric heater 36. May be used.
  • the bushing 32 is provided at the bottom of the forehearth 31, and a large number (for example, about 100 to 4000) of nozzles (not shown) for spinning are formed.
  • the bushing 32 includes a heating means (not shown) for adjusting the temperature of the molten glass. This heating means is for generating resistance heat by energization. For this reason, the bushing 32 is formed of an electrothermal member that generates heat when energized, and is made of, for example, platinum or a platinum alloy.
  • the inert gas supplied from the inert gas supply device 22 is supplied from the inert gas inlet 21.
  • the operation of introducing into the casing 18 is repeated several times until the oxygen concentration in the casing 18 is at least 1% or less, and the inside of the casing 18 is made an inert gas atmosphere. Note that the gas filled in the casing 18 before the inert gas is introduced and the inert gas introduced into the casing 18 are discharged from the discharge port 23.
  • the glass raw material is supplied from the screw charger 20, the glass raw material is supplied from the charging port 19 to the first region A of the glass melting furnace 11, electricity is supplied from the power source 17, and the heating electrode 14 is energized, The glass raw material thrown into the 1st area
  • region A is heat-melted.
  • the heating electrode 14 it is difficult for the heating electrode 14 to be energized. It is preferable to melt the glass raw material charged into the melting furnace 11. At this time, the molten glass is heated to 1700 to 2000 ° C. by energization by the heating electrode 14.
  • the melting of the silica contained in the glass raw material is promoted, the glass raw material is rapidly melted, and the unmelted glass raw material is eliminated.
  • the inside of the glass melting furnace 11 and the casing 18 is an inert gas atmosphere, even if the molten glass is heated to 1700 to 2000 ° C., the glass melting furnace 11 and the heating electrode 14 are oxidized and sublimated.
  • oxygen such as carbon dioxide gas generated from the glass raw material into which the glass melting furnace 11 and the heating electrode 14 are charged. Oxidation and sublimation by the source can be suppressed.
  • the forehearth 31 and the bushing 32 of the fiberizing equipment 30 are also heated, and the heating temperature of the forehearth 31 and the bushing 32 is appropriately adjusted so that the molten glass has a temperature that facilitates fiberization according to the glass composition of the glass fiber to be manufactured. Keep it.
  • the molten glass melted in the first region A moves from the first region A to the second region B through the rising portion 12a of the bottom wall 12 while diving in the space formed below the upper partition plate 16. Then, it is pulled out vertically downward from an outlet 15 formed in the bottom wall 12 of the second region B.
  • the molten glass drawn out from the outlet 15 passes through the outlet 23 formed in the casing 18, the floor hole 3 formed in the floor 2, and the upper opening 35 formed in the forehearth 31 of the fiberizing equipment 30.
  • the glass filament is drawn out from a large number of nozzles of a bushing 32 provided at the bottom of the forehearth 31.
  • the glass filaments drawn out from a number of nozzles of the bushing 32 are coated with a sizing agent by an applicator 37 and wound by a rotating drum 33 that rotates at a high speed while focusing a number of glass filaments by a focusing roller 34. Glass fibers in which glass filaments are bundled are produced.
  • the heating electrode 14 is energized to melt the glass raw material, and the molten glass
  • a current is supplied to the glass
  • the glass raw material supplied from the inlet 19 is vitrified even when the molten glass in the glass melting furnace 11 is heated to a high temperature.
  • the glass melting furnace 11 It is possible to prevent the glass melting furnace 11 from being oxidized and sublimated due to the reaction between the oxygen source such as carbonic acid generated at the inner surface and the inner surface of the bottom wall 12 and the inner surface of the side wall 13. Since the glass melting furnace 11 is made of a material having a melting point of 2000 ° C. or higher in a non-oxidizing atmosphere, the glass melting furnace 11 is not corroded by the molten glass, and the silica which is the main raw material of glass is used. Since the glass raw material can be melted at a temperature higher than the melting point, the melting time of the glass raw material can be shortened, energy saving can be achieved, and unmelted glass raw material (unmelted glass raw material) Can be reduced.
  • the oxygen source such as carbonic acid generated at the inner surface and the inner surface of the bottom wall 12 and the inner surface of the side wall 13. Since the glass melting furnace 11 is made of a material having a melting point of 2000 ° C. or higher in a non-oxidizing atmosphere, the glass melting furnace
  • the molten glass in the glass melting furnace 11 can be directly heated, and the molten glass is heated at an arbitrary position in the glass melting furnace 11. be able to. For this reason, regardless of the shape and size of the glass melting furnace 11, the molten glass can be efficiently heated, and in particular, can be applied to the large-sized glass melting furnace 11.
  • the entire glass melting furnace 11 is isolated from the atmosphere by introducing an inert gas into the casing 18, the glass melting furnace 11 and the heating electrode 14 are also prevented from being oxidized and sublimated. Can do. For this reason, even if a molten glass is heated to high temperature, it can suppress that the service life of the glass melting furnace 11 falls.
  • the molten glass by heating the molten glass to 1700 to 2000 ° C. in the glass melting furnace 11, it is melted with silica alone, which is the main component of the glass, so that the melting time of the glass raw material can be dramatically shortened.
  • the second region B is entirely or partially made higher than the first region A to form the rising portion 12a of the bottom wall 12 between the first region A and the second region B, so that the furnace body Impurities that accumulate at the bottom can be dammed and the movement path of the molten glass in the glass melting furnace 11 can be extended, so that the residence time of the molten glass in the glass melting furnace 11 can be increased. Thereby, since the unmelted residue of the glass raw material can be further reduced, a high-quality glass fiber can be produced.
  • the upper partition plate 16 is provided between the inlet 19 and the outlet 15 of the glass melting furnace 11, the movement path of the molten glass in the glass melting furnace 11 can be extended. The residence time of the molten glass in the inside becomes longer, and the unmelted glass raw material is further reduced. Furthermore, since the upper partition plate 16 can block the bubbles that have floated near the liquid surface of the molten glass and prevent the bubbles from moving to the second region B, the molten glass containing bubbles can be prevented from flowing into the second region B. It can suppress that it moves to and is pulled out from the outlet 15. Thereby, the high quality glass fiber without the melt
  • FIG. 3 is a schematic view of a glass fiber manufacturing apparatus according to the second embodiment.
  • the glass fiber manufacturing apparatus 40 according to the second embodiment is basically the same as the glass fiber manufacturing apparatus 1 according to the first embodiment, and only the configuration of the forehearth is the first embodiment. It differs from the glass fiber manufacturing apparatus 1 which concerns on this. For this reason, in the following description, only a different point from 1st Embodiment is demonstrated and description of the same point as 1st Embodiment is abbreviate
  • the forehearth 41 of the second embodiment is similar to the forehearth 31 of the first embodiment, and the molten glass drawn from the outlet 15 of the glass melting furnace 11 is introduced and the temperature of the molten glass is adjusted. It is a storage tank that adjusts the molten glass to a viscosity that facilitates fiberization. For this reason, the forehearth 41 is arranged vertically below the floor hole 3, and an upper opening 35 into which the molten glass drawn from the outlet 15 is introduced is formed to adjust the temperature of the molten glass. Heating means (electric heater 36) is provided.
  • an inert gas introduction port 42 for introducing an inert gas into the forehearth 41 is formed on the side wall of the forehearth 41.
  • An inert gas supply device 43 that supplies the active gas is connected.
  • the gas supplied from the inert gas supply device 43 is not particularly limited as long as it is a non-oxidizing gas.
  • argon gas or nitrogen gas can be used. Nitrogen gas is preferable in terms of stable supply.
  • the upper opening 35 of the forehearth 41 also functions as an inert gas discharge port for discharging the inert gas introduced into the casing 18.
  • the inert gas supplied from the inert gas supply apparatus 43 is introduced into the forehearth 41 from the inert gas inlet 42,
  • the interior of the forehearth 41 is set to an inert gas atmosphere. Note that the gas filled in the forehearth 41 before introducing the inert gas or the inert gas introduced into the forehearth 41 is discharged from the upper opening 35.
  • the operation of introducing the inert gas into the forehearth 41 after removing the oxygen existing in the forehearth 41 by making the inside of the forehearth 41 into a vacuum state or at least a reduced pressure state with a vacuum pump is performed.
  • the interior of the forehearth 41 is isolated from the atmosphere, and therefore the molten glass introduced into the forehearth 41 from the glass melting furnace 11 is also isolated from oxygen, and therefore the oxygen of the molten glass Deterioration can be suppressed.
  • it can use suitably for manufacture of glass seed
  • FIG. 4 is a schematic diagram of a glass fiber manufacturing apparatus according to the third embodiment.
  • the glass fiber manufacturing apparatus 50 according to the third embodiment is basically the same as the glass fiber manufacturing apparatus 1 according to the first embodiment, and only the configuration of the glass melting furnace is the first. It differs from the glass fiber manufacturing apparatus 1 which concerns on embodiment. For this reason, in the following description, only a different point from 1st Embodiment is demonstrated and description of the same point as 1st Embodiment is abbreviate
  • the glass melting furnace 51 of the third embodiment is a so-called boosting furnace in which a plurality of heating electrodes 14 are inserted from above, similarly to the first embodiment.
  • the glass melting furnace 51 is formed in a box shape opened upward by a flat bottom wall 52 and a side wall 53 standing on the bottom wall 52.
  • the bottom wall 52 and the side wall 53 are made of a furnace material such as molybdenum, and the inner surfaces of the bottom wall 52 and the side wall 53 are covered with boron nitride.
  • such a glass melting furnace 51 is disposed by being placed vertically below the charging port 19 into which the glass raw material is charged, which is partitioned by the upper partition plate 55. A first region A for melting the glass raw material formed and a second region B from which the molten glass is drawn are formed.
  • the bottom wall 52 of the second region B is formed with an outlet 54 for drawing molten glass from the glass melting furnace 51, and the first region A and the second region B are partitioned by the upper partition plate 55.
  • the lower partition plate 56 is disposed between the upper partition plate 55 and the outlet 54 in the second region B.
  • the inner surface of the outlet 54 is also covered with boron nitride.
  • the upper partition plate 55 is an upper portion of the glass melting furnace 51 and partitions the vicinity of the liquid surface of the molten glass from the bottom of the glass melting furnace 51 only. It is a partition plate to pass through.
  • the upper partition plate 55 is made of a furnace material such as molybdenum like the bottom wall 52 and the side wall 53 of the glass melting furnace 51, and the surface of the upper partition plate 55 is covered with boron nitride.
  • the upper partition plate 55 is formed in a flat plate shape that abuts against a pair of opposing side walls 53 to partition the first region A and the second region B, and a space is formed between the bottom wall 52 and the upper partition plate 55. Yes. For this reason, the molten glass melted in the first region A can move to the second region B by diving in a space formed below the upper partition plate 55.
  • the lower partition plate 56 is a partition plate that allows the molten glass to pass only from the upper part of the glass melting furnace 51 by dividing the inner bottom of the glass melting furnace 51.
  • the lower partition plate 56 is made of a furnace material such as molybdenum similarly to the bottom wall 52 and the side wall 53 of the glass melting furnace 51, and the surface of the lower partition plate 56 is coated with boron nitride.
