WO2012066935A1 - Solar cell module and solar power generation device - Google Patents

Solar cell module and solar power generation device Download PDF

Info

Publication number
WO2012066935A1
WO2012066935A1 PCT/JP2011/075331 JP2011075331W WO2012066935A1 WO 2012066935 A1 WO2012066935 A1 WO 2012066935A1 JP 2011075331 W JP2011075331 W JP 2011075331W WO 2012066935 A1 WO2012066935 A1 WO 2012066935A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
cell module
cell element
end surface
Prior art date
Application number
PCT/JP2011/075331
Other languages
French (fr)
Japanese (ja)
Inventor
豪 鎌田
前田 強
恭子 東田
内田 秀樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012066935A1 publication Critical patent/WO2012066935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a solar power generation device.
  • Conventional solar power generation apparatuses generally have a form in which a plurality of solar battery panels are spread over the entire surface facing the sun.
  • a solar power generation apparatus in which a gantry is installed on the roof of a building and a plurality of solar battery panels are spread on the gantry is known.
  • the amount of light incident on the solar cell panel is determined by the area of the solar cell. Therefore, in order to secure the required power generation amount, a solar cell with a corresponding area is required. Therefore, in order to increase the amount of power generation using a conventional solar power generation device, it is necessary to install a large-area solar cell panel, which inevitably increases the cost.
  • the solar cell which has the condensing member which condenses sunlight, and the solar cell element provided in the edge part of the condensing member as a structure replaced with the above conventional solar cells is proposed (for example, see Patent Documents 1 to 4).
  • a condensing member occupying a large area in plan view collects light at the end of the condensing member after receiving sunlight on one main surface, and the condensed light is applied to the solar cell element. Incident light is generated. By doing so, it is possible to secure the amount of power generation while reducing the use area of the solar cell element.
  • the light condensing member with light transmittance, for example, it becomes possible to arrange in a window that occupies a large area in a building, or it becomes possible to arrange a plurality of stacked layers, etc. Thus, it can be installed with a higher degree of freedom than conventional solar power generation devices.
  • An aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell module that realizes high power generation efficiency. Another object is to provide a solar power generation device that achieves high power generation efficiency by using the solar cell module described above.
  • a solar cell module includes a first light collecting unit, a first solar cell element provided along one end surface of the light collecting unit, and a second solar cell.
  • the first condensing unit causes light entering the inside from one of the pair of opposing surfaces in contact with the one end surface to propagate through the inside and collect the light on at least the one end surface.
  • the second solar cell element is arranged so that the leaked light emitted obliquely from the pair of opposing surfaces toward the one end surface side is incident on the first solar cell element.
  • the light-receiving surface of the said 2nd solar cell element is provided facing the said one end surface,
  • the said 2nd solar cell element has the dimension in the thickness direction of a said 1st condensing part.
  • the width of the one end face in the thickness direction of the first light collecting part may be larger.
  • the light emitting device may further include a reflecting portion that faces at least one of the pair of facing surfaces and reflects the leaked light toward the second solar cell element.
  • the apparatus may further include a second light collecting unit that receives the leaked light and collects the light on the second solar cell element.
  • the said 2nd condensing part is plate shape, a said 2nd solar cell element is provided along the end surface of the said 2nd condensing part, The said 2nd condensing part The light incident on the inside from one of the pair of opposing surfaces in contact with the one end surface of the second light collecting portion is propagated through the inside and collected on at least one end surface of the second light collecting portion. The light may be emitted and emitted to the second solar cell element.
  • the second light collecting section may be a concave mirror.
  • the second condensing unit may be a condensing lens.
  • the condensing lens may be a cylindrical lens.
  • the condenser lens may be a toric lens.
  • the condenser lens may be a lens array.
  • the second solar cell element may be provided at a focal position of the second light collector.
  • the condensing unit causes light incident on one side from a pair of opposing surfaces in contact with the one end surface to propagate through the inside to be condensed on at least the one end surface, and is emitted to the solar cell element.
  • the second light collecting unit receives leaked light that is emitted obliquely from at least one of the pair of opposing surfaces toward the one end surface, and passes through the light collecting unit to the solar cell element. You may be comprised so that it may condense.
  • the said 2nd condensing part changes the advancing direction of the said leak light so that the incident angle with respect to the said one end surface of the said leak light incident on the said 1st condensing part may become small.
  • You may have a light advancing direction change part.
  • a reflective portion that faces at least one of the pair of opposed surfaces and reflects the leaked light toward the second light collecting portion may be provided.
  • the solar power generation device of one form of the present invention includes the solar cell module.
  • the aspect of the present invention it is possible to provide a solar cell module that realizes high power generation efficiency and a solar power generation apparatus using the solar cell module.
  • FIG. 1 is a perspective view showing a schematic configuration of a solar power generation device 100 and a solar cell module 1 of the present embodiment.
  • FIG. 2 is a plan view showing a schematic configuration of the solar cell module 1.
  • FIG. 3 is a cross-sectional view of the light collecting unit 10 constituting the solar cell module 1.
  • FIG. 4 is a side view of the solar cell module 1.
  • the photovoltaic power generation apparatus 100 of the present embodiment integrates a plurality (two in the figure) of solar cell modules 1 that generate power by light irradiation, thereby connecting external devices connected via wiring 150.
  • the power for driving 200 is supplied.
  • solar power generation device 100 solar power generation using irradiated sunlight is performed by installing the solar power generation device 100 on the roof of a building as in the past.
  • the solar power generation device 100 may include, for example, a storage battery that stores electric power obtained from the solar cell module 1 in addition to the solar cell module 1.
  • the solar cell module 1 is gathered at a position on the plate-like light collecting portion 10, the first solar cell element 20 provided along the one end face 10 c of the light collecting portion 10, and the one end face 10 c side of the light collecting portion 10. And a second solar cell element 30 provided apart from the optical unit 10.
  • the condensing unit 10 has a function of propagating the incident light L to the one end face 10 c and guiding it to the first solar cell element 20. That is, in the solar cell module 1, the light L taken from the light collecting unit 10 is irradiated to the first solar cell element 20. In the 1st solar cell element 20, it photoelectrically converts using incident light and takes out as electrical energy.
  • the second solar cell element 30 receives this leakage light, photoelectrically converts the incident leakage light, and takes it out as electric energy.
  • an xyz orthogonal coordinate system may be set, and the positional relationship of each member may be described with reference to the xyz orthogonal coordinate system.
  • the same plane as the incident surface of the light collector 10 is the xy plane
  • the extending direction of the first solar cell element 20 is the y-axis direction
  • the direction orthogonal to the y-axis direction in the horizontal plane is the x-axis direction
  • a direction (that is, a vertical direction) orthogonal to each of the x-axis direction and the y-axis direction is defined as a z-axis direction.
  • the condensing part 10 is a plate-like member formed using a light-transmitting material.
  • FIG. 2 it is illustrated as a member having a rectangular shape in plan view.
  • an organic material such as an acrylic resin or a polycarbonate resin, or an inorganic material such as glass can be used as a material for forming the light collecting unit 10, but the material is not limited thereto.
  • the condensing unit 10 is configured to take in the light L from a first main surface (one surface) 10a which is a surface parallel to the xy plane and is an upper surface in the z direction.
  • the second main surface (the other surface) 10b which is the surface facing the first main surface 10a, is provided with a plurality of reflecting portions 18 having a function of changing the traveling direction of the light L incident on the inside. Yes.
  • the reflecting portion 18 is composed of a plurality of triangular prism-shaped ridges formed on the second main surface 10 b of the light collecting portion 10.
  • the light L incident on the inside of the light collecting unit 10 from the first main surface 10 a propagates while being repeatedly reflected on the inner surface of the light collecting unit 10, and is collected on one end surface 10 c that is a connection surface with the first solar cell element 20. Lighted and ejected.
  • the plurality of reflecting portions 18 are formed apart from each other in a direction in which the triangular prism ridgeline of each reflecting portion 18 is parallel to the one end face 10 c in plan view.
  • the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between adjacent reflecting portions 18 are all drawn the same. As described above, the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between the adjacent reflecting portions 18 may all be the same or different.
  • the reflection unit 18 of the present embodiment is formed integrally with the light collecting unit 10 by processing the light collecting unit 10 itself.
  • the reflecting portion 18 can be formed, for example, by cutting the originally flat surface of the light collecting portion 10 ( ⁇ second main surface 10b). Or you may form the reflection part 18 by methods, such as performing resin injection molding using the metal mold
  • the reflecting portion 18 has a triangular prism shape, as shown in FIG. 3, in this embodiment, the cross section of the reflecting portion 18 when the light collecting portion 10 is cut along a plane orthogonal to the ridgeline of the reflecting portion 18.
  • the shape is a right triangle. That is, each reflector 18 is orthogonal to the first surface T1, which is a surface inclined at an inclination angle ⁇ A with respect to the second main surface 10b, and the second main surface 10b (that is, the inclination angle ⁇ B is 90 degrees).
  • the first surface T1 functions as a reflecting surface that reflects (totally reflects) light incident from the first main surface 10a.
  • the incident angle ⁇ 2 of the light on the first surface T1 changes according to the inclination angle ⁇ A of the first surface T1. Therefore, the inclination angle ⁇ A of the first surface T1 is set in advance so that the incident angle ⁇ 2 of the light incident on the first surface T1 becomes equal to or greater than the critical angle at the interface between the first surface T1 and air and the light is totally reflected. Keep it.
  • the inclination angle ⁇ A of the first surface T1 is 24 degrees
  • the refractive index of the light collecting unit 10 is 1.5
  • the refractive index of air is 1.0.
  • the critical angle at the interface between the first surface T1 or the second inclined surface T2 and the air is 41 degrees.
  • the incident angle ⁇ 0 of the light L to the first main surface 10a of the light collecting unit 10 is 27 degrees or more
  • the refraction angle ⁇ 1 when the light L enters the light collecting part 10 is 18 degrees or more. It becomes.
  • the incident angle ⁇ 2 of the light on the first surface T1 is 41 degrees or more, and the incident angle ⁇ 2 is not less than the critical angle, so that the light L is totally reflected by the first surface T1. Therefore, the first surface T1 satisfies the angle condition in which the light is totally reflected by the first surface T1 within the incident angle range of the light L incident on the light collecting unit 10 when the solar cell module 1 is installed on the window. It is sufficient to set the inclination angle ⁇ A.
  • the first solar cell element 20 is disposed adjacently so that the light receiving surface 20a of the first solar cell element 20 and the one end surface 10c of the light collecting unit 10 face each other.
  • the first solar cell element 20 is irradiated with light emitted from the light collecting unit 10 and subjected to photoelectric conversion.
  • the condensing unit 10 and the first solar cell element 20 are drawn with an interval in order to make the drawings easy to see in FIGS.
  • the light collector 10 and the first solar cell element 20 may be directly fixed by an optical adhesive or the like, or are not directly fixed, and the position is fixed by being accommodated in a frame (not shown). It may be a configuration.
  • the first solar cell element 20 a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used.
  • the first solar cell element 20 may be a compound solar cell that is expensive but known to have high conversion efficiency.
  • the shape and dimensions of the first solar cell element 20 are not particularly limited, it is desirable that the first solar cell element 20 matches the shape and dimensions of the one end face 10c of the light collecting unit 10. By making the shape and size of the first solar cell element 20 coincide with the shape and size of the one end face 10c of the light collecting unit 10, the first solar cell device 20 efficiently transmits the light propagating through the light collecting unit 10. It can receive light.
  • the second solar cell element 30 is provided apart from the one end surface 10c so that the light receiving surface 30a of the second solar cell element 30 and the one end surface 10c of the light collecting unit 10 face each other.
  • the second solar cell element 30 is irradiated with leakage light emitted from the light collecting unit 10 and subjected to photoelectric conversion.
  • the leakage light of the light collecting unit 10 is generated as follows. That is, in the condensing part 10, when the light L propagates inside, the total reflection is performed between the 1st main surface 10a and 1st surface T1. However, as shown in FIG. 3, the first major surface 10a and the first surface T1 are not parallel to each other. Therefore, although the propagating light propagates in the direction of the one end face 10c, the incident angle and the reflection angle with respect to each face gradually change each time reflection is repeated. Of the propagating light, the light that does not satisfy the total reflection condition in the light collecting unit 10 is directed from the first main surface 10a side and the first surface T1 (that is, the second main surface 10b) side to the one end surface 10c side. Are injected diagonally. In this way, the light emitted from the first main surface 10a and the second main surface 10b becomes leakage light.
  • the leaked light emitted from the first main surface 10a and the second main surface 10b of the light collecting unit 10 is emitted in a state having directivity on the one end surface 10c side.
  • the solar cell module 1 paying attention to the directivity of the leaked light, the solar cell module 1 can receive the leaked light emitted in the direction of the one end face 10c effectively and can be used for power generation.
  • the solar cell element 30 is provided.
  • the second solar cell element 30 is provided so as to receive leakage light Lx emitted from the first main surface 10 a and leakage light Ly emitted from the second main surface 10 b. That is, in the second solar cell element 30, the dimension d ⁇ b> 2 in the thickness direction (z direction) of the light collector 10 is larger than the width d ⁇ b> 1 of the one end surface 10 c in the thickness direction of the light collector 10. Therefore, in the second solar cell element 30, it is possible to satisfactorily receive the leakage light Lx and Ly emitted obliquely from the first main surface 10a and the second main surface 10b by the light receiving surface 30a.
  • the second solar cell element 30 a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used.
  • an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used.
  • the second solar cell element 30 it is preferable to use a crystalline solar cell which is low in conversion efficiency compared to a compound type, but inexpensive.
  • the light taken from the condensing unit 10 that receives the light L is changed in the traveling direction by the reflecting unit 18 and is emitted from the first end face 10c. Since the light collected from the light collecting unit 10 is collected at the first end face 10c, the first solar cell element 20 having a size corresponding to the first end face 10c can be used for efficient photoelectric conversion. There is no need to prepare a large solar cell element. Therefore, the manufacturing cost can be reduced.
  • the electric power generation amount per unit area of the 1st solar cell element 20 is increased, and it is effective. It can generate electricity.
  • the leakage light Lx, Ly emitted from the light collecting unit 10 is received by the second solar cell element 30 and used for power generation, the light received by the light collecting unit 10 can be used for power generation as much as possible. It becomes possible.
  • the solar cell module 1 of the present embodiment high power generation efficiency can be realized. Moreover, since the solar power generation device 100 of the present embodiment includes the solar cell module 1 described above, high power generation efficiency can be realized.
  • the present inventor performed a simulation of the power generation amount in order to verify the effect of the solar cell module 1 of the present embodiment.
  • the output condition of the second solar cell element 30 is based on the air mass AM1.5 defined by JIS.
  • the dimensions of the condensing part 10 are as follows: the length L1 in the short direction of the first major surface 10a shown in FIG. 2 is 100 mm, the length L2 in the longitudinal direction is 1000 mm, the thickness d1 shown in FIG.
  • the inclination angle ⁇ A of the first inclined surface T1 of the condensing unit 10 shown is 30 degrees, the inclination angle ⁇ B of the second inclined surface T2 is 90 degrees, the width (pitch) of the first inclined surface T1 is 200 ⁇ m, and the refractive index is 1. .5.
  • the size of the light receiving surface 20 a of the first solar cell element 20 was set to 10 mm ⁇ 100 mm as in the cross section of the light collecting unit 10.
  • the dimensions of the light receiving surface 30a of the second solar cell element 30 are such that the length d2 is 1000 mm and the width L1 is 100 mm, and the one end surface 10c of the light collecting unit 10 faces the central position in the length direction.
  • the incident angle of sunlight on the first main surface 10a of the light collecting unit 10 is approximately 42 degrees
  • the electric power obtained by the first solar cell element 20 was approximately 20W.
  • the electric power obtained when the first solar cell element 20 was directly irradiated with sunlight without using the light collecting unit 10 was about 2 W.
  • the solar cell module 1 of this embodiment it turned out that sufficiently large electric power can be obtained even if the small first solar cell element 20 is used.
  • the electric power obtained by the 2nd solar cell element 30 at this time was about 70W. That is, it was found that the solar cell module 1 as a whole can obtain approximately 90 W of power, and the leaked light can also contribute to power generation effectively.
  • the solar cell module 1 of this embodiment was irradiated to the window, daylighting indoors by incorporating in the window part of a building so that the 1st main surface 10a of the condensing part 10 may face the outdoors. It is good also as performing solar power generation using a part of sunlight.
  • the reflecting portion 18 has a triangular prism shape whose cross-sectional shape is a right triangle.
  • the present invention is not limited to this.
  • the reflection part 18 has the function to reflect the light L reflected by the 1st surface T1 toward the 1st end surface 10c of the condensing part 10, various shapes can be employ
  • the cross-sectional shape does not have to be a right triangle, and for example, if it has a surface corresponding to the first surface, it may be an unequal triangle or another polygon. Further, the surface corresponding to the first surface T1 may not be a flat surface but may be a curved surface. Furthermore, the reflection part 18 does not need to be a protrusion with a columnar shape extending, and may be a protrusion formed intermittently.
  • the second solar cell element 30 is illustrated in FIGS. 1 and 4 so as to be parallel to the z direction (perpendicular to the light collecting unit 10), but is not limited thereto. .
  • the second solar cell element 30 may be provided to be inclined so as to intersect the z direction.
  • the solar power generation device 100 is supposed to arrange the solar cell modules 1 in the y direction, the present invention is not limited to this.
  • the condensing unit 10 since the condensing unit 10 has optical transparency, the condensing units are stacked in the z direction so that the solar cells 1 are stacked. It is also possible to use a power generation device.
  • FIG. 5 is a perspective view showing a schematic configuration of the solar cell module 2 of the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 6 is a side view of the solar cell module 2 and corresponds to FIG. 4 of the first embodiment.
  • the solar cell module 2 has a reflecting portion 40 at a position facing the second main surface 10 b of the light collecting portion 10.
  • the reflecting portion 40 has a function of reflecting the leaked light Ly emitted from the second main surface 10 b toward the light receiving surface 31 a of the second solar cell element 31.
  • the second solar cell element 31 a commonly known one can be used in the same manner as the second solar cell element 30 described above.
  • the reflection part 40 what is normally known can be used if it has light reflectivity.
  • a metal plate or a plastic plate having a metal film formed on the surface thereof can be used.
  • the second solar cell element 31 includes the second solar cell module 1 of the first embodiment. Those having a shorter dimension in the ⁇ z direction than the solar cell element 30 can be used. More specifically, the lower end of the second solar cell element 31 in the z direction is a position equivalent to the height position of the light collector 10 and extends in the + z direction. Therefore, in the solar cell module 2 of this embodiment, the dimension of the whole module can be reduced in size.
  • the first solar cell element 20 generates power using the light propagating through the condensing unit 10 and the second using the leaked lights Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 31. Therefore, it is possible to realize high power generation efficiency as the entire solar cell module 2.
  • the reflecting portion 40 is disposed to face the second main surface 10b.
  • the reflecting portion 40 may be disposed to face the first main surface 10a.
  • the second solar cell element 31 is provided such that the upper end in the z direction of the second solar cell element 31 is at a position equivalent to the height position of the light collector 10 and extends in the ⁇ z direction. Good.
  • FIG. 7 is a perspective view showing a schematic configuration of the solar cell module 3 of the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 8 is a side view of the solar cell module 3 and corresponds to FIG. 4 of the first embodiment.
  • the solar cell module 3 of the present embodiment receives the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b.
  • a light collecting unit (second light collecting unit, light collecting member) 50 is provided.
  • a second solar cell element 32 is provided along the one end surface 50 c of the light collecting unit 50.
  • the condensing unit 50 is configured to take in leaked light Lx and Ly from the first main surface 50a which is a surface parallel to the yz plane and in the + x direction.
  • the second main surface 50b which is a surface facing the first main surface 50a, is provided with a plurality of reflecting portions 18 having a function of changing the traveling direction of the leaked light Lx and Ly incident on the inside.
  • the reflecting portion 18 is composed of a plurality of triangular prism-shaped ridges formed on the second main surface 50 b of the light collecting portion 50.
  • Leaked light Lx and Ly incident on the inside of the light collecting unit 50 from the first main surface 50a propagate while repeating reflection on the inner surface of the light collecting unit 50, and are one end surface that is a connection surface with the second solar cell element 32. 50c is condensed and emitted.
  • the second solar cell element 32 is disposed adjacently so that the light receiving surface 32a of the second solar cell element 32 and the one end surface 50c of the light collecting unit 50 face each other.
  • the second solar cell element 32 is irradiated with leakage light Lx and Ly emitted from the light collecting unit 50 and subjected to photoelectric conversion.
  • As the second solar cell element 32 a commonly known one can be used similarly to the first solar cell element 20 described above.
  • the first solar cell element 20 generates power using the light propagating through the condensing unit 10, and the second using the leakage light Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 32. Therefore, it is possible to realize high power generation efficiency as the entire solar cell module 3.
  • the light collecting unit 10 and the light collecting unit 50 are described as members having the same configuration.
  • the present invention is not limited to this, and the light collecting units are independently designed. It doesn't matter.
  • the pitch of the reflecting portions 18 formed on the light collecting portion 10 and the light collecting portion 50 may be different, and the shape of the reflecting portion 18 may be different.
  • FIG. 9 is a perspective view showing a schematic configuration of the solar cell module 4 of the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 10 is a side view of the solar cell module 4 and corresponds to FIG. 4 of the first embodiment.
  • the solar cell module 4 of the present embodiment includes a concave mirror (light condensing member) 51 provided opposite to the one end surface 10 c of the light collecting unit 10 and spaced from the one end surface 10 c. And the second solar cell element 33 provided in the space between the light collecting unit 10 and the concave mirror 51.
  • a concave mirror (light condensing member) 51 provided opposite to the one end surface 10 c of the light collecting unit 10 and spaced from the one end surface 10 c.
  • the second solar cell element 33 provided in the space between the light collecting unit 10 and the concave mirror 51.
  • the concave mirror 51 is provided so that the reflecting surface 51a faces the one end surface 10c side of the light collecting unit 10.
  • the concave mirror 51 reflects the leaked light Lx emitted from the first main surface 10a and the leaked light Ly emitted from the second main surface 10b and reflected by the reflecting portion 40 by the reflecting surface 51a, and returns to the focal position P1. It has the function of condensing light.
  • the second solar cell element 33 is provided such that the light receiving surface 33 a faces the reflecting surface 51 a of the concave mirror 51, and the spatial position of the light receiving surface 33 a overlaps with the focal position P ⁇ b> 1 of the concave mirror 51.
  • the second solar cell element 33 is irradiated with leakage light Lx and Ly collected by the concave mirror 51 and subjected to photoelectric conversion.
  • As the second solar cell element 33 a commonly known one can be used in the same manner as the first solar cell element 20 described above.
  • the first solar cell element 20 generates power using the light propagating through the condensing unit 10, and the second using the leakage light Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 33. Therefore, high power generation efficiency can be realized as the entire solar cell module 4.
  • the second solar cell element 33 is provided such that the spatial position of the light receiving surface 33a overlaps the focal position P1 of the concave mirror 51.
  • the second solar cell element 33 leaks into the second solar cell element 33. As long as the lights Lx and Ly can be emitted, the focus position may be shifted.
  • FIG. 11 is a perspective view showing a schematic configuration of the solar cell module 5 of the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 12 is a side view of the solar cell module 5 and corresponds to FIG. 4 of the first embodiment.
  • the solar cell module 5 of the present embodiment is a cylindrical lens (a condensing member, a concentrating member) that faces the one end surface 10 c of the light collecting unit 10 and is spaced from the one end surface 10 c.
  • Optical lens) 52 and the second solar cell element 34 provided in a space opposite to the cylindrical lens 52 when viewed from the light collecting unit 10.
  • the cylindrical lens 52 is a cylindrical condensing lens provided extending in the y direction. That is, the cylindrical lens 52 does not have a curvature in a cross section parallel to the xy plane, and has a curvature in a cross section parallel to the xz plane.
  • FIG. 12 shows that the cross-sectional shape in a plane parallel to the xz plane is an ellipse.
  • the cylindrical lens 52 has a function of condensing the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b and reflected by the reflection unit 40 at the focal position P2. ing. At this time, since there is no curvature in the xy plane, the leakage lights Lx and Ly are not collected, but the leakage lights Lx and Ly are collected only in the xz plane direction having the curvature.
  • the second solar cell element 34 is provided such that the light receiving surface 34 a faces the cylindrical lens 52, and the spatial position of the light receiving surface 34 a overlaps the focal position P 2 of the cylindrical lens 52.
  • the second solar cell element 34 is irradiated with leakage light Lx and Ly collected by the cylindrical lens 52 and subjected to photoelectric conversion.
  • As the second solar cell element 34 a commonly known one can be used in the same manner as the first solar cell element 20 described above.
  • the first solar cell element 20 generates power using the light propagating through the condensing unit 10, and the second using the leakage light Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 34. Therefore, it is possible to realize high power generation efficiency as the entire solar cell module 5.
  • the cylindrical lens 52 has an elliptical cross-sectional shape.
  • the present invention is not limited to this, and one of the incident side and the emission side of the leakage light Lx and Ly is a flat surface. It may also be a semicircular or arcuate cross-sectional shape.
  • FIG. 13 is an explanatory diagram of the solar cell module 6 according to a first modification of the present embodiment.
  • FIG. 13 is a perspective view showing a schematic configuration of the solar cell module 6.
  • the solar cell module 6 is provided with a toric lens 53 at the same position instead of the cylindrical lens 52 of the solar cell module 5 described above.
  • a second solar cell element 35 is provided at the focal position P3 of the toric lens 53.
  • the toric lens 53 is provided such that the focal position P3 is the light receiving surface 35a of the second solar cell element 35.
  • the toric lens 53 has a shape obtained by bending a cylindrical lens extending in the y direction so as to be convex in the ⁇ x direction. That is, the toric lens 53 has a curvature in a cross section parallel to the xz plane, and also has a curvature in a cross section parallel to the xy plane.
  • the toric lens 53 has a function of condensing the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b and reflected by the reflection unit 40 at the focal position P3. ing.
  • the leakage lights Lx and Ly are condensed in the xy plane direction in addition to the xz plane direction. Therefore, the 2nd solar cell element 35 can use the thing whose dimension of ay direction is shorter than the 2nd solar cell element 34 of the solar cell module 5, and can achieve size reduction of a module.
  • FIG. 14 is a perspective view showing a schematic configuration of the solar cell module 7, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 15 is a side view of the solar cell module 7 and corresponds to FIG. 4 of the first embodiment.
  • the solar cell module 7 is provided with a lens array 54 at the same position instead of the cylindrical lens 52 of the solar cell module 5 described above.
  • a second solar cell element 36 is provided at the focal position of the lens array 54.
  • the lens array 54 is formed by collecting a plurality of minute convex lenses 54 a, and is provided so that the position of the focal point P 4 of each convex lens 54 a becomes the light receiving surface 36 a of the second solar cell element 36.
  • the first solar cell element 20 generates power using the light propagating through the condensing unit 10 and uses the leakage lights Lx and Ly of the condensing unit 10. Electric power can be generated by the second solar cell element. Therefore, it is possible to achieve high power generation efficiency as the entire solar cell module.
  • FIG. 16 is a perspective view showing a schematic configuration of the solar cell module 8 of the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 17 is a side view of the solar cell module 8 and corresponds to FIG. 4 of the first embodiment.
  • FIG. 18 is an enlarged view of the vicinity of one end face 10 c of the solar cell module 8.
  • the solar cell module 8 does not have the second solar cell element that the solar cell module described so far has. Instead, it has a condensing member 55 that condenses the leaked lights Lx and Ly and makes them enter the condensing unit 10 again to guide the leaked lights Lx and Ly to the solar cell element 60.
  • the solar cell element 60 is the same as the first solar cell element 20 in the above-described embodiment.
  • the condensing member 55 includes a concave mirror 551, a reflecting mirror 552, and a prism portion (light traveling direction changing portion) 553.
  • the concave mirror 551 is provided so that the reflection surface 551a faces the one end surface 10c side of the light collecting unit 10.
  • the concave mirror 551 emits the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b and reflected by the reflecting portion 40 above the first main surface 10a (+ z direction). Reflects while focusing toward the space.
  • the reflection mirror 552 reflects the leakage light Lx and Ly reflected by the concave mirror 551 in the direction of the first main surface 10a of the light collecting unit 10 and toward the first end surface 10c.
  • the reflection mirror 552 may be a concave mirror and may be configured to further collect light during reflection.
  • the prism unit 553 is optically bonded to the first main surface 10 a of the light collecting unit 10 and has a function of changing the traveling direction of the leaked light Lx and Ly reflected by the reflection mirror 552.
  • the prism portion 553 is formed of a material having a refractive index higher than that of the material for forming the light collecting portion 10.
  • the incident surfaces 553a and exit surfaces 553b of the leaked light Lx and Ly change the traveling direction of the leaked lights Lx and Ly incident at an incident angle ⁇ 1 with respect to the first main surface 10a.
  • the incident angle ⁇ 2 with respect to the one end face 10c is set to be small.
  • the prism portion 553 when the prism portion 553 is provided as shown in FIG. 18, the incident angle ⁇ 2 of the leaked light Lx, Ly with respect to the one end face 10c is reduced, so that the leaked light Lx, Ly is favorably guided to the one end face 10c.
  • the light can be condensed on the first solar cell element 60 provided with the light receiving surface 60a facing 10c.
  • the first solar cell element 20 can be irradiated with the light propagating through the condensing unit 10 and the leakage lights Lx and Ly of the condensing unit 10 to generate electric power. Therefore, it is possible to achieve high power generation efficiency as the entire solar cell module.
  • the prism portion 553 is optically bonded to the first main surface 10a.
  • the present invention is not limited to this, and the prism portion 553 is separated from the first main surface 10a as shown in FIG. It is good also as a position being fixed in the state which carried out.
  • the prism portion 553 and the light converging portion 10 are formed of a material having the same refractive index, and the exit surface 553b and the first main surface 10a are parallel.
  • the leaked lights Lx and Ly are refracted when entering the first main surface 10a.
  • the incident angle with respect to the first main surface 10a is ⁇ 5 larger than ⁇ 1
  • the leaked lights Lx and Ly with respect to the one end face 10c since the incident angle ⁇ 6 is smaller than the incident angle ⁇ 4 when the prism 553 shown in FIG. 19 is not provided.
  • the prism portion 553 is provided as the light traveling direction changing unit.
  • the traveling direction of the leakage light Lx and Ly is set so that the incident angle with respect to the first end surface 10c becomes small.
  • Other configurations can also be adopted if it can be made.
  • a diffraction pattern that diffracts the traveling direction of the leaked light Lx and Ly at a position where the prism portion 553 of the first main surface 10a is provided so that the incident angle with respect to the first end surface 10c becomes small.
  • the structure which forms is mentioned.
  • the aspect of the present invention can be widely used for solar cell modules or solar power generation devices.
  • SYMBOLS 1-8 Solar cell module, 10 ... Condensing part, 10a ... 1st main surface (one surface, a pair of surface), 10b ... 2nd main surface (a pair of surface), 10c ... One end surface, 20 ... 1st 1 solar cell element, 30 to 36 ... second solar cell element, 30a to 36a ... light receiving surface, 40 ... reflecting part, 50 ... condensing part (second condensing part, condensing member), 50c ... second One end surface of the condensing part, 51 ... concave mirror (condensing member), 52 ... cylindrical lens (condensing lens, condensing member), 53 ...
  • toric lens condensing lens, condensing member
  • 54 lens array (collection) (Light lens, condensing member), 55 ... condensing member, 100 ... solar power generation device, 553 ... prism portion (light traveling direction changing portion), L ... light, Lx, Ly ... leakage light, P1 to P4 ... focal position .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This solar cell module (1) has a first collector unit (10), a first solar cell element (20) provided along one end surface (10c) of the collector unit, and a second solar cell element (30). It is possible to use light received by the first collector unit as much as possible without waste for power generation by means of the first collector unit being configured in a manner so as to collect light entering to the interior from one surface thereof among the pair of opposite surfaces that border the aforementioned one end surface to at least the aforementioned one end surface by causing propagation through the interior, thus emitting the light at the first solar cell element, and by means of leaked light, which is reflected obliquely towards the same side as the aforementioned first end surface from at least one of the pair of opposite surfaces, entering the second solar cell element.

Description

太陽電池モジュールおよび太陽光発電装置Solar cell module and solar power generation device
 本発明は、太陽電池モジュールおよび太陽光発電装置に関するものである。
 本願は、2010年11月16日に、日本に出願された特願2010-256202に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a solar power generation device.
This application claims priority on November 16, 2010 based on Japanese Patent Application No. 2010-256202 filed in Japan, the contents of which are incorporated herein by reference.
 従来の太陽光発電装置は、複数の太陽電池パネルを太陽に向けて一面に敷き詰めた形態のものが一般的であった。一例として、建物の屋根に架台を設置し、架台上に複数の太陽電池パネルを敷き詰めた形態の太陽光発電装置が知られている。 Conventional solar power generation apparatuses generally have a form in which a plurality of solar battery panels are spread over the entire surface facing the sun. As an example, a solar power generation apparatus in which a gantry is installed on the roof of a building and a plurality of solar battery panels are spread on the gantry is known.
 しかし、このような設置形態の場合、太陽電池パネルに入射する光の光量は、太陽電池の面積で決まることとなる。そのため、必要とする発電量を確保するためには、対応する面積の太陽電池が必要となる。したがって、従来の太陽光発電装置を用いて発電量を大きくしようとする場合には、大面積の太陽電池パネルを設置する必要があり、高コストになることが避けられなかった。 However, in the case of such an installation form, the amount of light incident on the solar cell panel is determined by the area of the solar cell. Therefore, in order to secure the required power generation amount, a solar cell with a corresponding area is required. Therefore, in order to increase the amount of power generation using a conventional solar power generation device, it is necessary to install a large-area solar cell panel, which inevitably increases the cost.
 そこで、上記のような従来の太陽電池に代わる構成として、太陽光を集光する集光部材と、集光部材の端部に設けられた太陽電池素子とを有する太陽電池が提案されている(例えば特許文献1から4参照)。これらの太陽電池では、平面視で広い面積を占める集光部材が、一主面で太陽光を受光した後に集光部材の端部に光を集光し、集光した光を太陽電池素子に入射させて発電を行っている。こうすることにより、太陽電池素子の使用面積を小さくしつつ、発電量を確保することができる。あわせて、集光部材に光透過性を持たせることにより、例えば、建物において広い面積を占める窓に配置することが可能となる、また、複数を積層して配置することが可能となる、など、従来の太陽光発電装置よりも高い自由度で設置することが可能となる。 Then, the solar cell which has the condensing member which condenses sunlight, and the solar cell element provided in the edge part of the condensing member as a structure replaced with the above conventional solar cells is proposed ( For example, see Patent Documents 1 to 4). In these solar cells, a condensing member occupying a large area in plan view collects light at the end of the condensing member after receiving sunlight on one main surface, and the condensed light is applied to the solar cell element. Incident light is generated. By doing so, it is possible to secure the amount of power generation while reducing the use area of the solar cell element. In addition, by providing the light condensing member with light transmittance, for example, it becomes possible to arrange in a window that occupies a large area in a building, or it becomes possible to arrange a plurality of stacked layers, etc. Thus, it can be installed with a higher degree of freedom than conventional solar power generation devices.
実開昭61-136559号公報Japanese Utility Model Publication No. 61-136559 特開平7-122771号公報JP 7-122771 A 特開2004-47752号公報JP 2004-47752 A 特開平11-46008号公報Japanese Patent Laid-Open No. 11-46008
 しかしながら、上述の特許文献に記載の太陽光発電装置では、板状の集光部材の端部に集光する光の他に、端部以外の位置から漏れ出る漏れ光が多く存在する。そのため、集光部材の端部に太陽電池素子を設けたとしても、採光した光の多くは太陽電池素子に入射することがなく、効率的に発電を行うことができない。 However, in the solar power generation device described in the above-described patent document, there is a lot of leakage light leaking from a position other than the end portion in addition to the light condensed on the end portion of the plate-like light collecting member. Therefore, even if a solar cell element is provided at the end of the light collecting member, most of the collected light is not incident on the solar cell element and cannot efficiently generate power.
 本発明の態様はこのような事情に鑑みてなされたものであって、高い発電効率を実現する太陽電池モジュールを提供することを目的の一つとする。また、上述の太陽電池モジュールを用いることにより、高い発電効率を実現する太陽光発電装置を提供することをあわせて目的の一つとする。 An aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide a solar cell module that realizes high power generation efficiency. Another object is to provide a solar power generation device that achieves high power generation efficiency by using the solar cell module described above.
 上記の課題を解決するため、本発明の一形態の太陽電池モジュールは、第1集光部と、前記集光部の一端面に沿って設けられた第1太陽電池素子と、第2太陽電池素子を有し、前記第1集光部は、前記一端面に接する一対の対向面のうち、一方の面から内部に入射する光を、前記内部を伝播させて少なくとも前記一端面に集光させ、前記第1太陽電池素子に射出するよう構成され、前記第2太陽電池素子は、前記一対の対向面から前記一端面側に向けて斜めに射出された漏れ光が入射するよう配置される。 In order to solve the above-described problems, a solar cell module according to an aspect of the present invention includes a first light collecting unit, a first solar cell element provided along one end surface of the light collecting unit, and a second solar cell. The first condensing unit causes light entering the inside from one of the pair of opposing surfaces in contact with the one end surface to propagate through the inside and collect the light on at least the one end surface. The second solar cell element is arranged so that the leaked light emitted obliquely from the pair of opposing surfaces toward the one end surface side is incident on the first solar cell element.
 本発明の一形態においては、前記第2太陽電池素子の受光面が、前記一端面に対向して設けられ、前記第2太陽電池素子は、前記第1集光部の厚さ方向における寸法が、前記第1集光部の厚さ方向における前記一端面の幅よりも大きくてもよい。 In one form of this invention, the light-receiving surface of the said 2nd solar cell element is provided facing the said one end surface, The said 2nd solar cell element has the dimension in the thickness direction of a said 1st condensing part. The width of the one end face in the thickness direction of the first light collecting part may be larger.
 本発明の一形態においては、前記一対の対向面のうち少なくとも一方の面に対向し、前記漏れ光を前記第2太陽電池素子に向けて反射する反射部を更に有してもよい。 In one embodiment of the present invention, the light emitting device may further include a reflecting portion that faces at least one of the pair of facing surfaces and reflects the leaked light toward the second solar cell element.
 本発明の一形態においては、前記漏れ光を受光し、前記第2太陽電池素子に集光する第2集光部を更に有してもよい。 In one embodiment of the present invention, the apparatus may further include a second light collecting unit that receives the leaked light and collects the light on the second solar cell element.
 本発明の一形態においては、前記第2集光部は、板状であり、前記第2太陽電池素子が、前記第2集光部の一端面に沿って設けられ、前記第2集光部は、前記第2集光部の一端面に接する一対の対向面のうち、一方の面から内部に入射する光を、前記内部を伝播させて少なくとも前記第2の集光部の一端面に集光させ、前記第2太陽電池素子に射出するよう構成されていてもよい。 In one form of this invention, the said 2nd condensing part is plate shape, a said 2nd solar cell element is provided along the end surface of the said 2nd condensing part, The said 2nd condensing part The light incident on the inside from one of the pair of opposing surfaces in contact with the one end surface of the second light collecting portion is propagated through the inside and collected on at least one end surface of the second light collecting portion. The light may be emitted and emitted to the second solar cell element.
 本発明の一形態においては、前記第2集光部は、凹面鏡であってもよい。 In one embodiment of the present invention, the second light collecting section may be a concave mirror.
 本発明の一形態においては、前記第2集光部は、集光レンズであってもよい。 In one embodiment of the present invention, the second condensing unit may be a condensing lens.
 本発明の一形態においては、前記集光レンズは、シリンドリカルレンズであってもよい。 In one embodiment of the present invention, the condensing lens may be a cylindrical lens.
 本発明の一形態においては、前記集光レンズは、トーリックレンズであってもよい。 In one embodiment of the present invention, the condenser lens may be a toric lens.
 本発明の一形態においては、前記集光レンズは、レンズアレイであってもよい。 In one embodiment of the present invention, the condenser lens may be a lens array.
 本発明の一形態においては、前記第2太陽電池素子が、前記第2集光部の焦点位置に設けられていてもよい。 In one embodiment of the present invention, the second solar cell element may be provided at a focal position of the second light collector.
 本発明の一形態においては、板状の第1集光部と、第2集光部と、前記第1集光部の一端面に沿って設けられた太陽電池素子と、を有し、前記集光部は、前記一端面に接する一対の対向面のうち、一方の面から内部に入射する光を、前記内部を伝播させて少なくとも前記一端面に集光させ、前記太陽電池素子に射出するよう構成され、第2集光部は、前記一対の対向面の少なくとも一方から前記一端面側に向けて斜めに射出された漏れ光を受光し、前記集光部を介して前記太陽電池素子に集光するよう構成されていてもよい。 In one form of this invention, it has a plate-shaped 1st condensing part, a 2nd condensing part, and the solar cell element provided along the end surface of the 1st condensing part, The condensing unit causes light incident on one side from a pair of opposing surfaces in contact with the one end surface to propagate through the inside to be condensed on at least the one end surface, and is emitted to the solar cell element. The second light collecting unit receives leaked light that is emitted obliquely from at least one of the pair of opposing surfaces toward the one end surface, and passes through the light collecting unit to the solar cell element. You may be comprised so that it may condense.
 本発明の一形態においては、前記第2集光部は、前記第1集光部に入射した前記漏れ光の、前記一端面に対する入射角が小さくなるように、前記漏れ光の進行方向を変更する光進行方向変更部を有してもよい。 In one form of this invention, the said 2nd condensing part changes the advancing direction of the said leak light so that the incident angle with respect to the said one end surface of the said leak light incident on the said 1st condensing part may become small. You may have a light advancing direction change part.
 本発明の一形態においては、前記一対の対向面のうち少なくとも一方の面に対向し、前記漏れ光を前記第2集光部に向けて反射する反射部を有してもよい。 In one embodiment of the present invention, a reflective portion that faces at least one of the pair of opposed surfaces and reflects the leaked light toward the second light collecting portion may be provided.
 また、本発明の一形態の太陽光発電装置は、前記太陽電池モジュールを備える。 Moreover, the solar power generation device of one form of the present invention includes the solar cell module.
 本発明の態様によれば、高い発電効率を実現する太陽電池モジュール、およびこれを用いた太陽光発電装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a solar cell module that realizes high power generation efficiency and a solar power generation apparatus using the solar cell module.
本実施形態の太陽光発電装置および太陽電池モジュールを示す説明図である。It is explanatory drawing which shows the solar power generation device and solar cell module of this embodiment. 本発明の第1実施形態に係る太陽電池モジュールの平面図である。It is a top view of the solar cell module concerning a 1st embodiment of the present invention. 太陽電池モジュールを構成する集光部の断面図である。It is sectional drawing of the condensing part which comprises a solar cell module. 本発明の第1実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 5th Embodiment of this invention. 本発明の第5実施形態の変形例に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on the modification of 5th Embodiment of this invention. 本発明の第5実施形態の変形例に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on the modification of 5th Embodiment of this invention. 本発明の第5実施形態の変形例に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on the modification of 5th Embodiment of this invention. 本発明の第6実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る太陽電池モジュールの側面図である。It is a side view of the solar cell module which concerns on 6th Embodiment of this invention. 本発明の第6実施形態に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on 6th Embodiment of this invention. 比較例の説明図である。It is explanatory drawing of a comparative example. 本発明の第6実施形態の変形例に係る太陽電池モジュールの説明図である。It is explanatory drawing of the solar cell module which concerns on the modification of 6th Embodiment of this invention.
[第1実施形態]
 以下、図1~図4を参照しながら、本発明の第1実施形態に係る太陽電池モジュールおよび太陽光発電装置について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[First Embodiment]
Hereinafter, a solar cell module and a solar power generation device according to a first embodiment of the present invention will be described with reference to FIGS. In all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
 図1は、本実施形態の太陽光発電装置100および太陽電池モジュール1の概略構成を示す斜視図である。図2は、太陽電池モジュール1の概略構成を示す平面図である。図3は、太陽電池モジュール1を構成する集光部10の断面図である。図4は、太陽電池モジュール1の側面図である。 FIG. 1 is a perspective view showing a schematic configuration of a solar power generation device 100 and a solar cell module 1 of the present embodiment. FIG. 2 is a plan view showing a schematic configuration of the solar cell module 1. FIG. 3 is a cross-sectional view of the light collecting unit 10 constituting the solar cell module 1. FIG. 4 is a side view of the solar cell module 1.
 本実施形態の太陽光発電装置100は、図1に示すように、光照射により発電する太陽電池モジュール1を複数(図では2つ)集積することにより、配線150を介して接続された外部機器200を駆動するための電力を供給する。このような太陽光発電装置100では、従来と同じく建物の屋根に設置することにより、照射された太陽光を用いた太陽光発電が行われる。太陽光発電装置100は、太陽電池モジュール1の他に、例えば、太陽電池モジュール1から得られる電力を蓄える蓄電池などを備えていても良い。 As shown in FIG. 1, the photovoltaic power generation apparatus 100 of the present embodiment integrates a plurality (two in the figure) of solar cell modules 1 that generate power by light irradiation, thereby connecting external devices connected via wiring 150. The power for driving 200 is supplied. In such a solar power generation device 100, solar power generation using irradiated sunlight is performed by installing the solar power generation device 100 on the roof of a building as in the past. The solar power generation device 100 may include, for example, a storage battery that stores electric power obtained from the solar cell module 1 in addition to the solar cell module 1.
 太陽電池モジュール1は、板状の集光部10と、集光部10の一端面10cに沿って設けられた第1太陽電池素子20と、集光部10の一端面10c側の位置に集光部10と離間して設けられた第2太陽電池素子30と、を備えている。 The solar cell module 1 is gathered at a position on the plate-like light collecting portion 10, the first solar cell element 20 provided along the one end face 10 c of the light collecting portion 10, and the one end face 10 c side of the light collecting portion 10. And a second solar cell element 30 provided apart from the optical unit 10.
 集光部10は、入射した光Lをその内部で一端面10cまで伝播させ、第1太陽電池素子20に導く機能を有する。すなわち、太陽電池モジュール1においては、集光部10から採り入れた光Lは、第1太陽電池素子20に照射される。第1太陽電池素子20では、入射する光を用いて光電変換し、電気エネルギーとして取り出す。 The condensing unit 10 has a function of propagating the incident light L to the one end face 10 c and guiding it to the first solar cell element 20. That is, in the solar cell module 1, the light L taken from the light collecting unit 10 is irradiated to the first solar cell element 20. In the 1st solar cell element 20, it photoelectrically converts using incident light and takes out as electrical energy.
 加えて、詳しくは後述するが、集光部10では、入射した光Lを伝播させるときに、伝播方向(すなわち、一端面10cへ向かうの方向)に向けて斜めに漏れ光が発生する。第2太陽電池素子30は、この漏れ光を受光し、入射する漏れ光を用いて光電変換し、電気エネルギーとして取り出す。 In addition, as will be described in detail later, in the light collecting unit 10, when the incident light L is propagated, leakage light is generated obliquely in the propagation direction (that is, the direction toward the one end face 10c). The second solar cell element 30 receives this leakage light, photoelectrically converts the incident leakage light, and takes it out as electric energy.
 以下の説明においては、xyz直交座標系を設定し、このxyz直交座標系を参照しつつ各部材の位置関係について説明することがある。具体的には、集光部10の入射面と同じ面をxy平面とし、第1太陽電池素子20の延在方向をy軸方向、水平面内においてy軸方向と直交する方向をx軸方向、x軸方向及びy軸方向のそれぞれと直交する方向(すなわち鉛直方向)をz軸方向とする。 In the following description, an xyz orthogonal coordinate system may be set, and the positional relationship of each member may be described with reference to the xyz orthogonal coordinate system. Specifically, the same plane as the incident surface of the light collector 10 is the xy plane, the extending direction of the first solar cell element 20 is the y-axis direction, and the direction orthogonal to the y-axis direction in the horizontal plane is the x-axis direction, A direction (that is, a vertical direction) orthogonal to each of the x-axis direction and the y-axis direction is defined as a z-axis direction.
 集光部10は、光透過性を有する材料を用いて形成される板状の部材である。図2では、平面視矩形の部材として図示している。集光部10の形成材料としては、例えばアクリル樹脂、ポリカーボネート樹脂のような有機材料や、ガラスのような無機材料を用いることができるが、これらに限定されるものではない。 The condensing part 10 is a plate-like member formed using a light-transmitting material. In FIG. 2, it is illustrated as a member having a rectangular shape in plan view. For example, an organic material such as an acrylic resin or a polycarbonate resin, or an inorganic material such as glass can be used as a material for forming the light collecting unit 10, but the material is not limited thereto.
 集光部10は、xy平面に平行な面であってz方向上側の面である第1主面(一方の面)10aから、光Lを内部に取り入れる構成となっている。また、第1主面10aに対向する面である第2主面(他方の面)10bには、内部に入射した光Lの進行方向を変更する機能を有する複数の反射部18が設けられている。反射部18は、集光部10の第2主面10bに形成された複数の三角柱状の凸条から構成されている。第1主面10aから集光部10の内部に入射した光Lは、集光部10の内面で反射を繰り返しながら伝播し、第1太陽電池素子20との接続面である一端面10cに集光されて射出される。 The condensing unit 10 is configured to take in the light L from a first main surface (one surface) 10a which is a surface parallel to the xy plane and is an upper surface in the z direction. The second main surface (the other surface) 10b, which is the surface facing the first main surface 10a, is provided with a plurality of reflecting portions 18 having a function of changing the traveling direction of the light L incident on the inside. Yes. The reflecting portion 18 is composed of a plurality of triangular prism-shaped ridges formed on the second main surface 10 b of the light collecting portion 10. The light L incident on the inside of the light collecting unit 10 from the first main surface 10 a propagates while being repeatedly reflected on the inner surface of the light collecting unit 10, and is collected on one end surface 10 c that is a connection surface with the first solar cell element 20. Lighted and ejected.
 図2に示すように、複数の反射部18は、各反射部18の三角柱の稜線が平面視において一端面10cと平行となる方向に、互いに離間して形成されている。図では、複数の反射部18の形状や寸法、隣接する反射部18間の間隔(ピッチ)を全て同じに描いている。このように、複数の反射部18の形状や寸法、隣接する反射部18間の間隔(ピッチ)は全て同じであっても良いし、異なっていても良い。 As shown in FIG. 2, the plurality of reflecting portions 18 are formed apart from each other in a direction in which the triangular prism ridgeline of each reflecting portion 18 is parallel to the one end face 10 c in plan view. In the figure, the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between adjacent reflecting portions 18 are all drawn the same. As described above, the shapes and dimensions of the plurality of reflecting portions 18 and the interval (pitch) between the adjacent reflecting portions 18 may all be the same or different.
 本実施形態の反射部18は、集光部10自体が加工され、集光部10と一体に形成されている。反射部18は、例えば元々平坦な集光部10の面(≒第2主面10b)を切削加工することによって形成することができる。あるいは、凸条の形状を反転させた凹形状を有する金型を用いて樹脂の射出成形を行うなどの方法によって反射部18を形成しても良い。 The reflection unit 18 of the present embodiment is formed integrally with the light collecting unit 10 by processing the light collecting unit 10 itself. The reflecting portion 18 can be formed, for example, by cutting the originally flat surface of the light collecting portion 10 (≈second main surface 10b). Or you may form the reflection part 18 by methods, such as performing resin injection molding using the metal mold | die which has the concave shape which reversed the shape of the protruding item | line.
 反射部18は三角柱状であると説明したが、図3に示すように、本実施形態においては、集光部10を反射部18の稜線に直交する平面で切断したときの反射部18の断面形状は、直角三角形である。すなわち、各反射部18は、第2主面10bに対して傾斜角θAで傾斜した面である第1面T1と、第2主面10bに対して直交する(すなわち、傾斜角θBが90度)面である第2面T2とを有している。第1面T1は第1主面10aから入射した光を反射(全反射)させる反射面として機能する。 Although it has been described that the reflecting portion 18 has a triangular prism shape, as shown in FIG. 3, in this embodiment, the cross section of the reflecting portion 18 when the light collecting portion 10 is cut along a plane orthogonal to the ridgeline of the reflecting portion 18. The shape is a right triangle. That is, each reflector 18 is orthogonal to the first surface T1, which is a surface inclined at an inclination angle θA with respect to the second main surface 10b, and the second main surface 10b (that is, the inclination angle θB is 90 degrees). ) Surface and the second surface T2. The first surface T1 functions as a reflecting surface that reflects (totally reflects) light incident from the first main surface 10a.
 図3に示すように、集光部10の第1主面10aに対して光(太陽光)Lが入射角θ0で入射したとすると、光Lは第1主面10aにおいて屈折角θ1で屈折して集光部10内に入射する。その後、第1面T1に入射角θ2で入射した光は、反射角θ2で全反射し、第1主面10aに平行な仮想平面Xに対する角度θ3で集光部10内を伝播し、第1太陽電池素子20に向けて射出される。 As shown in FIG. 3, if light (sunlight) L is incident on the first main surface 10a of the light collector 10 at an incident angle θ0, the light L is refracted at the refraction angle θ1 on the first main surface 10a. Then, the light enters the condensing unit 10. Thereafter, the light incident on the first surface T1 at the incident angle θ2 is totally reflected at the reflection angle θ2, and propagates in the light collecting unit 10 at an angle θ3 with respect to the virtual plane X parallel to the first main surface 10a. It is emitted toward the solar cell element 20.
 ここで、第1面T1への光の入射角θ2は第1面T1の傾斜角θAに応じて変化する。
 そのため、第1面T1に入射する光の入射角θ2が第1面T1と空気との界面における臨界角以上となって光が全反射するように、第1面T1の傾斜角θAを予め設定しておく。
Here, the incident angle θ2 of the light on the first surface T1 changes according to the inclination angle θA of the first surface T1.
Therefore, the inclination angle θA of the first surface T1 is set in advance so that the incident angle θ2 of the light incident on the first surface T1 becomes equal to or greater than the critical angle at the interface between the first surface T1 and air and the light is totally reflected. Keep it.
 具体的には、一例として、第1面T1の傾斜角θAを24度、集光部10の屈折率を1.5、空気の屈折率を1.0とする。この場合、Snellの法則より、第1面T1もしくは第2傾斜面T2と空気との界面における臨界角は41度となる。ここで、集光部10の第1主面10aへの光Lの入射角θ0が27度以上であったとすると、光Lが集光部10内に入射する際の屈折角θ1は18度以上となる。すると、第1面T1への光の入射角θ2は41度以上となり、入射角θ2が臨界角以上であるため、光Lは第1面T1で全反射する。したがって、太陽電池モジュール1を窓に設置した際に集光部10に入射する光Lの入射角範囲内において、光が第1面T1で全反射する角度条件を満たすように、第1面T1の傾斜角θAを設定すれば良い。 Specifically, as an example, the inclination angle θA of the first surface T1 is 24 degrees, the refractive index of the light collecting unit 10 is 1.5, and the refractive index of air is 1.0. In this case, according to Snell's law, the critical angle at the interface between the first surface T1 or the second inclined surface T2 and the air is 41 degrees. Here, if the incident angle θ0 of the light L to the first main surface 10a of the light collecting unit 10 is 27 degrees or more, the refraction angle θ1 when the light L enters the light collecting part 10 is 18 degrees or more. It becomes. Then, the incident angle θ2 of the light on the first surface T1 is 41 degrees or more, and the incident angle θ2 is not less than the critical angle, so that the light L is totally reflected by the first surface T1. Therefore, the first surface T1 satisfies the angle condition in which the light is totally reflected by the first surface T1 within the incident angle range of the light L incident on the light collecting unit 10 when the solar cell module 1 is installed on the window. It is sufficient to set the inclination angle θA.
 第1太陽電池素子20は、第1太陽電池素子20の受光面20aと、集光部10の一端面10cとが対向するように隣接して配置されている。第1太陽電池素子20には、集光部10から射出される光が照射され、光電変換される。集光部10と第1太陽電池素子20とは、図1,2では図面を見易くするため、間隔を開けて描いてあるが、実際には密着させて配置することが望ましい。集光部10と第1太陽電池素子20とは、光学接着剤等により直接固定されていても良いし、直接固定されておらず、不図示の枠体に収容されることで位置が固定される構成であっても良い。 The first solar cell element 20 is disposed adjacently so that the light receiving surface 20a of the first solar cell element 20 and the one end surface 10c of the light collecting unit 10 face each other. The first solar cell element 20 is irradiated with light emitted from the light collecting unit 10 and subjected to photoelectric conversion. The condensing unit 10 and the first solar cell element 20 are drawn with an interval in order to make the drawings easy to see in FIGS. The light collector 10 and the first solar cell element 20 may be directly fixed by an optical adhesive or the like, or are not directly fixed, and the position is fixed by being accommodated in a frame (not shown). It may be a configuration.
 第1太陽電池素子20としては、公知のものを使用することができ、例えばアモルファスシリコン太陽電池、多結晶シリコン太陽電池、単結晶シリコン太陽電池等を用いることができる。例えば、第1太陽電池素子20としては、高価ではあるが変換効率が高いことで知られる化合物太陽電池を用いるとよい。 As the first solar cell element 20, a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used. For example, the first solar cell element 20 may be a compound solar cell that is expensive but known to have high conversion efficiency.
 第1太陽電池素子20の形状および寸法は特に限定されることはないが、集光部10の一端面10cの形状および寸法と一致していることが望ましい。第1太陽電池素子20の形状および寸法を集光部10の一端面10cの形状および寸法と一致させることにより、第1太陽電池素子20は、集光部10内を伝播してきた光を効率良く受光することができる。 Although the shape and dimensions of the first solar cell element 20 are not particularly limited, it is desirable that the first solar cell element 20 matches the shape and dimensions of the one end face 10c of the light collecting unit 10. By making the shape and size of the first solar cell element 20 coincide with the shape and size of the one end face 10c of the light collecting unit 10, the first solar cell device 20 efficiently transmits the light propagating through the light collecting unit 10. It can receive light.
 第2太陽電池素子30は、第2太陽電池素子30の受光面30aと、集光部10の一端面10cとが対向するようにして、一端面10cと離間して設けられている。第2太陽電池素子30には、集光部10から射出される漏れ光が照射され、光電変換される。 The second solar cell element 30 is provided apart from the one end surface 10c so that the light receiving surface 30a of the second solar cell element 30 and the one end surface 10c of the light collecting unit 10 face each other. The second solar cell element 30 is irradiated with leakage light emitted from the light collecting unit 10 and subjected to photoelectric conversion.
 集光部10の漏れ光は、次のようにして生じる。すなわち、集光部10においては、内部を光Lが伝播するとき、第1主面10aと第1面T1との間で全反射を行う。しかし、図3に示すように、第1主面10aと第1面T1とが互いに平行ではない。そのため、伝播する光は一端面10cの方向に伝播するものの、反射を繰り返す度に各面に対する入射角・反射角が徐々に変化する。そして、伝播する光のうち、集光部10における全反射条件を満たさなくなった光が、第1主面10a側および第1面T1(すなわち第2主面10b)側から一端面10c側に向けて斜めに射出される。このようにして、第1主面10aおよび第2主面10bから射出される光が漏れ光となる。 The leakage light of the light collecting unit 10 is generated as follows. That is, in the condensing part 10, when the light L propagates inside, the total reflection is performed between the 1st main surface 10a and 1st surface T1. However, as shown in FIG. 3, the first major surface 10a and the first surface T1 are not parallel to each other. Therefore, although the propagating light propagates in the direction of the one end face 10c, the incident angle and the reflection angle with respect to each face gradually change each time reflection is repeated. Of the propagating light, the light that does not satisfy the total reflection condition in the light collecting unit 10 is directed from the first main surface 10a side and the first surface T1 (that is, the second main surface 10b) side to the one end surface 10c side. Are injected diagonally. In this way, the light emitted from the first main surface 10a and the second main surface 10b becomes leakage light.
 したがって、集光部10の第1主面10aおよび第2主面10bから射出される漏れ光は、一端面10c側に指向性を有した状態で射出されることとなる。本実施形態においては、この漏れ光の指向性に着目し、太陽電池モジュール1は、一端面10cの方向に射出される漏れ光を効果的に受光し、発電に利用することが可能な第2太陽電池素子30を設けることとしている。 Therefore, the leaked light emitted from the first main surface 10a and the second main surface 10b of the light collecting unit 10 is emitted in a state having directivity on the one end surface 10c side. In the present embodiment, paying attention to the directivity of the leaked light, the solar cell module 1 can receive the leaked light emitted in the direction of the one end face 10c effectively and can be used for power generation. The solar cell element 30 is provided.
 第2太陽電池素子30は、図4に示すように、第1主面10aから射出される漏れ光Lxおよび第2主面10bから射出される漏れ光Lyを受光するように設けられている。すなわち、第2太陽電池素子30は、集光部10の厚さ方向(z方向)における寸法d2が、集光部10の厚さ方向における一端面10cの幅d1よりも大きくなっている。そのため、第2太陽電池素子30では、第1主面10aおよび第2主面10bから斜めに射出される漏れ光Lx,Lyを受光面30aで良好に受光することが可能となる。 As shown in FIG. 4, the second solar cell element 30 is provided so as to receive leakage light Lx emitted from the first main surface 10 a and leakage light Ly emitted from the second main surface 10 b. That is, in the second solar cell element 30, the dimension d <b> 2 in the thickness direction (z direction) of the light collector 10 is larger than the width d <b> 1 of the one end surface 10 c in the thickness direction of the light collector 10. Therefore, in the second solar cell element 30, it is possible to satisfactorily receive the leakage light Lx and Ly emitted obliquely from the first main surface 10a and the second main surface 10b by the light receiving surface 30a.
 第2太陽電池素子30としては、公知のものを使用することができ、例えばアモルファスシリコン太陽電池、多結晶シリコン太陽電池、単結晶シリコン太陽電池等を用いることができる。例えば、第2太陽電池素子30としては、変換効率は化合物型のものと比べると低いが安価な結晶型太陽電池を用いるとよい。 As the second solar cell element 30, a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, or the like can be used. For example, as the second solar cell element 30, it is preferable to use a crystalline solar cell which is low in conversion efficiency compared to a compound type, but inexpensive.
 以上のような構成の太陽電池モジュール1においては、光Lを受光する集光部10から採り入れた光は、反射部18で進行方向が変更され、第1端面10cから射出される。集光部10から採り入れた光は、第1端面10cにおいて集光するため、第1端面10cに相当する大きさの第1太陽電池素子20を用いることで効率的に光電変換をすることができ、大型の太陽電池素子を準備する必要がない。そのため、製造コストを低減できる。 In the solar cell module 1 configured as described above, the light taken from the condensing unit 10 that receives the light L is changed in the traveling direction by the reflecting unit 18 and is emitted from the first end face 10c. Since the light collected from the light collecting unit 10 is collected at the first end face 10c, the first solar cell element 20 having a size corresponding to the first end face 10c can be used for efficient photoelectric conversion. There is no need to prepare a large solar cell element. Therefore, the manufacturing cost can be reduced.
 また、第1太陽電池素子20に対して、通常の太陽光よりも強い光を照射することが可能となるため、第1太陽電池素子20の単位面積あたりの発電量を増加させ、効果的に発電させることができる。 Moreover, since it becomes possible to irradiate the 1st solar cell element 20 with light stronger than normal sunlight, the electric power generation amount per unit area of the 1st solar cell element 20 is increased, and it is effective. It can generate electricity.
 加えて、集光部10から射出される漏れ光Lx,Lyを第2太陽電池素子30で受光し、発電に利用するため、集光部10で受光する光を極力無駄なく発電に用いることが可能となる。 In addition, since the leakage light Lx, Ly emitted from the light collecting unit 10 is received by the second solar cell element 30 and used for power generation, the light received by the light collecting unit 10 can be used for power generation as much as possible. It becomes possible.
 したがって、本実施形態の太陽電池モジュール1では、高い発電効率を実現することができる。また、本実施形態の太陽光発電装置100は、上述の太陽電池モジュール1を備えているため、高い発電効率を実現することが可能となる。 Therefore, in the solar cell module 1 of the present embodiment, high power generation efficiency can be realized. Moreover, since the solar power generation device 100 of the present embodiment includes the solar cell module 1 described above, high power generation efficiency can be realized.
 ここで、本発明者は、本実施形態の太陽電池モジュール1の効果を実証するために、発電量のシミュレーションを行った。なお、第2太陽電池素子30の出力条件は、JISで規定されたエアマスAM1.5を基準としている。 Here, the present inventor performed a simulation of the power generation amount in order to verify the effect of the solar cell module 1 of the present embodiment. The output condition of the second solar cell element 30 is based on the air mass AM1.5 defined by JIS.
 集光部10の寸法は、図2に示す第1主面10aの短手方向の長さL1を100mm、長手方向の長さL2を1000mm、図4に示す厚さd1を10mm、図3に示す集光部10の第1傾斜面T1の傾斜角θAを30度、第2傾斜面T2の傾斜角θBを90度、第1傾斜面T1の幅(ピッチ)を200μmとし、屈折率を1.5とした。 The dimensions of the condensing part 10 are as follows: the length L1 in the short direction of the first major surface 10a shown in FIG. 2 is 100 mm, the length L2 in the longitudinal direction is 1000 mm, the thickness d1 shown in FIG. The inclination angle θA of the first inclined surface T1 of the condensing unit 10 shown is 30 degrees, the inclination angle θB of the second inclined surface T2 is 90 degrees, the width (pitch) of the first inclined surface T1 is 200 μm, and the refractive index is 1. .5.
 また、第1太陽電池素子20の受光面20aの寸法は、集光部10の断面と同じく10mm×100mmとした。 Further, the size of the light receiving surface 20 a of the first solar cell element 20 was set to 10 mm × 100 mm as in the cross section of the light collecting unit 10.
 さらに、第2太陽電池素子30の受光面30aの寸法は、長さd2を1000mm、幅L1を100mmとし、長さ方向の中央位置に集光部10の一端面10cが対向することとした。 Furthermore, the dimensions of the light receiving surface 30a of the second solar cell element 30 are such that the length d2 is 1000 mm and the width L1 is 100 mm, and the one end surface 10c of the light collecting unit 10 faces the central position in the length direction.
 この太陽電池モジュール1に対して集光部10の第1主面10a側から太陽光を照射したときには、集光部10の第1主面10aへの太陽光の入射角は略42度となり、第1太陽電池素子20で得られる電力は略20Wであった。 When the solar cell module 1 is irradiated with sunlight from the first main surface 10a side of the light collecting unit 10, the incident angle of sunlight on the first main surface 10a of the light collecting unit 10 is approximately 42 degrees, The electric power obtained by the first solar cell element 20 was approximately 20W.
 一方、集光部10を用いることなく、上記の第1太陽電池素子20に太陽光を直接照射したときに得られる電力は略2Wであった。このように、本実施形態の太陽電池モジュール1によれば、小型の第1太陽電池素子20を使用しても十分に大きな電力を得られることが判った。 On the other hand, the electric power obtained when the first solar cell element 20 was directly irradiated with sunlight without using the light collecting unit 10 was about 2 W. Thus, according to the solar cell module 1 of this embodiment, it turned out that sufficiently large electric power can be obtained even if the small first solar cell element 20 is used.
 また、このとき第2太陽電池素子30で得られる電力は略70Wであった。すなわち、太陽電池モジュール1全体として、略90Wの電力を得ることができ、漏れ光も効果的に発電に寄与させることが可能であることが分かった。 Moreover, the electric power obtained by the 2nd solar cell element 30 at this time was about 70W. That is, it was found that the solar cell module 1 as a whole can obtain approximately 90 W of power, and the leaked light can also contribute to power generation effectively.
 なお、本実施形態の太陽電池モジュール1は、建物の窓部分に、集光部10の第1主面10aが屋外に向くように組み込むことにより、室内に採光を行いながら、窓に照射された太陽光の一部を用いて太陽光発電を行うこととしてもよい。 In addition, the solar cell module 1 of this embodiment was irradiated to the window, daylighting indoors by incorporating in the window part of a building so that the 1st main surface 10a of the condensing part 10 may face the outdoors. It is good also as performing solar power generation using a part of sunlight.
 また、本実施形態においては、反射部18は、断面形状が直角三角形である三角柱状の形状であることとしたが、これに限らない。反射部18は、第1面T1で反射した光Lを集光部10の第1端面10cの方に反射させる機能を有しているならば、種々の形状を採用することができる。 In the present embodiment, the reflecting portion 18 has a triangular prism shape whose cross-sectional shape is a right triangle. However, the present invention is not limited to this. As long as the reflection part 18 has the function to reflect the light L reflected by the 1st surface T1 toward the 1st end surface 10c of the condensing part 10, various shapes can be employ | adopted.
 例えば、断面形状は直角三角形でなくてもよく、例えば、第1面に対応する面を有しているならば、不等辺三角形やその他の多角形であってもよい。また、第1面T1に対応する面は平面でなくてもよく、曲面であってもよい。さらに、反射部18は柱状の形状が延在した凸条である必要もなく、断続的に形成された凸部であっても構わない。 For example, the cross-sectional shape does not have to be a right triangle, and for example, if it has a surface corresponding to the first surface, it may be an unequal triangle or another polygon. Further, the surface corresponding to the first surface T1 may not be a flat surface but may be a curved surface. Furthermore, the reflection part 18 does not need to be a protrusion with a columnar shape extending, and may be a protrusion formed intermittently.
 また、本実施形態においては、第2太陽電池素子30が、z方向に平行となるように(集光部10と直交するように)図1,4に図示しているが、これに限らない。受光面30aが漏れ光Lx,Lyを受光することができるならば、第2太陽電池素子30は、z方向に交差するように傾いて設けられていても構わない。 In the present embodiment, the second solar cell element 30 is illustrated in FIGS. 1 and 4 so as to be parallel to the z direction (perpendicular to the light collecting unit 10), but is not limited thereto. . As long as the light receiving surface 30a can receive the leakage lights Lx and Ly, the second solar cell element 30 may be provided to be inclined so as to intersect the z direction.
 また、本実施形態においては、太陽光発電装置100は、太陽電池モジュール1をy方向に配列することとしているが、これに限らない。本実施形態の太陽電池モジュール1は、集光部10が光透過性を有しているため、集光部同士がz方向に積層するようにして、複数の太陽電池モジュール1を積層する太陽光発電装置とすることも可能である。 Moreover, in this embodiment, although the solar power generation device 100 is supposed to arrange the solar cell modules 1 in the y direction, the present invention is not limited to this. In the solar cell module 1 of the present embodiment, since the condensing unit 10 has optical transparency, the condensing units are stacked in the z direction so that the solar cells 1 are stacked. It is also possible to use a power generation device.
[第2実施形態]
 以下、図5、6を参照して、本発明の第2実施形態に係る太陽電池モジュール2を説明する。本実施形態において上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Second Embodiment]
Hereinafter, with reference to FIG. 5, 6, the solar cell module 2 which concerns on 2nd Embodiment of this invention is demonstrated. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図5は、本実施形態の太陽電池モジュール2の概略構成を示す斜視図であり、第1実施形態の図1に対応する図である。図6は、太陽電池モジュール2の側面図であり、第1実施形態の図4に対応する図である。 FIG. 5 is a perspective view showing a schematic configuration of the solar cell module 2 of the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 6 is a side view of the solar cell module 2 and corresponds to FIG. 4 of the first embodiment.
 図5に示すように、太陽電池モジュール2は、集光部10の第2主面10bに対向する位置に反射部40を有している。反射部40は、図6に示すように、第2主面10bから射出される漏れ光Lyを第2太陽電池素子31の受光面31aに向けて反射する機能を有している。 As shown in FIG. 5, the solar cell module 2 has a reflecting portion 40 at a position facing the second main surface 10 b of the light collecting portion 10. As shown in FIG. 6, the reflecting portion 40 has a function of reflecting the leaked light Ly emitted from the second main surface 10 b toward the light receiving surface 31 a of the second solar cell element 31.
 第2太陽電池素子31は、上述の第2太陽電池素子30と同様に通常知られたものを用いることができる。また、反射部40としては、光反射性を有しているものであれば、通常知られたものを用いることができる。例えば、金属板や、プラスチック板の表面に金属膜を形成したものなどを挙げることができる。 As the second solar cell element 31, a commonly known one can be used in the same manner as the second solar cell element 30 described above. Moreover, as the reflection part 40, what is normally known can be used if it has light reflectivity. For example, a metal plate or a plastic plate having a metal film formed on the surface thereof can be used.
 また、反射部40が漏れ光Lyの進行方向を変更し、-z方向への広がりを抑えているため、第2太陽電池素子31としては、第1実施形態の太陽電池モジュール1が有する第2太陽電池素子30よりも、-z方向の寸法が短いものを用いることができる。より具体的には、第2太陽電池素子31のz方向の下端は、集光部10の高さ位置と同等の位置となっており、+z方向に延在して設けられている。したがって、本実施形態の太陽電池モジュール2では、モジュール全体の寸法を小型化することができる。 Further, since the reflecting unit 40 changes the traveling direction of the leaked light Ly and suppresses the spread in the −z direction, the second solar cell element 31 includes the second solar cell module 1 of the first embodiment. Those having a shorter dimension in the −z direction than the solar cell element 30 can be used. More specifically, the lower end of the second solar cell element 31 in the z direction is a position equivalent to the height position of the light collector 10 and extends in the + z direction. Therefore, in the solar cell module 2 of this embodiment, the dimension of the whole module can be reduced in size.
 以上のような構成の太陽電池モジュール2においても、集光部10内を伝播する光を用いて第1太陽電池素子20で発電し、集光部10の漏れ光Lx,Lyを用いて第2太陽電池素子31で発電することができる。そのため、太陽電池モジュール2全体として、高い発電効率を実現することが可能となる。 Also in the solar cell module 2 configured as described above, the first solar cell element 20 generates power using the light propagating through the condensing unit 10 and the second using the leaked lights Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 31. Therefore, it is possible to realize high power generation efficiency as the entire solar cell module 2.
 なお、本実施形態においては、反射部40を第2主面10bに対向させて配置することとしたが、第1主面10aに対向させて配置することとしてもよい。その場合、第2太陽電池素子31は、第2太陽電池素子31のz方向の上端が、集光部10の高さ位置と同等の位置となり、-z方向に延在して設けられることとするとよい。 In the present embodiment, the reflecting portion 40 is disposed to face the second main surface 10b. However, the reflecting portion 40 may be disposed to face the first main surface 10a. In that case, the second solar cell element 31 is provided such that the upper end in the z direction of the second solar cell element 31 is at a position equivalent to the height position of the light collector 10 and extends in the −z direction. Good.
[第3実施形態]
 以下、図7、8を参照して、本発明の第3実施形態に係る太陽電池モジュール3を説明する。本実施形態において上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Third Embodiment]
Hereinafter, with reference to FIG. 7, 8, the solar cell module 3 which concerns on 3rd Embodiment of this invention is demonstrated. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図7は、本実施形態の太陽電池モジュール3の概略構成を示す斜視図であり、第1実施形態の図1に対応する図である。図8は、太陽電池モジュール3の側面図であり、第1実施形態の図4に対応する図である。 FIG. 7 is a perspective view showing a schematic configuration of the solar cell module 3 of the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 8 is a side view of the solar cell module 3 and corresponds to FIG. 4 of the first embodiment.
 図7,8に示すように、本実施形態の太陽電池モジュール3は、第1主面10aから射出される漏れ光Lxおよび第2主面10bから射出される漏れ光Lyを受光するように、集光部(第2の集光部、集光部材)50が設けられている。また、集光部50の一端面50cに沿って、第2太陽電池素子32が設けられている。 As shown in FIGS. 7 and 8, the solar cell module 3 of the present embodiment receives the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b. A light collecting unit (second light collecting unit, light collecting member) 50 is provided. A second solar cell element 32 is provided along the one end surface 50 c of the light collecting unit 50.
 集光部50は、yz平面に平行な面であって+x方向の面である第1主面50aから、漏れ光Lx、Lyを内部に取り入れる構成となっている。また、第1主面50aに対向する面である第2主面50bには、内部に入射した漏れ光Lx、Lyの進行方向を変更する機能を有する複数の反射部18が設けられている。反射部18は、集光部50の第2主面50bに形成された複数の三角柱状の凸条から構成されている。第1主面50aから集光部50の内部に入射した漏れ光Lx、Lyは、集光部50の内面で反射を繰り返しながら伝播し、第2太陽電池素子32との接続面である一端面50cに集光されて射出される。 The condensing unit 50 is configured to take in leaked light Lx and Ly from the first main surface 50a which is a surface parallel to the yz plane and in the + x direction. The second main surface 50b, which is a surface facing the first main surface 50a, is provided with a plurality of reflecting portions 18 having a function of changing the traveling direction of the leaked light Lx and Ly incident on the inside. The reflecting portion 18 is composed of a plurality of triangular prism-shaped ridges formed on the second main surface 50 b of the light collecting portion 50. Leaked light Lx and Ly incident on the inside of the light collecting unit 50 from the first main surface 50a propagate while repeating reflection on the inner surface of the light collecting unit 50, and are one end surface that is a connection surface with the second solar cell element 32. 50c is condensed and emitted.
 第2太陽電池素子32は、第2太陽電池素子32の受光面32aと、集光部50の一端面50cとが対向するように隣接して配置されている。第2太陽電池素子32には、集光部50から射出される漏れ光Lx、Lyが照射され、光電変換される。第2太陽電池素子32は、上述の第1太陽電池素子20と同様に通常知られたものを用いることができる。 The second solar cell element 32 is disposed adjacently so that the light receiving surface 32a of the second solar cell element 32 and the one end surface 50c of the light collecting unit 50 face each other. The second solar cell element 32 is irradiated with leakage light Lx and Ly emitted from the light collecting unit 50 and subjected to photoelectric conversion. As the second solar cell element 32, a commonly known one can be used similarly to the first solar cell element 20 described above.
 以上のような構成の太陽電池モジュール3においても、集光部10内を伝播する光を用いて第1太陽電池素子20で発電し、集光部10の漏れ光Lx,Lyを用いて第2太陽電池素子32で発電することができる。そのため、太陽電池モジュール3全体として、高い発電効率を実現することが可能となる。 Also in the solar cell module 3 configured as described above, the first solar cell element 20 generates power using the light propagating through the condensing unit 10, and the second using the leakage light Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 32. Therefore, it is possible to realize high power generation efficiency as the entire solar cell module 3.
 なお、本実施形態においては、集光部10と集光部50とが同じ構成を有する部材であることとして説明したが、これに限らず、各々独立して設計された集光部であっても構わない。例えば、集光部10および集光部50に形成された反射部18のピッチは、それぞれ異なっていてもよく、また、反射部18の形状も異なっていてよい。 In the present embodiment, the light collecting unit 10 and the light collecting unit 50 are described as members having the same configuration. However, the present invention is not limited to this, and the light collecting units are independently designed. It doesn't matter. For example, the pitch of the reflecting portions 18 formed on the light collecting portion 10 and the light collecting portion 50 may be different, and the shape of the reflecting portion 18 may be different.
[第4実施形態]
 以下、図9、10を参照して、本発明の第2実施形態に係る太陽電池モジュール4を説明する。本実施形態において上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Fourth Embodiment]
Hereinafter, with reference to FIG. 9, 10, the solar cell module 4 which concerns on 2nd Embodiment of this invention is demonstrated. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図9は、本実施形態の太陽電池モジュール4の概略構成を示す斜視図であり、第1実施形態の図1に対応する図である。図10は、太陽電池モジュール4の側面図であり、第1実施形態の図4に対応する図である。 FIG. 9 is a perspective view showing a schematic configuration of the solar cell module 4 of the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 10 is a side view of the solar cell module 4 and corresponds to FIG. 4 of the first embodiment.
 図9,10に示すように、本実施形態の太陽電池モジュール4は、集光部10の一端面10cに対向し、且つ一端面10cと離間して設けられた凹面鏡(集光部材)51と、集光部10と凹面鏡51との間の空間に設けられた第2太陽電池素子33と、を有している。 As shown in FIGS. 9 and 10, the solar cell module 4 of the present embodiment includes a concave mirror (light condensing member) 51 provided opposite to the one end surface 10 c of the light collecting unit 10 and spaced from the one end surface 10 c. And the second solar cell element 33 provided in the space between the light collecting unit 10 and the concave mirror 51.
 凹面鏡51は、反射面51aが、集光部10の一端面10c側を向くようにして設けられている。凹面鏡51は、第1主面10aから射出される漏れ光Lx、および第2主面10bから射出され反射部40で反射された漏れ光Ly、を反射面51aで反射して、焦点位置P1に集光する機能を有している。 The concave mirror 51 is provided so that the reflecting surface 51a faces the one end surface 10c side of the light collecting unit 10. The concave mirror 51 reflects the leaked light Lx emitted from the first main surface 10a and the leaked light Ly emitted from the second main surface 10b and reflected by the reflecting portion 40 by the reflecting surface 51a, and returns to the focal position P1. It has the function of condensing light.
 第2太陽電池素子33は、受光面33aが凹面鏡51の反射面51aに対向し、且つ、受光面33aの空間位置が、凹面鏡51の焦点位置P1と重なるように設けられている。
 第2太陽電池素子33には、凹面鏡51で集光される漏れ光Lx、Lyが照射され、光電変換される。第2太陽電池素子33は、上述の第1太陽電池素子20と同様に通常知られたものを用いることができる。
The second solar cell element 33 is provided such that the light receiving surface 33 a faces the reflecting surface 51 a of the concave mirror 51, and the spatial position of the light receiving surface 33 a overlaps with the focal position P <b> 1 of the concave mirror 51.
The second solar cell element 33 is irradiated with leakage light Lx and Ly collected by the concave mirror 51 and subjected to photoelectric conversion. As the second solar cell element 33, a commonly known one can be used in the same manner as the first solar cell element 20 described above.
 以上のような構成の太陽電池モジュール4においても、集光部10内を伝播する光を用いて第1太陽電池素子20で発電し、集光部10の漏れ光Lx,Lyを用いて第2太陽電池素子33で発電することができる。そのため、太陽電池モジュール4全体として、高い発電効率を実現することが可能となる。 Also in the solar cell module 4 configured as described above, the first solar cell element 20 generates power using the light propagating through the condensing unit 10, and the second using the leakage light Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 33. Therefore, high power generation efficiency can be realized as the entire solar cell module 4.
 なお、本実施形態においては、第2太陽電池素子33は、受光面33aの空間位置が凹面鏡51の焦点位置P1と重なるように設けられていることとしたが、第2太陽電池素子33に漏れ光Lx,Lyを照射することができるならば、焦点位置とずれていてもかまわない。 In the present embodiment, the second solar cell element 33 is provided such that the spatial position of the light receiving surface 33a overlaps the focal position P1 of the concave mirror 51. However, the second solar cell element 33 leaks into the second solar cell element 33. As long as the lights Lx and Ly can be emitted, the focus position may be shifted.
[第5実施形態]
 以下、図11~15を参照して、本発明の第5実施形態に係る太陽電池モジュールを説明する。本実施形態において上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Fifth Embodiment]
Hereinafter, a solar cell module according to a fifth embodiment of the present invention will be described with reference to FIGS. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図11は、本実施形態の太陽電池モジュール5の概略構成を示す斜視図であり、第1実施形態の図1に対応する図である。図12は、太陽電池モジュール5の側面図であり、第1実施形態の図4に対応する図である。 FIG. 11 is a perspective view showing a schematic configuration of the solar cell module 5 of the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 12 is a side view of the solar cell module 5 and corresponds to FIG. 4 of the first embodiment.
 図11,12に示すように、本実施形態の太陽電池モジュール5は、集光部10の一端面10cに対向し、且つ一端面10cと離間して設けられたシリンドリカルレンズ(集光部材、集光レンズ)52と、集光部10から見てシリンドリカルレンズ52とは反対側の空間に設けられた第2太陽電池素子34と、を有している。 As shown in FIGS. 11 and 12, the solar cell module 5 of the present embodiment is a cylindrical lens (a condensing member, a concentrating member) that faces the one end surface 10 c of the light collecting unit 10 and is spaced from the one end surface 10 c. Optical lens) 52 and the second solar cell element 34 provided in a space opposite to the cylindrical lens 52 when viewed from the light collecting unit 10.
 シリンドリカルレンズ52は、y方向に延在して設けられた円筒状の集光レンズである。すなわち、シリンドリカルレンズ52は、xy平面と平行な断面では曲率を有さず、xz平面と平行な断面では曲率を有している。図12では、xz平面と平行な面での断面形状が楕円形であることとして示している。 The cylindrical lens 52 is a cylindrical condensing lens provided extending in the y direction. That is, the cylindrical lens 52 does not have a curvature in a cross section parallel to the xy plane, and has a curvature in a cross section parallel to the xz plane. FIG. 12 shows that the cross-sectional shape in a plane parallel to the xz plane is an ellipse.
 シリンドリカルレンズ52は、第1主面10aから射出される漏れ光Lx、および第2主面10bから射出され反射部40で反射された漏れ光Ly、を焦点位置P2に集光する機能を有している。このとき、xy平面内には曲率を有さないため、漏れ光Lx,Lyは集光されず、曲率を有するxz平面方向のみ漏れ光Lx,Lyが集光する。 The cylindrical lens 52 has a function of condensing the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b and reflected by the reflection unit 40 at the focal position P2. ing. At this time, since there is no curvature in the xy plane, the leakage lights Lx and Ly are not collected, but the leakage lights Lx and Ly are collected only in the xz plane direction having the curvature.
 第2太陽電池素子34は、受光面34aがシリンドリカルレンズ52に対向し、且つ、受光面34aの空間位置が、シリンドリカルレンズ52の焦点位置P2と重なるように設けられている。第2太陽電池素子34には、シリンドリカルレンズ52で集光される漏れ光Lx、Lyが照射され、光電変換される。第2太陽電池素子34は、上述の第1太陽電池素子20と同様に通常知られたものを用いることができる。 The second solar cell element 34 is provided such that the light receiving surface 34 a faces the cylindrical lens 52, and the spatial position of the light receiving surface 34 a overlaps the focal position P 2 of the cylindrical lens 52. The second solar cell element 34 is irradiated with leakage light Lx and Ly collected by the cylindrical lens 52 and subjected to photoelectric conversion. As the second solar cell element 34, a commonly known one can be used in the same manner as the first solar cell element 20 described above.
 以上のような構成の太陽電池モジュール5においても、集光部10内を伝播する光を用いて第1太陽電池素子20で発電し、集光部10の漏れ光Lx,Lyを用いて第2太陽電池素子34で発電することができる。そのため、太陽電池モジュール5全体として、高い発電効率を実現することが可能となる。 Also in the solar cell module 5 having the above-described configuration, the first solar cell element 20 generates power using the light propagating through the condensing unit 10, and the second using the leakage light Lx and Ly of the condensing unit 10. Electric power can be generated by the solar cell element 34. Therefore, it is possible to realize high power generation efficiency as the entire solar cell module 5.
 なお、本実施形態においては、シリンドリカルレンズ52の断面形状が楕円形であることとしたが、これに限らず、漏れ光Lx,Lyの入射する側または射出する側のいずれか一方が平面となった半円形または弓形の断面形状であることとしてもよい。 In this embodiment, the cylindrical lens 52 has an elliptical cross-sectional shape. However, the present invention is not limited to this, and one of the incident side and the emission side of the leakage light Lx and Ly is a flat surface. It may also be a semicircular or arcuate cross-sectional shape.
(変形例)
 本実施形態においては、漏れ光Lx,Lyを集光レンズで集光し、第2太陽電池素子に照射するという技術思想に対し、幾つかの変形例を有する。以下、図13~15を用いて説明する。
(Modification)
In the present embodiment, there are several modifications to the technical idea of condensing leakage light Lx and Ly with a condensing lens and irradiating the second solar cell element. This will be described below with reference to FIGS.
(第1の変形例)
 図13は、本実施形態の第1の変形例に係る太陽電池モジュール6の説明図である。図13は、太陽電池モジュール6の概略構成を示す斜視図である。
(First modification)
FIG. 13 is an explanatory diagram of the solar cell module 6 according to a first modification of the present embodiment. FIG. 13 is a perspective view showing a schematic configuration of the solar cell module 6.
 太陽電池モジュール6は、上述の太陽電池モジュール5が有しているシリンドリカルレンズ52の代わりに、同位置にトーリックレンズ53が設けられている。また、トーリックレンズ53の焦点位置P3には、第2太陽電池素子35が設けられている。トーリックレンズ53は、焦点位置P3は、第2太陽電池素子35の受光面35aとなるよう設けられている。 The solar cell module 6 is provided with a toric lens 53 at the same position instead of the cylindrical lens 52 of the solar cell module 5 described above. A second solar cell element 35 is provided at the focal position P3 of the toric lens 53. The toric lens 53 is provided such that the focal position P3 is the light receiving surface 35a of the second solar cell element 35.
 トーリックレンズ53は、y方向に延在して設けられたシリンドリカルレンズを、さらに-x方向に凸となるように曲げた形状を有している。すなわち、トーリックレンズ53は、xz平面と平行な断面で曲率を有するとともに、xy平面と平行な断面でも曲率を有している。 The toric lens 53 has a shape obtained by bending a cylindrical lens extending in the y direction so as to be convex in the −x direction. That is, the toric lens 53 has a curvature in a cross section parallel to the xz plane, and also has a curvature in a cross section parallel to the xy plane.
 トーリックレンズ53は、第1主面10aから射出される漏れ光Lx、および第2主面10bから射出され反射部40で反射された漏れ光Ly、を焦点位置P3に集光する機能を有している。このとき、太陽電池モジュール5とは異なり、xy平面内にも曲率を有するため、漏れ光Lx,Lyは、xz平面方向に加えてxy平面方向にも集光する。そのため、第2太陽電池素子35は、太陽電池モジュール5の第2太陽電池素子34よりも、y方向の寸法が短いものを用いることができ、モジュールの小型化を図ることができる。 The toric lens 53 has a function of condensing the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b and reflected by the reflection unit 40 at the focal position P3. ing. At this time, unlike the solar cell module 5, since it also has a curvature in the xy plane, the leakage lights Lx and Ly are condensed in the xy plane direction in addition to the xz plane direction. Therefore, the 2nd solar cell element 35 can use the thing whose dimension of ay direction is shorter than the 2nd solar cell element 34 of the solar cell module 5, and can achieve size reduction of a module.
(第2の変形例)
 図14,15は、本実施形態の第2の変形例に係る太陽電池モジュール7の説明図である。図14は、太陽電池モジュール7の概略構成を示す斜視図であり、第1実施形態の図1に対応する図である。図15は、太陽電池モジュール7の側面図であり、第1実施形態の図4に対応する図である。
(Second modification)
14 and 15 are explanatory diagrams of a solar cell module 7 according to a second modification of the present embodiment. FIG. 14 is a perspective view showing a schematic configuration of the solar cell module 7, and corresponds to FIG. 1 of the first embodiment. FIG. 15 is a side view of the solar cell module 7 and corresponds to FIG. 4 of the first embodiment.
 太陽電池モジュール7は、上述の太陽電池モジュール5が有しているシリンドリカルレンズ52の代わりに、同位置にレンズアレイ54が設けられている。また、レンズアレイ54の焦点位置には、第2太陽電池素子36が設けられている。 The solar cell module 7 is provided with a lens array 54 at the same position instead of the cylindrical lens 52 of the solar cell module 5 described above. A second solar cell element 36 is provided at the focal position of the lens array 54.
 レンズアレイ54は、微小な凸レンズ54aが複数集まって形成されており、各凸レンズ54aの焦点P4の位置が第2太陽電池素子36の受光面36aとなるように設けられている。 The lens array 54 is formed by collecting a plurality of minute convex lenses 54 a, and is provided so that the position of the focal point P 4 of each convex lens 54 a becomes the light receiving surface 36 a of the second solar cell element 36.
 以上のような構成の太陽電池モジュール6,7においても、集光部10内を伝播する光を用いて第1太陽電池素子20で発電し、集光部10の漏れ光Lx,Lyを用いて第2太陽電池素子で発電することができる。そのため、太陽電池モジュール全体として、高い発電効率を実現することが可能となる。 Also in the solar cell modules 6 and 7 having the above-described configuration, the first solar cell element 20 generates power using the light propagating through the condensing unit 10 and uses the leakage lights Lx and Ly of the condensing unit 10. Electric power can be generated by the second solar cell element. Therefore, it is possible to achieve high power generation efficiency as the entire solar cell module.
[第6実施形態]
 以下、図16~18を参照して、本発明の第6実施形態に係る太陽電池モジュール8を説明する。本実施形態において上述の実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
[Sixth Embodiment]
Hereinafter, a solar cell module 8 according to a sixth embodiment of the present invention will be described with reference to FIGS. In this embodiment, the same code | symbol is attached | subjected about the component which is common in the above-mentioned embodiment, and detailed description is abbreviate | omitted.
 図16は、本実施形態の太陽電池モジュール8の概略構成を示す斜視図であり、第1実施形態の図1に対応する図である。図17は、太陽電池モジュール8の側面図であり、第1実施形態の図4に対応する図である。図18は、太陽電池モジュール8の一端面10c近傍の拡大図である。 FIG. 16 is a perspective view showing a schematic configuration of the solar cell module 8 of the present embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 17 is a side view of the solar cell module 8 and corresponds to FIG. 4 of the first embodiment. FIG. 18 is an enlarged view of the vicinity of one end face 10 c of the solar cell module 8.
 太陽電池モジュール8は、これまで説明した太陽電池モジュールが有している第2太陽電池素子を有していない。その代わりに、漏れ光Lx,Lyを集光し、再度集光部10に入射させて、漏れ光Lx,Lyを太陽電池素子60に導く集光部材55を有している。太陽電池素子60は、上述の実施形態における第1太陽電池素子20と同様のものである。 The solar cell module 8 does not have the second solar cell element that the solar cell module described so far has. Instead, it has a condensing member 55 that condenses the leaked lights Lx and Ly and makes them enter the condensing unit 10 again to guide the leaked lights Lx and Ly to the solar cell element 60. The solar cell element 60 is the same as the first solar cell element 20 in the above-described embodiment.
 図16,17に示すように、集光部材55は、凹面鏡551と、反射ミラー552と、プリズム部(光進行方向変更部)553と、を有している。 16 and 17, the condensing member 55 includes a concave mirror 551, a reflecting mirror 552, and a prism portion (light traveling direction changing portion) 553.
 凹面鏡551は、反射面551aが、集光部10の一端面10c側を向くようにして設けられている。凹面鏡551は、第1主面10aから射出される漏れ光Lx、および第2主面10bから射出され反射部40で反射された漏れ光Ly、を、第1主面10aの上方(+z方向)の空間に向けて集光しながら反射する。 The concave mirror 551 is provided so that the reflection surface 551a faces the one end surface 10c side of the light collecting unit 10. The concave mirror 551 emits the leakage light Lx emitted from the first main surface 10a and the leakage light Ly emitted from the second main surface 10b and reflected by the reflecting portion 40 above the first main surface 10a (+ z direction). Reflects while focusing toward the space.
 反射ミラー552は、凹面鏡551で反射された漏れ光Lx,Lyを、集光部10の第1主面10aの方向であって、且つ第1端面10c側に反射する。なお、反射ミラー552が凹面鏡であることとし、反射の際にさらに集光する構成であってもよい。 The reflection mirror 552 reflects the leakage light Lx and Ly reflected by the concave mirror 551 in the direction of the first main surface 10a of the light collecting unit 10 and toward the first end surface 10c. The reflection mirror 552 may be a concave mirror and may be configured to further collect light during reflection.
 プリズム部553は、集光部10の第1主面10aに光学接着され、反射ミラー552によって反射された漏れ光Lx,Lyの進行方向を変更する機能を有している。詳しくは、プリズム部553は、集光部10の形成材料よりも屈折率が高い材料で形成されている。また、図18に示すように、漏れ光Lx,Lyの入射面553aと射出面553bとは、第1主面10aに対し入射角φ1で入射する漏れ光Lx,Lyの進行方向を変更し、一端面10cに対する入射角φ2が小さくなるように設定されている。 The prism unit 553 is optically bonded to the first main surface 10 a of the light collecting unit 10 and has a function of changing the traveling direction of the leaked light Lx and Ly reflected by the reflection mirror 552. Specifically, the prism portion 553 is formed of a material having a refractive index higher than that of the material for forming the light collecting portion 10. Further, as shown in FIG. 18, the incident surfaces 553a and exit surfaces 553b of the leaked light Lx and Ly change the traveling direction of the leaked lights Lx and Ly incident at an incident angle φ1 with respect to the first main surface 10a. The incident angle φ2 with respect to the one end face 10c is set to be small.
 すなわち、プリズム部553が無い場合には、図19に示すように、空気中から集光部10に入射する漏れ光Lx,Lyは、第1主面10aで屈折するため、一端面10cに対する入射角が大きくなる(φ3<φ4)。そのため、集光部10に再入射した漏れ光Lx,Lyが、一端面10cに達する前に第2主面10b側に抜け、再度漏れ光となるおそれがある。 That is, when there is no prism part 553, as shown in FIG. 19, since the leaked light Lx and Ly entering the light collecting part 10 from the air is refracted by the first main surface 10a, the light enters the one end face 10c. The angle increases (φ3 <φ4). For this reason, the leaked lights Lx and Ly that re-enter the light collecting unit 10 may escape to the second main surface 10b before reaching the one end face 10c, and become leaked light again.
 対して、図18に示すようにプリズム部553を設けると、漏れ光Lx,Lyの一端面10cに対する入射角φ2が小さくなるため、良好に漏れ光Lx,Lyを一端面10cに導き、一端面10cに受光面60aが対向して設けられた第1太陽電池素子60に集光することができる。 On the other hand, when the prism portion 553 is provided as shown in FIG. 18, the incident angle φ2 of the leaked light Lx, Ly with respect to the one end face 10c is reduced, so that the leaked light Lx, Ly is favorably guided to the one end face 10c. The light can be condensed on the first solar cell element 60 provided with the light receiving surface 60a facing 10c.
 以上のような構成の太陽電池モジュール8においても、集光部10内を伝播する光および集光部10の漏れ光Lx,Lyを第1太陽電池素子20に照射し、発電することができる。そのため、太陽電池モジュール全体として、高い発電効率を実現することが可能となる。 Also in the solar cell module 8 having the above-described configuration, the first solar cell element 20 can be irradiated with the light propagating through the condensing unit 10 and the leakage lights Lx and Ly of the condensing unit 10 to generate electric power. Therefore, it is possible to achieve high power generation efficiency as the entire solar cell module.
 なお、本実施形態においては、プリズム部553が第1主面10aに光学接着されることとしたが、これに限らず、図20に示すように、プリズム部553が第1主面10aから離間した状態で位置が固定されていることとしてもよい。例えば、プリズム部553と集光部10とが、同じ屈折率の形成材料にて形成され、射出面553bと第1主面10aとが平行であることとして以下に説明する。 In the present embodiment, the prism portion 553 is optically bonded to the first main surface 10a. However, the present invention is not limited to this, and the prism portion 553 is separated from the first main surface 10a as shown in FIG. It is good also as a position being fixed in the state which carried out. For example, it will be described below that the prism portion 553 and the light converging portion 10 are formed of a material having the same refractive index, and the exit surface 553b and the first main surface 10a are parallel.
 この場合、射出面553bと第1主面10aとの間の空間には、空気層が存在することとなる。すると、図20に示すように、第1主面10aに対し入射角φ1で入射する漏れ光Lx,Lyは、プリズム部553の射出面553bにおいて屈折し、射出される角度φ5は、入射角φ1よりも大きくなる。 In this case, an air layer exists in the space between the emission surface 553b and the first main surface 10a. Then, as shown in FIG. 20, the leaked light Lx and Ly incident on the first main surface 10a at the incident angle φ1 is refracted at the exit surface 553b of the prism portion 553, and the emitted angle φ5 is the incident angle φ1. Bigger than.
 漏れ光Lx,Lyは、第1主面10aに入射する際に屈折するが、第1主面10aに対する入射角は、φ1よりも大きいφ5であるため、漏れ光Lx,Lyの一端面10cに対する入射角φ6は、図19に示したプリズム553を設けない場合の入射角φ4よりも小さくなる。 The leaked lights Lx and Ly are refracted when entering the first main surface 10a. However, since the incident angle with respect to the first main surface 10a is φ5 larger than φ1, the leaked lights Lx and Ly with respect to the one end face 10c. The incident angle φ6 is smaller than the incident angle φ4 when the prism 553 shown in FIG. 19 is not provided.
 したがって、プリズム部553が第1主面10aから離間した状態で位置が固定されていても、プリズム部553が第1主面10aに光学接着される場合と同様の効果を得ることができる。 Therefore, even when the position of the prism portion 553 is fixed in a state of being separated from the first main surface 10a, it is possible to obtain the same effect as when the prism portion 553 is optically bonded to the first main surface 10a.
 また、本実施形態においては、光進行方向変更部としてプリズム部553を設けることとしたが、これに限らず、漏れ光Lx,Lyの進行方向を、第1端面10cに対する入射角が小さくなるようにすることができれば、他の構成を採用することもできる。このような構成としては、例えば、第1主面10aのプリズム部553を設けた位置に、漏れ光Lx,Lyの進行方向を、第1端面10cに対する入射角が小さくなるように回折する回折パターンを形成する構成が挙げられる。 In the present embodiment, the prism portion 553 is provided as the light traveling direction changing unit. However, the present invention is not limited to this, and the traveling direction of the leakage light Lx and Ly is set so that the incident angle with respect to the first end surface 10c becomes small. Other configurations can also be adopted if it can be made. As such a configuration, for example, a diffraction pattern that diffracts the traveling direction of the leaked light Lx and Ly at a position where the prism portion 553 of the first main surface 10a is provided so that the incident angle with respect to the first end surface 10c becomes small. The structure which forms is mentioned.
 以上、添付図面を参照しながら本発明の態様に係る好適な実施の形態例について説明したが、本発明の態様は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の態様における主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments according to the aspects of the present invention have been described above with reference to the accompanying drawings. However, it goes without saying that the aspects of the present invention are not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are merely examples, and various modifications can be made based on design requirements and the like without departing from the spirit of the aspect of the present invention.
 本発明の態様は、太陽電池モジュール、もしくは太陽光発電装置に広く利用可能である。 The aspect of the present invention can be widely used for solar cell modules or solar power generation devices.
 1~8…太陽電池モジュール、10…集光部、10a…第1主面(一方の面、一対の面)、10b…第2主面(一対の面)、10c…一端面、20…第1太陽電池素子、30~36…第2太陽電池素子、30a~36a…受光面、40…反射部、50…集光部(第2の集光部、集光部材)、50c…第2の集光部の一端面、51…凹面鏡(集光部材)、52…シリンドリカルレンズ(集光レンズ、集光部材)、53…トーリックレンズ(集光レンズ、集光部材)、54…レンズアレイ(集光レンズ、集光部材)、55…集光部材、100…太陽光発電装置、553…プリズム部(光進行方向変更部)、L…光、Lx,Ly…漏れ光、P1~P4…焦点位置。 DESCRIPTION OF SYMBOLS 1-8 ... Solar cell module, 10 ... Condensing part, 10a ... 1st main surface (one surface, a pair of surface), 10b ... 2nd main surface (a pair of surface), 10c ... One end surface, 20 ... 1st 1 solar cell element, 30 to 36 ... second solar cell element, 30a to 36a ... light receiving surface, 40 ... reflecting part, 50 ... condensing part (second condensing part, condensing member), 50c ... second One end surface of the condensing part, 51 ... concave mirror (condensing member), 52 ... cylindrical lens (condensing lens, condensing member), 53 ... toric lens (condensing lens, condensing member), 54 ... lens array (collection) (Light lens, condensing member), 55 ... condensing member, 100 ... solar power generation device, 553 ... prism portion (light traveling direction changing portion), L ... light, Lx, Ly ... leakage light, P1 to P4 ... focal position .

Claims (17)

  1.  第1集光部と、
     前記集光部の一端面に沿って設けられた第1太陽電池素子と、
     第2太陽電池素子を有し、
     前記第1集光部は、前記一端面に接する一対の対向面のうち、一方の面から内部に入射する光を、前記内部を伝播させて少なくとも前記一端面に集光させ、前記第1太陽電池素子に射出するよう構成され、
     前記第2太陽電池素子は、前記一対の対向面の少なくとも一方から前記一端面側に向けて斜めに射出された漏れ光が入射するよう配置される太陽電池モジュール。
    A first light collecting unit;
    A first solar cell element provided along one end surface of the light collecting unit;
    Having a second solar cell element;
    The first condensing unit causes light incident on the inside from one of the pair of opposing surfaces in contact with the one end surface to propagate through the inside and collect the light on at least the one end surface, so that the first sun Configured to inject into the battery element,
    The second solar cell element is a solar cell module arranged so that leakage light emitted obliquely from at least one of the pair of opposing surfaces toward the one end surface side is incident.
  2.  前記第2太陽電池素子の受光面が、前記一端面に対向して設けられ、
     前記第2太陽電池素子は、前記第1集光部の厚さ方向における寸法が、前記第1集光部の厚さ方向における前記一端面の幅よりも大きい請求項1に記載の太陽電池モジュール。
    A light receiving surface of the second solar cell element is provided to face the one end surface;
    2. The solar cell module according to claim 1, wherein the second solar cell element has a dimension in the thickness direction of the first light collecting portion larger than a width of the one end face in the thickness direction of the first light collecting portion. .
  3.  前記一対の対向面のうち少なくとも一方の面に対向し、前記漏れ光を前記第2太陽電池素子に向けて反射する反射部を更に有する請求項2に記載の太陽電池モジュール。 3. The solar cell module according to claim 2, further comprising a reflecting portion that faces at least one of the pair of facing surfaces and reflects the leaked light toward the second solar cell element.
  4.  前記漏れ光を受光し、前記第2太陽電池素子に集光する第2集光部を更に有する請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, further comprising a second condensing unit that receives the leakage light and condenses the light on the second solar cell element.
  5.  前記第2集光部は、板状であり、
     前記第2太陽電池素子が、前記第2集光部の一端面に沿って設けられ、
     前記第2集光部は、前記第2集光部の一端面に接する一対の対向面のうち、一方の面から内部に入射する光を、前記内部を伝播させて少なくとも前記第2の集光部の一端面に集光させ、前記第2太陽電池素子に射出するよう構成された請求項4に記載の太陽電池モジュール。
    The second light collector is plate-shaped,
    The second solar cell element is provided along one end surface of the second light collecting unit;
    The second condensing unit transmits at least the second condensing light propagating through the inside from one of a pair of opposing surfaces in contact with one end surface of the second condensing unit. The solar cell module according to claim 4, wherein the solar cell module is configured to condense on one end surface of the unit and to be emitted to the second solar cell element.
  6.  前記第2集光部は、凹面鏡である請求項4に記載の太陽電池モジュール。 The solar cell module according to claim 4, wherein the second light collecting portion is a concave mirror.
  7.  前記第2集光部は、集光レンズである請求項4に記載の太陽電池モジュール。 The solar cell module according to claim 4, wherein the second condensing unit is a condensing lens.
  8.  前記集光レンズは、シリンドリカルレンズである請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 7, wherein the condenser lens is a cylindrical lens.
  9.  前記集光レンズは、トーリックレンズである請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 7, wherein the condensing lens is a toric lens.
  10.  前記集光レンズは、レンズアレイである請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 7, wherein the condenser lens is a lens array.
  11.  前記第2太陽電池素子が、前記第2集光部の焦点位置に設けられている請求項6に記載の太陽電池モジュール。 The solar cell module according to claim 6, wherein the second solar cell element is provided at a focal position of the second condensing unit.
  12.  前記第2太陽電池素子が、前記第2集光部の焦点位置に設けられている請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 7, wherein the second solar cell element is provided at a focal position of the second light collecting unit.
  13.  第1集光部と、
     第2集光部と、
     前記第1集光部の一端面に沿って設けられた太陽電池素子と、を有し、
     前記第1集光部は、前記一端面に接する一対の対向面のうち、一方の面から内部に入射する光を、前記内部を伝播させて少なくとも前記一端面に集光させ、前記太陽電池素子に射出するよう構成され、
     第2集光部は、前記一対の対向面の少なくとも一方から前記一端面側に向けて斜めに射出された漏れ光を受光し、前記第1集光部を介して前記太陽電池素子に集光するよう構成されている太陽電池モジュール。
    A first light collecting unit;
    A second light collecting unit;
    A solar cell element provided along one end surface of the first light collecting part,
    The first condensing unit is configured to propagate light entering the inside from one of the pair of opposing surfaces in contact with the one end surface, and to collect the light at least on the one end surface, thereby allowing the solar cell element to collect the light. Configured to inject
    The second light collecting unit receives leakage light emitted obliquely from at least one of the pair of opposed surfaces toward the one end surface, and condenses the light to the solar cell element via the first light collecting unit. A solar cell module configured to.
  14.  前記第2集光部は、前記第1集光部に入射した前記漏れ光の、前記一端面に対する入射角が小さくなるように、前記漏れ光の進行方向を変更する光進行方向変更部を有する請求項12に記載の太陽電池モジュール。 The second light collecting unit includes a light traveling direction changing unit that changes a traveling direction of the leakage light so that an incident angle of the leakage light incident on the first light collecting unit with respect to the one end surface is reduced. The solar cell module according to claim 12.
  15.  前記一対の対向面のうち少なくとも一方の面に対向し、前記漏れ光を前記第2集光部に向けて反射する反射部を有する請求項4に記載の太陽電池モジュール。 5. The solar cell module according to claim 4, further comprising a reflecting portion that faces at least one of the pair of facing surfaces and reflects the leaked light toward the second light collecting portion.
  16.  請求項1に記載の太陽電池モジュールを備えた太陽光発電装置。 A solar power generation apparatus comprising the solar cell module according to claim 1.
  17.  請求項13に記載の太陽電池モジュールを備えた太陽光発電装置。 A solar power generation device comprising the solar cell module according to claim 13.
PCT/JP2011/075331 2010-11-16 2011-11-02 Solar cell module and solar power generation device WO2012066935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-256202 2010-11-16
JP2010256202 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012066935A1 true WO2012066935A1 (en) 2012-05-24

Family

ID=46083872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075331 WO2012066935A1 (en) 2010-11-16 2011-11-02 Solar cell module and solar power generation device

Country Status (1)

Country Link
WO (1) WO2012066935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528866A (en) * 2013-08-19 2016-09-15 トロピグラス テクノロジーズ リミテッド Electric energy generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2003534518A (en) * 2000-05-24 2003-11-18 フレジアー,スコット Double reflection solar beam concentrator
WO2004114418A1 (en) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. Concentrating photovoltaic power generation system
WO2009102670A1 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Dual layer thin film holographic solar concentrator/ collector
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131051A (en) * 1993-09-07 1995-05-19 Mitsubishi Motors Corp Solar cell panel
JP2003534518A (en) * 2000-05-24 2003-11-18 フレジアー,スコット Double reflection solar beam concentrator
WO2004114418A1 (en) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. Concentrating photovoltaic power generation system
WO2009102670A1 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Dual layer thin film holographic solar concentrator/ collector
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528866A (en) * 2013-08-19 2016-09-15 トロピグラス テクノロジーズ リミテッド Electric energy generator

Similar Documents

Publication Publication Date Title
TWI523245B (en) Secondary lens and collector type solar power generation module
US20130240037A1 (en) Solar cell module and solar generator
KR101021587B1 (en) building intergrated photovoltaic modules
JP6416333B2 (en) Solar cell module
EP2947701A1 (en) Light-concentrating mechanism, photovoltaic power generation device, window structure, and window glass
JP2004047753A (en) Solar cell with condensing element
JP2013098496A (en) Solar battery module and manufacturing method thereof
JP2006332113A (en) Concentrating solar power generation module and solar power generator
WO2011062020A1 (en) Solar cell module, solar power generating apparatus, and window
JP6146627B2 (en) Solar cell module
JPH11340493A (en) Sunlight condensing device
WO2012014539A1 (en) Solar cell module and solar power generation device
WO2013008665A1 (en) Condenser, light condensing system, solar power generation device, and solar system
JP2007073774A (en) Solar battery
JP2012099681A (en) Light condensing structure and photovoltaics generator
EP2528110B1 (en) Photovoltaic system for efficient solar radiation collection and solar panel incorporating same
KR200436051Y1 (en) solar condensing apparatus
WO2012066935A1 (en) Solar cell module and solar power generation device
JP2011159822A (en) Photovoltaic power generator and method of manufacturing the same
WO2012128339A1 (en) Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
JP2014010251A (en) Secondary lens, solar-cell mounting body, condensing type photovoltaic power generation system and condensing type photovoltaic power generation module
WO2012066954A1 (en) Solar cell module and solar power generation device
JP7306359B2 (en) Photoelectric conversion device for photovoltaic power generation
TWI537533B (en) Side-irradiated concentrated photovoltaic system
JP2018060978A (en) Light-condensing solar power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP