WO2012081746A1 - System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm - Google Patents

System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm Download PDF

Info

Publication number
WO2012081746A1
WO2012081746A1 PCT/KR2010/009020 KR2010009020W WO2012081746A1 WO 2012081746 A1 WO2012081746 A1 WO 2012081746A1 KR 2010009020 W KR2010009020 W KR 2010009020W WO 2012081746 A1 WO2012081746 A1 WO 2012081746A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
kalman filter
unit
value
filter algorithm
Prior art date
Application number
PCT/KR2010/009020
Other languages
French (fr)
Korean (ko)
Inventor
김준하
이영근
이윤석
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to PCT/KR2010/009020 priority Critical patent/WO2012081746A1/en
Publication of WO2012081746A1 publication Critical patent/WO2012081746A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment process, and more particularly, to a real-time membrane contamination diagnosis system and method in a seawater desalination process using the Kalman filter algorithm.
  • seawater desalination plants In general, a series of water treatment processes to remove high-purity drinking water, living water, and industrial water by removing dissolved substances, including salts, from seawater (sea water), which are difficult to use directly for domestic or industrial water, are called desalination or seawater desalination.
  • the facilities used to produce seawater as freshwater are called seawater desalination plants or seawater desalination plants.
  • Desalination methods are largely classified according to their basic principles.
  • the reverse osmosis method is used to heat seawater using a heat source and condense the generated steam to obtain fresh water and reverse osmosis to produce fresh water by passing the semi-permeable membrane through osmosis. It is a representative method of seawater desalination.
  • seawater desalination plants determine membrane fouling levels by reducing production flow rates or increasing inflow pressures to determine when to clean and replace membranes.
  • this method is dependent on the influent condition and the surrounding environment, it is difficult to determine the degree of contamination of the membrane itself.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a real-time membrane fouling diagnosis system and method in the seawater desalination process using the Kalman filter algorithm.
  • the membrane fouling diagnosis system of the water treatment process using the Kalman filter algorithm using the Kalman filter algorithm according to a preferred embodiment of the present invention
  • the plant unit A process model unit for performing a reverse osmosis membrane simulation process that uses the same input value as the input value corresponding to the inflow water, and simulates the plant unit, a real output value output through the plant unit, and a simulation output value output through the process model unit.
  • It may include a Kalman filter unit for comparing the difference value with each other and applying the difference value to the Kalman filter algorithm to estimate the film resistance coefficient in the process model unit in real time.
  • the water treatment process may include a seawater desalination process.
  • the Kalman filter unit compares each output value consisting of the flow rate and concentration of the production water of the measured value output through the plant unit and the simulation value output through the process model unit, and if there is a difference between the Kalman filter
  • the film resistance coefficient value is estimated in real time in the direction of minimizing this using an algorithm.
  • the membrane resistance coefficient estimated by the Kalman filter unit is input to the process model unit and updated, and a diagnosis unit estimates the updated membrane resistance coefficient to diagnose the degree of contamination of the membrane in real time.
  • the membrane contamination diagnosis method of the water treatment process using the Kalman filter algorithm (a) the input value corresponding to the influent flowing into the plant portion performing the actual reverse osmosis membrane water treatment process Inputting the same input value as the input to the process model part for performing the reverse osmosis membrane simulation process simulating the plant part, and (b) the actual output value output through the plant part from the Kalman filter part and the simulation output value output through the process model part. Comparing the difference values of each other and applying the difference values to the Kalman filter algorithm; and (c) the film resistance in the process model unit in a direction that the Kalman filter algorithm minimizes the difference between the measured output value and the simulated output value. Estimating the coefficients in real time, and (d) using the estimated film resistance coefficient. It may include the step of diagnosing the degree of real-time.
  • the Kalman filter unit compares each output value composed of the flow rate and concentration of the production water of the measured value output through the plant unit and the simulation value output through the process model unit, and the If there is a difference value, the film resistance coefficient value is estimated in real time in the direction of minimizing it using the Kalman filter algorithm.
  • the film resistance coefficient estimated in the step (C) is characterized in that the input to the process model unit is updated.
  • step (d) is characterized in that the degree of contamination of the membrane in real time diagnosis by estimating the updated membrane resistance coefficient.
  • the present invention constituted as described above, after constructing a process model that well simulates the reverse osmosis membrane seawater desalination plant, applying a Kalman filter algorithm to estimate the membrane resistance coefficient (membrane resistance) in the process model in real time
  • the degree of membrane contamination can be effectively diagnosed, and it is expected that the membrane can be used for maintenance such as cleaning or replacing the membrane at an appropriate time. As a result, this can result in a reduction in operational maintenance costs.
  • the Kalman filter algorithm is applied in the seawater desalination process to diagnose the membrane fouling degree in real time through the numerical membrane fouling index so that the driver can easily determine the membrane fouling degree in real time. Therefore, it is possible to reduce production costs through efficient operation and maintenance using optimized maintenance and management technology.
  • 1 is a schematic configuration diagram of a membrane fouling diagnosis system of the seawater desalination process using the Kalman filter algorithm according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a method for estimating a membrane resistance coefficient in real time for diagnosing membrane fouling in a seawater desalination process using a Kalman filter algorithm according to an exemplary embodiment of the present invention.
  • Figure 3 is a graph comparing the experimental results estimated by using the mathematical Kalman filter the membrane fouling state with time in the present invention and the conventional seawater desalination process.
  • the water treatment process described below exemplifies a seawater desalination process as an example, but it is revealed in advance that not only the seawater desalination process may include all water treatment processes such as groundwater and wastewater.
  • FIG. 1 is a schematic configuration diagram of a membrane fouling diagnosis system of the seawater desalination process using the Kalman filter algorithm according to a preferred embodiment of the present invention.
  • the membrane contamination diagnosis system 1 of the seawater desalination process includes a plant unit 10, a process model unit 20, a Kalman filter unit 30, and a diagnosis unit. 40 and the like.
  • Plant unit 10 refers to the actual seawater desalination plant to produce the production water (freshwater) by performing a seawater desalination water treatment process through the reverse osmosis membrane of the influent (sea water).
  • the input and output before and after the plant unit 10 means an inflow water input value and a production water output value. Since the plant part 10 can be understood by a known technique, detailed description thereof will be omitted.
  • the process model unit 20 performs a reverse osmosis simulation process as a process model well replicating the plant unit 10.
  • the process model unit 20 uses the same input value as the input value corresponding to the inflow water flowing into the plant unit 10 as an input. That is, the input value of the plant section 10 is used as the input value of the process model section 20 at the same time.
  • the Kalman filter unit 30 refers to a Kalman filter algorithm for estimating the film resistance coefficient R m .
  • the Kalman filter unit 30 compares the difference between the actual output value output through the plant unit 10 and the simulation output value output through the process model unit 20, and applies the difference value to the Kalman filter algorithm.
  • the film resistance coefficient in the model unit 20 is estimated in real time. That is, the Kalman filter unit 30 compares each output value composed of the flow rate and concentration of the production water of the actual value output through the actual plant unit 10 and the simulation value output through the process model unit 20 with each other. If there is a difference, the Kalman filter algorithm estimates the value of the film resistance coefficient in real time. In addition, the film resistance coefficient estimated by the Kalman filter unit 30 is input to the process model unit 20 and updated.
  • the diagnosis unit 40 diagnoses the contamination information of the membrane in real time by estimating the updated membrane resistance coefficient. As membrane fouling increases with time, the number of production decreases under the same operating conditions and the membrane resistance coefficient increases. At this time, the production water is also affected by the temperature and concentration of the seawater, but the membrane resistance coefficient excludes all these effects and expresses the pollution phenomenon of the membrane itself.
  • the basic filter definition is to pass what you want and remove what you don't need.
  • the Kalman filter is an algorithm mainly used to remove noise in the data to obtain a desired signal or information.
  • the basic concept of the Kalman filter is to estimate the optimal value representing the current state through recursive data processing based on the accumulated past and present data. That is, the Kalman filter predicts the state value to be estimated by minimizing possible errors by predicting the state of the linear system by mathematical method.
  • the Extended Kalman filter (EFK) is used to linearize the nonlinear.
  • the reverse osmosis membrane desalination process model used in the present invention is as follows.
  • the production water flux produced through the membrane membrane is expressed as follows.
  • v, ⁇ p, ⁇ , R m means the production water flux, trans-membrane pressure, osmotic pressure, membrane resistance (membrane resistance), respectively.
  • x and t represent the position and operating time in the membrane channel.
  • Intra-channel membrane differential pressure is calculated by considering the influence of friction in the rectangular channel and the spacer in the membrane channel as shown below.
  • H, k f , ⁇ denote channel height, spacer friction coefficient and viscosity, respectively.
  • denote channel height, spacer friction coefficient and viscosity, respectively.
  • c w means the concentration of the membrane surface and T a means the absolute temperature of the influent.
  • u means crossflow velocity.
  • the average concentration (c) in the membrane channel is calculated based on the solute mass balance of the membrane channel, and the membrane surface concentration (c w ) is calculated in consideration of concentration polarization.
  • TCF temperature correction coefficient
  • membrane resistance is a characteristic value of the membrane, the production number will vary depending on the membrane resistance coefficient.
  • the membrane resistance coefficient is independent of the temperature and concentration of the influent and independently represents the resistance of the membrane itself. Therefore, as the membrane fouling progresses with time, the membrane resistance coefficient increases. In this respect, membrane contamination can be diagnosed by estimating the real-time membrane resistance coefficient.
  • the main equation of the Kalman filter algorithm for estimating membrane fouling in the present invention is as follows.
  • the parameter representing the membrane fouling to be estimated in the above formula is to be.
  • this Is the membrane resistance (R m ) value in the reverse osmosis membrane seawater desalination process model.
  • the value of the evaluation function (J) is minimized to estimate the optimal film resistance coefficient.
  • the film resistance coefficient reflecting the current membrane fouling condition is estimated by finding a value that minimizes the mean square error.
  • the process noise covariance (Q) and the measured noise covariance (R) are assumed to be Gaussian noise, and the algorithm progresses as the Kalman gain (K) and the estimated error covariance (P) in the Kalman filter algorithm are updated over time. .
  • f is the reverse osmosis membrane desalination process model mentioned above, the input values are seawater conditions and operating conditions, and the membrane resistance coefficient, and the output values are the concentration and flow rate of the produced water.
  • the algorithm is to find the film resistance coefficient that minimizes the error in the concentration and flow rate of the produced water calculated by the simulation of the process model unit and the value of the flow rate and concentration of the produced water measured through the actual plant part.
  • the membrane resistance coefficient can be modeled to represent the current state of the membrane itself regardless of other influent or operating conditions.
  • FIG. 2 is a flowchart illustrating a method for estimating a membrane resistance coefficient in real time for diagnosing membrane contamination in a seawater desalination process using a Kalman filter algorithm according to an exemplary embodiment of the present invention.
  • an input osmosis membrane desalination process model in which an input value identical to an input value corresponding to an inflow water flowing into the plant portion 10 performing the actual reverse osmosis membrane seawater desalination process simulates the plant portion 10. It is input to the unit 20.
  • the Kalman filter algorithm estimates the film resistance coefficient in the process model unit 20 in real time in order to minimize the difference between the measured output value and the simulated output value.
  • the Kalman filter unit 30 outputs each output value including the flow rate and concentration of the production water of the measured value output through the plant unit 10 and the simulation value output through the process model unit 20. Compare and, if there is a difference value, real-time estimation of the film resistance coefficient value in the direction of minimizing it using the Kalman filter algorithm, the estimated film resistance coefficient is input to the process model unit 20 is updated.
  • the estimated membrane resistance coefficient serves as a membrane fouling diagnostic indicator that informs the membrane of the current contamination status in real time.
  • Figure 3 is a graph comparing the experimental results estimated by using the mathematical Kalman filter the membrane fouling state with time in the present invention and the conventional seawater desalination process.
  • the line 1 represents the film resistance coefficient R m
  • the line 2 represents the operating pressure.
  • the operating pressure (line 2) in the conventional seawater desalination process is not independent of seasonal changes in seawater temperature and concentration, and shows a value reflecting this, whereas the membrane resistance coefficient in the seawater desalination process of the present invention (line 1). ) Is a value that excludes the effects of influent conditions in the model.
  • it is decreasing and increasing up and down, which may happen because all the parameter values are not the same instantaneous value because the data used is a daily average value, and it is increasing as a whole, but at some point flush Due to the phenomenon, the film resistance coefficient seems to decrease. If the actual operation data is estimated in real time, it is expected to show more accurate estimates.
  • the present invention establishes a process model that well simulates a reverse osmosis membrane seawater desalination plant, and estimates the membrane resistance coefficient in real time through a Kalman filter algorithm, and provides a membrane contamination that informs the current contamination state of the membrane in real time.
  • a seawater desalination process to be used as a diagnostic indicator.
  • the water treatment process using the Kalman filter algorithm can be widely used in various water treatment process industries such as wastewater, groundwater, as well as seawater desalination process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Disclosed are a system and method for membrane fouling diagnosis in a seawater desalination process using a Kalman filter algorithm. In a preferred embodiment of the present invention, the system for membrane fouling diagnosis in a water-treatment process using a Kalman filter algorithm may comprise: a plant unit wherein inflow water is output as product water via an actual reverse-osmosis water-treatment process; a process-modelling unit for running a reverse-osmosis simulation process which simulates the plant unit, using input values that are the same as input values corresponding to the inflow water flowing into the plant unit; and a Kalman filter unit which compares difference values between the actual output value output via the plant unit and the simulation output value output via the process modelling unit, and which applies the difference values to a Kalman filter algorithm and thereby performs real-time estimation of the filter resistance coefficient in the process modelling unit.

Description

칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템 및 방법Membrane Contamination Diagnosis System and Method for Water Treatment Process using Kalman Filter Algorithm
본 발명은, 수처리 공정에 관한 것으로서, 보다 상세하게는, 칼만필터 알고리즘을 이용한 해수담수화 공정에서의 실시간 막오염 진단 시스템 및 방법에 관한 것이다.The present invention relates to a water treatment process, and more particularly, to a real-time membrane contamination diagnosis system and method in a seawater desalination process using the Kalman filter algorithm.
일반적으로 생활용수나 공업용수로 직접 사용하기 힘든 바닷물(해수)로부터 염분을 포함한 용해물질을 제거하여 순도 높은 음용수 및 생활용수, 공업용수 등을 얻어내는 일련의 수처리 과정을 해수담수화 또는 해수탈염이라고 하고, 해수를 담수로 생산하는데 사용되는 설비를 해수담수화 설비 또는 해수담수화 플랜트라고 한다.In general, a series of water treatment processes to remove high-purity drinking water, living water, and industrial water by removing dissolved substances, including salts, from seawater (sea water), which are difficult to use directly for domestic or industrial water, are called desalination or seawater desalination. The facilities used to produce seawater as freshwater are called seawater desalination plants or seawater desalination plants.
해수담수화의 방식은 크게 기본원리에 따라 분류된다. 열원을 이용하여 해수를 가열하고 발생한 증기를 응축시켜 담수를 얻는 증발법과 삼투현상(Osmosis)을 역으로 이용하여 해수를 반투막(Semi-permeable Membrane)을 통과시켜 담수를 생산하는 역삼투법(Reverse Osmosis)이 해수담수화의 대표적인 방식이다.Desalination methods are largely classified according to their basic principles. The reverse osmosis method is used to heat seawater using a heat source and condense the generated steam to obtain fresh water and reverse osmosis to produce fresh water by passing the semi-permeable membrane through osmosis. It is a representative method of seawater desalination.
기존의 실제 해수담수화 플랜트에서는 운전 및 유지관리는 최적화된 기술을 이용하지 않고, 단순히 경험에 의존하여 시스템을 운전 및 유지관리하였다. 그러나, 역삼투압식 해수담수화 플랜트의 규모가 커지면서, 자동화 개념의 도입이 크게 요구되고 있다. In existing real seawater desalination plants, operation and maintenance did not use optimized technology, but simply operated and maintained the system based on experience. However, as the size of the reverse osmosis desalination plant increases, the introduction of the automation concept is greatly required.
현재 실제 해수담수화 플랜트에서는 생산유량의 감소나 유입압력의 증가를 통해 막오염정도를 판단하여, 막세척 및 교체시기를 결정하고 있다. 그러나, 이 방법은 유입수 조건 및 주변 환경에 종속적이기 때문에 막 자체의 오염 정도를 판단하기 어렵다. Currently, seawater desalination plants determine membrane fouling levels by reducing production flow rates or increasing inflow pressures to determine when to clean and replace membranes. However, since this method is dependent on the influent condition and the surrounding environment, it is difficult to determine the degree of contamination of the membrane itself.
따라서, 이는 부적절한 시기에 막을 세척 및 교체하는 등 최적화되지 않은 유지관리를 행하게 되어 결국 불필요한 운전 및 유지관리 비용을 초래하는 문제가 있다.Therefore, there is a problem that does not optimize maintenance, such as cleaning and replacing the membrane at an inappropriate time, resulting in unnecessary operating and maintenance costs.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 칼만필터 알고리즘을 이용한 해수담수화 공정에서의 실시간 막오염 진단 시스템 및 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a real-time membrane fouling diagnosis system and method in the seawater desalination process using the Kalman filter algorithm.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects which are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여, 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템은, 실제 역삼투막 수처리 공정을 통해 유입수를 생산수로 출력하는 플랜트부와, 상기 플랜트부에 유입되는 상기 유입수에 대응하는 입력값과 동일한 입력값이 사용되고 상기 플랜트부를 모사한 역삼투막 시뮬레이션 공정을 수행하는 공정모델부와, 상기 플랜트부를 통해 출력되는 실제 출력값과 상기 공정모델부를 통해 출력되는 시뮬레이션 출력값의 차이값을 서로 비교하고 그 차이값을 칼만필터 알고리즘에 적용하여 상기 공정모델부 내의 막저항계수를 실시간 추정하는 칼만필터부를 포함할 수 있다.In order to achieve the above object, the membrane fouling diagnosis system of the water treatment process using the Kalman filter algorithm according to a preferred embodiment of the present invention, the plant unit for outputting the influent to the production water through the reverse osmosis membrane water treatment process, and the plant unit A process model unit for performing a reverse osmosis membrane simulation process that uses the same input value as the input value corresponding to the inflow water, and simulates the plant unit, a real output value output through the plant unit, and a simulation output value output through the process model unit. It may include a Kalman filter unit for comparing the difference value with each other and applying the difference value to the Kalman filter algorithm to estimate the film resistance coefficient in the process model unit in real time.
여기서, 상기 수처리 공정은 해수담수화 공정을 포함할 수 있다.Here, the water treatment process may include a seawater desalination process.
또한, 상기 칼만필터부는 상기 플랜트부를 통해 출력되는 실측값과 상기 공정모델부를 통해 출력되는 시뮬레이션값의 생산수의 유량과 농도로 구성되는 각각의 출력값을 서로 비교하고, 그 차이값이 있으면 상기 칼만필터 알고리즘을 이용하여 이를 최소화하는 방향으로 상기 막저항계수 값을 실시간 추정한다.In addition, the Kalman filter unit compares each output value consisting of the flow rate and concentration of the production water of the measured value output through the plant unit and the simulation value output through the process model unit, and if there is a difference between the Kalman filter The film resistance coefficient value is estimated in real time in the direction of minimizing this using an algorithm.
또한, 상기 칼만필터부에서 추정되는 상기 막저항계수는 상기 공정모델부로 입력되어 업데이트되고, 진단부는 업데이트된 상기 막저항계수를 추정하여 막의 오염 정도를 실시간 진단한다.In addition, the membrane resistance coefficient estimated by the Kalman filter unit is input to the process model unit and updated, and a diagnosis unit estimates the updated membrane resistance coefficient to diagnose the degree of contamination of the membrane in real time.
상기 목적을 달성하기 위하여, 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 방법은, (a) 실제 역삼투막 수처리 공정을 수행하는 플랜트부에 유입되는 유입수에 대응하는 입력값과 동일한 입력값이 상기 플랜트부를 모사한 역삼투막 시뮬레이션 공정을 수행하는 공정모델부에 입력되는 단계와, (b) 칼만필터부에서 상기 플랜트부를 통해 출력되는 실제 출력값과 상기 공정모델부를 통해 출력되는 시뮬레이션 출력값의 차이값을 서로 비교하고 그 차이값을 칼만필터 알고리즘에 적용하는 단계와, (c) 상기 칼만필터 알고리즘이 상기 실측 출력값과 상기 시뮬레이션 출력값의 차이값을 최소화하는 방향으로 상기 공정모델부 내의 막저항계수를 실시간 추정하는 단계와, (d) 상기 추정된 막저항계수를 통해 막오염 정도를 실시간 진단하는 단계를 포함할 수 있다.In order to achieve the above object, the membrane contamination diagnosis method of the water treatment process using the Kalman filter algorithm according to a preferred embodiment of the present invention, (a) the input value corresponding to the influent flowing into the plant portion performing the actual reverse osmosis membrane water treatment process Inputting the same input value as the input to the process model part for performing the reverse osmosis membrane simulation process simulating the plant part, and (b) the actual output value output through the plant part from the Kalman filter part and the simulation output value output through the process model part. Comparing the difference values of each other and applying the difference values to the Kalman filter algorithm; and (c) the film resistance in the process model unit in a direction that the Kalman filter algorithm minimizes the difference between the measured output value and the simulated output value. Estimating the coefficients in real time, and (d) using the estimated film resistance coefficient. It may include the step of diagnosing the degree of real-time.
여기서, 상기 (b)단계는, 상기 칼만필터부가 상기 플랜트부를 통해 출력되는 실측값과 상기 공정모델부를 통해 출력되는 시뮬레이션값의 생산수의 유량과 농도로 구성되는 각각의 출력값을 서로 비교하고, 그 차이값이 있으면 상기 칼만필터 알고리즘을 이용하여 이를 최소화하는 방향으로 상기 막저항계수 값을 실시간 추정하는 것을 특징으로 한다.Here, in the step (b), the Kalman filter unit compares each output value composed of the flow rate and concentration of the production water of the measured value output through the plant unit and the simulation value output through the process model unit, and the If there is a difference value, the film resistance coefficient value is estimated in real time in the direction of minimizing it using the Kalman filter algorithm.
또한, 상기 (C)단계에서 추정되는 상기 막저항계수는 상기 공정모델부로 입력되어 업데이트되는 것을 특징으로 한다.In addition, the film resistance coefficient estimated in the step (C) is characterized in that the input to the process model unit is updated.
또한, 상기 (d)단계는, 업데이트된 상기 막저항계수를 추정하여 막의 오염 정도를 실시간 진단하는 것을 특징으로 한다.In addition, the step (d) is characterized in that the degree of contamination of the membrane in real time diagnosis by estimating the updated membrane resistance coefficient.
기타 실시 예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and drawings.
상기와 같이 구성되는 본 발명에 따르면, 역삼투막 해수담수화 플랜트를 잘 모사하는 공정모델을 구축한 후 칼만필터 알고리즘을 적용하여 공정모델 내에서 막오염 정도를 판단하는 막저항계수(membrane resistance)를 실시간 추정하고, 이를 통해 막오염 정도를 효과적으로 진단할 수 있으며, 적절한 시기에 막의 세척이나 교체 등의 유지관리를 하는데 활용될 수 있을 것으로 기대된다. 결과적으로 이는 운전 유지관리 비용의 절감 효과를 가져올 수 있다. According to the present invention constituted as described above, after constructing a process model that well simulates the reverse osmosis membrane seawater desalination plant, applying a Kalman filter algorithm to estimate the membrane resistance coefficient (membrane resistance) in the process model in real time In this way, the degree of membrane contamination can be effectively diagnosed, and it is expected that the membrane can be used for maintenance such as cleaning or replacing the membrane at an appropriate time. As a result, this can result in a reduction in operational maintenance costs.
즉, 본 발명은 해수담수화 공정에서 칼만필터 알고리즘을 적용하여 수치화된 막오염 지수를 통해 실시간으로 막오염 정도를 진단하여 운전자가 실시간으로 막오염 정도를 쉽게 판단할 수 있다. 따라서, 최적화된 유지, 관리기술을 이용하여 효율적인 운전 및 유지관리를 통해 생산 비용을 절감할 수 있다.That is, in the present invention, the Kalman filter algorithm is applied in the seawater desalination process to diagnose the membrane fouling degree in real time through the numerical membrane fouling index so that the driver can easily determine the membrane fouling degree in real time. Therefore, it is possible to reduce production costs through efficient operation and maintenance using optimized maintenance and management technology.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 해수담수화 공정의 막오염 진단 시스템의 개략 구성도,1 is a schematic configuration diagram of a membrane fouling diagnosis system of the seawater desalination process using the Kalman filter algorithm according to an embodiment of the present invention;
도 2는 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 해수담수화 공정의 막오염 진단을 위하여 막저항계수 실시간 추정 방법을 설명하기 위한 흐름도, 그리고,2 is a flowchart illustrating a method for estimating a membrane resistance coefficient in real time for diagnosing membrane fouling in a seawater desalination process using a Kalman filter algorithm according to an exemplary embodiment of the present invention.
도 3은 본 발명과 종래의 해수담수화 공정에서 시간에 따른 막오염 상태를 수학적 칼만필터를 활용하여 추정한 실험결과를 비교한 그래프이다.Figure 3 is a graph comparing the experimental results estimated by using the mathematical Kalman filter the membrane fouling state with time in the present invention and the conventional seawater desalination process.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 구성 및 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 참고로, 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Advantages and features of the present invention, and a configuration and method for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. For reference, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
설명하기에 앞서, 이하에서 설명되는 수처리 공정은 해수담수화 공정을 일 예로 들어 예시하였으나, 해수담수화 공정뿐만 아니라, 지하수, 오폐수 등 모든 수처리 공정을 포함할 수 있음을 미리 밝혀둔다.Prior to the description, the water treatment process described below exemplifies a seawater desalination process as an example, but it is revealed in advance that not only the seawater desalination process may include all water treatment processes such as groundwater and wastewater.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템 및 방법을 상세히 설명하기로 한다.Hereinafter, a membrane fouling diagnosis system and method of a water treatment process using a Kalman filter algorithm according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 해수담수화 공정의 막오염 진단 시스템의 개략 구성도이다.1 is a schematic configuration diagram of a membrane fouling diagnosis system of the seawater desalination process using the Kalman filter algorithm according to a preferred embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 해수담수화 공정의 막오염 진단 시스템(1)은 플랜트부(10), 공정모델부(20), 칼만필터부(30) 및 진단부(40) 등을 포함할 수 있다.As shown in FIG. 1, the membrane contamination diagnosis system 1 of the seawater desalination process according to the preferred embodiment of the present invention includes a plant unit 10, a process model unit 20, a Kalman filter unit 30, and a diagnosis unit. 40 and the like.
플랜트부(10)는 유입수(해수)를 역삼투막을 통해 해수담수화 수처리 공정을 수행하여 생산수(담수)를 생산하는 실제 해수담수화 플랜트를 의미한다. 여기서, 플랜트부(10) 전후의 Input과 Output는 유입수 입력값과 생산수 출력값을 의미한다. 플랜트부(10)는 공지된 기술로 이해 가능하므로 상세한 설명은 생략한다. Plant unit 10 refers to the actual seawater desalination plant to produce the production water (freshwater) by performing a seawater desalination water treatment process through the reverse osmosis membrane of the influent (sea water). Here, the input and output before and after the plant unit 10 means an inflow water input value and a production water output value. Since the plant part 10 can be understood by a known technique, detailed description thereof will be omitted.
공정모델부(20)는 플랜트부(10)를 잘 모사한 공정모델로서 역삼투 시뮬레이션 공정을 수행한다. 공정모델부(20)는 Input으로 플랜트부(10)에 유입되는 유입수에 대응하는 입력값과 동일한 입력값이 사용된다. 즉, 플랜트부(10)의 입력값이 동시에 공정모델부(20)의 입력값으로 사용된다.The process model unit 20 performs a reverse osmosis simulation process as a process model well replicating the plant unit 10. The process model unit 20 uses the same input value as the input value corresponding to the inflow water flowing into the plant unit 10 as an input. That is, the input value of the plant section 10 is used as the input value of the process model section 20 at the same time.
칼만필터부(30)는 막저항계수(Rm)를 추정하기 위한 칼만필터 알고리즘을 의미한다.The Kalman filter unit 30 refers to a Kalman filter algorithm for estimating the film resistance coefficient R m .
칼만필터부(30)는 플랜트부(10)를 통해 출력되는 실제 출력값과 공정모델부(20)를 통해 출력되는 시뮬레이션 출력값의 차이값을 서로 비교하고, 그 차이값을 칼만필터 알고리즘에 적용하여 공정모델부(20) 내의 막저항계수를 실시간 추정한다. 즉, 칼만필터부(30)는 실제 플랜트부(10)를 통해 출력되는 실측값과 공정모델부(20)를 통해 출력되는 시뮬레이션값의 생산수의 유량과 농도로 구성되는 각각의 출력값을 서로 비교하고, 그 차이값이 있으면 칼만필터 알고리즘을 이용하여 이를 최소화하는 방향으로 막저항계수 값을 실시간 추정한다. 또한, 칼만필터부(30)에서 추정되는 막저항계수는 공정모델부(20)로 입력되어 업데이트된다. The Kalman filter unit 30 compares the difference between the actual output value output through the plant unit 10 and the simulation output value output through the process model unit 20, and applies the difference value to the Kalman filter algorithm. The film resistance coefficient in the model unit 20 is estimated in real time. That is, the Kalman filter unit 30 compares each output value composed of the flow rate and concentration of the production water of the actual value output through the actual plant unit 10 and the simulation value output through the process model unit 20 with each other. If there is a difference, the Kalman filter algorithm estimates the value of the film resistance coefficient in real time. In addition, the film resistance coefficient estimated by the Kalman filter unit 30 is input to the process model unit 20 and updated.
진단부(40)는 업데이트된 막저항계수를 추정하여 막의 오염 정보를 실시간 진단하게 된다. 시간에 따라 막오염이 심해지면 같은 운전조건에서 생산수가 감소하여 막저항계수는 증가하게 된다. 이때, 해수의 온도와 농도에 따라서도 생산수는 영향을 받지만, 막저항계수는 이런 모든 영향을 배제하고, 막 자체만의 오염 현상을 표현해 준다. The diagnosis unit 40 diagnoses the contamination information of the membrane in real time by estimating the updated membrane resistance coefficient. As membrane fouling increases with time, the number of production decreases under the same operating conditions and the membrane resistance coefficient increases. At this time, the production water is also affected by the temperature and concentration of the seawater, but the membrane resistance coefficient excludes all these effects and expresses the pollution phenomenon of the membrane itself.
이하, 본 발명의 해수담수화 공정의 막오염 진단 시스템에 적용되는 칼만필터(Kalman filter) 알고리즘에 대하여 구체적으로 설명한다.Hereinafter, the Kalman filter algorithm applied to the membrane fouling diagnosis system of the seawater desalination process of the present invention will be described in detail.
기본적인 필터의 정의는 원하는 것은 통과시키고, 불필요한 것들은 제거하는 역할을 하는 것이다. 이처럼 칼만필터는 원하는 신호나 정보를 획득하기 위해 데이터에 포함되어 있는 잡음(Noise)을 제거하는데 주로 쓰이는 알고리즘이다. 칼만필터의 기본 개념은 누적된 과거데이터와 현재 데이터를 바탕으로 재귀적 연산(recursive data processing)을 통하여 현상태를 표현하는 최적값을 추정해 나가는 것이다. 즉, 칼만필터는 수학적인 방법으로 선형시스템의 상태를 예측하여 발생 가능한 오류를 최소화하여 추정하고자 하는 상태 값을 예측하는 것이다. 실제 현상에서는 비선형적이고, 가우시안 잡음이 아닌 경우가 많으므로, 비선형적인 것을 선형화하는 확장칼만필터(Extended Kalman filter, EFK)가 많이 사용된다. 이러한 칼만필터는 우주선, 미사일, 신호처리, 주식 등에서 주로 쓰인다. 본 발명에서는 역삼투막 해수담수화 공정에서 측정할 수 없는 막오염을 추정해 나가기 위해 모델을 기반으로 한 칼만필터 알고리즘을 적용하였다.The basic filter definition is to pass what you want and remove what you don't need. As such, the Kalman filter is an algorithm mainly used to remove noise in the data to obtain a desired signal or information. The basic concept of the Kalman filter is to estimate the optimal value representing the current state through recursive data processing based on the accumulated past and present data. That is, the Kalman filter predicts the state value to be estimated by minimizing possible errors by predicting the state of the linear system by mathematical method. In practice, since it is nonlinear and not Gaussian noise, the Extended Kalman filter (EFK) is used to linearize the nonlinear. These Kalman filters are mainly used in spacecraft, missiles, signal processing and stocks. In the present invention, the Kalman filter algorithm based on the model is applied to estimate the membrane contamination which cannot be measured in the reverse osmosis membrane desalination process.
우선, 칼만필터 알고리즘을 설명하기에 앞서, 본 발명에 사용된 역삼투막 해수담수화 공정모델은 다음과 같다. 우선, 멤브레인 막을 통하여 생산되는 생산수 플럭스는 다음과 같이 표현된다.First, prior to explaining the Kalman filter algorithm, the reverse osmosis membrane desalination process model used in the present invention is as follows. First, the production water flux produced through the membrane membrane is expressed as follows.
Figure PCTKR2010009020-appb-I000001
Figure PCTKR2010009020-appb-I000001
위의 식에서 v, Δp, Δπ, Rm 은 생산수 플럭스, 막차압(trans-membrane pressure), 역삼투압(osmotic pressure), 막저항계수(membrane resistance)를 각각 의미한다. 그리고 x와 t는 막 채널에서의 위치와 운전시간을 의미한다. 채널내부 막차압은 아래의 식처럼 사각 채널 속에서의 마찰과 막 채널속에 있는 스페이서(spacer)의 영향을 고려하여 계산된다.In the above formula, v, Δp, Δπ, R m means the production water flux, trans-membrane pressure, osmotic pressure, membrane resistance (membrane resistance), respectively. And x and t represent the position and operating time in the membrane channel. Intra-channel membrane differential pressure is calculated by considering the influence of friction in the rectangular channel and the spacer in the membrane channel as shown below.
Figure PCTKR2010009020-appb-I000002
Figure PCTKR2010009020-appb-I000002
위의 식에서 H, kf, μ는 채널의 높이, 스페이서 마찰계수, 점도를 각각 의미한다. 또한, 역삼투압의 경우에는 실험에 의해 구성된 아래의 식을 통하여 계산된다.In the above formula, H, k f , μ denote channel height, spacer friction coefficient and viscosity, respectively. In addition, in the case of reverse osmosis is calculated through the following formula configured by the experiment.
Figure PCTKR2010009020-appb-I000003
Figure PCTKR2010009020-appb-I000003
위의 식에서 cw 는 막표면의 농도를 의미하고, Ta 는 유입수의 절대온도를 의미한다. 그리고, 막 채널 속의 직교류(crossflow velocity)는 아래의 식처럼 채널 속 overall mass balance에 의해서 계산된다.In the above equation, c w means the concentration of the membrane surface and T a means the absolute temperature of the influent. The crossflow velocity in the membrane channel is then calculated by the overall mass balance in the channel as shown below.
Figure PCTKR2010009020-appb-I000004
Figure PCTKR2010009020-appb-I000004
위의 식에서 u는 직교류(crossflow velocity)를 의미한다. 또한, 막 채널속 평균농도(c)는 막 채널의 solute mass balance에 의거하여 계산되며, 막표면 농도(cw)는 농도분극(concentration polarization)을 고려하여 계산된다.In the above equation, u means crossflow velocity. In addition, the average concentration (c) in the membrane channel is calculated based on the solute mass balance of the membrane channel, and the membrane surface concentration (c w ) is calculated in consideration of concentration polarization.
Figure PCTKR2010009020-appb-I000005
Figure PCTKR2010009020-appb-I000005
위의 식에서 B 는 용질투과계수(solute permeability coefficient)이고, D는 확산계수(diffusion coefficient)이며, rj는 막제거율이다. 그리고, 마지막으로 온도를 고려해주기 위해 아래의 온도보정계수(TCF)를 고려하였다.In the above equation, B is the solute permeability coefficient, D is the diffusion coefficient, rjIs the membrane removal rate. Finally, the following temperature correction coefficient (TCF) was considered to consider the temperature.
Figure PCTKR2010009020-appb-I000006
Figure PCTKR2010009020-appb-I000006
위 역삼투막 해수담수화 공정모델 속에서 막저항계수(membrane resistance)는 막의 특성 값으로써, 막저항계수에 따라 생산수가 달라지게 된다. 막저항계수는 유입수의 온도와 농도의 영향을 받지 않고, 독립적으로 막자체의 저항 값을 표현하게 된다. 따라서, 시간에 따라 막오염이 진행되면, 막저항계수가 증가하는데, 이런 관점에서 실시간 막저항계수를 추정함으로써 막오염을 진단할 수 있다.In the reverse osmosis membrane seawater desalination process model, membrane resistance (membrane resistance) is a characteristic value of the membrane, the production number will vary depending on the membrane resistance coefficient. The membrane resistance coefficient is independent of the temperature and concentration of the influent and independently represents the resistance of the membrane itself. Therefore, as the membrane fouling progresses with time, the membrane resistance coefficient increases. In this respect, membrane contamination can be diagnosed by estimating the real-time membrane resistance coefficient.
본 발명에서 막오염을 추정하기 위한 칼만필터 알고리즘의 주요 수식은 다음과 같다. The main equation of the Kalman filter algorithm for estimating membrane fouling in the present invention is as follows.
Figure PCTKR2010009020-appb-I000007
Figure PCTKR2010009020-appb-I000007
위의 수식에서 추정하고자 하는 막오염을 표현해주는 파라미터는
Figure PCTKR2010009020-appb-I000008
이다. 이
Figure PCTKR2010009020-appb-I000009
는 역삼투막 해수담수화 공정 모델에서 막저항계수 (membrane resistance, Rm) 값이다. 위의 알고리즘에서 최적의 막저항계수를 추정하기 위해 평가함수(evaluation function, J) 값을 최소화한다. 즉 평균제곱오차(mean square error)를 최소화하는 값을 찾는 방법으로 현재 막오염 상태를 반영하는 막저항계수를 추정하는 것이다. 이를 위해 프로세스노이즈공분산(Q) 과 측정노이즈 공분산(R) 값을 Gaussian noise라고 가정하고, 칼만필터 알고리즘 속의 칼만게인(K)과 추정에러공분산(P)이 시간에 따라 업데이트되면서 이 알고리즘이 진행된다. 이 알고리즘에서 f 는 위에서 언급한 역삼투막 해수담수화 공정 모델이며, 입력 값은 해수의 조건 및 운전 조건, 그리고 막저항계수이며, 출력 값은 생산수의 농도와 유량이다. 실제 플랜트부를 통해 측정된 생산수의 유량과 농도의 값과 공정모델부의 시뮬레이션을 통해 산출된 생산수의 농도와 유량의 오차가 최소화가 되도록 하는 막저항계수를 찾는 것이 본 알고리즘이다. 결국, 이 막저항계수는 모델을 통해 다른 유입수 조건이나 운전조건에 상관없이 현재 막 자체의 상태를 나타낼 수 있게 되는 것이다.
The parameter representing the membrane fouling to be estimated in the above formula is
Figure PCTKR2010009020-appb-I000008
to be. this
Figure PCTKR2010009020-appb-I000009
Is the membrane resistance (R m ) value in the reverse osmosis membrane seawater desalination process model. In the above algorithm, the value of the evaluation function (J) is minimized to estimate the optimal film resistance coefficient. In other words, the film resistance coefficient reflecting the current membrane fouling condition is estimated by finding a value that minimizes the mean square error. For this purpose, the process noise covariance (Q) and the measured noise covariance (R) are assumed to be Gaussian noise, and the algorithm progresses as the Kalman gain (K) and the estimated error covariance (P) in the Kalman filter algorithm are updated over time. . In this algorithm, f is the reverse osmosis membrane desalination process model mentioned above, the input values are seawater conditions and operating conditions, and the membrane resistance coefficient, and the output values are the concentration and flow rate of the produced water. The algorithm is to find the film resistance coefficient that minimizes the error in the concentration and flow rate of the produced water calculated by the simulation of the process model unit and the value of the flow rate and concentration of the produced water measured through the actual plant part. As a result, the membrane resistance coefficient can be modeled to represent the current state of the membrane itself regardless of other influent or operating conditions.
도 2는 본 발명의 바람직한 실시예에 따른 칼만필터 알고리즘을 이용한 해수담수화 공정의 막오염 진단을 위하여 막저항계수 실시간 추정 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a method for estimating a membrane resistance coefficient in real time for diagnosing membrane contamination in a seawater desalination process using a Kalman filter algorithm according to an exemplary embodiment of the present invention.
도 2에 도시된 바와 같이, 먼저, 실제 역삼투막 해수담수화 공정을 수행하는 플랜트부(10)에 유입되는 유입수에 대응하는 입력값과 동일한 입력값이 플랜트부(10)를 모사한 역삼투막 해수담수화 공정모델부(20)에 입력된다. As shown in FIG. 2, first, an input osmosis membrane desalination process model in which an input value identical to an input value corresponding to an inflow water flowing into the plant portion 10 performing the actual reverse osmosis membrane seawater desalination process simulates the plant portion 10. It is input to the unit 20.
다음으로, 칼만필터부(30)에서 플랜트부(10)를 통해 출력되는 실제 출력값과 공정모델부(20)를 통해 출력되는 시뮬레이션 출력값의 차이값을 서로 비교하고, 그 차이값을 칼만필터 알고리즘에 적용한다.Next, the difference between the actual output value output from the Kalman filter unit 30 through the plant unit 10 and the simulation output value output through the process model unit 20 is compared with each other, and the difference value is compared to the Kalman filter algorithm. Apply.
다음으로, 칼만필터 알고리즘은 실측 출력값과 시뮬레이션 출력값의 차이값을 최소화하기 위해 공정모델부(20) 내의 막저항계수를 실시간 추정하게 된다. 구체적으로는, 칼만필터부(30)는 플랜트부(10)를 통해 출력되는 실측값과 공정모델부(20)를 통해 출력되는 시뮬레이션값의 생산수의 유량과 농도로 구성되는 각각의 출력값을 서로 비교하고, 그 차이값이 있으면 칼만필터 알고리즘을 이용하여 이를 최소화하는 방향으로 막저항계수 값을 실시간 추정하게 되며, 이렇게 추정되는 막저항계수는 공정모델부(20)로 입력되어 업데이트된다.Next, the Kalman filter algorithm estimates the film resistance coefficient in the process model unit 20 in real time in order to minimize the difference between the measured output value and the simulated output value. Specifically, the Kalman filter unit 30 outputs each output value including the flow rate and concentration of the production water of the measured value output through the plant unit 10 and the simulation value output through the process model unit 20. Compare and, if there is a difference value, real-time estimation of the film resistance coefficient value in the direction of minimizing it using the Kalman filter algorithm, the estimated film resistance coefficient is input to the process model unit 20 is updated.
결과적으로, 추정된 막저항계수는 막의 현재 오염 상태를 실시간으로 알려주는 막오염 진단 지표로서의 역할을 한다.As a result, the estimated membrane resistance coefficient serves as a membrane fouling diagnostic indicator that informs the membrane of the current contamination status in real time.
도 3은 본 발명과 종래의 해수담수화 공정에서 시간에 따른 막오염 상태를 수학적 칼만필터를 활용하여 추정한 실험결과를 비교한 그래프이다.Figure 3 is a graph comparing the experimental results estimated by using the mathematical Kalman filter the membrane fouling state with time in the present invention and the conventional seawater desalination process.
도 3에 나타낸 그래프에서, ①번 선은 막저항계수(Rm)를, ②번 선은 운전 압력(Operating pressure)을 나타낸다. 종래의 해수담수화 공정에서의 운전 압력(②번 선)은 해수의 온도와 농도의 계절적 변화에 독립적이지 못하고, 이를 반영한 값을 나타나는 반면, 본 발명의 해수담수화 공정에서의 막저항계수(①번 선)는 모델 속에서 유입수의 조건의 영향을 배제하는 값으로 나타난다. 여기서 때로는 감소하고, 증가하는 오르내림 현상을 보이고 있는데, 이는 사용한 데이터가 하루 평균값이기에 모든 parameter값이 같은 순간의 값이 아니기 때문에 이러한 현상이 발생할 수도 있고, 또한, 전체적으로는 증가하고 있지만, 어느 시점에서는 flush 현상으로 인해 막저항계수가 감소하는 것으로 판단된다. 실제 운전데이터를 실시간으로 추정할 경우 더 정확한 추정 값을 보여줄 것으로 생각된다.In the graph shown in FIG. 3, the line ① represents the film resistance coefficient R m , and the line ② represents the operating pressure. The operating pressure (line ②) in the conventional seawater desalination process is not independent of seasonal changes in seawater temperature and concentration, and shows a value reflecting this, whereas the membrane resistance coefficient in the seawater desalination process of the present invention (line ①). ) Is a value that excludes the effects of influent conditions in the model. Here, sometimes it is decreasing and increasing up and down, which may happen because all the parameter values are not the same instantaneous value because the data used is a daily average value, and it is increasing as a whole, but at some point flush Due to the phenomenon, the film resistance coefficient seems to decrease. If the actual operation data is estimated in real time, it is expected to show more accurate estimates.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징들이 변경되지 않고서 다른 구체적인 형태로 실시될 수 있다는 것으로 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. It will be understood that. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
본 발명은 역삼투막 해수담수화 플랜트를 잘 모사하는 공정모델을 구축한 후 공정 모델 내 막저항계수를 칼만필터 알고리즘을 통해 실시간 추정하고, 추정된 막저항계수를 막의 현재 오염 상태를 실시간으로 알려주는 막오염 진단 지표로 사용하는 해수담수화 공정을 제안한다. 이러한 칼만필터 알고리즘을 이용한 수처리 공정은 해수담수화 공정뿐만 아니라, 오폐수, 지하수 등 다양한 수처리 공정 산업분야에서 광범위하게 이용될 수 있다.The present invention establishes a process model that well simulates a reverse osmosis membrane seawater desalination plant, and estimates the membrane resistance coefficient in real time through a Kalman filter algorithm, and provides a membrane contamination that informs the current contamination state of the membrane in real time. We propose a seawater desalination process to be used as a diagnostic indicator. The water treatment process using the Kalman filter algorithm can be widely used in various water treatment process industries such as wastewater, groundwater, as well as seawater desalination process.

Claims (9)

  1. 실제 역삼투막 수처리 공정을 통해 유입수를 생산수로 출력하는 플랜트부;Plant unit for outputting the influent to the production water through the actual reverse osmosis membrane water treatment process;
    상기 플랜트부에 유입되는 상기 유입수에 대응하는 입력값과 동일한 입력값이 사용되고 상기 플랜트부를 모사한 역삼투막 시뮬레이션 공정을 수행하는 공정모델부; 및A process model unit which uses an input value corresponding to the inflow water flowing into the plant portion and performs a reverse osmosis membrane simulation process that simulates the plant portion; And
    상기 플랜트부를 통해 출력되는 실제 출력값과 상기 공정모델부를 통해 출력되는 시뮬레이션 출력값의 차이값을 서로 비교하고, 그 차이값을 칼만필터 알고리즘에 적용하여 상기 공정모델부 내의 막저항계수를 실시간 추정하는 칼만필터부를 포함하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템.A Kalman filter comparing the difference between the actual output value output through the plant unit and the simulation output value output through the process model unit, and applying the difference value to the Kalman filter algorithm to estimate the film resistance coefficient in the process model unit in real time. Membrane contamination diagnosis system of the water treatment process using the Kalman filter algorithm.
  2. 제 1 항에 있어서, 상기 칼만필터부는 상기 플랜트부를 통해 출력되는 실측값과 상기 공정모델부를 통해 출력되는 시뮬레이션값의 생산수의 유량과 농도로 구성되는 각각의 출력값을 서로 비교하고, 그 차이값이 있으면 상기 칼만필터 알고리즘을 이용하여 이를 최소화하는 방향으로 상기 막저항계수 값을 실시간 추정하는 것을 특징으로 하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템.The method of claim 1, wherein the Kalman filter unit compares each output value consisting of the flow rate and concentration of the production water of the measured value output through the plant unit and the simulation value output through the process model unit, the difference value is The membrane contamination diagnosis system of the water treatment process using the Kalman filter algorithm, characterized in that to estimate the value of the film resistance coefficient in real time in the direction of minimizing it using the Kalman filter algorithm.
  3. 제 1 항에 있어서, 상기 칼만필터부에서 추정되는 상기 막저항계수는 상기 공정모델부로 입력되어 업데이트되고, 진단부는 업데이트된 상기 막저항계수를 추정하여 막의 오염 정도를 실시간 진단하는 것을 특징으로 하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템.2. The Kalman method of claim 1, wherein the film resistance coefficient estimated by the Kalman filter unit is input to the process model unit and updated, and a diagnosis unit estimates the updated membrane resistance coefficient in real time to diagnose the degree of contamination of the membrane. Membrane contamination diagnosis system of water treatment process using filter algorithm.
  4. 제 1 항에 있어서, 상기 수처리 공정은 해수담수화 공정을 포함하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 시스템.The membrane fouling diagnosis system of claim 1, wherein the water treatment process comprises a Kalman filter algorithm comprising a seawater desalination process.
  5. (a) 실제 역삼투막 수처리 공정을 수행하는 플랜트부에 유입되는 유입수에 대응하는 입력값과 동일한 입력값이 상기 플랜트부를 모사한 역삼투막 시뮬레이션 공정을 수행하는 공정모델부에 입력되는 단계; (a) inputting an input value equal to an input value corresponding to an inflow water flowing into a plant portion performing the actual reverse osmosis membrane water treatment process, into a process model portion performing a reverse osmosis membrane simulation process simulating the plant portion;
    (b) 칼만필터부에서 상기 플랜트부를 통해 출력되는 실제 출력값과 상기 공정모델부를 통해 출력되는 시뮬레이션 출력값의 차이값을 서로 비교하고, 그 차이값을 칼만필터 알고리즘에 적용하는 단계;(b) comparing the difference value between the actual output value output through the plant unit and the simulation output value output through the process model unit in the Kalman filter unit, and applying the difference value to the Kalman filter algorithm;
    (c) 상기 칼만필터 알고리즘이 상기 실측 출력값과 상기 시뮬레이션 출력값의 차이값을 최소화하는 방향으로 상기 공정모델부 내의 막저항계수를 실시간 추정하는 단계; 및(c) the Kalman filter algorithm estimating a film resistance coefficient in the process model unit in a direction to minimize the difference between the measured output value and the simulated output value; And
    (d) 상기 추정된 막저항계수를 통해 막오염 정도를 실시간 진단하는 단계를 포함하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 방법.(D) membrane fouling diagnostic method of the water treatment process using a Kalman filter algorithm comprising the step of real-time diagnosis of the membrane fouling degree through the estimated membrane resistance coefficient.
  6. 제 5 항에 있어서, 상기 (b)단계는, 상기 칼만필터부가 상기 플랜트부를 통해 출력되는 실측값과 상기 공정모델부를 통해 출력되는 시뮬레이션값의 생산수의 유량과 농도로 구성되는 각각의 출력값을 서로 비교하고, 그 차이값이 있으면 상기 칼만필터 알고리즘을 이용하여 이를 최소화하는 방향으로 상기 막저항계수 값을 실시간 추정하는 것을 특징으로 하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 방법.The method of claim 5, wherein the step (b) comprises: outputting each output value including a flow rate and a concentration of the production water of the measured value outputted through the plant unit and the simulation value outputted through the process model unit; And comparing and comparing the Kalman filter algorithm with a Kalman filter algorithm to estimate the membrane resistance coefficient value in real time.
  7. 제 6 항에 있어서, 상기 (C)단계에서 추정되는 상기 막저항계수는 상기 공정모델부로 입력되어 업데이트되는 것을 특징으로 하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 방법.7. The method of claim 6, wherein the film resistance coefficient estimated in step (C) is input to the process model unit and updated.
  8. 제 7 항에 있어서, 상기 (d)단계는, 업데이트된 상기 막저항계수를 추정하여 막의 오염 정도를 실시간 진단하는 것을 특징으로 하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 방법.8. The method of claim 7, wherein the step (d) comprises diagnosing the contamination of the membrane in real time by estimating the updated membrane resistance coefficient.
  9. 제 5 항에 있어서, 상기 수처리 공정은 해수담수화 공정을 포함하는 칼만필터 알고리즘을 이용한 수처리 공정의 막오염 진단 방법.The method of claim 5, wherein the water treatment process comprises a seawater desalination process.
PCT/KR2010/009020 2010-12-16 2010-12-16 System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm WO2012081746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/009020 WO2012081746A1 (en) 2010-12-16 2010-12-16 System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/009020 WO2012081746A1 (en) 2010-12-16 2010-12-16 System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm

Publications (1)

Publication Number Publication Date
WO2012081746A1 true WO2012081746A1 (en) 2012-06-21

Family

ID=46244835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009020 WO2012081746A1 (en) 2010-12-16 2010-12-16 System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm

Country Status (1)

Country Link
WO (1) WO2012081746A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105408008A (en) * 2013-12-18 2016-03-16 三菱重工业株式会社 Scale detection device and method for concentrating device, and water reclamation processing system
CN109833783A (en) * 2017-11-28 2019-06-04 天津工业大学 The preparation of carbon nanomaterial/conducting polymer hybridized film and fouling membrane monitoring technology
WO2020219626A1 (en) * 2019-04-24 2020-10-29 Schlumberger Technology Corporation Digital seawater processing
CN112580248A (en) * 2020-12-18 2021-03-30 同济大学 Mesoscopic film surface pollution simulation method
EP3851181A1 (en) * 2020-01-17 2021-07-21 Linde GmbH Method for monitoring a membrane technical device
CN114538565A (en) * 2022-03-11 2022-05-27 西安热工研究院有限公司 System for predicting residual water production in reverse osmosis device cleaning period

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126882A (en) * 1994-10-28 1996-05-21 Toshiba Corp Device for controlling operation of water generating plant
JP3311158B2 (en) * 1994-08-01 2002-08-05 東芝アイティー・コントロールシステム株式会社 Operation control device for desalination plant
JP2007014878A (en) * 2005-07-07 2007-01-25 Kurita Water Ind Ltd Diagnostic method of contamination conditions of membrane separation apparatus, diagnostic apparatus and washing method of membrane separation apparatus
US20090134074A1 (en) * 2007-11-28 2009-05-28 Doran Paul S Water Purification, Enhancement, and Dispensing Appliance
KR20100057262A (en) * 2008-11-21 2010-05-31 한국건설기술연구원 Membrane fouling pollution index measurement apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311158B2 (en) * 1994-08-01 2002-08-05 東芝アイティー・コントロールシステム株式会社 Operation control device for desalination plant
JPH08126882A (en) * 1994-10-28 1996-05-21 Toshiba Corp Device for controlling operation of water generating plant
JP2007014878A (en) * 2005-07-07 2007-01-25 Kurita Water Ind Ltd Diagnostic method of contamination conditions of membrane separation apparatus, diagnostic apparatus and washing method of membrane separation apparatus
US20090134074A1 (en) * 2007-11-28 2009-05-28 Doran Paul S Water Purification, Enhancement, and Dispensing Appliance
KR20100057262A (en) * 2008-11-21 2010-05-31 한국건설기술연구원 Membrane fouling pollution index measurement apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105408008A (en) * 2013-12-18 2016-03-16 三菱重工业株式会社 Scale detection device and method for concentrating device, and water reclamation processing system
US10407331B2 (en) 2013-12-18 2019-09-10 Mitsubishi Heavy Industries Engineering, Ltd. Scale detection device and method for concentrating device, and water reclamation processing treatment system
CN109833783A (en) * 2017-11-28 2019-06-04 天津工业大学 The preparation of carbon nanomaterial/conducting polymer hybridized film and fouling membrane monitoring technology
CN109833783B (en) * 2017-11-28 2022-04-19 天津工业大学 Preparation of carbon nano material/polymer conductive hybrid membrane and membrane pollution monitoring technology
WO2020219626A1 (en) * 2019-04-24 2020-10-29 Schlumberger Technology Corporation Digital seawater processing
EP3851181A1 (en) * 2020-01-17 2021-07-21 Linde GmbH Method for monitoring a membrane technical device
CN112580248A (en) * 2020-12-18 2021-03-30 同济大学 Mesoscopic film surface pollution simulation method
CN112580248B (en) * 2020-12-18 2022-07-29 同济大学 Mesoscopic film surface pollution simulation method
CN114538565A (en) * 2022-03-11 2022-05-27 西安热工研究院有限公司 System for predicting residual water production in reverse osmosis device cleaning period
CN114538565B (en) * 2022-03-11 2023-06-09 西安热工研究院有限公司 Residual water production quantity prediction system in reverse osmosis device cleaning period

Similar Documents

Publication Publication Date Title
WO2012081746A1 (en) System and method for membrane fouling diagnosis in a water-treatment process using a kalman filter algorithm
Park et al. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling
KR101995355B1 (en) Prediction method of reverse osmosis process
Christensen et al. Effects of relaxation time on fouling propensity in membrane bioreactors
KR102097552B1 (en) Method for determination of the amount of a model input data for predicting membrane fouling in reverse osmosis process and device using the same
CN111811580A (en) Water quantity/water quality monitoring and point distribution method and early warning response system
CN112857471B (en) Industrial Internet of things chemical wastewater treatment emission on-line monitoring and early warning management cloud platform
KR101706452B1 (en) Realtime sensing method for membrane abnormal state
KR101963124B1 (en) Remote diagnosing and managing system for small-scaled desalination equipment being separately installed in island area, and method for the same
CN112417765B (en) Sewage treatment process fault detection method based on improved teacher-student network model
Huang et al. A new high-pressure optical membrane module for direct observation of seawater RO membrane fouling and cleaning
Altunkaynak et al. Prediction of specific permeate flux during crossflow microfiltration of polydispersed colloidal suspensions by fuzzy logic models
Kaneko et al. Physical and statistical model for predicting a transmembrane pressure jump for a membrane bioreactor
CN108593005A (en) A kind of marine environmental monitoring system based on underwater robot
KR20080101588A (en) Automatic contro method and device for membrane filtering system
Ludwig et al. An advanced simulation model for membrane bioreactors: development, calibration and validation
Pascual et al. Data-driven models of steady state and transient operations of spiral-wound RO plant
Veza et al. Measurement of biofouling in seawater: some practical tests
KR102085296B1 (en) The supporting method of determination of fouling control in reverse osmosis using classification algorithm
da Silva et al. An approach based on neural networks for estimation and generalization of crossflow filtration processes
TWM592966U (en) Water quality monitoring system
KR101988742B1 (en) System and method for controlling forward osmosis process
Hwang et al. Prediction of membrane fouling rate by neural network modeling
Salamon et al. Analysis of reverse osmosis filter permeability
Eren et al. Development of artificial neural network for prediction of salt recovery by nanofiltration from textile industry wastewaters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860885

Country of ref document: EP

Kind code of ref document: A1