  • the lower partition plate 56 is formed into a flat plate shape that comes into contact with the pair of opposing side walls 53 and the bottom wall 52 to partition the first region A and the second region B. From the liquid surface height of the molten glass Is also low. For this reason, the molten glass melted in the first region A can move to the second region B by passing over the lower partition plate 56.
  • the lower partition plate 56 is disposed on the upper partition plate 55 side when viewed from the outlet 54 in the second region B. For this reason, the molten glass melted in the first region A first dives in the space formed below the upper partition plate 55, and then passes over the lower partition plate 56, thereby drawing in the second region B. It moves to the outlet 54 side and is pulled out from the outlet 54.
  • the inside of the casing 18 is set to an inert gas atmosphere as in the first embodiment, and the first of the glass melting furnace 51 is introduced from the inlet 19.
  • a glass material is charged into the region A, and the heating electrode 14 is energized to heat and melt the glass material charged into the first region A.
  • the molten glass melted in the first region A moves through the space formed below the upper partition plate 16 and moves from the first region A to the second region B, and the lower partition plate in the second region B.
  • the upper portion 56 is pulled out vertically downward from an outlet 54 formed in the bottom wall 52 of the second region B, and is introduced into the forehearth 31.
  • the glass melting furnace 11 has been described as being covered with the casing 18 in the above embodiment, oxidation problems such as the glass melting furnace 11 and the heating electrode 14 can be tolerated, and the glass melting furnace 11 and the heating electrode 14 are acceptable. Is not necessarily covered with the inert gas atmosphere, it is not always necessary to cover the glass melting furnace 11 with the casing 18.
  • the molten glass withdrawn from the outlet 15 like the glass fiber manufacturing apparatus 60 shown in FIG.
  • FIG. The vacuum degassing furnace 62 hermetically covers the furnace 63 into which the molten glass is introduced with a casing 64 and depressurizes the inside of the casing 64 with a vacuum pump 65, thereby removing the molten glass introduced into the furnace 63. It encourages bubbles.
  • the lower partition plate 56 is described as being fixed to the glass melting furnace 51.
  • the lower partition plate 56 is attached to the glass melting furnace 51 so as to be movable upward in the vertical direction. It may be a thing. And when changing the composition of the glass, it is possible to move the molten glass in the first region A to the outlet 54 along the bottom surface of the glass melting furnace 51 by moving the lower partition plate 56 upward in the vertical direction. Therefore, the time for replacing the glass composition can be drastically improved.
  • the present invention can be used as a glass melting apparatus for melting glass raw materials, a glass fiber manufacturing apparatus for manufacturing glass fibers using this glass melting apparatus, and a glass fiber manufacturing method.
  • SYMBOLS 1 Glass fiber manufacturing apparatus, 2 ... Floor, 3 ... Floor hole, 10 ... Glass melting apparatus, 11 ... Glass melting furnace, 12 ... Bottom wall, 12a ... Rising part, 13 ... Side wall, 14 ... Heating electrode, 15 ... Drawer outlet, 16 ... upper partition plate, 17 ... power source, 18 ... casing, 18a ... top wall, 18b ... side wall, 18c ... bottom wall, 19 ... inlet, 20 ... screw charger, 21 ... inert gas inlet, 22 ... inert gas supply device (inert gas supply means), 23 ... discharge port (inert gas discharge port), 30 ... fiberizing equipment, 31 ... fore hearth, 32 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

A glass melting furnace is heated to the melting point of silica or hotter and the melting time of glass material is reduced, and the amount of insufficiently melted glass material is reduced. A glass fiber production apparatus (1) is provided with: a glass melting furnace (11) provided with a floor (12) and a side wall (13), and having a molten glass outlet (15) formed in the floor (12); an injection opening (19) that injects glass material into the glass melting furnace (11) and covers the glass melting furnace (11); a casing (18) in which a discharge opening (23), for discharging molten glass emitted from the outlet (15) of the glass melting furnace (11), is formed; and heating electrodes (14) for heating the molten glass in the glass melting furnace (11) using an electric current, and positioned so as to stick into the glass melting furnace from the roof (18a) of the casing (18). Therein, the inner surface of the side wall (13) and the floor (12) of the glass melting furnace (11) is coated with boron nitride. Additionally, the electric current of the heating electrodes (14) causes the glass material injected into the glass melting furnace (11) to be directly heated and melted.

Description

ガラス溶融装置、ガラス繊維製造装置及びガラス繊維製造方法Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
 この発明は、ガラス原料を溶融するガラス溶融装置、このガラス溶融装置を用いてガラス繊維を製造するガラス繊維製造装置及びガラス繊維製造方法に関する。 The present invention relates to a glass melting apparatus for melting a glass raw material, a glass fiber manufacturing apparatus and a glass fiber manufacturing method for manufacturing glass fiber using the glass melting apparatus.
 ガラス繊維を製造するガラス繊維製造装置は、ガラス原料を溶融するガラス溶融炉と、ガラス溶融炉の引出口から引き出された溶融ガラスが導入されるフォアハースと、フォアハースに導入された溶融ガラスを繊維化してガラス繊維を紡糸する繊維化装置と、を備えている。このガラス溶融炉には、一般的にクロム煉瓦やジルコニア煉瓦等の耐火煉瓦が用いられている。近年、ガラス溶融エネルギー効率の向上を目的に、一般的なガラスの溶融温度である1400~1500℃と比べ、より高温で短時間に溶融することで消費エネルギーを抑えようと検討が進められている。しかし、このような高温域では、ガラス溶融炉の炉材として用いている煉瓦が溶融ガラスに著しく侵食されるため、従来の溶融炉のままでは、炉内温度を高温にすることで溶融効率を上げることができない。 A glass fiber manufacturing apparatus for manufacturing glass fibers is a fiber melting furnace that melts glass raw materials, a forerhas into which molten glass drawn from the glass melting furnace outlet is introduced, and a molten glass introduced into the foreher. And a fiberizing device for spinning glass fibers. In this glass melting furnace, refractory bricks such as chrome bricks and zirconia bricks are generally used. In recent years, with the aim of improving the glass melting energy efficiency, studies are being made to suppress energy consumption by melting at a higher temperature in a shorter time than the general glass melting temperature of 1400-1500 ° C. . However, in such a high temperature range, the brick used as the furnace melting material of the glass melting furnace is significantly eroded by the molten glass. Therefore, with the conventional melting furnace, the melting efficiency is increased by raising the furnace temperature. I can't raise it.
特開平06-329422号公報Japanese Patent Laid-Open No. 06-329422 特開2003-183031号公報JP 2003-183031 A
 ガラス組成の主成分であるシリカは融点が高く溶融し難いため、1400~1500℃の加熱ではシリカを溶融するのに長時間を要し、更には、溶け残りの問題も発生する。 Since silica, which is the main component of the glass composition, has a high melting point and is difficult to melt, heating at 1400-1500 ° C. takes a long time to melt the silica, and also causes unsolved problems.
 また、特許文献1では、MgO(マグネシア)、Al(アルミナ)、SiO(シリカ)を主成分とする高強度ガラスの溶融に1550~1600℃の加熱が必要との記載がある。しかしながら、この温度域による加熱でも溶融に数時間を要し、溶融効率を高めることができない。 Patent Document 1 describes that heating at 1550 to 1600 ° C. is necessary for melting high-strength glass mainly composed of MgO (magnesia), Al 2 O 3 (alumina), and SiO 2 (silica). However, even heating in this temperature range requires several hours for melting, and the melting efficiency cannot be increased.
 本発明者は、鋭意検討を重ねた結果、シリカの融点である1723℃以上に加熱することで劇的に溶融効率が高められることを見出した。 As a result of extensive studies, the present inventor has found that the melting efficiency can be dramatically increased by heating to 1723 ° C. or higher, which is the melting point of silica.
 そこで、本発明は、シリカの融点以上に加熱してガラス原料の溶融時間を短縮するとともにガラス原料の溶け残りを低減することができるガラス溶融装置、ガラス繊維製造装置及びガラス繊維製造方法を提供することを目的とする。 Therefore, the present invention provides a glass melting apparatus, a glass fiber manufacturing apparatus, and a glass fiber manufacturing method capable of shortening the melting time of the glass raw material by heating above the melting point of silica and reducing unmelted glass raw material. For the purpose.
 本発明に係るガラス溶融装置は、底壁と側壁とを備え、底壁に溶融ガラスの引出口が形成されたガラス溶融炉と、ガラス溶融炉を覆い、ガラス溶融炉の鉛直方向上方にガラス原料の投入口が形成されるとともに、引出口の鉛直方向下方に引出口から引き出された溶融ガラスを排出する排出口が形成されたケーシングと、ケーシングの天井からガラス溶融炉内に差し込まれて通電によりガラス溶融炉内の溶融ガラスを加熱する加熱用電極と、を有し、底壁及び側壁の内面は、窒化ホウ素で被覆されていることを特徴とする。 A glass melting apparatus according to the present invention comprises a glass melting furnace having a bottom wall and a side wall, and a molten glass outlet is formed on the bottom wall, covers the glass melting furnace, and glass raw material vertically above the glass melting furnace And a casing formed with a discharge port for discharging the molten glass drawn from the outlet vertically below the outlet, and inserted into the glass melting furnace from the ceiling of the casing by energization. And a heating electrode for heating the molten glass in the glass melting furnace, wherein the bottom wall and the inner surface of the side wall are coated with boron nitride.
 本発明に係るガラス溶融装置によれば、底壁及び側壁の内面が非導電性を備えた窒化ホウ素で被覆されているため、ガラス溶融炉内のガラス原料を溶融するために電極に通電して溶融ガラス(ガラス融体)へ電流を流したときに、溶融ガラスから炉体およびケーシングを構成している導電材料へ誤って電流が流れることを防ぐことができる。また、底壁及び側壁の内面が窒化ホウ素で被覆されているため、ガラス溶融炉内の溶融ガラスを高温に加熱しても、投入口から供給されるガラス原料がガラス化する際に発生する炭酸などの酸素源と底壁内面および側壁内面との反応によってガラス溶融炉が酸化して昇華することを抑制することができる。そして、通常、ガラス溶融炉は非酸化性雰囲気において2000℃以上の融点を持った材料で構成されているので、ガラスの主原料であるシリカの融点以上の温度でガラス原料を溶融することができるため、ガラス原料の溶融時間を短縮することができ、省エネルギー化を図ることができるとともに、ガラス原料の溶け残りを低減することができる。しかも、ガラス溶融炉に挿入された加熱用電極を通電することで、ガラス溶融炉の溶融ガラスを直接加熱することができるとともに、ガラス溶融炉の任意の位置で溶融ガラスを加熱することができる。このため、ガラス溶融炉の形状や大きさに関わらず、溶融ガラスを効率的に加熱することができ、特に、大型のガラス溶融炉にも適用することができる。 According to the glass melting apparatus of the present invention, the inner surfaces of the bottom wall and the side wall are coated with boron nitride having non-conductivity, so that the electrodes are energized to melt the glass raw material in the glass melting furnace. When an electric current is supplied to the molten glass (glass melt), it is possible to prevent the electric current from erroneously flowing from the molten glass to the conductive material constituting the furnace body and the casing. In addition, since the bottom wall and the inner surface of the side wall are coated with boron nitride, even if the molten glass in the glass melting furnace is heated to a high temperature, the carbon dioxide generated when the glass raw material supplied from the inlet is vitrified. It is possible to suppress the glass melting furnace from being oxidized and sublimated by the reaction between the oxygen source such as the bottom wall inner surface and the side wall inner surface. In general, the glass melting furnace is made of a material having a melting point of 2000 ° C. or higher in a non-oxidizing atmosphere, so that the glass raw material can be melted at a temperature higher than the melting point of silica, which is the main raw material of glass. Therefore, the melting time of the glass raw material can be shortened, energy saving can be achieved, and unmelted glass raw material can be reduced. In addition, by energizing the heating electrode inserted in the glass melting furnace, the molten glass in the glass melting furnace can be directly heated, and the molten glass can be heated at an arbitrary position in the glass melting furnace. For this reason, regardless of the shape and size of the glass melting furnace, the molten glass can be efficiently heated, and in particular, it can be applied to a large glass melting furnace.
 この場合、不活性ガスを供給する不活性ガス供給手段を更に有し、ケーシングは、不活性ガス供給手段から供給された不活性ガスをケーシング内に導入する不活性ガス導入口と、ケーシング内に導入された不活性ガスを排出する不活性ガス排出口と、が形成されていることが好ましい。このように、ケーシング内に不活性ガスを導入することで、ガラス溶融炉全体が大気から隔離されるため、底壁及び側壁や、加熱用電極なども、酸化して昇華するのを抑制することができる。このため、溶融ガラスを高温に加熱しても、ガラス溶融炉の耐用年数が低下するのを抑制することができる。 In this case, the casing further includes an inert gas supply means for supplying an inert gas, and the casing includes an inert gas inlet for introducing the inert gas supplied from the inert gas supply means into the casing, and the casing. It is preferable that an inert gas discharge port for discharging the introduced inert gas is formed. In this way, by introducing an inert gas into the casing, the entire glass melting furnace is isolated from the atmosphere, so that the bottom wall and side walls, the heating electrode, and the like are also prevented from being oxidized and sublimated. Can do. For this reason, even if a molten glass is heated to high temperature, it can suppress that the service life of a glass melting furnace falls.
 また、投入口の鉛直方向下方に配置されるガラス溶融炉の第一領域と引出口が形成されるガラス溶融炉の第二領域との間に配置されて、ガラス溶融炉の炉内上部を仕切る上部仕切板を更に有することが好ましい。このように、ガラス溶融炉に上部仕切板を設けることで、未溶融ガラスが炉内上部の早流れに乗って引出口から引き出されるのを防止して、ガラス溶融炉内における溶融ガラスの移動経路を延ばすことができるため、ガラス溶融炉内における溶融ガラスの滞留時間を長くすることができる。これにより、ガラス原料の溶け残りを更に低減することができるため、高品質なガラス繊維を製造することができる。 Moreover, it arrange | positions between the 1st area | region of the glass melting furnace arrange | positioned perpendicularly | vertically below an inlet, and the 2nd area | region of the glass melting furnace in which an outlet is formed, and partitions the upper part in the furnace of a glass melting furnace It is preferable to further have an upper partition plate. In this way, by providing the upper partition plate in the glass melting furnace, the unmelted glass is prevented from being drawn out from the outlet through the fast flow in the upper part of the furnace, and the moving path of the molten glass in the glass melting furnace Therefore, the residence time of the molten glass in the glass melting furnace can be lengthened. Thereby, since the unmelted residue of the glass raw material can be further reduced, a high-quality glass fiber can be produced.
 本発明に係るガラス繊維製造装置は、上記の何れかのガラス溶融装置と、ガラス溶融炉の下方に配置されて引出口から引き出された溶融ガラスが導入される貯留槽と、貯留槽に導入された溶融ガラスを繊維化して紡糸する繊維化装置と、を有することを特徴とする。 A glass fiber manufacturing apparatus according to the present invention is introduced into any one of the glass melting apparatuses described above, a storage tank into which molten glass disposed below the glass melting furnace and drawn from the outlet is introduced, and the storage tank. And a fiberizing apparatus for fiberizing and spinning the molten glass.
 本発明に係るガラス繊維製造装置によれば、上述したガラス溶融装置を備えることで、ラス溶融装置においてガラス原料を溶融する時間が短縮されるとともに、ガラス原料の溶け残りを低減することができるため、迅速かつ高品質なガラス繊維を製造することができる。 According to the glass fiber manufacturing apparatus according to the present invention, since the glass melting apparatus described above is provided, the time for melting the glass raw material in the lath melting apparatus can be shortened and unmelted glass raw material can be reduced. Can produce glass fiber quickly and with high quality.
 本発明に係るガラス繊維製造方法は、上記のガラス繊維製造装置を用いたガラス繊維の製造方法であって、ガラス原料を投入口からガラス溶融炉内に投入し、加熱用電極を通電してガラス溶融炉内に投入されたガラス原料を溶融し、引出口から溶融ガラスを引き出して貯留槽に導入し、貯留槽に導入された溶融ガラスを繊維化装置により繊維化してガラス繊維を製造することを特徴とする。 A glass fiber manufacturing method according to the present invention is a glass fiber manufacturing method using the above-described glass fiber manufacturing apparatus, in which a glass raw material is charged into a glass melting furnace through a charging port, and a heating electrode is energized to generate glass. Melting the glass raw material put into the melting furnace, drawing the molten glass from the outlet and introducing it into the storage tank, and fiberizing the molten glass introduced into the storage tank with a fiberizer to produce glass fibers Features.
 本発明に係るガラス繊維製造方法によれば、ガラス溶融装置においてガラス原料を溶融する時間が短縮されるとともに、ガラス原料の溶け残りを低減することができるため、迅速かつ高品質なガラス繊維を製造することができる。 According to the glass fiber manufacturing method according to the present invention, the time for melting the glass raw material in the glass melting apparatus can be shortened, and the remaining unmelted glass raw material can be reduced, so that quick and high-quality glass fiber is manufactured. can do.
 この場合、ケーシング内を不活性ガス雰囲気にすることが好ましい。このように、ケーシング内を不活性ガス雰囲気とすることで、ガラス溶融炉全体が大気から隔離されるため、ガラス溶融炉および電極が酸化して昇華するのを抑制することができる。このため、溶融ガラスを高温で加熱しても、ガラス溶融炉の耐用年数が低下するのを抑制することができる。 In this case, the inside of the casing is preferably an inert gas atmosphere. Thus, by making the inside of a casing into inert gas atmosphere, since the whole glass melting furnace is isolated from air | atmosphere, it can suppress that a glass melting furnace and an electrode oxidize and sublimate. For this reason, even if a molten glass is heated at high temperature, it can suppress that the service life of a glass melting furnace falls.
 また、加熱用電極の通電により、溶融ガラスを1700~2000℃に加熱することもできる。このように溶融ガラスを1700~2000℃に加熱することで、ガラスの主成分であるシリカ単体で溶融されるため、ガラス原料の溶融時間を飛躍的に短縮することができる。 Also, the molten glass can be heated to 1700 to 2000 ° C. by energizing the heating electrode. By heating the molten glass to 1700 to 2000 ° C. in this way, the melting time of the glass raw material can be drastically shortened because it is melted by the single silica as the main component of the glass.
 本発明によれば、ガラス溶融装置をシリカの融点以上に加熱することができるため、ガラス原料の溶融時間を短縮するとともにガラス原料の溶け残りを低減することができる。 According to the present invention, since the glass melting apparatus can be heated to the melting point of silica or more, the melting time of the glass raw material can be shortened and the unmelted glass raw material can be reduced.
第1の実施形態に係るガラス繊維製造装置の模式図である。It is a schematic diagram of the glass fiber manufacturing apparatus which concerns on 1st Embodiment. ガラス溶融炉の上面図である。It is a top view of a glass melting furnace. 第2の実施形態に係るガラス繊維製造装置の模式図である。It is a schematic diagram of the glass fiber manufacturing apparatus which concerns on 2nd Embodiment. 第3の実施形態に係るガラス繊維製造装置の模式図である。It is a schematic diagram of the glass fiber manufacturing apparatus which concerns on 3rd Embodiment. 減圧脱泡炉を取り付けたガラス繊維製造装置の模式図である。It is a schematic diagram of the glass fiber manufacturing apparatus which attached the vacuum degassing furnace.
 以下、図面を参照して、本発明に係るガラス溶融装置、ガラス繊維製造装置及びガラス繊維製造方法の好適な実施形態について詳細に説明する。なお、全図中、同一または相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of a glass melting apparatus, a glass fiber manufacturing apparatus, and a glass fiber manufacturing method according to the present invention will be described in detail with reference to the drawings. In all the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
[第1の実施形態]
 図1は、第1の実施形態に係るガラス繊維製造装置の模式図である。図1に示すように、第1の実施形態に係るガラス繊維製造装置1は、床2に載置されるガラス溶融装置10と、床2の下方に配置される繊維化設備30と、を備える。
[First Embodiment]
FIG. 1 is a schematic diagram of a glass fiber manufacturing apparatus according to the first embodiment. As shown in FIG. 1, the glass fiber manufacturing apparatus 1 which concerns on 1st Embodiment is provided with the glass melting apparatus 10 mounted in the floor 2, and the fiberization equipment 30 arrange | positioned under the floor 2. As shown in FIG. .
 ガラス溶融装置10は、ガラス原料粉末やガラス塊などのガラス原料を溶融するガラス溶融炉11と、ガラス溶融炉11を覆うケーシング18と、を備える。なお、ガラス原料粉末は、クレー、ライムストーン、ドロマイト、コレマナイト、シリカサンド、アルミナ、炭酸カルシウム、炭酸ナトリウムなどの粉状の混合物であり、ガラス塊は、ガラス原料粉末を溶融した溶融ガラスを一旦冷却固化したマーブル状やカレット状のものである。 The glass melting apparatus 10 includes a glass melting furnace 11 that melts a glass raw material such as a glass raw material powder or a glass lump, and a casing 18 that covers the glass melting furnace 11. The glass raw material powder is a powdery mixture of clay, limestone, dolomite, colemanite, silica sand, alumina, calcium carbonate, sodium carbonate, etc., and the glass lump is once cooled with molten glass obtained by melting the glass raw material powder. Solid marbled or cullet shaped.
 ガラス溶融炉11は、底壁12と、底壁12に立設された側壁13とにより、上方に開口された箱状に形成されている。この底壁12及び側壁13は、モリブデンなどの炉材で構成されており、底壁12及び側壁13の内面には、窒化ホウ素が被覆されている。 The glass melting furnace 11 is formed in a box shape opened upward by a bottom wall 12 and a side wall 13 erected on the bottom wall 12. The bottom wall 12 and the side wall 13 are made of a furnace material such as molybdenum, and the inner surfaces of the bottom wall 12 and the side wall 13 are covered with boron nitride.
 このようなガラス溶融炉11は、上部仕切板16によって仕切られた、ガラス原料が投入される投入口19の鉛直方向下方に配置されて投入されたガラス原料を溶融するための第一領域Aと、底壁12にガラス溶融炉11から溶融ガラスを引き出すための引出口15が形成された第二領域Bと、が形成されている。第二領域Bは、炉体底部に溜まる不純物を堰き止めるため、また、溶融ガラスの移動経路を長くするため、第一領域Aよりも全体的もしくは部分的に高くなっている。このため、ガラス溶融炉11の底壁12は、第一領域Aと第二領域Bとの境界において、第一領域Aから第二領域Bに立ち上がる立ち上がり部12aが形成されている。なお、引出口15の内面も窒化ホウ素で被覆されている。 Such a glass melting furnace 11 is divided by an upper partition plate 16 and is arranged in a first region A for melting the glass raw material placed and disposed below the inlet 19 into which the glass raw material is introduced. The second region B in which the outlet 15 for drawing the molten glass from the glass melting furnace 11 is formed on the bottom wall 12 is formed. The second region B is entirely or partially higher than the first region A in order to block impurities accumulated at the bottom of the furnace body and lengthen the moving path of the molten glass. For this reason, the bottom wall 12 of the glass melting furnace 11 is formed with a rising portion 12a rising from the first region A to the second region B at the boundary between the first region A and the second region B. The inner surface of the outlet 15 is also covered with boron nitride.
 上部仕切板16は、上面を溶融ガラス液面より高く、かつ、下面を底壁12に触れないように、ガラス溶融炉11の上部に設置されて、溶融ガラスの液面付近(ガラス溶融炉11の炉内上部)を仕切りガラス溶融炉11の炉内底部からのみ溶融ガラスを通過させる仕切板である。上部仕切板16は、ガラス溶融炉11の底壁12及び側壁13と同様にモリブデンなどの炉材で構成されており、上部仕切板16の表面には、窒化ホウ素が被覆されている。この上部仕切板16は、対向する一対の側壁13に当接されて第一領域Aと第二領域Bとを仕切る平板状に形成されており、底壁12との間に空間が形成されている。このため、第一領域Aで溶融された溶融ガラスは、上部仕切板16の下方に形成された空間を潜ることで、第二領域Bに移動することが可能となっている。 The upper partition plate 16 is installed on the upper part of the glass melting furnace 11 so that the upper surface is higher than the molten glass liquid level and the lower surface does not touch the bottom wall 12, and near the liquid surface of the molten glass (the glass melting furnace 11 This is a partition plate that allows the molten glass to pass through only from the bottom of the furnace of the glass melting furnace 11. The upper partition plate 16 is made of a furnace material such as molybdenum similarly to the bottom wall 12 and the side wall 13 of the glass melting furnace 11, and the surface of the upper partition plate 16 is covered with boron nitride. The upper partition plate 16 is formed in a flat plate shape that abuts against a pair of opposing side walls 13 to partition the first region A and the second region B, and a space is formed between the bottom wall 12 and the upper partition plate 16. Yes. For this reason, the molten glass melted in the first region A can move to the second region B by diving in a space formed below the upper partition plate 16.
 このガラス溶融炉11には、上方から複数本の加熱用電極14が差し込まれている。この加熱用電極14は、モリブデンやタングステンなどの高温に耐えうる素材(高耐温性素材)で構成されており、電気を供給する電源17が接続されている。なお、加熱用電極14は、ガラス溶融装置10に対する挿抜性の観点から円柱形が好ましいが、特に制限されることなく様々な形状に変形させることができる。そして、この加熱用電極14によりガラス原料を直接通電することで、ガラス溶融炉11に投入されたガラス原料を加熱して溶融することが可能となっている。なお、このガラス溶融炉11は、ガラス溶融炉11内に挿入された加熱用電極14により加熱することからブースティング炉とも呼ばれ、主に、ガラス原料粉末を溶融するダイレクトメルト法(DM法)に用いられる。但し、このガラス溶融炉11を、ガラス魂のガラス原料を溶融するマーブルメルト法(MM法)などに用いてもよい。 A plurality of heating electrodes 14 are inserted into the glass melting furnace 11 from above. The heating electrode 14 is made of a material (high temperature resistant material) that can withstand high temperatures such as molybdenum and tungsten, and is connected to a power source 17 that supplies electricity. The heating electrode 14 is preferably cylindrical from the viewpoint of insertion / extraction with respect to the glass melting apparatus 10, but can be deformed into various shapes without particular limitation. The glass raw material charged into the glass melting furnace 11 can be heated and melted by directly energizing the glass raw material with the heating electrode 14. The glass melting furnace 11 is also called a boosting furnace because it is heated by a heating electrode 14 inserted in the glass melting furnace 11, and is mainly a direct melt method (DM method) for melting glass raw material powder. Used for. However, you may use this glass melting furnace 11 for the marble melt method (MM method) etc. which fuse | melt the glass raw material of a glass soul.
 加熱用電極14は、2本以上あれば、その数や配置は任意に選定することができる。但し、加熱用電極14に囲まれた領域が最も加熱されることに鑑みて、水平方向において加熱用電極14が投入口19を囲むように選定することが好ましい。図2は、図1に示すガラス溶融炉の上面図である。例えば、図2(a)に示すように、第一領域Aにおいて投入口19を挟む位置に2本の加熱用電極14を配置してもよく、図2(b)に示すように、第一領域Aにおいて投入口19を囲む位置に3本の加熱用電極14を配置してもよく、図2(c)に示すように、第一領域Aにおいて投入口19を挟む位置に2本の加熱用電極14を配置し、更に、第二領域Bにおいて2本の加熱用電極14を配置してもよい。このように、投入口19を挟む位置に加熱用電極14を配置することで、投入口19からガラス溶融炉11に投入されたガラス原料を効率的に加熱溶融することができる。また、第二領域Bにも加熱用電極14を配置することで、他の加熱手段を用いなくても、第二領域Bにおいて溶融ガラスの温度が低下するのを防止することができるため、引出口15から引き出す溶融ガラスの温度を調整することができる。 If there are two or more heating electrodes 14, the number and arrangement thereof can be arbitrarily selected. However, in view of the fact that the region surrounded by the heating electrode 14 is heated most, it is preferable to select the heating electrode 14 so as to surround the charging port 19 in the horizontal direction. FIG. 2 is a top view of the glass melting furnace shown in FIG. For example, as shown in FIG. 2 (a), two heating electrodes 14 may be arranged in the first region A so as to sandwich the insertion port 19, and as shown in FIG. In the region A, three heating electrodes 14 may be disposed at a position surrounding the charging port 19, and as shown in FIG. 2C, two heating electrodes 14 are positioned at a position sandwiching the charging port 19 in the first region A. For example, two heating electrodes 14 may be arranged in the second region B. Thus, by arranging the heating electrode 14 at a position sandwiching the charging port 19, the glass raw material charged into the glass melting furnace 11 from the charging port 19 can be efficiently heated and melted. In addition, by disposing the heating electrode 14 in the second region B, it is possible to prevent the temperature of the molten glass from decreasing in the second region B without using other heating means. The temperature of the molten glass drawn out from the outlet 15 can be adjusted.
 また、加熱用電極14は、その先端部において電気が流れ易い性質を有するため、投入するガラス原料が溜まる位置に、加熱用電極14の先端部を配置することが好ましい。例えば、ガラス原料粉末のガラス原料は溶融ガラスの液面付近に溜まるため、加熱用電極14の先端部を溶融ガラスの液面付近に配置することが好ましく、ガラス魂のガラス原料はガラス溶融炉11の炉内底部に沈むため、加熱用電極14の先端部をガラス溶融炉11の炉内底部に配置することが好ましい。 Further, since the heating electrode 14 has a property that electricity easily flows at the tip portion thereof, it is preferable to arrange the tip portion of the heating electrode 14 at a position where the glass raw material to be charged is accumulated. For example, since the glass raw material of the glass raw material powder is collected near the liquid surface of the molten glass, it is preferable to arrange the tip of the heating electrode 14 near the liquid surface of the molten glass. It is preferable to arrange the tip of the heating electrode 14 at the bottom of the glass melting furnace 11 in order to sink to the bottom of the furnace.
 ケーシング18は、ガラス溶融炉11の鉛直方向上方に配置されてケーシング18の天井となる天壁18aと、ガラス溶融炉11の周囲を覆う側壁18bと、ガラス溶融炉11の鉛直方向下方に配置される底壁18cとにより、箱状に形成されて、床2に載置されている。 The casing 18 is disposed above the glass melting furnace 11 in the vertical direction, and is disposed on the top wall 18 a serving as the ceiling of the casing 18, the side wall 18 b covering the periphery of the glass melting furnace 11, and the lower side in the vertical direction of the glass melting furnace 11. The bottom wall 18c is formed in a box shape and placed on the floor 2.
 天壁18aは、ガラス溶融炉11内に差し込まれる複数の加熱用電極14を保持しており、天壁18aを取り替えることで、加熱用電極14の数及び配置を容易に変更することができる。 The top wall 18a holds a plurality of heating electrodes 14 inserted into the glass melting furnace 11, and the number and arrangement of the heating electrodes 14 can be easily changed by replacing the top wall 18a.
 この天壁18aには、ガラス溶融炉11における第一領域Aの鉛直方向上方に、ガラス原料をガラス溶融炉11に投入するための投入口19が形成されている。そして、この投入口19には、ガラス溶融炉11に投入するガラス原料を供給するスクリューチャージャー20が連結されている。 In the top wall 18 a, a charging port 19 for feeding a glass material into the glass melting furnace 11 is formed above the first region A in the glass melting furnace 11 in the vertical direction. A screw charger 20 is connected to the charging port 19 for supplying a glass raw material to be charged into the glass melting furnace 11.
 側壁18bには、溶融ガラスの液面よりも高い位置に、ケーシング18内に不活性ガスを導入するための不活性ガス導入口21が形成されている。そして、この不活性ガス導入口21には、ケーシング18内に導入する不活性ガスを供給する不活性ガス供給装置22が連結されている。なお、不活性ガス供給装置22から供給されるガスは、非酸化性ガスであれば特に限定されず、例えば、アルゴンガスや窒素ガスなどが使用可能であり、その中でも、低コストで連続的に安定供給できる点で窒素ガスが好ましい。 In the side wall 18b, an inert gas inlet 21 for introducing an inert gas into the casing 18 is formed at a position higher than the liquid level of the molten glass. An inert gas supply device 22 that supplies an inert gas to be introduced into the casing 18 is connected to the inert gas inlet 21. The gas supplied from the inert gas supply device 22 is not particularly limited as long as it is a non-oxidizing gas. For example, argon gas or nitrogen gas can be used, and among them, continuously at low cost. Nitrogen gas is preferable in terms of stable supply.
 底壁18cには、ガラス溶融炉11の引出口15の鉛直方向下方に、引出口15から引き出された溶融ガラスを排出するための排出口23が形成されている。また、排出口23は、溶融ガラスの排出と同時に、不活性ガスを排出することもできる。 In the bottom wall 18c, a discharge port 23 for discharging the molten glass drawn out from the outlet 15 is formed below the outlet 15 of the glass melting furnace 11 in the vertical direction. Further, the discharge port 23 can discharge the inert gas simultaneously with the discharge of the molten glass.
 なお、ケーシング18内には、ガラス溶融炉11を断熱する耐火煉瓦や耐熱ボードなどの断熱材が挿入されている。 In the casing 18, a heat insulating material such as a refractory brick or a heat resistant board for insulating the glass melting furnace 11 is inserted.
 そして、床2には、ガラス溶融炉11の引出口15から引き出された溶融ガラスを各繊維化設備30に導入するための床穴3が形成されている。 The floor 2 is formed with a floor hole 3 for introducing the molten glass drawn from the outlet 15 of the glass melting furnace 11 into each fiberizing equipment 30.
 繊維化設備30は、ガラス溶融炉11の引出口15から引き出された溶融ガラスを繊維化する設備である。この繊維化設備30は、引出口15から引き出された溶融ガラスが導入されるフォアハース31と、フォアハース31内の溶融ガラスから多数本のフィラメントを形成するブッシング32と、ブッシング32からフィラメントを引き出して高速で巻き取る回転ドラム33と、ブッシング32から引き出された各フィラメントに集束剤を塗布するアプリケータ37と、各フィラメントを集束する集束ローラ34と、を備えている。 The fiberizing facility 30 is a facility for fiberizing the molten glass drawn from the outlet 15 of the glass melting furnace 11. This fiberizing equipment 30 includes a forehearth 31 into which the molten glass drawn from the outlet 15 is introduced, a bushing 32 for forming a large number of filaments from the molten glass in the forehearth 31, and a high speed by drawing the filament from the bushing 32. , A rotating drum 33 that winds up, an applicator 37 that applies a sizing agent to each filament drawn from the bushing 32, and a focusing roller 34 that focuses each filament.
 フォアハース31は、引出口15から引き出された溶融ガラスが導入されるとともに、溶融ガラスの温度を調節して溶融ガラスを繊維化しやすい粘度に調整する貯留槽である。そして、フォアハース31は、床穴3の鉛直方向下方に配置されており、引出口15から引き出された溶融ガラスが導入される上部開口35が形成されている。なお、フォアハース31は、この上部開口35により大気開放されている。また、フォアハース31は、溶融ガラスの温度を調節するための加熱手段を備えている。この加熱手段は、例えば、フォアハース31の天井面に吊り下げられた電気ヒータ36でよく、また、電気ヒータ36の代わりにガスバーナ等の溶融ガラスの温度を調節できる加熱手段であればどのようなものを用いてもよい。 Fore Haas 31 is a storage tank in which the molten glass drawn out from the outlet 15 is introduced and the temperature of the molten glass is adjusted to adjust the viscosity of the molten glass to be easily fiberized. The forehearth 31 is disposed below the floor hole 3 in the vertical direction, and is formed with an upper opening 35 into which the molten glass drawn from the outlet 15 is introduced. The forehearth 31 is opened to the atmosphere by the upper opening 35. In addition, the forehearth 31 includes a heating means for adjusting the temperature of the molten glass. This heating means may be, for example, an electric heater 36 suspended from the ceiling surface of the forehearth 31, and any heating means capable of adjusting the temperature of molten glass such as a gas burner in place of the electric heater 36. May be used.
 ブッシング32は、フォアハース31の底部に設けられており、紡糸のための多数(例えば、100~4000程度)のノズル(不図示)が形成されている。このブッシング32は、溶融ガラスの温度を調節するための加熱手段(不図示)を備えている。この加熱手段は、通電により抵抗発熱させるものである。このため、ブッシング32は通電により発熱する電熱部材で形成されており、例えば白金や白金合金から構成されている。 The bushing 32 is provided at the bottom of the forehearth 31, and a large number (for example, about 100 to 4000) of nozzles (not shown) for spinning are formed. The bushing 32 includes a heating means (not shown) for adjusting the temperature of the molten glass. This heating means is for generating resistance heat by energization. For this reason, the bushing 32 is formed of an electrothermal member that generates heat when energized, and is made of, for example, platinum or a platinum alloy.
 次に、本実施形態に係るガラス繊維製造装置1によりガラス繊維を製造する方法について説明する。 Next, a method for producing glass fibers by the glass fiber production apparatus 1 according to this embodiment will be described.
 まず、真空ポンプでケーシング18内を真空状態もしくは少なくとも減圧状態にしてケーシング18内に存在する酸素を排除した後、不活性ガス供給装置22から供給される不活性ガスを不活性ガス導入口21からケーシング18内に導入する操作をケーシング18内の酸素濃度が少なくとも1%以下になるまで数回繰り返して、ケーシング18内を不活性ガス雰囲気とする。なお、不活性ガスを導入する前にケーシング18内に充満していた気体やケーシング18内に導入された不活性ガスは、排出口23から排出される。 First, after the inside of the casing 18 is evacuated or at least decompressed with a vacuum pump to remove oxygen present in the casing 18, the inert gas supplied from the inert gas supply device 22 is supplied from the inert gas inlet 21. The operation of introducing into the casing 18 is repeated several times until the oxygen concentration in the casing 18 is at least 1% or less, and the inside of the casing 18 is made an inert gas atmosphere. Note that the gas filled in the casing 18 before the inert gas is introduced and the inert gas introduced into the casing 18 are discharged from the discharge port 23.
 次に、スクリューチャージャー20からガラス原料を供給して、投入口19からガラス溶融炉11の第一領域Aにガラス原料を投入し、電源17から電気を供給して加熱用電極14を通電し、第一領域Aに投入されたガラス原料を加熱溶融する。なお、ガラス溶融装置10のヒートアップ時(起動時)は、ガラス溶融炉11内に溶融ガラスが満たされていないことから加熱用電極14が通電され難いため、他の加熱手段を併用してガラス溶融炉11に投入されたガラス原料を溶融することが好ましい。このとき、加熱用電極14による通電により、溶融ガラスを1700~2000℃に加熱する。これにより、ガラス原料に含まれるシリカの溶融が促進されて、ガラス原料が迅速に溶融されるとともに、ガラス原料の溶け残りも無くなる。なお、ガラス溶融炉11およびケーシング18内が不活性ガス雰囲気となっているため、溶融ガラスを1700~2000℃に加熱しても、ガラス溶融炉11及び加熱用電極14が酸化して昇華するのを抑制することができ、更に、底壁12及び側壁13の内面が窒化ホウ素で被覆されているため、ガラス溶融炉11及び加熱用電極14が投入されたガラス原料から発生する炭酸ガス等の酸素源によって酸化され昇華するのを抑制することができる。 Next, the glass raw material is supplied from the screw charger 20, the glass raw material is supplied from the charging port 19 to the first region A of the glass melting furnace 11, electricity is supplied from the power source 17, and the heating electrode 14 is energized, The glass raw material thrown into the 1st area | region A is heat-melted. When the glass melting apparatus 10 is heated up (started up), since the glass melt furnace 11 is not filled with molten glass, it is difficult for the heating electrode 14 to be energized. It is preferable to melt the glass raw material charged into the melting furnace 11. At this time, the molten glass is heated to 1700 to 2000 ° C. by energization by the heating electrode 14. Thereby, the melting of the silica contained in the glass raw material is promoted, the glass raw material is rapidly melted, and the unmelted glass raw material is eliminated. Since the inside of the glass melting furnace 11 and the casing 18 is an inert gas atmosphere, even if the molten glass is heated to 1700 to 2000 ° C., the glass melting furnace 11 and the heating electrode 14 are oxidized and sublimated. Furthermore, since the inner surfaces of the bottom wall 12 and the side wall 13 are coated with boron nitride, oxygen such as carbon dioxide gas generated from the glass raw material into which the glass melting furnace 11 and the heating electrode 14 are charged. Oxidation and sublimation by the source can be suppressed.
 また、繊維化設備30のフォアハース31及びブッシング32も加熱して、製造するガラス繊維のガラス組成に応じて溶融ガラスが繊維化しやすい温度となるように、適宜フォアハース31及びブッシング32の加熱温度を調整しておく。 In addition, the forehearth 31 and the bushing 32 of the fiberizing equipment 30 are also heated, and the heating temperature of the forehearth 31 and the bushing 32 is appropriately adjusted so that the molten glass has a temperature that facilitates fiberization according to the glass composition of the glass fiber to be manufactured. Keep it.
 すると、第一領域Aで溶融された溶融ガラスは、上部仕切板16の下方に形成された空間を潜るとともに底壁12の立ち上がり部12aを越えて第一領域Aから第二領域Bに移動し、第二領域Bの底壁12に形成された引出口15から鉛直方向下方に引き出される。この引出口15から引き出された溶融ガラスは、ケーシング18に形成された排出口23、床2に形成された床穴3及び繊維化設備30のフォアハース31に形成された上部開口35を通ってフォアハース31内に導入され、更に、フォアハース31の底部に設けられたブッシング32の多数のノズルからガラスフィラメントとして引き出される。そして、ブッシング32の多数のノズルから引き出されたガラスフィラメントにアプリケータ37で集束剤を塗布し、集束ローラ34で多数のガラスフィラメントを集束しながら高速回転する回転ドラム33で巻き取ることで、細長いガラスフィラメントが集束されたガラス繊維が製造される。 Then, the molten glass melted in the first region A moves from the first region A to the second region B through the rising portion 12a of the bottom wall 12 while diving in the space formed below the upper partition plate 16. Then, it is pulled out vertically downward from an outlet 15 formed in the bottom wall 12 of the second region B. The molten glass drawn out from the outlet 15 passes through the outlet 23 formed in the casing 18, the floor hole 3 formed in the floor 2, and the upper opening 35 formed in the forehearth 31 of the fiberizing equipment 30. The glass filament is drawn out from a large number of nozzles of a bushing 32 provided at the bottom of the forehearth 31. The glass filaments drawn out from a number of nozzles of the bushing 32 are coated with a sizing agent by an applicator 37 and wound by a rotating drum 33 that rotates at a high speed while focusing a number of glass filaments by a focusing roller 34. Glass fibers in which glass filaments are bundled are produced.
 以上説明したように、第1の実施形態によれば、底壁12及び側壁13の内面が窒化ホウ素で被覆されているため、ガラス原料を溶融するために加熱用電極14に通電して溶融ガラスへ電流を流したときに、溶融ガラスからガラス溶融炉11およびケーシング18を構成している導電材料へ誤って電流が流れることを防ぐことができる。また、底壁12及び側壁13の内面が窒化ホウ素で被覆されているため、ガラス溶融炉11内の溶融ガラスを高温に加熱しても、投入口19から供給されるガラス原料がガラス化する際に発生する炭酸などの酸素源と底壁12内面および側壁13内面との反応によってガラス溶融炉11が酸化して昇華することを抑制することができる。そして、ガラス溶融炉11は非酸化性雰囲気において2000℃以上の融点を持った材料で構成されているので、ガラス溶融炉11が溶融ガラスで侵食されることなく、ガラスの主原料であるシリカの融点以上の温度でガラス原料を溶融することができるため、ガラス原料の溶融時間を短縮することができ、省エネルギー化を図ることができるとともに、ガラス原料の溶け残り(ガラス原料の未溶融物)を低減することができる。 As described above, according to the first embodiment, since the inner surfaces of the bottom wall 12 and the side wall 13 are coated with boron nitride, the heating electrode 14 is energized to melt the glass raw material, and the molten glass When a current is supplied to the glass, it is possible to prevent a current from flowing erroneously from the molten glass to the conductive material constituting the glass melting furnace 11 and the casing 18. Further, since the inner surfaces of the bottom wall 12 and the side wall 13 are coated with boron nitride, the glass raw material supplied from the inlet 19 is vitrified even when the molten glass in the glass melting furnace 11 is heated to a high temperature. It is possible to prevent the glass melting furnace 11 from being oxidized and sublimated due to the reaction between the oxygen source such as carbonic acid generated at the inner surface and the inner surface of the bottom wall 12 and the inner surface of the side wall 13. Since the glass melting furnace 11 is made of a material having a melting point of 2000 ° C. or higher in a non-oxidizing atmosphere, the glass melting furnace 11 is not corroded by the molten glass, and the silica which is the main raw material of glass is used. Since the glass raw material can be melted at a temperature higher than the melting point, the melting time of the glass raw material can be shortened, energy saving can be achieved, and unmelted glass raw material (unmelted glass raw material) Can be reduced.
