WO2012086377A1 - Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those - Google Patents

Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those Download PDF

Info

Publication number
WO2012086377A1
WO2012086377A1 PCT/JP2011/077613 JP2011077613W WO2012086377A1 WO 2012086377 A1 WO2012086377 A1 WO 2012086377A1 JP 2011077613 W JP2011077613 W JP 2011077613W WO 2012086377 A1 WO2012086377 A1 WO 2012086377A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
sensitized solar
solar cell
electrode
auxiliary electrode
Prior art date
Application number
PCT/JP2011/077613
Other languages
French (fr)
Japanese (ja)
Inventor
山中 良亮
福井 篤
古宮 良一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012086377A1 publication Critical patent/WO2012086377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell, a dye-sensitized solar cell module, and a manufacturing method thereof.
  • Patent Document 1 a dye-sensitized solar cell applying photoinduced electron transfer of a metal complex is proposed as a new type of solar cell.
  • This dye-sensitized solar cell has a structure in which a photoelectric conversion layer that adsorbs a photosensitizing dye and has an absorption spectrum in the visible light region and an electrolytic solution are sandwiched between two glass substrates.
  • the two glass substrates have a first electrode or a second electrode formed on their surfaces.
  • the dye-sensitized solar cell described in Patent Document 1 has a structure in which an electrolytic solution is injected between the electrodes of two glass substrates, a small-area solar cell can be prototyped. It is difficult to produce a large-area solar cell. That is, when the area of one solar cell is increased, the generated current increases in proportion to the area, but the resistance in the in-plane direction of the first electrode increases, and accordingly, the internal series electric resistance as a solar cell increases. Increase. As a result, there arises a problem that the fill factor (FF) in the current-voltage characteristic during photoelectric conversion is lowered.
  • FF fill factor
  • Patent Document 2 proposes a dye-sensitized solar cell in which a collecting electrode 103 is formed on a first electrode 102.
  • FIG. 6A is a top view of the dye-sensitized solar cell of Patent Document 2
  • FIG. 6B is a cross-sectional view of the dye-sensitized solar cell of Patent Document 2 taken along AA. is there.
  • a grid-like current collecting electrode 103 made of an alloy of gold and silver is formed on the first electrode 102 as shown in FIG. By forming the current collecting electrode 103, electric resistance can be reduced.
  • Patent Document 3 discloses an attempt to reduce the current collecting resistance and increase the output current density per electrode unit area in FIGS. 7 (a) and 7 (b).
  • the dye-sensitized solar cells shown have been proposed.
  • FIG. 7A is a schematic cross-sectional view of the dye-sensitized solar cell shown in Patent Document 3
  • FIG. 7B shows another form of the dye-sensitized solar cell shown in Patent Document 3. It is a schematic diagram.
  • a photoelectric conversion layer 203 is formed on the first electrode 201, and the photoelectric conversion layer 203 (that is, the photoelectric conversion layer 203) is formed.
  • a collecting electrode 204 is formed on the surface opposite to the surface in contact with the first electrode 201. Further, as shown in FIG. 7B, the collecting electrode 204 is formed in a line shape. In this way, the short-circuit current density is improved by forming the collecting electrode 204 on the 5 cm square photoelectric conversion layer 203.
  • the dye-sensitized solar cell of Patent Document 3 has a problem that depending on the material of the current collecting electrode 204, the leakage current from the current collecting electrode 204 becomes large and the open circuit voltage decreases, resulting in an improvement in conversion efficiency. I found out there was a problem.
  • the present invention has been made in view of the above-described situation, and an object of the present invention is to provide a dye-sensitized solar cell and a dye that can effectively improve the FF, the short-circuit current value, and the open-circuit voltage value. It is to provide a sensitized solar cell module.
  • the dye-sensitized solar cell of the present invention includes a first electrode, a second electrode provided to face the first electrode, a photoelectric conversion layer in contact with the first electrode, and within the photoelectric conversion layer or photoelectric conversion.
  • An auxiliary electrode provided on the surface of the layer on the second electrode side and in contact with the first electrode; a photoelectric conversion layer, the auxiliary electrode, and a carrier transporting material in contact with the second electrode; Including material.
  • the coating material preferably contains an organic substance.
  • the metal is preferably titanium.
  • the coating material preferably has a laminated structure of a metal oxide and an organic substance.
  • the film thickness of the photoelectric conversion layer is preferably 8 ⁇ m or less.
  • the dye-sensitized solar cell of the present invention preferably has a structure in which two or more photoelectric conversion layers and auxiliary electrodes are alternately laminated.
  • the coating material preferably has a laminated structure of a metal oxide and an organic substance constituting the auxiliary electrode.
  • the film thickness of the photoelectric conversion layer is preferably 8 ⁇ m or less. It is preferable that the photoelectric conversion layer and the auxiliary electrode have a structure in which they are alternately stacked.
  • a dye-sensitized solar cell module of the present invention is a module in which a plurality of the above-described dye-sensitized solar cells are connected, and the first electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cells and the other The second electrode of the dye-sensitized solar cell is connected in series.
  • a dye-sensitized solar cell module according to the present invention is obtained by connecting a plurality of the above-described dye-sensitized solar cells, the auxiliary electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cell, and the other dye The second electrode of the sensitized solar cell is connected in series.
  • a method for manufacturing the above dye-sensitized solar cell module wherein an auxiliary electrode of one dye-sensitized solar cell of adjacent dye-sensitized solar cells and a second electrode of the other dye-sensitized solar cell are connected in series And a step of forming a coating material on the surface of the auxiliary electrode in this order.
  • the present invention it is possible to effectively improve the FF, the short-circuit current value, and the open-circuit voltage value, and provide a dye-sensitized solar cell and a dye-sensitized solar cell module with high conversion efficiency.
  • FIG. 1 is a top view of the dye-sensitized solar cell module disclosed in Patent Document 2 and (b) is a cross-sectional view when the dye-sensitized solar cell module of (a) is cut along AA. is there.
  • (A) is typical sectional drawing of the dye-sensitized solar cell shown by patent document 3
  • (b) is a schematic diagram of another form of the dye-sensitized solar cell shown by patent document 3.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the dye-sensitized solar cell of the present invention.
  • the dye-sensitized solar cell 100 of the present embodiment is obtained by fixing a support body 1 and a cover body 7 with a sealing material 8, and is formed on the support body 1.
  • Two electrodes 9, a carrier transport material between the support 1 and the cover body 7, the photoelectric conversion layer 3, the auxiliary electrode 4, and the second electrode 9 are in contact with the carrier transport material 6, and the auxiliary electrode 4 is Contains two or more materials.
  • the auxiliary electrode 4 includes two or more kinds of materials, the leakage current from the auxiliary electrode 4 can be reduced, the reduction in the open-circuit voltage can be reduced, and the conversion efficiency can be improved.
  • each part which comprises the dye-sensitized solar cell 100 is demonstrated.
  • At least the portion of the support 1 that becomes the light receiving surface is made of a light transmissive material.
  • any material can be used as long as it is a material that substantially transmits light having a wavelength that has an effective sensitivity to the dye described later, and is not necessarily transparent to light in all wavelength regions.
  • the thickness of the support 1 is preferably about 0.2 to 5 mm.
  • the material constituting the support 1 is not particularly limited as long as it is generally a material that can be used for solar cells.
  • glass substrates such as soda glass, fused quartz glass, and crystal quartz glass
  • flexible films A heat-resistant resin plate such as can be used.
  • flexible films include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyether imide (PEI), phenoxy resin, Examples include Teflon (registered trademark).
  • the support 1 When another member is formed on the support 1 with heating, that is, for example, when a photoelectric conversion layer made of a porous semiconductor is formed on the support 1 with heating at about 250 ° C., the support 1 It is particularly preferable to use Teflon (registered trademark) having heat resistance of 250 ° C. or higher as a material constituting the material.
  • Teflon registered trademark
  • the support body 1 can be utilized as a base
  • the first electrode 2 has conductivity and is made of a light transmissive material.
  • any material can be used as long as it can substantially transmit light having a wavelength having an effective sensitivity to the dye described later, and it is not necessarily required to be transparent to light in all wavelength regions.
  • the material constituting the first electrode 2 include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO).
  • ITO indium tin composite oxide
  • SnO 2 tin oxide
  • FTO tin oxide doped with fluorine
  • ZnO zinc oxide
  • Metals that are not corrosive to the electrolytic solution such as titanium, nickel, and tantalum, can also be used.
  • the first electrode 2 can be formed on the support 1 by a known method such as a sputtering method or a spray method.
  • the film thickness of the first electrode 2 is preferably about 0.02 to 5 ⁇ m, and the film resistance is preferably as low as possible, more preferably 40 ⁇ / sq or less.
  • soda-lime float glass When using soda-lime float glass as the support 1, it is particularly preferable to use a soda-lime float glass formed on the support 1 as the first electrode 2, and a commercially available support 1 with the first electrode 2 is used. May be.
  • the photoelectric conversion layer 3 is made of a porous semiconductor that has adsorbed a dye. Below, the porous semiconductor and pigment
  • the kind of the porous semiconductor constituting the photoelectric conversion layer 3 is not particularly limited as long as it is generally used for a photoelectric conversion material.
  • titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide are used.
  • Semiconductors such as tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper-indium sulfide (CuInS 2 ), CuAlO 2 , SrCu 2 O 2 and combinations thereof Can be used.
  • Titanium oxides suitably used for porous semiconductors include various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide. These may be used alone or in combination.
  • the two types of crystalline titanium oxide, anatase type and rutile type can be in any form depending on the production method and thermal history, but the porous semiconductor preferably has a high content of anatase type titanium oxide, 80 More preferably, it contains at least% anatase-type titanium oxide.
  • the porous semiconductor may be formed of either a single crystal or a polycrystal, but is preferably a polycrystal from the viewpoints of stability, ease of crystal growth, manufacturing cost, and the like.
  • the porous semiconductor is preferably composed of nanoscale to microscale semiconductor fine particles, and more preferably composed of titanium oxide. Such fine particles of titanium oxide can be produced by a known method such as a gas phase method or a liquid phase method (hydrothermal synthesis method, sulfuric acid method).
  • a porous semiconductor may be formed by high-temperature hydrolysis of a chloride developed by Degussa.
  • semiconductor compounds having the same composition may be used, or two or more kinds of semiconductor compounds having different compositions may be mixed and used.
  • particle size of the semiconductor fine particles those having an average particle size of about 100 to 500 nm may be used, those having an average particle size of about 5 nm to 50 nm may be used, or these semiconductor fine particles may be mixed. You may use what you did.
  • Semiconductor fine particles having a particle size of about 100 to 500 nm scatter incident light and contribute to an improvement in light capture rate.
  • Semiconductor fine particles having an average particle size of about 5 nm to 50 nm can increase the adsorption point by increasing the adsorption point. It is thought that it contributes to the improvement.
  • the average particle size of the semiconductor fine particles having a small particle size is 10 times or more the average particle size of the semiconductor fine particles having a large particle size. It is preferable.
  • two or more kinds of semiconductor fine particles are mixed, it is effective to use a semiconductor compound having a strong adsorption action as a semiconductor fine particle having a small particle size.
  • the porous semiconductor preferably has a large surface area, for example, about 10 to 200 m 2 / g.
  • FIG. 5 is a graph showing the relationship between the thickness of the porous semiconductor and the short-circuit current when the auxiliary electrode is formed on the porous semiconductor made of titanium oxide. From the results shown in FIG. 5, it is clear that the short-circuit current value increases when the thickness of the porous semiconductor is 8 ⁇ m or less. This is presumably because the electrons collected by the first electrode due to the resistance of the porous semiconductor can be effectively carried out by installing the auxiliary electrode. From the above results, it is derived that the porous semiconductor preferably has a film thickness of 8 ⁇ m or less.
  • each of the porous semiconductor and the auxiliary electrode is preferable to stack each of the porous semiconductor and the auxiliary electrode as one unit. Thereby, the electric current value of a dye-sensitized solar cell can be improved.
  • a transparent oxide semiconductor such as ITO
  • ITO transparent oxide semiconductor
  • the dye adsorbed on the porous semiconductor functions as a photosensitizer.
  • a dye molecule having an interlock group such as a carboxyl group, an alkoxy group, a hydroxyl group, a sulfonic acid group, an ester group, a mercapto group, or a phosphonyl group is preferable.
  • the interlock group is generally present when the dye is fixed to the porous semiconductor, and provides an electrical bond that facilitates the movement of electrons between the excited state dye and the semiconductor conduction band. To do.
  • various organic dyes having absorption in the visible light region and infrared light region, metal complex dyes and the like can be used, and one or more of these dyes can be used. May be used in combination.
  • organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples include perylene dyes, indigo dyes, and naphthalocyanine dyes.
  • the extinction coefficient of such an organic dye is generally larger than the extinction coefficient of a metal complex dye described later.
  • the above-mentioned metal complex dye is one in which a transition metal is coordinated to a metal atom.
  • metal complex dyes include porphyrin dyes, phthalocyanine dyes, naphthalocyanine dyes, ruthenium dyes, and the like.
  • metal atoms constituting such a metal complex dye Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, Rh, etc. can be mentioned.
  • phthalocyanine dyes and ruthenium dyes in which a metal is coordinated are preferable, and ruthenium metal complex dyes are particularly preferable.
  • ruthenium-based metal complex dyes represented by the following formulas (1) to (3) are preferable.
  • examples of commercially available ruthenium-based metal complex dyes include trade name Ruthenium 535 dye, Ruthenium 535-bis TBA dye, Ruthenium 620-1H3TBA dye manufactured by Solaronix.
  • the auxiliary electrode 4 is provided together with the first electrode 2 in order to efficiently take out electrons from the photoelectric conversion layer 3.
  • Such an auxiliary electrode 4 includes two or more kinds of materials.
  • the auxiliary electrode 4 preferably has a coating material 5 on at least a part of its surface.
  • the auxiliary electrode 4 is not necessarily required to have optical transparency as long as it has conductivity.
  • ITO indium tin composite oxide
  • SnO 2 tin oxide
  • tin oxide In addition to fluorine doped (FTO), zinc oxide (ZnO), etc., metals that do not corrode to the electrolyte, such as titanium, nickel, and tantalum, can also be used.
  • Such an auxiliary electrode 4 can be formed on the photoelectric conversion layer 3 by a known method such as sputtering or spraying.
  • the auxiliary electrode 4 preferably has a film thickness of about 0.02 ⁇ m to 5 ⁇ m, and the lower the film resistance, the more preferably 40 ⁇ / sq or less.
  • the coating material 5 is preferably provided on at least a part of the surface of the auxiliary electrode 4 in order to reduce the leakage current from the auxiliary electrode 4 to the carrier transport material.
  • a coating material 5 may contain a metal oxide.
  • the metal oxide include titanium oxide, nickel oxide, tungsten oxide, tin oxide, and zinc oxide.
  • the auxiliary electrode 4 contains a metal such as titanium as a main component, it is preferably a metal oxide constituting the auxiliary electrode 4. Since such a metal oxide can be formed by oxidizing the auxiliary electrode 4, the manufacturing method is simple and the generation of leakage current can be effectively reduced.
  • the coating material 5 may be made of an organic material in addition to the above oxide. Examples of organic substances include deoxycholic acid, chenodeoxycholic acid, taurodeoxycholic acid, and the like.
  • the thickness of the coating material 5 is preferably about 10 to 120 nm.
  • the thickness of 10 nm or more is preferable because the leakage current from the auxiliary electrode 4 can be sufficiently reduced. If the thickness is less than 120 nm, the coating material 5 can be formed in a short time and contact with the photoelectric conversion layer. It is preferable because an oxide is hardly formed at the interface and electrons can be efficiently collected from the photoelectric conversion layer 3.
  • the coating material 5 consists of organic substance, it is preferable that the thickness of the coating material 5 is 1 molecule or more. This is because the organic substance can sufficiently reduce the leakage current with a thickness of about one molecule.
  • the coating material 5 or the auxiliary electrode 4 has a dense film-like structure
  • Such small holes can be formed by subjecting the auxiliary electrode 4 or the coating material 5 to physical contact or laser processing.
  • the size of the small holes is preferably about 0.1 to 100 ⁇ m, more preferably about 1 to 50 ⁇ m.
  • the interval between the small holes is preferably about 1 to 200 ⁇ m, and more preferably about 10 to 300 ⁇ m.
  • the stripe-shaped openings are preferably spaced at an interval of about 1 ⁇ m to 200 ⁇ m, more preferably at an interval of about 10 ⁇ m to 300 ⁇ m.
  • the carrier transport material 6 is filled in the support body 1 including the first electrode 2, the cover body 7 including the second electrode 9, the region surrounded by the sealing material 8, and the photoelectric conversion layer 3. ing.
  • the dye-sensitized solar cell of the present invention is not limited to that shown in FIG. 1, and may have the structure of the dye-sensitized solar cell shown in FIG.
  • the carrier transport material includes the support 1, the cover 7 and the sealing member provided with the first electrode 2, as in the dye-sensitized solar cell shown in FIG. The region surrounded by the material 8, the photoelectric conversion layer 3, and the porous insulating layer 10 are filled.
  • Such a carrier transport material 6 is composed of a conductive material capable of transporting ions.
  • a suitable material a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, or the like can be used.
  • the liquid electrolyte is not particularly limited as long as it is a liquid substance containing redox species, and is generally not limited as long as it is generally used in the field of solar cells. Those composed of a reducing species and a molten salt capable of dissolving the same, and those composed of a redox species, a solvent capable of dissolving the same and a molten salt can be used.
  • Examples of the redox species include I ⁇ / I 3 ⁇ series, Br 2 ⁇ / Br 3 ⁇ series, Fe 2 + / Fe 3+ series, and quinone / hydroquinone series.
  • a combination of metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I 2 ), tetraethylammonium iodide (TEAI), Tetraalkylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), combinations of tetraalkylammonium salts such as tetrahexylammonium iodide (THAI) and iodine, and lithium bromide (LiBr), sodium bromide (NaBr) ), potassium bromide (KBr), calcium bromide (C
  • examples of the solvent for the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds and nitrile compounds are particularly preferable. Two or more of these solvents can be used in combination.
  • the solid electrolyte is a conductive material that can transport electrons, holes, and ions, and can be used as an electrolyte for a solar cell and has no fluidity.
  • hole transport materials such as polycarbazole, electron transport materials such as tetranitrofluororenone, conductive polymers such as polyroll, polymer electrolytes obtained by solidifying liquid electrolytes with polymer compounds, copper iodide, thiocyanate
  • Examples thereof include a p-type semiconductor such as copper acid, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
  • Gel electrolyte usually consists of electrolyte and gelling agent.
  • gelling agents include polymer gelation such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, and polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. Agents and the like.
  • the molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt.
  • the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salt compounds such as pyridinium salts and imidazolium salts.
  • Additives may be added to the above electrolyte as necessary.
  • Additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazoleioio
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • EMII ethylmethylimidazole iodide
  • ethylimidazoleioioio examples thereof include imidazole salts such as dye (EII) and hexylmethylimidazole iodide (HMII).
  • the electrolyte concentration in the electrolyte is preferably in the range of 0.001 mol / L to 1.5 mol / L, and more preferably in the range of 0.01 mol / L to 0.7 mol / L.
  • the cover body 7 becomes a light receiving surface, incident light reaches the photoelectric conversion layer 3 through the electrolytic solution, and carriers are excited. For this reason, the performance of the solar cell may be lowered depending on the electrolyte concentration. Therefore, it is preferable to set the electrolyte concentration in consideration of this point.
  • the second electrode 9 is not particularly limited as long as it is conductive.
  • the second electrode 9 for example, an n-type or p-type semiconductor, a metal such as gold, platinum, silver, copper, aluminum, indium, titanium, tantalum, or tungsten, or SnO 2 , ITO, CuI, or ZnO is used. Can do.
  • the second electrode 9 is the same as the support 1 in which the conductive layer is formed on the surface of the insulating substrate made of glass, plastic, transparent polymer sheet or the like, that is, the first electrode 2 is formed. Can be used.
  • a catalyst layer may be formed on the surface of the second electrode 9.
  • the catalyst layer (not shown) is preferably provided in contact with the second electrode 9.
  • a catalyst layer is not particularly limited as long as it can transfer electrons on its surface, and any material can be used, for example, noble metal materials such as platinum and palladium, carbon black, ketjen black, and carbon nanotubes. And carbon-based materials such as fullerene.
  • the dye-sensitized solar cell of the present embodiment is not limited to the form shown in FIG. 1 and may have a structure shown in FIG. 2, for example.
  • the second electrode 9 may be formed on the porous insulating layer 10.
  • the following cover body 7 is installed on the second electrode 9 and a carrier transport material is injected.
  • the porous insulating layer which comprises the dye-sensitized solar cell of FIG. 2 is demonstrated.
  • the porous insulating layer 10 is provided to prevent the auxiliary electrode 4 and the second electrode 9 from conducting.
  • the material constituting the porous insulating layer 10 include silicon oxide such as niobium oxide, zirconium oxide, silica glass, and soda glass, aluminum oxide, and barium titanate. One or two of these materials are used. More than one species can be selectively used.
  • the material used for the porous insulating layer 10 is preferably in the form of particles, and the average particle size thereof is more preferably 5 to 500 nm, still more preferably 10 to 300 nm. Further, titanium oxide or rutile type titanium oxide having a particle size of 100 nm to 500 nm can be suitably used.
  • a cover body 7 that can hold the carrier transporting material 6 inside and can prevent intrusion of water or the like from the outside is used.
  • a cover body 7 serves as a light receiving surface, the same light transmittance as that of the support body 1 is required, and therefore the same material as that of the support body 1 is used.
  • the cover body 7 is preferably made of tempered glass or the like.
  • the cover body 7 (including the case where the catalyst layer and the second electrode are formed on the surface thereof) is not in contact with the photoelectric conversion layer 3 formed on the support 1. Thereby, a sufficient amount of the carrier transport material 6 can be held inside the photoelectric conversion element.
  • a cover body 7 preferably includes an injection port for injecting the carrier transport material. The carrier transport material is injected from such an injection port using a vacuum injection method or a vacuum impregnation method.
  • the cover body 7 and the photoelectric conversion layer 3 formed on the support body 1 are not in contact, the injection speed when the carrier transport material is injected from the injection port can be increased. For this reason, the manufacturing tact of a photoelectric conversion element and a photoelectric conversion element module can be improved.
  • the sealing material 8 is provided to bond the support 1 and the cover 7 together.
  • a sealing material 8 is preferably made of a silicone resin, an epoxy resin, a polyisobutylene-based resin, a hot-melt resin, a glass-based material, or the like, and may be a laminated structure using two or more of these.
  • Examples of the material constituting the sealing material 8 include a model manufactured by Three Bond, model number: 31X-101, a model manufactured by Three Bond, model number: 31X-088, and a commercially available epoxy resin.
  • the sealing material 8 is formed using a silicone resin, an epoxy resin, or a glass frit, it is preferably formed using a dispenser.
  • a hot melt resin a sheet-like material is used. It can be formed by drilling a patterned hole in the hot melt resin.
  • FIG. 3 is a cross-sectional view schematically showing an example of the dye-sensitized solar cell module of the present embodiment.
  • the dye-sensitized solar cell module 200 of the present embodiment includes a first electrode 2 formed on a support 1, a photoelectric conversion layer 3 formed on the first electrode, and a photoelectric
  • the auxiliary electrode 4 formed on the conversion layer 3, the coating material 5 positioned on the surface of the auxiliary electrode 4, the porous insulating layer 10 formed on the coating material 5, and the porous insulating layer 10.
  • an inter-cell insulating portion 11 is formed on the first electrode 2, and the dye-sensitized solar cell is partitioned by the inter-cell insulating portion 11.
  • the inter-cell insulating portion 11 will be described later.
  • the sealing material 8 is installed on the insulation part 11 between cells, the cover body 7 is distribute
  • a carrier transport material 6 is injected between the first electrode 2 and the cover body 7 from an injection port formed in the cover body 7.
  • the carrier transport material 6 is also included in the porous insulating layer 10 and the photoelectric conversion layer 3.
  • one dye-sensitized solar cell of adjacent dye-sensitized solar cells is used. It is preferable to electrically connect the first electrode 2 and the second electrode 9 of the other dye-sensitized solar cell in series. By connecting in this way, each dye-sensitized solar cell is connected in series, and the output per unit area of a dye-sensitized solar cell module can be enlarged.
  • FIG. 4 is a cross-sectional view schematically showing another example of the dye-sensitized solar cell module of the present embodiment.
  • the dye-sensitized solar cell module of the present embodiment may connect adjacent dye-sensitized solar cells in series. That is, the dye-sensitized solar cell module shown in FIG. 4 includes the auxiliary electrode 4 of one dye-sensitized solar cell of the adjacent dye-sensitized solar cell and the second electrode 9 of the other dye-sensitized solar cell. They are connected in series. By connecting in this way, the non-power generation part in a light-receiving surface can be reduced, and the output per unit area of a dye-sensitized solar cell module can be enlarged.
  • the inter-cell insulating portion 11 is provided to electrically insulate between the dye-sensitized solar cells.
  • Such an inter-cell insulating portion 11 needs to be a material that can electrically insulate the dye-sensitized solar cells from each other, and it is preferable to use a material that can be easily formed in a desired shape on the support 1.
  • an ultraviolet curable resin, a thermosetting resin, or the like can be used as a material constituting such an inter-cell insulating portion 11, a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, a glass material. In addition, two or more of these may be used to form a laminated structure.
  • the photoelectric conversion layer 3 is formed after the inter-cell insulating portion 11 is formed, it is necessary to have heat resistance with respect to the temperature when the photoelectric conversion layer 3 is formed. Further, when the support 1 is used as a light receiving surface, the inter-cell insulating portion 11 is also irradiated with ultraviolet rays, and therefore, it is preferable to use a material having light resistance to ultraviolet rays. For this reason, it is preferable to use a glass-based material.
  • the glass-based material used for the inter-cell insulating portion 11 for example, a commercially available glass paste or glass frit can be used. In particular, in consideration of reactivity with the carrier transport material and environmental problems, a lead-free glass-based material is preferable. Furthermore, when forming the inter-cell insulating part 11 on the support 1 made of a glass material, it is preferable to form it at a firing temperature of 550 ° C. or less. For example, a bismuth glass paste or a tin phosphate glass paste is suitably used. Can be used.
  • a scribe line 12 is formed by patterning a predetermined location of the first electrode 2 using a laser scribing method on the first electrode 2 formed on the support 1.
  • the inter-cell insulating portion 11 is formed on the scribe line 12 formed as described above.
  • the inter-cell insulating portion 11 is formed so as to divide the photoelectric conversion layer 3 to be formed later.
  • the formation method of the inter-cell insulating part 11 is not particularly limited.
  • a dispenser can be used.
  • the insulation part 11 between cells using hot-melt resin it can form by making the hole patterned in the sheet-like hot-melt resin.
  • a porous semiconductor constituting the photoelectric conversion layer 3 is formed on the support 1.
  • the method for forming the porous semiconductor is not particularly limited, and a known method can be used. That is, for example, a suspension in which semiconductor fine particles are suspended in a suitable solvent is applied to a predetermined place using a known method such as a doctor blade method, a squeegee method, a spin coating method, or a screen printing method, followed by drying and baking. It is formed by performing at least one.
  • the viscosity of the suspension is adjusted to be low and applied to the region divided by the inter-cell insulating portion 11 from a dispenser or the like. Is preferred. Thereby, it spreads to the edge part of the said area
  • the solvent used in the suspension examples include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water.
  • glyme solvents such as ethylene glycol monomethyl ether
  • alcohols such as isopropyl alcohol
  • alcohol-based mixed solvents such as isopropyl alcohol / toluene
  • water water.
  • a commercially available titanium oxide paste for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP
  • Ti-nanoxide for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP
  • a porous semiconductor is formed on the support 1 by applying the suspension thus obtained onto the first electrode 2 and then performing at least one of drying and baking.
  • known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method can be used.
  • the conditions (temperature, time, atmosphere, etc.) necessary for drying and firing the porous semiconductor may be set as appropriate according to the type of semiconductor fine particles.
  • the conditions (temperature, time, atmosphere, etc.) necessary for drying and firing the porous semiconductor may be set as appropriate according to the type of semiconductor fine particles.
  • the porous semiconductor may be a laminate of a plurality of layers.
  • the porous semiconductor After forming the porous semiconductor in this way, it is preferable to perform post-treatment in order to improve electrical connection between the semiconductor fine particles.
  • the porous semiconductor is made of titanium oxide
  • the performance of the porous semiconductor can be improved by post-treatment with an aqueous titanium tetrachloride solution.
  • the surface area of the porous semiconductor may be increased, or the defect level on the semiconductor fine particles may be reduced.
  • the auxiliary electrode 4 is formed on the porous semiconductor produced above (that is, the photoelectric conversion layer 3 before dye adsorption). One end of the auxiliary electrode 4 is formed up to the end of the porous semiconductor in order to contact the first electrode 2.
  • the method for forming the auxiliary electrode 4 is not particularly limited, and for example, a known method such as a sputtering method or a spray method can be used.
  • the coating material 5 is formed on the surface of the auxiliary electrode 4 produced as described above.
  • the coating material 5 may be formed by oxidizing a metal constituting the auxiliary electrode, or may be formed by applying an organic substance. That is, the coating material 5 is located on the outermost surface of the auxiliary electrode.
  • the auxiliary electrode 4 is baked in oxygen, whereby the surface of the auxiliary electrode 4 is oxidized to form the coating material 5.
  • the auxiliary electrode 4 of one dye-sensitized solar cell of adjacent dye-sensitized solar cells, and the other dye-sensitized solar cell of Adjacent dye-sensitized solar cells are connected in series by contacting the second electrode 9.
  • a porous insulating layer 10 is formed on the porous semiconductor in which the auxiliary electrode 4 is formed (that is, the photoelectric conversion layer 3 before dye adsorption).
  • a porous insulating layer 10 can be formed using a method similar to that of the above-described porous semiconductor. That is, the above-mentioned fine particle insulator is dispersed in a suitable solvent, and a polymer compound such as ethyl cellulose and polyethylene glycol (PEG) is further mixed to prepare a paste. The paste thus obtained is applied onto the auxiliary electrode 4, and at least one of drying and baking is performed. Thereby, the porous insulating layer 10 can be formed on the auxiliary electrode 4.
  • a second electrode 9 is formed on the porous insulating layer 10.
  • a method similar to the method of forming the auxiliary electrode 4 can be used.
  • the second electrode 9 has a dense film structure, a small hole may be formed in the second electrode 9.
  • each dye-sensitized solar cell is electrically connected in series by connecting the second electrode 9 and the first electrode 2.
  • the dye-sensitized solar cell module shown in FIG. 4 the dye-sensitized solar cells are electrically connected in series by connecting the second electrode 9 and the auxiliary electrode 4.
  • the photoelectric converting layer 3 is produced by making a porous semiconductor adsorb
  • the method for adsorbing the dye is not particularly limited, and for example, a method of immersing the porous semiconductor in the above-described dye adsorption solution can be used. At this time, the dye adsorbing solution may be heated in order to penetrate the dye adsorbing solution to the depths of the micropores in the porous semiconductor.
  • the solvent for dissolving the dye is not particularly limited as long as it dissolves the dye, and examples thereof include alcohol, toluene, acetonitrile, tetrahydrofuran (THF), chloroform, dimethylformamide and the like.
  • a purified one is preferably used, and two or more kinds may be mixed and used.
  • the concentration of the dye contained in the dye adsorption solution can be appropriately set according to the conditions such as the dye to be used, the type of solvent, the dye adsorption process, etc., but it is a high concentration to improve the adsorption function. For example, it is preferably 1 ⁇ 10 ⁇ 5 mol / L or more. In preparing the dye adsorption solution, heating may be performed to improve the solubility of the dye.
  • the sealing material 8 can be formed by a method similar to the method for forming the inter-cell insulating portion 11.
  • the sealing material 8 is preferably formed on the second electrode 9 in the dye-sensitized solar cell module of FIG. 3, and the second electrode 9 and the auxiliary electrode 4 are formed in the dye-sensitized solar cell module of FIG. It is preferable to be formed on the inter-cell insulating portion 11 so as to cover it.
  • the cover body 7 is disposed on the sealing material 8 and then the sealing material 8 is cured to fix the cover body 7 and the sealing material 8 together.
  • the cover body 7 is formed with an injection port, and is surrounded by the support body 1, the cover body 7, the inter-cell insulating portion 11, and the sealing material 8 by injecting the carrier transport material from the injection port.
  • the carrier transport material 6 is injected into each region to be processed.
  • the carrier transporting material 6 is injected between the support 1 and the cover body 7 from the injection port of the cover body 7. Thereby, the carrier transport material 6 is filled in the region between the support 1 and the cover body 7.
  • the carrier transport material is also filled in the holes of the photoelectric conversion layer 3 and the porous insulating layer 10.
  • the coating material 5, or the 2nd electrode 9 has a small hole, it fills also in a small diameter.
  • the dye-sensitized solar cell module 200 of this embodiment can be manufactured through the above steps.
  • the film thickness of each layer was measured using a product name: Surfcom 1400A manufactured by Tokyo Seimitsu Co., Ltd., unless otherwise specified.
  • Example 1 In this example, the dye-sensitized solar cell shown in FIG. 1 was produced. Below, the preparation procedure is demonstrated concretely.
  • auxiliary electrode 4 made of titanium having a film thickness of about 500 nm is deposited at an evaporation rate of 5 mm / s using an electron beam vapor deposition device (product name: ei-5, manufactured by ULVAC, Inc.). A film was formed.
  • the titanium is evaporated by irradiating the laser beam, thereby obtaining a Scribe lines were produced at 100 ⁇ m intervals.
  • a laser scribing device manufactured by Seishin Shoji Co., Ltd.
  • a YAG laser basic wavelength: 1.06 ⁇ m
  • the auxiliary electrode 4 was baked under oxygen at 450 ° C. for 30 minutes. As a result, the surface of the auxiliary electrode 4 was oxidized, and the coating material 5 was formed on the surface of the auxiliary electrode 4.
  • the Raman spectroscopic analysis was performed on the surface of the auxiliary electrode 4, a peak of titanium oxide was confirmed. From the result of this Raman spectroscopic analysis, it became clear that the coating material 5 was formed of titanium oxide.
  • the support with a porous semiconductor produced as described above was immersed in a dye adsorption solution at 40 ° C. for 20 hours to adsorb the dye to the porous semiconductor. Thereafter, the porous semiconductor was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes. In this way, the photoelectric conversion layer 3 in which the dye was adsorbed on the porous semiconductor was produced.
  • a glass similar to the glass with TCO glass used in the above support was prepared and used as the cover 7.
  • a catalyst layer made of platinum having a thickness of 30 nm is formed on the TCO surface of the cover body 7 using an electron beam vapor deposition device (product name: ei-5, manufactured by ULVAC, Inc.) at a deposition rate of 5 mm / S.
  • An electrode 9 was produced.
  • the sealing material 8 made of an ultraviolet curable resin was applied around the first electrode 2, and the cover body 7 was installed so as not to contact the second electrode 9 and the auxiliary electrode 4. And the ultraviolet curable resin was hardened by irradiating an ultraviolet-ray using the ultraviolet irradiation lamp (EFD company make, brand name: Novacure), and the cover body 7 and the support body 1 were fixed.
  • EFD company make, brand name: Novacure the ultraviolet irradiation lamp
  • an electrolyte serving as a carrier transport material was prepared. Specifically, acetonitrile as a solvent, LiI (manufactured by Aldrich Chemical Company) as a redox species has a concentration of 0.1 mol / L, I 2 (manufactured by Tokyo Chemical Industry Co., Ltd.) has a concentration of 0.01 mol / L, and As additives, t-butylpyridine (TBP, manufactured by Aldrich Chemical Company) was dissolved to a concentration of 0.5 mol / L, and dimethylpropylimidazole iodide (DMPII, manufactured by Shikoku Kasei Kogyo Co., Ltd.) was dissolved to a concentration of 0.6 mol / L. To prepare an electrolyte.
  • LiI manufactured by Aldrich Chemical Company
  • I 2 manufactured by Tokyo Chemical Industry Co., Ltd.
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iod
  • the dye-sensitized solar cell of this example was produced by the same method as in Example 1 except that three layers of porous semiconductors and auxiliary electrodes were alternately laminated. That is, the porous semiconductor (titanium oxide) of this example has a total film thickness of 18 ⁇ m, and the auxiliary electrode 4 is made of 3 ITO with a film thickness of about 600 nm in consideration of light transmittance. It was formed by laminating layers.
  • the auxiliary electrode 4 was produced using a sputtering apparatus (ULVAC DC sputtering apparatus MLH-6300 type) at a tray speed of 10 mm / min.
  • the auxiliary electrode 4 having the three-layer structure as described above was immersed in an organic solvent containing deoxycholic acid for 24 hours.
  • the organic solvent contained deoxycholic acid at a concentration of 100 mM, and ethanol was used as the solvent. Then, after the auxiliary electrode 4 was taken out from the organic solvent, ethanol was removed by evaporation at 80 ° C. for 10 minutes. Then, the dye-sensitized solar cell 100 was produced by forming the coating material 5 by the method similar to Example 1.
  • Example 3 In this example, the dye-sensitized solar cell module shown in FIG. 3 was produced. Each step will be described below.
  • TCO glass manufactured by Nippon Sheet Glass Co., Ltd.
  • the first electrode 2 made of SnO 2 was formed on the support 1
  • TCO glass having a size of 44 mm ⁇ 70 mm ⁇ thickness 1 mm was used.
  • this TCO glass is set in a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (fundamental wavelength: 1.06 ⁇ m), and laser light is emitted at an interval of 7.5 mm with respect to the first electrode 2.
  • a laser scribing device manufactured by Seishin Shoji Co., Ltd.
  • a YAG laser fundamental wavelength: 1.06 ⁇ m
  • a screen printing plate that can be formed so that the inter-cell insulating portions 11 are arranged at intervals of 5 mm is disposed on the scribe line 12 produced above.
  • a glass paste manufactured by Noritake Company Limited, trade name: glass paste
  • a screen printing machine Nema No. 1 mm x 50 mmx8 micrometer strip-shaped inter-cell insulation part 11.
  • a screen plate in which five openings of 5 mm ⁇ 50 mm were arranged was prepared. Then, the screen plate was set so that one of the screen plates was in contact with the inter-cell insulating portion 11, and a titanium oxide paste (manufactured by Solaronix, trade name: Ti-Nanoxide D / SP, average particle size 13 nm) was screen printed. It applied using.
  • the coating film obtained here was preliminarily dried at 80 ° C. for 20 minutes and then baked at 450 ° C. for 1 hour to form a porous semiconductor having a thickness of 7 ⁇ m made of titanium oxide.
  • auxiliary electrode 4 made of titanium having a thickness of about 500 nm was formed at an evaporation rate of 5 ⁇ / S using an electron beam evaporation device ei-5 (manufactured by ULVAC, Inc.).
  • the auxiliary electrode 4 was irradiated with laser light at intervals of 100 mm using a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (basic wavelength: 1.06 ⁇ m). As a result, a part of the auxiliary electrode 4 was evaporated to prepare a scribe line having a width of 50 ⁇ m.
  • zirconium oxide fine particles particles size: 100 nm, manufactured by C.I. Kasei Co., Ltd.
  • ethyl cellulose was further mixed to prepare a zirconium paste.
  • the weight ratio of the zirconium oxide fine particles, terpineol, and ethyl cellulose was 65: 30: 5.
  • a screen printing plate in which strip shapes are arranged at 1 mm intervals so that the shape after firing is 6 mm ⁇ 50 mm ⁇ 3.5 ⁇ m is prepared, and a screen printing machine (manufactured by Neurong Precision Industry Co., Ltd., model: LS-34TVA) is prepared. ) was applied onto the first electrode 2 and leveled at room temperature for 1 hour. After the leveling, the obtained coating film was pre-dried at 80 ° C. for 20 minutes, and then fired at 450 ° C. for 1 hour to form a porous insulating layer 10 made of zirconium oxide.
  • the second electrode 9 was formed on the catalyst layer. Specifically, a metal mask in which five openings of 5 mm ⁇ 50 mm are arranged is prepared, and platinum is deposited on the porous insulating layer 10 using an electron beam vapor deposition device (manufactured by ULVAC, Inc., apparatus name: ei-5). A catalyst layer (not shown) made of platinum having a thickness of about 20 nm was formed at a deposition rate of 5 ⁇ / S. Then, the 2nd electrode 9 was produced on the conditions similar to the conditions when forming a catalyst layer using the metal mask and electron beam vapor deposition device similar to the above. The second electrode 9 produced in this way was also formed in a stripe shape like the first electrode 2.
  • the support 1 with a porous semiconductor produced as described above was immersed in a dye adsorption solution at 40 ° C. for 20 hours to adsorb the dye to the porous semiconductor. Thereafter, the porous semiconductor was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes.
  • ⁇ Injection of carrier transport material As an additive, acetonitrile was used as a solvent, and LiI (manufactured by Aldrich Chemical Company) as a redox species had a concentration of 0.1 mol / L, and I 2 (manufactured by Tokyo Chemical Industry Co., Ltd.) had a concentration of 0.01 mol / L.
  • t-Butylpyridine TBP, manufactured by Aldrich Chemical Company
  • DMPII dimethylpropylimidazole iodide
  • Example 4 the dye-sensitized solar cell module 200 shown in FIG. 4 was produced.
  • the method for manufacturing the dye-sensitized solar cell module of this example will be described focusing on the differences from Example 3.
  • TCO glass manufactured by Nippon Sheet Glass Co., Ltd.
  • TCO glass having a size of 34 mm ⁇ 70 mm ⁇ thickness 1 mm was used.
  • this TCO glass is set in a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (fundamental wavelength: 1.06 ⁇ m), and laser light is emitted at an interval of 6.5 mm with respect to the first electrode 2.
  • a laser scribing device manufactured by Seishin Shoji Co., Ltd.
  • a YAG laser fundamental wavelength: 1.06 ⁇ m
  • the inter-cell insulating portion 11, the porous semiconductor, and the auxiliary electrode 4 were formed in this order by the same method as in Example 3.
  • the auxiliary electrode 4 is different from the third embodiment in that the end of the auxiliary electrode 4 is also formed above the inter-cell insulating portion 11.
  • the porous insulating layer 10 was formed so as to be in contact with the inter-cell insulating portion 11.
  • the second electrode 9 so as to be in contact with the auxiliary electrode 4 on the inter-cell insulating portion 11 adjacent dye-sensitized solar cells were electrically connected in series. That is, the auxiliary electrode 4 of one dye-sensitized solar cell of adjacent dye-sensitized solar cells and the second electrode 9 of the other dye-sensitized solar cell were connected in series. Thereafter, the auxiliary electrode 4 was baked under oxygen at 450 ° C. for 30 minutes to form the coating material 5 on the surface of the auxiliary electrode 4. As described above, the dye-sensitized solar cell module of this example was produced.
  • Example 4 has a higher short-circuit current value than Example 3, and high photoelectric conversion efficiency can be obtained. It became clear. This is because, in Example 4, the auxiliary electrode 4 of one dye-sensitized solar cell of adjacent dye-sensitized solar cells and the second electrode 9 of the other dye-sensitized solar cell are connected in series. Conceivable.
  • the present invention can be widely used for dye-sensitized solar cells and dye-sensitized solar cell modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

Provided are: a dye-sensitized solar cell in which a FF, a short circuit current value and an open circuit voltage value can be improved effectively; and a dye-sensitized solar cell module. This dye-sensitized solar cell comprises a first electrode, a second electrode which is so arranged as to face the first electrode, a photoelectric conversion layer which is in contact with the first electrode, an auxiliary electrode which is arranged in the inside or on the second-electrode-side surface of the photoelectric conversion layer and is in contact with the first electrode, and a carrier transport material which is in contact with the photoelectric conversion layer, the auxiliary electrode and the second electrode, wherein the solar cell is characterized in that the auxiliary electrode comprises at least two materials.

Description

色素増感太陽電池および色素増感太陽電池モジュールならびにその製造方法Dye-sensitized solar cell, dye-sensitized solar cell module and manufacturing method thereof
 本発明は、色素増感太陽電池および色素増感太陽電池モジュールならびにその製造方法に関する。 The present invention relates to a dye-sensitized solar cell, a dye-sensitized solar cell module, and a manufacturing method thereof.
 化石燃料に代わるエネルギー源として、太陽光を電力に変換する太陽電池が注目されている。現在、実用化されている太陽電池としては、結晶系シリコン基板を用いた太陽電池や、薄膜シリコン太陽電池がある。しかし、前者の太陽電池は、シリコン基板の作製コストが高いという問題があり、後者の薄膜シリコン太陽電池は、多種の半導体製造用ガスや複雑な装置を用いる必要があるため製造コストが高くなるという問題がある。このため、いずれの太陽電池も光電変換の高効率化による発電出力当たりのコストを低減する努力が続けられているが、上記の問題を解決するには至っていない。 As an alternative energy source to fossil fuels, solar cells that convert sunlight into electric power are attracting attention. Currently, solar cells in practical use include solar cells using crystalline silicon substrates and thin-film silicon solar cells. However, the former solar cell has a problem that the production cost of the silicon substrate is high, and the latter thin film silicon solar cell has a high production cost because it requires the use of various semiconductor production gases and complicated devices. There's a problem. For this reason, although efforts have been made to reduce the cost per power generation output by increasing the efficiency of photoelectric conversion in any of the solar cells, the above problem has not yet been solved.
 さらに、たとえば、特開平1-220380号公報(特許文献1)には、新しいタイプの太陽電池として、金属錯体の光誘起電子移動を応用した色素増感太陽電池が提案されている。この色素増感太陽電池は、2枚のガラス基板の間に、光増感色素を吸着させて可視光領域に吸収スペクトルをもたせた光電変換層と電解液とを挟持した構造を有する。上記の2枚のガラス基板はそれぞれの表面に、第1電極または第2電極が形成されている。 Further, for example, in Japanese Patent Application Laid-Open No. 1-220380 (Patent Document 1), a dye-sensitized solar cell applying photoinduced electron transfer of a metal complex is proposed as a new type of solar cell. This dye-sensitized solar cell has a structure in which a photoelectric conversion layer that adsorbs a photosensitizing dye and has an absorption spectrum in the visible light region and an electrolytic solution are sandwiched between two glass substrates. The two glass substrates have a first electrode or a second electrode formed on their surfaces.
 そして、第1電極側から光を照射すると、光電変換層に電子が発生し、発生した電子が一方の第1電極から外部電気回路を通って対向する第2電極に移動する。移動した電子は、電解質中のイオンに運ばれて光電変換層に戻る。このような一連の電子の移動により、電気エネルギーを取り出すことができる。 Then, when light is irradiated from the first electrode side, electrons are generated in the photoelectric conversion layer, and the generated electrons move from one first electrode to the opposing second electrode through the external electric circuit. The moved electrons are transported to ions in the electrolyte and return to the photoelectric conversion layer. Electrical energy can be extracted by such a series of electron movements.
 上記特許文献1に記載の色素増感太陽電池は、2枚のガラス基板の電極間に電解液を注入した構造であるため、小面積の太陽電池の試作は可能であるが、1m角のような大面積の太陽電池を作製することは困難である。すなわち、1つの太陽電池セルの面積を大きくすると、発生電流は面積に比例して増加するが、第1電極の面内方向の抵抗が増大し、それに伴って太陽電池としての内部直列電気抵抗が増大する。その結果、光電変換時の電流電圧特性における曲線因子(FF:フィルファクタ)が低下するという問題が起こる。 Since the dye-sensitized solar cell described in Patent Document 1 has a structure in which an electrolytic solution is injected between the electrodes of two glass substrates, a small-area solar cell can be prototyped. It is difficult to produce a large-area solar cell. That is, when the area of one solar cell is increased, the generated current increases in proportion to the area, but the resistance in the in-plane direction of the first electrode increases, and accordingly, the internal series electric resistance as a solar cell increases. Increase. As a result, there arises a problem that the fill factor (FF) in the current-voltage characteristic during photoelectric conversion is lowered.
 また、特開2003-203681号公報(特許文献2)には、第1電極102上に集電電極103を形成した色素増感太陽電池が提案されている。図6(a)は、特許文献2の色素増感太陽電池の上面図であり、図6(b)は、特許文献2の色素増感太陽電池をA-Aで切断したときの断面図である。 JP-A-2003-203681 (Patent Document 2) proposes a dye-sensitized solar cell in which a collecting electrode 103 is formed on a first electrode 102. FIG. 6A is a top view of the dye-sensitized solar cell of Patent Document 2, and FIG. 6B is a cross-sectional view of the dye-sensitized solar cell of Patent Document 2 taken along AA. is there.
 特許文献2の色素増感太陽電池は、図6(b)に示されるように、第1電極102上に、金と銀の合金からなる格子状の集電電極103を形成している。かかる集電電極103を形成することにより、電気抵抗を低減することができる。 In the dye-sensitized solar cell of Patent Document 2, a grid-like current collecting electrode 103 made of an alloy of gold and silver is formed on the first electrode 102 as shown in FIG. By forming the current collecting electrode 103, electric resistance can be reduced.
 また、特開2000-243465号公報(特許文献3)には、集電抵抗を低減し、電極単位面積当たりの出力電流密度を向上させる試みとして、図7(a)および図7(b)に示される色素増感太陽電池が提案されている。図7(a)は、特許文献3に示される色素増感太陽電池の模式的な断面図であり、図7(b)は、特許文献3に示される色素増感太陽電池の別の形態の模式図である。 Japanese Patent Laid-Open No. 2000-243465 (Patent Document 3) discloses an attempt to reduce the current collecting resistance and increase the output current density per electrode unit area in FIGS. 7 (a) and 7 (b). The dye-sensitized solar cells shown have been proposed. FIG. 7A is a schematic cross-sectional view of the dye-sensitized solar cell shown in Patent Document 3, and FIG. 7B shows another form of the dye-sensitized solar cell shown in Patent Document 3. It is a schematic diagram.
 特許文献3の色素増感太陽電池は、図7(a)に示されるように、第1電極201上に光電変換層203を形成し、該光電変換層203上(すなわち、光電変換層203の第1電極201と接触する面の反対面)に、集電電極204を形成したものである。また、図7(b)に示されるように、集電電極204をライン状に形成している。このようにして5cm角の光電変換層203上に集電電極204を形成することにより、短絡電流密度を向上させている。 In the dye-sensitized solar cell of Patent Document 3, as shown in FIG. 7A, a photoelectric conversion layer 203 is formed on the first electrode 201, and the photoelectric conversion layer 203 (that is, the photoelectric conversion layer 203) is formed. A collecting electrode 204 is formed on the surface opposite to the surface in contact with the first electrode 201. Further, as shown in FIG. 7B, the collecting electrode 204 is formed in a line shape. In this way, the short-circuit current density is improved by forming the collecting electrode 204 on the 5 cm square photoelectric conversion layer 203.
特開平1-220380号公報Japanese Patent Laid-Open No. 1-220380 特開2003-203681号公報JP 2003-203681 A 特開2000-243465号公報JP 2000-243465 A
 しかしながら、特許文献3の色素増感太陽電池は、集電電極204の材料によっては、集電電極204からのリーク電流が大きくなり、開放電圧が低下する問題があり、結果的に変換効率が向上しない問題があることがわかった。 However, the dye-sensitized solar cell of Patent Document 3 has a problem that depending on the material of the current collecting electrode 204, the leakage current from the current collecting electrode 204 becomes large and the open circuit voltage decreases, resulting in an improvement in conversion efficiency. I found out there was a problem.
 本発明は、上述のような現状に鑑みなされたものであり、その目的とするところは、FF、短絡電流値、および開放電圧値を効果的に向上させることができる色素増感太陽電池および色素増感太陽電池モジュールを提供することである。 The present invention has been made in view of the above-described situation, and an object of the present invention is to provide a dye-sensitized solar cell and a dye that can effectively improve the FF, the short-circuit current value, and the open-circuit voltage value. It is to provide a sensitized solar cell module.
 本発明の色素増感太陽電池は、第1電極と、該第1電極に対向して設けられた第2電極と、第1電極に接する光電変換層と、光電変換層の層内または光電変換層の第2電極側の表面に設けられ、かつ第1電極に接する補助電極と、光電変換層、補助電極、および第2電極に接するキャリア輸送材料とを備え、補助電極は、2種以上の材料を含むことを特徴とする。 The dye-sensitized solar cell of the present invention includes a first electrode, a second electrode provided to face the first electrode, a photoelectric conversion layer in contact with the first electrode, and within the photoelectric conversion layer or photoelectric conversion. An auxiliary electrode provided on the surface of the layer on the second electrode side and in contact with the first electrode; a photoelectric conversion layer, the auxiliary electrode, and a carrier transporting material in contact with the second electrode; Including material.
 コーティング材料は、有機物を含むことが好ましい。金属は、チタンであることが好ましい。コーティング材料は、金属の酸化物と有機物との積層構造であることが好ましい。光電変換層は、その膜厚が8μm以下であることが好ましい。本発明の色素増感太陽電池は、光電変換層と補助電極とを交互に各2層以上ずつ積層した構造を有することが好ましい。 The coating material preferably contains an organic substance. The metal is preferably titanium. The coating material preferably has a laminated structure of a metal oxide and an organic substance. The film thickness of the photoelectric conversion layer is preferably 8 μm or less. The dye-sensitized solar cell of the present invention preferably has a structure in which two or more photoelectric conversion layers and auxiliary electrodes are alternately laminated.
 コーティング材料は、補助電極を構成する金属の酸化物と有機物との積層構造であることが好ましい。光電変換層は、その膜厚が8μm以下であることが好ましい。光電変換層および補助電極は、それぞれ交互に積層した構造であることが好ましい。 The coating material preferably has a laminated structure of a metal oxide and an organic substance constituting the auxiliary electrode. The film thickness of the photoelectric conversion layer is preferably 8 μm or less. It is preferable that the photoelectric conversion layer and the auxiliary electrode have a structure in which they are alternately stacked.
 本発明の色素増感太陽電池モジュールは、上記の色素増感太陽電池を複数接続したものであって、隣り合う色素増感太陽電池の一方の色素増感太陽電池の第1電極と、他方の色素増感太陽電池の第2電極とを直列接続したことを特徴とする。 A dye-sensitized solar cell module of the present invention is a module in which a plurality of the above-described dye-sensitized solar cells are connected, and the first electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cells and the other The second electrode of the dye-sensitized solar cell is connected in series.
 本発明の色素増感太陽電池モジュールは、上記の色素増感太陽電池を複数接続したものであって、隣り合う色素増感太陽電池の一方の色素増感太陽電池の補助電極と、他方の色素増感太陽電池の第2電極とを直列接続したことを特徴とする。 A dye-sensitized solar cell module according to the present invention is obtained by connecting a plurality of the above-described dye-sensitized solar cells, the auxiliary electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cell, and the other dye The second electrode of the sensitized solar cell is connected in series.
 上記の色素増感太陽電池モジュールの製造方法であって、隣り合う色素増感太陽電池の一方の色素増感太陽電池の補助電極と、他方の色素増感太陽電池の第2電極とを直列接続させるステップと、補助電極の表面にコーティング材料を形成するステップとをこの順に行なうことを特徴とする。 A method for manufacturing the above dye-sensitized solar cell module, wherein an auxiliary electrode of one dye-sensitized solar cell of adjacent dye-sensitized solar cells and a second electrode of the other dye-sensitized solar cell are connected in series And a step of forming a coating material on the surface of the auxiliary electrode in this order.
 本発明によれば、FF、短絡電流値、開放電圧値を効果的に向上させることができ、変換効率の高い色素増感太陽電池および色素増感太陽電池モジュールを提供することができる。 According to the present invention, it is possible to effectively improve the FF, the short-circuit current value, and the open-circuit voltage value, and provide a dye-sensitized solar cell and a dye-sensitized solar cell module with high conversion efficiency.
本発明の色素増感太陽電池の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the dye-sensitized solar cell of this invention. 本発明の色素増感太陽電池モジュールの構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the dye-sensitized solar cell module of this invention. 本発明の色素増感太陽電池モジュールの構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the dye-sensitized solar cell module of this invention. 酸化チタンからなる多孔性半導体上に補助電極を形成した場合の多孔性半導体の膜厚と短絡電流との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of a porous semiconductor at the time of forming an auxiliary electrode on the porous semiconductor consisting of a titanium oxide, and a short circuit current. (a)は、特許文献2に示される色素増感太陽電池モジュールの上面図であり、(b)は、(a)の色素増感太陽電池モジュールをA-Aで切断したときの断面図である。(A) is a top view of the dye-sensitized solar cell module disclosed in Patent Document 2, and (b) is a cross-sectional view when the dye-sensitized solar cell module of (a) is cut along AA. is there. (a)は、特許文献3に示される色素増感太陽電池の模式的な断面図であり、(b)は、特許文献3に示される色素増感太陽電池の別の形態の模式図である。(A) is typical sectional drawing of the dye-sensitized solar cell shown by patent document 3, (b) is a schematic diagram of another form of the dye-sensitized solar cell shown by patent document 3. FIG. .
 以下、図面を参照しながら、本発明に係る色素増感太陽電池および色素増感太陽電池モジュールを説明する。以下の実施形態は一例であり、本発明の範囲内で種々の実施形態での実施が可能である。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Hereinafter, the dye-sensitized solar cell and the dye-sensitized solar cell module according to the present invention will be described with reference to the drawings. The following embodiment is an example, and various embodiments can be implemented within the scope of the present invention. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 <色素増感太陽電池>
 図1は、本発明の色素増感太陽電池の構造の一例を模式的に示す断面図である。本実施形態の色素増感太陽電池100は、図1に示されるように、支持体1とカバー体7とを封止材8によって固定したものであって、支持体1上に形成された第1電極2と、該第1電極2上に形成された光電変換層3と、該光電変換層3上に形成された補助電極4と、カバー体7に接するかまたは離間して設けられた第2電極9とを備え、支持体1とカバー体7との間にキャリア輸送材料を備え、光電変換層3、補助電極4、および第2電極9はキャリア輸送材料6に接し、補助電極4は、2種以上の材料を含む。このように補助電極4が2種以上の材料を含むことにより、補助電極4からのリーク電流を低減することができ、開放電圧の低下を低減するとともに、変換効率を向上させることができる。以下においては、色素増感太陽電池100を構成する各部を説明する。
<Dye-sensitized solar cell>
FIG. 1 is a cross-sectional view schematically showing an example of the structure of the dye-sensitized solar cell of the present invention. As shown in FIG. 1, the dye-sensitized solar cell 100 of the present embodiment is obtained by fixing a support body 1 and a cover body 7 with a sealing material 8, and is formed on the support body 1. A first electrode 2; a photoelectric conversion layer 3 formed on the first electrode 2; an auxiliary electrode 4 formed on the photoelectric conversion layer 3; and a first electrode provided in contact with or apart from the cover body 7. Two electrodes 9, a carrier transport material between the support 1 and the cover body 7, the photoelectric conversion layer 3, the auxiliary electrode 4, and the second electrode 9 are in contact with the carrier transport material 6, and the auxiliary electrode 4 is Contains two or more materials. As described above, when the auxiliary electrode 4 includes two or more kinds of materials, the leakage current from the auxiliary electrode 4 can be reduced, the reduction in the open-circuit voltage can be reduced, and the conversion efficiency can be improved. Below, each part which comprises the dye-sensitized solar cell 100 is demonstrated.
 ≪支持体≫
 本実施形態において、支持体1は、少なくとも受光面となる部分は、光透過性の材料からなる。ただし、後述する色素に実効的な感度を有する波長の光を実質的に透過させる材料であればよく、必ずしもすべての波長領域の光に対して透過性を有する必要はない。かかる支持体1は、その厚みが0.2~5mm程度が好ましい。
≪Support body≫
In the present embodiment, at least the portion of the support 1 that becomes the light receiving surface is made of a light transmissive material. However, any material can be used as long as it is a material that substantially transmits light having a wavelength that has an effective sensitivity to the dye described later, and is not necessarily transparent to light in all wavelength regions. The thickness of the support 1 is preferably about 0.2 to 5 mm.
 このような支持体1を構成する材料としては、一般に太陽電池に使用可能な材料であれば特に限定されず、たとえば、ソーダガラス、溶融石英ガラス、結晶石英ガラスなどのガラス基板、可撓性フィルムなどの耐熱性樹脂板などを用いることができる。かかる可撓性フィルムとしては、たとえばテトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂、テフロン(登録商標)などを挙げることができる。 The material constituting the support 1 is not particularly limited as long as it is generally a material that can be used for solar cells. For example, glass substrates such as soda glass, fused quartz glass, and crystal quartz glass, and flexible films A heat-resistant resin plate such as can be used. Examples of such flexible films include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyether imide (PEI), phenoxy resin, Examples include Teflon (registered trademark).
 支持体1上に加熱を伴って他の部材を形成する場合、すなわちたとえば、支持体1上に250℃程度の加熱を伴って多孔性半導体からなる光電変換層を形成する場合は、支持体1を構成する材料として、250℃以上の耐熱性を有するテフロン(登録商標)を用いることが特に好ましい。また、支持体1は、他の構造体に取り付けるときの基体として利用することができる。すなわち、ガラス基板などの支持体1の周辺部を、金属加工部品とねじを用いて他の構造体に容易に取り付けることができる。 When another member is formed on the support 1 with heating, that is, for example, when a photoelectric conversion layer made of a porous semiconductor is formed on the support 1 with heating at about 250 ° C., the support 1 It is particularly preferable to use Teflon (registered trademark) having heat resistance of 250 ° C. or higher as a material constituting the material. Moreover, the support body 1 can be utilized as a base | substrate when attaching to another structure. That is, the peripheral part of the support body 1 such as a glass substrate can be easily attached to another structure using a metal processed part and a screw.
 ≪第1電極≫
 本実施形態において、第1電極2は、導電性を有するものであって、かつ光透過性の材料からなる。ただし、後述する色素に実効的な感度を有する波長の光を実質的に透過させ得る材料であればよく、必ずしもすべての波長領域の光に対して透過性を有する必要はない。このような第1電極2を構成する材料としては、たとえばインジウム錫複合酸化物(ITO)、酸化錫(SnO2)、フッ素をドープした酸化錫(FTO)、酸化亜鉛(ZnO)等の他、チタン、ニッケル、タンタルなど、電解液に対して腐食性を示さない金属を用いることもできる。
≪First electrode≫
In the present embodiment, the first electrode 2 has conductivity and is made of a light transmissive material. However, any material can be used as long as it can substantially transmit light having a wavelength having an effective sensitivity to the dye described later, and it is not necessarily required to be transparent to light in all wavelength regions. Examples of the material constituting the first electrode 2 include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO). Metals that are not corrosive to the electrolytic solution, such as titanium, nickel, and tantalum, can also be used.
 かかる第1電極2は、スパッタ法、スプレー法などの公知の方法により、支持体1上に形成することができる。第1電極2の膜厚は、0.02~5μm程度であることが好ましく、その膜抵抗は低いほど好ましく、40Ω/sq以下がより好ましい。 The first electrode 2 can be formed on the support 1 by a known method such as a sputtering method or a spray method. The film thickness of the first electrode 2 is preferably about 0.02 to 5 μm, and the film resistance is preferably as low as possible, more preferably 40Ω / sq or less.
 支持体1としてソーダ石灰フロートガラスを用いる場合は、支持体1上に、FTOを第1電極2として形成したものを用いることが特に好ましく、市販品の第1電極2付きの支持体1を用いてもよい。 When using soda-lime float glass as the support 1, it is particularly preferable to use a soda-lime float glass formed on the support 1 as the first electrode 2, and a commercially available support 1 with the first electrode 2 is used. May be.
 ≪光電変換層≫
 本実施形態において、光電変換層3は、色素を吸着した多孔性半導体からなる。以下に、光電変換層3を構成する多孔性半導体および色素を説明する。
≪Photoelectric conversion layer≫
In the present embodiment, the photoelectric conversion layer 3 is made of a porous semiconductor that has adsorbed a dye. Below, the porous semiconductor and pigment | dye which comprise the photoelectric converting layer 3 are demonstrated.
 (多孔性半導体)
 光電変換層3を構成する多孔性半導体は、一般に光電変換材料に使用されるものであればその種類は特に限定されず、たとえば酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2、SrCu22などの半導体およびこれらの組み合わせを用いることができる。これらの中でも、安定性および安全性の点から、酸化チタンを用いることが特に好ましい。
(Porous semiconductor)
The kind of the porous semiconductor constituting the photoelectric conversion layer 3 is not particularly limited as long as it is generally used for a photoelectric conversion material. For example, titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide are used. Semiconductors such as tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, indium phosphide, copper-indium sulfide (CuInS 2 ), CuAlO 2 , SrCu 2 O 2 and combinations thereof Can be used. Among these, it is particularly preferable to use titanium oxide from the viewpoint of stability and safety.
 多孔性半導体に好適に用いられる酸化チタンとしては、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の狭義の酸化チタンおよび水酸化チタン、含水酸化チタン等を挙げることができ、これらを単独または混合物を用いることができる。アナターゼ型とルチル型との2種類の結晶系酸化チタンは、その製法や熱履歴によりいずれの形態にもなり得るが、多孔性半導体は、アナターゼ型酸化チタンの含有率が高いことが好ましく、80%以上のアナターゼ型酸化チタンを含むことがより好ましい。 Titanium oxides suitably used for porous semiconductors include various narrowly defined titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide. These may be used alone or in combination. The two types of crystalline titanium oxide, anatase type and rutile type, can be in any form depending on the production method and thermal history, but the porous semiconductor preferably has a high content of anatase type titanium oxide, 80 More preferably, it contains at least% anatase-type titanium oxide.
 多孔性半導体は、単結晶および多結晶のいずれによって形成されてもよいが、安定性、結晶成長の容易さ、製造コストなどの観点から、多結晶であることが好ましい。また、多孔性半導体は、ナノスケールからマイクロスケールの半導体微粒子によって構成されることが好ましく、より好ましくは、酸化チタンによって構成されることである。かかる酸化チタンの微粒子は、気相法、液相法(水熱合成法、硫酸法)など公知の方法により製造することができる。また、デグサ(Degussa)社が開発した塩化物を高温加水分解することによって、多孔性半導体を形成してもよい。 The porous semiconductor may be formed of either a single crystal or a polycrystal, but is preferably a polycrystal from the viewpoints of stability, ease of crystal growth, manufacturing cost, and the like. The porous semiconductor is preferably composed of nanoscale to microscale semiconductor fine particles, and more preferably composed of titanium oxide. Such fine particles of titanium oxide can be produced by a known method such as a gas phase method or a liquid phase method (hydrothermal synthesis method, sulfuric acid method). Alternatively, a porous semiconductor may be formed by high-temperature hydrolysis of a chloride developed by Degussa.
 また、多孔性半導体を構成する半導体微粒子としては、同一の組成からなる半導体化合物を用いてもよいし、2種類以上の異なる組成の半導体化合物を混合して用いてもよい。また、半導体微粒子の粒子サイズとしては、100~500nm程度の平均粒子径のものを用いてもよいし、5nm~50nm程度の平均粒子径のものを用いてもよいし、これらの半導体微粒子を混合したものを用いてもよい。100~500nm程度の粒子径の半導体微粒子は、入射光を散乱させ光捕捉率の向上に寄与し、5nm~50nm程度の平均粒子径の半導体微粒子は、吸着点をより多くして色素の吸着量の向上に寄与するものと考えられる。 Further, as the semiconductor fine particles constituting the porous semiconductor, semiconductor compounds having the same composition may be used, or two or more kinds of semiconductor compounds having different compositions may be mixed and used. As the particle size of the semiconductor fine particles, those having an average particle size of about 100 to 500 nm may be used, those having an average particle size of about 5 nm to 50 nm may be used, or these semiconductor fine particles may be mixed. You may use what you did. Semiconductor fine particles having a particle size of about 100 to 500 nm scatter incident light and contribute to an improvement in light capture rate. Semiconductor fine particles having an average particle size of about 5 nm to 50 nm can increase the adsorption point by increasing the adsorption point. It is thought that it contributes to the improvement.
 異なる粒子径の半導体微粒子を2種以上混合して多孔性半導体を構成する場合は、粒子径が小さい半導体微粒子の平均粒子径が、粒子径が大きい半導体微粒子の平均粒子径の10倍以上であることが好ましい。2種以上の半導体微粒子を混合する場合、吸着作用の強い半導体化合物を粒子サイズの小さな半導体微粒子とするのが効果的である。 When a porous semiconductor is formed by mixing two or more types of semiconductor fine particles having different particle sizes, the average particle size of the semiconductor fine particles having a small particle size is 10 times or more the average particle size of the semiconductor fine particles having a large particle size. It is preferable. When two or more kinds of semiconductor fine particles are mixed, it is effective to use a semiconductor compound having a strong adsorption action as a semiconductor fine particle having a small particle size.
 多孔性半導体は、その表面積が大きなものが好ましく、たとえば10~200m2/g程度であることが好ましい。 The porous semiconductor preferably has a large surface area, for example, about 10 to 200 m 2 / g.
 図5は、酸化チタンからなる多孔性半導体上に補助電極を形成した場合の多孔性半導体の膜厚と短絡電流との関係を示すグラフである。図5に示される結果から、多孔性半導体の膜厚が8μm以下になると、短絡電流値が大きくなることが明らかである。これは、従来では、多孔性半導体の抵抗を受けて第1電極で収集されていた電子が、補助電極の設置により有効に運び出せることができるようになったためであると考えられる。以上の結果から多孔性半導体は、その膜厚が8μm以下であることが好ましいことが導かれる。 FIG. 5 is a graph showing the relationship between the thickness of the porous semiconductor and the short-circuit current when the auxiliary electrode is formed on the porous semiconductor made of titanium oxide. From the results shown in FIG. 5, it is clear that the short-circuit current value increases when the thickness of the porous semiconductor is 8 μm or less. This is presumably because the electrons collected by the first electrode due to the resistance of the porous semiconductor can be effectively carried out by installing the auxiliary electrode. From the above results, it is derived that the porous semiconductor preferably has a film thickness of 8 μm or less.
 色素増感太陽電池の電流値をさらに大きくするためには、上記の多孔性半導体と補助電極とを1つのユニットとして、それぞれを積層させることが好ましい。これにより色素増感太陽電池の電流値を向上させることができる。多孔性半導体と補助電極とを積層する場合は、補助電極に用いる材料として、ITOなどの透明な酸化物半導体を使用することが好ましいが、チタン等の不透明な補助電極を使用する場合は、受光面に対し、補助電極をずらして配置することによって、光の透過性を考慮することが好ましい。 In order to further increase the current value of the dye-sensitized solar cell, it is preferable to stack each of the porous semiconductor and the auxiliary electrode as one unit. Thereby, the electric current value of a dye-sensitized solar cell can be improved. When laminating a porous semiconductor and an auxiliary electrode, it is preferable to use a transparent oxide semiconductor such as ITO as a material to be used for the auxiliary electrode. It is preferable to consider the light transmittance by disposing the auxiliary electrode with respect to the surface.
 (色素)
 上記の多孔性半導体に吸着される色素は、光増感剤として機能するものである。かかる色素を多孔性半導体に強固に吸着させるためには、色素分子中にカルボキシル基、アルコキシ基、ヒドロキシル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基などのインターロック基を有するものが好ましい。ここで、インターロック基とは、一般に、多孔性半導体に色素が固定される際に介在し、励起状態の色素と半導体の伝導帯との間の電子の移動を容易にする電気的結合を提供するものである。
(Dye)
The dye adsorbed on the porous semiconductor functions as a photosensitizer. In order to strongly adsorb such a dye to a porous semiconductor, a dye molecule having an interlock group such as a carboxyl group, an alkoxy group, a hydroxyl group, a sulfonic acid group, an ester group, a mercapto group, or a phosphonyl group is preferable. . Here, the interlock group is generally present when the dye is fixed to the porous semiconductor, and provides an electrical bond that facilitates the movement of electrons between the excited state dye and the semiconductor conduction band. To do.
 多孔性半導体に吸着される色素としては、可視光領域や赤外光領域に吸収をもつ種々の有機色素の他、金属錯体色素などを用いることができ、これらの色素の1種または2種以上を組み合わせて用いてもよい。 As the dye adsorbed on the porous semiconductor, various organic dyes having absorption in the visible light region and infrared light region, metal complex dyes and the like can be used, and one or more of these dyes can be used. May be used in combination.
 上記の有機色素としては、たとえばアゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素などを挙げることができる。かかる有機色素の吸光係数は、一般に後述する金属錯体色素の吸光係数に比べて大きい。 Examples of the organic dyes include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples include perylene dyes, indigo dyes, and naphthalocyanine dyes. The extinction coefficient of such an organic dye is generally larger than the extinction coefficient of a metal complex dye described later.
 上記の金属錯体色素としては、金属原子に遷移金属が配位結合したものである。このような金属錯体色素としては、ポルフィリン系色素、フタロシアニン系色素、ナフタロシアニン系色素、ルテニウム系色素などを挙げることができる。このような金属錯体色素を構成する金属原子としては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rhなどを挙げることができる。中でも、フタロシアニン系色素、ルテニウム系色素に金属が配位したものが好ましく、ルテニウム系金属錯体色素が特に好ましい。 The above-mentioned metal complex dye is one in which a transition metal is coordinated to a metal atom. Examples of such metal complex dyes include porphyrin dyes, phthalocyanine dyes, naphthalocyanine dyes, ruthenium dyes, and the like. As metal atoms constituting such a metal complex dye, Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, Ta, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, Rh, etc. can be mentioned. Among these, phthalocyanine dyes and ruthenium dyes in which a metal is coordinated are preferable, and ruthenium metal complex dyes are particularly preferable.
 特に、次式(1)~(3)で表されるルテニウム系金属錯体色素が好ましい。市販のルテニウム系金属錯体色素としては、たとえば、Solaronix社製の商品名Ruthenium535色素、Ruthenium535-bisTBA色素、Ruthenium620-1H3TBA色素などを挙げることができる。 In particular, ruthenium-based metal complex dyes represented by the following formulas (1) to (3) are preferable. Examples of commercially available ruthenium-based metal complex dyes include trade name Ruthenium 535 dye, Ruthenium 535-bis TBA dye, Ruthenium 620-1H3TBA dye manufactured by Solaronix.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ≪補助電極≫
 本発明において、補助電極4は、第1電極2とともに光電変換層3からの電子を効率よく取り出すために設けられるものである。このような補助電極4は、2種以上の材料を含む。補助電極4は、その表面の少なくとも一部にコーティング材料5を有することが好ましい。上記の補助電極4は、導電性を有するものであれば光透過性の有無は必ずしも有していなくてもよく、たとえば、インジウム錫複合酸化物(ITO)、酸化錫(SnO2)、酸化錫にフッ素をドープしたもの(FTO)、酸化亜鉛(ZnO)等を用いることができる他、チタン、ニッケル、タンタルなど、電解液に対して腐食性を示さない金属を用いることもできる。
≪Auxiliary electrode≫
In the present invention, the auxiliary electrode 4 is provided together with the first electrode 2 in order to efficiently take out electrons from the photoelectric conversion layer 3. Such an auxiliary electrode 4 includes two or more kinds of materials. The auxiliary electrode 4 preferably has a coating material 5 on at least a part of its surface. The auxiliary electrode 4 is not necessarily required to have optical transparency as long as it has conductivity. For example, indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide In addition to fluorine doped (FTO), zinc oxide (ZnO), etc., metals that do not corrode to the electrolyte, such as titanium, nickel, and tantalum, can also be used.
 このような補助電極4は、スパッタ法、スプレー法などの公知の方法により光電変換層3上に形成することができる。補助電極4は、0.02μm~5μm程度の膜厚であることが好ましく、膜抵抗としては低いほどよく、より好ましくは40Ω/sq以下である。 Such an auxiliary electrode 4 can be formed on the photoelectric conversion layer 3 by a known method such as sputtering or spraying. The auxiliary electrode 4 preferably has a film thickness of about 0.02 μm to 5 μm, and the lower the film resistance, the more preferably 40Ω / sq or less.
 ≪コーティング材料≫
 本発明において、コーティング材料5は、補助電極4からキャリア輸送材料へのリーク電流を低減するために、補助電極4の表面の少なくとも一部に設けられることが好ましい。かかるコーティング材料5としては、金属酸化物を含むものであってもよい。金属酸化物としては、たとえば酸化チタン、酸化ニッケル、酸化タングステン、酸化錫、酸化亜鉛等を挙げることができる。補助電極4が主成分としてチタンなどの金属を含む場合は、該補助電極4を構成する金属の酸化物であることが好ましい。このような金属の酸化物は、補助電極4を酸化することによって形成することができるため、製造方法が簡便であって、かつリーク電流の発生を有効に低減することができる。コーティング材料5は、上記の酸化物の他、有機物からなるものであってもよい。有機物としては、デオキシコール酸、ケノデオキシコール酸、タウロデオキシコール酸などを挙げることができる。
≪Coating material≫
In the present invention, the coating material 5 is preferably provided on at least a part of the surface of the auxiliary electrode 4 in order to reduce the leakage current from the auxiliary electrode 4 to the carrier transport material. Such a coating material 5 may contain a metal oxide. Examples of the metal oxide include titanium oxide, nickel oxide, tungsten oxide, tin oxide, and zinc oxide. When the auxiliary electrode 4 contains a metal such as titanium as a main component, it is preferably a metal oxide constituting the auxiliary electrode 4. Since such a metal oxide can be formed by oxidizing the auxiliary electrode 4, the manufacturing method is simple and the generation of leakage current can be effectively reduced. The coating material 5 may be made of an organic material in addition to the above oxide. Examples of organic substances include deoxycholic acid, chenodeoxycholic acid, taurodeoxycholic acid, and the like.
 コーティング材料5が補助電極4を構成する金属の酸化物からなる場合は、コーティング材料5の厚みは、10~120nm程度であることが好ましい。10nm以上であると、補助電極4からのリーク電流を十分に低減することができるため好ましく、120nm未満であれば、コーティング材料5の形成を短時間で行なうことができ、光電変換層との接触界面に酸化物が形成されにくく、光電変換層3から効率よく電子収集することができるため好ましい。コーティング材料5が有機物からなる場合は、コーティング材料5の厚みは、1分子以上の厚みであることが好ましい。有機物は、1分子程度の厚みでリーク電流を十分に低減することができるからである。 When the coating material 5 is made of a metal oxide constituting the auxiliary electrode 4, the thickness of the coating material 5 is preferably about 10 to 120 nm. The thickness of 10 nm or more is preferable because the leakage current from the auxiliary electrode 4 can be sufficiently reduced. If the thickness is less than 120 nm, the coating material 5 can be formed in a short time and contact with the photoelectric conversion layer. It is preferable because an oxide is hardly formed at the interface and electrons can be efficiently collected from the photoelectric conversion layer 3. When the coating material 5 consists of organic substance, it is preferable that the thickness of the coating material 5 is 1 molecule or more. This is because the organic substance can sufficiently reduce the leakage current with a thickness of about one molecule.
 上記のコーティング材料5または補助電極4が緻密な膜状の構造である場合、キャリア輸送材料が容易に通過できるように、コーティング材料5または補助電極4に複数の小孔を形成することが好ましい。かかる小孔は、補助電極4またはコーティング材料5に対し、物理接触やレーザー加工をすることによって形成することができる。小孔の大きさは、0.1~100μm程度が好ましく、1~50μm程度がより好ましい。小孔間の間隔は1~200μm程度であることが好ましく、10~300μm程度であることがより好ましい。 When the coating material 5 or the auxiliary electrode 4 has a dense film-like structure, it is preferable to form a plurality of small holes in the coating material 5 or the auxiliary electrode 4 so that the carrier transport material can easily pass therethrough. Such small holes can be formed by subjecting the auxiliary electrode 4 or the coating material 5 to physical contact or laser processing. The size of the small holes is preferably about 0.1 to 100 μm, more preferably about 1 to 50 μm. The interval between the small holes is preferably about 1 to 200 μm, and more preferably about 10 to 300 μm.
 また、第1電極2にストライプ状の開口部を形成することによっても同様な効果が得られる。ストライプ状の開口部は、1μm~200μm程度の間隔であることが好ましく、より好ましくは10μm~300μm程度の間隔である。 Also, the same effect can be obtained by forming a striped opening in the first electrode 2. The stripe-shaped openings are preferably spaced at an interval of about 1 μm to 200 μm, more preferably at an interval of about 10 μm to 300 μm.
 ≪キャリア輸送材料≫
 本実施形態において、キャリア輸送材料6は、第1電極2を備える支持体1、第2電極9を備えるカバー体7、および封止材8によって囲まれた領域、ならびに光電変換層3に充填されている。本発明の色素増感太陽電池は、図1に示されるものに限られるものではなく、図2に示される色素増感太陽電池の構造であってもよい。図2に示される色素増感太陽電池の場合も、図1に示される色素増感太陽電池と同様に、キャリア輸送材料は、第1電極2を備える支持体1、カバー体7、および封止材8によって囲まれる領域、ならびに光電変換層3、および多孔性絶縁層10に充填される。
≪Carrier transport material≫
In this embodiment, the carrier transport material 6 is filled in the support body 1 including the first electrode 2, the cover body 7 including the second electrode 9, the region surrounded by the sealing material 8, and the photoelectric conversion layer 3. ing. The dye-sensitized solar cell of the present invention is not limited to that shown in FIG. 1, and may have the structure of the dye-sensitized solar cell shown in FIG. In the case of the dye-sensitized solar cell shown in FIG. 2 as well, the carrier transport material includes the support 1, the cover 7 and the sealing member provided with the first electrode 2, as in the dye-sensitized solar cell shown in FIG. The region surrounded by the material 8, the photoelectric conversion layer 3, and the porous insulating layer 10 are filled.
 このようなキャリア輸送材料6は、イオンを輸送できる導電性材料で構成されるものであり、好適な材料としては、液体電解質、固体電解質、ゲル電解質、溶融塩ゲル電解質などを用いることができる。 Such a carrier transport material 6 is composed of a conductive material capable of transporting ions. As a suitable material, a liquid electrolyte, a solid electrolyte, a gel electrolyte, a molten salt gel electrolyte, or the like can be used.
 液体電解質は、酸化還元種を含む液状物であればよく、一般に太陽電池の分野に使用されるものであれば特に限定されず、たとえば酸化還元種とこれを溶解可能な溶剤からなるもの、酸化還元種とこれを溶解可能な溶融塩からなるもの、酸化還元種とこれを溶解可能な溶剤と溶融塩からなるものを用いることができる。 The liquid electrolyte is not particularly limited as long as it is a liquid substance containing redox species, and is generally not limited as long as it is generally used in the field of solar cells. Those composed of a reducing species and a molten salt capable of dissolving the same, and those composed of a redox species, a solvent capable of dissolving the same and a molten salt can be used.
 酸化還元種としては、たとえば、I-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、キノン/ハイドロキノン系などを挙げることができ、具体的には、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化カルシウム(CaI2)などの金属ヨウ化物とヨウ素(I2)の組み合わせ、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、テトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素の組み合わせ、および臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、臭化カルシウム(CaBr2)などの金属臭化物と臭素の組み合わせが好ましく、これらの中でも、LiIとI2の組み合わせが特に好ましい。 Examples of the redox species include I / I 3− series, Br 2− / Br 3− series, Fe 2 + / Fe 3+ series, and quinone / hydroquinone series. Specifically, A combination of metal iodides such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), calcium iodide (CaI 2 ) and iodine (I 2 ), tetraethylammonium iodide (TEAI), Tetraalkylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), combinations of tetraalkylammonium salts such as tetrahexylammonium iodide (THAI) and iodine, and lithium bromide (LiBr), sodium bromide (NaBr) ), potassium bromide (KBr), calcium bromide (CaBr 2) Any combination of metal bromide and bromine are preferred, among these, the combination of LiI and I 2 is particularly preferable.
 また、酸化還元種の溶剤としては、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水、非プロトン極性物質などが挙げられる。これらの中でも、カーボネート化合物やニトリル化合物が特に好ましい。これらの溶剤は2種類以上を混合して用いることもできる。 Also, examples of the solvent for the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds and nitrile compounds are particularly preferable. Two or more of these solvents can be used in combination.
 固体電解質は、電子、ホール、イオンを輸送できる導電性材料で、太陽電池の電解質として用いることができ、流動性がないものであればよい。具体的には、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅、チオシアン酸銅などのp型半導体、溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。 The solid electrolyte is a conductive material that can transport electrons, holes, and ions, and can be used as an electrolyte for a solar cell and has no fluidity. Specifically, hole transport materials such as polycarbazole, electron transport materials such as tetranitrofluororenone, conductive polymers such as polyroll, polymer electrolytes obtained by solidifying liquid electrolytes with polymer compounds, copper iodide, thiocyanate Examples thereof include a p-type semiconductor such as copper acid, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
 ゲル電解質は、通常、電解質とゲル化剤からなる。ゲル化剤としては、たとえば、架橋ポリアクリル樹脂誘導体や架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、側鎖に含窒素複素環式四級化合物塩構造を有するポリマーなどの高分子ゲル化剤などが挙げられる。 Gel electrolyte usually consists of electrolyte and gelling agent. Examples of gelling agents include polymer gelation such as crosslinked polyacrylic resin derivatives, crosslinked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, and polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. Agents and the like.
 溶融塩ゲル電解質は、通常、上記のようなゲル電解質と常温型溶融塩からなる。常温型溶融塩としては、たとえば、ピリジニウム塩類、イミダゾリウム塩類などの含窒素複素環式四級アンモニウム塩化合物類などが挙げられる。 The molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt. Examples of the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salt compounds such as pyridinium salts and imidazolium salts.
 上記の電解質には、必要に応じて添加剤を加えてもよい。添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、ヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩が挙げられる。 ∙ Additives may be added to the above electrolyte as necessary. Additives include nitrogen-containing aromatic compounds such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide (EMII), ethylimidazoleioio Examples thereof include imidazole salts such as dye (EII) and hexylmethylimidazole iodide (HMII).
 電解質中の電解質濃度は、0.001mol/L以上1.5mol/L以下の範囲が好ましく、0.01mol/L以上0.7mol/L以下の範囲がより好ましい。ただし、色素増感太陽電池モジュール200において、カバー体7が受光面となる場合、入射光が電解液を通して光電変換層3に達し、キャリアが励起されることになる。そのため、電解質濃度により、太陽電池の性能が低下する場合があるので、この点を考慮して電解質濃度を設定するのが好ましい。 The electrolyte concentration in the electrolyte is preferably in the range of 0.001 mol / L to 1.5 mol / L, and more preferably in the range of 0.01 mol / L to 0.7 mol / L. However, in the dye-sensitized solar cell module 200, when the cover body 7 becomes a light receiving surface, incident light reaches the photoelectric conversion layer 3 through the electrolytic solution, and carriers are excited. For this reason, the performance of the solar cell may be lowered depending on the electrolyte concentration. Therefore, it is preferable to set the electrolyte concentration in consideration of this point.
 ≪第2電極≫
 本実施形態において、第2電極9は、導電性であれば特に限定されない。第2電極9としては、たとえばn型あるいはp型の半導体、金、白金、銀、銅、アルミニウム、インジウム、チタン、タンタルあるいはタングステンなどの金属、またはSnO2、ITO、CuIあるいはZnOなどを用いることができる。また、本実施形態において、第2電極9は、ガラス、プラスチックまたは透明ポリマーシートなどからなる絶縁基板の表面に導電層を形成した電極、すなわち第1電極2を形成した支持体1と同様のものを用いることができる。また、第2電極9の表面には触媒層を形成してもよい。
≪Second electrode≫
In the present embodiment, the second electrode 9 is not particularly limited as long as it is conductive. As the second electrode 9, for example, an n-type or p-type semiconductor, a metal such as gold, platinum, silver, copper, aluminum, indium, titanium, tantalum, or tungsten, or SnO 2 , ITO, CuI, or ZnO is used. Can do. Further, in the present embodiment, the second electrode 9 is the same as the support 1 in which the conductive layer is formed on the surface of the insulating substrate made of glass, plastic, transparent polymer sheet or the like, that is, the first electrode 2 is formed. Can be used. A catalyst layer may be formed on the surface of the second electrode 9.
 ≪触媒層≫
 本実施形態において、触媒層(図示せず)は、第2電極9に接して設けられることが好ましい。このような触媒層は、その表面で電子の受け渡しができる材料であれば特に限定されずいかなるものをも用いることができ、たとえば白金、パラジウムなどの貴金属材料、カーボンブラック、ケッチェンブラック、カーボンナノチューブ、フラーレンなどのカーボン系材料などを挙げることができる。
≪Catalyst layer≫
In the present embodiment, the catalyst layer (not shown) is preferably provided in contact with the second electrode 9. Such a catalyst layer is not particularly limited as long as it can transfer electrons on its surface, and any material can be used, for example, noble metal materials such as platinum and palladium, carbon black, ketjen black, and carbon nanotubes. And carbon-based materials such as fullerene.
 本実施形態の色素増感太陽電池は、図1に示される形態のみに限られるものではなく、たとえば図2に示される構造のものであってもよい。図2に示されるように、コーティング材料5上に、多孔性絶縁層10を形成する場合は、該多孔性絶縁層10上に第2電極9を形成してもよい。その場合は、第2電極9上に下記のカバー体7を設置し、キャリア輸送材料を注入する。以下においては、図2の色素増感太陽電池を構成する多孔性絶縁層を説明する。 The dye-sensitized solar cell of the present embodiment is not limited to the form shown in FIG. 1 and may have a structure shown in FIG. 2, for example. As shown in FIG. 2, when the porous insulating layer 10 is formed on the coating material 5, the second electrode 9 may be formed on the porous insulating layer 10. In that case, the following cover body 7 is installed on the second electrode 9 and a carrier transport material is injected. Below, the porous insulating layer which comprises the dye-sensitized solar cell of FIG. 2 is demonstrated.
 ≪多孔性絶縁層≫
 本実施形態において、多孔性絶縁層10は、補助電極4と第2電極9とが導通しないようにするために設けられるものである。かかる多孔性絶縁層10を構成する材料としては、たとえば、酸化ニオブ、酸化ジルコニウム、シリカガラス、ソーダガラスなどの酸化ケイ素、酸化アルミニウム、チタン酸バリウムなどが挙げられ、これらの材料の1種または2種以上を選択的に用いることができる。多孔性絶縁層10に用いられる材料は、粒子状であるのが好ましく、その平均粒径は5~500nmであることがより好ましく、さらに好ましくは10~300nmである。また、粒径が100nm~500nmの酸化チタンまたはルチル型酸化チタンを好適に用いることができる。
≪Porous insulation layer≫
In the present embodiment, the porous insulating layer 10 is provided to prevent the auxiliary electrode 4 and the second electrode 9 from conducting. Examples of the material constituting the porous insulating layer 10 include silicon oxide such as niobium oxide, zirconium oxide, silica glass, and soda glass, aluminum oxide, and barium titanate. One or two of these materials are used. More than one species can be selectively used. The material used for the porous insulating layer 10 is preferably in the form of particles, and the average particle size thereof is more preferably 5 to 500 nm, still more preferably 10 to 300 nm. Further, titanium oxide or rutile type titanium oxide having a particle size of 100 nm to 500 nm can be suitably used.
 ≪カバー体≫
 本実施形態において、カバー体7は、キャリア輸送材料6を内部に保持し、かつ外部からの水などの浸入を防ぐことができるものを用いる。このようなカバー体7が受光面となる場合は、支持体1と同様の光透過性が必要となるため、支持体1と同様の材料を用いる。色素増感太陽電池を屋外に設置する場合を考慮すると、カバー体7は、強化ガラスなどを用いることが好ましい。
≪Cover body≫
In the present embodiment, a cover body 7 that can hold the carrier transporting material 6 inside and can prevent intrusion of water or the like from the outside is used. When such a cover body 7 serves as a light receiving surface, the same light transmittance as that of the support body 1 is required, and therefore the same material as that of the support body 1 is used. Considering the case where the dye-sensitized solar cell is installed outdoors, the cover body 7 is preferably made of tempered glass or the like.
 ここで、カバー体7(表面に触媒層や第2電極が形成される場合これらも含む)は、支持体1上に形成された光電変換層3とは接触しないことが好ましい。これにより光電変換素子の内部に十分な量のキャリア輸送材料6を保持することができる。このようなカバー体7は、キャリア輸送材料を注入するための注入口を備えることが好ましい。かかる注入口から真空注入法や真空含浸法などを用いてキャリア輸送材料を注入する。また、カバー体7と支持体1上に形成された光電変換層3とが接触していないことにより、注入口からキャリア輸送材料を注入するときの注入速度を速くすることができる。このため、光電変換素子および光電変換素子モジュールの製造タクトを向上させることができる。 Here, it is preferable that the cover body 7 (including the case where the catalyst layer and the second electrode are formed on the surface thereof) is not in contact with the photoelectric conversion layer 3 formed on the support 1. Thereby, a sufficient amount of the carrier transport material 6 can be held inside the photoelectric conversion element. Such a cover body 7 preferably includes an injection port for injecting the carrier transport material. The carrier transport material is injected from such an injection port using a vacuum injection method or a vacuum impregnation method. Moreover, since the cover body 7 and the photoelectric conversion layer 3 formed on the support body 1 are not in contact, the injection speed when the carrier transport material is injected from the injection port can be increased. For this reason, the manufacturing tact of a photoelectric conversion element and a photoelectric conversion element module can be improved.
 ≪封止材≫
 本実施形態において、封止材8は、支持体1とカバー体7とを結合させるために設けられるものである。このような封止材8は、シリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂、ガラス系材料などからなることが好ましく、これらの2種類以上を用いて積層構造にしてもよい。
≪Sealing material≫
In the present embodiment, the sealing material 8 is provided to bond the support 1 and the cover 7 together. Such a sealing material 8 is preferably made of a silicone resin, an epoxy resin, a polyisobutylene-based resin, a hot-melt resin, a glass-based material, or the like, and may be a laminated structure using two or more of these.
 封止材8を構成する材料としては、たとえば、スリーボンド社製、型番:31X-101や、スリーボンド社製、型番:31X-088や一般に市販されているエポキシ樹脂などを挙げることができる。シリコーン樹脂、エポキシ樹脂、ガラスフリットを用いて封止材8を形成する場合は、ディスペンサーを用いて形成することが好ましく、ホットメルト樹脂を用いて封止材8を形成する場合は、シート状のホットメルト樹脂にパターニングした穴を開けることにより形成することができる。 Examples of the material constituting the sealing material 8 include a model manufactured by Three Bond, model number: 31X-101, a model manufactured by Three Bond, model number: 31X-088, and a commercially available epoxy resin. When the sealing material 8 is formed using a silicone resin, an epoxy resin, or a glass frit, it is preferably formed using a dispenser. When the sealing material 8 is formed using a hot melt resin, a sheet-like material is used. It can be formed by drilling a patterned hole in the hot melt resin.
 <色素増感太陽電池モジュール>
 以下において、図3を用いて本実施形態の色素増感太陽電池モジュールの構成を説明する。図3は、本実施形態の色素増感太陽電池モジュールの一例を模式的に示す断面図である。本実施形態の色素増感太陽電池モジュール200は、図3に示されるように、支持体1上に形成された第1電極2と、第1電極上に形成された光電変換層3と、光電変換層3上に形成された補助電極4と、補助電極4の表面に位置するコーティング材料5と、コーティング材料5上に形成された多孔性絶縁層10と、多孔性絶縁層10上に形成された第2電極9とを有するものである。
<Dye-sensitized solar cell module>
Below, the structure of the dye-sensitized solar cell module of this embodiment is demonstrated using FIG. FIG. 3 is a cross-sectional view schematically showing an example of the dye-sensitized solar cell module of the present embodiment. As shown in FIG. 3, the dye-sensitized solar cell module 200 of the present embodiment includes a first electrode 2 formed on a support 1, a photoelectric conversion layer 3 formed on the first electrode, and a photoelectric The auxiliary electrode 4 formed on the conversion layer 3, the coating material 5 positioned on the surface of the auxiliary electrode 4, the porous insulating layer 10 formed on the coating material 5, and the porous insulating layer 10. And the second electrode 9.
 また、第1電極2上には、セル間絶縁部11が形成されており、かかるセル間絶縁部11によって色素増感太陽電池が区切られている。かかるセル間絶縁部11に関しては後述する。そして、セル間絶縁部11上に封止材8を設置し、その上にカバー体7を配して各色素増感太陽電池の端部を封止する。図示はしていないが、カバー体7に形成されている注入口から、第1電極2とカバー体7との間にキャリア輸送材料6を注入する。キャリア輸送材料6は、多孔性絶縁層10、および光電変換層3にも含まれる。 Further, an inter-cell insulating portion 11 is formed on the first electrode 2, and the dye-sensitized solar cell is partitioned by the inter-cell insulating portion 11. The inter-cell insulating portion 11 will be described later. And the sealing material 8 is installed on the insulation part 11 between cells, the cover body 7 is distribute | arranged on it, and the edge part of each dye-sensitized solar cell is sealed. Although not shown, a carrier transport material 6 is injected between the first electrode 2 and the cover body 7 from an injection port formed in the cover body 7. The carrier transport material 6 is also included in the porous insulating layer 10 and the photoelectric conversion layer 3.
 本実施形態の色素増感太陽電池モジュール200において、隣り合う色素増感太陽電池を接続する方法としては、図3に示されるように、隣り合う色素増感太陽電池の一方の色素増感太陽電池の第1電極2と、他方の色素増感太陽電池の第2電極9とを直列接続することによって、電気的に接続することが好ましい。このように接続することにより、各色素増感太陽電池が直列に接続されて色素増感太陽電池モジュールの単位面積あたりの出力を大きくすることができる。 In the dye-sensitized solar cell module 200 of the present embodiment, as a method of connecting adjacent dye-sensitized solar cells, as shown in FIG. 3, one dye-sensitized solar cell of adjacent dye-sensitized solar cells is used. It is preferable to electrically connect the first electrode 2 and the second electrode 9 of the other dye-sensitized solar cell in series. By connecting in this way, each dye-sensitized solar cell is connected in series, and the output per unit area of a dye-sensitized solar cell module can be enlarged.
 図4は、本実施形態の色素増感太陽電池モジュールの別の一例を模式的に示す断面図である。本実施形態の色素増感太陽電池モジュールは、図4に示されるように、隣接する色素増感太陽電池を直列に接続してもよい。すなわち、図4に示される色素増感太陽電池モジュールは、隣り合う色素増感太陽電池の一方の色素増感太陽電池の補助電極4と、他方の色素増感太陽電池の第2電極9とを直列接続したものである。このように接続することにより、受光面における非発電部分を低減することができ、もって色素増感太陽電池モジュールの単位面積当たりの出力を大きくすることができる。 FIG. 4 is a cross-sectional view schematically showing another example of the dye-sensitized solar cell module of the present embodiment. As shown in FIG. 4, the dye-sensitized solar cell module of the present embodiment may connect adjacent dye-sensitized solar cells in series. That is, the dye-sensitized solar cell module shown in FIG. 4 includes the auxiliary electrode 4 of one dye-sensitized solar cell of the adjacent dye-sensitized solar cell and the second electrode 9 of the other dye-sensitized solar cell. They are connected in series. By connecting in this way, the non-power generation part in a light-receiving surface can be reduced, and the output per unit area of a dye-sensitized solar cell module can be enlarged.
 ≪セル間絶縁部≫
 本実施形態において、セル間絶縁部11は、色素増感太陽電池間を電気的に絶縁するために設けられるものである。このようなセル間絶縁部11は、色素増感太陽電池同士を電気的に絶縁できる材料である必要があり、さらに支持体1上に所望の形状に形成し易い材料を用いることが好ましい。このようなセル間絶縁部11を構成する材料としては、紫外線硬化性樹脂および熱硬化性樹脂などを用いることができ、たとえばシリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂、ガラス系材料などを挙げることができる他、これらの2種以上を用いて積層構造にしてもよい。
≪Insulation between cells≫
In the present embodiment, the inter-cell insulating portion 11 is provided to electrically insulate between the dye-sensitized solar cells. Such an inter-cell insulating portion 11 needs to be a material that can electrically insulate the dye-sensitized solar cells from each other, and it is preferable to use a material that can be easily formed in a desired shape on the support 1. As a material constituting such an inter-cell insulating portion 11, an ultraviolet curable resin, a thermosetting resin, or the like can be used. For example, a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, a glass material. In addition, two or more of these may be used to form a laminated structure.
 ただし、セル間絶縁部11を形成した後に光電変換層3を形成する場合、光電変換層3を形成するときの温度に対する耐熱性を有する必要がある。また、支持体1を受光面とする場合、セル間絶縁部11も紫外線に照射されることになるため、紫外線に対する耐光性を有する材料を用いることが好ましい。このため、ガラス系材料を用いることが好ましい。 However, when the photoelectric conversion layer 3 is formed after the inter-cell insulating portion 11 is formed, it is necessary to have heat resistance with respect to the temperature when the photoelectric conversion layer 3 is formed. Further, when the support 1 is used as a light receiving surface, the inter-cell insulating portion 11 is also irradiated with ultraviolet rays, and therefore, it is preferable to use a material having light resistance to ultraviolet rays. For this reason, it is preferable to use a glass-based material.
 セル間絶縁部11に用いられるガラス系材料としては、たとえば、ガラスペーストやガラスフリットとして市販されているものを用いることができる。特に、キャリア輸送材料との反応性や環境問題を考慮すれば、鉛フリーのガラス系材料であることが好ましい。さらに、ガラス材料からなる支持体1上にセル間絶縁部11を形成する場合、550℃以下の焼成温度で形成することが好ましく、たとえば、ビスマス系ガラスペーストやリン酸スズ系ガラスペーストを好適に用いることができる。 As the glass-based material used for the inter-cell insulating portion 11, for example, a commercially available glass paste or glass frit can be used. In particular, in consideration of reactivity with the carrier transport material and environmental problems, a lead-free glass-based material is preferable. Furthermore, when forming the inter-cell insulating part 11 on the support 1 made of a glass material, it is preferable to form it at a firing temperature of 550 ° C. or less. For example, a bismuth glass paste or a tin phosphate glass paste is suitably used. Can be used.
 <色素増感太陽電池モジュールの製造方法>
 以下に、図3の色素増感太陽電池モジュール200の製造方法の各工程を説明する。
<Method for producing dye-sensitized solar cell module>
Below, each process of the manufacturing method of the dye-sensitized solar cell module 200 of FIG. 3 is demonstrated.
 ≪第1電極のパターニング≫
 まず、支持体1上に形成された第1電極2に対し、レーザースクライブ法を用いて第1電極2の所定の場所をパターニングすることにより、スクライブライン12を形成する。
≪First electrode patterning≫
First, a scribe line 12 is formed by patterning a predetermined location of the first electrode 2 using a laser scribing method on the first electrode 2 formed on the support 1.
 ≪セル間絶縁部の形成≫
 上記で形成したスクライブライン12上に、セル間絶縁部11を形成する。かかるセル間絶縁部11は、後に形成される光電変換層3を分割するように形成される。セル間絶縁部11の形成方法は特に限定されず、たとえば、シリコーン樹脂、エポキシ樹脂、ガラス系材料を用いてセル間絶縁部11を形成する場合は、ディスペンサーを用いることができる。また、ホットメルト樹脂を用いてセル間絶縁部11を形成する場合は、シート状のホットメルト樹脂にパターニングした穴を開けることにより形成することができる。
≪Formation of insulation between cells≫
The inter-cell insulating portion 11 is formed on the scribe line 12 formed as described above. The inter-cell insulating portion 11 is formed so as to divide the photoelectric conversion layer 3 to be formed later. The formation method of the inter-cell insulating part 11 is not particularly limited. For example, when the inter-cell insulating part 11 is formed using a silicone resin, an epoxy resin, or a glass-based material, a dispenser can be used. Moreover, when forming the insulation part 11 between cells using hot-melt resin, it can form by making the hole patterned in the sheet-like hot-melt resin.
 ≪多孔性半導体の形成≫
 支持体1上に光電変換層3を構成する多孔性半導体を形成する。多孔性半導体を形成する方法は、特に限定されず、公知の方法を用いることができる。すなわちたとえば、半導体微粒子を適当な溶剤に懸濁した懸濁液を、ドクターブレード法、スキージ法、スピンコート法、スクリーン印刷法など公知の方法を用いて所定の場所に塗布し、乾燥および焼成の少なくとも一方を行なうことによって形成される。
≪Formation of porous semiconductor≫
A porous semiconductor constituting the photoelectric conversion layer 3 is formed on the support 1. The method for forming the porous semiconductor is not particularly limited, and a known method can be used. That is, for example, a suspension in which semiconductor fine particles are suspended in a suitable solvent is applied to a predetermined place using a known method such as a doctor blade method, a squeegee method, a spin coating method, or a screen printing method, followed by drying and baking. It is formed by performing at least one.
 セル間絶縁部11によって分割される領域に光電変換層3を形成したい場合は、懸濁液の粘度を低く調整し、これをディスペンサーなどからセル間絶縁部11によって分割される領域に塗布することが好ましい。これによりペーストの自重で当該領域の端部まで広がり容易にレベリングする。 When it is desired to form the photoelectric conversion layer 3 in the region divided by the inter-cell insulating portion 11, the viscosity of the suspension is adjusted to be low and applied to the region divided by the inter-cell insulating portion 11 from a dispenser or the like. Is preferred. Thereby, it spreads to the edge part of the said area | region with the dead weight of a paste, and is leveled easily.
 懸濁液に用いる溶剤としては、エチレングリコールモノメチルエーテルなどのグライム系溶剤、イソプロピルアルコールなどのアルコール類、イソプロピルアルコール/トルエンなどのアルコール系混合溶剤、水などを挙げることができる。また、このような懸濁液の代わりに市販の酸化チタンペースト(たとえば、Solaronix社製、Ti-nanoxide、T、D、T/SP、D/SP)を用いてもよい。 Examples of the solvent used in the suspension include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water. Instead of such a suspension, a commercially available titanium oxide paste (for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP) may be used.
 このようにして得られた懸濁液を第1電極2上に塗布した上で、乾燥および焼成の少なくとも一方を行なうことにより、支持体1上に多孔性半導体を形成する。懸濁液を塗布する方法としては、ドクターブレード法、スキージ法、スピンコート法、スクリーン印刷法など公知の方法を用いることができる。 A porous semiconductor is formed on the support 1 by applying the suspension thus obtained onto the first electrode 2 and then performing at least one of drying and baking. As a method for applying the suspension, known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method can be used.
 ここで、多孔性半導体を乾燥および焼成するために必要な条件(温度、時間、雰囲気など)は、半導体微粒子の種類に応じて適宜設定すればよく、たとえば、大気雰囲気下または不活性ガス雰囲気下で乾燥および焼成することが好ましく、50~800℃程度の範囲で10秒~12時間程度行なうことが好ましい。この乾燥および焼成は、単一の温度で1回または温度を変化させて2回以上行なってもよい。 Here, the conditions (temperature, time, atmosphere, etc.) necessary for drying and firing the porous semiconductor may be set as appropriate according to the type of semiconductor fine particles. For example, in an air atmosphere or an inert gas atmosphere It is preferable to dry and bake at a temperature of about 50 to 800 ° C. for about 10 seconds to 12 hours. This drying and baking may be performed once at a single temperature or twice or more at different temperatures.
 多孔性半導体は、複数層を積層したものであってもよい。多孔性半導体を積層させるためには、異なる半導体微粒子の懸濁液を調製し、塗布、乾燥、および焼成の少なくともいずれかの工程を2回以上繰り返すことが好ましい。 The porous semiconductor may be a laminate of a plurality of layers. In order to laminate the porous semiconductor, it is preferable to prepare a suspension of different semiconductor fine particles and repeat at least one of the steps of coating, drying, and baking twice or more.
 このようにして多孔性半導体を形成した後、半導体微粒子同士の電気的接続を向上させるために、後処理を行なうことが好ましい。たとえば、多孔性半導体が酸化チタンからなる場合は、四塩化チタン水溶液で後処理することによって、多孔性半導体の性能を向上させることができる。また、多孔性半導体の表面積を増加させたり、半導体微粒子上の欠陥準位を低減させたりしてもよい。 After forming the porous semiconductor in this way, it is preferable to perform post-treatment in order to improve electrical connection between the semiconductor fine particles. For example, when the porous semiconductor is made of titanium oxide, the performance of the porous semiconductor can be improved by post-treatment with an aqueous titanium tetrachloride solution. Further, the surface area of the porous semiconductor may be increased, or the defect level on the semiconductor fine particles may be reduced.
 ≪補助電極の形成≫
 上記で作製した多孔性半導体(すなわち色素吸着前の光電変換層3)上に補助電極4を形成する。かかる補助電極4の一端を、第1電極2に接触させるために、多孔性半導体の端部まで形成する。補助電極4の形成方法は、特に制限されず、たとえば、スパッタ法、スプレー法などの公知の方法を用いることができる。
≪Formation of auxiliary electrode≫
The auxiliary electrode 4 is formed on the porous semiconductor produced above (that is, the photoelectric conversion layer 3 before dye adsorption). One end of the auxiliary electrode 4 is formed up to the end of the porous semiconductor in order to contact the first electrode 2. The method for forming the auxiliary electrode 4 is not particularly limited, and for example, a known method such as a sputtering method or a spray method can be used.
 ≪コーティング材料の形成≫
 次に、上記で作製した補助電極4の表面にコーティング材料5を形成する。コーティング材料5は、補助電極を構成する金属を酸化することによって形成される場合もあるし、有機物を塗布することによって形成される場合もある。すなわち、補助電極の最表面にコーティング材料5が位置することになる。コーティング材料5を形成する方法としては、補助電極4が金属からなる場合、補助電極4を酸素中で焼成することにより、補助電極4の表面が酸化されてコーティング材料5が形成される。また、コーティング材料5として、有機材料を用いる場合は、エタノール等の有機溶剤にデオキシコール酸などの有機物を溶かしたものにディッピングすることにより、コーティング材料を形成してもよい。
≪Formation of coating material≫
Next, the coating material 5 is formed on the surface of the auxiliary electrode 4 produced as described above. The coating material 5 may be formed by oxidizing a metal constituting the auxiliary electrode, or may be formed by applying an organic substance. That is, the coating material 5 is located on the outermost surface of the auxiliary electrode. As a method of forming the coating material 5, when the auxiliary electrode 4 is made of a metal, the auxiliary electrode 4 is baked in oxygen, whereby the surface of the auxiliary electrode 4 is oxidized to form the coating material 5. Moreover, when using an organic material as the coating material 5, you may form a coating material by dipping in what dissolved organic substances, such as deoxycholic acid, in organic solvents, such as ethanol.
 なお、図4に示される色素増感太陽電池モジュールを作製する場合は、隣り合う色素増感太陽電池のうちの一方の色素増感太陽電池の補助電極4と、他方の色素増感太陽電池の第2電極9とを接触させることによって、隣接する色素増感太陽電池を直列接続する。このため、第2電極9を形成した後、すなわち直列接続を行なった後に、補助電極4の表面を酸化させてコーティング材料5を形成することが好ましい。これにより、補助電極4と第2電極9との間にコーティング材料5が介在しなくなるため、直列抵抗が少なくなるというメリットがある。 In addition, when producing the dye-sensitized solar cell module shown by FIG. 4, the auxiliary electrode 4 of one dye-sensitized solar cell of adjacent dye-sensitized solar cells, and the other dye-sensitized solar cell of Adjacent dye-sensitized solar cells are connected in series by contacting the second electrode 9. For this reason, it is preferable to form the coating material 5 by oxidizing the surface of the auxiliary electrode 4 after the second electrode 9 is formed, that is, after series connection is performed. Thereby, since the coating material 5 does not intervene between the auxiliary electrode 4 and the second electrode 9, there is an advantage that the series resistance is reduced.
 ≪多孔性絶縁層の形成≫
 補助電極4を形成した多孔性半導体(すなわち色素吸着前の光電変換層3)上に、多孔性絶縁層10を形成する。かかる多孔性絶縁層10は、上述の多孔性半導体と同様の方法を用いて形成することができる。すなわち、上記微粒子状の絶縁物を適当な溶剤に分散し、さらにエチルセルロース、ポリエチレングリコール(PEG)などの高分子化合物を混合してペーストを作製する。このようにして得られたペーストを補助電極4上に塗布し、乾燥および焼成の少なくとも一方を行なう。これにより、補助電極4上に多孔性絶縁層10を形成することができる。
≪Formation of porous insulating layer≫
A porous insulating layer 10 is formed on the porous semiconductor in which the auxiliary electrode 4 is formed (that is, the photoelectric conversion layer 3 before dye adsorption). Such a porous insulating layer 10 can be formed using a method similar to that of the above-described porous semiconductor. That is, the above-mentioned fine particle insulator is dispersed in a suitable solvent, and a polymer compound such as ethyl cellulose and polyethylene glycol (PEG) is further mixed to prepare a paste. The paste thus obtained is applied onto the auxiliary electrode 4, and at least one of drying and baking is performed. Thereby, the porous insulating layer 10 can be formed on the auxiliary electrode 4.
 ≪第2電極の形成≫
 多孔性絶縁層10上に第2電極9を形成する。第2電極9は、補助電極4を形成する方法と同様の方法を用いることができる。第2電極9が緻密な膜状の構造である場合には、第2電極9に小孔を形成してもよい。図3に示される色素増感太陽電池モジュールにおいては、第2電極9と第1電極2とを接続することにより、各色素増感太陽電池を電気的に直列に接続する。また、図4に示される色素増感太陽電池モジュールにおいては、第2電極9と補助電極4とを接続することにより、各色素増感太陽電池を電気的に直列に接続する。
<< Formation of second electrode >>
A second electrode 9 is formed on the porous insulating layer 10. For the second electrode 9, a method similar to the method of forming the auxiliary electrode 4 can be used. When the second electrode 9 has a dense film structure, a small hole may be formed in the second electrode 9. In the dye-sensitized solar cell module shown in FIG. 3, each dye-sensitized solar cell is electrically connected in series by connecting the second electrode 9 and the first electrode 2. In the dye-sensitized solar cell module shown in FIG. 4, the dye-sensitized solar cells are electrically connected in series by connecting the second electrode 9 and the auxiliary electrode 4.
 (色素の吸着)
 次に、多孔性半導体に色素を吸着させることにより、光電変換層3を作製する。色素を吸着させる方法としては特に限定されず、たとえば、多孔性半導体を上述の色素吸着用溶液に浸漬する方法を用いることができる。この際、色素吸着用溶液を多孔性半導体内の微細孔奥部まで浸透させるために、色素吸着用溶液を加熱してもよい。
(Dye adsorption)
Next, the photoelectric converting layer 3 is produced by making a porous semiconductor adsorb | suck a pigment | dye. The method for adsorbing the dye is not particularly limited, and for example, a method of immersing the porous semiconductor in the above-described dye adsorption solution can be used. At this time, the dye adsorbing solution may be heated in order to penetrate the dye adsorbing solution to the depths of the micropores in the porous semiconductor.
 色素を溶解させる溶剤としては、色素を溶解するものであればよく、たとえば、アルコール、トルエン、アセトニトリル、テトラヒドロフラン(THF)、クロロホルム、ジメチルホルムアミドなどが挙げられる。かかる溶剤は、精製されたものを用いることが好ましく、2種類以上を混合して用いてもよい。 The solvent for dissolving the dye is not particularly limited as long as it dissolves the dye, and examples thereof include alcohol, toluene, acetonitrile, tetrahydrofuran (THF), chloroform, dimethylformamide and the like. As the solvent, a purified one is preferably used, and two or more kinds may be mixed and used.
 色素吸着用溶液に含まれる色素の濃度は、使用する色素、溶剤の種類、色素吸着工程などの条件に応じて適宜設定することができるが、吸着機能を向上させるためには、高濃度であることが好ましく、たとえば、1×10-5mol/L以上であることが好ましい。色素吸着用溶液の調製においては、色素の溶解性を向上させるために加熱してもよい。 The concentration of the dye contained in the dye adsorption solution can be appropriately set according to the conditions such as the dye to be used, the type of solvent, the dye adsorption process, etc., but it is a high concentration to improve the adsorption function. For example, it is preferably 1 × 10 −5 mol / L or more. In preparing the dye adsorption solution, heating may be performed to improve the solubility of the dye.
 ≪封止材の形成≫
 本実施形態において、封止材8は、セル間絶縁部11を形成する方法と同様の方法によって形成することができる。特に、封止材8は、図3の色素増感太陽電池モジュールでは第2電極9上に形成されることが好ましく、図4の色素増感太陽電池モジュールでは第2電極9と補助電極4を覆うように、セル間絶縁部11上に形成されることが好ましい。
≪Formation of sealing material≫
In the present embodiment, the sealing material 8 can be formed by a method similar to the method for forming the inter-cell insulating portion 11. In particular, the sealing material 8 is preferably formed on the second electrode 9 in the dye-sensitized solar cell module of FIG. 3, and the second electrode 9 and the auxiliary electrode 4 are formed in the dye-sensitized solar cell module of FIG. It is preferable to be formed on the inter-cell insulating portion 11 so as to cover it.
 ≪カバー体の配置≫
 次に、封止材8上にカバー体7を配置した上で、封止材8を硬化させることによって、カバー体7と封止材8とを固着させる。ここでのカバー体7には、注入口が形成されており、かかる注入口からキャリア輸送材料を注入することにより、支持体1、カバー体7、セル間絶縁部11および封止材8によって囲まれる各領域にキャリア輸送材料6を注入する。
≪Cover body layout≫
Next, the cover body 7 is disposed on the sealing material 8 and then the sealing material 8 is cured to fix the cover body 7 and the sealing material 8 together. The cover body 7 is formed with an injection port, and is surrounded by the support body 1, the cover body 7, the inter-cell insulating portion 11, and the sealing material 8 by injecting the carrier transport material from the injection port. The carrier transport material 6 is injected into each region to be processed.
 ≪キャリア輸送材料の注入≫
 次に、カバー体7の注入口から支持体1とカバー体7との間に、キャリア輸送材料6を注入する。これにより、キャリア輸送材料6が支持体1とカバー体7との間の領域に充填される。なお、キャリア輸送材料は、光電変換層3および多孔性絶縁層10の孔内にも充填される。また、補助電極4、コーティング材料5または第2電極9が小孔を有する場合には、小径内にも充填される。
≪Injection of carrier transport material≫
Next, the carrier transporting material 6 is injected between the support 1 and the cover body 7 from the injection port of the cover body 7. Thereby, the carrier transport material 6 is filled in the region between the support 1 and the cover body 7. The carrier transport material is also filled in the holes of the photoelectric conversion layer 3 and the porous insulating layer 10. Moreover, when the auxiliary electrode 4, the coating material 5, or the 2nd electrode 9 has a small hole, it fills also in a small diameter.
 ≪最終封止≫
 最後に、カバー体7の注入口を樹脂で塞ぐことによって、キャリア輸送材料をセル内に封止する。以上の工程によって本実施形態の色素増感太陽電池モジュール200を作製することができる。
≪Final sealing≫
Finally, the carrier transport material is sealed in the cell by closing the inlet of the cover body 7 with resin. The dye-sensitized solar cell module 200 of this embodiment can be manufactured through the above steps.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下において、各層の膜厚は、特に断りのない限り、株式会社東京精密製、商品名:サーフコム1400Aを用いて測定した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the following, the film thickness of each layer was measured using a product name: Surfcom 1400A manufactured by Tokyo Seimitsu Co., Ltd., unless otherwise specified.
 <実施例1>
 本実施例では、図1に示される色素増感太陽電池を作製した。以下においては、その作製手順を具体的に説明する。
<Example 1>
In this example, the dye-sensitized solar cell shown in FIG. 1 was produced. Below, the preparation procedure is demonstrated concretely.
 (多孔性半導体の形成)
 まず、ガラスからなる支持体1上に、フッ素ドープされたSnO2からなる第1電極2が形成されたTCO付きガラス(日本板硝子社製)を準備した。かかるTCO付きガラスの第1電極2上に、酸化チタンペースト(Solaronix社製、商品名:Ti-Nanoxide D/SP、平均粒径13nm)を、5mm×5mmのパターンを用いて、スクリーン印刷機によって塗布した。そして、この酸化チタンペーストの塗膜を80℃で20分間予備乾燥した後、450℃で1時間焼成することにより、7μmの膜厚の酸化チタンからなる多孔性半導体を形成した。
(Formation of porous semiconductor)
First, on a support 1 made of glass was prepared fluorine-doped TCO coated glass in which the first electrode 2 is formed consisting of SnO 2 (manufactured by Nippon Sheet Glass Co., Ltd.). On the first electrode 2 of the glass with TCO, a titanium oxide paste (manufactured by Solaronix, trade name: Ti-Nanoxide D / SP, average particle size of 13 nm) is used by a screen printer using a 5 mm × 5 mm pattern. Applied. Then, the titanium oxide paste coating film was pre-dried at 80 ° C. for 20 minutes and then baked at 450 ° C. for 1 hour to form a porous semiconductor made of titanium oxide having a thickness of 7 μm.
 (補助電極の形成)
 次に、5mm×10mm開口部のメタルマスクを用意し、該メタルマスクの一端部が多孔性半導体の端部を覆うように設置した。そして、図1に示すような位置関係で、電子ビーム蒸着器(アルバック株式会社製、製品名:ei-5)を用いて蒸着速度5Å/Sで膜厚約500nmのチタンからなる補助電極4を成膜した。
(Formation of auxiliary electrode)
Next, a metal mask having an opening of 5 mm × 10 mm was prepared, and one end of the metal mask was installed so as to cover the end of the porous semiconductor. Then, with the positional relationship shown in FIG. 1, an auxiliary electrode 4 made of titanium having a film thickness of about 500 nm is deposited at an evaporation rate of 5 mm / s using an electron beam vapor deposition device (product name: ei-5, manufactured by ULVAC, Inc.). A film was formed.
 そして、補助電極4をYAGレーザー(基本波長:1.06μm)を搭載したレーザースクライブ装置(西進商事株式会社製)を用いて、レーザー光を照射してチタンを蒸発させることにより、50μmの幅のスクライブラインを100μm間隔で作製した。このようにして、ストライプ形状の補助電極4を形成した。 Then, using a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (basic wavelength: 1.06 μm) as the auxiliary electrode 4, the titanium is evaporated by irradiating the laser beam, thereby obtaining a Scribe lines were produced at 100 μm intervals. Thus, the stripe-shaped auxiliary electrode 4 was formed.
 (コーティング材料の形成)
 上記の補助電極4に対し、450℃で30分間、酸素下で焼成を行なった。これにより補助電極4の表面が酸化されて、補助電極4の表面にコーティング材料5が形成された。この補助電極4の表面に対し、ラマン分光解析を行なったところ、酸化チタンのピークが確認された。このラマン分光解析の結果から、コーティング材料5は、酸化チタンによって形成されていることが明らかとなった。
(Formation of coating material)
The auxiliary electrode 4 was baked under oxygen at 450 ° C. for 30 minutes. As a result, the surface of the auxiliary electrode 4 was oxidized, and the coating material 5 was formed on the surface of the auxiliary electrode 4. When the Raman spectroscopic analysis was performed on the surface of the auxiliary electrode 4, a peak of titanium oxide was confirmed. From the result of this Raman spectroscopic analysis, it became clear that the coating material 5 was formed of titanium oxide.
 (色素の吸着)
 そして、体積比1:1のアセトニトリル(Aldrich Chemical Company製)とt-ブチルアルコール(Aldrich Chemical Company製)との混合溶剤に色素(Solaronix社製、商品名:Ruthenium620-1H3TBA)を、濃度4×10-4mol/Lになるように溶解させることにより、色素吸着用溶液を得た。
(Dye adsorption)
Then, a dye (Solaronix, trade name: Ruthenium 620-1H3TBA) in a mixed solvent of 1: 1 volume ratio of acetonitrile (manufactured by Aldrich Chemical Company) and t-butyl alcohol (manufactured by Aldrich Chemical Company) at a concentration of 4 × 10. -4 mol / L was dissolved to obtain a dye adsorption solution.
 そして、上記で作製した多孔性半導体付きの支持体を40℃の色素吸着用溶液に20時間浸漬させることにより、多孔性半導体に色素を吸着させた。その後、多孔性半導体をエタノール(Aldrich Chemical Company製)で洗浄し、約80℃で約10分間乾燥させた。このようにして多孔性半導体に色素を吸着させた光電変換層3を作製した。 Then, the support with a porous semiconductor produced as described above was immersed in a dye adsorption solution at 40 ° C. for 20 hours to adsorb the dye to the porous semiconductor. Thereafter, the porous semiconductor was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes. In this way, the photoelectric conversion layer 3 in which the dye was adsorbed on the porous semiconductor was produced.
 (太陽電池の作製)
 上記の支持体で用いたTCOガラス付きガラスと同様のガラスを準備し、これをカバー体7として用いた。カバー体7のTCO面に、電子ビーム蒸着器(アルバック株式会社製、製品名:ei-5)を用いて蒸着速度5Å/Sで、膜厚30nmの白金からなる触媒層を形成し、第2電極9を作製した。
(Production of solar cells)
A glass similar to the glass with TCO glass used in the above support was prepared and used as the cover 7. A catalyst layer made of platinum having a thickness of 30 nm is formed on the TCO surface of the cover body 7 using an electron beam vapor deposition device (product name: ei-5, manufactured by ULVAC, Inc.) at a deposition rate of 5 mm / S. An electrode 9 was produced.
 上記の第1電極2の周囲に紫外線硬化樹脂からなる封止材8を塗布し、第2電極9と補助電極4とが接触しないように相対してカバー体7を設置した。そして、紫外線照射ランプ(EFD社製、商品名:Novacure)を用いて紫外線を照射することにより、紫外線硬化性樹脂を硬化させてカバー体7と支持体1とを固定した。 The sealing material 8 made of an ultraviolet curable resin was applied around the first electrode 2, and the cover body 7 was installed so as not to contact the second electrode 9 and the auxiliary electrode 4. And the ultraviolet curable resin was hardened by irradiating an ultraviolet-ray using the ultraviolet irradiation lamp (EFD company make, brand name: Novacure), and the cover body 7 and the support body 1 were fixed.
 ≪キャリア輸送材料の形成≫
 まず、キャリア輸送材料となる電解質を調製した。具体的には、溶剤としてのアセトニトリルに、酸化還元種としてLiI(Aldrich Chemical Company製)が濃度0.1mol/L、I2(東京化成工業株式会社製)が濃度0.01mol/Lとなり、さらに添加剤としてt-ブチルピリジン(TBP、Aldrich Chemical Company製)が濃度0.5mol/L、ジメチルプロピルイミダゾールアイオダイド(DMPII、四国化成工業株式会社製)が濃度0.6mol/Lとなるように溶解させて電解質を調製した。
≪Formation of carrier transport material≫
First, an electrolyte serving as a carrier transport material was prepared. Specifically, acetonitrile as a solvent, LiI (manufactured by Aldrich Chemical Company) as a redox species has a concentration of 0.1 mol / L, I 2 (manufactured by Tokyo Chemical Industry Co., Ltd.) has a concentration of 0.01 mol / L, and As additives, t-butylpyridine (TBP, manufactured by Aldrich Chemical Company) was dissolved to a concentration of 0.5 mol / L, and dimethylpropylimidazole iodide (DMPII, manufactured by Shikoku Kasei Kogyo Co., Ltd.) was dissolved to a concentration of 0.6 mol / L. To prepare an electrolyte.
 ≪最終封止≫
 最後に、カバー体7に設けられた注入口からキャリア輸送材料6を注入した後、該注入口を樹脂にて封止することにより、図1に示す色素増感太陽電池100を作製した。
≪Final sealing≫
Finally, after injecting the carrier transport material 6 from the injection port provided in the cover body 7, the injection port was sealed with a resin, thereby producing the dye-sensitized solar cell 100 shown in FIG.
 <実施例2>
 本実施例では、多孔性半導体と補助電極とを交互に各3層積層させたことが異なる他は、実施例1と同様の方法によって本実施例の色素増感太陽電池を作製した。すなわち、本実施例の多孔性半導体(酸化チタン)は、3層の合計で18μmの膜厚となり、また補助電極4として、光の透過性を考慮して、約600nmの膜厚のITOを3層積層することによって形成した。かかる補助電極4は、スパッタ装置(ULVAC DCスパッタ装置MLH-6300型)を使用して、トレイスピード10mm/分に設定して作製した。
<Example 2>
In this example, the dye-sensitized solar cell of this example was produced by the same method as in Example 1 except that three layers of porous semiconductors and auxiliary electrodes were alternately laminated. That is, the porous semiconductor (titanium oxide) of this example has a total film thickness of 18 μm, and the auxiliary electrode 4 is made of 3 ITO with a film thickness of about 600 nm in consideration of light transmittance. It was formed by laminating layers. The auxiliary electrode 4 was produced using a sputtering apparatus (ULVAC DC sputtering apparatus MLH-6300 type) at a tray speed of 10 mm / min.
 上記のような3層構造の補助電極4を、デオキシコール酸を含む有機溶剤に24時間浸漬させた。該有機溶剤には、100mMの濃度でデオキシコール酸を含み、エタノールを溶媒として用いた。そして、有機溶媒から補助電極4を取り出した後に、80℃で10分間乾燥させることにより、エタノールの蒸発除去を行なった。その後、実施例1と同様の方法で、コーティング材料5を形成することにより、色素増感太陽電池100を作製した。 The auxiliary electrode 4 having the three-layer structure as described above was immersed in an organic solvent containing deoxycholic acid for 24 hours. The organic solvent contained deoxycholic acid at a concentration of 100 mM, and ethanol was used as the solvent. Then, after the auxiliary electrode 4 was taken out from the organic solvent, ethanol was removed by evaporation at 80 ° C. for 10 minutes. Then, the dye-sensitized solar cell 100 was produced by forming the coating material 5 by the method similar to Example 1. FIG.
 <比較例1>
 実施例1に対し、補助電極4およびコーティング材料5を形成しなかったことが異なる他は、実施例1と同様の方法によって、比較例1の色素増感太陽電池を作製した。
<Comparative Example 1>
A dye-sensitized solar cell of Comparative Example 1 was produced in the same manner as in Example 1 except that the auxiliary electrode 4 and the coating material 5 were not formed.
 <比較例2>
 実施例1に対し、コーティング材料5を形成しなかったことが異なる他は、実施例1と同様の方法によって、比較例2の色素増感太陽電池を作製した。
<Comparative Example 2>
A dye-sensitized solar cell of Comparative Example 2 was produced in the same manner as in Example 1 except that the coating material 5 was not formed with respect to Example 1.
 <比較例3>
 実施例2に対し、補助電極4およびコーティング材料5を形成しなかったことが異なる他は、実施例2と同様の方法によって、比較例1の色素増感太陽電池を作製した。
<Comparative Example 3>
A dye-sensitized solar cell of Comparative Example 1 was produced in the same manner as in Example 2, except that the auxiliary electrode 4 and the coating material 5 were not formed.
 <実施例3>
 本実施例では、図3に示される色素増感太陽電池モジュールを作製した。以下にその各工程を説明する。
<Example 3>
In this example, the dye-sensitized solar cell module shown in FIG. 3 was produced. Each step will be described below.
 ≪第1電極のパターニング≫
 まず、支持体1上にSnO2からなる第1電極2が形成されたTCOガラス(日本板硝子社製)を用意した。TCOガラスは、44mm×70mm×厚さ1mmの大きさのものを用いた。そして、このTCOガラスをYAGレーザー(基本波長:1.06μm)を搭載したレーザースクライブ装置(西進商事株式会社製)にセットして、該第1電極2に対し、7.5mmの間隔でレーザー光を照射した。これにより第1電極2を構成する材料を蒸発させて、50μmの幅のスクライブライン12を作製した。
≪First electrode patterning≫
First, TCO glass (manufactured by Nippon Sheet Glass Co., Ltd.) in which the first electrode 2 made of SnO 2 was formed on the support 1 was prepared. TCO glass having a size of 44 mm × 70 mm × thickness 1 mm was used. Then, this TCO glass is set in a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (fundamental wavelength: 1.06 μm), and laser light is emitted at an interval of 7.5 mm with respect to the first electrode 2. Was irradiated. As a result, the material constituting the first electrode 2 was evaporated to produce a scribe line 12 having a width of 50 μm.
 ≪セル間絶縁部の形成≫
 上記で作製したスクライブライン12上に、セル間絶縁部11が5mm間隔で並ぶように形成できるスクリーン印刷版を配置した。そして、スクリーン印刷機(ニューロング精密工業株式会社製、型式:LS-34TVA)を用いてガラスペースト(ノリタケカンパニーリミテド製、商品名:ガラスペースト)を塗布した。そして、この塗布膜を100℃で15分間乾燥させた後、焼成炉を用いて500℃で60分間焼成することにより、1mm×50mm×8μmの短冊形状のセル間絶縁部11を形成した。
≪Formation of insulation between cells≫
A screen printing plate that can be formed so that the inter-cell insulating portions 11 are arranged at intervals of 5 mm is disposed on the scribe line 12 produced above. Then, a glass paste (manufactured by Noritake Company Limited, trade name: glass paste) was applied using a screen printing machine (Neurong Seimitsu Kogyo Co., Ltd., model: LS-34TVA). And after drying this coating film for 15 minutes at 100 degreeC, it baked for 60 minutes at 500 degreeC using the baking furnace, and formed the 1 mm x 50 mmx8 micrometer strip-shaped inter-cell insulation part 11.
 (多孔性半導体の形成)
 次に、5mm×50mmの開口部が5個並ぶスクリーン版を用意した。そして、スクリーン版の一方がセル間絶縁部11に接触するようにスクリーン版をセットし、酸化チタンペースト(Solaronix社製、商品名:Ti-Nanoxide D/SP、平均粒径13nm)をスクリーン印刷機を用いて塗布した。ここで得られた塗膜を80℃で20分間予備乾燥した後、450℃で1時間焼成することにより、酸化チタンからなる7μmの膜厚の多孔性半導体を形成した。
(Formation of porous semiconductor)
Next, a screen plate in which five openings of 5 mm × 50 mm were arranged was prepared. Then, the screen plate was set so that one of the screen plates was in contact with the inter-cell insulating portion 11, and a titanium oxide paste (manufactured by Solaronix, trade name: Ti-Nanoxide D / SP, average particle size 13 nm) was screen printed. It applied using. The coating film obtained here was preliminarily dried at 80 ° C. for 20 minutes and then baked at 450 ° C. for 1 hour to form a porous semiconductor having a thickness of 7 μm made of titanium oxide.
 (補助電極の形成)
 次に、5.5mm×50mmの開口部が5個並ぶメタルマスクを用意し、多孔性半導体の端部に開口部の0.5mmが被るようにメタルマスクを配置した。そして、電子ビーム蒸着器ei-5(アルバック株式会社製)を用いて蒸着速度5Å/Sで、約500nmの膜厚のチタンからなる補助電極4を成膜した。
(Formation of auxiliary electrode)
Next, a metal mask in which five openings of 5.5 mm × 50 mm were arranged was prepared, and the metal mask was arranged so that the end of the porous semiconductor covered 0.5 mm of the opening. Then, an auxiliary electrode 4 made of titanium having a thickness of about 500 nm was formed at an evaporation rate of 5 Å / S using an electron beam evaporation device ei-5 (manufactured by ULVAC, Inc.).
 そして、上記補助電極4をYAGレーザー(基本波長:1.06μm)を搭載したレーザースクライブ装置(西進商事株式会社製)を用いて、100mmの間隔でレーザー光を照射した。これにより補助電極4の一部を蒸発させて、50μmの幅のスクライブラインを作製した。 Then, the auxiliary electrode 4 was irradiated with laser light at intervals of 100 mm using a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (basic wavelength: 1.06 μm). As a result, a part of the auxiliary electrode 4 was evaporated to prepare a scribe line having a width of 50 μm.
 (多孔性絶縁層の形成)
 次に、酸化ジルコニウムの微粒子(粒径100nm、シーアイ化成株式会社製)をテルピネオールに分散させ、さらにエチルセルロースを混合してジルコニウムペーストを調製した。なお、酸化ジルコニウム微粒子とテルピネオールとエチルセルロースとの重量比は、65:30:5であった。
(Formation of porous insulating layer)
Next, zirconium oxide fine particles (particle size: 100 nm, manufactured by C.I. Kasei Co., Ltd.) were dispersed in terpineol, and ethyl cellulose was further mixed to prepare a zirconium paste. The weight ratio of the zirconium oxide fine particles, terpineol, and ethyl cellulose was 65: 30: 5.
 そして、焼成後の形状が6mm×50mm×3.5μmとなるように、短冊形状が1mm間隔で並ぶスクリーン印刷版を用意し、スクリーン印刷機(ニューロング精密工業株式会社製、型式:LS-34TVA)を用いて得られたジルコニウムペーストを第1電極2上に塗布し、室温で1時間レベリングを行なった。レベリング後、得られた塗膜を80℃で20分間予備乾燥した後、450℃で1時間焼成して、酸化ジルコニウムからなる多孔性絶縁層10を形成した。 Then, a screen printing plate in which strip shapes are arranged at 1 mm intervals so that the shape after firing is 6 mm × 50 mm × 3.5 μm is prepared, and a screen printing machine (manufactured by Neurong Precision Industry Co., Ltd., model: LS-34TVA) is prepared. ) Was applied onto the first electrode 2 and leveled at room temperature for 1 hour. After the leveling, the obtained coating film was pre-dried at 80 ° C. for 20 minutes, and then fired at 450 ° C. for 1 hour to form a porous insulating layer 10 made of zirconium oxide.
 (第2電極の形成)
 次に、多孔性絶縁層10上に触媒層(図示せず)を形成した後に、該触媒層上に第2電極9を形成した。具体的には、5mm×50mmの開口部が5個並ぶメタルマスクを用意し、多孔性絶縁層10上に白金を電子ビーム蒸着器(アルバック株式会社製、装置名:ei-5)を用いて蒸着速度5Å/Sで、約20nmの膜厚の白金からなる触媒層(図示せず)を形成した。その後、上記と同様のメタルマスクおよび電子ビーム蒸着器を用いて、触媒層を形成するときの条件と同様の条件で第2電極9を作製した。このようにして作製した第2電極9も第1電極2と同様にストライプ形状とした。
(Formation of second electrode)
Next, after forming a catalyst layer (not shown) on the porous insulating layer 10, the second electrode 9 was formed on the catalyst layer. Specifically, a metal mask in which five openings of 5 mm × 50 mm are arranged is prepared, and platinum is deposited on the porous insulating layer 10 using an electron beam vapor deposition device (manufactured by ULVAC, Inc., apparatus name: ei-5). A catalyst layer (not shown) made of platinum having a thickness of about 20 nm was formed at a deposition rate of 5 Å / S. Then, the 2nd electrode 9 was produced on the conditions similar to the conditions when forming a catalyst layer using the metal mask and electron beam vapor deposition device similar to the above. The second electrode 9 produced in this way was also formed in a stripe shape like the first electrode 2.
 (色素の吸着)
 まず、体積比1:1のアセトニトリル(Aldrich Chemical Company製)とt-ブチルアルコール(Aldrich Chemical Company製)との混合溶剤に色素(Solaronix社製、商品名:Ruthenium620-1H3TBA)を、濃度4×10-4mol/Lになるように溶解させることにより、色素吸着用溶液を得た。
(Dye adsorption)
First, a dye (Solaronix, trade name: Ruthenium 620-1H3TBA) in a mixed solvent of acetonitrile (by Aldrich Chemical Company) and t-butyl alcohol (from Aldrich Chemical Company) at a volume ratio of 1: 1 with a concentration of 4 × 10. -4 mol / L was dissolved to obtain a dye adsorption solution.
 そして、上記で作製した多孔性半導体付きの支持体1を40℃の色素吸着用溶液に20時間浸漬させることにより、多孔性半導体に色素を吸着させた。その後、多孔性半導体をエタノール(Aldrich Chemical Company製)で洗浄し、約80℃で約10分間乾燥させた。 Then, the support 1 with a porous semiconductor produced as described above was immersed in a dye adsorption solution at 40 ° C. for 20 hours to adsorb the dye to the porous semiconductor. Thereafter, the porous semiconductor was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes.
 ≪封止材の形成≫
 次に、セル間絶縁部11上の第2電極9に紫外線硬化性樹脂(スリーボンド社製、型番:31X-101)を塗布した後に、後で注入するキャリア輸送材料6が隣り合うユニットセルに流れ出ないように、短冊形状に形成されたセル間絶縁部11の端部にも紫外線硬化性樹脂からなる封止材8を塗布した。
≪Formation of sealing material≫
Next, after an ultraviolet curable resin (model number: 31X-101, manufactured by ThreeBond Co., Ltd.) is applied to the second electrode 9 on the inter-cell insulating portion 11, the carrier transport material 6 to be injected later flows out to the adjacent unit cell. The sealing material 8 made of an ultraviolet curable resin was also applied to the end portion of the inter-cell insulating portion 11 formed in a strip shape so as not to be present.
 ≪カバー体の配置≫
 そして、38mm×55mm×1.0mmのガラスをカバー体7として用意し、このカバー体7を封止材8上に配置して貼り合せた。なお、カバー体には、予めキャリア輸送材料を注入するための注入口を設けた。次いで、紫外線照射ランプ(EFD社製、商品名:Novacure)を用いて紫外線を照射し、紫外線硬化性樹脂を硬化させることにより、カバー体を固定した。
≪Cover body layout≫
And 38 mm x 55 mm x 1.0 mm glass was prepared as the cover body 7, and this cover body 7 was arrange | positioned on the sealing material 8, and was bonded together. The cover body was previously provided with an inlet for injecting the carrier transport material. Subsequently, the cover body was fixed by irradiating ultraviolet rays using an ultraviolet irradiation lamp (trade name: Novacure, manufactured by EFD) to cure the ultraviolet curable resin.
 ≪キャリア輸送材料の注入≫
 アセトニトリルを溶剤として、酸化還元種としてLiI(Aldrich Chemical Company製)が濃度0.1mol/L、I2(東京化成工業株式会社製)が濃度0.01mol/Lとなるように、さらに添加剤としてt-ブチルピリジン(TBP、Aldrich Chemical Company製)が濃度0.5mol/L、ジメチルプロピルイミダゾールアイオダイド(DMPII、四国化成工業株式会社製)が濃度0.6mol/Lとなるように添加し、溶解させることによりキャリア輸送材料を調製した。
≪Injection of carrier transport material≫
As an additive, acetonitrile was used as a solvent, and LiI (manufactured by Aldrich Chemical Company) as a redox species had a concentration of 0.1 mol / L, and I 2 (manufactured by Tokyo Chemical Industry Co., Ltd.) had a concentration of 0.01 mol / L. t-Butylpyridine (TBP, manufactured by Aldrich Chemical Company) was added at a concentration of 0.5 mol / L, and dimethylpropylimidazole iodide (DMPII, manufactured by Shikoku Kasei Kogyo Co., Ltd.) was added at a concentration of 0.6 mol / L and dissolved. To prepare a carrier transport material.
 ≪最終封止≫
 最後に、カバー体に設けられた注入口からキャリア輸送材料を注入した後、該注入口を樹脂にて封止することにより、図3に示す色素増感太陽電池モジュール200を作製した。
≪Final sealing≫
Finally, after injecting the carrier transport material from the injection port provided in the cover body, the injection port was sealed with a resin, thereby producing the dye-sensitized solar cell module 200 shown in FIG.
 <実施例4>
 本実施例では、図4に示される色素増感太陽電池モジュール200を作製した。以下においては、実施例3と相違する点を中心に、本実施例の色素増感太陽電池モジュールの製造方法を説明する。まず、支持体1上にSnO2からなる第1電極2が形成されたTCOガラス(日本板硝子社製)を用意した。TCOガラスは、34mm×70mm×厚さ1mmの大きさのものを用いた。そして、このTCOガラスをYAGレーザー(基本波長:1.06μm)を搭載したレーザースクライブ装置(西進商事株式会社製)にセットして、該第1電極2に対し、6.5mmの間隔でレーザー光を照射した。これにより第1電極2を構成する材料を蒸発させて、50μmの幅のスクライブライン12を作製した。
<Example 4>
In this example, the dye-sensitized solar cell module 200 shown in FIG. 4 was produced. In the following, the method for manufacturing the dye-sensitized solar cell module of this example will be described focusing on the differences from Example 3. First, TCO glass (manufactured by Nippon Sheet Glass Co., Ltd.) in which the first electrode 2 made of SnO 2 was formed on the support 1 was prepared. TCO glass having a size of 34 mm × 70 mm × thickness 1 mm was used. Then, this TCO glass is set in a laser scribing device (manufactured by Seishin Shoji Co., Ltd.) equipped with a YAG laser (fundamental wavelength: 1.06 μm), and laser light is emitted at an interval of 6.5 mm with respect to the first electrode 2. Was irradiated. As a result, the material constituting the first electrode 2 was evaporated to produce a scribe line 12 having a width of 50 μm.
 その後、実施例3と同様の方法によって、セル間絶縁部11、多孔性半導体、補助電極4をこの順に形成した。なお、補助電極4の形成に関しては、補助電極4の端部がセル間絶縁部11の上部にも形成したという点が実施例3と異なる。その後、セル間絶縁部11に接触するように多孔性絶縁層10を形成した。 Thereafter, the inter-cell insulating portion 11, the porous semiconductor, and the auxiliary electrode 4 were formed in this order by the same method as in Example 3. Note that the auxiliary electrode 4 is different from the third embodiment in that the end of the auxiliary electrode 4 is also formed above the inter-cell insulating portion 11. Thereafter, the porous insulating layer 10 was formed so as to be in contact with the inter-cell insulating portion 11.
 そして、セル間絶縁部11上の補助電極4に接触するように第2電極9を形成することにより、隣接する色素増感太陽電池を電気的に直列接続した。すなわち、隣り合う色素増感太陽電池の一方の色素増感太陽電池の補助電極4と、他方の色素増感太陽電池の第2電極9とを直列接続した。その後、450℃で30分間、酸素下で補助電極4を焼成することにより、補助電極4の表面にコーティング材料5を形成した。以上のようにして本実施例の色素増感太陽電池モジュールを作製した。 Then, by forming the second electrode 9 so as to be in contact with the auxiliary electrode 4 on the inter-cell insulating portion 11, adjacent dye-sensitized solar cells were electrically connected in series. That is, the auxiliary electrode 4 of one dye-sensitized solar cell of adjacent dye-sensitized solar cells and the second electrode 9 of the other dye-sensitized solar cell were connected in series. Thereafter, the auxiliary electrode 4 was baked under oxygen at 450 ° C. for 30 minutes to form the coating material 5 on the surface of the auxiliary electrode 4. As described above, the dye-sensitized solar cell module of this example was produced.
 <実施例1~2、比較例1~3の色素増感太陽電池の光電変換効率の測定>
 実施例1~2および比較例1~3の色素増感太陽電池に対し、1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、太陽電池特性を測定した。以下の表1に短絡電流値、開放電圧、FF、および光電変換効率の測定結果を示す。
<Measurement of Photoelectric Conversion Efficiency of Dye-Sensitized Solar Cells of Examples 1-2 and Comparative Examples 1-3>
The dye-sensitized solar cells of Examples 1 and 2 and Comparative Examples 1 to 3 were irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator), and the solar cell characteristics were measured. Table 1 below shows the measurement results of the short-circuit current value, open-circuit voltage, FF, and photoelectric conversion efficiency.
 <実施例3~4の色素増感太陽電池モジュールの光電変換効率の測定>
 実施例3~4の色素増感太陽電池モジュールに対し、上記と同様の方法で太陽電池特性を測定した。その結果を表1に示す。
<Measurement of photoelectric conversion efficiency of dye-sensitized solar cell modules of Examples 3 to 4>
The solar cell characteristics of the dye-sensitized solar cell modules of Examples 3 to 4 were measured by the same method as described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1において、実施例1~2の色素増感太陽電池と、比較例1~3の色素増感太陽電池とを対比すると、補助電極の表面にコーティング材料を設けることにより、光電変換層からのリーク電流を防止することができ、もって太陽電池特性を向上させることができることが導かれる。 In Table 1, when the dye-sensitized solar cells of Examples 1 and 2 are compared with the dye-sensitized solar cells of Comparative Examples 1 to 3, the coating material is provided on the surface of the auxiliary electrode. Leakage current can be prevented, and thus the solar cell characteristics can be improved.
 また、実施例3の色素増感太陽電池モジュールと実施例4のそれとを対比することにより、実施例4は、実施例3より、短絡電流値が高くなり、高い光電変換効率が得られることが明らかとなった。これは、実施例4では、隣り合う色素増感太陽電池の一方の色素増感太陽電池の補助電極4と、他方の色素増感太陽電池の第2電極9とを直列接続したことによるものと考えられる。 Moreover, by comparing the dye-sensitized solar cell module of Example 3 with that of Example 4, Example 4 has a higher short-circuit current value than Example 3, and high photoelectric conversion efficiency can be obtained. It became clear. This is because, in Example 4, the auxiliary electrode 4 of one dye-sensitized solar cell of adjacent dye-sensitized solar cells and the second electrode 9 of the other dye-sensitized solar cell are connected in series. Conceivable.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、色素増感太陽電池および色素増感太陽電池モジュールに広く利用することができる。 The present invention can be widely used for dye-sensitized solar cells and dye-sensitized solar cell modules.
 1 支持体、2 第1電極、3 光電変換層、4 補助電極、5 コーティング材料、6 キャリア輸送材料、7 カバー体、8 封止材、9 第2電極、10 多孔性絶縁層、11 セル間絶縁部、12 スクライブライン、100 色素増感太陽電池、102 第1電極、103 集電電極、104 光電変換層、200 色素増感太陽電池モジュール、201 第1電極、203 光電変換層、204 集電電極。 DESCRIPTION OF SYMBOLS 1 Support body, 1st electrode, 3 photoelectric conversion layer, 4 auxiliary electrode, 5 coating material, 6 carrier transport material, 7 cover body, 8 sealing material, 9 2nd electrode, 10 porous insulation layer, between 11 cells Insulating part, 12 scribe line, 100 dye-sensitized solar cell, 102 first electrode, 103 current collecting electrode, 104 photoelectric conversion layer, 200 dye sensitized solar cell module, 201 first electrode, 203 photoelectric conversion layer, 204 current collection electrode.

Claims (12)

  1.  第1電極と、
     前記第1電極に対向して設けられた第2電極と、
     前記第1電極に接する光電変換層と、
     前記光電変換層の層内または前記光電変換層の前記第2電極側の表面に設けられ、かつ前記第1電極に接する補助電極と、
     前記光電変換層、前記補助電極、および前記第2電極に接するキャリア輸送材料とを備え、
     前記補助電極は、2種以上の材料を含む、色素増感太陽電池。
    A first electrode;
    A second electrode provided facing the first electrode;
    A photoelectric conversion layer in contact with the first electrode;
    An auxiliary electrode provided in the layer of the photoelectric conversion layer or on the surface of the photoelectric conversion layer on the second electrode side, and in contact with the first electrode;
    A carrier transport material in contact with the photoelectric conversion layer, the auxiliary electrode, and the second electrode;
    The auxiliary electrode is a dye-sensitized solar cell including two or more materials.
  2.  前記補助電極は、コーティング材料を含み、かつその表面の一部にコーティング材料を有する、請求項1に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 1, wherein the auxiliary electrode includes a coating material and has a coating material on a part of the surface thereof.
  3.  前記補助電極は、金属を主成分として含み、
     前記コーティング材料は、金属の酸化物を含む、請求項2に記載の色素増感太陽電池。
    The auxiliary electrode contains a metal as a main component,
    The dye-sensitized solar cell according to claim 2, wherein the coating material includes a metal oxide.
  4.  前記コーティング材料は、前記補助電極を構成する金属の酸化物を含む、請求項3に記載の色素増感太陽電池。 The dye-sensitized solar cell according to claim 3, wherein the coating material includes an oxide of a metal constituting the auxiliary electrode.
  5.  前記コーティング材料は、有機物を含む、請求項2~4のいずれかに記載の色素増感太陽電池。 The dye-sensitized solar cell according to any one of claims 2 to 4, wherein the coating material contains an organic substance.
  6.  前記金属は、チタンである、請求項3~5のいずれかに記載の色素増感太陽電池。 The dye-sensitized solar cell according to any one of claims 3 to 5, wherein the metal is titanium.
  7.  前記コーティング材料は、金属の酸化物と有機物との積層構造である、請求項2~6のいずれかに記載の色素増感太陽電池。 The dye-sensitized solar cell according to any one of claims 2 to 6, wherein the coating material has a laminated structure of a metal oxide and an organic substance.
  8.  前記光電変換層は、その膜厚が8μm以下である、請求項1~7のいずれかに記載の色素増感太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 7, wherein the photoelectric conversion layer has a thickness of 8 袖 m or less.
  9.  前記光電変換層と前記補助電極とを交互に各2層以上ずつ積層した構造を有する、請求項1~8のいずれかに記載の色素増感太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 8, wherein the dye-sensitized solar cell has a structure in which two or more layers of the photoelectric conversion layer and the auxiliary electrode are alternately laminated.
  10.  請求項1~9にいずれかに記載の色素増感太陽電池を複数接続した色素増感太陽電池モジュールであって、
     隣り合う前記色素増感太陽電池の一方の色素増感太陽電池の前記第1電極と、他方の色素増感太陽電池の前記第2電極とを直列接続した、色素増感太陽電池モジュール。
    A dye-sensitized solar cell module in which a plurality of the dye-sensitized solar cells according to any one of claims 1 to 9 are connected,
    A dye-sensitized solar cell module in which the first electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cells and the second electrode of the other dye-sensitized solar cell are connected in series.
  11.  請求項1~9にいずれかに記載の色素増感太陽電池を複数接続した色素増感太陽電池モジュールであって、
     隣り合う前記色素増感太陽電池の一方の色素増感太陽電池の前記補助電極と、他方の色素増感太陽電池の前記第2電極とを直列接続した、色素増感太陽電池モジュール。
    A dye-sensitized solar cell module in which a plurality of the dye-sensitized solar cells according to any one of claims 1 to 9 are connected,
    A dye-sensitized solar cell module in which the auxiliary electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cells and the second electrode of the other dye-sensitized solar cell are connected in series.
  12.  請求項11に記載の色素増感太陽電池モジュールの製造方法であって、
     隣り合う前記色素増感太陽電池の一方の色素増感太陽電池の前記補助電極と、他方の色素増感太陽電池の前記第2電極とを直列接続させるステップと、
     前記補助電極の表面にコーティング材料を形成するステップとをこの順に行なう、色素増感太陽電池モジュールの製造方法。
    A method for producing a dye-sensitized solar cell module according to claim 11,
    Connecting the auxiliary electrode of one dye-sensitized solar cell of the adjacent dye-sensitized solar cells and the second electrode of the other dye-sensitized solar cell in series;
    And a step of forming a coating material on the surface of the auxiliary electrode in this order.
PCT/JP2011/077613 2010-12-20 2011-11-30 Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those WO2012086377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283324 2010-12-20
JP2010-283324 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086377A1 true WO2012086377A1 (en) 2012-06-28

Family

ID=46313659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077613 WO2012086377A1 (en) 2010-12-20 2011-11-30 Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those

Country Status (1)

Country Link
WO (1) WO2012086377A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038570A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module
WO2015159677A1 (en) * 2014-04-15 2015-10-22 シャープ株式会社 Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
CN114583058A (en) * 2020-11-30 2022-06-03 株式会社理光 Photoelectric conversion element, photoelectric conversion module, electronic instrument, and power supply module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285977A (en) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2001283941A (en) * 2000-03-29 2001-10-12 Hitachi Maxell Ltd Photoelectric transfer element
JP2003197283A (en) * 2001-12-28 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2004039471A (en) * 2002-07-04 2004-02-05 Sumitomo Osaka Cement Co Ltd Pigment-sensitized solar cell
JP2006286434A (en) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk Electrode base for dye-sensitized solar cell, optical electrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2006324100A (en) * 2005-05-18 2006-11-30 Sekisui Jushi Co Ltd Dye sensitized solar cell
WO2009075229A1 (en) * 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285977A (en) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2001283941A (en) * 2000-03-29 2001-10-12 Hitachi Maxell Ltd Photoelectric transfer element
JP2003197283A (en) * 2001-12-28 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2004039471A (en) * 2002-07-04 2004-02-05 Sumitomo Osaka Cement Co Ltd Pigment-sensitized solar cell
JP2006286434A (en) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk Electrode base for dye-sensitized solar cell, optical electrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2006324100A (en) * 2005-05-18 2006-11-30 Sekisui Jushi Co Ltd Dye sensitized solar cell
WO2009075229A1 (en) * 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038570A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module
JP5922242B2 (en) * 2012-09-07 2016-05-24 シャープ株式会社 Photoelectric conversion element, method for manufacturing the same, photoelectric conversion element module, and method for manufacturing the same
WO2015159677A1 (en) * 2014-04-15 2015-10-22 シャープ株式会社 Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
US20170040119A1 (en) * 2014-04-15 2017-02-09 Sharp Kabushiki Kaisha Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
CN106463269A (en) * 2014-04-15 2017-02-22 夏普株式会社 Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
JPWO2015159677A1 (en) * 2014-04-15 2017-04-13 シャープ株式会社 Photoelectric conversion element, dye-sensitized solar cell, and dye-sensitized solar cell module
CN114583058A (en) * 2020-11-30 2022-06-03 株式会社理光 Photoelectric conversion element, photoelectric conversion module, electronic instrument, and power supply module

Similar Documents

Publication Publication Date Title
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4683396B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US10014122B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5162347B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2010003556A (en) Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP5536015B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
WO2014038570A1 (en) Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
WO2013114733A1 (en) Photoelectric conversion element module
JP5313278B2 (en) Photoelectric conversion element and photoelectric conversion element module
US10916382B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP5480234B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP2013251229A (en) Photoelectric conversion element and dye-sensitized solar cell
WO2015049983A1 (en) Photoelectric conversion device and method for producing photoelectric conversion device
WO2015133030A1 (en) Photoelectric conversion module and electronic device using same
WO2013161557A1 (en) Photoelectric conversion element module and method for manufacturing same
JP2013251228A (en) Photoelectric conversion element and dye-sensitized solar cell
JP2014229434A (en) Photoelectric conversion element and dye-sensitized solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP