WO2012081756A1 - Co-extruded, antimicrobial vacuum-packing film having a seven-layer structure and a production method therefor - Google Patents

Co-extruded, antimicrobial vacuum-packing film having a seven-layer structure and a production method therefor Download PDF

Info

Publication number
WO2012081756A1
WO2012081756A1 PCT/KR2010/009217 KR2010009217W WO2012081756A1 WO 2012081756 A1 WO2012081756 A1 WO 2012081756A1 KR 2010009217 W KR2010009217 W KR 2010009217W WO 2012081756 A1 WO2012081756 A1 WO 2012081756A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimicrobial
polyethylene
resin
weight
packaging film
Prior art date
Application number
PCT/KR2010/009217
Other languages
French (fr)
Korean (ko)
Inventor
김일용
장영욱
김금자
Original Assignee
주식회사 롤팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 롤팩 filed Critical 주식회사 롤팩
Publication of WO2012081756A1 publication Critical patent/WO2012081756A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/28Applications of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a nanocomposite antibacterial vacuum packaging film that is environmentally friendly, has high antibacterial activity, has improved antibacterial activity, and a method for producing the same. More specifically, an antimicrobial inorganic particle or antimicrobial organic monomer compound, antimicrobial homopolymer or antimicrobial acrylic copolymer polymer having a nano size ( ⁇ 1 (? 9 m) is uniformly dispersed in a polyethylene matrix, Film and a method for producing the film.
  • the plastic film in the form of an envelope is mainly used for storing foods such as meat, meat products, fish, and cereals for a long period of time.
  • a plastic film is known to have a multilayer structure including, for example, seven layers including nylon (polyamide) for imparting oxygen and water vapor barrier properties to prevent decay of articles such as foods to be stored.
  • nylon polyamide
  • these packaging films block the inflow of oxygen and do not provide antibacterial properties, so they are inadequate to inhibit the formation of harmful bacteria and microorganisms.
  • Foods that are sensitive to microorganisms or medical products that require high storage conditions In the case of storing articles, it is necessary to prevent corruption of articles to be stored and deterioration thereof.
  • an antimicrobial vacuum film having antimicrobial ability by uniformly dispersing nano-sized antimicrobial substance in the film in contact with the article.
  • antimicrobial vacuum film Most of them are made by mixing silver particles of nanometer or micrometer size with polymer resin, and most of them are made of only a single layer, not a multilayer film, or products having a two-layer structure laminated by lamination .
  • silver which is mainly used as an additive for imparting an antimicrobial function, has its own toxicity, and technical limitations such as reduction of the antibacterial power due to elution of the antimicrobial substance have been continuously pointed out.
  • silver has a problem of low cost because of its high price.
  • the present invention greatly improves the storage function of the packaging film by developing a film having environmentally friendly and sustainable antibacterial activity, maximizing the packaging period to maximize the loss due to the corruption of the article and the overall usage of the plastic packaging film And to provide an antimicrobial vacuum packaging film having active antimicrobial activity by improving existing vacuum packaging films having superior oxygen and water vapor barrier properties.
  • the present invention also provides an antimicrobial agent for antimicrobial activity contained in a vacuum packaging film having an antimicrobial activity.
  • the antimicrobial agent is not self-toxic by using a component other than silver, To provide a vacuum packaging film excellent in antibacterial activity. Further, the present invention provides a method for producing such an antibacterial vacuum packaging film.
  • the present invention relates to a coextruded antimicrobial vacuum packaging film for packaging an article, wherein the packaging film is composed of seven layers, the outermost layer of the packaging film is formed of a polyamide resin, and the innermost layer in contact with the article is a polyethylene resin
  • the innermost layer comprises selenium particles having a particle size of 5 to 10 nm or an antimicrobial organic monomer compound represented by the formula (1), an antimicrobial homopolymer represented by the formula (2) having a weight average molecular weight of 10, 000-1, And an antibacterial acrylic copolymer represented by the following formula (3) having a weight average molecular weight of 10, 000-1, 000, 000, and an organic antimicrobial agent selected from the group consisting of .
  • the antimicrobial vacuum packaging film has four resin layers alternately arranged from the outside to the inside of the packaging film, the polyamide resin and the polyethylene resin, and the adhesive resin layer formed between the respective resin layers .
  • the polyamide resin may be nylon 6 or nylon 66
  • the polyethylene may be low density polyethylene (LDPE) or linear low density polyethylene (LLDPE).
  • the adhesive resin layer is formed of maleic anhydride modified VLDPE.
  • the selenium particles are contained in an amount of 30 ppm to 40 ppm of the innermost layer weight
  • the organic antimicrobial agent is preferably contained in an amount of 0.5-5% by weight of the weight of the resin layer.
  • the present invention relates to a method for producing an antimicrobial vacuum packaging film having a seven-layer structure, wherein the packaging film is produced by melt co-extruding a resin in an extruder using a pneumatic actuator including seven extruders,
  • a polyethylene matrix resin comprising at least one organic antimicrobial selected from the group consisting of a homopolymer and an antibacterial acrylic copolymer of formula 3 having a weight average molecular weight of 10, 000-1, 000, 000 is melt-extruded, From the extruder forming the outermost layer of the film, a polyamide resin is melt
  • the polyethylene matrix resin forming the innermost layer of the packaging film may be a polyethylenic main resin; And a polyethylene master batch in which a polyethylene resin containing selenium particles or an organic antimicrobial agent is pelletized.
  • the polyethylene matrix resin comprises 100 parts by weight of a polyethylene resin; And a polyethylene masterbatch comprising 25 to 45 parts by weight of a polyethylene masterbatch comprising 100 to 200 ppm of selenium particles or 20 to 50 parts by weight of an organic antimicrobial agent based on 100 parts by weight of the polyethylene resin forming the polyethylene masterbatch To 10 parts by weight.
  • the polyethylene master batch containing the selenium particles comprises 30-40 parts by weight of selenium particles, 17-35 parts by weight of stearic acid, 30-60 parts by weight of water, and 25-40 parts by weight of alcohol 25-40 parts by weight, based on 100 parts by weight of the polyethylene resin forming the polyethylene master batch, And 35 parts by weight of a maleic anhydride, followed by preparing a polyethylene resin composition for forming a polyethylene master batch by coalescing with a polyethylene resin containing maleic anhydride in an upper silver salt; Heating the polyethylene resin composition to produce a polyethylene resin coated with the selenium particles; And extruding and pelleting the polyethylene resin coated with the selenium particles into a twin screw extruder to produce a polyethylene master batch containing the selenium particles,
  • the polyethylene masterbatch containing the organic antibacterial agent is prepared by mixing 20 to 50 parts by weight of an organic antimicrobial agent with respect to 100 parts by weight of a polyethylene resin forming a polyethylene masterbatch to prepare a polyethylene resin composition for forming a polyethylene masterbatch; And extruding and pelletizing the polyethylene resin composition comprising the organic antimicrobial agent into a twin screw extruder to produce a polyethylene master batch containing an organic antimicrobial agent.
  • the antimicrobial vacuum packaging film of the seven-layer structure is formed by alternately forming four resin layers of a polyamide resin and a polyethylene resin from the outside to the inside of the film, And co-extruding each resin to form a stratum.
  • the polyamide resin is preferably nylon 6 or nylon 66
  • the polyethylene resin may be a low density polyethylene (LDPE) or a linear low density polyethylene (LLDPE)
  • the adhesion resin layer may be a maleic anhydride modification
  • VLDPECMaleic anhydride modi fi ed VLDPE VLDPECMaleic anhydride modi fi ed VLDPE.
  • the antibacterial vacuum packaging film provided by the present invention can be preserved for a longer period of time by adding antimicrobial properties while maintaining the low permeability of oxygen and water vapor. This can reduce the overall use of the packaging film, thereby reducing the use of fossil fuels and, ultimately, reducing carbon emissions. Further, the present invention can obtain a high-quality vacuum packaging film by using a low-cost antimicrobial agent other than silver, while being harmless to the human body and reducing the cost of product production.
  • FIG. 1 is a schematic view showing a layer structure and constituent materials of a seven-layered antimicrobial vacuum packaging film provided by the present invention.
  • FIG. 1 is a schematic view showing a layer structure and constituent materials of a seven-layered antimicrobial vacuum packaging film provided by the present invention.
  • FIG. 2 is a schematic view of a co-extrusion apparatus for producing the film of Fig.
  • FIGS. 3 to 10 are photographs showing the distribution of nano-sized salen particles according to the content of selenium in the innermost layer according to Example 1 in contact with an article to be packaged in the vacuum packaging film of the present invention measured by FE-SEM to be.
  • Figs. 3, 5, 7 and 9 are photographs of the surface of the innermost layer of the vacuum packaging film
  • Figs. 4, 6, 8 and 10 show the positions of selenium particles in the innermost layer It is a photograph of the time.
  • Figs. 11 and 12 are photographs showing the antimicrobial activity of the present invention as compared with the vacuum packaging film containing no selenium particles.
  • the antibacterial activity of the antibacterial activity of the anti- Fig. 11 shows the result of the antibacterial test on Staphylococcus aureus
  • Fig. 12 shows the results of the antibacterial test on E. coli.
  • FIG. 13 is a photograph showing the antibacterial test result of an antibacterial vacuum packaging film containing an antibacterial agent according to ASTM G22 modified method.
  • the vacuum packaging film of the present invention is preferably composed of seven layers.
  • the component constituting each layer is not necessarily limited to, but is preferably composed of poly (ethylene terephthalate) or polyamide.
  • the polyethylenic resin is excellent in moisture barrier property to prevent the permeation of moisture into the container of the packaging film, and the polyamide resin has excellent oxygen barrier property, thereby preventing the inflow of oxygen into the packaging container. Allows long-term storage of oxygen-sensitive products.
  • the order of the triple layers in the packaging film is not particularly limited, but the outermost layer of the temporary packaging film is formed of a polyamide resin and is in contact with the article to be packaged It is preferable that the innermost layer is formed on the basis of a polyethylene resin.
  • the polyamide resin Since the polyamide resin has excellent oxygen barrier properties, it is possible to block the penetration of oxygen into the container formed of the packaging film by forming the outermost layer using such a polyamide resin.
  • a polyamide resin is not particularly limited as long as it has the above-mentioned oxygen barrier property, and it is more preferable to use nylon 6 or nylon 6,6.
  • the polyethylene resin is excellent in the moisture barrier property as described above, so that moisture can be prevented from penetrating into the inside of the packaging container, and the heat sealing property of the polyethylene resin is excellent. It is preferable for sealing. Therefore, it is preferable that the innermost portion of the packaging material is formed of a polyethylene resin having excellent thermal adhesiveness.
  • the polyethylene resin is not particularly limited, but a low density polyethylene (LDPE) or a linear low density polyethylene (LLDPE) can be used, and in the polyethylene resin used as the innermost layer, LLDPE is most preferably used for thermal adhesiveness.
  • the order of forming the vacuum packaging film of the present invention is such that the innermost layer is made of a polyethylene resin and the outermost layer is made of a polyethylene resin
  • the intermediate layer is not particularly limited, it is most preferred that the polyamide resin, such as ethylene layer / polyamide layer toward the outermost layer to the poly-ethylene layer / "polyamide layer / polyester from the innermost layer to be formed alternately. What is formed in this manner is more effective in effectively blocking moisture and oxygen from the outside.
  • micro-oxygen may be contained in the inside of the package, and such oxygen may cause oxidation of the article to be packaged, thereby causing deterioration of the article. Therefore, if necessary, oxygen scavenging ability may be imparted to the polyamide resin layer having excellent oxygen barrier properties in order to remove such oxygen, so that a resin layer mainly composed of polyamide is formed on the adjacent layer of the innermost layer .
  • the polyamide resin having such an oxygen capturing ability is not particularly limited, and any of those known in the art can be applied.
  • the polypropylene resin layer forming the innermost layer of the vacuum packaging film may contain an antimicrobial agent for imparting an antimicrobial activity.
  • Suitable antimicrobial agents in the present invention include nanometric sized sagruium particles.
  • the above-mentioned sagruium particles preferably have a nanometer size, and more preferably have a particle size of 10-100 nm. If the particle size is less than 10 nm, the selenium particles are expensive and the final product is poor in hardness, and uniform dispersion of the particles in the resin composition may be difficult. As the haze increases and loses its value as a product, Size. On the other hand, since the selenium particles are an inorganic substance, it is preferable that the selenium particles are treated with stearic acid for uniform dispersion in the polyethylene resin.
  • the antimicrobial agent of the present invention includes the following antimicrobial organic monomer compounds of formula (1), antimicrobial homopolymers of formula (2) having a weight average molecular weight of 10, 000-1, 000, 000, An organic antimicrobial agent such as an antibacterial acrylic copolymer having a weight average molecular weight may be masterbatch and used interchangeably.
  • R is a polymerization and a functional group and a light path to a saturated or unsaturated hydrocarbon of C 150 containing the interactive reactive functional group
  • 3 ⁇ 4 and 3 ⁇ 4 are each independently with or simultaneously hydrogen, a halogen atom, an amine or ( ⁇ (: 20 and the alkyl group, 3 ⁇ 4 and R4 are each independently or simultaneously hydrogen, a hydroxy group, C1 ⁇ C 20 alkoxide, a halogen atom or - (a: an alkyl group of 20, 3 ⁇ 4 is hydrogen, Cr o alkyl, cyclo propyl, or C ⁇ C 20 aromatic hydrocarbons, and 3 ⁇ 4 contains hydrogen, sodium, potassium or a polymerizable functional group, or Is that group of CrC 150 not included, 3 ⁇ 4, R 9 and R 10 is a carbon or nitrogen, each independently or simultaneously, R u is hydrogen, primary, secondary or tertiary amine, a halogen atom or ( ⁇ - (: 20 alkyl group.
  • R and Re-Ru are as defined in Formula 1, and X is a positive integer satisfying the molecular weight.
  • the salen particle used as the antimicrobial agent or the antimicrobial oil represented by the formula (1) The monomeric monomer compound, the antimicrobial homopolymer represented by the formula (2) or the antibacterial acrylic copolymer represented by the formula (3) has antimicrobial properties and is not self-toxic unlike silver, and the price is about 1/5 Because it is very inexpensive, it is very suitable for application in the present invention.
  • the selenium particles contained in the innermost layer are preferably contained in an amount of 30 to 40 ppm of the weight of the innermost layer of the polyethylene resin layer, and the organic antibacterial agent is contained in an amount of 0.5 to 5 wt. It is preferable that it is included in the content.
  • the antimicrobial vacuum packaging film of the present invention has a seven-layer structure. As described above, in the antibacterial vacuum packaging film of the present invention, the polyamide resin layer and the polyethylene resin layer are alternately located, and the adhesive layer is located between the resin layers.
  • the adhesive layer is for firmly adhering two resin layers having different properties and is not particularly limited as long as it can adhere the polyamide resin and the polyethylene resin.
  • Maleic anhydride modified polyene (VLDPE), and the maleic anhydride modified ultralow density polyethylene can be obtained from an ethylene-butylene copolymer or the like.
  • the antimicrobial vacuum packaging film of the present invention has a seven-layer structure including an adhesive layer between four resin layers. As shown in Fig. 1, the antimicrobial vacuum packaging film of the present invention has an antimicrobial vacuum packaging film in the order of the outermost layer to the innermost layer. As shown in Fig.
  • the antimicrobial vacuum packaging film having the seven-layer structure of the present invention is produced by coextrusion. Conventionally, it is manufactured by a lamination method, and usually has a two- or three-layer structure. However, by applying the co-extrusion method as in the present invention, all layers can be simultaneously extruded and manufactured.
  • FIG. 2 schematically shows an extrusion apparatus suitable for producing the antibacterial vacuum packaging film of the present invention. A method of producing the seven-layer film of the present invention by co-extrusion and blow molding will be schematically described. Although not shown in detail in FIG.
  • the extruder forming the innermost layer of the co-extruder may contain salen particles or an antimicrobial organic monomer compound of formula (1), an antimicrobial homopolymer of formula (2), or an antimicrobial acrylic copolymer high molecular compound of formula (3).
  • the inorganic particles, salenium particles are preliminarily mixed with polyethylenic resin to form a master batch, then the obtained master batch is mixed with a polyethylene resin as a main component, and the master batch is uniformly dispersed in a polyethylene resin And the innermost layer can be formed by on-extrusion.
  • the polyethylene resin After making the master batch of the selenium and polyethylene, the polyethylene resin , It is preferable to extrude nano-sized selenium particles uniformly in LLDPE. In case of directly mixing selenium particles with LLDPE in a co-extruder, nano-sized selenium particles Is not uniformly distributed.
  • the masterbatch comprising the selenium particles can be prepared by mixing selenium particles in a solution containing stearic acid, water and alcohols at room temperature, simulating the resulting mixture with polyethylene, heating at 70-100 ° C To remove water and alcohol. By doing so, the selenium particles treated with stearic acid can be obtained, and the obtained selenium particles can be uniformly dispersed in the polyethylene resin, so that the selenium particles can be attached to the polyethylene resin.
  • the master batch can be produced by extruding the polyethylene resin with the selenium particles thus obtained in a twin screw extruder and pelletizing the same.
  • the master batch thus obtained is co-extruded with the polyethylene resin forming the innermost layer of the vacuum packaging film and co-extruded, whereby the innermost layer can be formed.
  • the stearic acid, water and alcohols are added to 100 parts by weight of the polyethylene resin, 15-25 parts by weight of stearic acid, 30-60 parts by weight of water and 25-35 parts by weight of alcohol.
  • the selenium particles are added to 100 parts by weight of the solution Can contain about 100-200ppm. Is the content which can be present in 30 to 40 ppm in the finally obtained film when the selenium particles are contained within the above range. Therefore, when the content of selenium is less than lOOppm, it is impossible to provide a layered antibacterial activity to the final film.
  • stearic acid is contained in an amount of 15-25 parts by weight per 100 parts by weight of the polyethylene resin as an agent for binding selenium particles to the polyethylene resin.
  • water and alcohol serve as a solvent, and the content thereof is not particularly limited.
  • the polyethylene resin may be the same as the main resin forming the innermost layer of the seven-layer antimicrobial vacuum packaging film of the present invention, preferably LLDPE. Further, the polyethylene resin may contain maleic anhydride in an amount of from 0.1 to 3 wt% More preferably polyethylene.
  • the selenium particles are uniformly coated on the polyethylene.
  • water and alcohols are evaporated and removed, so that the selenium particles can be adhered to the polyethylene resin.
  • the heating temperature is not particularly limited, and any temperature capable of removing water and alcohol can be appropriately selected.
  • the solvent and water-and-alcohol-removed poly (ethylene oxide) resin composition can be prepared by extruding a poly (ethylene terephthalate) resin composition using a twin screw extruder commonly used for preparing a master batch to pelletize the master batch.
  • the master batch obtained by the present invention is a master batch of selenium particle-polyethylenes containing 100-200 ppm of selenium per 100 parts by weight of polyethylene resin.
  • the selenium particle-polyetylene master batch prepared as described above was mixed with a polyethylene resin, which is a main resin, and extruded into an extruder and melt-extruded through a T-die to form the innermost layer of the 7-layer antimicrobial vacuum packaging film of the present invention can do.
  • the selenium particle-adhered polyethylene masterbatch may be used in an amount of 25-45 parts by weight per 100 parts by weight of the polyethylene resin used as the main resin It is preferable to be common.
  • the selenium particle-polyethylene master batch prepared as described above is mixed with a polyethylene resin as a main resin, and the resulting mixture is introduced into an extruder forming an innermost layer of a co-extrusion apparatus for producing an antimicrobial vacuum packaging film having a seven-layer structure, , A suitable resin for forming each layer of a film having a seven-layer structure is put in each extruder, and then they are melt-extruded by a T-die at the same time, An antibacterial vacuum packaging film can be produced. Specifically, as shown in FIG.
  • the outermost layer and the fifth layer from the outside of the film are made of a polyamide resin layer of nylon 6 or nylon 6, 6 to give oxygen barrier properties, and a third layer
  • the inner layer is made of a polyethylene resin layer of polyethylenes or linear polyethylenes for imparting water vapor barrier properties and heat sealing properties and a polyamide resin layer and a polyurethane resin layer are formed in the second,
  • a polymer adhesive layer ie layer
  • the antimicrobial agent besides the selenium particle, the antimicrobial organic monomer compound represented by the formula (1), the antimicrobial homopolymer represented by the formula (2) And an antibacterial acrylic copolymer represented by the following general formula (3).
  • Such an organic antimicrobial agent is commonly used to prepare a master batch with polyethylene resin, which is the main resin forming the innermost layer of the antimicrobial vacuum packaging film of the seven-layer structure of the present invention, as in the case of using the above-mentioned selenium particles.
  • the preparation of the masterbatch can be achieved by uniformly dispersing the mixture of the organic antimicrobial agent and the polyethylene resin and extruding it in a twin screw extruder to pellet the master batch.
  • the organic antibacterial agent is contained in an amount of 20 to 50 parts by weight based on 100 parts by weight of the polyethylene resin.
  • the antimicrobial agent can be uniformly distributed on the final polyethylene resin layer, so that the stratified antimicrobial activity can be obtained. Therefore, if the content of the organic antibacterial agent is less than 20 parts by weight, the antimicrobial activity can not be obtained. If the content exceeds 50 parts by weight, further antibacterial activity can not be obtained.
  • the organic antimicrobial agent-polyethylene master batch prepared as described above is mixed with a polyethylene resin as a main resin, and the mixture is put into an extruder and melt-extruded through a T-die to form the innermost layer of the 7-layer antimicrobial vacuum packaging film of the present invention .
  • the polyethylene masterbatch containing the organic antimicrobial agent is preferably contained in an amount of 3 to 10 parts by weight based on 100 parts by weight of the polyethylene resin. Within this range, the antimicrobial vacuum packaging film of the present invention, It is possible to provide a stratified antimicrobial activity in the innermost layer.
  • the antibacterial vacuum packaging film of the present invention can obtain a vacuum packaging film excellent in environmentally friendly antimicrobial activity which can greatly reduce the amount of packaging film used for preserving food and the amount of carbon dioxide generated by the incineration treatment of the used packaging film
  • 300 ppm of selenium particles were uniformly dispersed in 100 parts by weight of a solution containing 20 parts by weight of stearic acid, 50 parts by weight of water and 30 parts by weight of alcohol at room temperature.
  • the obtained solution was mixed with 100 parts by weight of polyethylene (LLDPE, product name: MPE XP5300, Melt Index 2.4) containing 1 wt% of maleic anhydride and then heated at 120 ° C to obtain water and The alcohol was removed.
  • a polyethylenic resin having selenium particles adhered thereto by stearic acid thus obtained was extruded by a twin screw extruder and pelletized to prepare a sagruium particle-LLDPE master batch.
  • the obtained master batch was mixed with the same LLDPE as the one forming the innermost layer. At this time, the masterbatch was contained at 35, 25, 20 and 17 parts by weight based on 100 parts by weight of LLDPE.
  • a nylon 6-66 copolymer and a third resin layer were provided in the first extruder to provide a first resin layer (outermost layer) among co-extruding devices having seven extruders
  • the master batch and the linear low density polyethylene mixture were fed into a seventh extruder which provided a nylon 6 and a seventh resin layer (innermost layer) in a fifth extruder which provided a low density polyethylene and a crab five resin layer in a third extruder, Fourth, and sixth extruders provided with the second, fourth, and sixth adhesive layers, respectively, and then the respective resins were melt-extruded by a T-die and subjected to a blow molding method ,
  • An antimicrobial vacuum packaging film having a seven-layer structure as shown in Fig. 1 was prepared.
  • the thickness of each layer obtained is as follows.
  • the content of selenium particles in the innermost layer of the obtained vacuum packaging film was measured according to the weight of the masterbatch. As a result, it was found that the content of selenium in the resin layer (G layer) constituting the innermost layer of the antibacterial vacuum packaging film
  • the content of rhenium contained 35 parts by weight of masterbatch, the content of salenium was 37.5 ⁇ , the content of masterbatch was 25 parts by weight, the content of salenium was 30 ppm, and the content of masterbatch was 20 parts by weight, 25 ⁇ 1 ⁇ , and the selenium content of the master batch containing 17 wt% was 21.5 ppm.
  • FIGS. 3, 5, 7 and 9 are photographs of the surface of the innermost layer of the vacuum packaging film
  • FIGS. 4, 6, 8 and 10 are photographs showing the positions of selenium particles in the innermost layer.
  • the antimicrobial activity test was performed according to the content of selenium in the resin in the cervix 7 to test the antibacterial activity.
  • the antimicrobial activity of the selenium-containing antimicrobial vacuum packaging film was determined according to JIS Z 28 as follows.
  • test strain was incubated for 24 hours under the conditions of 35 ° C and 5% RH at 1 ° C. Respectively.
  • the surface area of the sample is 25oif, and the antimicrobial activity value S, the reduction rate (3 ⁇ 4) and the proliferation value (F), which show the antibacterial performance, are calculated by the following equations.
  • the antibacterial activity (S) log (M b / M c ),
  • M b represents an average of the number of viable cells after 24 hours culture of the reference samples
  • M c is the average of the number of viable cells after 24 hours culture of the antibacterial samples .
  • Table 1 shows the test results of the packaging film for a packaging film having a selenium content of 30 pptn having a selenium content of 37.5 ppm contained in the innermost layer.
  • the antibacterial activity value (S) was 6.1 and the reduction rate was 99.9% in the packing film with 37.5ppm. In the packaging film with 30ppm selenium content, the antibacterial activity value (S) was 6.1 and the reduction rate was 99.9% Showed excellent antimicrobial activity against strains 1 and 2.
  • the antimicrobial activity value (S) was 5.9 and the reduction rate was 98.9% in the packaging film, and the antibacterial activity value (S) in the packaging film having the selenium content of 21.5 ppm was 5.7 And the rate of decrease was 97.9%, indicating that the antibacterial activity against strains 1 and 2 was low. Therefore, it was confirmed that the antimicrobial activity was excellent when the content of salenium contained in the innermost layer of the packaging film was 30 ppm or more.
  • a master batch comprising 20 parts by weight of an antibacterial acrylic copolymer represented by the formula (3) in 100 parts by weight of a matrix of LLDPE (product name MPE XP5300, Melt Index 2.4, marketed by Daelim Industrial) BCA-502MB, the product name of the company, was mixed. At this time, the masterbatch was contained in 1, 3, 5 and 7 parts by weight based on 100 parts by weight of the LLDPE.
  • LLDPE product name MPE XP5300, Melt Index 2.4, marketed by Daelim Industrial
  • a vacuum packaging film having a seven layer structure was prepared by coextruding the resin of each layer by a co-extrusion method using a co-extrusion apparatus having seven extruders.
  • a specific method for producing a vacuum packaging film was performed in the same manner as described in Example 1 above.
  • the antimicrobial activity of the prepared vacuum packed film was evaluated by using Escherichia coli LB broth, LB agar plates, Nutrient broth, and Nutrient agar plates were used as the medium, and Escherichia coli (strain 1) and Sahnonel la typhimurium (strain 2) Halosone) measurement was carried out in accordance with AST ⁇ G22 as follows. .
  • test strain is inoculated into a culture tube containing 3 m of LB, and then the tube cap is placed on the culture tube and incubated at 37 ° C with shaking at 150 rpm for 24 hours.
  • the obtained culture solution 100 is inoculated into a culture tube containing LB, and then cultured in the same manner repeatedly 2 to 3 times.
  • Test samples are spray dried with 70% ethane and dried. Place each test sample in the middle of the inoculated medium with the sterilized tweezers. In the case of a coating test sample, the coated side is allowed to reach the inoculated medium. Press the test sample slightly so that the sample is well in contact with the discharge surface. Incubate for 2 days at 37 ° C in an incubator.
  • the test sample is taken in four directions from the side to the clear zone line where the cells do not grow, and the average value (mm) is obtained. And those having an average value of 1.5 or more were evaluated as having excellent antimicrobial activity.
  • the evaluation results according to this embodiment are shown in Table 2 and Fig. Table 2 shows the average value (mm) of the test sample in four directions from the side to the clear zone line where the bacteria did not grow from the side, and Fig. 13 shows the results of the ASTM G22 modified Method , Which is a photograph showing the results of the antibacterial test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an antimicrobial vacuum-packing film having a seven-layer structure which has an antimicrobial performance, and to a method for producing the same. Provided is an antimicrobial vacuum-packing film having a seven-layer structure, being an antimicrobial vacuum-packing film for packing an article, wherein the packing film comprises seven layers; the outermost layer of the packing film is formed from a polyamide resin; the innermost layer, which comes into contact with the article, is formed from a polyethylene resin; and the innermost layer includes selenium particles having a particle size of between 5 and 10 nm or at least one organic antimicrobial agent selected from the group consisting of antimicrobial organic monomeric compounds represented by chemical formula 1, antimicrobial homopolymers represented by chemical formula 2 having a weight-average molecular weight of between 10,000 and 1,000,000, and antimicrobial acrylic copolymers represented by chemical formula 3 having a weight-average molecular weight of between 10,000 and 1,000,000. Also provided is a film production method of the co-extrusion type. The present invention imparts an antimicrobial function to a vacuum packing film that has outstanding oxygen and water-vapour blocking properties, and, by so doing, the invention allows relatively long-term food storage and thus makes it possible to reduce the use of packing film and so possible to reduce the amount of use of naphtha which is a basic raw ingredient in film production, and also makes it possible to reduce the amount of use of petroleum as an energy source required for production and so possible to obtain an environmentally-friendly effect.

Description

【명세서】  【Specification】
【발명의 명칭】  Title of the Invention
7층 구조의 공압출 항균 진공포장 필름 및 그 제조방법  Coextruded antimicrobial vacuum packaging film of 7 layer structure and manufacturing method thereof
【기술분야】 TECHNICAL FIELD
본 발명은 기존 진공필름을 개선하여 친환경적이고 고부가가치를 가지며, 항 균활성을 갖는 나노 복합체 항균 진공포장필름 및 이를 제조하는 방법에 관한 것 이다. 보다 구체적으로는, 나노 사이즈 (~1(Γ9 m)의 항균성 무기입자 또는 항균성 유기 단량체 화합물, 항균성 단일 중합체 또는 항균성 아크릴계 공중합체 고분자 화합물이 폴리에틸렌 매트릭스에 고르게 분산된 7층 구조의 공압출 진공포장필름 및 그 필름 제조 방법에 관한 것이다. The present invention relates to a nanocomposite antibacterial vacuum packaging film that is environmentally friendly, has high antibacterial activity, has improved antibacterial activity, and a method for producing the same. More specifically, an antimicrobial inorganic particle or antimicrobial organic monomer compound, antimicrobial homopolymer or antimicrobial acrylic copolymer polymer having a nano size (~ 1 (? 9 m) is uniformly dispersed in a polyethylene matrix, Film and a method for producing the film.
【배경기술】 BACKGROUND ART [0002]
최근에, 생산되는 봉투 형태의 플라스틱 필름은 육류, 육가공품, 어류, 곡류 등의 식품을 장기간 보관하기 위해 주로 사용되고 있다. 이러한 플라스틱 필름은 보관되는 식품 등의 물품의 부패를 방지하기 위해 산소 및 수증기 차단성을 부여하 고자 나일론 (polyamide)이 포함된 다층 구조, 예를 들어 7개 층으로 구성된 필름이 알려져 있다. 그러나 이러한 포장필름들은 산소의 유입을 차단할 뿐, 항균 특성을 제공하지 않아 유해 세균이나 미생물의 서식을 억제하기에는 불층분하다. 미생물에 민감한 식품이나 고도의 보관 조건이 요구되는 의료용 제품 등의 물품을 보관하는 경우에는, 보관되는 물품의 부패와 이로 인한 변질을 방지할 필요 가 있다. 이를 위해, 물품과 접촉하는 필름 내에 나노 사이즈의 항균물질을 고르게 분산시켜 둠으로써 항균 능력을 갖는 항균진공필름을 형성하는 것이 요구되며 , 이 러한 항균 진공필름으로서 지금까지 알려지거나 상업 적으로 사용되고 있는 것은 대 부분이 나노 또는 마이크로 미터 크기의 은 입자를 고분자 수지에 흔합하여 제조된 것들이며, 나아가, 이들 대부분은 다층 필름이 아닌 단층으로만 구성되거나, 또는 라미네이션에 의해 합지된 2층 구조를 갖는 제품들이다. 이와 같이, 지금까지 항균기능을 부여하기 위해 첨가제로 주로 사용된 은은 자체적인 독성을 가지고 있으며, 이 러한 항균물질의 용출로 인한 항균력 감소 등의 기술적 한계가 계속적으로 지 적되 었다. 또한, 은은 고가인 까닭에 경제성도 떨어지 는 문제가 있다. 나아가, 은이 함유된 수지 조성물로부터 플라스틱 필름의 가공을 위해 수지 조성물을 압출하여 필름을 형성하는 경우, 필름 내에 항균활성을 부여하는 은이 입 자끼 리 뭉치는 현상 (agglomerat ion)이 발생하기 때문에 검은 반점 이 보이거나 필름 전체가 다소 어둡게 보이는 외관문제를 가지고 있다 . 또한 지금까지의 진공 포장재에 포함된 은은 수분과 접촉함으로써 액상 분위 기에서 은 이온 (Ag+)이 형성되어 항균기능을 발휘하게 되는데, 필름두께가 증가하 면 은이 표면에만 분포하는 것이 아니라 필름의 내부에까지 균일하게 분포하므로 투입된 은의 상당량이 목적으로 하는 항균활성을 발휘하지 못하게 된다. 이로 인해 충분한 항균 활성을 얻기 위해서는 은 투입량의 증가가 요구되며, 이 경우, 제품의 가격을 상승시 킴은 물론, 필름의 투명도를 급격하게 저하시 켜 고품질의 제품을 얻 는데 지장을 초래한다. Recently, the plastic film in the form of an envelope is mainly used for storing foods such as meat, meat products, fish, and cereals for a long period of time. Such a plastic film is known to have a multilayer structure including, for example, seven layers including nylon (polyamide) for imparting oxygen and water vapor barrier properties to prevent decay of articles such as foods to be stored. However, these packaging films block the inflow of oxygen and do not provide antibacterial properties, so they are inadequate to inhibit the formation of harmful bacteria and microorganisms. Foods that are sensitive to microorganisms or medical products that require high storage conditions In the case of storing articles, it is necessary to prevent corruption of articles to be stored and deterioration thereof. For this purpose, it is required to form an antimicrobial vacuum film having antimicrobial ability by uniformly dispersing nano-sized antimicrobial substance in the film in contact with the article. As such antimicrobial vacuum film, Most of them are made by mixing silver particles of nanometer or micrometer size with polymer resin, and most of them are made of only a single layer, not a multilayer film, or products having a two-layer structure laminated by lamination . Thus, until now, silver, which is mainly used as an additive for imparting an antimicrobial function, has its own toxicity, and technical limitations such as reduction of the antibacterial power due to elution of the antimicrobial substance have been continuously pointed out. In addition, silver has a problem of low cost because of its high price. Furthermore, when a resin composition is extruded for processing a plastic film from a resin composition containing silver to form a film, agglomerate ions are generated in the silver foil ream bundle which imparts an antimicrobial activity to the film, And the appearance of the entire film is somewhat dark. In addition, the silver contained in the vacuum packaging material until now is in contact with the water, and silver ions (Ag +) are formed in the liquid crystal atmosphere. When the thickness of the film increases, silver is not distributed only on the surface, Because it is uniformly distributed A significant amount of the added silver is not able to exhibit the desired antimicrobial activity. In order to obtain sufficient antimicrobial activity, it is required to increase the amount of silver. In this case, not only the price of the product is increased but also the transparency of the film is drastically lowered, which hinders obtaining a high quality product.
【발명의 내용】 DISCLOSURE OF THE INVENTION
【해결하려는 과제】  [Problem to be solved]
진공포장필름에 항균활성을 부여하는 경우에는 포장되는 물품의 보존기간을 대폭 연장시 킬 수 있고, 이로 인해 포장재의 사용량올 절감할 수 있으며, 종국적으 로는 전 세계적 관심사인 탄소 배출량 저감을 도모하는데 일조할 수 있다 . 이에 , 본 발명은 환경 친화적 이고 지속 가능한 항균 활성을 갖는 필름을 개 발함으로써 포장필름의 물품 보관 기능을 크게 향상시켜 포장 기간을 최대한으로 늘려 물품의 부패에 따른 손실과 플라스틱 포장필름의 전체적 인 사용량을 절감하고 자, 우수한 산소 및 수증기 차단 특성을 갖는 기존 진공포장필름을 개선하여 능동 적으로 항균 활성을 갖는 항균 진공포장 필름을 제공하고자 한다 . 또한, 본 발명은 항균 활성을 갖는 진공포장필름에 포함되는 항균 활성을 제 공하는 항균제 성분으로서, 은 이외의 다른 성분을 사용함으로써 자체 독성을 갖지 않으며, 은에 비해 매우 저 렴한 항균제 성분을 포함하면서도 항균 활성이 우수한 진공포장 필름을 제공하고자 한다 . 나아가, 본 발명은 상기와 같은 항균 진공포장필름을 제조하는 방법을 제공 한다. 【과제의 해결 수단】 In the case of imparting an antimicrobial activity to a vacuum packed film, it is possible to significantly extend the shelf life of the packaged product, thereby reducing the amount of packaging material used and ultimately contributing to the reduction of carbon emissions, which is a global concern. can do . Accordingly, the present invention greatly improves the storage function of the packaging film by developing a film having environmentally friendly and sustainable antibacterial activity, maximizing the packaging period to maximize the loss due to the corruption of the article and the overall usage of the plastic packaging film And to provide an antimicrobial vacuum packaging film having active antimicrobial activity by improving existing vacuum packaging films having superior oxygen and water vapor barrier properties. The present invention also provides an antimicrobial agent for antimicrobial activity contained in a vacuum packaging film having an antimicrobial activity. The antimicrobial agent is not self-toxic by using a component other than silver, To provide a vacuum packaging film excellent in antibacterial activity. Further, the present invention provides a method for producing such an antibacterial vacuum packaging film. MEANS FOR SOLVING THE PROBLEMS
본 발명은 물품을 포장하는 공압출 항균성 진공포장 필름으로서 , 상기 포장필 름은 7개의 층으로 구성되되, 포장필름의 최외층은 폴리아미드 수지로 형성되고 , 상기 물품과 접촉하는 최내층은 폴리에틸렌 수지로 형성되며, 상기 최내층은 5~ L0nm의 입자 사이즈를 갖는 셀레늄 입자 또는 화학식 1로 표시되는 항균성 유기 단량체 화합물 , 10, 000-1 ,000,000의 중량평균분자량을 갖는 화학식 2로 표시되는 항균성 단일 중합체 및 10 ,000-1 ,000, 000의 중량평균분자량을 갖는 화학식 3으로 표시되는 항균성 아크릴계 공중합체로 이루어진 그룹으로부터 선택되는 적어도 하 나의 유기 항균제를 포함하는 7층 구조의 항균 진공포장 필름을 제공한다.  The present invention relates to a coextruded antimicrobial vacuum packaging film for packaging an article, wherein the packaging film is composed of seven layers, the outermost layer of the packaging film is formed of a polyamide resin, and the innermost layer in contact with the article is a polyethylene resin Wherein the innermost layer comprises selenium particles having a particle size of 5 to 10 nm or an antimicrobial organic monomer compound represented by the formula (1), an antimicrobial homopolymer represented by the formula (2) having a weight average molecular weight of 10, 000-1, And an antibacterial acrylic copolymer represented by the following formula (3) having a weight average molecular weight of 10, 000-1, 000, 000, and an organic antimicrobial agent selected from the group consisting of .
바람직하게는, 상기 항균 진공포장 필름은 포장필름의 외부에서 내부를 향하 여 폴리아미드 수지와 폴리에 틸렌 수지가 교대로 위 치되는 4개의 수지층 및 상기 각각의 수지층 사이에 형성된 접착 수지층을 포함한다 . 보다 바람직하게는 상기 폴 리아미드 수지는 나일론 6 또는 나일론 66일 수 있으며 , 상기 폴리에틸렌은 저밀도 폴리에 틸렌 (LDPE) 또는 선형 저밀도 폴리에 틸렌 (LLDPE)일 수 있다. 또한, 상기 접 착 수지층은 무수 말레인산 변형 VLDPE(Maleic anhydride modi f ied VLDPE)로 형성 된 것이 바람직하다.  Preferably, the antimicrobial vacuum packaging film has four resin layers alternately arranged from the outside to the inside of the packaging film, the polyamide resin and the polyethylene resin, and the adhesive resin layer formed between the respective resin layers . More preferably, the polyamide resin may be nylon 6 or nylon 66, and the polyethylene may be low density polyethylene (LDPE) or linear low density polyethylene (LLDPE). In addition, it is preferable that the adhesive resin layer is formed of maleic anhydride modified VLDPE.
상기 셀레늄 입자는 최내층 중량의 30ppm~40ppm의 함량으로 포함되는 것이 바람직하며, 또한, 상기 유기 항균제는 수지층 중량의 0.5-5중량 %의 함량으로 포함 된 것이 바람직하다 . 본 발명은 7층 구조의 항균 진공포장 필름 제조방법에 관한 것으로서 , 상기 포장필름은 7개의 압출기를 포함하는 공압출장치를 사용하여 압출기 내의 수지를 용융 공압출함으로써 제조되며, 상기 압출기 중 , 포장되는 물품과 접촉하는 포장필 름의 최내층을 형성하는 압출기로부터는 셀레늄 입자 또는 화학식 1로 표시되는 항 균성 유기 단량체 화합물, 10 , 000-1 ,000, 000의 중량평균분자량을 갖는 화학식 2로 표시되는 항균성 단일 중합체 및 10 ,000-1 ,000,000의 중량평균분자량을 갖는 화학 식 3으로 표시되는 항균성 아크릴계 공중합체로 이루어진 그룹으로부터 선택되는 적어도 하나의 유기 항균제를 포함하는 폴리에틸렌 매트릭스 수지가 용융 압출되 고 ᅳ 포장필름의 최외층을 형성하는 압출기로부터는 폴리아미드 수지가 용융 압출되는, 7층 구조의 항균 진공포장 필름 제조방법을 제공한다. The selenium particles are contained in an amount of 30 ppm to 40 ppm of the innermost layer weight The organic antimicrobial agent is preferably contained in an amount of 0.5-5% by weight of the weight of the resin layer. The present invention relates to a method for producing an antimicrobial vacuum packaging film having a seven-layer structure, wherein the packaging film is produced by melt co-extruding a resin in an extruder using a pneumatic actuator including seven extruders, The selenium particles or the antibacterial organic monomer compound represented by the formula (1), the antibacterial activity represented by the formula (2) having a weight average molecular weight of 10, 000-1, 000, 000, A polyethylene matrix resin comprising at least one organic antimicrobial selected from the group consisting of a homopolymer and an antibacterial acrylic copolymer of formula 3 having a weight average molecular weight of 10, 000-1, 000, 000 is melt-extruded, From the extruder forming the outermost layer of the film, a polyamide resin is melt-extruded, The present invention provides a method for producing an antibacterial vacuum packaging film.
상기 포장필름의 최내층을 형성하는 폴리에틸렌 매트릭스 수지는 , 폴리에 틸 렌 주제 수지 ; 및 셀레늄 입자 또는 유기 항균제가 함유된 폴리에틸렌 수지를 펠렛 화한 폴리에틸렌 마스터배치를 포함하는 것이 바람직하다.  The polyethylene matrix resin forming the innermost layer of the packaging film may be a polyethylenic main resin; And a polyethylene master batch in which a polyethylene resin containing selenium particles or an organic antimicrobial agent is pelletized.
보다 바람직하게는, 상기 폴리에틸렌 매트릭스 수지는 , 폴리에 틸렌 주제 수 지 100중량부 ; 및 상기 폴리에틸렌 마스터배치를 형성하는 폴리에 틸렌 수지 100중 량부에 대하여 , 셀레늄 입자를 100 내지 200ppm 포함하는 폴리에틸렌 마스터배치 25~45중량부 또는 유기 항균제 20—50중량부를 포함하는 폴리에 틸렌 마스터배치 3 내지 10중량부 포함할 수 있다. 한편, 상기 샐레늄 입자를 함유하는 폴리에틸렌 마스터배치는, 폴리에틸렌 마스터배치를 형성하는 폴리에틸렌 수지 100중량부에 대하여 셀레늄 입자 30-40ppm 을 스테아린산 17-35중량부, 물 30-60중량부 및 알코올 25-35중량부를 포함하는 용 액에 분산시킨 후, 상은에서 말레산 무수물을 함유하는 폴리에틸렌 수지와 흔합하 여 폴리에틸렌 마스터배치 형성용 폴리에틸렌 수지 조성물을 제조하는 단계; 상기 폴리에틸렌 수지 조성물을 가열하여 샐레늄 입자로 코팅된 폴리에틸렌수지를 제조 하는 단계; 및 상기 샐레늄 입자로 코팅된 폴리에틸렌 수지를 트윈스크류 압출기로 압출 및 펠렛화하여 샐레늄 입자를 함유하는 폴리에틸렌 마스터배치를 제조하는 단 계를 포함하는 방법에 의해 제조될 수 있으며, More preferably, the polyethylene matrix resin comprises 100 parts by weight of a polyethylene resin; And a polyethylene masterbatch comprising 25 to 45 parts by weight of a polyethylene masterbatch comprising 100 to 200 ppm of selenium particles or 20 to 50 parts by weight of an organic antimicrobial agent based on 100 parts by weight of the polyethylene resin forming the polyethylene masterbatch To 10 parts by weight. On the other hand, the polyethylene master batch containing the selenium particles comprises 30-40 parts by weight of selenium particles, 17-35 parts by weight of stearic acid, 30-60 parts by weight of water, and 25-40 parts by weight of alcohol 25-40 parts by weight, based on 100 parts by weight of the polyethylene resin forming the polyethylene master batch, And 35 parts by weight of a maleic anhydride, followed by preparing a polyethylene resin composition for forming a polyethylene master batch by coalescing with a polyethylene resin containing maleic anhydride in an upper silver salt; Heating the polyethylene resin composition to produce a polyethylene resin coated with the selenium particles; And extruding and pelleting the polyethylene resin coated with the selenium particles into a twin screw extruder to produce a polyethylene master batch containing the selenium particles,
상기 유기 항균제를 함유하는 폴리에틸렌 마스터배치는, 폴리에틸렌 마스터 배치를 형성하는 폴리에틸렌 수지 100중량부에 대하여 유기 항균제 20 내지 50중량 부를 흔합하여 폴리에틸렌 마스터배치 형성용 폴리에틸렌 수지 조성물을 제조하는 단계; 및 상기 유기 항균제를 포함하는 폴리에틸렌 수지 조성물을 트원스크류 압출 기로 압출 및 펠렛화하여 유기 항균제를 함유하는 폴리에틸렌 마스터배치를 제조하 는 단계를 포함하는 방법에 의해 제조될 수 있다.  Wherein the polyethylene masterbatch containing the organic antibacterial agent is prepared by mixing 20 to 50 parts by weight of an organic antimicrobial agent with respect to 100 parts by weight of a polyethylene resin forming a polyethylene masterbatch to prepare a polyethylene resin composition for forming a polyethylene masterbatch; And extruding and pelletizing the polyethylene resin composition comprising the organic antimicrobial agent into a twin screw extruder to produce a polyethylene master batch containing an organic antimicrobial agent.
상기 7개의 압출기는 상기 7층 구조의 항균 진공포장 필름이 필름의 외부에 서 내부를 향하여 폴리아미드 수지와 폴리에틸렌 수지로 된 4개의 수지층이 교대로 형성되고, 상기 각각의 수지층 사이에 접착 수지층이 형성되도록 각각의 수지를 공 압출하는 것이다.  In the seven extruders, the antimicrobial vacuum packaging film of the seven-layer structure is formed by alternately forming four resin layers of a polyamide resin and a polyethylene resin from the outside to the inside of the film, And co-extruding each resin to form a stratum.
상기 폴리아미드 수지는 나일론 6 또는 나일론 66인 것이 바람직하며, 상기 폴리에틸렌 수지는 저밀도 폴리에틸렌 (LDPE) 또는 선형 저밀도 폴리에틸렌 (LLDPE) 인 것이 바람직하다. 나아가, 상기 접 착 수지층은 무수 말레인산 변형The polyamide resin is preferably nylon 6 or nylon 66, and the polyethylene resin may be a low density polyethylene (LDPE) or a linear low density polyethylene (LLDPE) . Further, the adhesion resin layer may be a maleic anhydride modification
VLDPECMaleic anhydr ide modi f ied VLDPE)로 형성된 것이 바람직하다. 【발명의 효과】 VLDPECMaleic anhydride modi fi ed VLDPE). 【Effects of the Invention】
본 발명에 의해 제공되는 항균성 진공포장 필름은 기존의 낮은 산소 및 수증 기 투과도를 유지하면서 항균성 이 추가됨으로써 부패하거나 변질되기 쉬운 피포장 물품을 보다 장기간 보존할 수 있다. 이로 인해, 포장필름의 전체적 인 사용량을 줄 일 수 있어 화석 연료의 사용을 줄일 수 있으며, 종국적으로는 탄소 배출량 저감을 도모할 수 있다. 나아가, 본 발명은 은 이외의 저 렴 한 항균제를 사용함으로써 인체에 무해하 고, 제품 생산의 원가를 절감하면서도 고품질의 진공포장 필름을 얻을 수 있다.  The antibacterial vacuum packaging film provided by the present invention can be preserved for a longer period of time by adding antimicrobial properties while maintaining the low permeability of oxygen and water vapor. This can reduce the overall use of the packaging film, thereby reducing the use of fossil fuels and, ultimately, reducing carbon emissions. Further, the present invention can obtain a high-quality vacuum packaging film by using a low-cost antimicrobial agent other than silver, while being harmless to the human body and reducing the cost of product production.
【도면의 간단한 설명】 BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 본 발명에 의해 제공되는 7층 구조의 항균성 진공포장 필름의 층 구 조 및 구성물질을 개략적으로 나타낸 도면이다.  BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a layer structure and constituent materials of a seven-layered antimicrobial vacuum packaging film provided by the present invention. FIG.
도 2는 도 1의 필름을 제조하는 공압출 장치를 개략적으로 나타낸 도면이다 . 도 3 내지 10은 본 발명의 진공포장 필름에 있어서 포장되는 물품과 접촉하 는 실시 예 1에 따른 최내층에서의 샐레늄 함량에 따른 나노 사이즈의 샐레늄 입자 의 분포도를 FE-SEM으로 측정한 사진이다. 도 3, 5, 7 및 9는 진공 포장 필름의 최 내층의 표면 사진이고, 도 4, 6 , 8 및 10은 최내층에서의 셀레늄 입자의 위 치를 표 시 한 사진이다. Fig. 2 is a schematic view of a co-extrusion apparatus for producing the film of Fig. FIGS. 3 to 10 are photographs showing the distribution of nano-sized salen particles according to the content of selenium in the innermost layer according to Example 1 in contact with an article to be packaged in the vacuum packaging film of the present invention measured by FE-SEM to be. Figs. 3, 5, 7 and 9 are photographs of the surface of the innermost layer of the vacuum packaging film, and Figs. 4, 6, 8 and 10 show the positions of selenium particles in the innermost layer It is a photograph of the time.
도 11 및 도 12는 샐레늄 입자를 함유하지 않는 진공포장 필름과 대비하여 본 발명의 항균 활성을 나타내는 사진으로서, 30ppm의 셀레늄 입자를 함유하는 항 균 진공포장필름에 대한 JIS Z 28이에 따라 실시한 항균 시험결과 (b)를 나타내며, 도 11은 황색포도상구균에 대한 항균 시험결과를 나타내며, 도 12는 대장균에 대한 항균 시험결과를 나타낸다.  Figs. 11 and 12 are photographs showing the antimicrobial activity of the present invention as compared with the vacuum packaging film containing no selenium particles. The antibacterial activity of the antibacterial activity of the anti- Fig. 11 shows the result of the antibacterial test on Staphylococcus aureus, and Fig. 12 shows the results of the antibacterial test on E. coli.
도 13은 항균제를 함유하는 항균진공포장필름에 대하여 ASTM G22 modi f ied Method에 따라 실시 한 항균 시험결과를 나타내는 사진이다.  FIG. 13 is a photograph showing the antibacterial test result of an antibacterial vacuum packaging film containing an antibacterial agent according to ASTM G22 modified method. FIG.
【발명을 실시하기 위 한 구체적 인 내용】 DETAILED DESCRIPTION OF THE INVENTION
이하, 본 발명을 구체적으로 설명 한다 . 본 발명의 진공포장 필름은 7개의 층으로 구성되는 것이 바람직하다. 각각의 층을 구성하는 성분으로는 반드시 이에 한정하는 것은 아니지만 , 폴리에 틸렌 또는 폴리아미드로 구성되는 것이 바람직하다. 상기 폴리에 틸렌 수지는 수분 차단특성 이 우수하여 포장 필름의 용기 내로 수분의 침투를 방지하며, 폴리아미드 수지는 우수 한 산소 차단성을 가져, 포장 용기 내로 산소의 유입을 방지할 수 있으며 , 이로 인 해 산소 민감성 제품을 장기간 보관할 수 있게 한다. 포장 필름에 있어세 각 층의 순서에 대하여는 특별히 한정하지 않으나, 진 공포장 필름의 최외층은 폴리아미드 수지로 형성되고, 포장되는 물품과 접촉하는 최내층은 폴리에틸렌 수지를 주제로 하여 형성되는 것이 바람직하다. 폴리아미드 수지는 산소 차단특성이 우수하므로 , 이와 같은 폴리아미드 수지 를 사용하여 최외층을 형성함으로써 포장 필름으로 형성된 용기 내부로 산소의 침 투를 차단할 수 있다. 이러한 폴리아미드 수지는 상기와 같은 산소차단특성을 갖는 것이라면 특별히 한정하지 않으며, 나일론 6 또는 나일론 6,6를 사용하는 것이 보 다 바람직하다. 한편, 폴리에틸렌 수지는 상기한 바와 같은 수분 차단성이 우수하여 수분이 포장용기 내부로 침투하는 것을 방지할 수 있음은 물론, 열밀봉 특성이 우수하여, 포장재를 히트 실링 (heat sealing)하여 포장용기를 밀봉하는데 바람직하다. 따라서, 포장재의 최내부는 열 접착성이 우수한 폴리에틸렌 수지로 형성되는 것이 바람직하 다. 상기 폴리에틸렌 수지로는 특별히 한정하지 않으나, 저밀도 폴리에틸렌 (LDPE) 또는 선형 저밀도 폴리에틸렌 (LLDPE)를 사용할 수 있으며, 상기 최내층으로 사용되는 폴리에틸렌 수지는 열 접착성을 위해 LLDPE를 사용하는 것이 가장 바람직 하다. 본 발명의 진공 포장 필름을 형성하는 층 순서는 상기한 바와 같이, 최내층 이 폴리에틸렌 수지로 이루어지고, 최외층이 폴리에틸렌 수지로 이루어지는 것이라 면 중간층은 특별히 한정하지 않으나, 최내층으로부터 최외층을 향하여 폴리에 틸렌 층 /'폴리아미드 층 /폴리에 틸렌 층 /폴리아미드 층과 같이 폴리아미드 수지층이 교대 로 형성되는 것이 가장 바람직하다. 이와 같이 형성 되는 것이 외부로부터의 수분 및 산소를 효과적으로 차단하는 데 보다 효과적 이다 . 또한, 물품의 포장 중에 포장재 내부에 미 리 산소가 포함될 수 있으며 , 이와 같은 산소는 포장된 물품의 산화를 유발하여 물품의 변질을 일으 킬 수 있는바, 제거되는 것이 바람직하다. 따라서, 필요에 따라서는 이와 같은 산 소를 제거하기 위해 산소 차단성 이 우수한 폴리아미드 수지층에 산소 포착능을 부 여할 수도 있는바 , 최내층의 인접하는 층에는 폴리아미드를 주제로 하는 수지층이 형성되는 것이 바람직하다 . 이와 같은 산소 포착능을 갖는 폴리아미드 수지는 특별 히 한정하지 않으며, 당해 기술분야에서 알려진 것올 적용할 수 있다. 본 발명에 있어서 , 상기 진공포장 필름의 상기 최내층을 형성하는 폴리에틸 렌 수지 층에는 항균활성을 부여하기 위해 항균제를 포함할 수 있다 . 본 발명에 있 어서 적합한 항균제로서는 나노 미터 크기의 샐레늄 입자를 들 수 있다. 상기 샐레 늄 입자는 나노미터 사이즈를 갖는 것이 바람직하며 , 구체적으로는 10-100nm의 입 자사이즈를 갖는 것이 바람직하다 . lOnm 미만인 경우에는 셀레늄 입자 가격 이 높아 서 최종 제품이 경 제성 이 떨어지며, 수지 조성물 내에서 입자의 균일한 분산이 어 려워 입자간의 엉 김 현상을 초래할 우려가 있으며 , lOOnm를 초과하는 경우에는 필 름의 헤이즈 (haze)가 증가하여 제품으로서의 가치를 상실하므로 상기 범위 의 입자 사이즈를 갖는 것이 바람직하다 . 한편, 상기 셀레늄 입자는 무기물이므로 , 폴리에 틸렌 수지 내에서의 균일한 분산을 위해 , 셀레늄 입자는 스테아린산으로 처 리된 것 이 바람직하다 . Hereinafter, the present invention will be described in detail. The vacuum packaging film of the present invention is preferably composed of seven layers. The component constituting each layer is not necessarily limited to, but is preferably composed of poly (ethylene terephthalate) or polyamide. The polyethylenic resin is excellent in moisture barrier property to prevent the permeation of moisture into the container of the packaging film, and the polyamide resin has excellent oxygen barrier property, thereby preventing the inflow of oxygen into the packaging container. Allows long-term storage of oxygen-sensitive products. The order of the triple layers in the packaging film is not particularly limited, but the outermost layer of the temporary packaging film is formed of a polyamide resin and is in contact with the article to be packaged It is preferable that the innermost layer is formed on the basis of a polyethylene resin. Since the polyamide resin has excellent oxygen barrier properties, it is possible to block the penetration of oxygen into the container formed of the packaging film by forming the outermost layer using such a polyamide resin. Such a polyamide resin is not particularly limited as long as it has the above-mentioned oxygen barrier property, and it is more preferable to use nylon 6 or nylon 6,6. On the other hand, the polyethylene resin is excellent in the moisture barrier property as described above, so that moisture can be prevented from penetrating into the inside of the packaging container, and the heat sealing property of the polyethylene resin is excellent. It is preferable for sealing. Therefore, it is preferable that the innermost portion of the packaging material is formed of a polyethylene resin having excellent thermal adhesiveness. The polyethylene resin is not particularly limited, but a low density polyethylene (LDPE) or a linear low density polyethylene (LLDPE) can be used, and in the polyethylene resin used as the innermost layer, LLDPE is most preferably used for thermal adhesiveness. As described above, the order of forming the vacuum packaging film of the present invention is such that the innermost layer is made of a polyethylene resin and the outermost layer is made of a polyethylene resin If the intermediate layer is not particularly limited, it is most preferred that the polyamide resin, such as ethylene layer / polyamide layer toward the outermost layer to the poly-ethylene layer / "polyamide layer / polyester from the innermost layer to be formed alternately. What is formed in this manner is more effective in effectively blocking moisture and oxygen from the outside. In addition, during the packaging of the article, micro-oxygen may be contained in the inside of the package, and such oxygen may cause oxidation of the article to be packaged, thereby causing deterioration of the article. Therefore, if necessary, oxygen scavenging ability may be imparted to the polyamide resin layer having excellent oxygen barrier properties in order to remove such oxygen, so that a resin layer mainly composed of polyamide is formed on the adjacent layer of the innermost layer . The polyamide resin having such an oxygen capturing ability is not particularly limited, and any of those known in the art can be applied. In the present invention, the polypropylene resin layer forming the innermost layer of the vacuum packaging film may contain an antimicrobial agent for imparting an antimicrobial activity. Suitable antimicrobial agents in the present invention include nanometric sized salernium particles. The above-mentioned salernium particles preferably have a nanometer size, and more preferably have a particle size of 10-100 nm. If the particle size is less than 10 nm, the selenium particles are expensive and the final product is poor in hardness, and uniform dispersion of the particles in the resin composition may be difficult. As the haze increases and loses its value as a product, Size. On the other hand, since the selenium particles are an inorganic substance, it is preferable that the selenium particles are treated with stearic acid for uniform dispersion in the polyethylene resin.
한편 , 본 발명의 항균제로는 다음의 화학식 1의 항균성 유기 단량체 화합물, 10, 000-1 ,000, 000의 중량평균분자량을 갖는 화학식 2의 항균성 단일 중합체 또는 10, 000-1, 000, 000의 중량평균분자량을 갖는 항균성 아크릴계 공중합체와 같은 유기 항균제를 마스터배치화하여 흔합 사용할 수 있다. The antimicrobial agent of the present invention includes the following antimicrobial organic monomer compounds of formula (1), antimicrobial homopolymers of formula (2) having a weight average molecular weight of 10, 000-1, 000, 000, An organic antimicrobial agent such as an antibacterial acrylic copolymer having a weight average molecular weight may be masterbatch and used interchangeably.
【화학식 1] (1)
Figure imgf000013_0001
Figure imgf000013_0001
상기 화학식 1에서, R은 중합 가능한 작용기 및 광경화형 반응성 작용기를 포함하는 내지 C150의 포화 또는 불포화 탄화수소이고 , ¾ 및 ¾는 각각 독립적으 로 또는 동시에 수소 , 할로겐원소, 아민 또는 (广(:20의 알킬기 이고, ¾ 및 R4는 각각 독립적으로 또는 동시에 수소, 히드록시기 , C1~C20의 알콕사이드, 할로겐원소 또는 ~(:20의 알킬기 이고, ¾는 수소, Cr o의 알킬, 씨클로프로필 또는 C广 C20의 방향족 탄화수소이며, ¾는 수소 , 나트륨 , 칼륨 또는 중합 가능한 작용기를 포함하거나 또 는 포함하지 않는 CrC150의 알킬기이고, ¾, R9 및 R10은 각각 독립적으로 또는 동시 에 탄소 또는 질소이며, Ru은 수소, 1차, 2차 또는 3차 아민, 할로겐원소 또는 (^-(:20의 알킬기이다. In Formula 1, R is a polymerization and a functional group and a light path to a saturated or unsaturated hydrocarbon of C 150 containing the interactive reactive functional group, ¾ and ¾ are each independently with or simultaneously hydrogen, a halogen atom, an amine or (广(: 20 and the alkyl group, ¾ and R4 are each independently or simultaneously hydrogen, a hydroxy group, C1 ~ C 20 alkoxide, a halogen atom or - (a: an alkyl group of 20, ¾ is hydrogen, Cr o alkyl, cyclo propyl, or C广C 20 aromatic hydrocarbons, and ¾ contains hydrogen, sodium, potassium or a polymerizable functional group, or Is that group of CrC 150 not included, ¾, R 9 and R 10 is a carbon or nitrogen, each independently or simultaneously, R u is hydrogen, primary, secondary or tertiary amine, a halogen atom or (^ - (: 20 alkyl group.
【화학식 2】  (2)
Figure imgf000014_0001
상기 화학식 2에서, R 및 Re—Ru은 상기 기재의 화학식 1에서 정의한 바와 같으며, X는 상기 분자량을 만족하는 양의 정수이다.
Figure imgf000014_0001
In Formula 2, R and Re-Ru are as defined in Formula 1, and X is a positive integer satisfying the molecular weight.
【화학식 3]  (3)
Figure imgf000014_0002
HCH^X
Figure imgf000014_0002
HCH ^ X
R및 R , Re-Ru은 상기 화학식 1에서 정의한 바와 같다. 상기 항균제로서 사용되는 샐레늄 입자 또는 화학식 1로 표시되는 항균성 유 기 단량체 화합물, 화학식 2로 표시되는 항균성 단일 중합체 또는 화학식 3으로 표 시되는 항균성 아크릴계 공중합체는 항균성을 보유함은 물론, 은과 달리 자체 독성 이 없으며, 가격이 은에 비해 가격이 1/5정도로 매우 저렴하기 때문에, 본 발명에 서 적용하기에 매우 적합하다. 본 발명에 있어서, 최내층에 포함되는 셀레늄 입자는 최내층인 폴리에틸렌 수지층 중량의 30-40ppm의 함량으로 포함되는 것이 바람직하며, 그리고ᅳ 상기 유기 항균제는 폴리에틸렌 수지층 중량의 0.5-5중량 ¾¾의 함량으로 포함되는 것이 바람직 하다. 상기 항균제의 함량이 각각의 하한보다 적으면 층분한 항균 활성을 얻을 수 없으며, 상한을 초과하면 샐레늄 입자를 사용할 경우 필름의 해이즈 (haze)가 증가 하여 불투명해지고, 또 압출기에서 원료가 공급 (feeding)되지 않는 문제가 있으며, 상기 항균 수지의 경우에는 상기 상한 범위에서 층분한 항균 활성을 얻을 수 있으 므로, 추가적 사용은 항균제 사용에 따른 비용 증대만 초래할 뿐, 항균 효과의 추 가적 상승 효과가 얻어지지 않는다. 따라서, 상기 범위의 함량으로 포함하는 것이 바람직하다. 본 발명의 항균 진공포장 필름은 7층 구조를 갖는다. 상기한 바와 같이, 본 발명의 항균 진공포장 필름은 폴리아미드 수지층과 폴리에틸렌 수지층이 교대로 위 치하며, 각 수지층 사이에는 접착층이 위치한다. 상기 접착층은 성질이 다른 두 수 지층을 견고하게 접착하기 위한 것으로서, 폴리아미드 수지와 폴리에틸렌 수지를 접착할 수 있는 것이라면 특별히 한정하지 않으나, 바람직하게는 예를 들어 무수 말레인산 변형 초저밀도 폴리에 틸렌 (Maleic anhydride modi f ied VLDPE)를 들 수 있 으며, 상기 무수 말레인산 변형 초저밀도 폴리에틸렌은 에 틸렌-부틸렌 공중합체 (ethylene-butylene copolymer) 등으로부터 얻을 수 있다. 이와 같이 함으로써 , 본 발명의 항균 진공포장 필름은 4개의 수지층 사이에 접 착층이 포함된 7층 구조로 이루어진 것이 얻어진다. 본 발명의 7층 구조의 항균 진공포장 필름을 일 예로서, 최외층에서 최내층의 순서로 기 재하면 도 1에 나타낸 바와 같이, 폴리아미드 층 /접착제 층 /폴리에틸렌 층 /접 착제 층 /폴리아미드 층 /접 착 제층 /항균제 함유 폴리에 틸렌 층과 같은 7층 구조를 가질 수 있다. 이하, 본 발명의 항균 진공포장 필름의 제조방법에 대해 설명 한다. 본 발명의 7층 구조를 갖는 항균 진공포장 필름은 공압출 방식에 의해 제조 된다. 종래에는 라미 네이션 방식에 의해 제조되었으며, 통상 2층 내지 3층 구조를 갖는 것이었으나, 본 발명과 같이 공압출 방식을 적용함으로써 모든 층을 동시에 압출하여 제조할 수 있어 작업을 단순화할 수 있다. 기존의 라미 네이션 방식으로 7 층 필름을 만들려면 미리 제조된 필름 를을 풀고 접착제를 도포하거나 열 접 착 수 지층으로 압출코팅을 한 후 다시 감는 작업을 복수 회 반복하여야 하였다 . 이와 같 은 복잡한 공정을 수행함으로써 작업 재료 및 시간의 손실이 크다. 그러나 공압출 공법은 한번에 수행할 수 있으므로 작업을 단순화할 수 있고, 또한 경제성을 향상 시 킬 수 있다. 도 2에 본 발명의 항균 진공포장필름을 제조하는데 적합한 압출장치를 개략 적으로 도시하였다. 이 러 한 도면을 들어 공압출과 블로우 몰딩 (blow molding)에 의 한 본 발명의 7층 필름을 제조하는 방법을 개략적으로 설명한다. 도 2에는 구체적으로 나타내지 않았으나, 압출기 (extruder ) 7대를 다이에 연 결하고, 상기 압출기로부터 각 층에 필요한 용융 고분자 수지를 압출기 내의 스크 류에 의해 동시에 압출하여 어 댑터 파이프 (adapter pipe)를 거 쳐 다이에 연속 유입 하고, 에어링 (air r ing)으로 아래 쪽에서 위쪽으로 풍선처 럼 공기로 부풀림으로써 필름을 성 형할 수 있다. 상기 공압출기 중 최내층을 형성하는 압출기에는 항균성을 부여하기 위해 샐 레늄 입자 또는 화학식 1의 항균성 유기 단량체 화합물, 화학식 2의 항균성 단일 중합체 또는 화학식 3의 항균성 아크릴계 공중합체 고분자 물질을 포함한다. 상기 항균제 중, 무기물인 샐레늄 입자는 폴리에 틸렌 수지와 미 리 흔합하여 마스터 배치를 형성 한 후, 얻어진 마스터배치를 주제인 폴리 에틸렌 수지와 흔합하 고 상기 마스터배치를 폴리에틸렌 수지에 균일하게 분산시 켜 압출함으로써 최내층 을 형성할 수 있다. 이와 같이 샐레늄과 폴리에틸렌의 마스터배치를 만든 후에 폴리에틸렌 수지 와 흔합하여 압출하는 것 이 나노 사이즈의 셀레늄 입자를 LLDPE에 균일하게 분포시 킬 수 있어 바람직하며, 공압출기에서 셀레늄 입자를 LLDPE와 바로 흔합하는 경우 에는 폴리에 틸렌 수지 내에서 나노 사이즈의 샐레늄 입자가 뭉쳐 고르게 분산되지 않으므로 바람직하지 않다 . 상기 샐레늄 입자를 포함하는 마스터배치는, 상온에서 스테아린산, 물 및 알 코올을 포함하는 용액에 셀레늄 입자를 흔합하고 , 이에 의해 얻어진 흔합물을 폴리 에틸렌과 흔합한 후, 70-100°C로 가열하여 물과 알코을을 제거한다 . 이와 같이 함 으로써 스테아린산으로 처 리된 샐레늄 입자를 얻을 수 있고 , 그 얻어진 셀레늄 입 자가 폴리에 틸렌 수지 내에서 균일하게 분산되어 폴리에틸렌 수지에 셀레늄 입자가 부착될 수 있다. 이에 의해 얻어진 샐레늄 입자가 부착된 폴리에틸렌 수지를 트원 스크류 압 출기에서 압출하고, 펠렛화함으로써 마스터배치를 제조할 수 있다. 이와 같이 하여 얻어진 마스터 배치를 진공포장 필름의 최내층을 형성하는 폴리에틸렌 수지와 흔합 하여 공압출함으로써 최내층을 형성할 수 있다. 이때, 상기 스테아린산, 물 및 알코을은 폴리에틸렌 수지 100중량부에 대하 여 스테아린산 15-25중량부, 물 30-60중량부 및 알코올 25-35중량부를 포함하며, 상기 셀레늄 입자는 상기 용액 100중량부에 대하여 100-200ppm 포함할 수 있다. 샐레늄 입자를 상기 범위 내로 포함하는 경우에 최종적으로 얻어지는 필름 내에 30-40ppm으로 존재할 수 있는 함량이다. 따라서, 셀레늄 함량이 lOOppm 미만 인 경우에는 최종 필름에 층분한 항균 활성을 제공할 수 없으며, 200ppm을 초과하 는 경우에는 이로부터 얻어지는 마스터배치에 다량의 샐레늄 입자가 포함되 게 되나, 이로 인해 얻어지는 항균 활성효과의 증대는 크지 않은 대신 필름의 헤이즈 (haze) 가 크게 증가하고, 또한 압출기에서 압출 작업시 원료 투입 (feeding)이 잘 되지 않 는 문제가 발생하므로 상기 범위 내로 포함하는 것이 보다 바람직하다. 또한, 스테아린산은 셀레늄 입자를 폴리에 틸렌 수지에 결합시키 기 위 한 매개 체로서, 폴리에틸렌 수지 100중량부에 대하여 15-25중량부의 함량으로 포함하는 것 이 적합하다. 한편, 물 및 알코올은 용매로서의 역할을 수행하는 것으로서, 그 함량을 특 별히 한정하는 것은 아니나, 상기 범위를 벗어나 하한 미만의 함량으로 포함하는 경우에는 샐레늄 입자를 폴리에틸렌 수지에 균일하게 코팅하는데 문제가 있어 바람 직하지 않으며, 상한올 초과하는 경우에는 용액이 너무 묽어 이들을 제거하고, 이 로부터 펠렛화하는데 부담을 주게 되는바, 상기 범위로 한정하는 것이 바람직하다. 한편 , 상기 폴리에틸렌 수지는 본 발명의 7층 항균 진공 포장 필름의 최내층 을 형성하는 주제수지와 동일한 것을 사용할 수 있으며, 바람직하게는 LLDPE를 사 용할 수 있다. 나아가 , 상기 폴리에 틸렌 수지는 말레인산 무수물 0. 1-1중량 ¾를 포 함하는 폴리에틸렌인 것이 보다 바람직하다. 극성기가 있는 셀레늄 입자가 비극성 인 폴리에 틸렌에 친화성을 갖도록 말레인산 무수물을 상용화제로 사용함으로써 셀 레늄 입자가 폴리에틸렌에 균일하게 코팅 이 되도록 한다. 상기와 같은 성분으로 된 폴리에 틸렌 수지 조성물을 가열함으로써 물 및 알 코올을 증발 제거함으로써 폴리에 틸렌 수지에 셀레늄 입자를 부착할 수 있다 . 이 때 가열 온도는 특별히 한정하지 않으며, 물 및 알코올올 제거할 수 있는 온도라면 적 절하게 선택할 수 있다. 상기 용매인 물 및 알코올이 제거된 폴리에 틸렌 수지 조성물은 일반적으로 마스터배치를 제조하는데 사용되는 트원 스크류 압출기 (twin screw extruder)를 사 용하여 압출하여 펠렛화함으로써 마스터배치를 제조할 수 있다. 본 발명에 의해 얻 어진 마스터배치는 폴리에틸렌 수지 100중량부에 대하여 셀레늄이 100-200ppm을 포 함되어 있는 셀레늄 입자-폴리에 틸렌의 마스터배치 이다. 상기와 같이 제조된 샐레늄 입자 -폴리에 틸렌 마스터배치를 주제수지 인 폴리 에틸렌 수지와 흔합하고 압출기에 투입하여 T-다이로 용융 압출함으로써, 본 발명 의 7층 항균 진공포장 필름의 최내층을 형성할 수 있다. 상기 최내층을 제조함에 있어서, 상기 셀레늄 입자가 부착된 폴리에틸렌 마 스터 배치는 주제수지로 사용되는 폴리에틸렌 수지 100중량부에 대하여 25-45중량부 흔합하는 것이 바람직하다 . 이와 같이 흔합하는 경우에 본 발명의 항균 진공포장 필름에 충분한 항균 활성을 부여할 수 있다. 보다 바람직하게는 상기와 같이 제조된 셀레늄 입자 _폴리에틸렌 마스터배치 를 주제수지 인 폴리에틸렌 수지와 흔합하여 7층 구조의 항균 진공포장 필름을 제조 하는 공압출 장치 의 최내층을 형성하는 압출기에 투입하고 , 나아가, 7층 구조를 갖 는 필름의 각 층을 형성하는 적합한 수지를 각각의 압출기에 투입 한 후, 이들을 동 시에 T-다이로 용융 압출함으로써, 도 1에 나타낸 바와 같은 본 발명의 7층 구조의 항균 진공포장 필름을 제조할 수 있다. 구체적으로는 도 1에 나타낸 바와 같이 산소 차단성을 부여하기 위해 필름의 외부로부터 최외층과 5번째 층에는 나일론 6 또는 나일론 6 ,6의 폴리아미드 수지층 으로 구성하고, 3번째 층 및 식품과 접촉하는 최내층은 수증기 차단성과 히트 실링 성을 부여하기 위하여 폴리에 틸렌 또는 선형폴리에 틸렌의 폴리에틸렌 수지층으로 구성하고 , 그리고 각 수지층 사이 인 2, 4 및 6번째 층에는 폴리아미드 수지층과 폴 리에틸렌 수지층을 접 착하기 위하여 고분자 접착층 (t ie layer)을 삽입함으로써 산 소 및 수증기 차단성 이 우수하고, 나아가, 항균활성을 갖는 진공필름을 제조할 수 있다. 한편, 항균제로서 , 상기 셀레늄 입자 이외에, 상기 식 ( 1)로 표시되는 항균 성 유기 단량체 화합물, 상기 식 (2)로 표시되는 항균성 단일 중합체 또는 상기 식 (3)으로 표시되는 항균성 아크릴계 공중합체로 이루어진 군으로부터 선택되는 적어 도 하나의 유기 항균제를 사용할 수 있다. 이러한 유기 항균제는, 상기 샐레늄 입 자를 사용하는 경우와 동일하게, 본 발명의 7층 구조의 항균 진공포장 필름의 최내 층을 형성하는 주제수지인 폴리에틸렌 수지와흔합하여 마스터배치를 제조한다. 상기 마스터배치의 제조는 상기 .유기 항균제와 폴리에틸렌 수지의 흔합물을 균일하게 분산시키고, 이를 트원 스크류 압출기에서 압출함으로써 펠렛화하여 마스 터배치를 얻을 수 있다. 이때, 상기 유기 항균제는 폴리에틸렌 수지 100중량부에 대하여 20 내지 50중량부의 함량으로 포함하는 것이 바람직하다. 항균제 함량을 이 와 같이 함으로써, 최종 폴리에틸렌 수지 층에 항균제를 균일하게 분포시킬 수 있 어 층분한 항균 활성을 얻을 수 있다. 따라서, 상기 유기 항균제 함량이 20중량부 미만이면 층분한 항균 활성을 얻을 수 없으며, 50중량부를 초과하는 경우에는 추가 적인 항균 활성이 얻어지지 않는바, 상기 범위 내로 포함하는 것이 바람직하다. 상기와 같이 제조된 유기 항균제 -폴리에틸렌 마스터배치를 주제수지인 폴리 에틸렌 수지와 흔합하고 압출기에 투입하여 T-다이로 용융 압출함으로써ᅳ 본 발명 의 7층 항균 진공포장 필름의 최내층을 형성할 수 있다. 상기 최내층을 제조함에 있어서, 상기 유기 항균제를 포함하는 폴리에틸렌 마스터배치는 폴리에틸렌 수지 100중량부에 대하여 3 내지 10중량부로 포함하는 것 이 바람직하다. 이 범위 내에서 흔합하는 경우에 본 발명의 항균 진공포장 필름의 최내층에 층분한 항균 활성을 제공할 수 있다. 본 발명의 항균 진공포장필름에 의해 식품보존을 위한 포장필름의 사용량 및 사용한 포장필름의 소각처리에 의해 발생하는 이산화탄소 양을 크게 절감할 수 있 는 환경친화적인 항균활성이 우수한 진공포장 필름을 얻을 수 있으며, 인체에 유해 가능성이 있는 은 나노 입자 대신에 샐레늄 또는 아크릴계 공중합체를 사용하여 항 균 진공포장 필름을 제조할 수 있어, 항균 성분에 의한 인체 유해성 문제를 해소할 수 있다. 이하, 본 발명을 실시예를 들어, 더욱 구체적으로 설명한다. 그러나, 이하의 실시예는 본 발명의 일 예를 나타내는 것에 불과하며, 본 발명을 한정하고자 하는 것이 아니다. 실시예 R and R, and Re-Ru are the same as defined in the above formula (1). The salen particle used as the antimicrobial agent or the antimicrobial oil represented by the formula (1) The monomeric monomer compound, the antimicrobial homopolymer represented by the formula (2) or the antibacterial acrylic copolymer represented by the formula (3) has antimicrobial properties and is not self-toxic unlike silver, and the price is about 1/5 Because it is very inexpensive, it is very suitable for application in the present invention. In the present invention, the selenium particles contained in the innermost layer are preferably contained in an amount of 30 to 40 ppm of the weight of the innermost layer of the polyethylene resin layer, and the organic antibacterial agent is contained in an amount of 0.5 to 5 wt. It is preferable that it is included in the content. When the content of the antimicrobial agent is less than the lower limit, the antimicrobial activity can not be obtained. When the upper limit is exceeded, the haze of the film increases and the raw material is supplied to the extruder the antimicrobial activity of the antimicrobial resin can be obtained at the upper limit of the range. Therefore, the additional use of the antimicrobial resin only increases the cost of using the antimicrobial agent, It does not. Therefore, it is preferable that the content is in the above range. The antimicrobial vacuum packaging film of the present invention has a seven-layer structure. As described above, in the antibacterial vacuum packaging film of the present invention, the polyamide resin layer and the polyethylene resin layer are alternately located, and the adhesive layer is located between the resin layers. The adhesive layer is for firmly adhering two resin layers having different properties and is not particularly limited as long as it can adhere the polyamide resin and the polyethylene resin. Maleic anhydride modified polyene (VLDPE), and the maleic anhydride modified ultralow density polyethylene can be obtained from an ethylene-butylene copolymer or the like. By doing so, the antimicrobial vacuum packaging film of the present invention has a seven-layer structure including an adhesive layer between four resin layers. As shown in Fig. 1, the antimicrobial vacuum packaging film of the present invention has an antimicrobial vacuum packaging film in the order of the outermost layer to the innermost layer. As shown in Fig. 1, the polyamide layer / adhesive layer / polyethylene layer / Layer / adhesive layer / polyethylene layer containing antimicrobial agent. Hereinafter, a method for producing the antibacterial vacuum packaging film of the present invention will be described. The antimicrobial vacuum packaging film having the seven-layer structure of the present invention is produced by coextrusion. Conventionally, it is manufactured by a lamination method, and usually has a two- or three-layer structure. However, by applying the co-extrusion method as in the present invention, all layers can be simultaneously extruded and manufactured. In order to produce a 7-layer film using a conventional lamination method, a pre-manufactured film was unwound, an adhesive was applied, or extrusion coating was applied to a heat-bonding resin layer and then rewinding was repeated several times. By performing such a complicated process, there is a large loss of work material and time. However, since the coextrusion method can be carried out at a time, the work can be simplified and the economical efficiency can be improved. FIG. 2 schematically shows an extrusion apparatus suitable for producing the antibacterial vacuum packaging film of the present invention. A method of producing the seven-layer film of the present invention by co-extrusion and blow molding will be schematically described. Although not shown in detail in FIG. 2, seven extruders are connected to a die, and the molten polymer resin necessary for each layer is simultaneously extruded from the extruder by screws in the extruder, The film can be formed by continuous inflow into the die and airing, as in the case of air bubbles, from bottom to top. The extruder forming the innermost layer of the co-extruder may contain salen particles or an antimicrobial organic monomer compound of formula (1), an antimicrobial homopolymer of formula (2), or an antimicrobial acrylic copolymer high molecular compound of formula (3). Among the antimicrobial agents, the inorganic particles, salenium particles, are preliminarily mixed with polyethylenic resin to form a master batch, then the obtained master batch is mixed with a polyethylene resin as a main component, and the master batch is uniformly dispersed in a polyethylene resin And the innermost layer can be formed by on-extrusion. Thus, after making the master batch of the selenium and polyethylene, the polyethylene resin , It is preferable to extrude nano-sized selenium particles uniformly in LLDPE. In case of directly mixing selenium particles with LLDPE in a co-extruder, nano-sized selenium particles Is not uniformly distributed. The masterbatch comprising the selenium particles can be prepared by mixing selenium particles in a solution containing stearic acid, water and alcohols at room temperature, simulating the resulting mixture with polyethylene, heating at 70-100 ° C To remove water and alcohol. By doing so, the selenium particles treated with stearic acid can be obtained, and the obtained selenium particles can be uniformly dispersed in the polyethylene resin, so that the selenium particles can be attached to the polyethylene resin. The master batch can be produced by extruding the polyethylene resin with the selenium particles thus obtained in a twin screw extruder and pelletizing the same. The master batch thus obtained is co-extruded with the polyethylene resin forming the innermost layer of the vacuum packaging film and co-extruded, whereby the innermost layer can be formed. The stearic acid, water and alcohols are added to 100 parts by weight of the polyethylene resin, 15-25 parts by weight of stearic acid, 30-60 parts by weight of water and 25-35 parts by weight of alcohol. The selenium particles are added to 100 parts by weight of the solution Can contain about 100-200ppm. Is the content which can be present in 30 to 40 ppm in the finally obtained film when the selenium particles are contained within the above range. Therefore, when the content of selenium is less than lOOppm, it is impossible to provide a layered antibacterial activity to the final film. When the content of selenium exceeds 200ppm, a large amount of the selenium particles are contained in the masterbatch obtained therefrom. The effect of the antimicrobial activity is not so great. Instead, the haze of the film is greatly increased. In addition, feeding of the raw material during the extruding operation is not easily performed in the extruder. In addition, it is preferable that stearic acid is contained in an amount of 15-25 parts by weight per 100 parts by weight of the polyethylene resin as an agent for binding selenium particles to the polyethylene resin. On the other hand, water and alcohol serve as a solvent, and the content thereof is not particularly limited. However, when the content is less than the lower limit and is contained in a content lower than the lower limit, there is a problem in uniformly coating the selenium particles with the polyethylene resin When the upper limit is exceeded, the solution is too thin and it is burdened to remove the pellets from the solution. It is preferable to limit the range to the above range. On the other hand, the polyethylene resin may be the same as the main resin forming the innermost layer of the seven-layer antimicrobial vacuum packaging film of the present invention, preferably LLDPE. Further, the polyethylene resin may contain maleic anhydride in an amount of from 0.1 to 3 wt% More preferably polyethylene. By using maleic anhydride as a compatibilizer so that polarized selenium particles have affinity to nonpolar polyethylenes, the selenium particles are uniformly coated on the polyethylene. By heating the polyethylenic resin composition having the above components, water and alcohols are evaporated and removed, so that the selenium particles can be adhered to the polyethylene resin. In this case, the heating temperature is not particularly limited, and any temperature capable of removing water and alcohol can be appropriately selected. The solvent and water-and-alcohol-removed poly (ethylene oxide) resin composition can be prepared by extruding a poly (ethylene terephthalate) resin composition using a twin screw extruder commonly used for preparing a master batch to pelletize the master batch. The master batch obtained by the present invention is a master batch of selenium particle-polyethylenes containing 100-200 ppm of selenium per 100 parts by weight of polyethylene resin. The selenium particle-polyetylene master batch prepared as described above was mixed with a polyethylene resin, which is a main resin, and extruded into an extruder and melt-extruded through a T-die to form the innermost layer of the 7-layer antimicrobial vacuum packaging film of the present invention can do. In preparing the innermost layer, the selenium particle-adhered polyethylene masterbatch may be used in an amount of 25-45 parts by weight per 100 parts by weight of the polyethylene resin used as the main resin It is preferable to be common. In this case, a sufficient antibacterial activity can be imparted to the antibacterial vacuum packaging film of the present invention. More preferably, the selenium particle-polyethylene master batch prepared as described above is mixed with a polyethylene resin as a main resin, and the resulting mixture is introduced into an extruder forming an innermost layer of a co-extrusion apparatus for producing an antimicrobial vacuum packaging film having a seven-layer structure, , A suitable resin for forming each layer of a film having a seven-layer structure is put in each extruder, and then they are melt-extruded by a T-die at the same time, An antibacterial vacuum packaging film can be produced. Specifically, as shown in FIG. 1, the outermost layer and the fifth layer from the outside of the film are made of a polyamide resin layer of nylon 6 or nylon 6, 6 to give oxygen barrier properties, and a third layer The inner layer is made of a polyethylene resin layer of polyethylenes or linear polyethylenes for imparting water vapor barrier properties and heat sealing properties and a polyamide resin layer and a polyurethane resin layer are formed in the second, By inserting a polymer adhesive layer (ie layer) for bonding the polyethylene resin layer, a vacuum film having excellent oxygen and water vapor barrier properties and further having an antibacterial activity can be produced. On the other hand, as the antimicrobial agent, besides the selenium particle, the antimicrobial organic monomer compound represented by the formula (1), the antimicrobial homopolymer represented by the formula (2) And an antibacterial acrylic copolymer represented by the following general formula (3). Such an organic antimicrobial agent is commonly used to prepare a master batch with polyethylene resin, which is the main resin forming the innermost layer of the antimicrobial vacuum packaging film of the seven-layer structure of the present invention, as in the case of using the above-mentioned selenium particles. The preparation of the masterbatch can be achieved by uniformly dispersing the mixture of the organic antimicrobial agent and the polyethylene resin and extruding it in a twin screw extruder to pellet the master batch. At this time, it is preferable that the organic antibacterial agent is contained in an amount of 20 to 50 parts by weight based on 100 parts by weight of the polyethylene resin. By thus obtaining the antimicrobial agent content, the antimicrobial agent can be uniformly distributed on the final polyethylene resin layer, so that the stratified antimicrobial activity can be obtained. Therefore, if the content of the organic antibacterial agent is less than 20 parts by weight, the antimicrobial activity can not be obtained. If the content exceeds 50 parts by weight, further antibacterial activity can not be obtained. The organic antimicrobial agent-polyethylene master batch prepared as described above is mixed with a polyethylene resin as a main resin, and the mixture is put into an extruder and melt-extruded through a T-die to form the innermost layer of the 7-layer antimicrobial vacuum packaging film of the present invention . In preparing the innermost layer, the polyethylene masterbatch containing the organic antimicrobial agent is preferably contained in an amount of 3 to 10 parts by weight based on 100 parts by weight of the polyethylene resin. Within this range, the antimicrobial vacuum packaging film of the present invention, It is possible to provide a stratified antimicrobial activity in the innermost layer. The antibacterial vacuum packaging film of the present invention can obtain a vacuum packaging film excellent in environmentally friendly antimicrobial activity which can greatly reduce the amount of packaging film used for preserving food and the amount of carbon dioxide generated by the incineration treatment of the used packaging film In addition, it is possible to manufacture an antimicrobial vacuum packaging film by using a salenium or acrylic copolymer in place of silver nanoparticles which may be harmful to the human body, thereby solving the problem of human harm caused by the antibacterial component. Hereinafter, the present invention will be described more specifically by way of examples. However, the following examples are only illustrative of the present invention and are not intended to limit the present invention. Example
실시예 1  Example 1
상온에서 스테아린산 20중량부, 물 50중량부 및 알코올 30중량부를 포함하는 용액 100중량부에 셀레늄 입자 300ppm을 균일하게 분산시켰다. 얻어진 용액을 말레 산 무수물 1중량 ¾»를 포함하는 폴리에틸렌 (LLDPE, 대림산업에서 판매되는 제품명 MPE XP5300, 용융지수 (Melt Index) 2.4) 100중량부와 흔합한 후, 120°C로 가열하여 물 및 알코올을 제거하였다. 이에 의해 얻어진 스테아린산에 의해 셀레늄 입자가 부착된 폴리에 틸렌 수지 를 트원스크류 압출기 (twin screw extruder)로 압출을 하여 팰렛화함으로써 샐레 늄 입자 -LLDPE 마스터배치를 제조하였다. 상기 얻어진 마스터배치를 최내층을 형성하는 상기와 동일한 LLDPE와 흔합하 였다. 이때, 마스터배치는 LLDPE 100중량부에 대하여 35, 25, 20 및 17중량부로 포 함하였다 . 300 ppm of selenium particles were uniformly dispersed in 100 parts by weight of a solution containing 20 parts by weight of stearic acid, 50 parts by weight of water and 30 parts by weight of alcohol at room temperature. The obtained solution was mixed with 100 parts by weight of polyethylene (LLDPE, product name: MPE XP5300, Melt Index 2.4) containing 1 wt% of maleic anhydride and then heated at 120 ° C to obtain water and The alcohol was removed. A polyethylenic resin having selenium particles adhered thereto by stearic acid thus obtained was extruded by a twin screw extruder and pelletized to prepare a salernium particle-LLDPE master batch. The obtained master batch was mixed with the same LLDPE as the one forming the innermost layer. At this time, the masterbatch was contained at 35, 25, 20 and 17 parts by weight based on 100 parts by weight of LLDPE.
7개 층의 진공포장필름을 제조하기 위해, 7개의 압출기를 갖는 공압출장치 중, 제 1 수지층 (최외층)을 제공하는 게 1 압출기에 나일론 6-66 코폴리머, 제 3 수지 층을 제공하는 제 3 압출기에 저밀도 폴리에틸렌, 게 5 수지층을 제공하는 제 5 압출 기에 나일론 6 및 제 7 수지층 (최내층)을 제공하는 제 7 압출기 에 상기 마스터배치와 선형 저밀도 폴리에틸렌 흔합물을 투입하고, 제 2, 제 4 및 게 6의 접 착층을 제공하는 제 2, 제 4 및 계 6의 압출기에 폴리글루를 각각 투입한 후, 각 수지를 T-다이로 용융 압출하여 블로우 몰딩 (blow molding) 방법으로 도 1과 같은 7층 구조의 항균 진공 포장 필름을 제조하였다 . 얻어진 각 층의 두께는 다음과 같다 . In order to produce a seven-layer vacuum packaging film, a nylon 6-66 copolymer and a third resin layer were provided in the first extruder to provide a first resin layer (outermost layer) among co-extruding devices having seven extruders The master batch and the linear low density polyethylene mixture were fed into a seventh extruder which provided a nylon 6 and a seventh resin layer (innermost layer) in a fifth extruder which provided a low density polyethylene and a crab five resin layer in a third extruder, Fourth, and sixth extruders provided with the second, fourth, and sixth adhesive layers, respectively, and then the respective resins were melt-extruded by a T-die and subjected to a blow molding method , An antimicrobial vacuum packaging film having a seven-layer structure as shown in Fig. 1 was prepared. The thickness of each layer obtained is as follows.
제 1 수지층 (A층) : 11/Λη 제 3 수지층 (C층) : 16/ΛΠ  First resin layer (A layer): 11 /?? Third resin layer (C layer): 16 /?
제 5 수지층 (E층) : 1 제 7 수지층 (G층) : 17/im  Fifth resin layer (E layer): 1 seventh resin layer (G layer): 17 / im
게 2, 4 및 6의 접 착층 (각각 B, !) 및 E층) : 7/im 상기 얻어진 진공포장 필름의 최내층에 대하여 마스터배치의 중량에 따른 셀 레늄 입자의 함유량을 측정하였는바, 항균 진공포장 필름의 최내층을 구성하는 상 기 게 7 수지층 (G층)에 있어서의 샐레늄 함량은 마스터 배치 함량이 35중량부 포함된 것은 샐레늄 함량은 37.5ρρπι이고, 마스터배치가 25중량부 포함된 것은 샐레늄 함량 이 30ppm이고, 마스터배치가 20중량부 포함된 것은 샐레늄 함량이 25 · 1ρριη이 었으며 마스터배치가 17중량 % 포함된 것은 셀레늄 함량이 21.5ppm이었다. 상기 얻어진 진공포장 필름의 최내층에 대하여 FE-SEM을 사용하여 셀레늄 입 자가 균일하게 분산되어 있는지 여부를 도 3 내지 도 10에 나타내었다 . 이중 도 3, 5, 7 및 9는 진공 포장 필름의 최내층의 표면 사진이고, 도 4, 6, 8 및 10은 최내 층에서의 셀레늄 입자의 위치를 표시한 사진이다. 상기와 같이 계 7 수지충 내의 셀레늄 함량에 따른 항균활성 시험을 수행하여 항균 성능올 테스트하였다 . 셀레늄 함유 항균 진공포장 필름의 항균성 시험은 JIS Z 28이에 따라 다음과 같이 수행하였다. (B, !, respectively) and E layer of crab 2, 4 and 6: 7 / im The content of selenium particles in the innermost layer of the obtained vacuum packaging film was measured according to the weight of the masterbatch. As a result, it was found that the content of selenium in the resin layer (G layer) constituting the innermost layer of the antibacterial vacuum packaging film The content of rhenium contained 35 parts by weight of masterbatch, the content of salenium was 37.5ρρπι, the content of masterbatch was 25 parts by weight, the content of salenium was 30 ppm, and the content of masterbatch was 20 parts by weight, 25 · 1ρρηη, and the selenium content of the master batch containing 17 wt% was 21.5 ppm. 3 to 10 show whether the selenium particles are uniformly dispersed in the innermost layer of the obtained vacuum packaging film using FE-SEM. FIGS. 3, 5, 7 and 9 are photographs of the surface of the innermost layer of the vacuum packaging film, and FIGS. 4, 6, 8 and 10 are photographs showing the positions of selenium particles in the innermost layer. As described above, the antimicrobial activity test was performed according to the content of selenium in the resin in the cervix 7 to test the antibacterial activity. The antimicrobial activity of the selenium-containing antimicrobial vacuum packaging film was determined according to JIS Z 28 as follows.
-사용공시 균주로, 황색포도상구균 (Staphylococcus aureus ATCC 6538P) (균주- As a used strain, Staphylococcus aureus ATCC 6538P (strain
1) 및 대장균 (Escher ichi a col i ATCC 8739) (균주 2)를 사용하였다. 1) and Escherichia coli ATCC 8739 (strain 2) were used.
-표준 피복필름은 Stoacher 400 P0LY-BAG를 사용하였다 .  - Stoacher 400 P0LY-BAG was used as the standard coating film.
-시험균액을 35士 1°C , RH 90士 5%의 조건 하에서 24시간 정치 배양 후 균수를 측정하였다. - The test strain was incubated for 24 hours under the conditions of 35 ° C and 5% RH at 1 ° C. Respectively.
-시료 표면적은 25oif이고 항균성능을 나타내는 항균 활성 치 S, 감소율 (¾) 및 증식치 (F)는 다음 식으로 계산하였다 .  - The surface area of the sample is 25oif, and the antimicrobial activity value S, the reduction rate (¾) and the proliferation value (F), which show the antibacterial performance, are calculated by the following equations.
항균 활성치 (S)=log(Mb/Mc) , The antibacterial activity (S) = log (M b / M c ),
감소율 (%)={(Mb— Mc)/Mb}x i00 Reduction rate (%) = {(M b - M c ) / M b } x i00
증식치 (F)=log(Mb/Ma) Proliferation value (F) = log (M b / M a )
단, 여기서 ^는 표준시료의 시험균 접종 직후의 생균 수 평균를 나타내며, Mb는 표준시료의 24시간 배양 후 생균수의 평균을 나타내며 , Mc는 항균 가공 시료의 24시간 배양 후 생균수의 평균을 나타낸다. 최내층에 포함된 셀레늄 함량이 37.5ppm인 셀레늄 함량이 30pptn인 포장필름 에 있어서는 포장 필름에 대한 시험 결과를 표 1에 나타내었다. However, where ^ represents viable cell count immediately after the test bacteria inoculated in a standard sample pyeonggyunreul, M b represents an average of the number of viable cells after 24 hours culture of the reference samples, M c is the average of the number of viable cells after 24 hours culture of the antibacterial samples . Table 1 shows the test results of the packaging film for a packaging film having a selenium content of 30 pptn having a selenium content of 37.5 ppm contained in the innermost layer.
【표 1】 [Table 1]
Figure imgf000026_0001
상기 표 1로부터 알 수 있는 바와 같이, 최내층에 포함된 셀레늄 함량이
Figure imgf000026_0001
As can be seen from the above Table 1, the selenium content in the innermost layer
37.5ppm인 포장 필름에 있어서는 항균 활성치 (S)가 6.1이 고 감소율이 99.9%이 었으 며 , 셀레늄 함량이 30ppm인 포장필름에 있어서는 항균 활성치 (S)가 6.1이고 감소율 이 99.9%의 값을 나타내어, 균주 1 및 2에 대하여 우수한 항균성을 보였다. 한편 , 최내층에 포함된 셀레늄 함량이 25. 1ppm인 포장필름에 있어서는 항균 활성치 (S)가 5.9이고 , 감소율이 98.9%이 었고 , 셀레늄 함량 21.5ppm인 포장필름에 있어서는 항균 활성치 (S)가 5.7이고 감소율이 97.9%로 균주 1 및 2에 대한 향균성 이 낮은 결과는 나타내었다. 따라서 포장 필름의 최내층에 포함된 샐레늄 함유량이 30ppm 이상인 경우에 우수한 항균 활성을 나타냄을 확인할 수 있었다. 실시 예 2 The antibacterial activity value (S) was 6.1 and the reduction rate was 99.9% in the packing film with 37.5ppm. In the packaging film with 30ppm selenium content, the antibacterial activity value (S) was 6.1 and the reduction rate was 99.9% Showed excellent antimicrobial activity against strains 1 and 2. On the other hand, in the packaging film having the selenium content of 25.1 ppm contained in the innermost layer, the antimicrobial activity value (S) was 5.9 and the reduction rate was 98.9% in the packaging film, and the antibacterial activity value (S) in the packaging film having the selenium content of 21.5 ppm was 5.7 And the rate of decrease was 97.9%, indicating that the antibacterial activity against strains 1 and 2 was low. Therefore, it was confirmed that the antimicrobial activity was excellent when the content of salenium contained in the innermost layer of the packaging film was 30 ppm or more. Example 2
LLDPE (대림산업에서 판매되는 제품명 MPE XP5300 , 용융지수 (Melt Index) 2.4)의 매트릭스 100중량부에 화학식 (3)으로 표시되는 항균성 아크릴계 공중합체 20중량부를 포함하는 마스터배치로서, ^마이크로사이 언스테크사제의 제품명 BCA- 502MB를 흔합하였다 . 이 때, 상기 마스터배치는 상기 LLDPE 100중량부에 대하여 1, 3, 5 및 7중량부로 포함하였다.  A master batch comprising 20 parts by weight of an antibacterial acrylic copolymer represented by the formula (3) in 100 parts by weight of a matrix of LLDPE (product name MPE XP5300, Melt Index 2.4, marketed by Daelim Industrial) BCA-502MB, the product name of the company, was mixed. At this time, the masterbatch was contained in 1, 3, 5 and 7 parts by weight based on 100 parts by weight of the LLDPE.
7개의 압출기를 갖는 공압출 장치를 사용하여 공압출 방식에 의해 각 층의 수지를 공압출함으로써 7개 층 구조를 갖는 진공포장 필름을 제조하였다. 구체적 인 진공포장 필름 제조방법은 상기 실시 예 1에 기재된 방법과 동일하게 수행하였다. 상기 제조된 진공포장 필름에 대한 항균성 평가는 균주로서 대장균 (Escherichia col i) (균주 1) 및 살모네라균 (Sahnonel la typhimurium) (균주 2)을 균 주로 사용하고, LB broth, LB agar plates, Nutrient broth, Nutrient agar plates 를 배지로 사용하여, 억제환 (할로존) 측정법에 의해 AST¥ G22를 준용하여 다음과 같이 수행하였다. . 시험 사용 균주를 LB 3m가 들어있는 배양 튜브 (culture tube)에 접종한 후 튜브 캡 (tube cap)을 씌우고, 37°C에서 150rpm으로 24시간 동안 흔들면서 배양한다. 얻어진 배양액 100 를 LB 가 들어있는 배양 튜브에 접종한 후, 동일한 방법으 로 2~3회 반복하여 배양한다. A vacuum packaging film having a seven layer structure was prepared by coextruding the resin of each layer by a co-extrusion method using a co-extrusion apparatus having seven extruders. A specific method for producing a vacuum packaging film was performed in the same manner as described in Example 1 above. The antimicrobial activity of the prepared vacuum packed film was evaluated by using Escherichia coli LB broth, LB agar plates, Nutrient broth, and Nutrient agar plates were used as the medium, and Escherichia coli (strain 1) and Sahnonel la typhimurium (strain 2) Halosone) measurement was carried out in accordance with AST 占 G22 as follows. . The test strain is inoculated into a culture tube containing 3 m of LB, and then the tube cap is placed on the culture tube and incubated at 37 ° C with shaking at 150 rpm for 24 hours. The obtained culture solution 100 is inoculated into a culture tube containing LB, and then cultured in the same manner repeatedly 2 to 3 times.
준비한 접종원을 흔들어 (vortexing) 균일하게 섞은 후, 마이크로 피펫 (micro pipette)을 이용하여 씩 LB plate에 접종한다. 유리막대 (Glass rod)를 10OT 에탄올에 담갔다가 꺼내어 화염 멸균한 후 식힌다. 상기 유리막대로 접종된 균주를 스프레딩하여 (spreading) 배지에 골고루 퍼지게 한다.  Shake the prepared inoculum vortexing uniformly, then inoculate the LB plate using a micropipette. Immerse the glass rod in 10OT ethanol, remove it, sterilize the flame, and cool. The strains inoculated with the glass membrane are spread and spread evenly over the medium.
시험샘플을 70% 에탄을로 분무 살균한 후 건조시킨다. 각각의 시험샘플을 멸 균된 핀셋으로 집어 균이 접종된 배지 한가운데에 올려 놓는다. 코팅 시험샘플일 경우 코팅면이 균이 접종된 배지에 닿게 한다. 시험샘플을 살짝 눌러 배지 면에 시 편이 잘 접촉되게 한다. 37°C의 인큐베이터 (incubator)에서 2일간 배양한다. Test samples are spray dried with 70% ethane and dried. Place each test sample in the middle of the inoculated medium with the sterilized tweezers. In the case of a coating test sample, the coated side is allowed to reach the inoculated medium. Press the test sample slightly so that the sample is well in contact with the discharge surface. Incubate for 2 days at 37 ° C in an incubator.
시험샘플이 측면으로부터 균체가 자라지 않은 클리어 존 라인 (clear zone line)까지의 4 방향을 재어 평균값 (mm)을 결과로 한다. 그 평균값이 1.5國 이상인 것에 대하여는 항균성이 우수한 것으로 평가하였다. 본 실시예에 따른 평가 결과는 표 2 및 도 13에 나타낸다. 표 2는 시험샘플 이 측면으로부터 균체가 자라지 않은 클리어 존 라인 (clear zone line)까지의 4 방 향을 재어 평균값 (mm)이며, 도 13은 본 실시예에서 항균진공포장필름에 대하여 ASTM G22 modified Method에 따라 실시한 항균 시험결과를 나타내는 사진이다. 【표 2]
Figure imgf000029_0001
상기 제조된 항균 진공포장 필름의 최내층을 제조하는데 사용된 BCA-502MB 마스터배치의 함량이 1중량부인 경우에는 균주 1에 대하여는 억제대 (inhibit ion zone)를 생성시키지 않았는바, 항균성이 없음을 확인할 수 있었다. 또한, 균주 2에 대하여는 0.5i應의 억제대를 생성하였는바, 항균성이 낮은 것으로 평가되었다. 항균 진공포장 필름의 최내층을 제조하는데 사용된 BCA-502MB 마스터배치의 함량이 3중량부인 경우에는 균주 1에 대하여 1.75D皿의 억제대를 생성시켰는바, 항 균성이 있음을 확인하였다. 또한, 균주 2에 대하여는 2.75醒의 억제대를 생성하였 는바, 항균성이 있음을 확인하였다. 항균 진공포장 필름의 최내층을 제조하는데 사용된 BCA-502MB 마스터배치의 함량이 5중량부인 경우에는 균주 1에 대하여 2.25匪의 억제대를 생성시켰는바, 항 균성이 있음을 확인하였다. 또한, 균주 2에 대하여는 3.72ι腿의 억제대를 생성하였 는바, 항균성이 있음을 확인하였다. 항균 진공포장 필름의 최내층을 제조하는데 사용된 BCA-502MB 마스터배치의 함량이 7중량부인 경우에는 균주 1에 대하여 3.751腿의 억제대를 생성시켰는바, 항 균성이 있음을 확인하였다. 또한, 균주 2에 대하여는 5.50ι腿의 억제대를 생성하였 는바, 항균성이 있음을 확인하였다.
The test sample is taken in four directions from the side to the clear zone line where the cells do not grow, and the average value (mm) is obtained. And those having an average value of 1.5 or more were evaluated as having excellent antimicrobial activity. The evaluation results according to this embodiment are shown in Table 2 and Fig. Table 2 shows the average value (mm) of the test sample in four directions from the side to the clear zone line where the bacteria did not grow from the side, and Fig. 13 shows the results of the ASTM G22 modified Method , Which is a photograph showing the results of the antibacterial test. [Table 2]
Figure imgf000029_0001
When the content of the BCA-502MB masterbatch used in the preparation of the innermost layer of the antibacterial vacuum packaging film was 1 part by weight, no inhibition zone was generated for the strain 1, and thus it was confirmed that there was no antibacterial activity there was. In addition, the inhibition band of 0.5 was produced for strain 2, and the antimicrobial activity was evaluated to be low. When the content of the BCA-502MB masterbatch used for preparing the innermost layer of the antibacterial vacuum packaging film was 3 parts by weight, it was confirmed that the antibacterial vacuum packaging film produced an inhibition band of 1.75D dish for the strain 1, indicating that it was antibacterial. In addition, it was confirmed that the strain 2 had antimicrobial activity by generating a restraint of 2.75. When the content of the BCA-502MB masterbatch used in the preparation of the innermost layer of the antibacterial vacuum packaging film was 5 parts by weight, it was confirmed that there was an antibacterial property by producing 2.25 억제 inhibition against the strain 1. In addition, for strain 2, a restraint of 3.72 < RTI ID = 0.0 > However, it was confirmed that there was antibacterial activity. When the content of the BCA-502MB masterbatch used in the preparation of the innermost layer of the antibacterial vacuum packaging film was 7 parts by weight, it was confirmed that the antibacterial vacuum packaging film produced an inhibition band of 3.751 thrice against the strain 1, indicating that it was antibacterial. In addition, for strain 2, a restraining band of 5.50 tors was produced, and it was confirmed that there was antibacterial activity.

Claims

【특허청구범위】 【청구항 1】 물품을 포장하는 항균 진공포장 필름으로서, 상기 포장필름은 7개의 층으로 구성되되, 포장필름의 최외층은 폴리아미드 수지로 형성되고, 상기 물품과 접촉하 는 최내층은 폴리에틸렌 수지로 형성되며, 상기 최내층은 5~10nm의 입자 사이즈를 갖는 샐레늄 입자 또는 화학식 1로 표시되는 항균성 유기 단량체 화합물, 10,000- 1,000, 000의 중량평균분자량을 갖는 화학식 2로 표시되는 항균성 단일 중합체 및 10, 000-1 ,000 ,000의 중량평균분자량을 갖는 화학식 3으로 표시되는 항균성 아크릴 계 공중합체로 이루어진 그룹으로부터 선택되는 적어도 하나의 유기 항균제를 포함 하는 7층 구조의 항균 진공포장 필름. Claims 1. An antibacterial vacuum packaging film for packaging an article, wherein the packaging film is composed of seven layers, the outermost layer of the packaging film being formed of a polyamide resin, Wherein the innermost layer is formed of a polyethylene resin, and the innermost layer is selected from the group consisting of salen particles having a particle size of 5 to 10 nm or an antimicrobial organic monomer compound represented by the formula (1), a compound represented by the formula (2) having a weight average molecular weight of 10,000 to 1,000, Antimicrobial vacuum packaging with a seven-layer structure comprising at least one organic antimicrobial selected from the group consisting of an antimicrobial homopolymer and an antimicrobial acrylic copolymer of formula (3) having a weight average molecular weight of 10, 000-1, 000, 000. film.
[화학식 1]  [Chemical Formula 1]
Figure imgf000031_0001
Figure imgf000031_0001
[화학식 2]  (2)
Figure imgf000031_0002
[화학식 3]
Figure imgf000031_0002
(3)
Figure imgf000032_0001
Figure imgf000032_0001
상기 화학식 l 내지 3에서,  In the above Formulas 1 to 3,
R은 중합 가능한 작용기 및 광경화형 반응성 작용기를 포함하는 d 내지 C150 의 포화 또는 불포화 탄화수소이고 , R is a d to C 150 saturated or unsaturated hydrocarbon comprising a polymerizable functional group and a photocurable reactive functional group,
Ri 및 R2는 각각 독립적으로 또는 동시에 수소, 할로겐원소, 아민 또는 (:广(:20 의 알킬기 이고 , Ri and R < 2 > are each independently or simultaneously a hydrogen, a halogen element, an amine or an alkyl group having 1 to 20 carbon atoms,
¾ 및 ¾는 각각 독립적으로 또는 동시에 수소, 히드록시기, C1~C20의 알콕사 이드, 할로겐원소 또는 (:广(:20의 알킬기 이고 , An alkyl group of 20,: ¾ and ¾ are each independently or simultaneously hydrogen, a hydroxy group, C1 ~ C 20 Al koksa Id, a halogen atom or (in:广(
¾는 수소, (^~(:20의 알킬, 씨클로프로필 또는 d^Czo의 방향족 탄화수소이며, ¾는 수소 , 나트륨, 칼륨 또는 중합 가능한 작용기를 포함하거나 또는 포함 하지 않는 ~(:150의 알킬기 이고, ¾ is hydrogen, (^ - (: an aromatic hydrocarbon of the 20-alkyl, cyclo propyl or d ^ Czo of, ¾ is - (not including hydrogen, sodium, potassium, or the polymerizable functional group or containing or: an alkyl group of 150,
¾, R9 및 Rio은 각각 독립적으로 또는 동시에 탄소 또는 질소이고, And R < 9 > and Rio are each independently or simultaneously carbon or nitrogen,
Rii은 수소, 1차, 2차 또는 3차 아민 , 할로겐원소 또는 d—Czo의 알킬기 이며, Rii is hydrogen, a primary, secondary or tertiary amine, a halogen element or an alkyl group of d-Czo,
X는 상기 분자량을 만족하는 양의 정수이다. X is a positive integer satisfying the above-mentioned molecular weight.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 항균 진공포장 필름은 포장필름의 외부에서 내부를 향하여 폴리아미드 수지와 폴리에틸렌 수지가 교대로 위치되는 4개의 수지층 및 상 기 각각의 수지층 사이에 형성된 접착 수지층을 포함하는 것을 특징으로 하는 공압 출 항균 진공포장 필름. The antibacterial vacuum packaging film according to claim 1, wherein the antibacterial vacuum packaging film comprises Wherein the resin layer comprises four resin layers alternately arranged with a polyamide resin and a polyethylene resin, and an adhesive resin layer formed between the respective resin layers.
【청구항 31  Claim 31
제 1항 또는 제 2항에 있어서, 상기 폴리아미드 수지는 나일론 6 또는 나일 론 66인 것을 특징으로 하는 공압출 항균 진공포장 필름.  The coextruded antimicrobial vacuum packaging film according to claim 1 or 2, wherein the polyamide resin is nylon 6 or nylon 66.
【청구항 4]  [4]
제 1항 또는 제 2항에 있어서, 상기 폴리에틸렌은 저밀도 폴리에틸렌 (LDPE) 또는 선형 저밀도 폴리에틸렌 (LLDPE)인 것을 특징으로 하는 공압출 항균 진공포장 필름.  The coextruded antimicrobial vacuum packaging film of claim 1 or 2, wherein said polyethylene is low density polyethylene (LDPE) or linear low density polyethylene (LLDPE).
【청구항 5]  [Claim 5]
제 2항에 있어서, 상기 접착 수지층은 무수 말레인산 변형 VLDPE(Maleic anhydride modified VLDPE)로 형성된 것임을 특징으로 하는 공압출 항균 진공포장 필름.  The coextruded antibacterial vacuum packaging film according to claim 2, wherein the adhesive resin layer is formed of maleic anhydride modified VLDPE (VLDPE).
【청구항 6]  [Claim 6]
제 1항 또는 제 2항에 있어서, 상기 샐레늄 입자는 최내층 중량의 30ppm~40ppm의 함량으로 포함된 것을 특징으로 하는 공압출 항균 진공포장 필름.  The coextruded antibacterial vacuum packaging film according to claim 1 or 2, wherein the saccharide particles are contained in an amount of 30 ppm to 40 ppm of the innermost layer weight.
【청구항 7】 7.
제 1항 또는 제 2항에 있어서, 상기 유기 항균제는 수지층 중량의 0.5-5중 량 %의 함량으로 포함된 것을 특징으로 하는 공압출 항균 진공포장 필름.  The coextruded antibacterial vacuum packaging film according to claim 1 or 2, wherein the organic antibacterial agent is contained in an amount of 0.5-5% by weight of the weight of the resin layer.
【청구항 8】 7층 구조의 항균 진공포장 필름 제조방법으로서 , 상기 포장필름은 7개의 압 출기를 포함하는 공압출장치를 사용하여 압출기 내의 수지를 용융 공압출함으로써 제조되며, 8. A method for producing an antimicrobial vacuum packaging film having a seven-layer structure, wherein the packaging film is produced by melt co-extruding a resin in an extruder using a pneumatic actuator including seven compressors,
상기 압출기 중, 포장되는 물품과 접촉하는 포장필름의 최내층을 형성하는 압 출기로부터는 셀레늄 입자 또는 화학식 1로 표시 되는 항균성 유기 단량체 화합물, 10 ,000-1 ,000 ,000의 중량평균분자량을 갖는 화학식 2로 표시 되는 항균성 단일 증합 체 및 10 ,000-1 ,000 ,000의 중량평균분자량을 갖는 화학식 3으로 표시 되는 항균성 아크릴계 공중합체로 이루어진 그룹으로부터 선택되는 적어도 하나의 유기 항균제 를 포함하는 폴리에 틸렌 매트릭스 수지가 용융 압출되고, 포장필름의 최외층을 형 성하는 압출기로부터는 폴리아미드 수지가 용융 압출되는, 7층 구조의 항균 진공포 장 필름 제조방법 .  From the extruder forming the innermost layer of the packaging film in contact with the article to be packed, the selenium particles or the antimicrobial organic monomer compound represented by the formula (1), having a weight average molecular weight of 10, 000-1, 000, 000 A polyimide comprising at least one organic antimicrobial agent selected from the group consisting of an antimicrobial single incremental compound represented by the general formula (2) and an antibacterial acrylic copolymer represented by the general formula (3) having a weight average molecular weight of 10, 000-1, Wherein the tile matrix resin is melt-extruded and the polyamide resin is melt-extruded from an extruder forming the outermost layer of the packaging film.
[화학식 1]  [Chemical Formula 1]
Figure imgf000034_0001
Figure imgf000034_0001
[화학식 2] (2)
Figure imgf000035_0001
Figure imgf000035_0001
[화학식 3] (3)
Figure imgf000035_0002
Figure imgf000035_0002
상기 화학식 1 내지 3에서,  In the above Formulas 1 to 3,
R은 중합 가능한 작용기 및 광경화형 반웅성 작용기를 포함하는 d 내지 C150 의 포화 또는 불포화 탄화수소이고, R is a d to C 150 saturated or unsaturated hydrocarbon comprising a polymerizable functional group and a photocurable semi-functional group,
Ri 및 R2는 각각 독립적으로 또는 동시에 수소, 할로겐원소, 아민 또는 C1 C20 의 알킬기 이고, Ri and R 2 are each independently or simultaneously a hydrogen, a halogen element, an amine or an alkyl group of C 1 -C 20 ,
¾ 및 R4는 각각 독립적으로 또는 동시에 수소, 히드록시기 , C1~C20의 알콕사 이드 , 할로겐원소 또는 d~C20의 알킬기 이고, And ¾, and R4 are each independently or simultaneously, represents a hydrogen, hydroxy group, C1 ~ C 20 Al koksa Id of, a halogen atom or a C2 ~ d 0,
¾는 수소, d-Czo의 알킬, 씨클로프로필 또는 (:广(:20의 방향족 탄화수소이며, ¾는 수소, 나트륨, 칼륨 또는 중합 가능한 작용기를 포함하거나 또는 포함 하지 않는 Crdso의 알킬기 이고 , ¾ is hydrogen, d-Czo-alkyl, cyclo propyl, or (in:广(: an aromatic hydrocarbon of 20, is an alkyl group of ¾ Crdso does not contain a hydrogen, sodium, potassium, or the polymerizable functional group or containing or,
¾ , Rg 및 ο은 각각 독립적으로 또는 동시에 탄소 또는 질소이고, Rir 수소, 1차, 2차또는 3차 아민, 할로겐원소 또는 d-Czo의 알킬기이며 , X는 상기 분자량을 만족하는 양의 정수이다. Rg and o are each independently or simultaneously carbon or nitrogen, R < 1 > is hydrogen, a primary, secondary or tertiary amine, a halogen atom or an alkyl group of d-Czo, and X is a positive integer satisfying the above molecular weight.
【청구항 9】  [Claim 9]
제 8항에 있어서, 상기 포장필름의 최내층을 형성하는 폴리에틸렌 매트릭스 수지는, 폴리에틸렌 주제 수지; 및 샐레늄 입자 또는 유기 항균제가 함유된 폴리에 틸렌 수지를 펠렛화한 폴리에틸렌 마스터배치를 포함하는 것임을 특징으로 하는 7 층 구조의 항균 진공포장 필름 제조방법 .  9. The polyethylene matrix resin according to claim 8, wherein the polyethylene matrix resin forming the innermost layer of the packaging film comprises a polyethylene main resin; And a polyethylene masterbatch obtained by pelletizing a polyethylene resin containing salen particles or an organic antimicrobial agent.
【청구항 10]  [Claim 10]
제 9항에 있어서, 상기 폴리에틸렌 매트릭스 수지는,  10. The method of claim 9, wherein the polyethylene matrix resin comprises:
폴리에틸렌 주제 수지 100중량부; 및  100 parts by weight of a polyethylene main resin; And
상기 폴리에틸렌 마스터배치를 형성하는 폴리에틸렌 수지 100중량부에 대하 여, 셀레늄 입자를 100 내지 200ppm 포함하는 폴리에틸렌 마스터배치 25~45중량부 또는 유기 항균제 20-50중량부를 포함하는 폴리에틸렌 마스터배치 3 내지 10중량부 포함하는 것을 특징으로 하는 7층 구조의 항균 진공포장 필름 제조방법.  To 100 parts by weight of the polyethylene resin forming the polyethylene master batch, 3 to 10 parts by weight of a polyethylene masterbatch comprising 25 to 45 parts by weight of a polyethylene masterbatch containing 100 to 200 ppm of selenium particles or 20 to 50 parts by weight of an organic antibacterial agent Wherein the antimicrobial vacuum packaged film has a thickness of about 5 mm.
【청구항 111  Claim 111
제 9항에 있어서, 상기 샐레늄 입자를 함유하는 폴리에틸렌 마스터배치는, 폴리에틸렌 마스터배치를 형성하는 폴리에틸렌 수지 100중량부에 대하여 셀 레늄 입자 30-40ppm을 스테아린산 17-35중량부, 물 30—60중량부 및 알코을 25-35중 량부를 포함하는 용액에 분산시킨 후, 상온에서 말레산 무수물을 함유하는 폴리에 틸렌 수지와 흔합하여 폴리에틸렌 마스터배치 형성용 폴리에틸렌 수지 조성물을 제 조하는 단계 ; 상기 폴리에틸렌 수지 조성물을 가열하여 샐레늄 입자로 코팅된 폴리에틸렌 수지를 제조하는 단계 ; 및 The polyethylene masterbatch according to claim 9, wherein 30 to 40 parts by weight of selenium particles are contained in an amount of 17 to 35 parts by weight of stearic acid, 30 to 60 parts by weight of water Preparing a polyethylene resin composition for forming a polyethylene master batch by dispersing the mixture in a solution containing 25 to 35 parts by weight of allyl alcohol and maleic anhydride at room temperature; Heating the polyethylene resin composition to produce a polyethylene resin coated with the selenium particles; And
상기 셀레늄 입자로 코팅 된 폴리에틸렌 수지를 트윈스크류 압출기로 압출 및 펠렛화하여 셀레늄 입자를 함유하는 폴리에틸렌 마스터배치를 제조하는 단계를 포함하는 방법에 의해 제조되는 것임을 특징으로 하는 7층 구조의 항균 진공포장 필름 제조방법 .  And a step of extruding and pelletizing the polyethylene resin coated with the selenium particles with a twin screw extruder to prepare a polyethylene master batch containing selenium particles. Gt;
【청구항 12】  Claim 12
제 9항에 있어서 , 상기 유기 항균제를 함유하는 폴리에틸렌 마스터배치는 , 폴리에 틸렌 마스터배치를 형성하는 폴리에틸렌 수지 100중량부에 대하여 유 기 항균제 20 내지 50중량부를 흔합하여 폴리에틸렌 마스터배치 형성용 폴리에틸렌 수지 조성물을 제조하는 단계 ;  The polyethylene master batch according to claim 9, wherein 20 to 50 parts by weight of an organic antimicrobial agent is mixed with 100 parts by weight of a polyethylene resin forming the polyethylene masterbatch to prepare a polyethylene masterbatch composition for forming a polyethylene masterbatch Lt; / RTI >
상기 유기 항균제를 포함하는 폴리에 틸렌 수지 조성물을 트원스크류 압출기 로 압출 및 펠렛화하여 유기 항균제를 함유하는 폴리에 틸렌 마스터배치를 제조하는 단계를 포함하는 방법에 의해 제조되는 것 임을 특징으로 하는 7층 구조의 항균 진 공포장 필름 제조방법 . ·  And extruding and pelletizing the polyetylene resin composition containing the organic antimicrobial agent with a twin screw extruder to prepare a polyetylene master batch containing an organic antimicrobial agent. Structure antimicrobial anti - foaming film. ·
【청구항 13]  [13]
제 8항에 있어서 , 상기 7개의 압출기는 상기 7층 구조의 항균 진공포장 필름 이 필름의 외부에서 내부를 향하여 폴리아미드 수지와 폴리에틸렌 수지로 된 4개의 수지층이 교대로 형성되고 , 상기 각각의 수지층 사이에 접착 수지층이 형성되도록 각각의 수지를 공압출하는 것을 특징으로 하는 7층 구조의 항균 진공포장 필름 제 조방법 . [Claim 9] The method of claim 8, wherein the seven extruders have the seven-layered antimicrobial vacuum packaging film in which four resin layers of a polyamide resin and a polyethylene resin are alternately formed from the outside to the inside of the film, Wherein each resin is pneumatically delivered so that an adhesive resin layer is formed between the layers.
【청구항 14】 14.
제 8항 내지 제 13항 중 어느 한 항에 있어세 상기 폴리아미드 수지는 나일 론 6 또는 나일론 66인 것을 특징으로 하는 7층 구조의 항균 진공포장 필름 제조방 법 .  14. The method of producing an antimicrobial vacuum packaging film according to any one of claims 8 to 13, wherein the three polyamide resins are nylon 6 or nylon 66.
【청구항 15】  15.
제 8항 내지 제 13항 중 어느 한 항에 있어서, 상기 폴리에 틸렌 수지는 저밀 도 폴리에틸렌 (LDPE) 또는 선형 저밀도 폴리에틸렌 (LLDPE)인 것을 특징으로 하는 7 층 구조의 항균 진공포장 필름 제조방법 .  14. The method for producing an antimicrobial vacuum packaging film according to any one of claims 8 to 13, wherein the polyethylene resin is low density polyethylene (LDPE) or linear low density polyethylene (LLDPE).
【청구항 16】  Claim 16
제 13항에 있어서, 상기 접착 수지층은 무수 말레인산 변형 VLDPE(Maleic anhydride modi f ied VLDPE)로 형성된 것 임을 특징으로 하는 7층 구조의 항균 진공 포장 필름 제조방법 .  14. The method of claim 13, wherein the adhesive resin layer is formed of maleic anhydride modified VLDPE (VLDPE).
PCT/KR2010/009217 2010-12-15 2010-12-22 Co-extruded, antimicrobial vacuum-packing film having a seven-layer structure and a production method therefor WO2012081756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0128316 2010-12-15
KR1020100128316A KR20120066952A (en) 2010-12-15 2010-12-15 Antibacterial vacuum film having 7 layers structure and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012081756A1 true WO2012081756A1 (en) 2012-06-21

Family

ID=46244843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009217 WO2012081756A1 (en) 2010-12-15 2010-12-22 Co-extruded, antimicrobial vacuum-packing film having a seven-layer structure and a production method therefor

Country Status (2)

Country Link
KR (1) KR20120066952A (en)
WO (1) WO2012081756A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019152557A1 (en) 2018-01-30 2019-08-08 Modernatx, Inc. Compositions and methods for delivery of agents to immune cells
CN110154367A (en) * 2019-06-01 2019-08-23 安庆市康明纳包装有限公司 A kind of energy conservation and environmental protection heat-sealing bag and its processing technology
CN112318891A (en) * 2020-09-29 2021-02-05 厦门长塑实业有限公司 High-barrier antibacterial nylon composite film and preparation method thereof
CN113681993A (en) * 2021-08-26 2021-11-23 浙江大汇新材料有限公司 Fresh-keeping, bacteriostatic and breathable packaging film for ship fruit and vegetable transportation and preparation method thereof
WO2022020811A1 (en) 2020-07-24 2022-01-27 Strand Therapeutics, Inc. Lipidnanoparticle comprising modified nucleotides
CN114834102A (en) * 2022-04-08 2022-08-02 中国农业科学院农产品加工研究所 Heat-shrinkable packaging film for inhibiting fresh meat spoilage bacteria and preparation method thereof
CN115257107A (en) * 2022-07-25 2022-11-01 湖北航天化学技术研究所 High-barrier PE film with antibacterial function and preparation method thereof
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
EP4186518A1 (en) 2016-05-18 2023-05-31 ModernaTX, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536551B1 (en) * 2002-01-31 2005-12-14 (주)마이크로 사이언스 테크 Monomer with anti-microbial character, polymer using the same, and manufacturing method thereof
KR100656984B1 (en) * 2004-09-23 2006-12-13 한국식품연구원 Food Packaging Film having Anti-Oxidative and Antimicrobial Properties, and Preparation Method thereof
KR20070111329A (en) * 2006-05-17 2007-11-21 커우드 인코포레이티드 Packaging articles, films and methods that promote or preserve the desirable color of meat
KR100887768B1 (en) * 2007-06-11 2009-04-17 나노폴리(주) Manufactur method of wet-tissue with antimicrobial and anti-fungus function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536551B1 (en) * 2002-01-31 2005-12-14 (주)마이크로 사이언스 테크 Monomer with anti-microbial character, polymer using the same, and manufacturing method thereof
KR100656984B1 (en) * 2004-09-23 2006-12-13 한국식품연구원 Food Packaging Film having Anti-Oxidative and Antimicrobial Properties, and Preparation Method thereof
KR20070111329A (en) * 2006-05-17 2007-11-21 커우드 인코포레이티드 Packaging articles, films and methods that promote or preserve the desirable color of meat
KR100887768B1 (en) * 2007-06-11 2009-04-17 나노폴리(주) Manufactur method of wet-tissue with antimicrobial and anti-fungus function

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4186518A1 (en) 2016-05-18 2023-05-31 ModernaTX, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2019152557A1 (en) 2018-01-30 2019-08-08 Modernatx, Inc. Compositions and methods for delivery of agents to immune cells
CN110154367A (en) * 2019-06-01 2019-08-23 安庆市康明纳包装有限公司 A kind of energy conservation and environmental protection heat-sealing bag and its processing technology
WO2022020811A1 (en) 2020-07-24 2022-01-27 Strand Therapeutics, Inc. Lipidnanoparticle comprising modified nucleotides
CN112318891A (en) * 2020-09-29 2021-02-05 厦门长塑实业有限公司 High-barrier antibacterial nylon composite film and preparation method thereof
CN112318891B (en) * 2020-09-29 2022-09-13 厦门长塑实业有限公司 High-barrier antibacterial nylon composite film and preparation method thereof
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
CN113681993A (en) * 2021-08-26 2021-11-23 浙江大汇新材料有限公司 Fresh-keeping, bacteriostatic and breathable packaging film for ship fruit and vegetable transportation and preparation method thereof
CN113681993B (en) * 2021-08-26 2023-05-30 浙江大汇新材料有限公司 Fresh-keeping antibacterial breathable packaging film for ship fruit and vegetable transportation and preparation method thereof
CN114834102A (en) * 2022-04-08 2022-08-02 中国农业科学院农产品加工研究所 Heat-shrinkable packaging film for inhibiting fresh meat spoilage bacteria and preparation method thereof
CN115257107A (en) * 2022-07-25 2022-11-01 湖北航天化学技术研究所 High-barrier PE film with antibacterial function and preparation method thereof
CN115257107B (en) * 2022-07-25 2023-07-21 湖北航天化学技术研究所 High-barrier PE film with antibacterial function and preparation method thereof

Also Published As

Publication number Publication date
KR20120066952A (en) 2012-06-25

Similar Documents

Publication Publication Date Title
WO2012081756A1 (en) Co-extruded, antimicrobial vacuum-packing film having a seven-layer structure and a production method therefor
EP1969186B1 (en) Calcium carbonate barrier films and uses thereof
KR950013364B1 (en) Polyvinyl alcohol product and multi-layer product containing the same
KR102208969B1 (en) Epoxy-terminated polybutadiene used as an oxygen scavenger
CN101758959A (en) Five-layer co-extrusion high barrier liquid packaging film and preparation method thereof
CN111333888A (en) Degradable polylactic acid antibacterial film and preparation method thereof
JP3895010B2 (en) Resin composition and laminate thereof
CN107405899B (en) Laminated body is used in heat-sealing
CN110834451B (en) Biaxially oriented polyethylene film BOPE composition, biaxially oriented polyethylene film and composite film and application thereof
JP2017030842A (en) Food packaging material
CN1639234A (en) Film suitable for food packaging
CN206394126U (en) A kind of low absorption composite sheet for product packaging
KR101743966B1 (en) High functional multiple film of improved barrier properties and mechanical properties using electron irradiation
JP3895011B2 (en) Resin composition and laminate thereof
JP3841943B2 (en) Production method of resin composition
JP4022298B2 (en) Antibacterial film
KR102220356B1 (en) Single-layer Antimicrobial Shrinkable Film
EP4054839B1 (en) Antimicrobial multilayer film
JP4823404B2 (en) Resin composition and use thereof
Emtiazi et al. Production of starch/LDPE/clay composite packaging films with improved antimicrobial property and printability
JP2008074888A (en) Gas barrier composition
JP2006067859A (en) Rice package body article
JP2008297423A (en) Polypropylene sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860695

Country of ref document: EP

Kind code of ref document: A1