WO2012063584A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2012063584A1
WO2012063584A1 PCT/JP2011/073219 JP2011073219W WO2012063584A1 WO 2012063584 A1 WO2012063584 A1 WO 2012063584A1 JP 2011073219 W JP2011073219 W JP 2011073219W WO 2012063584 A1 WO2012063584 A1 WO 2012063584A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
current sensor
magnetoresistive effect
magnetic shield
magnetic
Prior art date
Application number
PCT/JP2011/073219
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 彰
雅博 飯塚
斎藤 正路
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Publication of WO2012063584A1 publication Critical patent/WO2012063584A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the present invention relates to a current sensor that measures current without contact.
  • the present invention relates to a current sensor having a simple configuration capable of measuring a large current with high accuracy.
  • Patent Document 1 discloses a current sensor using a magnetoresistive element as an element for a magnetic sensor.
  • the current sensor using the magnetoresistive effect element can increase the sensor output, but has a problem that the current measurement region in which the linearity of the sensor output can be ensured is narrow.
  • a so-called magnetic balance type equipped with a feedback coil it is possible to achieve both high output and linearity in a wide measurement area to some extent.
  • a feedback coil and a drive circuit for driving the feedback coil are required, the cost is high. End up.
  • the present invention has been made in view of such a point, and an object thereof is to provide a current sensor having a simple configuration capable of measuring a large current with high accuracy.
  • the current sensor of the present invention covers a magnetoresistive effect element arranged in a plan view so as to output a voltage proportional to an induced magnetic field from a current to be measured flowing through a current line. And a gap between the magnetoresistive element and the magnetic shield is 1 ⁇ m to 40 ⁇ m.
  • the magnetoresistive effect element and the magnetic shield are arranged so as to have a predetermined relationship, the measured current region in which the linearity of the output of the current sensor can be obtained is widened. It is possible to measure with high accuracy. That is, it is possible to provide a current sensor that achieves both high accuracy and a wide measurement range with a simple configuration.
  • the distance between the magnetoresistive element and the magnetic shield may be 1 ⁇ m to 8 ⁇ m. According to this configuration, since the induced magnetic field received by the magnetoresistive element from the current to be measured can be further reduced, even a large current of 1500 A or more can be accurately measured. Thus, by arranging the magnetoresistive effect element and the magnetic shield more appropriately, it is possible to provide a more excellent current sensor that achieves both high accuracy and a wide measurement range with a simple configuration.
  • the magnetic shield may be disposed between the current line and the magnetoresistive element. In the current sensor of the present invention, the magnetic shield may be disposed on the opposite side of the magnetoresistive element from the current line.
  • the magnetic shield and the magnetoresistive effect element are arranged so that the distance between the magnetic shield and the magnetoresistive effect element is 1 ⁇ m to 40 ⁇ m, and the magnetic shield covers the magnetoresistive effect element. Therefore, the current measurement area where the linearity of the output of the current sensor can be obtained is widened, and a large current can be measured with high accuracy. Thereby, it is possible to provide a current sensor having a simple configuration capable of measuring a large current with high accuracy.
  • (A) It is a figure which shows the output characteristic of the current sensor of a comparative example.
  • (B) It is a figure which shows the linearity of the output of the current sensor of a comparative example. It is a figure which shows the relationship between the magnitude
  • FIG. 1 is a diagram showing a configuration example of a magnetic proportional current sensor according to the present embodiment.
  • a magnetic proportional current sensor 1 shown in FIG. 1 includes a bridge circuit including two magnetoresistive effect elements 12a and 12b, which are magnetic detection elements, and two fixed resistance elements 13a and 13b.
  • the magnetic proportional current sensor 1 includes an induced magnetic field H received by the magnetoresistive effect elements 12a and 12b by a measured current I flowing through a current line (conductor) 11 disposed in the vicinity of the magnetic proportional current sensor 1. Is provided with a magnetic shield 14 for relaxing the above.
  • the magnetic proportional current sensor 1 is not limited to the one including a bridge circuit as long as a voltage approximately proportional to the induced magnetic field from the current to be measured can be obtained.
  • the power supply potential Vdd is applied to one terminal of each of the magnetoresistive effect element 12b and the fixed resistance element 13a. Each is given a ground potential (GND). Further, the other terminals of the magnetoresistive effect element 12a and the fixed resistance element 13a are connected to form the first output Out1, and the other terminals of the magnetoresistive effect element 12b and the fixed resistance element 13b are connected to each other.
  • the second output Out2 is set. Since the magnetoresistive effect elements 12a and 12b have a characteristic that the resistance value is changed by applying the induced magnetic field H from the measured current I, the magnetoresistive effect elements 12a and 12b are changed according to the induced magnetic field H from the measured current I.
  • the first output and the second output change.
  • the potential difference between the first output and the second output is substantially proportional to the induced magnetic field, and the potential difference (voltage) becomes the output of the magnetic proportional current sensor 1.
  • the configuration of the bridge circuit is not limited to this.
  • a bridge circuit may be configured by combining one magnetoresistance effect element and three fixed resistance elements, or a bridge circuit may be configured by combining four magnetoresistance effect elements.
  • a magnetic shield 14 is disposed on the current line 11 side of the magnetoresistive effect elements 12a and 12b and / or on the opposite side of the current line 11 so as to cover the magnetoresistive effect elements 12a and 12b.
  • the magnetic shield 14 relaxes the induced magnetic field from the current to be measured. Thereby, since the current measurement is performed in a state where the induction magnetic field is substantially weak, the linearity of the sensor output can be maintained even when a large current flows through the current line 11.
  • the magnetic shield 14 may be disposed on either the current line 11 side, the opposite side of the current line 11, or may be disposed on both.
  • the magnetic shield 14 is desirably arranged at a distance of 1 ⁇ m to 40 ⁇ m from the magnetoresistive effect elements 12a and 12b. This is because by arranging the magnetic shield 14 in such a distance range, the influence of the induced magnetic field received by the magnetoresistive effect elements 12a and 12b due to the current to be measured can be sufficiently mitigated. In such a distance range, the relationship between the distance between the magnetoresistive effect elements 12a and 12b and the magnetic shield 14 and the induced magnetic field applied to the magnetoresistive effect elements 12a and 12b is linear, and the design of the current sensor is easy. Because it becomes.
  • the distance between the magnetoresistive elements 12a and 12b and the magnetic shield 14 is more preferably 1 ⁇ m to 8 ⁇ m. This is because the induced magnetic field received by the magnetoresistive effect element from the current to be measured can be further reduced, so that even a large current of 1500 A or more can be measured accurately.
  • the magnetic proportional current sensor 1 is arranged so that the magnetoresistive effect elements 12a and 12b and the magnetic shield 14 have a predetermined relationship, so that the output of the current sensor 1 can be reduced. Since the measurement current region where the linearity can be obtained is widened, it is possible to measure a large current with high accuracy. That is, according to the present embodiment, it is possible to provide a current sensor that achieves both high accuracy and a wide measurement range with a simple configuration.
  • FIG. 2 is a schematic cross-sectional view showing an example of the layer configuration of the magnetic proportional current sensor 1 according to the present embodiment.
  • the layer configuration of the region mainly including the magnetoresistive effect elements 12a and 12b and the magnetic shield 14 is shown.
  • FIG. 2 also shows a current line 11 through which the current to be measured flows in the depth direction of the drawing.
  • an insulating layer 112 is formed on the substrate 111.
  • a silicon substrate or the like is used, and as the insulating layer 112, a silicon oxide film, an aluminum oxide film, or the like is used.
  • the silicon oxide film can be formed using a method such as thermal oxidation of a silicon substrate, sputtering, or plasma CVD.
  • the aluminum oxide film can be formed using a method such as sputtering or plasma CVD.
  • magnetoresistive elements 12a and 12b which are magnetic sensor elements, are formed on the insulating layer 112.
  • a GMR element having a layer configuration including an antiferromagnetic layer, a fixed magnetic layer, a nonmagnetic layer, and a free magnetic layer can be employed.
  • electrodes may be formed in addition to the magnetoresistive effect elements 12a and 12b and fixed resistance elements.
  • the electrode is formed, for example, by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
  • An insulating layer 113 is formed on the magnetoresistive effect elements 12a and 12b, the fixed resistance element, and the electrodes so as to cover them.
  • a polyimide film, a silicon oxide film, or the like is used as the insulating layer 113.
  • the polyimide film can be formed by applying and curing a polyimide material.