 そして、ガラス溶融炉11に挿入された加熱用電極14を通電することで、ガラス溶融炉11の溶融ガラスを直接加熱することができるとともに、ガラス溶融炉11の任意の位置で溶融ガラスを加熱することができる。このため、ガラス溶融炉11の形状や大きさに関わらず、溶融ガラスを効率的に加熱することができ、特に、大型のガラス溶融炉11にも適用することができる。 And by supplying electricity to the heating electrode 14 inserted in the glass melting furnace 11, the molten glass in the glass melting furnace 11 can be directly heated, and the molten glass is heated at an arbitrary position in the glass melting furnace 11. be able to. For this reason, regardless of the shape and size of the glass melting furnace 11, the molten glass can be efficiently heated, and in particular, can be applied to the large-sized glass melting furnace 11.
 更に、ケーシング18内に不活性ガスを導入することで、ガラス溶融炉11全体が大気から隔離されるため、ガラス溶融炉11および加熱用電極14なども、酸化して昇華するのを抑制することができる。このため、溶融ガラスを高温に加熱しても、ガラス溶融炉11の耐用年数が低下するのを抑制することができる。 Furthermore, since the entire glass melting furnace 11 is isolated from the atmosphere by introducing an inert gas into the casing 18, the glass melting furnace 11 and the heating electrode 14 are also prevented from being oxidized and sublimated. Can do. For this reason, even if a molten glass is heated to high temperature, it can suppress that the service life of the glass melting furnace 11 falls.
 そして、ガラス溶融炉11において溶融ガラスを1700~2000℃に加熱することで、ガラスの主成分であるシリカ単体で溶融されるため、ガラス原料の溶融時間を飛躍的に短縮することができる。 Further, by heating the molten glass to 1700 to 2000 ° C. in the glass melting furnace 11, it is melted with silica alone, which is the main component of the glass, so that the melting time of the glass raw material can be dramatically shortened.
 また、第二領域Bを第一領域Aよりも全体的もしくは部分的に高くして第一領域Aと第二領域Bとの間に底壁12の立ち上がり部12aを形成することで、炉体底部に溜まる不純物を堰き止め、また、ガラス溶融炉11内における溶融ガラスの移動経路を延ばすことができるため、ガラス溶融炉11内における溶融ガラスの滞留時間を長くすることができる。これにより、ガラス原料の溶け残りを更に低減することができるため、高品質なガラス繊維を製造することができる。 Further, the second region B is entirely or partially made higher than the first region A to form the rising portion 12a of the bottom wall 12 between the first region A and the second region B, so that the furnace body Impurities that accumulate at the bottom can be dammed and the movement path of the molten glass in the glass melting furnace 11 can be extended, so that the residence time of the molten glass in the glass melting furnace 11 can be increased. Thereby, since the unmelted residue of the glass raw material can be further reduced, a high-quality glass fiber can be produced.
 同様に、ガラス溶融炉11の投入口19と引出口15との間に上部仕切板16を設けることで、ガラス溶融炉11内における溶融ガラスの移動経路を延ばすことができるため、ガラス溶融炉11内における溶融ガラスの滞留時間が長くなり、ガラス原料の溶け残りが更に低減される。更に、この上部仕切板16により、溶融ガラスの液面付近に浮上してきた気泡を堰き止め、第二領域Bに移動することを防ぐことができるため、気泡を含んだ溶融ガラスが第二領域Bに移動して引出口15から引き出されるのを抑制することができる。これにより、ガラス原料の溶け残りや気泡のない高品質なガラス繊維を製造することができる。 Similarly, since the upper partition plate 16 is provided between the inlet 19 and the outlet 15 of the glass melting furnace 11, the movement path of the molten glass in the glass melting furnace 11 can be extended. The residence time of the molten glass in the inside becomes longer, and the unmelted glass raw material is further reduced. Furthermore, since the upper partition plate 16 can block the bubbles that have floated near the liquid surface of the molten glass and prevent the bubbles from moving to the second region B, the molten glass containing bubbles can be prevented from flowing into the second region B. It can suppress that it moves to and is pulled out from the outlet 15. Thereby, the high quality glass fiber without the melt | dissolution residue of a glass raw material and a bubble can be manufactured.
[第2の実施形態]
 図3は、第2の実施形態に係るガラス繊維製造装置の模式図である。図3に示すように、第2の実施形態に係るガラス繊維製造装置40は、基本的に第1の実施形態に係るガラス繊維製造装置1と同じであり、フォアハースの構成のみ第1の実施形態に係るガラス繊維製造装置1と相違する。このため、以下の説明では、第1の実施形態と異なる点のみ説明し、第1の実施形態と同じ点の説明を省略する。
[Second Embodiment]
FIG. 3 is a schematic view of a glass fiber manufacturing apparatus according to the second embodiment. As shown in FIG. 3, the glass fiber manufacturing apparatus 40 according to the second embodiment is basically the same as the glass fiber manufacturing apparatus 1 according to the first embodiment, and only the configuration of the forehearth is the first embodiment. It differs from the glass fiber manufacturing apparatus 1 which concerns on this. For this reason, in the following description, only a different point from 1st Embodiment is demonstrated and description of the same point as 1st Embodiment is abbreviate | omitted.
 第2の実施形態のフォアハース41は、第1の実施形態のフォアハース31と同様に、ガラス溶融炉11の引出口15から引き出された溶融ガラスが導入されるとともに、溶融ガラスの温度を調節して溶融ガラスを繊維化しやすい粘度に調整する貯留槽である。このため、フォアハース41は、床穴3の鉛直方向下方に配置されており、引出口15から引き出された溶融ガラスが導入される上部開口35が形成されて、溶融ガラスの温度を調節するための加熱手段(電気ヒータ36)を備えている。 The forehearth 41 of the second embodiment is similar to the forehearth 31 of the first embodiment, and the molten glass drawn from the outlet 15 of the glass melting furnace 11 is introduced and the temperature of the molten glass is adjusted. It is a storage tank that adjusts the molten glass to a viscosity that facilitates fiberization. For this reason, the forehearth 41 is arranged vertically below the floor hole 3, and an upper opening 35 into which the molten glass drawn from the outlet 15 is introduced is formed to adjust the temperature of the molten glass. Heating means (electric heater 36) is provided.
 そして、フォアハース41の側壁には、フォアハース41内に不活性ガスを導入するための不活性ガス導入口42が形成されており、この不活性ガス導入口42には、フォアハース41内に導入する不活性ガスを供給する不活性ガス供給装置43が連結されている。なお、不活性ガス供給装置43から供給されるガスは、非酸化性ガスであれば特に限定されず、例えば、アルゴンガスや窒素ガスなどが使用可能であり、その中でも、低コストで連続的に安定供給できる点で窒素ガスが好ましい。この場合、フォアハース41の上部開口35は、ケーシング18内に導入された不活性ガスを排出するための不活性ガス排出口としても機能する。 In addition, an inert gas introduction port 42 for introducing an inert gas into the forehearth 41 is formed on the side wall of the forehearth 41. An inert gas supply device 43 that supplies the active gas is connected. The gas supplied from the inert gas supply device 43 is not particularly limited as long as it is a non-oxidizing gas. For example, argon gas or nitrogen gas can be used. Nitrogen gas is preferable in terms of stable supply. In this case, the upper opening 35 of the forehearth 41 also functions as an inert gas discharge port for discharging the inert gas introduced into the casing 18.
 このように構成されるガラス繊維製造装置40によりガラス繊維を製造する際は、不活性ガス供給装置43から供給される不活性ガスを、不活性ガス導入口42からフォアハース41内に導入して、フォアハース41内を不活性ガス雰囲気としておく。なお、不活性ガスを導入する前にフォアハース41内に充満していた気体やフォアハース41内に導入された不活性ガスは、上部開口35から排出される。 When the glass fiber is manufactured by the glass fiber manufacturing apparatus 40 configured as described above, the inert gas supplied from the inert gas supply apparatus 43 is introduced into the forehearth 41 from the inert gas inlet 42, The interior of the forehearth 41 is set to an inert gas atmosphere. Note that the gas filled in the forehearth 41 before introducing the inert gas or the inert gas introduced into the forehearth 41 is discharged from the upper opening 35.
 このように、真空ポンプでフォアハース41内を真空状態もしくは少なくとも減圧状態にしてフォアハース41内に存在する酸素を排除した後、不活性ガスをフォアハース41内に導入する操作をフォアハース41内の酸素濃度が少なくとも1%以下になるまで数回繰り返すことで、フォアハース41内が大気から隔離されるため、ガラス溶融炉11からフォアハース41に導入された溶融ガラスも酸素と隔離されるため、溶融ガラスの酸素による劣化を抑制することができる。これにより、繊維化に至るまでの非酸化性雰囲気が要求されるオキシナイトライドガラスのようなガラス種の製造などに好適に用いることができる。 As described above, the operation of introducing the inert gas into the forehearth 41 after removing the oxygen existing in the forehearth 41 by making the inside of the forehearth 41 into a vacuum state or at least a reduced pressure state with a vacuum pump is performed. By repeating several times until it becomes at least 1% or less, the interior of the forehearth 41 is isolated from the atmosphere, and therefore the molten glass introduced into the forehearth 41 from the glass melting furnace 11 is also isolated from oxygen, and therefore the oxygen of the molten glass Deterioration can be suppressed. Thereby, it can use suitably for manufacture of glass seed | species like oxynitride glass in which the non-oxidizing atmosphere until fiberization is requested | required.
[第3の実施形態]
 図4は、第3の実施形態に係るガラス繊維製造装置の模式図である。図4に示すように、第3の実施形態に係るガラス繊維製造装置50は、基本的に第1の実施形態に係るガラス繊維製造装置1と同じであり、ガラス溶融炉の構成のみ第1の実施形態に係るガラス繊維製造装置1と相違する。このため、以下の説明では、第1の実施形態と異なる点のみ説明し、第1の実施形態と同じ点の説明を省略する。
[Third Embodiment]
FIG. 4 is a schematic diagram of a glass fiber manufacturing apparatus according to the third embodiment. As shown in FIG. 4, the glass fiber manufacturing apparatus 50 according to the third embodiment is basically the same as the glass fiber manufacturing apparatus 1 according to the first embodiment, and only the configuration of the glass melting furnace is the first. It differs from the glass fiber manufacturing apparatus 1 which concerns on embodiment. For this reason, in the following description, only a different point from 1st Embodiment is demonstrated and description of the same point as 1st Embodiment is abbreviate | omitted.
 第3の実施形態のガラス溶融炉51は、第1の実施形態と同様に、上方から複数本の加熱用電極14が差し込まれた所謂ブースティング炉である。このガラス溶融炉51は、平板状の底壁52と、底壁52に立設された側壁53とにより、上方に開口された箱状に形成されている。この底壁52及び側壁53は、モリブデンなどの炉材で構成されており、底壁52及び側壁53の内面には、窒化ホウ素が被覆されている。 The glass melting furnace 51 of the third embodiment is a so-called boosting furnace in which a plurality of heating electrodes 14 are inserted from above, similarly to the first embodiment. The glass melting furnace 51 is formed in a box shape opened upward by a flat bottom wall 52 and a side wall 53 standing on the bottom wall 52. The bottom wall 52 and the side wall 53 are made of a furnace material such as molybdenum, and the inner surfaces of the bottom wall 52 and the side wall 53 are covered with boron nitride.
 このようなガラス溶融炉51は、第1の実施形態のガラス溶融炉11と同様に、上部仕切板55によって仕切られた、ガラス原料が投入される投入口19の鉛直方向下方に配置されて投入されたガラス原料を溶融するための第一領域Aと、溶融ガラスが引き出される第二領域Bと、が形成されている。 Similar to the glass melting furnace 11 of the first embodiment, such a glass melting furnace 51 is disposed by being placed vertically below the charging port 19 into which the glass raw material is charged, which is partitioned by the upper partition plate 55. A first region A for melting the glass raw material formed and a second region B from which the molten glass is drawn are formed.
 そして、第二領域Bの底壁52には、ガラス溶融炉51から溶融ガラスを引き出すための引出口54が形成されており、第一領域Aと第二領域Bとは上部仕切板55で仕切られており、第二領域Bの上部仕切板55と引出口54との間に下部仕切板56が配置されている。なお、引出口54の内面も窒化ホウ素で被覆されている。 The bottom wall 52 of the second region B is formed with an outlet 54 for drawing molten glass from the glass melting furnace 51, and the first region A and the second region B are partitioned by the upper partition plate 55. The lower partition plate 56 is disposed between the upper partition plate 55 and the outlet 54 in the second region B. The inner surface of the outlet 54 is also covered with boron nitride.
 上部仕切板55は、第1の実施形態の上部仕切板16と同様に、ガラス溶融炉51の上部であって溶融ガラスの液面付近を仕切りガラス溶融炉51の炉内底部からのみ溶融ガラスを通過させる仕切板である。上部仕切板55は、ガラス溶融炉51の底壁52及び側壁53と同様にモリブデンなどの炉材で構成されており、上部仕切板55の表面には、窒化ホウ素が被覆されている。この上部仕切板55は、対向する一対の側壁53に当接されて第一領域Aと第二領域Bとを仕切る平板状に形成されており、底壁52との間に空間が形成されている。このため、第一領域Aで溶融された溶融ガラスは、上部仕切板55の下方に形成された空間を潜ることで、第二領域Bに移動することが可能となっている。 Similar to the upper partition plate 16 of the first embodiment, the upper partition plate 55 is an upper portion of the glass melting furnace 51 and partitions the vicinity of the liquid surface of the molten glass from the bottom of the glass melting furnace 51 only. It is a partition plate to pass through. The upper partition plate 55 is made of a furnace material such as molybdenum like the bottom wall 52 and the side wall 53 of the glass melting furnace 51, and the surface of the upper partition plate 55 is covered with boron nitride. The upper partition plate 55 is formed in a flat plate shape that abuts against a pair of opposing side walls 53 to partition the first region A and the second region B, and a space is formed between the bottom wall 52 and the upper partition plate 55. Yes. For this reason, the molten glass melted in the first region A can move to the second region B by diving in a space formed below the upper partition plate 55.
 下部仕切板56は、ガラス溶融炉51の炉内底部を仕切りガラス溶融炉51の上部からのみ溶融ガラスを通過させる仕切板である。下部仕切板56は、ガラス溶融炉51の底壁52及び側壁53と同様にモリブデンなどの炉材で構成されており、下部仕切板56の表面には、窒化ホウ素が被覆されている。この下部仕切板56は、対向する一対の側壁53と底壁52とに当接されて第一領域Aと第二領域Bとを仕切る平板状に形成されており、溶融ガラスの液面高さよりも低くなっている。このため、第一領域Aで溶融された溶融ガラスは、下部仕切板56の上方を越えることで、第二領域Bに移動することが可能となっている。 The lower partition plate 56 is a partition plate that allows the molten glass to pass only from the upper part of the glass melting furnace 51 by dividing the inner bottom of the glass melting furnace 51. The lower partition plate 56 is made of a furnace material such as molybdenum similarly to the bottom wall 52 and the side wall 53 of the glass melting furnace 51, and the surface of the lower partition plate 56 is coated with boron nitride. The lower partition plate 56 is formed into a flat plate shape that comes into contact with the pair of opposing side walls 53 and the bottom wall 52 to partition the first region A and the second region B. From the liquid surface height of the molten glass Is also low. For this reason, the molten glass melted in the first region A can move to the second region B by passing over the lower partition plate 56.
 そして、下部仕切板56は、第二領域Bの引出口54から見て上部仕切板55側に配置されている。このため、第一領域Aで溶融された溶融ガラスは、まず上部仕切板55の下方に形成された空間を潜り、その後、下部仕切板56の上方を越えることで、第二領域B内の引出口54側に移動して引出口54から引き出される。 The lower partition plate 56 is disposed on the upper partition plate 55 side when viewed from the outlet 54 in the second region B. For this reason, the molten glass melted in the first region A first dives in the space formed below the upper partition plate 55, and then passes over the lower partition plate 56, thereby drawing in the second region B. It moves to the outlet 54 side and is pulled out from the outlet 54.
 このように構成されるガラス繊維製造装置50によりガラス繊維を製造する際は、第1の実施形態と同様に、ケーシング18内を不活性ガス雰囲気として、投入口19からガラス溶融炉51の第一領域Aにガラス原料を投入するとともに、加熱用電極14を通電して第一領域Aに投入されたガラス原料を加熱溶融する。 When the glass fiber is manufactured by the glass fiber manufacturing apparatus 50 configured as described above, the inside of the casing 18 is set to an inert gas atmosphere as in the first embodiment, and the first of the glass melting furnace 51 is introduced from the inlet 19. A glass material is charged into the region A, and the heating electrode 14 is energized to heat and melt the glass material charged into the first region A.
 すると、第一領域Aで溶融された溶融ガラスは、上部仕切板16の下方に形成された空間を潜り、第一領域Aから第二領域Bに移動し、第二領域B内で下部仕切板56の上方を越えて第二領域Bの底壁52に形成された引出口54から鉛直方向下方に引き出されて、フォアハース31に導入される。 Then, the molten glass melted in the first region A moves through the space formed below the upper partition plate 16 and moves from the first region A to the second region B, and the lower partition plate in the second region B. The upper portion 56 is pulled out vertically downward from an outlet 54 formed in the bottom wall 52 of the second region B, and is introduced into the forehearth 31.
 このように、ガラス溶融炉51に下部仕切板56を設けることで、第1の実施形態のように、ガラス溶融炉51の底壁52自体に段差を設けなくても、炉体底部に溜まる不純物を堰き止めて引出口54から引き出されるのを防止し、また、ガラス溶融炉51内における溶融ガラスの移動経路を延ばすことができる。これにより、ガラス溶融炉内においてガラス原料を十分に溶融する時間を確保することができる。 As described above, by providing the lower partition plate 56 in the glass melting furnace 51, impurities accumulated in the bottom of the furnace body without providing a step in the bottom wall 52 itself of the glass melting furnace 51 as in the first embodiment. Can be prevented from being drawn out from the outlet 54, and the moving path of the molten glass in the glass melting furnace 51 can be extended. Thereby, time for fully melting the glass raw material in the glass melting furnace can be secured.
 なお、本発明は上記実施形態に限定されるものではなく、種々の変更が可能である。 In addition, this invention is not limited to the said embodiment, A various change is possible.
 例えば、上記実施形態では、ガラス溶融炉11がケーシング18に覆われるものとして説明したが、ガラス溶融炉11や加熱用電極14などの酸化の問題が許容でき、ガラス溶融炉11や加熱用電極14を不活性ガス雰囲気に晒す必要が無い場合は、必ずしもケーシング18でガラス溶融炉11を覆う必要はない。 For example, although the glass melting furnace 11 has been described as being covered with the casing 18 in the above embodiment, oxidation problems such as the glass melting furnace 11 and the heating electrode 14 can be tolerated, and the glass melting furnace 11 and the heating electrode 14 are acceptable. Is not necessarily covered with the inert gas atmosphere, it is not always necessary to cover the glass melting furnace 11 with the casing 18.
 また、上記実施形態では、引出口15から引き出された溶融ガラスを直接フォアハース31に導入するものとして説明したが、図5に示すガラス繊維製造装置60のように、引出口15から引き出された溶融ガラスを、溶融ガラス貯留槽61及び減圧脱泡炉62などの中間槽を介してフォアハース31に導入してもよい。なお、減圧脱泡炉62は、溶融ガラスが導入される炉63をケーシング64で気密に覆うとともに、このケーシング64内を減圧ポンプ65により減圧することで、炉63に導入された溶融ガラスの脱泡を促すものである。 Moreover, in the said embodiment, although demonstrated as what introduce | transduces the molten glass withdrawn from the outlet 15 directly into the forehearth 31, the molten glass withdrawn from the outlet 15 like the glass fiber manufacturing apparatus 60 shown in FIG. You may introduce | transduce glass into the forehearth 31 via intermediate tanks, such as the molten glass storage tank 61 and the pressure reduction degassing furnace 62. FIG. The vacuum degassing furnace 62 hermetically covers the furnace 63 into which the molten glass is introduced with a casing 64 and depressurizes the inside of the casing 64 with a vacuum pump 65, thereby removing the molten glass introduced into the furnace 63. It encourages bubbles.
 また、第3の実施形態では、下部仕切板56がガラス溶融炉51に固定されるものとして説明したが、下部仕切板56は鉛直方向上方に移動可能となるようにガラス溶融炉51に取り付けられるものとしてもよい。そして、ガラスの組成を入れ替える際に、下部仕切板56を鉛直方向上方に移動させることで、第一領域Aの溶融ガラスがガラス溶融炉51の底面を伝って引出口54に移動することが可能となるため、ガラス組成を入れ替える時間を飛躍的に向上させることができる。 In the third embodiment, the lower partition plate 56 is described as being fixed to the glass melting furnace 51. However, the lower partition plate 56 is attached to the glass melting furnace 51 so as to be movable upward in the vertical direction. It may be a thing. And when changing the composition of the glass, it is possible to move the molten glass in the first region A to the outlet 54 along the bottom surface of the glass melting furnace 51 by moving the lower partition plate 56 upward in the vertical direction. Therefore, the time for replacing the glass composition can be drastically improved.
 本発明は、ガラス原料を溶融するガラス溶融装置、このガラス溶融装置を用いてガラス繊維を製造するガラス繊維製造装置及びガラス繊維製造方法として利用可能である。 The present invention can be used as a glass melting apparatus for melting glass raw materials, a glass fiber manufacturing apparatus for manufacturing glass fibers using this glass melting apparatus, and a glass fiber manufacturing method.
 1…ガラス繊維製造装置、2…床、3…床穴、10…ガラス溶融装置、11…ガラス溶融炉、12…底壁、12a…立ち上がり部、13…側壁、14…加熱用電極、15…引出口、16…上部仕切板、17…電源、18…ケーシング、18a…天壁、18b…側壁、18c…底壁、19…投入口、20…スクリューチャージャー、21…不活性ガス導入口、22…不活性ガス供給装置(不活性ガス供給手段)、23…排出口(不活性ガス排出口)、30…繊維化設備、31…フォアハース、32…ブッシング(繊維化装置)、33…回転ドラム(繊維化装置)、34…集束ローラ(繊維化装置)、35…上部開口、36…電気ヒータ、37…アプリケータ、40…ガラス繊維製造装置、41…フォアハース、42…不活性ガス導入口、43…不活性ガス供給装置、50…ガラス繊維製造装置、51…ガラス溶融炉、52…底壁、53…側壁、54…引出口、55…上部仕切板、56…下部仕切板、60…ガラス繊維製造装置、61…溶融ガラス貯留槽、62…減圧脱泡炉、63…炉、64…ケーシング、65…減圧ポンプ、A…第一領域、B…第二領域。 DESCRIPTION OF SYMBOLS 1 ... Glass fiber manufacturing apparatus, 2 ... Floor, 3 ... Floor hole, 10 ... Glass melting apparatus, 11 ... Glass melting furnace, 12 ... Bottom wall, 12a ... Rising part, 13 ... Side wall, 14 ... Heating electrode, 15 ... Drawer outlet, 16 ... upper partition plate, 17 ... power source, 18 ... casing, 18a ... top wall, 18b ... side wall, 18c ... bottom wall, 19 ... inlet, 20 ... screw charger, 21 ... inert gas inlet, 22 ... inert gas supply device (inert gas supply means), 23 ... discharge port (inert gas discharge port), 30 ... fiberizing equipment, 31 ... fore hearth, 32 ... bushing (fibering device), 33 ... rotating drum ( (Fibering device), 34 ... focusing roller (fibering device), 35 ... upper opening, 36 ... electric heater, 37 ... applicator, 40 ... glass fiber manufacturing device, 41 ... fore hearth, 42 ... inert gas inlet, 43 Inert gas supply device, 50 ... glass fiber production device, 51 ... glass melting furnace, 52 ... bottom wall, 53 ... side wall, 54 ... outlet, 55 ... upper partition plate, 56 ... lower partition plate, 60 ... glass fiber production Equipment: 61 ... Molten glass storage tank, 62 ... Vacuum degassing furnace, 63 ... Furnace, 64 ... Casing, 65 ... Vacuum pump, A ... First region, B ... Second region.

Claims (7)

  1.  底壁と側壁とを備え、前記底壁に溶融ガラスの引出口が形成されたガラス溶融炉と、
     前記ガラス溶融炉を覆い、前記ガラス溶融炉の鉛直方向上方にガラス原料の投入口が形成されるとともに、前記引出口の鉛直方向下方に前記引出口から引き出された溶融ガラスを排出する排出口が形成されたケーシングと、
     前記ケーシングの天井から前記ガラス溶融炉内に差し込まれて通電により前記ガラス溶融炉内の溶融ガラスを加熱する加熱用電極と、
    を有し、
     前記底壁及び前記側壁の内面は、窒化ホウ素で被覆されていることを特徴とするガラス溶融装置。
    A glass melting furnace comprising a bottom wall and a side wall, wherein a molten glass outlet is formed in the bottom wall;
    Covering the glass melting furnace, a glass raw material inlet is formed vertically above the glass melting furnace, and a discharge outlet for discharging the molten glass drawn from the outlet vertically below the outlet A formed casing;
    An electrode for heating which is inserted into the glass melting furnace from the ceiling of the casing and heats the molten glass in the glass melting furnace by energization;
    Have
    The glass melting apparatus, wherein inner surfaces of the bottom wall and the side wall are coated with boron nitride.
  2.  不活性ガスを供給する不活性ガス供給手段を更に有し、
     前記ケーシングは、
     前記不活性ガス供給手段から供給された不活性ガスを前記ケーシング内に導入する不活性ガス導入口と、
     前記ケーシング内に導入された不活性ガスを排出する不活性ガス排出口と、
    が形成されていることを特徴とする請求項1に記載のガラス溶融装置。
    An inert gas supply means for supplying an inert gas;
    The casing is
    An inert gas inlet for introducing the inert gas supplied from the inert gas supply means into the casing;
    An inert gas outlet for discharging the inert gas introduced into the casing;
    The glass melting apparatus according to claim 1, wherein the glass melting apparatus is formed.
  3.  前記投入口の鉛直方向下方に配置される前記ガラス溶融炉の第一領域と前記引出口が形成される前記ガラス溶融炉の第二領域との間に配置されて、前記ガラス溶融炉の炉内上部を仕切る上部仕切板を更に有することを特徴とする請求項1又は2に記載のガラス溶融装置。 The glass melting furnace is disposed between a first region of the glass melting furnace disposed vertically below the charging port and a second region of the glass melting furnace in which the outlet is formed. The glass melting apparatus according to claim 1, further comprising an upper partition plate that partitions the upper portion.
  4.  請求項1~3の何れか1項に記載のガラス溶融装置と、
     前記ガラス溶融炉の下方に配置されて前記引出口から引き出された溶融ガラスが導入される貯留槽と、
     前記貯留槽に導入された溶融ガラスを繊維化して紡糸する繊維化装置と、
    を有することを特徴とするガラス繊維製造装置。
    A glass melting apparatus according to any one of claims 1 to 3,
    A storage tank into which the molten glass placed under the glass melting furnace and drawn from the outlet is introduced;
    A fiberizing apparatus for fiberizing and spinning molten glass introduced into the storage tank;
    An apparatus for producing glass fiber, comprising:
  5.  請求項4に記載のガラス繊維製造装置を用いたガラス繊維の製造方法であって、
     ガラス原料を前記投入口から前記ガラス溶融炉内に投入し、
     前記加熱用電極を通電して前記ガラス溶融炉内に投入されたガラス原料を溶融し、
     前記引出口から溶融ガラスを引き出して前記貯留槽に導入し、
     前記貯留槽に導入された溶融ガラスを前記繊維化装置により繊維化してガラス繊維を製造することを特徴とするガラス繊維製造方法。
    It is a manufacturing method of the glass fiber using the glass fiber manufacturing apparatus of Claim 4,
    Glass raw material is charged into the glass melting furnace from the charging port,
    Energizing the heating electrode to melt the glass raw material charged into the glass melting furnace,
    Pulling out the molten glass from the outlet and introducing it into the storage tank,
    A glass fiber manufacturing method, wherein the molten glass introduced into the storage tank is fiberized by the fiberizing apparatus to manufacture glass fibers.
  6.  前記ケーシング内を不活性ガス雰囲気にすることを特徴とする請求項5に記載のガラス繊維製造方法。 6. The glass fiber manufacturing method according to claim 5, wherein the inside of the casing is filled with an inert gas atmosphere.
  7.  前記加熱用電極の通電により、溶融ガラスを1700~2000℃に加熱することを特徴とする請求項5又は6に記載のガラス繊維製造方法。
     
    The method for producing glass fiber according to claim 5 or 6, wherein the molten glass is heated to 1700 to 2000 ° C by energization of the heating electrode.
PCT/JP2011/078792 2010-12-21 2011-12-13 Glass melter, glass fiber production apparatus, and glass fiber production method WO2012086467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549739A JP5867413B2 (en) 2010-12-21 2011-12-13 Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010284971 2010-12-21
JP2010-284971 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012086467A1 true WO2012086467A1 (en) 2012-06-28

Family

ID=46313745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078792 WO2012086467A1 (en) 2010-12-21 2011-12-13 Glass melter, glass fiber production apparatus, and glass fiber production method

Country Status (3)

Country Link
JP (1) JP5867413B2 (en)
TW (1) TW201240933A (en)
WO (1) WO2012086467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524639A (en) * 2014-07-08 2017-08-31 サン−ゴバン イゾベール Apparatus for melting glass including furnace, channel and barrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183031A (en) * 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
JP2005271058A (en) * 2004-03-25 2005-10-06 Tosoh Quartz Corp Method for manufacturing vessel with mold releasing layer for melting silicon, and vessel for melting silicon
JP2010052971A (en) * 2008-08-27 2010-03-11 Nippon Electric Glass Co Ltd Method and apparatus for melting glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183031A (en) * 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
JP2005271058A (en) * 2004-03-25 2005-10-06 Tosoh Quartz Corp Method for manufacturing vessel with mold releasing layer for melting silicon, and vessel for melting silicon
JP2010052971A (en) * 2008-08-27 2010-03-11 Nippon Electric Glass Co Ltd Method and apparatus for melting glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524639A (en) * 2014-07-08 2017-08-31 サン−ゴバン イゾベール Apparatus for melting glass including furnace, channel and barrier

Also Published As

Publication number Publication date
JPWO2012086467A1 (en) 2014-05-22
TW201240933A (en) 2012-10-16
JP5867413B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
CN101405231B (en) Method for temperature manipulation of a melt
RU2246454C2 (en) Method and a device for melting and refining of glass mass
JP5849971B2 (en) Glass melting apparatus, glass fiber manufacturing apparatus and glass composition changing method
CN102648163B (en) The manufacture method of the manufacture method of glass melting furnace, melten glass, the manufacturing installation of glasswork and glasswork
US4818265A (en) Barrier apparatus and method of use for melting and refining glass or the like
JP6048404B2 (en) Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
CN103168010A (en) Method for manufacturing glass plate
CN101980977A (en) Molten glass production apparatus and molten glass production method using same
US11845685B2 (en) Selective chemical fining of small bubbles in glass
CN103168009A (en) Method for manufacturing glass plate
JP5867414B2 (en) Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
JP5671762B2 (en) Float tank for manufacturing float glass and method for cooling float tank
CN103359910B (en) The manufacture method of sheet glass
JP5867413B2 (en) Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
JP6943136B2 (en) Glass melting furnace and manufacturing method of glass articles
KR102017037B1 (en) Method for drawing vitrifiable materials
JP5892166B2 (en) Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method
JP2005053757A (en) Glass manufacturing apparatus and method
KR100510196B1 (en) Continuous type fusion furnace system for frit production
CN103588383A (en) Process and kiln for producing high-performance alkali-free glass
JP6749123B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2020100536A (en) Apparatus and method for manufacturing glass article
JPH0416410B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851656

Country of ref document: EP

Kind code of ref document: A1