  • the silicon oxide film can be formed using a method such as sputtering or plasma CVD.
  • the insulating layer 113 is a layer that determines the distance between the magnetoresistive effect elements 12a and 12b and the magnetic shield 14, the thickness of the insulating layer 113 (the distance between the magnetoresistive effect elements 12a and 12b and the magnetic shield 14). Is preferably 1 ⁇ m to 40 ⁇ m. Further, it is more preferable that the thickness of the insulating layer 113 is 1 ⁇ m to 8 ⁇ m.
  • a magnetic shield 14 is formed in a region overlapping the magnetoresistive effect elements 12 a and 12 b on the insulating layer 113.
  • a high magnetic permeability material such as an amorphous magnetic material, a permalloy magnetic material, or an iron microcrystalline material can be used.
  • An insulating layer 114 is formed on the insulating layer 113 and the magnetic shield 14.
  • a polyimide film, a silicon oxide film, or the like is used as the insulating layer 114.
  • the polyimide film can be formed by applying and curing a polyimide material.
  • the silicon oxide film can be formed using a method such as sputtering or plasma CVD.
  • Contact holes are formed in predetermined regions such as the insulating layer 113 and the insulating layer 114, and electrodes connected to the magnetoresistive effect elements 12a and 12b, fixed resistance elements, electrodes and the like are formed (not shown).
  • the electrode can be formed by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
  • FIG. 2B shows another example of the layer configuration of the magnetic proportional current sensor 1.
  • an insulating layer 212 is formed on the substrate 211.
  • the magnetic shield 14 is formed on the insulating layer 212, and the magnetoresistive elements 12 a and 12 b are formed via the insulating layer 213 in the region overlapping the magnetic shield 14 on the magnetic shield 14.
  • An insulating layer 214 is formed on the magnetoresistive effect elements 12a and 12b.
  • FIG. 2 (a) and FIG. 2 (b) The main difference between FIG. 2 (a) and FIG. 2 (b) is the position where the magnetic shield 14 is disposed.
  • the magnetic shield 14 is disposed on the current line 11 side from the magnetoresistive effect elements 12a and 12b, whereas in FIG. 2B, the magnetic shield 14 is provided with the magnetoresistive effect elements 12a and 12a. 12b from the current line 11 (on the side substrate 211 side).
  • the magnetic shield 14 may be disposed on the current line 11 side or on the opposite side to the current line 11. May be.
  • the magnetic shield 14 may be arranged on both the current line 11 side and the opposite side of the current line 11.
  • the plan view means a form viewed from a direction perpendicular to the main surfaces of the substrates 111 and 211.
  • FIG. 3 is a schematic plan view showing an example of a plan view of the magnetic proportional current sensor 1 according to the present embodiment.
  • FIG. 3 shows a region where a magnetoresistive effect element and a magnetic shield are formed.
  • the magnetic proportional current sensor 1 shown in FIG. 3A includes four magnetoresistive elements 21a, 21b, 21c, and 21d that form a bridge circuit. Arrows attached to the magnetoresistive effect elements 21a, 21b, 21c, and 21d represent the sensitivity axis directions of the magnetoresistive effect elements.
  • the magnetic proportional current sensor 1 includes a magnetic shield 14 that covers the four magnetoresistive elements 21a, 21b, 21c, and 21d in a plan view.
  • the magnetic shield 14 is disposed on the front side of the drawing with respect to the magnetoresistive effect elements 21a, 21b, 21c, and 21d. In FIG. 3A, the configuration disposed on the back side of the drawing sheet by the magnetic shield 14 is also indicated by a solid line.
  • Vdd is connected to one terminal 22 of the magnetoresistive effect elements 21a and 21b.
  • GND is connected to one terminal 23 of the magnetoresistive element 21c and one terminal 24 of the magnetoresistive element 21d.
  • the other terminal 25 of the magnetoresistive effect elements 21a and 21d is the first output.
  • the other terminal 26 of the magnetoresistive effect elements 21b and 21c becomes the second output. Since the magnetoresistive effect elements 21a, 21b, 21c, 21d and the magnetic shield 14 are arranged as shown in FIG. 3A, the measurement current region in which the linearity of the output of the current sensor 1 can be ensured is widened. It becomes possible to accurately measure the current.
  • FIG. 3B shows an example of a plan view of a magnetic proportional current sensor 2 that is different from the magnetic proportional current sensor 1 shown in FIG.
  • the magnetic proportional current sensor 2 shown in FIG. 3B includes four magnetoresistive elements 31a, 31b, 31c, and 31d that constitute a bridge circuit. Arrows attached to the magnetoresistive effect elements 31a, 31b, 31c, and 31d represent the sensitivity axis direction of the magnetoresistive effect element.
  • the magnetic proportional current sensor 2 includes a magnetic shield 14 that covers the four magnetoresistive elements 31a, 31b, 31c, and 31d in a plan view. The magnetic shield 14 is disposed on the front side of the drawing with respect to the magnetoresistive effect elements 31a, 31b, 31c, and 31d.
  • the magnetic proportional current sensor 2 shown in FIG. 3B is characterized in that it is downsized as compared with the magnetic proportional current sensor 1 shown in FIG. In FIG. 3B, the configuration arranged on the back side of the drawing sheet by the magnetic shield 14 is also shown by a solid line.
  • Vdd is connected to one terminal 32 of the magnetoresistive effect elements 31a and 31b.
  • GND is connected to one terminal 33 of the magnetoresistive effect element 31c and one terminal 34 of the magnetoresistive effect element 31d.
  • the other terminal 35 of the magnetoresistive effect elements 31a and 31d is the first output.
  • the other terminal 36 of the magnetoresistive effect elements 31b and 31c is the second output. Since the magnetoresistive elements 31a, 31b, 31c, 31d and the magnetic shield 14 are arranged as shown in FIG. 3B, the measurement current region in which the linearity of the output of the current sensor 1 can be secured is widened. It becomes possible to accurately measure the current.
  • FIG. 4A is an arrangement model diagram of a current sensor and a current line assuming an in-vehicle application such as an electric vehicle or a hybrid car.
  • the current sensor is arranged at a position A 1 mm away from the current line 11 having a width of 25 mm and a thickness of 3 mm. Estimated.
  • FIG. 4 (b) is a diagram showing a simulation result using the arrangement model of FIG. 4 (a).
  • the horizontal axis indicates the magnitude (A) of the current to be measured flowing through the current line 11
  • the vertical axis indicates the magnitude (mT) of the induced magnetic field at the position A.
  • FIG. 4B shows that an induced magnetic field of about 22 mT is generated at position A when the measured current is about 1000 A.
  • the condition of the current to be measured (about 1000 A) corresponds to the upper limit value of the measurement current required in the current in-vehicle use. However, depending on the application, measurement of a current value of 1500 A or more may be required.
  • the output characteristics of the current sensor of this embodiment were confirmed.
  • the output characteristics of the current sensor 2 having the structure shown in the plan view of FIG. Further, a GMR element was used as the magnetoresistive effect element, and the distance between the magnetoresistive effect element (GMR element) and the magnetic shield in the current sensor 2 was 17.6 ⁇ m.
  • FIG. 5 is a diagram showing the experimental results.
  • the horizontal axis indicates the magnitude (mT) of the induced magnetic field (magnetic field) received by the current sensor 2
  • the vertical axis indicates the output voltage (mV) of the bridge circuit provided in the current sensor 2.
  • the horizontal axis indicates the magnitude (mT) of the induced magnetic field (magnetic field) received by the current sensor 2
  • the vertical axis indicates linearity (%).
  • the linearity is an index representing a deviation from a straight line, and means that the smaller the value, the better the linearity.
  • the magnitude of the induced magnetic field on the horizontal axis of the graph shown in FIG. 5 is the magnitude of the magnetic field received by the current sensor 2 and not the magnitude of the magnetic field received by the magnetoresistive element.
  • FIG. 6 is a schematic diagram showing a regression line and measurement points used for calculation of linearity.
  • the horizontal axis indicates the magnetic field
  • the vertical axis indicates the voltage that is the sensor output.
  • a straight line shows a regression line
  • a black point shows a measurement point.
  • Va is a voltage corresponding to the magnetic field from the upper end to the lower end of the measurement range.
  • the difference between the voltage Vb obtained from the regression line and the measured voltage Vc for each strength of the induced magnetic field (magnetic field) is defined as ⁇ V.
  • the percentage of ⁇ V with respect to Va (100 ⁇ ⁇ V / Va) is linearity in each induction magnetic field (magnetic field) strength.
  • the upper end (lower end) of the measurement range is +24 mT ( ⁇ 24 mT).
  • the magnitude of the induced magnetic field received by the current sensor 2 in the present embodiment and the output voltage of the bridge circuit provided in the current sensor 2 are substantially proportional (substantially linear). You can see that In particular, even at 22 mT corresponding to the upper limit value of the current to be measured required for in-vehicle use, the linearity is within 1%, and it can be seen that a large current can be measured accurately.
  • FIG. 7 shows the simulation result.
  • FIG. 7 (a) corresponds to FIG. 5 (a)
  • FIG. 7 (b) corresponds to FIG. 5 (b). From FIG. 7A and FIG. 7B, it can be seen that the linearity is greatly deteriorated in the situation where an induced magnetic field exceeding 3 mT is generated.
  • the magnetic shield and the magnetoresistive effect element are arranged so that the distance between the magnetic shield and the magnetoresistive effect element is 1 ⁇ m to 40 ⁇ m, and the magnetic shield covers the magnetoresistive effect element. This shows that the linearity of the output of the current sensor is greatly improved. Thus, a large current can be accurately measured by ensuring linearity in a wide measurement range.
  • the relationship between the magnitude of the induced magnetic field received by the magnetoresistive effect element (GMR element) and the distance between the magnetic shield and the magnetoresistive effect element was confirmed.
  • GMR element magnetoresistive effect element
  • FIG. 8 is a diagram showing the simulation results.
  • the horizontal axis indicates the distance ( ⁇ m) between the magnetic shield and the magnetoresistive effect element
  • the vertical axis indicates the magnitude (mT) of the induced magnetic field received by the magnetoresistive effect element (GMR element).
  • FIG. 8B is a partially enlarged view of a part of FIG.
  • FIG. 8 shows that the relationship between the distance between the magnetic shield and the magnetoresistive effect element and the magnitude of the induced magnetic field is represented by a substantially straight line when the distance between the magnetic shield and the magnetoresistive effect element is in the range of 1 ⁇ m to 40 ⁇ m. . It can also be seen that the induced magnetic field received by the magnetoresistive element is sufficiently relaxed. In other words, by setting the distance between the magnetic shield and the magnetoresistive effect element in the range of 1 ⁇ m to 40 ⁇ m, it is possible to ensure the linearity of the output of the current sensor in a sufficiently wide range and facilitate the design of the current sensor. it can.
  • the magnetic shield and the magnetoresistive effect element As described above, by arranging the magnetic shield and the magnetoresistive effect element so that the distance between the magnetic shield and the magnetoresistive effect element is 1 ⁇ m to 40 ⁇ m, and the magnetic shield covers the magnetoresistive effect element, The current measurement area where the linearity of the output of the current sensor can be obtained is widened, and a large current can be accurately measured. Thereby, it is possible to provide a current sensor having a simple configuration capable of measuring a large current with high accuracy.
  • the current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The objective of the present invention is to provide a current sensor having a simple configuration and that can measure large currents at a high level of precision. The current sensor (1) is characterized by being provided with: magnetoresistive effect elements (12a, 12b) disposed in a manner so that a voltage is output proportional to the induction field from the measured current flowing through a current line (11); and a magnetic shield (14) disposed in a manner so as to cover the magnetoresistive effect elements (12a, 12b) in a plan view. The current sensor (1) is further characterized by the gap between the magnetoresistive effect elements (12a, 12b) and the magnetic shield (14) being 1-40 µm.

Description

電流センサCurrent sensor
 本発明は、非接触で電流を測定する電流センサに関する。特に、大電流を高い精度で測定可能な、簡単な構成の電流センサに関する。 The present invention relates to a current sensor that measures current without contact. In particular, the present invention relates to a current sensor having a simple configuration capable of measuring a large current with high accuracy.
 電気自動車やハイブリッドカーにおけるモータ駆動技術などの分野では、比較的大きな電流が取り扱われるため、このような用途向けに、大電流を非接触で測定することが可能な電流センサが求められている。そして、このような電流センサとして、被測定電流によって生じる磁界の変化を磁気センサによって検出する方式のものが提案されている。例えば、特許文献1には、磁気センサ用の素子として磁気抵抗素子を用いた電流センサが開示されている。 In fields such as motor drive technology in electric vehicles and hybrid cars, a relatively large current is handled, and thus a current sensor capable of measuring a large current in a non-contact manner is required for such applications. As such a current sensor, a method of detecting a change in magnetic field caused by a current to be measured by a magnetic sensor has been proposed. For example, Patent Document 1 discloses a current sensor using a magnetoresistive element as an element for a magnetic sensor.
特開2002-156390号公報JP 2002-156390 A
 ところで、モータの制御性向上やエネルギー効率向上などの観点から、大電流向け電流センサには高い電流測定精度が望まれる場合がある。しかしながら、磁気抵抗効果素子を用いる電流センサは、センサ出力を高めることができる半面、センサ出力の線形性を確保できる電流測定領域が狭いという問題がある。フィードバックコイルを備えるいわゆる磁気平衡式とすることにより、高い出力と広い測定領域における線形性とをある程度両立させることができるが、フィードバックコイルや、これを駆動する駆動回路が必要になるため、コスト高となってしまう。 By the way, from the viewpoint of improving the controllability of the motor and improving the energy efficiency, there is a case where high current measurement accuracy is desired for the current sensor for large current. However, the current sensor using the magnetoresistive effect element can increase the sensor output, but has a problem that the current measurement region in which the linearity of the sensor output can be ensured is narrow. By adopting a so-called magnetic balance type equipped with a feedback coil, it is possible to achieve both high output and linearity in a wide measurement area to some extent. However, since a feedback coil and a drive circuit for driving the feedback coil are required, the cost is high. End up.
 本発明はかかる点に鑑みてなされたものであり、大電流を高い精度で測定可能な、簡単な構成の電流センサを提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide a current sensor having a simple configuration capable of measuring a large current with high accuracy.
 本発明の電流センサは、電流線を通流する被測定電流からの誘導磁界に比例する電圧が出力されるように配置された磁気抵抗効果素子と、平面視において、前記磁気抵抗効果素子を覆うように配置された磁気シールドと、を備え、前記磁気抵抗効果素子と前記磁気シールドとの間隔は、1μm~40μmであることを特徴とする。 The current sensor of the present invention covers a magnetoresistive effect element arranged in a plan view so as to output a voltage proportional to an induced magnetic field from a current to be measured flowing through a current line. And a gap between the magnetoresistive element and the magnetic shield is 1 μm to 40 μm.
 この構成によれば、磁気抵抗効果素子と磁気シールドとが所定の関係を有するように配置されることで、電流センサの出力の線形性が得られる被測定電流領域が広くなるため、大電流を精度よく測定することが可能である。つまり、簡単な構成で、高い精度と広い測定範囲を両立させた電流センサを提供することができる。 According to this configuration, since the magnetoresistive effect element and the magnetic shield are arranged so as to have a predetermined relationship, the measured current region in which the linearity of the output of the current sensor can be obtained is widened. It is possible to measure with high accuracy. That is, it is possible to provide a current sensor that achieves both high accuracy and a wide measurement range with a simple configuration.
 本発明の電流センサにおいて、前記磁気抵抗効果素子と前記磁気シールドとの間隔は、1μm~8μmであっても良い。この構成によれば、被測定電流から磁気抵抗効果素子が受ける誘導磁界をさらに低減できるため、1500A以上の大電流であっても精度よく測定できる。このように、磁気抵抗効果素子と磁気シールドとをより適切に配置することで、簡単な構成で、高い精度と広い測定範囲を両立させたより優れた電流センサを提供することができる。 In the current sensor of the present invention, the distance between the magnetoresistive element and the magnetic shield may be 1 μm to 8 μm. According to this configuration, since the induced magnetic field received by the magnetoresistive element from the current to be measured can be further reduced, even a large current of 1500 A or more can be accurately measured. Thus, by arranging the magnetoresistive effect element and the magnetic shield more appropriately, it is possible to provide a more excellent current sensor that achieves both high accuracy and a wide measurement range with a simple configuration.
 本発明の電流センサにおいて、前記磁気シールドは、前記電流線と前記磁気抵抗効果素子との間に配置されても良い。また、本発明の電流センサにおいて、前記磁気シールドは、前記磁気抵抗効果素子の前記電流線とは反対側に配置されても良い。 In the current sensor of the present invention, the magnetic shield may be disposed between the current line and the magnetoresistive element. In the current sensor of the present invention, the magnetic shield may be disposed on the opposite side of the magnetoresistive element from the current line.
 本発明の電流センサは、磁気シールドと磁気抵抗効果素子との間隔が1μm~40μmとなるように、かつ磁気シールドが磁気抵抗効果素子を覆うように、磁気シールドおよび磁気抵抗効果素子を配置しているため、電流センサの出力の線形性が得られる電流測定領域が広くなり、大電流を精度よく測定することが可能である。これにより、大電流を高い精度で測定可能な、簡単な構成の電流センサを提供することができる。 In the current sensor of the present invention, the magnetic shield and the magnetoresistive effect element are arranged so that the distance between the magnetic shield and the magnetoresistive effect element is 1 μm to 40 μm, and the magnetic shield covers the magnetoresistive effect element. Therefore, the current measurement area where the linearity of the output of the current sensor can be obtained is widened, and a large current can be measured with high accuracy. Thereby, it is possible to provide a current sensor having a simple configuration capable of measuring a large current with high accuracy.
実施の形態に係る磁気比例式電流センサの構成例について示す図である。It is a figure shown about the structural example of the magnetic proportional type current sensor which concerns on embodiment. 実施の形態に係る電流センサの層構成の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the layer structure of the current sensor which concerns on embodiment. 実施の形態に係る電流センサの平面視の例を示す平面模式図であるIt is a plane schematic diagram which shows the example of the planar view of the current sensor which concerns on embodiment (a)シミュレーションにおける配置モデルを示す図である。(b)シミュレーション結果を示す図である。(A) It is a figure which shows the arrangement | positioning model in simulation. (B) It is a figure which shows a simulation result. (a)実施の形態に係る電流センサの出力特性を示す図である。(b)実施の形態に係る電流センサの出力の線形性を示す図である。(A) It is a figure which shows the output characteristic of the current sensor which concerns on embodiment. (B) It is a figure which shows the linearity of the output of the current sensor which concerns on embodiment. 線形性の算出に用いられる回帰線および測定点を示す模式図である。It is a schematic diagram which shows the regression line and measurement point which are used for calculation of linearity. (a)比較例の電流センサの出力特性を示す図である。(b)比較例の電流センサの出力の線形性を示す図である。(A) It is a figure which shows the output characteristic of the current sensor of a comparative example. (B) It is a figure which shows the linearity of the output of the current sensor of a comparative example. 磁気抵抗効果素子が受ける誘導磁界の大きさと、磁気シールド-磁気抵抗効果素子間の距離との関係を示す図である。It is a figure which shows the relationship between the magnitude | size of the induced magnetic field which a magnetoresistive effect element receives, and the distance between a magnetic shield and a magnetoresistive effect element.
 以下、実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments will be described in detail with reference to the drawings.
 図1は、本実施の形態に係る磁気比例式電流センサの構成例について示す図である。図1に示される磁気比例式電流センサ1は、磁気検出素子である2つの磁気抵抗効果素子12a、12bと、2つの固定抵抗素子13a、13bと、を含むブリッジ回路を備えている。また、磁気比例式電流センサ1は、磁気比例式電流センサ1の近傍に配置された電流線(導体)11を通流する被測定電流Iにより、磁気抵抗効果素子12a、12bが受ける誘導磁界Hを緩和する磁気シールド14を備えている。なお、磁気比例式電流センサ1は、被測定電流からの誘導磁界に略比例する電圧が得られるものであれば、ブリッジ回路を含むものに限定されない。 FIG. 1 is a diagram showing a configuration example of a magnetic proportional current sensor according to the present embodiment. A magnetic proportional current sensor 1 shown in FIG. 1 includes a bridge circuit including two magnetoresistive effect elements 12a and 12b, which are magnetic detection elements, and two fixed resistance elements 13a and 13b. In addition, the magnetic proportional current sensor 1 includes an induced magnetic field H received by the magnetoresistive effect elements 12a and 12b by a measured current I flowing through a current line (conductor) 11 disposed in the vicinity of the magnetic proportional current sensor 1. Is provided with a magnetic shield 14 for relaxing the above. The magnetic proportional current sensor 1 is not limited to the one including a bridge circuit as long as a voltage approximately proportional to the induced magnetic field from the current to be measured can be obtained.
 図1に示されるブリッジ回路において、磁気抵抗効果素子12bと固定抵抗素子13aの一方の端子にはそれぞれ電源電位Vddが与えられており、磁気抵抗効果素子12aと固定抵抗素子13bの一方の端子にはそれぞれ接地電位(GND)が与えられている。また、磁気抵抗効果素子12aと固定抵抗素子13aの他方の端子がそれぞれ接続されて第一の出力Out1となっており、磁気抵抗効果素子12bと固定抵抗素子13bの他方の端子がそれぞれ接続されて第二の出力Out2となっている。磁気抵抗効果素子12a、12bは、被測定電流Iからの誘導磁界Hが印加されることで抵抗値が変化するという特性を備えているため、被測定電流Iからの誘導磁界Hに応じて第一の出力と第二の出力が変化する。第一の出力と第二の出力の電位差は誘導磁界に略比例し、当該電位差(電圧)が磁気比例式電流センサ1の出力となる。なお、ブリッジ回路の構成はこれに限定されない。例えば、1つの磁気抵抗効果素子と、3つの固定抵抗素子とを組み合わせてブリッジ回路を構成しても良いし、4つの磁気抵抗効果素子を組み合わせてブリッジ回路を構成しても良い。 In the bridge circuit shown in FIG. 1, the power supply potential Vdd is applied to one terminal of each of the magnetoresistive effect element 12b and the fixed resistance element 13a. Each is given a ground potential (GND). Further, the other terminals of the magnetoresistive effect element 12a and the fixed resistance element 13a are connected to form the first output Out1, and the other terminals of the magnetoresistive effect element 12b and the fixed resistance element 13b are connected to each other. The second output Out2 is set. Since the magnetoresistive effect elements 12a and 12b have a characteristic that the resistance value is changed by applying the induced magnetic field H from the measured current I, the magnetoresistive effect elements 12a and 12b are changed according to the induced magnetic field H from the measured current I. The first output and the second output change. The potential difference between the first output and the second output is substantially proportional to the induced magnetic field, and the potential difference (voltage) becomes the output of the magnetic proportional current sensor 1. Note that the configuration of the bridge circuit is not limited to this. For example, a bridge circuit may be configured by combining one magnetoresistance effect element and three fixed resistance elements, or a bridge circuit may be configured by combining four magnetoresistance effect elements.
 磁気抵抗効果素子12a、12bの電流線11側、および/または電流線11とは反対側には、磁気抵抗効果素子12a、12bを覆うように磁気シールド14が配置されている。当該磁気シールド14は、被測定電流からの誘導磁界を緩和する。これにより、実質的に誘導磁界が弱い状態で電流測定が行われるため、電流線11に大電流が流れる場合でもセンサ出力の線形性を保つことができる。なお、磁気シールド14は、電流線11側、または電流線11とは反対側のいずれか一方のみに配置されても良いし、両方に配置されても良い。 A magnetic shield 14 is disposed on the current line 11 side of the magnetoresistive effect elements 12a and 12b and / or on the opposite side of the current line 11 so as to cover the magnetoresistive effect elements 12a and 12b. The magnetic shield 14 relaxes the induced magnetic field from the current to be measured. Thereby, since the current measurement is performed in a state where the induction magnetic field is substantially weak, the linearity of the sensor output can be maintained even when a large current flows through the current line 11. Note that the magnetic shield 14 may be disposed on either the current line 11 side, the opposite side of the current line 11, or may be disposed on both.
 磁気シールド14は、磁気抵抗効果素子12a、12bから1μm~40μmの距離に配置されることが望ましい。このような距離範囲に磁気シールド14を配置することによって、被測定電流により磁気抵抗効果素子12a、12bが受ける誘導磁界の影響を十分に緩和することができるためである。また、このような距離範囲においては、磁気抵抗効果素子12a、12b-磁気シールド14間の距離と、磁気抵抗効果素子12a、12bに加わる誘導磁界との関係が線形となり、電流センサの設計が容易になるためである。特に、磁気抵抗効果素子12a、12bと磁気シールド14との間隔は、1μm~8μmであるとより望ましい。被測定電流から磁気抵抗効果素子が受ける誘導磁界をさらに低減できるため、1500A以上の大電流であっても精度よく測定できるようになるからである。 The magnetic shield 14 is desirably arranged at a distance of 1 μm to 40 μm from the magnetoresistive effect elements 12a and 12b. This is because by arranging the magnetic shield 14 in such a distance range, the influence of the induced magnetic field received by the magnetoresistive effect elements 12a and 12b due to the current to be measured can be sufficiently mitigated. In such a distance range, the relationship between the distance between the magnetoresistive effect elements 12a and 12b and the magnetic shield 14 and the induced magnetic field applied to the magnetoresistive effect elements 12a and 12b is linear, and the design of the current sensor is easy. Because it becomes. In particular, the distance between the magnetoresistive elements 12a and 12b and the magnetic shield 14 is more preferably 1 μm to 8 μm. This is because the induced magnetic field received by the magnetoresistive effect element from the current to be measured can be further reduced, so that even a large current of 1500 A or more can be measured accurately.
 このように、本実施の形態に係る磁気比例式電流センサ1は、磁気抵抗効果素子12a、12bと磁気シールド14とが所定の関係を有するように配置されることで、電流センサ1の出力の線形性が得られる測定電流領域が広くなるため、大電流を精度よく測定することが可能である。つまり、本実施の形態により、簡単な構成で、高い精度と広い測定範囲を両立させた電流センサを提供することができる。 As described above, the magnetic proportional current sensor 1 according to the present embodiment is arranged so that the magnetoresistive effect elements 12a and 12b and the magnetic shield 14 have a predetermined relationship, so that the output of the current sensor 1 can be reduced. Since the measurement current region where the linearity can be obtained is widened, it is possible to measure a large current with high accuracy. That is, according to the present embodiment, it is possible to provide a current sensor that achieves both high accuracy and a wide measurement range with a simple configuration.
 図2は、本実施の形態に係る磁気比例式電流センサ1の層構成の例を示す断面模式図である。なお、図2では、主として磁気抵抗効果素子12a、12bと磁気シールド14とを含む領域の層構成を示す。また、図2には、紙面奥方向に被測定電流が通流する電流線11を併せて示している。 FIG. 2 is a schematic cross-sectional view showing an example of the layer configuration of the magnetic proportional current sensor 1 according to the present embodiment. In FIG. 2, the layer configuration of the region mainly including the magnetoresistive effect elements 12a and 12b and the magnetic shield 14 is shown. FIG. 2 also shows a current line 11 through which the current to be measured flows in the depth direction of the drawing.
 図2(a)に示す電流センサ1において、基板111上に絶縁層112が形成されている。基板111としては、シリコン基板などが用いられ、絶縁層112としては、シリコン酸化膜やアルミニウム酸化膜などが用いられる。シリコン酸化膜は、シリコン基板の熱酸化や、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。アルミニウム酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。 In the current sensor 1 shown in FIG. 2A, an insulating layer 112 is formed on the substrate 111. As the substrate 111, a silicon substrate or the like is used, and as the insulating layer 112, a silicon oxide film, an aluminum oxide film, or the like is used. The silicon oxide film can be formed using a method such as thermal oxidation of a silicon substrate, sputtering, or plasma CVD. The aluminum oxide film can be formed using a method such as sputtering or plasma CVD.
 絶縁層112上には、磁気センサ素子である磁気抵抗効果素子12a、12bが形成されている。なお、磁気抵抗効果素子12a、12bと共に固定抵抗素子(図示せず)を形成しても良い。磁気抵抗効果素子12a、12bとして、例えば、GMR素子を用いる場合には、反強磁性層、固定磁性層、非磁性層、フリー磁性層を有する層構成のGMR素子などを採用することができる。 On the insulating layer 112, magnetoresistive elements 12a and 12b, which are magnetic sensor elements, are formed. In addition, you may form a fixed resistance element (not shown) with the magnetoresistive effect elements 12a and 12b. For example, when a GMR element is used as the magnetoresistive effect elements 12a and 12b, a GMR element having a layer configuration including an antiferromagnetic layer, a fixed magnetic layer, a nonmagnetic layer, and a free magnetic layer can be employed.
 絶縁層112上には、磁気抵抗効果素子12a、12bや固定抵抗素子などの他に、電極(図示せず)などが形成されていても良い。電極は、例えば、電極材料層を形成した後に、当該電極材料層をフォトリソグラフィおよびエッチングによってパターン加工することで形成される。 On the insulating layer 112, electrodes (not shown) may be formed in addition to the magnetoresistive effect elements 12a and 12b and fixed resistance elements. The electrode is formed, for example, by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
 磁気抵抗効果素子12a、12bや固定抵抗素子、電極などの上には、これらを覆うように絶縁層113が形成されている。絶縁層113としては、ポリイミド膜やシリコン酸化膜などが用いられる。ポリイミド膜は、ポリイミド材料を塗布し、硬化することにより形成することができる。シリコン酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。ここで、絶縁層113は、磁気抵抗効果素子12a、12bと磁気シールド14との間隔を決定する層であるから、絶縁層113の厚み(磁気抵抗効果素子12a、12bと磁気シールド14との間隔に相当する厚み)は1μm~40μmであることが望ましい。また、絶縁層113の厚みを1μm~8μmとするとより望ましい。 An insulating layer 113 is formed on the magnetoresistive effect elements 12a and 12b, the fixed resistance element, and the electrodes so as to cover them. As the insulating layer 113, a polyimide film, a silicon oxide film, or the like is used. The polyimide film can be formed by applying and curing a polyimide material. The silicon oxide film can be formed using a method such as sputtering or plasma CVD. Here, since the insulating layer 113 is a layer that determines the distance between the magnetoresistive effect elements 12a and 12b and the magnetic shield 14, the thickness of the insulating layer 113 (the distance between the magnetoresistive effect elements 12a and 12b and the magnetic shield 14). Is preferably 1 μm to 40 μm. Further, it is more preferable that the thickness of the insulating layer 113 is 1 μm to 8 μm.
 絶縁層113上の磁気抵抗効果素子12a、12bと重畳する領域には、磁気シールド14が形成されている。磁気シールド14を構成する材料としては、アモルファス磁性材料、パーマロイ系磁性材料、鉄系微結晶材料等の高透磁率材料を用いることができる。 A magnetic shield 14 is formed in a region overlapping the magnetoresistive effect elements 12 a and 12 b on the insulating layer 113. As a material constituting the magnetic shield 14, a high magnetic permeability material such as an amorphous magnetic material, a permalloy magnetic material, or an iron microcrystalline material can be used.
 絶縁層113や磁気シールド14などの上には、絶縁層114が形成されている。絶縁層114としては、ポリイミド膜やシリコン酸化膜などが用いられる。ポリイミド膜は、ポリイミド材料を塗布し、硬化することにより形成することができる。シリコン酸化膜は、スパッタリング、プラズマCVDなどの方法を用いて形成することができる。 An insulating layer 114 is formed on the insulating layer 113 and the magnetic shield 14. As the insulating layer 114, a polyimide film, a silicon oxide film, or the like is used. The polyimide film can be formed by applying and curing a polyimide material. The silicon oxide film can be formed using a method such as sputtering or plasma CVD.
 絶縁層113や絶縁層114などの所定の領域にはコンタクトホールが形成され、磁気抵抗効果素子12a、12bや固定抵抗素子、電極などと接続される電極が形成される(図示せず)。電極は、電極材料層を形成した後に、当該電極材料層をフォトリソグラフィおよびエッチングによってパターン加工することで形成することができる。 Contact holes are formed in predetermined regions such as the insulating layer 113 and the insulating layer 114, and electrodes connected to the magnetoresistive effect elements 12a and 12b, fixed resistance elements, electrodes and the like are formed (not shown). The electrode can be formed by forming an electrode material layer and then patterning the electrode material layer by photolithography and etching.
 図2(b)には、磁気比例式電流センサ1の層構成の別の例を示す。図2(b)に示す電流センサ1において、基板211上には絶縁層212が形成されている。また、絶縁層212上には磁気シールド14が形成されており、磁気シールド14上の磁気シールド14と重畳する領域には、絶縁層213を介して磁気抵抗効果素子12a、12bが形成されている。また、磁気抵抗効果素子12a、12b上には、絶縁層214が形成されている。 FIG. 2B shows another example of the layer configuration of the magnetic proportional current sensor 1. In the current sensor 1 shown in FIG. 2B, an insulating layer 212 is formed on the substrate 211. Further, the magnetic shield 14 is formed on the insulating layer 212, and the magnetoresistive elements 12 a and 12 b are formed via the insulating layer 213 in the region overlapping the magnetic shield 14 on the magnetic shield 14. . An insulating layer 214 is formed on the magnetoresistive effect elements 12a and 12b.
 図2(a)と図2(b)の主な相違点は、磁気シールド14が配置される位置である。図2(a)では、磁気シールド14が磁気抵抗効果素子12a、12bより電流線11側に配置されているのに対して、図2(b)では、磁気シールド14が磁気抵抗効果素子12a、12bより電流線11とは反対側(側基板211側)に配置されている。このように、平面視において磁気シールド14が磁気抵抗効果素子12a、12bを覆う態様であれば、磁気シールド14は電流線11側に配置されても良いし、電流線11とは反対側に配置されても良い。もちろん、磁気シールド14は、電流線11側および電流線11とは反対側の両方に配置されても良い。なお、平面視とは、基板111、211の主面に垂直な方向から見た形態をいうものとする。 The main difference between FIG. 2 (a) and FIG. 2 (b) is the position where the magnetic shield 14 is disposed. 2A, the magnetic shield 14 is disposed on the current line 11 side from the magnetoresistive effect elements 12a and 12b, whereas in FIG. 2B, the magnetic shield 14 is provided with the magnetoresistive effect elements 12a and 12a. 12b from the current line 11 (on the side substrate 211 side). As described above, as long as the magnetic shield 14 covers the magnetoresistive effect elements 12 a and 12 b in a plan view, the magnetic shield 14 may be disposed on the current line 11 side or on the opposite side to the current line 11. May be. Of course, the magnetic shield 14 may be arranged on both the current line 11 side and the opposite side of the current line 11. Note that the plan view means a form viewed from a direction perpendicular to the main surfaces of the substrates 111 and 211.
 図3は、本実施の形態に係る磁気比例式電流センサ1の平面視の例を示す平面模式図である。図3では特に、磁気抵抗効果素子と磁気シールドが形成された領域について示している。 FIG. 3 is a schematic plan view showing an example of a plan view of the magnetic proportional current sensor 1 according to the present embodiment. In particular, FIG. 3 shows a region where a magnetoresistive effect element and a magnetic shield are formed.
 図3(a)に示される磁気比例式電流センサ1は、ブリッジ回路を構成する4つの磁気抵抗効果素子21a、21b、21c、21dを備えている。磁気抵抗効果素子21a、21b、21c、21dに付された矢印は、磁気抵抗効果素子の感度軸方向を表している。また、磁気比例式電流センサ1は、平面視において4つの磁気抵抗効果素子21a、21b、21c、21dを覆う磁気シールド14を備えている。磁気シールド14は、磁気抵抗効果素子21a、21b、21c、21dよりも紙面手前側に配置されている。なお、図3(a)においては、磁気シールド14により紙面奥側に配置される構成についても実線で示している。 The magnetic proportional current sensor 1 shown in FIG. 3A includes four magnetoresistive elements 21a, 21b, 21c, and 21d that form a bridge circuit. Arrows attached to the magnetoresistive effect elements 21a, 21b, 21c, and 21d represent the sensitivity axis directions of the magnetoresistive effect elements. The magnetic proportional current sensor 1 includes a magnetic shield 14 that covers the four magnetoresistive elements 21a, 21b, 21c, and 21d in a plan view. The magnetic shield 14 is disposed on the front side of the drawing with respect to the magnetoresistive effect elements 21a, 21b, 21c, and 21d. In FIG. 3A, the configuration disposed on the back side of the drawing sheet by the magnetic shield 14 is also indicated by a solid line.
 図3(a)に示される磁気比例式電流センサ1において磁気抵抗効果素子21a、21bの一方の端子22にはVddが接続される。また、磁気抵抗効果素子21cの一方の端子23、および磁気抵抗効果素子21dの一方の端子24にはGNDが接続される。磁気抵抗効果素子21a、21dの他方の端子25は第一の出力となる。磁気抵抗効果素子21b、21cの他方の端子26は第二の出力となる。磁気抵抗効果素子21a、21b、21c、21dと磁気シールド14とを図3(a)のように配置することで、電流センサ1の出力の線形性を確保できる測定電流領域が広くなるため、大電流を精度よく測定することが可能になる。 In the magnetic proportional current sensor 1 shown in FIG. 3A, Vdd is connected to one terminal 22 of the magnetoresistive effect elements 21a and 21b. Further, GND is connected to one terminal 23 of the magnetoresistive element 21c and one terminal 24 of the magnetoresistive element 21d. The other terminal 25 of the magnetoresistive effect elements 21a and 21d is the first output. The other terminal 26 of the magnetoresistive effect elements 21b and 21c becomes the second output. Since the magnetoresistive effect elements 21a, 21b, 21c, 21d and the magnetic shield 14 are arranged as shown in FIG. 3A, the measurement current region in which the linearity of the output of the current sensor 1 can be ensured is widened. It becomes possible to accurately measure the current.
 図3(b)には、図3(a)に示される磁気比例式電流センサ1とは磁気抵抗効果素子の配置などが異なる磁気比例式電流センサ2の平面視の例を示す。図3(b)に示される磁気比例式電流センサ2は、ブリッジ回路を構成する4つの磁気抵抗効果素子31a、31b、31c、31dを備えている。磁気抵抗効果素子31a、31b、31c、31dに付された矢印は、磁気抵抗効果素子の感度軸方向を表している。また、磁気比例式電流センサ2は、平面視において4つの磁気抵抗効果素子31a、31b、31c、31dを覆う磁気シールド14を備えている。磁気シールド14は、磁気抵抗効果素子31a、31b、31c、31dよりも紙面手前側に配置されている。図3(b)に示される磁気比例式電流センサ2は、図3(a)に示される磁気比例式電流センサ1と比較して小型化されている点が特徴的である。なお、図3(b)においては、磁気シールド14により紙面奥側に配置される構成についても実線で示している。 FIG. 3B shows an example of a plan view of a magnetic proportional current sensor 2 that is different from the magnetic proportional current sensor 1 shown in FIG. The magnetic proportional current sensor 2 shown in FIG. 3B includes four magnetoresistive elements 31a, 31b, 31c, and 31d that constitute a bridge circuit. Arrows attached to the magnetoresistive effect elements 31a, 31b, 31c, and 31d represent the sensitivity axis direction of the magnetoresistive effect element. The magnetic proportional current sensor 2 includes a magnetic shield 14 that covers the four magnetoresistive elements 31a, 31b, 31c, and 31d in a plan view. The magnetic shield 14 is disposed on the front side of the drawing with respect to the magnetoresistive effect elements 31a, 31b, 31c, and 31d. The magnetic proportional current sensor 2 shown in FIG. 3B is characterized in that it is downsized as compared with the magnetic proportional current sensor 1 shown in FIG. In FIG. 3B, the configuration arranged on the back side of the drawing sheet by the magnetic shield 14 is also shown by a solid line.
 図3(b)に示される磁気比例式電流センサ1において磁気抵抗効果素子31a、31bの一方の端子32にはVddが接続される。また、磁気抵抗効果素子31cの一方の端子33、および磁気抵抗効果素子31dの一方の端子34にはGNDが接続される。磁気抵抗効果素子31a、31dの他方の端子35は第一の出力となる。磁気抵抗効果素子31b、31cの他方の端子36は第二の出力となる。磁気抵抗効果素子31a、31b、31c、31dと磁気シールド14とを図3(b)のように配置することで、電流センサ1の出力の線形性を確保できる測定電流領域が広くなるため、大電流を精度よく測定することが可能になる。 In the magnetic proportional current sensor 1 shown in FIG. 3 (b), Vdd is connected to one terminal 32 of the magnetoresistive effect elements 31a and 31b. Further, GND is connected to one terminal 33 of the magnetoresistive effect element 31c and one terminal 34 of the magnetoresistive effect element 31d. The other terminal 35 of the magnetoresistive effect elements 31a and 31d is the first output. The other terminal 36 of the magnetoresistive effect elements 31b and 31c is the second output. Since the magnetoresistive elements 31a, 31b, 31c, 31d and the magnetic shield 14 are arranged as shown in FIG. 3B, the measurement current region in which the linearity of the output of the current sensor 1 can be secured is widened. It becomes possible to accurately measure the current.
 次に、本発明の効果を確認するシミュレーションについて説明する。はじめに、被測定電流によって生じる誘導磁界の大きさを見積もった。図4(a)は、電気自動車やハイブリッドカーなどの車載用途を想定した電流センサと電流線の配置モデル図である。ここでは、図4(a)の配置モデル図に示すように、幅が25mm、厚みが3mmの電流線11から1mm離れた位置Aに電流センサが配置されるものとして、位置Aにおける誘導磁界を見積もった。 Next, a simulation for confirming the effect of the present invention will be described. First, the magnitude of the induced magnetic field generated by the current to be measured was estimated. FIG. 4A is an arrangement model diagram of a current sensor and a current line assuming an in-vehicle application such as an electric vehicle or a hybrid car. Here, as shown in the arrangement model diagram of FIG. 4A, it is assumed that the current sensor is arranged at a position A 1 mm away from the current line 11 having a width of 25 mm and a thickness of 3 mm. Estimated.
 図4(b)は、図4(a)の配置モデルを用いたシミュレーション結果を示す図である。図4(b)に示されるグラフおいて、横軸は電流線11を通流する被測定電流の大きさ(A)を示し、縦軸は位置Aにおける誘導磁界の大きさ(mT)を示す。図4(b)から、被測定電流が約1000Aの時、位置Aには約22mTの誘導磁界が発生することが分かる。なお、当該被測定電流の条件(約1000A)は、現在の車載用途において要求される測定電流の上限値に相当する。ただし、用途によっては1500A以上の電流値の計測を要求される場合もある。 FIG. 4 (b) is a diagram showing a simulation result using the arrangement model of FIG. 4 (a). In the graph shown in FIG. 4B, the horizontal axis indicates the magnitude (A) of the current to be measured flowing through the current line 11, and the vertical axis indicates the magnitude (mT) of the induced magnetic field at the position A. . FIG. 4B shows that an induced magnetic field of about 22 mT is generated at position A when the measured current is about 1000 A. Note that the condition of the current to be measured (about 1000 A) corresponds to the upper limit value of the measurement current required in the current in-vehicle use. However, depending on the application, measurement of a current value of 1500 A or more may be required.
 次に、本実施の形態の電流センサにおける出力特性を確認した。ここでは、図3(b)の平面視に示される構造の電流センサ2の出力特性を確認した。また、磁気抵抗効果素子としてGMR素子を用い、電流センサ2における磁気抵抗効果素子(GMR素子)と磁気シールドとの間隔は17.6μmとした。 Next, the output characteristics of the current sensor of this embodiment were confirmed. Here, the output characteristics of the current sensor 2 having the structure shown in the plan view of FIG. Further, a GMR element was used as the magnetoresistive effect element, and the distance between the magnetoresistive effect element (GMR element) and the magnetic shield in the current sensor 2 was 17.6 μm.
 図5は、当該実験結果を示す図である。図5(a)に示されるグラフにおいて、横軸は電流センサ2が受ける誘導磁界(磁場)の大きさ(mT)を示し、縦軸は電流センサ2が備えるブリッジ回路の出力電圧(mV)を示す。図5(b)に示されるグラフにおいて、横軸は電流センサ2が受ける誘導磁界(磁場)の大きさ(mT)を示し、縦軸は線形性(%)を示す。ここで、線形性とは、直線からのずれを表す指標であり、値が小さいほど線形性が良いことを意味する。なお、図5に示されるグラフ横軸の誘導磁界の大きさは、電流センサ2が受ける磁界の大きさであって、磁気抵抗効果素子が受ける磁界の大きさではないことを付記する。 FIG. 5 is a diagram showing the experimental results. In the graph shown in FIG. 5A, the horizontal axis indicates the magnitude (mT) of the induced magnetic field (magnetic field) received by the current sensor 2, and the vertical axis indicates the output voltage (mV) of the bridge circuit provided in the current sensor 2. Show. In the graph shown in FIG. 5B, the horizontal axis indicates the magnitude (mT) of the induced magnetic field (magnetic field) received by the current sensor 2, and the vertical axis indicates linearity (%). Here, the linearity is an index representing a deviation from a straight line, and means that the smaller the value, the better the linearity. It should be noted that the magnitude of the induced magnetic field on the horizontal axis of the graph shown in FIG. 5 is the magnitude of the magnetic field received by the current sensor 2 and not the magnitude of the magnetic field received by the magnetoresistive element.
 線形性は、ブリッジ回路の出力電圧から求められる一次回帰線を用いて算出される。図6は、線形性の算出に用いられる回帰線および測定点を示す模式図である。図6において、横軸は磁場を示し、縦軸はセンサ出力である電圧を示す。また、図6において、直線は回帰線を示し、黒点は測定点を示す。回帰線において測定範囲の上端から下端の磁場に対応する電圧をVaとする。誘導磁界(磁場)の強さ毎に回帰線から得られる電圧Vbと測定電圧Vcとの差をΔVとする。Vaに対するΔVの百分率(100×ΔV/Va)が、各誘導磁界(磁場)強さにおける線形性となる。本実験において、測定範囲の上端(下端)は、+24mT(-24mT)である。 Linearity is calculated using a linear regression line obtained from the output voltage of the bridge circuit. FIG. 6 is a schematic diagram showing a regression line and measurement points used for calculation of linearity. In FIG. 6, the horizontal axis indicates the magnetic field, and the vertical axis indicates the voltage that is the sensor output. Moreover, in FIG. 6, a straight line shows a regression line and a black point shows a measurement point. In the regression line, Va is a voltage corresponding to the magnetic field from the upper end to the lower end of the measurement range. The difference between the voltage Vb obtained from the regression line and the measured voltage Vc for each strength of the induced magnetic field (magnetic field) is defined as ΔV. The percentage of ΔV with respect to Va (100 × ΔV / Va) is linearity in each induction magnetic field (magnetic field) strength. In this experiment, the upper end (lower end) of the measurement range is +24 mT (−24 mT).
 図5(a)および図5(b)から、本実施の形態における電流センサ2が受ける誘導磁界の大きさと、電流センサ2が備えるブリッジ回路の出力電圧とは、略比例(略線形)の関係にあることがわかる。特に、車載用途で要求される被測定電流の上限値に相当する22mTにおいても、線形性は1%以下に収まっており、大電流を正確に測定できることが分かる。 From FIG. 5A and FIG. 5B, the magnitude of the induced magnetic field received by the current sensor 2 in the present embodiment and the output voltage of the bridge circuit provided in the current sensor 2 are substantially proportional (substantially linear). You can see that In particular, even at 22 mT corresponding to the upper limit value of the current to be measured required for in-vehicle use, the linearity is within 1%, and it can be seen that a large current can be measured accurately.
 比較例として磁気シールドを有しない構成の電流センサにおける出力特性を確認した。測定条件は、磁気シールドの有無を除き、図5の場合と同様である。図7に、当該シミュレーション結果を示す。図7(a)は図5(a)に対応し、図7(b)は図5(b)に対応している。図7(a)および図7(b)から、3mTを超える誘導磁界が発生する状況では、線形性が大幅に悪化していることが分かる。 As a comparative example, the output characteristics of a current sensor having no magnetic shield were confirmed. The measurement conditions are the same as in FIG. 5 except for the presence or absence of a magnetic shield. FIG. 7 shows the simulation result. FIG. 7 (a) corresponds to FIG. 5 (a), and FIG. 7 (b) corresponds to FIG. 5 (b). From FIG. 7A and FIG. 7B, it can be seen that the linearity is greatly deteriorated in the situation where an induced magnetic field exceeding 3 mT is generated.
 上記実験結果およびシミュレーション結果から、磁気シールドと磁気抵抗効果素子との間隔が1μm~40μmとなるように、かつ磁気シールドが磁気抵抗効果素子を覆うように、磁気シールドおよび磁気抵抗効果素子を配置することで、電流センサの出力の線形性が大幅に改善されることが分かる。このように、広い測定範囲において線形性を確保することで、大電流を精度よく測定することができる。 From the above experimental results and simulation results, the magnetic shield and the magnetoresistive effect element are arranged so that the distance between the magnetic shield and the magnetoresistive effect element is 1 μm to 40 μm, and the magnetic shield covers the magnetoresistive effect element. This shows that the linearity of the output of the current sensor is greatly improved. Thus, a large current can be accurately measured by ensuring linearity in a wide measurement range.
 次に、電流センサ2において、磁気抵抗効果素子(GMR素子)が受ける誘導磁界の大きさと、磁気シールド-磁気抵抗効果素子間の距離との関係を確認した。ここでは、10mTの誘導磁界が電流センサ2に加わる状況を想定し、磁気抵抗効果素子が受ける誘導磁界の大きさが、磁気シールド-磁気抵抗効果素子間の距離との関係においてどのように変化するかを確認した。 Next, in the current sensor 2, the relationship between the magnitude of the induced magnetic field received by the magnetoresistive effect element (GMR element) and the distance between the magnetic shield and the magnetoresistive effect element was confirmed. Here, assuming a situation where an induced magnetic field of 10 mT is applied to the current sensor 2, how the magnitude of the induced magnetic field received by the magnetoresistive effect element changes in relation to the distance between the magnetic shield and the magnetoresistive effect element. I confirmed.
 図8は、当該シミュレーション結果を示す図である。図8に示されるグラフにおいて、横軸は磁気シールド-磁気抵抗効果素子間の距離(μm)を示し、縦軸は磁気抵抗効果素子(GMR素子)が受ける誘導磁界の大きさ(mT)を示す。図8(b)は、図8(a)の一部を拡大した部分拡大図である。 FIG. 8 is a diagram showing the simulation results. In the graph shown in FIG. 8, the horizontal axis indicates the distance (μm) between the magnetic shield and the magnetoresistive effect element, and the vertical axis indicates the magnitude (mT) of the induced magnetic field received by the magnetoresistive effect element (GMR element). . FIG. 8B is a partially enlarged view of a part of FIG.
 図8から、磁気シールド-磁気抵抗効果素子間の距離が1μm~40μmの範囲において、磁気シールド-磁気抵抗効果素子間の距離と誘導磁界の大きさとの関係が略直線で表されることが分かる。また、磁気抵抗効果素子が受ける誘導磁界が十分に緩和されていることが分かる。つまり、磁気シールド-磁気抵抗効果素子間の距離を1μm~40μmの範囲とすることで、十分に広い範囲において電流センサの出力の線形性を確保し、かつ電流センサの設計を容易にすることができる。 FIG. 8 shows that the relationship between the distance between the magnetic shield and the magnetoresistive effect element and the magnitude of the induced magnetic field is represented by a substantially straight line when the distance between the magnetic shield and the magnetoresistive effect element is in the range of 1 μm to 40 μm. . It can also be seen that the induced magnetic field received by the magnetoresistive element is sufficiently relaxed. In other words, by setting the distance between the magnetic shield and the magnetoresistive effect element in the range of 1 μm to 40 μm, it is possible to ensure the linearity of the output of the current sensor in a sufficiently wide range and facilitate the design of the current sensor. it can.
 以上のように、磁気シールドと磁気抵抗効果素子との間隔が1μm~40μmとなるように、かつ磁気シールドが磁気抵抗効果素子を覆うように、磁気シールドおよび磁気抵抗効果素子を配置することにより、電流センサの出力の線形性が得られる電流測定領域が広くなり、大電流を精度よく測定することが可能になる。これにより、大電流を高い精度で測定可能な、簡単な構成の電流センサを提供することができる。 As described above, by arranging the magnetic shield and the magnetoresistive effect element so that the distance between the magnetic shield and the magnetoresistive effect element is 1 μm to 40 μm, and the magnetic shield covers the magnetoresistive effect element, The current measurement area where the linearity of the output of the current sensor can be obtained is widened, and a large current can be accurately measured. Thereby, it is possible to provide a current sensor having a simple configuration capable of measuring a large current with high accuracy.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。また、上記実施の形態に示す構成は、適宜組み合わせて実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 Note that the present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, the connection relationship, size, and the like of each element in the above embodiment can be changed as appropriate. In addition, the structures described in the above embodiments can be implemented in appropriate combination. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。 The current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.
 本出願は、2010年11月9日出願の特願2010-250840に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-250840 filed on Nov. 9, 2010. All this content is included here.

Claims (4)

  1.  電流線を通流する被測定電流からの誘導磁界に比例する電圧が出力されるように配置された磁気抵抗効果素子と、
     平面視において、前記磁気抵抗効果素子を覆うように配置された磁気シールドと、
     を備え、
     前記磁気抵抗効果素子と前記磁気シールドとの間隔は、1μm~40μmであることを特徴とする電流センサ。
    A magnetoresistive element arranged to output a voltage proportional to the induced magnetic field from the current to be measured flowing through the current line;
    A magnetic shield arranged to cover the magnetoresistive effect element in a plan view;
    With
    A current sensor characterized in that a distance between the magnetoresistive element and the magnetic shield is 1 μm to 40 μm.
  2.  前記磁気抵抗効果素子と前記磁気シールドとの間隔は、1μm~8μmであることを特徴とする請求項1に記載の電流センサ。 2. The current sensor according to claim 1, wherein a distance between the magnetoresistive element and the magnetic shield is 1 μm to 8 μm.
  3.  前記磁気シールドは、前記電流線と前記磁気抵抗効果素子との間に配置されたことを特徴とする請求項1または請求項2に記載の電流センサ。 3. The current sensor according to claim 1, wherein the magnetic shield is disposed between the current line and the magnetoresistive element.
  4.  前記磁気シールドは、前記磁気抵抗効果素子の前記電流線とは反対側に配置されたことを特徴とする請求項1から請求項3のいずれか一に記載の電流センサ。 The current sensor according to any one of claims 1 to 3, wherein the magnetic shield is arranged on a side opposite to the current line of the magnetoresistive effect element.
PCT/JP2011/073219 2010-11-09 2011-10-07 Current sensor WO2012063584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010250840 2010-11-09
JP2010-250840 2010-11-09

Publications (1)

Publication Number Publication Date
WO2012063584A1 true WO2012063584A1 (en) 2012-05-18

Family

ID=46050737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073219 WO2012063584A1 (en) 2010-11-09 2011-10-07 Current sensor

Country Status (1)

Country Link
WO (1) WO2012063584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507618A (en) * 2017-09-15 2019-03-22 Tdk株式会社 Magnet sensor arrangement and current sensor
EP3234618B1 (en) * 2014-12-19 2021-01-27 Hall Element Devices (IP Holdings) Limited Apparatus for measure of quantity and associated method of manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333468A (en) * 2001-03-07 2002-11-22 Yamaha Corp Magnetometric sensor, and manufacturing method therefor
JP2004132790A (en) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd Current sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333468A (en) * 2001-03-07 2002-11-22 Yamaha Corp Magnetometric sensor, and manufacturing method therefor
JP2004132790A (en) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd Current sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3234618B1 (en) * 2014-12-19 2021-01-27 Hall Element Devices (IP Holdings) Limited Apparatus for measure of quantity and associated method of manufacturing
CN109507618A (en) * 2017-09-15 2019-03-22 Tdk株式会社 Magnet sensor arrangement and current sensor
JP2019052946A (en) * 2017-09-15 2019-04-04 Tdk株式会社 Magnetic sensor device and current sensor

Similar Documents

Publication Publication Date Title
US8487612B2 (en) Current sensor
US8269492B2 (en) Magnetic balance type current sensor
JP5531215B2 (en) Current sensor
US10184959B2 (en) Magnetic current sensor and current measurement method
JP5648246B2 (en) Current sensor
JP5584918B2 (en) Current sensor
JP5906488B2 (en) Current sensor
JP5888402B2 (en) Magnetic sensor element
US9964602B2 (en) Magnetic sensor
JP5487402B2 (en) Magnetic balanced current sensor
WO2012053296A1 (en) Current sensor
WO2012005042A1 (en) Current sensor
JP2017072375A (en) Magnetic sensor
US9146260B2 (en) Magnetic balance type current sensor
WO2012063584A1 (en) Current sensor
JP2010286415A (en) Current sensor unit
JP5504481B2 (en) Magnetic balanced current sensor
JP2013047610A (en) Magnetic balance type current sensor
WO2015125699A1 (en) Magnetic sensor
JP2013142569A (en) Current sensor
WO2013105489A1 (en) Current sensor
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
WO2013179613A1 (en) Current sensor
WO2011111456A1 (en) Current measurement device
JP2015194389A (en) Magnetic field detection device and multi piece substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP