WO2012063348A1 - Laser processing method and device - Google Patents

Laser processing method and device Download PDF

Info

Publication number
WO2012063348A1
WO2012063348A1 PCT/JP2010/070130 JP2010070130W WO2012063348A1 WO 2012063348 A1 WO2012063348 A1 WO 2012063348A1 JP 2010070130 W JP2010070130 W JP 2010070130W WO 2012063348 A1 WO2012063348 A1 WO 2012063348A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
workpiece
laser light
region
Prior art date
Application number
PCT/JP2010/070130
Other languages
French (fr)
Japanese (ja)
Inventor
望月 学
浩義 廣田
能一 坂口
Original Assignee
パイオニア株式会社
株式会社パイオニアFa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 株式会社パイオニアFa filed Critical パイオニア株式会社
Priority to JP2011543744A priority Critical patent/JPWO2012063348A1/en
Priority to PCT/JP2010/070130 priority patent/WO2012063348A1/en
Publication of WO2012063348A1 publication Critical patent/WO2012063348A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a technical field of a laser processing method and apparatus for performing processing such as cutting on an object to be processed by irradiation with laser light.
  • the prior art document also describes a method of forming a notch for cutting on the outer periphery of a rod-like brittle workpiece by laser irradiation, and dividing by adding a side pressure to the notch.
  • Such division of the processing object is used, for example, when forming an electronic component such as a chip.
  • Various improvements are made to improve processing accuracy, such as improvement of flatness of a section of the processing object. Has been.
  • a line or the like serving as a starting point of division is formed, and cleaving along the line.
  • the workpiece is divided.
  • a process of forming a starting line by laser light irradiation and a process of cleaving along the line are required, and facilities and mechanisms for realizing each process are required.
  • the line formed by the modified region is only a part of the dividing surface, the dividing surface cannot be defined at the time of cleaving, and the flatness of the dividing surface cannot be managed. There is a technical problem with.
  • the present invention has been made in view of, for example, the above-described problems.
  • the flatness of a divided section is improved and the number of steps is reduced. It is an object of the present invention to provide a laser processing method and apparatus capable of realizing processing.
  • the laser processing method of the present invention forms a modified region by multiphoton absorption inside the processing object by irradiating the processing object with a laser beam with a condensing part inside.
  • a cutting step of forming a plurality of the modified regions are examples of the modified regions.
  • the laser processing apparatus of the present invention irradiates a laser beam by aligning a condensing portion inside a workpiece, and forms a modified region by multiphoton absorption inside the workpiece. And a crack region formed around the modified region so as to continue from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side.
  • FIG. 1 It is a figure which shows the example of processing operation by irradiation of a laser beam. It is a flowchart which shows the flow of the processing operation by irradiation of a laser beam. It is a block diagram which shows the structural example of a laser processing apparatus.
  • An embodiment of the laser processing method of the present invention includes an irradiation step of irradiating a laser beam with a condensing part inside a processing target, and forming a modified region by multiphoton absorption inside the processing target;
  • the modified region is formed such that a crack region formed around the modified region is continuous from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side.
  • the processing target is irradiated with laser light, and the laser light is condensed on the surface or inside of the processing target.
  • modification by multiphoton absorption occurs in the vicinity of the light condensing part, and a modified region is formed.
  • the modified region is brittle compared to the region where no modification has occurred.
  • region is the meaning which shows the area
  • Such cracks are assumed to be caused by the action of stress due to thermal expansion due to excess energy accumulated in a region in the vicinity of the laser beam condensing portion inside the workpiece.
  • each of the modified region and the crack region formed inside the object to be processed depends on the irradiation conditions such as the output and wavelength of the laser beam, the degree of light absorption according to the material of the object to be processed, etc. Change.
  • the modified region and the crack region have a three-dimensional shape such as a spherical shape, an ellipsoidal shape, or a cylindrical shape centering on the condensing portion of the laser beam.
  • the ellipsoidal or cylindrical modified region and the crack region have their long axes in the optical axis direction of the laser light.
  • the inside of the workpiece is irradiated with a pulsed laser beam having a wavelength that can pass through the inside of the workpiece to at least the region that forms the modified region.
  • a laser light source capable of irradiating laser light and a condensing lens for condensing the irradiated laser light inside the object to be processed are used.
  • Other laser light irradiation conditions will be described later.
  • the laser beam condensing part is processed so that the crack region is continuously formed from the surface opposite to the laser beam incident surface side of the workpiece to the surface on the laser beam incident side.
  • the movement at this time may be relative, for example, one that fixes one and moves the other, or both that move simultaneously.
  • a lens unit that moves the condenser lens along the optical axis direction of the laser light by moving the condenser lens along the optical axis direction of the laser light, and a direction orthogonal to the optical axis direction of the laser light
  • a stage provided with an actuator for moving the workpiece is used.
  • a continuous crack region is formed from the surface opposite to the incident side to the surface on the incident side of the laser beam.
  • a small scratch or crack is formed from the surface opposite to the laser beam incident side to the surface on the laser beam incident side on the planned split surface,
  • a workpiece to be cut after cleaving is placed on a stretchable adhesive sheet, and easily separated by a so-called separation step by stretching the adhesive sheet. It becomes possible.
  • the workpiece is divided along the crack region that is continuously formed in this way, so that the flatness of the section after the division can be controlled.
  • the modified region and the crack region formed inside the object to be processed are Get smaller. Therefore, according to the embodiment of the laser processing method of the present invention, it is possible to narrow the width of the planned cutting surface along the modified region and the crack region formed in the modified region, and the plane of the cut surface after dividing. The degree can be kept good.
  • the total irradiation time for forming a continuous crack region in the planned cutting plane is longer than in the case of using a short pulse laser such as a nanosecond laser. It is predicted.
  • a short pulse laser such as a nanosecond laser.
  • rapid processing is required for many processing objects.
  • the above-described ultrashort pulse laser is not suitable for processing when cutting a substrate or the like by laser light irradiation.
  • processing using an ultrashort pulse laser requires a processing apparatus capable of accurately irradiating the ultrashort pulse laser, and there is a problem in industrial applicability due to an increase in installation cost.
  • the laser processing method of the present invention it can be carried out if there is equipment that can irradiate laser light having a pulse width of nanosecond order, which is generally used at a relatively low installation cost. Further, the processing accuracy of the cut surface generally required for a substrate such as glass, crystal, silicon, or the like, which is a processing target, is about 20 to 50 ⁇ m in flatness. For this reason, the laser processing method of the present invention that satisfies the required processing accuracy and can be processed at a high speed also has the advantage of being excellent in industrial applicability.
  • a continuous crack region is formed from one end portion to the other end portion in the direction orthogonal to the optical axis on the planned cutting surface inside the workpiece. . That is, it is preferable that a crack region is formed over the entire parting planned surface inside the workpiece.
  • the laser beam condensing unit or the laser beam so as to continuously form the crack region in a direction orthogonal to the optical axis of the laser beam.
  • a first step of moving at least one of the workpieces and a second step of moving the laser beam condensing portion in the optical axis direction of the laser beam by a predetermined distance according to the size of the crack region are repeated.
  • the first step and the second step are repeatedly performed, so that the laser beam is incident from the surface opposite to the laser beam incident surface side on the planned split surface inside the workpiece.
  • a continuous crack region can be formed up to the surface on the side.
  • the laser beam is collected in a direction orthogonal to the optical axis of the laser beam by moving the object to be processed while being irradiated with the laser beam.
  • the optical part is scanned to form a continuous crack region line on the scanning path in the planned cutting plane.
  • the lens unit moves the laser beam condensing part in the optical axis direction according to the size of the crack region.
  • the crack region is continuously formed according to the size of the crack region that changes according to the irradiation condition of the laser light, the optical property of the workpiece, etc. (in other words, The moving distance is set so that the range covered by the crack region formed by the scan of the laser light after movement and at least the modified region formed by the scan before movement are in contact with each other.
  • this aspect it is preferable to easily obtain a continuous crack region from the surface opposite to the laser light incident side to the surface on the laser light incident side, preferably within the planned split surface inside the workpiece. I can do it. For this reason, it is possible to eliminate the deficiency of the division due to the portion where the crack region is not formed on the planned division surface inside the object to be processed, and it is possible to increase the flatness of the cross section after the division.
  • a continuous reforming region line may be formed. It is known that further condensing part inside the reforming region leads to the formation of further reforming region and crack region, but as long as other conditions of this embodiment can be satisfied, the reforming region is continuous. It may be formed automatically.
  • the laser beam irradiation conditions and the moving speed of the object to be processed that are preferable in carrying out this aspect will be described in detail later.
  • a plurality of the modified regions are formed at intervals of 10 ⁇ m to 90 ⁇ m in the optical axis direction of the laser light inside the processing object. .
  • the irradiation step is performed under conditions that satisfy a condition that a pulse width is 5 ns to 20 ns, a repetition frequency is 15 kHz to 50 kHz, and an average output is 0.05 W to 0.2 W.
  • the laser beam condensing part is located inside the workpiece under the condition that the relative speed between the laser beam and the workpiece is 5 mm / s to 300 mm / s. At least one of the laser beam condensing unit or the workpiece is moved so as to move in a direction perpendicular to the optical axis of the laser beam.
  • the emission condition of the pulsed laser beam it is possible to appropriately set the emission condition of the pulsed laser beam.
  • the size of the modified region formed by multiphoton absorption inside the processing target and the surrounding crack region is also relatively small. For this reason, it is possible to obtain a continuous crack region on the planned dividing surface by forming a plurality of modified regions inside the workpiece and in the optical axis direction of the laser beam. For this reason, it is possible to eliminate the deficiency of the division due to the portion where the crack region is not formed on the planned division surface inside the object to be processed, and it is possible to increase the flatness of the cross section after the division.
  • the laser beam having a wavelength of 355 nm is irradiated.
  • the wavelength of the laser for laser processing is relatively short, it is possible to form a laser beam condensing part in a relatively small region.
  • a modified region by multiphoton absorption can be formed inside a relatively small region in the condensing unit, and the influence of heat generated by laser light irradiation on the region other than the condensing unit can be reduced.
  • the object to be processed has transparency to the laser light.
  • the object to be processed is a laminate of a plurality of substrates.
  • the object to be processed in which a plurality of substrates are bonded in this aspect is a so-called bonded glass or the like by bonding a plurality of substrates such as glass or quartz with an adhesive or the like.
  • a crack region is continuously formed from the surface opposite to the laser beam incident side of the workpiece to the laser light incident side surface, a plurality of substrates are bonded together. Even if it is a processed object, a continuous crack region is formed on each substrate. For this reason, it becomes possible to easily divide the object to be processed having a continuous crack region as a section.
  • An embodiment of the laser processing apparatus of the present invention includes an irradiation unit that irradiates a laser beam with a condensing unit inside a processing target, and forms a modified region by multiphoton absorption inside the processing target;
  • the modified region is formed such that a crack region formed around the modified region is continuous from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side.
  • Embodiment of the laser processing apparatus of this invention is an apparatus for implement
  • the laser processing apparatus includes, as irradiation means, for example, a laser light source that irradiates laser light of a predetermined condition, and a condensing lens that condenses the laser light inside the object to be processed to form a condensing unit.
  • the laser processing apparatus includes, as cutting means, for example, a lens unit capable of driving a condenser lens as described above, and a stage provided with an actuator.
  • the embodiment of the laser processing apparatus may also adopt various aspects.
  • the embodiment of the laser processing method of the present invention includes a condensing step and a cutting step.
  • An embodiment of the laser processing apparatus of the present invention includes a light collecting means and a cutting means.
  • the laser processing method of the present invention condenses laser light so as to form a condensing part inside a workpiece, and modifies the condensing part by multiphoton absorption. A region and a crack region are formed.
  • the formed modified region and the crack region are used to divide the workpiece using the modified region and the crack region by utilizing the fact that the modified region and the crack region are embrittled compared with the region where the modification is not generated. A method will be described.
  • FIG. 1 is a cross-sectional view taken along a direction orthogonal to the optical axis of a laser beam L1 for processing a workpiece 1 to be laser processed.
  • Processing object 1 is a substrate made of glass or quartz.
  • the workpiece 1 is capable of transmitting the laser beam L1 used for laser processing (that is, optically transparent), and has an optical property that multiphoton absorption occurs when the intensity of the laser beam L1 is high.
  • the condensing part F1 of the laser beam L1 When the condensing part F1 of the laser beam L1 is formed inside the workpiece 1 and the condition for multiphoton absorption is satisfied in the condensing part F1, modification by multiphoton absorption is performed in the vicinity of the condensing part F1. And a modified region R is formed. Further, a crack region C in which cracks such as fine cracks are generated due to the action of internal stress accompanying the modification is formed outside the modified region.
  • the modified region R and the crack region C are typically regions that are substantially similar to each other, and are an ellipsoid having a major axis in the optical axis direction of the laser light L1, and a cylinder having the axial direction in the direction. Or spherical shape. This is because more multiphoton absorption of the laser light L1 occurs in the optical axis direction in the vicinity of the condensing part F1.
  • the laser beam L1 has a wavelength of 355 nm, a pulse width of 5 to 20 ns, a repetition frequency of 15 to 50 kHz, and an average output of 0.05 to 0.05, with the condensing unit F1 inside the workpiece 1. Irradiation is performed under the condition of 0.2W.
  • the laser light source that irradiates the laser beam L1 irradiates the pulsed laser beam L1 in accordance with the trigger signal shown in FIG.
  • the trigger signal is a signal input from a control device or the like for controlling the laser light source, and is a pulse signal having a repetition frequency of 15 to 50 kHz described above (in other words, a repetition cycle based on the repetition frequency).
  • the laser light source receives the trigger signal and irradiates the laser light L1 under the above-described conditions of wavelength, pulse width, and average output.
  • the pulse width is, for example, the half width of one pulse of the laser light L1, and is defined in the form of a time length.
  • the average output is obtained by averaging the output of the laser beam L1 within one cycle of the trigger signal repetition cycle.
  • the modified region R and the crack region C are formed by multiphoton absorption occurring in the light collecting portion F1, while the surface 1a on the incident side of the laser beam L1 of the workpiece 1 is, for example, Further, there is no modification or melting due to absorption of the laser beam L1.
  • FIG. 4 is a table showing an example of the length of the modified region R in the optical axis direction of the laser beam L1 under the above conditions.
  • the table shown in FIG. 4 shows that the laser light L1 has a wavelength of 355 nm, an aperture NA of the condensing lens used for condensing NA0.5, a diameter of the condensing part F1 of about 900 nm, and an average output of 0.1 W.
  • the length in the optical axis direction of the laser beam L1 of the modified region R formed when the processing unit 1 is irradiated with the condensing part F1 is shown.
  • a modified region R having a length of 20 to 60 ⁇ m is formed in the optical axis direction of the laser beam L1
  • a modified region R having a length of 20 to 50 ⁇ m is formed in the optical axis direction of the laser beam L1.
  • the laser processing method according to the present embodiment divides the workpiece 1 by continuously forming the modified region R and the crack region C in the planned dividing surface.
  • FIG. 2 is a perspective view of the workpiece 1.
  • the laser beam L1 is set so that the planned division surface 2 is virtually set on the workpiece 1, and the modified region R and the crack region C are formed along the planned division surface 2. Irradiation and condensing.
  • FIG. 5 to FIG. 7 are cross-sectional views along the scheduled cutting surface 2 (XZ plane) of the workpiece 1 to be laser processed, and explain the processing procedure.
  • the condensing part F1 is aligned at a position separated from the surface 1b facing the surface 1a of the workpiece 1 by a predetermined distance d, a wavelength of 355 nm, a pulse width of 5 to 20 ns, a repetition frequency of 15 to 50 kHz,
  • the laser beam L1 is irradiated under the condition that the average output is 0.05 to 0.2W.
  • the distance d is a distance at which the surface 1b is not crushed by the influence of the modified region R and the crack region C formed by the irradiation of the laser beam L1, and the distance at which the crack region C reaches the surface 1b. Is set. For this reason, it is preferable that the distance d is appropriately set according to the irradiation condition of the laser light L1 and the material of the workpiece 1 (more specifically, properties related to light absorption such as a band gap).
  • the term “crushing” means not only that the crack region reaches the surface but also a state in which the surface is actually divided into pieces. When crushing occurs in this way, it leads to deterioration of flatness in the planned dividing surface 2 and is not preferable because it causes unevenness in the divided section when the workpiece 1 is divided.
  • the distance d is 0.5 times the size of the modified region R in the optical axis direction (that is, the modified region R). It has been reported that crushing occurs on the surface when the length from the center to one end) +15 ⁇ m. On the other hand, when the distance d is 0.5 times the size of the modified region R in the optical axis direction (that is, the length from the center of the modified region R to one end) +20 ⁇ m, the surface is crushed. In addition, it has been reported that the crack region reaches the surface.
  • the laser beam L1 is scanned in the direction perpendicular to the optical axis of the laser beam L1 inside the object 1 to be processed. Move in the direction.
  • the laser beam L1 may be scanned by moving the workpiece 1 in the opposite direction (for example, the ⁇ X direction) in which scanning is performed while the irradiation of the laser beam L1 is maintained. .
  • the scan is performed under the condition that the relative speed (in other words, the scan speed) between the laser beam L1 and the workpiece 1 is 5 to 300 mm / s.
  • An apparatus configuration for performing such scanning may be arbitrary, and an example will be described later.
  • the laser beam L1 is scanned at a speed of 5 to 300 mm / s.
  • the workpiece 1 is moved in the opposite direction in which scanning is performed under the above-described conditions.
  • the modified region R can be continuously (for example, see FIG. 6B) or discontinuously (for example, see FIG. 6A) on and near the movement path of the light collecting portion F1. Is formed.
  • the distance between adjacent reformed regions R formed discontinuously is defined as dR. Is described.
  • the case where the modified region R is continuously formed is a case where the distance dR is sufficiently small.
  • a crack region C is continuously formed in the vicinity of the modified region R.
  • the laser beam L1 is scanned so that the crack region C extends from one end portion in the direction orthogonal to the optical axis in the planned splitting surface 2 to the other end portion.
  • the laser beam condensing part F ⁇ b> 1 is moved to the optical axis direction incident side (Z direction in FIG. 7) by a predetermined distance p.
  • the distance p is defined as 10 to 90 ⁇ m.
  • the scan shown in FIG. 6A or 6B is performed in a state where the position of the light collecting portion F1 in the optical axis direction (in other words, the depth in the workpiece 1) is maintained.
  • the surface 1a on the incident side of the laser beam L1 of the workpiece 1 is described above.
  • the laser beam L1 is scanned by aligning the condensing unit F1 at positions separated by a distance d.
  • a crack region C continuously formed along the planned dividing surface 2 reaches from the surface 1b to the surface 1a.
  • the irradiation of the laser beam L1 on the planned split surface 2 is completed.
  • the scan position does not necessarily have to be the distance d, and may preferably be a distance shorter than the distance d as long as the above-described crushing does not occur.
  • processing conditions are set within the above-described range in accordance with the material or the like of the processing object 1 (step S101). Specifically, with respect to the irradiation condition of the laser beam L1, the pulse width is determined within the range of 5 to 20 ns, the repetition frequency is 15 to 50 kHz, and the average output is within the range of 0.05 to 0.2 W.
  • the distance d of the condensing portion F1 from the surface 1b when condensing the laser light L1 for the first time, the moving distance p of the condensing portion F1 after scanning, the laser light L1 during scanning and the object to be processed A scanning speed that is relative to 1 is determined. Specifically, the distance d is determined according to the material of the workpiece 1, the thickness in the optical axis direction, the size of the modified region R and the crack region C formed by irradiation with the laser light L 1, and the like. p is determined from the range of 10 to 90 ⁇ m. Further, the relative speed between the laser beam L1 and the workpiece 1 during scanning is determined within a range of 5 to 300 mm / s.
  • the laser beam L1 irradiated under the conditions set in step S101 is placed at a distance d from the surface 1b opposite to the laser beam L1 incident side of the workpiece 1 using a condenser lens or the like.
  • Condensing light step S102.
  • the laser beam L1 is scanned by moving the workpiece 1 in a direction orthogonal to the optical axis (step S103).
  • the condensing part F1 of the laser light L1 is moved by a distance p in the optical axis direction and in the surface 1a direction by moving the condensing lens (step S104).
  • Steps S ⁇ b> 103 and S ⁇ b> 104 are repeated until the condensing unit F ⁇ b> 1 is at a distance d or less from the surface 1 a of the workpiece 1.
  • step S105: Yes the condensing unit F1 is at or below the distance d from the surface 1a of the workpiece 1 (step S105: Yes)
  • the machining operation is terminated after the laser beam L1 is scanned at the position (step S106).
  • the crack region is continuously formed from the surface 1b to the surface 1a along the planned dividing surface 2 inside the object 1 to be processed. Because of such a continuous crack region, for example, without performing a process such as cleaving, by performing a process for separating the processing object performed after the cleaving process in a general laser dicing method, the processing object can be divided. It becomes possible. This is because small scratches and cracks are continuous from the surface 1a to 1b inside the planned split surface where the crack region is continuously formed, and therefore can be easily separated without applying a large force.
  • the relatively small crack region is continuously formed under the laser light irradiation conditions and the processing conditions described above, the size of the crack region extending in the direction perpendicular to the planned cutting surface is also compared inside the object to be processed. Small. Therefore, when the separation is performed along the planned dividing surface, the dividing surface can be controlled while maintaining the flatness of the dividing surface with relatively high accuracy. For example, a flatness of about 20 ⁇ m can be realized for glass, quartz, etc., and a flatness of about 50 ⁇ m can be realized for a laminated glass obtained by bonding a plurality of substrates with an adhesive. Since such a highly accurate cross section can be obtained, the polishing of the cross section after the division may be omitted.
  • the same effect can be obtained when a laminated glass or the like obtained by bonding a plurality of substrates such as glass or crystal with an adhesive is used as the workpiece 1. Further, under the processing conditions described in the present embodiment, the influence of the laser light L1 on the adhesive of the laminated glass can be suppressed, and further, the deterioration of the adhesive can be suppressed because there is little absorption of the 355 nm laser light. . Generally, in the prior art, when trying to cut the laminated glass as described above, the portion of the adhesive is altered by the laser beam, and the influence is great.
  • the optical path of the laser beam L1 passes outside the end of the workpiece 1 in an end portion parallel to the optical axis in a direction perpendicular to the optical axis on the planned cutting surface of the workpiece 1. Can be suppressed.
  • the crack region C is continuously formed from one end portion to the other end portion even in the end portion parallel to the optical axis in the direction perpendicular to the optical axis on the planned cutting surface of the workpiece 1.
  • the crack region C can be formed over the entire parting planned surface 2. Thereby, division
  • the interval dR between the modified regions R formed by scanning varies depending on the repetition frequency of the laser beam L1 and the scan speed.
  • the flatness of the divided section after the division is affected.
  • the result of experiment of the inventors about the case where favorable processing is observed like the above-mentioned thing is demonstrated.
  • the relationship dR ( ⁇ m) scanning speed (mm / s) / repetition frequency (kHz) is established with respect to the interval dR between the modified regions R to be formed.
  • the interval dR is 0.7 ⁇ m when the scanning speed is 10 mm / s
  • the interval dR is 6.7 ⁇ m when the scanning speed is 100 mm / s
  • the interval is when the scanning speed is 200 mm / s.
  • dR was 13.3 ⁇ m, and good processing was observed in all cases.
  • the scanning speed was 300 mm / s
  • the interval dR was 20.0 ⁇ m, and good results were not observed.
  • the spacing dR is 0.3 ⁇ m when the scanning speed is 5 mm / s, and the spacing dR is 5.0 ⁇ m when the scanning speed is 100 mm / s, and good processing is observed in both cases. It was.
  • the spacing dR is 2.0 ⁇ m when the scanning speed is 100 mm / s, and the spacing dR is 4.0 ⁇ m when the scanning speed is 200 mm / s, and good processing is observed in both cases. It was.
  • FIG. 10 is a diagram showing a device configuration of the laser processing device 3.
  • the laser processing apparatus 3 includes a control unit 10, a laser power source 11, a laser light source 12, a mirror 13, a half-wave plate 14, a mirror 15, and a beam expander 16.
  • the laser processing apparatus 3 includes a guide laser diode (LD) 21 and a guide optical system 22.
  • LD guide laser diode
  • the control unit 10 is an example of a control unit of the present invention, and includes a CPU that controls the operation of each unit of the laser processing apparatus 3.
  • the control unit 10 controls the operations of the laser power source 11 and the laser light source 12 so as to emit laser light L1 that is pulse-like and satisfies emission conditions such as a predetermined repetition frequency, average output, and pulse peak output.
  • the control part 10 controls operation
  • the control part 10 performs control which moves the stage 40 which mounts the workpiece 1 in the surface orthogonal to the optical axis direction of the laser beam L1, etc. with the emission of the laser beam L1.
  • the laser power source 11 includes a power source for supplying power for driving the laser light source 12 and a pulse control device.
  • the laser power source 11 receives an instruction input by a user and supplies current to the laser light source in a desired manner. Do and drive.
  • the laser light source 12 includes a laser generator, a crystal element, a phase modulator, a resonator, and the like, generates a laser beam L1 according to a current supplied from the laser power source 11, and emits the laser beam L1 toward the mirror 13.
  • the laser light source 12 is preferably a light source excellent in pulse control and output control.
  • the laser light L 1 emitted from the laser light source 12 is adjusted in phase difference or polarization state in the half-wavelength plate 14 through the mirror 13 and then enters the beam expander 16 through the mirror 15.
  • the beam expander 16 is a mechanism that expands the beam diameter of the laser light L1 that is incident in the form of parallel light. Specifically, the beam expander 16 adjusts so that the beam diameter of the condensing part F1 in the processing target 1 of the laser light L1 is within a predetermined range, together with condensing by the condensing lens 19 described later. . The expansion ratio of the beam diameter by the beam expander 16 is set according to the aperture of the condenser lens 19 described later.
  • the beam combiner 17 is a half mirror or the like that combines the laser beam L1 on the same optical path by transmitting the laser beam L1 and reflecting the laser beam L2 for guide.
  • the guide laser beam L2 is a laser beam emitted from the guide LD 21, and is incorporated in the same optical path as the laser beam L1 by the beam combiner 17, and is condensed on the workpiece 1 by the condenser lens 19. Laser light for distance measurement or servo drive.
  • a guide optical system 22 corresponding to the application such as a beam shaping lens, a condensing lens, or a cylindrical lens, is disposed.
  • the lens block 18 is a lens unit that holds the condenser lens 19 and includes a slide mechanism that moves the condenser lens 19 in the optical axis direction of the laser light L1.
  • the condensing lens 19 is a lens that mainly condenses the laser light L1 on the surface or inside of the workpiece 1 and typically forms a condensing part F1 at the focal position.
  • the aperture of the condenser lens 19 is preferably set in accordance with the beam diameter of the condenser part F1.
  • the lens block 18 moves the condensing lens 19 in the optical axis direction of the laser light L1 in accordance with a control signal from the control unit 10, thereby condensing the lens block 18 at a desired position on the surface of the workpiece 1 or inside. Move part F1.
  • the stage 40 is a mounting table on which the workpiece 1 is mounted. Further, the stage 40 may include a mechanism capable of moving the workpiece 1 in a plane orthogonal to the optical axis direction of the laser light L1. In the case of including such a mechanism, the stage 40 moves the workpiece 1 at a speed according to the control signal supplied from the controller 10, thereby moving the workpiece 1 to the condensing unit F ⁇ b> 1 for the laser light L ⁇ b> 1. It is possible to move relative to it.
  • the laser processing apparatus 3 may be provided with the mechanism which can move relatively the other workpiece 1 and the condensing part F1 of the laser beam L1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing method is provided with an application step for setting a light focusing part within an object to be processed and applying laser light to form a reformed region due to multiphoton absorption within the object to be processed, and a cutting step for forming a plurality of the reformed regions such that crack regions each formed around the reformed region are continuous from the surface on the reverse side to the laser light incidence surface side of the object to be processed to the surface on the laser light incidence surface side.

Description

レーザ加工方法及び装置Laser processing method and apparatus
 本発明は、レーザ光を照射して加工対象物に対して、切断等の加工を行うレーザ加工方法及び装置の技術分野に関する。 The present invention relates to a technical field of a laser processing method and apparatus for performing processing such as cutting on an object to be processed by irradiation with laser light.
 この種の加工装置として、ガラス基板等の加工対象物の表面又は内部に、レーザ光を集光させることで、多光子吸収によって局所的に脆化した改質領域を形成する装置が知られている。下記に示す先行技術文献には、加工対象物の内部に形成した改質領域を起点として、劈開等の手順を加えることで加工対象物を分断する方法について説明されている。 As this type of processing apparatus, an apparatus that forms a modified region locally embrittled by multiphoton absorption by condensing laser light on the surface or inside of a processing target such as a glass substrate is known. Yes. The following prior art documents describe a method of dividing a workpiece by adding a procedure such as cleavage, starting from a modified region formed inside the workpiece.
 また、先行技術文献には、レーザ照射により、棒状の脆性加工対象物の外周に切断のための切欠を形成し、該切欠に側圧を付加することで分断を行う方法についても説明されている。このような加工対象物の分断は、例えばチップ等の電子部品を形成する際に用いられ、加工対象物の分断面の平面度の向上等、加工精度の向上のために、種々の工夫が為されている。 Further, the prior art document also describes a method of forming a notch for cutting on the outer periphery of a rod-like brittle workpiece by laser irradiation, and dividing by adding a side pressure to the notch. Such division of the processing object is used, for example, when forming an electronic component such as a chip. Various improvements are made to improve processing accuracy, such as improvement of flatness of a section of the processing object. Has been.
特許第3408805号Japanese Patent No. 3408805 特許第4399960号Japanese Patent No. 4399960
 ところで、前述した先行技術文献に説明される方法によれば、加工対象物の内部に改質領域を形成することで、分断の起点となるライン等を形成し、該ラインに沿って割断することで、加工対象物の分断を行っている。該方法によれば、レーザ光の照射によって起点となるラインを形成する工程と、ラインに沿って割断する工程とが必要となり、夫々の工程を実現するための設備や機構が求められる。また、該方法では、改質領域によって形成されたラインは、分断面の一部にしかすぎないため、割断の際に分断面を規定出来ず、分断面の平面度を管理することが出来ないとの技術的な問題がある。また、側圧による分断を行う場合にも、同様に分断面の平面度を管理出来ないため、分断面に大きなうねりが生じる可能性がある。このように分断後の加工対象物の分断面の平面度が十分でない場合、分断面の研磨等の工程が更に必要となる。 By the way, according to the method described in the above-mentioned prior art document, by forming a modified region inside the object to be processed, a line or the like serving as a starting point of division is formed, and cleaving along the line. Thus, the workpiece is divided. According to this method, a process of forming a starting line by laser light irradiation and a process of cleaving along the line are required, and facilities and mechanisms for realizing each process are required. Further, in this method, since the line formed by the modified region is only a part of the dividing surface, the dividing surface cannot be defined at the time of cleaving, and the flatness of the dividing surface cannot be managed. There is a technical problem with. In addition, when dividing by the lateral pressure, the flatness of the divided section cannot be managed in the same manner, and thus a large undulation may occur in the divided section. Thus, when the flatness of the divided surface of the workpiece after dividing is not sufficient, a process such as polishing of the divided surface is further required.
 本発明は、例えば上述の問題点に鑑み為されたものであり、レーザ光の照射を用いて加工対象物の分断を行う場合において、分断面の平面度を向上させ、且つより少ない工程数で加工を実現可能なレーザ加工方法及び装置を提供することを課題とする。 The present invention has been made in view of, for example, the above-described problems. In the case of dividing a workpiece by using laser light irradiation, the flatness of a divided section is improved and the number of steps is reduced. It is an object of the present invention to provide a laser processing method and apparatus capable of realizing processing.
 上記課題を解決するために、本発明のレーザ加工方法は、加工対象物の内部に集光部を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成する照射工程と、前記改質領域の周囲に形成されるクラック領域が、前記加工対象物のレーザ光入射面側に対して反対側となる表面から該レーザ光入射面側の表面まで連続するよう、前記改質領域を複数形成する切断工程とを備える。 In order to solve the above-mentioned problems, the laser processing method of the present invention forms a modified region by multiphoton absorption inside the processing object by irradiating the processing object with a laser beam with a condensing part inside. The irradiation step to be performed and the crack region formed around the modified region so as to continue from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side. And a cutting step of forming a plurality of the modified regions.
 上記課題を解決するために、本発明のレーザ加工装置は、加工対象物の内部に集光部を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成する照射手段と、前記改質領域の周囲に形成されるクラック領域が、前記加工対象物のレーザ光入射面側に対して反対側となる表面から該レーザ光入射面側の表面まで連続するよう、前記改質領域を複数形成する切断手段とを備える。 In order to solve the above-described problem, the laser processing apparatus of the present invention irradiates a laser beam by aligning a condensing portion inside a workpiece, and forms a modified region by multiphoton absorption inside the workpiece. And a crack region formed around the modified region so as to continue from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side. Cutting means for forming a plurality of the modified regions.
加工対象物内部に形成される改質領域及びクラック領域の態様を示すブロック図である。It is a block diagram which shows the aspect of the modification area | region and crack area | region formed in a process target object. 加工対象物内部の分断予定面の例を示す図である。It is a figure which shows the example of the division plan surface inside a process target object. パルス状のレーザ光の例を示す図である。It is a figure which shows the example of a pulsed laser beam. レーザ光の照射条件に応じて形成される改質領域のサイズの例を示す表である。It is a table | surface which shows the example of the size of the modification area | region formed according to the irradiation conditions of a laser beam. レーザ光の照射による加工動作の例を示す図である。It is a figure which shows the example of processing operation by irradiation of a laser beam. レーザ光の照射による加工動作の例を示す図である。It is a figure which shows the example of processing operation by irradiation of a laser beam. レーザ光の照射による加工動作の例を示す図である。It is a figure which shows the example of processing operation by irradiation of a laser beam. レーザ光の照射による加工動作の例を示す図である。It is a figure which shows the example of processing operation by irradiation of a laser beam. レーザ光の照射による加工動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the processing operation by irradiation of a laser beam. レーザ加工装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a laser processing apparatus.
 本発明のレーザ加工方法の実施形態は、加工対象物の内部に集光部を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成する照射工程と、前記改質領域の周囲に形成されるクラック領域が、前記加工対象物のレーザ光入射面側に対して反対側となる表面から該レーザ光入射面側の表面まで連続するよう、前記改質領域を複数形成する切断工程とを備える。 An embodiment of the laser processing method of the present invention includes an irradiation step of irradiating a laser beam with a condensing part inside a processing target, and forming a modified region by multiphoton absorption inside the processing target; The modified region is formed such that a crack region formed around the modified region is continuous from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side. A plurality of cutting steps.
 本発明のレーザ加工方法の実施形態では、加工対象物に対してレーザ光を照射し、該レーザ光を加工対象物の表面又は内部に集光させる。このとき、集光部近傍において多光子吸収による改質が生じ、改質領域が形成される。改質領域は、改質が生じていない領域と比較して脆化している。 In the embodiment of the laser processing method of the present invention, the processing target is irradiated with laser light, and the laser light is condensed on the surface or inside of the processing target. At this time, modification by multiphoton absorption occurs in the vicinity of the light condensing part, and a modified region is formed. The modified region is brittle compared to the region where no modification has occurred.
 また、改質領域の周縁には、改質に伴う内部応力の作用によって、細かいヒビなどのクラックが生じることがある。クラック領域とは、加工対象物の内部又は表面において、このようなクラックが生じた領域を示す趣旨である。このようなクラックは、加工対象物の内部のレーザ光の集光部の近傍の領域に蓄積された余剰のエネルギによる熱膨張に起因する応力の作用によって生じるとされる。 Also, cracks such as fine cracks may occur at the periphery of the modified region due to the action of internal stress accompanying the modification. A crack area | region is the meaning which shows the area | region where such a crack produced in the inside or surface of a workpiece. Such cracks are assumed to be caused by the action of stress due to thermal expansion due to excess energy accumulated in a region in the vicinity of the laser beam condensing portion inside the workpiece.
 尚、加工対象物の内部に形成される改質領域及びクラック領域の夫々の大きさは、レーザ光の出力や波長等の照射条件、加工対象物の材質に応じた光吸収度合い等に応じて変化する。また、改質領域及びクラック領域は、レーザ光の集光部を中心とした球状、楕円体状、又は円柱状等の立体となる。特に、楕円体状又は円柱状の改質領域及びクラック領域は、レーザ光の光軸方向にその長軸を有する。 The size of each of the modified region and the crack region formed inside the object to be processed depends on the irradiation conditions such as the output and wavelength of the laser beam, the degree of light absorption according to the material of the object to be processed, etc. Change. Further, the modified region and the crack region have a three-dimensional shape such as a spherical shape, an ellipsoidal shape, or a cylindrical shape centering on the condensing portion of the laser beam. In particular, the ellipsoidal or cylindrical modified region and the crack region have their long axes in the optical axis direction of the laser light.
 照射工程では、加工対象物の内部を少なくとも改質領域を形成する領域まで透過可能な波長であって、典型的にはパルス状のレーザ光を加工対象物の内部に照射する。例えば、照射工程では、レーザ光を照射可能なレーザ光源と、照射されたレーザ光を加工対象物の内部に集光するための集光レンズとが用いられる。その他のレーザ光の照射条件については後述する。 In the irradiation step, the inside of the workpiece is irradiated with a pulsed laser beam having a wavelength that can pass through the inside of the workpiece to at least the region that forms the modified region. For example, in the irradiation process, a laser light source capable of irradiating laser light and a condensing lens for condensing the irradiated laser light inside the object to be processed are used. Other laser light irradiation conditions will be described later.
 切断工程では、クラック領域が加工対象物のレーザ光入射面側とは反対側の表面から、該レーザ光の入射側の表面まで連続して形成されるよう、レーザ光の集光部が加工対象物内を移動する。この時の移動は相対的なものであってよく、例えば、一方を固定して他方を移動するものや、双方を同時に移動するものであってもよい。 In the cutting step, the laser beam condensing part is processed so that the crack region is continuously formed from the surface opposite to the laser beam incident surface side of the workpiece to the surface on the laser beam incident side. Move through things. The movement at this time may be relative, for example, one that fixes one and moves the other, or both that move simultaneously.
 例えば、切断工程では、集光レンズをレーザ光の光軸方向に移動させることで集光部をレーザ光の光軸方向に沿って移動させるレンズユニットと、レーザ光の光軸方向と直交する方向に加工対象物を移動させるアクチュエータを備えるステージ等が用いられる。 For example, in the cutting step, a lens unit that moves the condenser lens along the optical axis direction of the laser light by moving the condenser lens along the optical axis direction of the laser light, and a direction orthogonal to the optical axis direction of the laser light For example, a stage provided with an actuator for moving the workpiece is used.
 本発明のレーザ加工方法の実施形態によれば、切断工程によって、加工対象物の内部であって、加工対象物の分断を行いたい面(以降、分断予定面と記載)内において、レーザ光の入射側とは反対側の表面から、該レーザ光の入射側の表面まで連続したクラック領域が形成される。このようなクラック領域を形成することで、分断予定面ではレーザ光の入射側とは反対側の表面から、該レーザ光の入射側の表面まで小さな傷やヒビが形成された状態となるため、例えば割断などの更なる工程を加えることなく、加工対象物の分断が可能となる。例えば、一般的なレーザダイシング法において実施されるような、割断後に分断した加工対象物を伸縮性の粘着シート上に配置して、該粘着シートを延伸することによる所謂分離工程等によって容易に分断可能となる。 According to the embodiment of the laser processing method of the present invention, in the surface (hereinafter, referred to as a planned splitting surface) where the processing target object is to be divided by the cutting process, A continuous crack region is formed from the surface opposite to the incident side to the surface on the incident side of the laser beam. By forming such a crack region, a small scratch or crack is formed from the surface opposite to the laser beam incident side to the surface on the laser beam incident side on the planned split surface, For example, it is possible to divide an object to be processed without adding a further process such as cleaving. For example, as performed in a general laser dicing method, a workpiece to be cut after cleaving is placed on a stretchable adhesive sheet, and easily separated by a so-called separation step by stretching the adhesive sheet. It becomes possible.
 更に、分離工程においては、このように連続して形成されるクラック領域に沿って加工対象物の分断が生じるため、分断後の断面の平面度の制御が可能となる。特に、後に詳述するように、照射するレーザ光について、波長を短く、平均出力を低く、又はパルス幅を短く設定することで、加工対象物の内部に形成される改質領域及びクラック領域は小さくなる。従って、本発明のレーザ加工方法の実施形態によれば、改質領域内に形成される改質領域及びクラック領域に沿った切断予定面の幅を狭めることが出来、分断後の切断面の平面度を良好に保つことが出来る。 Furthermore, in the separation step, the workpiece is divided along the crack region that is continuously formed in this way, so that the flatness of the section after the division can be controlled. In particular, as will be described in detail later, by setting a short wavelength, a low average output, or a short pulse width for the laser beam to be irradiated, the modified region and the crack region formed inside the object to be processed are Get smaller. Therefore, according to the embodiment of the laser processing method of the present invention, it is possible to narrow the width of the planned cutting surface along the modified region and the crack region formed in the modified region, and the plane of the cut surface after dividing. The degree can be kept good.
 尚、単にレーザ光の照射により形成される改質領域及びクラック領域を小さくするためには、パルス幅がフェムト秒、又はピコ秒となる超短パルスレーザを使用することも考えられる。特許第4054773号には、これらのレーザ光を用いて、シリコン基板内部にクラックを形成する手法について説明されている。本実施形態に係るレーザ加工方法において、このようなレーザ光を用いて小さな改質領域及びクラック領域を多数形成する場合、より狭まった幅の切断予定面を形成することが出来る可能性がある。このため、理論上より平面度に優れた切断面での切断が可能となる。 In order to reduce the modified region and the crack region simply formed by laser light irradiation, it is conceivable to use an ultrashort pulse laser having a pulse width of femtoseconds or picoseconds. Japanese Patent No. 4054773 describes a technique for forming a crack in a silicon substrate using these laser beams. In the laser processing method according to the present embodiment, when a large number of small modified regions and crack regions are formed using such laser light, there is a possibility that a planned cutting surface with a narrower width can be formed. For this reason, the cutting | disconnection by the cut surface excellent in flatness from theory becomes possible.
 一方で、上述した超短パルスレーザを用いる場合には、切断予定面内に連続したクラック領域を形成するための総照射時間がナノ秒レーザなどの短パルスレーザを用いる場合と比べて長期化することが予測される。レーザ照射による加工方法が適用される産業上の場面においては、多くの加工対象物に対して迅速な加工が要求される傾向にある。このことから、上述の超短パルスレーザは、レーザ光照射による基板などの切断時の加工にはそぐわない。更に、超短パルスレーザを用いる加工には、超短パルスレーザを精確に照射可能な加工装置が必要となり、設置コストの上昇から、産業上の適用可能性に問題がある。 On the other hand, in the case of using the above-described ultrashort pulse laser, the total irradiation time for forming a continuous crack region in the planned cutting plane is longer than in the case of using a short pulse laser such as a nanosecond laser. It is predicted. In an industrial scene where a processing method using laser irradiation is applied, there is a tendency that rapid processing is required for many processing objects. For this reason, the above-described ultrashort pulse laser is not suitable for processing when cutting a substrate or the like by laser light irradiation. Furthermore, processing using an ultrashort pulse laser requires a processing apparatus capable of accurately irradiating the ultrashort pulse laser, and there is a problem in industrial applicability due to an increase in installation cost.
 他方で、本発明のレーザ加工方法によれば、比較的設置コストが低く、一般的に用いられることが多いパルス幅がナノ秒オーダのレーザ光を照射可能な設備があれば実施可能である。また、加工対象物となるガラス、水晶、シリコン等の基板において一般的に求められる切断面の加工精度は、平面度が20乃至50μm程度が目安となっている。このことから、求められる加工精度を満たし、且つ高速に加工可能な本発明のレーザ加工方法は、産業上の適用可能性に優れるという利点も有する。 On the other hand, according to the laser processing method of the present invention, it can be carried out if there is equipment that can irradiate laser light having a pulse width of nanosecond order, which is generally used at a relatively low installation cost. Further, the processing accuracy of the cut surface generally required for a substrate such as glass, crystal, silicon, or the like, which is a processing target, is about 20 to 50 μm in flatness. For this reason, the laser processing method of the present invention that satisfies the required processing accuracy and can be processed at a high speed also has the advantage of being excellent in industrial applicability.
 尚、本実施形態においては、加工対象物の内部の分断予定面においては、光軸と直交する方向にも一方の端部から他方の端部まで連続するクラック領域が形成されていることが好ましい。つまり、加工対象物の内部における分断予定面の全面に亘ってクラック領域が形成されることが好ましい。 In the present embodiment, it is preferable that a continuous crack region is formed from one end portion to the other end portion in the direction orthogonal to the optical axis on the planned cutting surface inside the workpiece. . That is, it is preferable that a crack region is formed over the entire parting planned surface inside the workpiece.
 本発明のレーザ加工方法の実施形態の他の態様において、前記切断工程では、前記レーザ光の光軸と直交する方向において連続して前記クラック領域を形成するよう前記レーザ光の集光部又は前記加工対象物の少なくとも一方を移動する第1の工程と、前記レーザ光の集光部を前記レーザ光の光軸方向に前記クラック領域のサイズに応じた所定距離移動する第2の工程とが繰り返し実施される。 In another aspect of the embodiment of the laser processing method of the present invention, in the cutting step, the laser beam condensing unit or the laser beam so as to continuously form the crack region in a direction orthogonal to the optical axis of the laser beam. A first step of moving at least one of the workpieces and a second step of moving the laser beam condensing portion in the optical axis direction of the laser beam by a predetermined distance according to the size of the crack region are repeated. To be implemented.
 この態様では、第1の工程と第2の工程とを繰り返し実施することで、加工対象物の内部における分断予定面において、レーザ光入射面側とは反対側の表面から、該レーザ光の入射側の表面まで連続したクラック領域を形成することが出来る。 In this aspect, the first step and the second step are repeatedly performed, so that the laser beam is incident from the surface opposite to the laser beam incident surface side on the planned split surface inside the workpiece. A continuous crack region can be formed up to the surface on the side.
 例えば、上述したレンズユニットと、アクチュエータを備えるステージとを用いた例では、レーザ光を照射した状態で、加工対象物を移動することで、レーザ光の光軸と直交する方向にレーザ光の集光部をスキャンさせ、切断予定面内のスキャン経路上に連続的なクラック領域のラインを形成する。 For example, in the example using the lens unit described above and a stage including an actuator, the laser beam is collected in a direction orthogonal to the optical axis of the laser beam by moving the object to be processed while being irradiated with the laser beam. The optical part is scanned to form a continuous crack region line on the scanning path in the planned cutting plane.
 次に、レンズユニットは、クラック領域のサイズに応じてレーザ光の集光部を光軸方向に移動させる。このとき、好適には、レーザ光の照射条件や、加工対象物の光学的な性質等に応じて変化するクラック領域のサイズに応じて、クラック領域が連続して形成されるよう(言い換えれば、移動後のレーザ光のスキャンによって形成されるクラック領域が及ぶ範囲と、移動前のスキャンによって形成される改質領域とが少なくとも接するように)、移動距離が設定される。 Next, the lens unit moves the laser beam condensing part in the optical axis direction according to the size of the crack region. At this time, preferably, the crack region is continuously formed according to the size of the crack region that changes according to the irradiation condition of the laser light, the optical property of the workpiece, etc. (in other words, The moving distance is set so that the range covered by the crack region formed by the scan of the laser light after movement and at least the modified region formed by the scan before movement are in contact with each other.
 この態様によれば、好適に加工対象物の内部における分断予定面内において、レーザ光の入射側とは反対側の表面から、該レーザ光の入射側の表面まで連続したクラック領域を容易に得ることが出来る。このため、加工対象物の内部の分断予定面において、クラック領域が形成されない部分が残ることによる分断の不備を排除出来、また、分断後の断面の平面度を高精度とすることが出来る。 According to this aspect, it is preferable to easily obtain a continuous crack region from the surface opposite to the laser light incident side to the surface on the laser light incident side, preferably within the planned split surface inside the workpiece. I can do it. For this reason, it is possible to eliminate the deficiency of the division due to the portion where the crack region is not formed on the planned division surface inside the object to be processed, and it is possible to increase the flatness of the cross section after the division.
 尚、レーザ光のスキャン時に、レーザ光の平均出力が比較的高い照射条件である場合や、加工対象物の移動速度が比較的遅い場合等、加工時の条件によっては、加工対象物の内部に連続的な改質領域のラインが形成される場合がある。改質領域内部に更に集光部を合わせることで更なる改質領域やクラック領域の形成に繋がることが知られているが、本態様の他の条件を満たし得る限りは、改質領域が連続的に形成されていてもよい。本態様を実施する上で好ましいレーザ光の照射条件や、加工対象物の移動速度については、後に詳述する。 Depending on the processing conditions, such as when the laser beam is scanned under relatively high irradiation conditions, or when the moving speed of the workpiece is relatively slow, A continuous reforming region line may be formed. It is known that further condensing part inside the reforming region leads to the formation of further reforming region and crack region, but as long as other conditions of this embodiment can be satisfied, the reforming region is continuous. It may be formed automatically. The laser beam irradiation conditions and the moving speed of the object to be processed that are preferable in carrying out this aspect will be described in detail later.
 本発明のレーザ加工方法の実施形態の他の態様において、前記照射工程では、前記加工対象物の内部における前記レーザ光の光軸方向において、前記改質領域が10μm乃至90μmの間隔で複数形成する。 In another aspect of the embodiment of the laser processing method of the present invention, in the irradiation step, a plurality of the modified regions are formed at intervals of 10 μm to 90 μm in the optical axis direction of the laser light inside the processing object. .
 この態様によれば、加工対象物の内部におけるレーザ光の光軸方向に、連続したクラック領域を好適に形成可能な照射条件を設定出来る。このため、加工対象物の内部の分断予定面において、クラック領域が形成されない部分が残ることによる分断の不備を排除出来、また、分断後の断面の平面度を高精度とすることが出来る。 According to this aspect, it is possible to set irradiation conditions that can suitably form a continuous crack region in the optical axis direction of the laser beam inside the workpiece. For this reason, it is possible to eliminate the deficiency of the division due to the portion where the crack region is not formed on the planned division surface inside the object to be processed, and it is possible to increase the flatness of the cross section after the division.
 本発明のレーザ加工方法の実施形態の他の態様において、前記照射工程では、パルス幅が5ns乃至20ns、繰り返し周波数が15kHz乃至50kHz、平均出力が0.05W乃至0.2Wの条件を満たす条件で前記レーザ光を照射し、前記切断工程では、前記レーザ光と前記加工対象物との相対速度が5mm/s乃至300mm/sの条件で前記レーザ光の集光部が前記加工対象物の内部を前記レーザ光の光軸と直交する方向に移動するよう、前記レーザ光の集光部又は前記加工対象物の少なくとも一方を移動させる。 In another aspect of the embodiment of the laser processing method of the present invention, the irradiation step is performed under conditions that satisfy a condition that a pulse width is 5 ns to 20 ns, a repetition frequency is 15 kHz to 50 kHz, and an average output is 0.05 W to 0.2 W. Irradiating the laser beam, and in the cutting step, the laser beam condensing part is located inside the workpiece under the condition that the relative speed between the laser beam and the workpiece is 5 mm / s to 300 mm / s. At least one of the laser beam condensing unit or the workpiece is moved so as to move in a direction perpendicular to the optical axis of the laser beam.
 この態様によれば、ガラスを加工対象物とするレーザ加工に際し、パルス状のレーザ光の出射条件を適切に設定出来る。上述した加工条件では、レーザ光の出力が比較的小さいため、加工対象物内部に多光子吸収により形成される改質領域及びその周囲のクラック領域のサイズも比較的小さなものとなる。このため、加工対象物の内部であって、レーザ光の光軸方向に複数の改質領域を形成することで、分断予定面において連続したクラック領域を得ることが出来る。このため、加工対象物の内部の分断予定面において、クラック領域が形成されない部分が残ることによる分断の不備を排除出来、また、分断後の断面の平面度を高精度とすることが出来る。 According to this aspect, in laser processing using glass as a processing object, it is possible to appropriately set the emission condition of the pulsed laser beam. Under the above-described processing conditions, since the output of the laser beam is relatively small, the size of the modified region formed by multiphoton absorption inside the processing target and the surrounding crack region is also relatively small. For this reason, it is possible to obtain a continuous crack region on the planned dividing surface by forming a plurality of modified regions inside the workpiece and in the optical axis direction of the laser beam. For this reason, it is possible to eliminate the deficiency of the division due to the portion where the crack region is not formed on the planned division surface inside the object to be processed, and it is possible to increase the flatness of the cross section after the division.
 本発明のレーザ加工方法の実施形態の他の態様において、前記照射工程では、波長が355nmである前記レーザ光を照射する。 In another aspect of the embodiment of the laser processing method of the present invention, in the irradiation step, the laser beam having a wavelength of 355 nm is irradiated.
 この態様では、レーザ加工用のレーザの波長が比較的短いため、比較的小さい領域内にレーザ光の集光部を形成することが可能となる。これにより、集光部内においては、比較的小さい領域内部に多光子吸収による改質領域を形成可能となると共に、集光部以外の領域に対するレーザ光照射による発熱などの影響を軽減することが出来る。 In this aspect, since the wavelength of the laser for laser processing is relatively short, it is possible to form a laser beam condensing part in a relatively small region. As a result, a modified region by multiphoton absorption can be formed inside a relatively small region in the condensing unit, and the influence of heat generated by laser light irradiation on the region other than the condensing unit can be reduced. .
 本発明のレーザ加工方法の実施形態の他の態様において、前記加工対象物は、前記レーザ光に対して透過性を有する。 In another aspect of the embodiment of the laser processing method of the present invention, the object to be processed has transparency to the laser light.
 このため、加工対象物の内部における、レーザ光の集光部以外の領域におけるレーザ光の吸収を低減し、且つ内部の加工のための所望の深さまでレーザ光を好適に透過させることが可能となる。尚、加工対象物がレーザ光に対して透過性を有する場合であっても、レーザ光の出力が十分高い場合には、多光子吸収による改質領域の形成が生じるため、上述した加工は依然可能となる。尚、レーザ光の出力や、その他の加工対象物の光学的な性質については、指定がない限りは、この多光子吸収が十分生じる範囲内で任意に決定されてよいものである。 For this reason, it is possible to reduce the absorption of the laser beam in the region other than the laser beam condensing portion inside the processing target and to suitably transmit the laser beam to a desired depth for the internal processing. Become. Even when the object to be processed is transparent to the laser beam, if the output of the laser beam is sufficiently high, a modified region is formed by multiphoton absorption. It becomes possible. Note that the output of the laser beam and other optical properties of the workpiece may be arbitrarily determined within a range where the multiphoton absorption is sufficiently generated unless otherwise specified.
 本発明のレーザ加工方法の実施形態の他の態様において、前記加工対象物は、複数の基板を張り合わせたものである。 In another aspect of the embodiment of the laser processing method of the present invention, the object to be processed is a laminate of a plurality of substrates.
 この態様における複数の基板を張り合わせた加工対象物とは、例えばガラスや水晶等の複数枚の基板を接着剤などで張り合わせて、所謂張り合わせガラス等を示す趣旨である。レーザ加工方法の実施形態では、加工対象物のレーザ光の入射側とは反対側の表面から、該レーザ光の入射側の表面まで連続してクラック領域が形成されるため、複数の基板を張り合わせた加工対象物であっても、各基板に連続したクラック領域が形成される。このため、連続したクラック領域を分断面とした加工対象物の分断を容易に実施することが可能となる。 The object to be processed in which a plurality of substrates are bonded in this aspect is a so-called bonded glass or the like by bonding a plurality of substrates such as glass or quartz with an adhesive or the like. In the embodiment of the laser processing method, since a crack region is continuously formed from the surface opposite to the laser beam incident side of the workpiece to the laser light incident side surface, a plurality of substrates are bonded together. Even if it is a processed object, a continuous crack region is formed on each substrate. For this reason, it becomes possible to easily divide the object to be processed having a continuous crack region as a section.
 尚、上述したように波長355nm、平均出力が0.05W乃至0.2Wのレーザ光を加工に用いる場合、各基板を張り合わせる接着剤に生じる変質を抑制出来、更に好適な加工が可能となる。 As described above, when a laser beam having a wavelength of 355 nm and an average output of 0.05 W to 0.2 W is used for processing, it is possible to suppress deterioration that occurs in the adhesive that bonds the substrates, and further suitable processing is possible. .
 本発明のレーザ加工装置の実施形態は、加工対象物の内部に集光部を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成する照射手段と、前記改質領域の周囲に形成されるクラック領域が、前記加工対象物のレーザ光入射面側に対して反対側となる表面から該レーザ光入射面側の表面まで連続するよう、前記改質領域を複数形成する切断手段とを備える。 An embodiment of the laser processing apparatus of the present invention includes an irradiation unit that irradiates a laser beam with a condensing unit inside a processing target, and forms a modified region by multiphoton absorption inside the processing target; The modified region is formed such that a crack region formed around the modified region is continuous from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side. And a cutting means for forming a plurality of.
 本発明のレーザ加工装置の実施形態は、例えば、上述したレーザ加工方法を実現するための装置である。レーザ加工装置は、照射手段として、例えば、所定の条件のレーザ光を照射するレーザ光源と、該レーザ光を加工対象物の内部に集光させて集光部を形成させる集光レンズとを備える。レーザ加工装置は、切断手段として、例えば、上述するような集光レンズを駆動可能なレンズユニットと、アクチュエータが設けられるステージとを備える。 Embodiment of the laser processing apparatus of this invention is an apparatus for implement | achieving the laser processing method mentioned above, for example. The laser processing apparatus includes, as irradiation means, for example, a laser light source that irradiates laser light of a predetermined condition, and a condensing lens that condenses the laser light inside the object to be processed to form a condensing unit. . The laser processing apparatus includes, as cutting means, for example, a lens unit capable of driving a condenser lens as described above, and a stage provided with an actuator.
 尚、上述したレーザ加工方法の実施形態が取り得る各種態様に対応して、レーザ加工装置の実施形態もまた各種態様を採用してもよい。 Incidentally, in response to various aspects that the above-described embodiment of the laser processing method can take, the embodiment of the laser processing apparatus may also adopt various aspects.
 以上、説明したように、本発明のレーザ加工方法の実施形態は、集光工程と、切断工程とを備える。本発明のレーザ加工装置の実施形態は、集光手段と、切断手段とを備える。 As described above, the embodiment of the laser processing method of the present invention includes a condensing step and a cutting step. An embodiment of the laser processing apparatus of the present invention includes a light collecting means and a cutting means.
 このため、加工対象物の内部の分断予定面において、クラック領域が形成されない部分が残ることによる分断の不備を排除出来、また、分断後の断面の平面度を高精度とすることが出来る。 For this reason, it is possible to eliminate the deficiency of the division due to the portion where the crack region is not formed on the planned division surface inside the workpiece, and to make the flatness of the cross-section after the division high.
 本発明の実施例について図面を参照しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.
 (1)レーザ加工方法の実施の例
 本発明のレーザ加工方法は、加工対象物の内部に集光部を形成するようレーザ光を集光し、該集光部近傍に多光子吸収による改質領域とクラック領域を形成する。本実施例では、形成した改質領域及びクラック領域では、改質が生じていない領域と比較して脆化していることを利用し、改質領域及びクラック領域を用いて加工対象物を分断する方法について説明する。
(1) Example of implementation of laser processing method The laser processing method of the present invention condenses laser light so as to form a condensing part inside a workpiece, and modifies the condensing part by multiphoton absorption. A region and a crack region are formed. In the present embodiment, the formed modified region and the crack region are used to divide the workpiece using the modified region and the crack region by utilizing the fact that the modified region and the crack region are embrittled compared with the region where the modification is not generated. A method will be described.
 改質領域及びクラック領域を用いた加工対象物の分断の概要について図を参照して説明する。図1は、レーザ加工の対象となる加工対象物1を加工用のレーザ光L1の光軸と直交する方向に沿った断面図である。 An outline of the division of the workpiece using the modified region and the crack region will be described with reference to the drawings. FIG. 1 is a cross-sectional view taken along a direction orthogonal to the optical axis of a laser beam L1 for processing a workpiece 1 to be laser processed.
 加工対象物1は、ガラスや水晶等から成る基板などである。加工対象物1は、レーザ加工に用いるレーザ光L1を透過可能(つまり、光学的に透明)であるとともに、レーザ光L1の強度が大きい場合に多光子吸収が生じる光学的な性質を有する。 Processing object 1 is a substrate made of glass or quartz. The workpiece 1 is capable of transmitting the laser beam L1 used for laser processing (that is, optically transparent), and has an optical property that multiphoton absorption occurs when the intensity of the laser beam L1 is high.
 加工対象物1の内部にレーザ光L1の集光部F1を形成することによって、集光部F1において多光子吸収の条件を満たす場合、該集光部F1の近傍に多光子吸収による改質が生じ、改質領域Rを形成する。また、改質領域の外側には、改質に伴う内部応力の作用等によって、細かいヒビなどのクラックが生じたクラック領域Cが形成される。改質領域R及びクラック領域Cは、典型的には、互いに略相似する形状の領域であって、レーザ光L1の光軸方向を長軸とする楕円体状、該方向を軸方向とする円筒状、又は球形状となる。集光部F1近傍の光軸方向において、レーザ光L1の多光子吸収がより多く発生することに起因する。 When the condensing part F1 of the laser beam L1 is formed inside the workpiece 1 and the condition for multiphoton absorption is satisfied in the condensing part F1, modification by multiphoton absorption is performed in the vicinity of the condensing part F1. And a modified region R is formed. Further, a crack region C in which cracks such as fine cracks are generated due to the action of internal stress accompanying the modification is formed outside the modified region. The modified region R and the crack region C are typically regions that are substantially similar to each other, and are an ellipsoid having a major axis in the optical axis direction of the laser light L1, and a cylinder having the axial direction in the direction. Or spherical shape. This is because more multiphoton absorption of the laser light L1 occurs in the optical axis direction in the vicinity of the condensing part F1.
 尚、本実施例においては、レーザ光L1は、加工対象物1の内部に集光部F1を合わせて、波長355nm、パルス幅5乃至20ns、繰り返し周波数15乃至50kHz、平均出力が0.05乃至0.2Wの条件で照射される。 In the present embodiment, the laser beam L1 has a wavelength of 355 nm, a pulse width of 5 to 20 ns, a repetition frequency of 15 to 50 kHz, and an average output of 0.05 to 0.05, with the condensing unit F1 inside the workpiece 1. Irradiation is performed under the condition of 0.2W.
 レーザ光L1を照射するレーザ光源は、図3に示されるトリガ信号に応じて、パルス状のレーザ光L1を照射する。トリガ信号は、レーザ光源の制御用の制御装置等から入力される信号であって、上述する15乃至50kHzの繰り返し周波数(言い換えれば、該繰り返し周波数に基づく繰り返し周期)を有するパルス信号である。レーザ光源は、該トリガ信号の入力を受け、上述した波長、パルス幅及び平均出力の条件下でレーザ光L1を照射する。パルス幅は、レーザ光L1の1パルスの半値幅等であって、時間長の形で規定される。平均出力は、レーザ光L1の出力を、トリガ信号の繰り返し周期の1周期内で平均化したものである。 The laser light source that irradiates the laser beam L1 irradiates the pulsed laser beam L1 in accordance with the trigger signal shown in FIG. The trigger signal is a signal input from a control device or the like for controlling the laser light source, and is a pulse signal having a repetition frequency of 15 to 50 kHz described above (in other words, a repetition cycle based on the repetition frequency). The laser light source receives the trigger signal and irradiates the laser light L1 under the above-described conditions of wavelength, pulse width, and average output. The pulse width is, for example, the half width of one pulse of the laser light L1, and is defined in the form of a time length. The average output is obtained by averaging the output of the laser beam L1 within one cycle of the trigger signal repetition cycle.
 該条件下では、集光部F1において多光子吸収が生じることで改質領域R及びクラック領域Cが形成される一方で、例えば、加工対象物1のレーザ光L1の入射側の表面1aにおいては、改質やレーザ光L1の吸収による溶融等は生じない。 Under the conditions, the modified region R and the crack region C are formed by multiphoton absorption occurring in the light collecting portion F1, while the surface 1a on the incident side of the laser beam L1 of the workpiece 1 is, for example, Further, there is no modification or melting due to absorption of the laser beam L1.
 上述した条件では、平均出力が比較的低いため、形成される改質領域R及びクラック領域Cが比較的小さいものとなる。図4は、該条件下におけるレーザ光L1の光軸方向における改質領域Rの長さの例を示す表である。図4に示される表には、レーザ光L1について、波長355nm、集光に用いた集光用レンズの開口度NA0.5、集光部F1の径約900nm、平均出力0.1Wの条件下で加工対象物1の内部に集光部F1を合わせて照射した際に形成される改質領域Rのレーザ光L1の光軸方向における長さを示す。該条件下では、加工対象物1が水晶である場合に、レーザ光L1の光軸方向に20乃至60μmの長さの改質領域Rが形成され、加工対象物1がガラスである場合に、レーザ光L1の光軸方向に20乃至50μmの長さの改質領域Rが形成される。 Under the above-described conditions, since the average output is relatively low, the formed modified region R and crack region C are relatively small. FIG. 4 is a table showing an example of the length of the modified region R in the optical axis direction of the laser beam L1 under the above conditions. The table shown in FIG. 4 shows that the laser light L1 has a wavelength of 355 nm, an aperture NA of the condensing lens used for condensing NA0.5, a diameter of the condensing part F1 of about 900 nm, and an average output of 0.1 W. The length in the optical axis direction of the laser beam L1 of the modified region R formed when the processing unit 1 is irradiated with the condensing part F1 is shown. Under these conditions, when the workpiece 1 is quartz, a modified region R having a length of 20 to 60 μm is formed in the optical axis direction of the laser beam L1, and when the workpiece 1 is glass, A modified region R having a length of 20 to 50 μm is formed in the optical axis direction of the laser beam L1.
 本実施例に係るレーザ加工方法は、このような改質領域R及びクラック領域Cを分断予定面内において連続して形成することで、加工対象物1を分断するものである。図2は、加工対象物1の斜視図である。本実施例に係るレーザ加工方法は、加工対象物1に分断予定面2を仮想的に設定し、該分断予定面2に沿って改質領域R及びクラック領域Cを形成するよう、レーザ光L1の照射及び集光を行う。 The laser processing method according to the present embodiment divides the workpiece 1 by continuously forming the modified region R and the crack region C in the planned dividing surface. FIG. 2 is a perspective view of the workpiece 1. In the laser processing method according to the present embodiment, the laser beam L1 is set so that the planned division surface 2 is virtually set on the workpiece 1, and the modified region R and the crack region C are formed along the planned division surface 2. Irradiation and condensing.
 図5乃至図7を参照して、加工対象物1の加工に係る、改質領域R及びクラック領域Cを形成する際のレーザ光L1の照射及び集光の例について説明する。図5乃至図7は、レーザ加工の対象となる加工対象物1の分断予定面2(XZ平面)に沿った断面図であって、加工の手順を説明するものである。 With reference to FIG. 5 thru | or FIG. 7, the example of irradiation and condensing of the laser beam L1 at the time of forming the modification area | region R and the crack area | region C which concern on the process of the process target object 1 is demonstrated. FIG. 5 to FIG. 7 are cross-sectional views along the scheduled cutting surface 2 (XZ plane) of the workpiece 1 to be laser processed, and explain the processing procedure.
 図5に示すように、加工対象物1の表面1aに対向する表面1bから所定距離d離隔した位置に集光部F1を合わせて、波長355nm、パルス幅5乃至20ns、繰り返し周波数15乃至50kHz、平均出力が0.05乃至0.2Wの条件でレーザ光L1を照射する。 As shown in FIG. 5, the condensing part F1 is aligned at a position separated from the surface 1b facing the surface 1a of the workpiece 1 by a predetermined distance d, a wavelength of 355 nm, a pulse width of 5 to 20 ns, a repetition frequency of 15 to 50 kHz, The laser beam L1 is irradiated under the condition that the average output is 0.05 to 0.2W.
 距離dは、レーザ光L1の照射によって形成される改質領域R及びクラック領域Cの影響によって表面1bに破砕が生じない程度の距離であって、且つクラック領域Cが表面1bに到達する距離に設定される。このため、距離dは、レーザ光L1の照射条件や加工対象物1の材質(より具体的には、バンドギャップ等の光吸収に係る性質)に応じて、適宜設定されることが好ましい。尚、破砕とは、単にクラック領域が表面に到達するだけではなく、実際に表面が破砕片に分断されている状態を示す趣旨である。このように破砕が生じる場合、分断予定面2における平面度の悪化に繋がり、加工対象物1を分断した際の分断面における凹凸の原因となるため好ましくない。 The distance d is a distance at which the surface 1b is not crushed by the influence of the modified region R and the crack region C formed by the irradiation of the laser beam L1, and the distance at which the crack region C reaches the surface 1b. Is set. For this reason, it is preferable that the distance d is appropriately set according to the irradiation condition of the laser light L1 and the material of the workpiece 1 (more specifically, properties related to light absorption such as a band gap). Note that the term “crushing” means not only that the crack region reaches the surface but also a state in which the surface is actually divided into pieces. When crushing occurs in this way, it leads to deterioration of flatness in the planned dividing surface 2 and is not preferable because it causes unevenness in the divided section when the workpiece 1 is divided.
 例えば、本発明の発明者らによる実験においては、波長355nmのレーザ光L1の照射では、距離dが改質領域Rの光軸方向の大きさの0.5倍(つまり、改質領域Rの中心から一方の端部までの長さ)+15μmの場合に表面に破砕が生じることが報告されている。他方で、距離dが改質領域Rの光軸方向の大きさの0.5倍(つまり、改質領域Rの中心から一方の端部までの長さ)+20μmの場合に表面に破砕が生じず、且つクラック領域が表面にまで到達していることが報告されている。 For example, in the experiment by the inventors of the present invention, in the irradiation with the laser beam L1 having a wavelength of 355 nm, the distance d is 0.5 times the size of the modified region R in the optical axis direction (that is, the modified region R It has been reported that crushing occurs on the surface when the length from the center to one end) +15 μm. On the other hand, when the distance d is 0.5 times the size of the modified region R in the optical axis direction (that is, the length from the center of the modified region R to one end) +20 μm, the surface is crushed. In addition, it has been reported that the crack region reaches the surface.
 次に、図6(a)又は(b)に示すように、加工対象部1の内部をレーザ光L1の光軸と直交する方向にレーザ光L1をスキャンすることで、集光部F1を同方向に移動する。このとき、例えば、レーザ光L1の照射を維持した状態で、加工対象物1をスキャンを行う反対の方向(例えば、-X方向)に移動することで、レーザ光L1のスキャンを行ってもよい。尚、該スキャンは、レーザ光L1と加工対象物1との相対速度(言い換えれば、スキャン速度)が5乃至300mm/sの条件下で実施される。係るスキャンを実施するための装置構成は任意であってよく、後に一例について説明する。 Next, as shown in FIG. 6 (a) or (b), the laser beam L1 is scanned in the direction perpendicular to the optical axis of the laser beam L1 inside the object 1 to be processed. Move in the direction. At this time, for example, the laser beam L1 may be scanned by moving the workpiece 1 in the opposite direction (for example, the −X direction) in which scanning is performed while the irradiation of the laser beam L1 is maintained. . The scan is performed under the condition that the relative speed (in other words, the scan speed) between the laser beam L1 and the workpiece 1 is 5 to 300 mm / s. An apparatus configuration for performing such scanning may be arbitrary, and an example will be described later.
 このとき、レーザ光L1のスキャンは、5乃至300mm/sの速度にて実施される。例えば、上述した例では、加工対象物1をスキャンを行う反対の方向に上述した条件下で移動させる。このようなスキャンによって、集光部F1の移動経路上及びその近傍に連続的(例えば、図6(b)参照)、又は非連続的(例えば、図6(a)参照)に改質領域Rが形成される。図6(a)に示すように、以降、非連続的に形成される隣接した改質領域R間の間隔(例えば、夫々の改質領域Rの中心点同士のX軸上における距離)をdRと記述する。尚、改質領域Rが連続的に形成される場合とは、かかる間隔dRが十分小さい場合である。また、改質領域Rの近傍にクラック領域Cが連続的に形成される。好適には、クラック領域Cが分断予定面2における光軸と直交する方向の一方の端部から他方の端部に至るよう、レーザ光L1のスキャンを行う。 At this time, the laser beam L1 is scanned at a speed of 5 to 300 mm / s. For example, in the above-described example, the workpiece 1 is moved in the opposite direction in which scanning is performed under the above-described conditions. By such scanning, the modified region R can be continuously (for example, see FIG. 6B) or discontinuously (for example, see FIG. 6A) on and near the movement path of the light collecting portion F1. Is formed. As shown in FIG. 6A, hereinafter, the distance between adjacent reformed regions R formed discontinuously (for example, the distance on the X axis between the center points of the respective reformed regions R) is defined as dR. Is described. The case where the modified region R is continuously formed is a case where the distance dR is sufficiently small. Further, a crack region C is continuously formed in the vicinity of the modified region R. Preferably, the laser beam L1 is scanned so that the crack region C extends from one end portion in the direction orthogonal to the optical axis in the planned splitting surface 2 to the other end portion.
 次に、図7に示すように、レーザ光の集光部F1を所定距離pだけ光軸方向入射側(図7Z方向)に移動する。距離pは、10乃至90μmに規定される。このように集光部F1を移動することで、集光部F1を移動する前の照射により形成された改質領域Rと移動後の照射により形成される改質領域R、又は少なくとも移動前の照射により形成されたクラック領域Cと移動後の照射により形成されたクラック領域Cとが連続する。 Next, as shown in FIG. 7, the laser beam condensing part F <b> 1 is moved to the optical axis direction incident side (Z direction in FIG. 7) by a predetermined distance p. The distance p is defined as 10 to 90 μm. By moving the condensing unit F1 in this way, the modified region R formed by irradiation before moving the condensing unit F1 and the modified region R formed by irradiation after moving, or at least before moving The crack region C formed by the irradiation and the crack region C formed by the irradiation after the movement are continuous.
 その後、集光部F1の光軸方向の位置(言い換えれば、加工対象物1内の深さ)を維持した状態で、図6(a)又は(b)に示すスキャンを行う。 Thereafter, the scan shown in FIG. 6A or 6B is performed in a state where the position of the light collecting portion F1 in the optical axis direction (in other words, the depth in the workpiece 1) is maintained.
 分断予定面2に沿って、図6及び図7に示すように連続したクラック領域Cを形成した後に、図8に示すように、加工対象物1のレーザ光L1の入射側の表面1aから前述の距離d離隔した位置に集光部F1を合わせて、レーザ光L1のスキャンを行う。このスキャンにより、分断予定面2に沿って連続的に形成されるクラック領域Cが表面1bから表面1aにまで到達する。表面1aから前述の距離d離隔した位置でのスキャンを終了した後に、分断予定面2に対するレーザ光L1の照射を終了する。尚、このとき、スキャン位置は必ずしも距離dでなくともよく、好適には、上述した破砕が生じない程度であれば、距離dよりも短い距離であってもよい。 After forming the continuous crack region C as shown in FIGS. 6 and 7 along the planned cutting surface 2, as shown in FIG. 8, the surface 1a on the incident side of the laser beam L1 of the workpiece 1 is described above. The laser beam L1 is scanned by aligning the condensing unit F1 at positions separated by a distance d. By this scanning, a crack region C continuously formed along the planned dividing surface 2 reaches from the surface 1b to the surface 1a. After the scan at the position separated from the surface 1a by the distance d is completed, the irradiation of the laser beam L1 on the planned split surface 2 is completed. At this time, the scan position does not necessarily have to be the distance d, and may preferably be a distance shorter than the distance d as long as the above-described crushing does not occur.
 以上、説明したレーザ加工方法における動作の流れを図9のフローチャートにまとめる。実施例に係るレーザ加工方法では、加工開始時に、加工対象物1の材質等に合わせて、上述した範囲内において加工条件を設定する(ステップS101)。具体的には、レーザ光L1の照射条件について、パルス幅を5乃至20ns、繰り返し周波数を15乃至50kHz、平均出力を0.05乃至0.2Wの範囲内で決定する。また、このとき、最初にレーザ光L1を集光させる際の表面1bからの集光部F1の距離d、スキャン後の集光部F1の移動距離p、スキャン時のレーザ光L1と加工対象物1との相対速度であるスキャン速度を決定する。具体的には、加工対象物1の材質や光軸方向の厚み、レーザ光L1の照射によって形成される改質領域R及びクラック領域Cの大きさ等に応じて、距離dを決定し、距離pを10乃至90μmの範囲から決定する。また、スキャン時のレーザ光L1と加工対象物1との相対速度を5乃至300mm/sの範囲内で決定する。 The flow of operations in the laser processing method described above is summarized in the flowchart of FIG. In the laser processing method according to the embodiment, at the start of processing, processing conditions are set within the above-described range in accordance with the material or the like of the processing object 1 (step S101). Specifically, with respect to the irradiation condition of the laser beam L1, the pulse width is determined within the range of 5 to 20 ns, the repetition frequency is 15 to 50 kHz, and the average output is within the range of 0.05 to 0.2 W. At this time, the distance d of the condensing portion F1 from the surface 1b when condensing the laser light L1 for the first time, the moving distance p of the condensing portion F1 after scanning, the laser light L1 during scanning and the object to be processed A scanning speed that is relative to 1 is determined. Specifically, the distance d is determined according to the material of the workpiece 1, the thickness in the optical axis direction, the size of the modified region R and the crack region C formed by irradiation with the laser light L 1, and the like. p is determined from the range of 10 to 90 μm. Further, the relative speed between the laser beam L1 and the workpiece 1 during scanning is determined within a range of 5 to 300 mm / s.
 続いて、ステップS101で設定された条件下で照射されるレーザ光L1を集光レンズ等を用いて、加工対象物1のレーザ光L1入射側とは反対側の表面1bから距離dの位置に集光する(ステップS102)。そして、光軸と直交する方向に加工対象物1を移動させること等により、レーザ光L1をスキャンさせる(ステップS103)。スキャン終了後に、レーザ光L1の集光部F1を、集光レンズを移動させること等により、光軸方向であって表面1a方向に距離p移動する(ステップS104)。ステップS103とステップS104の工程を、集光部F1が加工対象物1の表面1aから距離d又はそれ以内となるまで繰り返し実行する。集光部F1が加工対象物1の表面1aから距離d又はそれ以内となる場合(ステップS105:Yes)、該位置でのレーザ光L1のスキャン実行後に加工動作を終了する(ステップS106)。 Subsequently, the laser beam L1 irradiated under the conditions set in step S101 is placed at a distance d from the surface 1b opposite to the laser beam L1 incident side of the workpiece 1 using a condenser lens or the like. Condensing light (step S102). Then, the laser beam L1 is scanned by moving the workpiece 1 in a direction orthogonal to the optical axis (step S103). After the scan is completed, the condensing part F1 of the laser light L1 is moved by a distance p in the optical axis direction and in the surface 1a direction by moving the condensing lens (step S104). Steps S <b> 103 and S <b> 104 are repeated until the condensing unit F <b> 1 is at a distance d or less from the surface 1 a of the workpiece 1. When the condensing unit F1 is at or below the distance d from the surface 1a of the workpiece 1 (step S105: Yes), the machining operation is terminated after the laser beam L1 is scanned at the position (step S106).
 以上、説明したレーザ光の照射による加工対象物の加工によれば、加工対象物1の内部の分断予定面2に沿って、表面1bから表面1aまでクラック領域が連続して形成される。このように連続するクラック領域のため、例えば割断などの工程を加えることなく、一般的なレーザダイシング法において割断工程後に実施される加工対象物の分離工程を行うことで、加工対象物の分断が可能となる。クラック領域が連続して形成される分断予定面内部には、小さな傷やヒビが表面1aから1bまで連続しているため、大きな力を加えることなく容易に分離可能だからである。 As described above, according to the processing of the object to be processed by the laser light irradiation described above, the crack region is continuously formed from the surface 1b to the surface 1a along the planned dividing surface 2 inside the object 1 to be processed. Because of such a continuous crack region, for example, without performing a process such as cleaving, by performing a process for separating the processing object performed after the cleaving process in a general laser dicing method, the processing object can be divided. It becomes possible. This is because small scratches and cracks are continuous from the surface 1a to 1b inside the planned split surface where the crack region is continuously formed, and therefore can be easily separated without applying a large force.
 また、上述したレーザ光の照射条件及び加工条件では、比較的小さいクラック領域が連続して形成されるため、加工対象物の内部において、分断予定面に直交する方向に及ぶクラック領域のサイズも比較的小さなものとなる。従って、分断予定面に沿って分離を行う際に、分断面の平面度を比較的高精度に維持した状態で、分断面を制御可能となる。例えば、ガラスや水晶等に対しては、20μm程度、複数の基板を接着剤で張り合わせた張り合わせガラスに対しては50μm程度の平面度を実現出来る。このような高精度の断面を得ることが出来るため、分断後の断面の研磨等についても省略可能となる場合もある。 In addition, since the relatively small crack region is continuously formed under the laser light irradiation conditions and the processing conditions described above, the size of the crack region extending in the direction perpendicular to the planned cutting surface is also compared inside the object to be processed. Small. Therefore, when the separation is performed along the planned dividing surface, the dividing surface can be controlled while maintaining the flatness of the dividing surface with relatively high accuracy. For example, a flatness of about 20 μm can be realized for glass, quartz, etc., and a flatness of about 50 μm can be realized for a laminated glass obtained by bonding a plurality of substrates with an adhesive. Since such a highly accurate cross section can be obtained, the polishing of the cross section after the division may be omitted.
 例えば、ガラスや水晶等の複数の基板を接着剤で貼り合わせた、貼り合わせガラス等を加工対象物1とする場合にも同様に効果が得られる。また、本実施例で説明した加工条件では、貼り合わせガラスの接着剤に対するレーザ光L1の影響を抑制出来、更に、355nmのレーザ光の吸収が少ないこともあって、接着剤の変質を抑制出来る。一般に、従来技術において、上記のような貼り合わせガラスを切断しようとした場合に、接着剤の部分が、レーザ光により変質してしまい、影響が大であった。 For example, the same effect can be obtained when a laminated glass or the like obtained by bonding a plurality of substrates such as glass or crystal with an adhesive is used as the workpiece 1. Further, under the processing conditions described in the present embodiment, the influence of the laser light L1 on the adhesive of the laminated glass can be suppressed, and further, the deterioration of the adhesive can be suppressed because there is little absorption of the 355 nm laser light. . Generally, in the prior art, when trying to cut the laminated glass as described above, the portion of the adhesive is altered by the laser beam, and the influence is great.
 また、レーザ光L1の波長が、比較的短いため、集光部F1において多光子吸収を生じさせるためにレーザ光L1を集光するための集光レンズの開口数が比較的小さくなる。このため、加工対象物1の分断予定面における光軸と直交する方向で、光軸と平行な端部において、レーザ光L1の光路が加工対象物1の端部より外側を通ることを好適に抑制出来る。このため、加工対象物1の分断予定面における光軸と直交する方向で、光軸と平行な端部においても、一方の端部から他方の端部まで連続してクラック領域Cを形成することが可能となる、好適には、分断予定面2の全面に亘ってクラック領域Cを形成可能となる。これにより、更に分断が容易となる、又、分断後の断面の平面度の向上を図ることが出来る。 In addition, since the wavelength of the laser beam L1 is relatively short, the numerical aperture of the condensing lens for condensing the laser beam L1 to cause multiphoton absorption in the condensing unit F1 is relatively small. For this reason, it is preferable that the optical path of the laser beam L1 passes outside the end of the workpiece 1 in an end portion parallel to the optical axis in a direction perpendicular to the optical axis on the planned cutting surface of the workpiece 1. Can be suppressed. For this reason, the crack region C is continuously formed from one end portion to the other end portion even in the end portion parallel to the optical axis in the direction perpendicular to the optical axis on the planned cutting surface of the workpiece 1. Preferably, the crack region C can be formed over the entire parting planned surface 2. Thereby, division | segmentation becomes still easier and the improvement of the flatness of the cross section after division | segmentation can be aimed at.
 (2)加工条件及び効果
 上述したレーザ光L1の照射条件及び加工時のスキャン速度等の加工条件について、本発明の発明者によって実施された実験結果を説明する。尚、以下の結果については、分断予定面2に沿って加工対象物1を分断した後に、断面の平面度が良好であるものについて良好な加工として分類している。尚、良好な加工であると判断する断面の平面度は、例えば、加工対象物1が単板のガラスから成るものについては20μm、複数のガラスや水晶等の基板を張り合わせたものについては50μmとしている。
(2) Processing Conditions and Effects Results of experiments performed by the inventors of the present invention will be described with respect to the above-described irradiation conditions of the laser beam L1 and processing conditions such as the scanning speed during processing. In addition, about the following results, after dividing the process target object 1 along the division parting surface 2, what has a favorable cross-section flatness is classify | categorized as a favorable process. The flatness of the cross section judged to be good processing is, for example, 20 μm when the workpiece 1 is made of a single plate glass, and 50 μm when a plurality of substrates such as glass or quartz are laminated. Yes.
 レーザ光L1のパルス幅について、5.0ns、6.0ns、7.0ns、12.0ns、14.0ns、20.0nsの各条件下では良好な加工が観察される一方で、パルス幅が22.0ns、24.0nsの20.0nsを越える領域では良好な加工は観察されなかった。 Regarding the pulse width of the laser beam L1, good processing is observed under the conditions of 5.0 ns, 6.0 ns, 7.0 ns, 12.0 ns, 14.0 ns, and 20.0 ns, while the pulse width is 22 Good processing was not observed in the region exceeding 20.0 ns of 0.0 ns and 24.0 ns.
 また、上述のように設定されたレーザ光の波長及びパルス幅の条件下では、レーザ光L1の繰り返し周波数と、スキャン速度によって、スキャンにより形成される改質領域Rの間隔dRが変化する。このときの改質領域Rの間隔dRに応じて、分断した後の分断面の平面度に影響が及ぶ。かかる影響について、上述のものと同様に良好な加工が観察される場合についての、発明者らの実験の結果について説明する。尚、一般的に、形成される改質領域Rの間隔dRに対して、dR(μm)=スキャン速度(mm/s)/繰り返し周波数(kHz)の関係が成立する。 Further, under the conditions of the wavelength and pulse width of the laser beam set as described above, the interval dR between the modified regions R formed by scanning varies depending on the repetition frequency of the laser beam L1 and the scan speed. Depending on the distance dR of the modified region R at this time, the flatness of the divided section after the division is affected. About this influence, the result of experiment of the inventors about the case where favorable processing is observed like the above-mentioned thing is demonstrated. In general, the relationship dR (μm) = scanning speed (mm / s) / repetition frequency (kHz) is established with respect to the interval dR between the modified regions R to be formed.
 繰り返し周波数15kHzの場合、スキャン速度10mm/sの場合では、間隔dRは0.7μmとなり、スキャン速度100mm/sの場合では、間隔dRは6.7μmとなり、スキャン速度200mm/sの場合では、間隔dRは13.3μmとなり、いずれの場合も良好な加工が観察された。スキャン速度300mm/sの場合では、間隔dRは20.0μmとなり、良好な結果は観察されなかった。 When the repetition frequency is 15 kHz, the interval dR is 0.7 μm when the scanning speed is 10 mm / s, the interval dR is 6.7 μm when the scanning speed is 100 mm / s, and the interval is when the scanning speed is 200 mm / s. dR was 13.3 μm, and good processing was observed in all cases. When the scanning speed was 300 mm / s, the interval dR was 20.0 μm, and good results were not observed.
 繰り返し周波数20kHzの場合、スキャン速度5mm/sの場合では、間隔dRは0.3μmとなり、スキャン速度100mm/sの場合では、間隔dRは5.0μmとなり、いずれの場合も良好な加工が観察された。 When the repetition frequency is 20 kHz, the spacing dR is 0.3 μm when the scanning speed is 5 mm / s, and the spacing dR is 5.0 μm when the scanning speed is 100 mm / s, and good processing is observed in both cases. It was.
 繰り返し周波数30kHzの場合、スキャン速度300mm/sの場合では、間隔dRは10.7μmとなり、良好な加工が観察された。スキャン速度400mm/sの場合では、間隔dRは13.3μmとなり、良好な結果は観察されなかった。 When the repetition frequency was 30 kHz, when the scanning speed was 300 mm / s, the interval dR was 10.7 μm, and good processing was observed. When the scanning speed was 400 mm / s, the distance dR was 13.3 μm, and good results were not observed.
 繰り返し周波数35kHzの場合、スキャン速度100mm/sの場合では、間隔dRは2.9μmとなり、良好な加工が観察された。 When the repetition frequency was 35 kHz, when the scanning speed was 100 mm / s, the interval dR was 2.9 μm, and good processing was observed.
 繰り返し周波数50kHzの場合、スキャン速度100mm/sの場合では、間隔dRは2.0μmとなり、スキャン速度200mm/sの場合では、間隔dRは4.0μmとなり、いずれの場合も良好な加工が観察された。 When the repetition frequency is 50 kHz, the spacing dR is 2.0 μm when the scanning speed is 100 mm / s, and the spacing dR is 4.0 μm when the scanning speed is 200 mm / s, and good processing is observed in both cases. It was.
 以上の結果から、形成される改質領域Rの間隔dRが13.3μm程度までは良好な加工が観察され、それを越える領域では良好な加工が観察されない。このため、上述したように繰り返し周波とスキャン速度とを規定の範囲内で夫々選択することで、良好な加工を実現することが出来る。 From the above results, good processing is observed until the distance dR between the modified regions R to be formed is about 13.3 μm, and good processing is not observed in the region beyond that. For this reason, it is possible to realize good processing by selecting the repetition frequency and the scanning speed within the specified ranges as described above.
 (3)レーザ加工装置の構成例
 上述した実施例のレーザ加工方法を実施するためのレーザ加工装置の一例について、図を参照してその構成を説明する。図10は、レーザ加工装置3の装置構成を示す図である。
(3) Configuration Example of Laser Processing Apparatus An example of a laser processing apparatus for implementing the laser processing method of the above-described embodiment will be described with reference to the drawings. FIG. 10 is a diagram showing a device configuration of the laser processing device 3.
 図10に示されるように、レーザ加工装置3は、制御部10と、レーザ電源11と、レーザ光源12と、ミラー13と、1/2波長板14と、ミラー15と、ビームエキスパンダ16と、ビームコンバイナ17と、レンズブロック18と、集光レンズ19とを備える。また、レーザ加工装置3は、ガイド用のレーザダイオード(LD)21と、ガイド用光学系22とを備える。 As shown in FIG. 10, the laser processing apparatus 3 includes a control unit 10, a laser power source 11, a laser light source 12, a mirror 13, a half-wave plate 14, a mirror 15, and a beam expander 16. A beam combiner 17, a lens block 18, and a condenser lens 19. The laser processing apparatus 3 includes a guide laser diode (LD) 21 and a guide optical system 22.
 制御部10は、本発明の制御手段の一例であって、レーザ加工装置3の各部の動作を制御するCPU等を含む。制御部10は、パルス状であり、所定の繰り返し周波数、平均出力、パルスピーク出力等の出射条件を満たすレーザ光L1を出射するようレーザ電源11及びレーザ光源12の動作を制御する。また、制御部10は、レーザ光L1の出射による加工対象物1の加工に伴って、レーザ光L1の集光部F1の位置を変更するよう、レンズブロック18の動作を制御する。また、制御部10は、レーザ光L1の出射に伴って、加工対象物1を載置するステージ40をレーザ光L1の光軸方向に直交する面内等において移動させる制御を行う。 The control unit 10 is an example of a control unit of the present invention, and includes a CPU that controls the operation of each unit of the laser processing apparatus 3. The control unit 10 controls the operations of the laser power source 11 and the laser light source 12 so as to emit laser light L1 that is pulse-like and satisfies emission conditions such as a predetermined repetition frequency, average output, and pulse peak output. Moreover, the control part 10 controls operation | movement of the lens block 18 so that the position of the condensing part F1 of the laser beam L1 may be changed with the process of the workpiece 1 by emission of the laser beam L1. Moreover, the control part 10 performs control which moves the stage 40 which mounts the workpiece 1 in the surface orthogonal to the optical axis direction of the laser beam L1, etc. with the emission of the laser beam L1.
 レーザ電源11は、レーザ光源12を駆動させるための電力を供給する電源と、パルス制御装置とを備え、例えばユーザによる指示の入力を受けて、所望の態様でレーザ光源に対して電流の供給を行い、駆動させる。 The laser power source 11 includes a power source for supplying power for driving the laser light source 12 and a pulse control device. For example, the laser power source 11 receives an instruction input by a user and supplies current to the laser light source in a desired manner. Do and drive.
 レーザ光源12は、レーザ発生部、結晶素子、位相変調器及び共振器等を備え、レーザ電源11から供給される電流に応じてレーザ光L1を発生させ、ミラー13方向へ出射する。レーザ光源12は、パルス制御及び出力制御に優れる光源であることが好ましい。 The laser light source 12 includes a laser generator, a crystal element, a phase modulator, a resonator, and the like, generates a laser beam L1 according to a current supplied from the laser power source 11, and emits the laser beam L1 toward the mirror 13. The laser light source 12 is preferably a light source excellent in pulse control and output control.
 レーザ光源12より出射されるレーザ光L1は、ミラー13を介して1/2波長版14において位相差又は、偏光状態を調整された後、ミラー15を介してビームエキスパンダ16に入射する。 The laser light L 1 emitted from the laser light source 12 is adjusted in phase difference or polarization state in the half-wavelength plate 14 through the mirror 13 and then enters the beam expander 16 through the mirror 15.
 ビームエキスパンダ16は、平行光の態様で入射するレーザ光L1のビーム径を拡大する機構である。具体的には、ビームエキスパンダ16は、後述する集光レンズ19による集光と併せて、レーザ光L1の加工対象物1における集光部F1のビーム径が所定の範囲内となるよう調整する。ビームエキスパンダ16によるビーム径の拡大比率等は、後述する集光レンズ19の開口度等に応じて設定される。 The beam expander 16 is a mechanism that expands the beam diameter of the laser light L1 that is incident in the form of parallel light. Specifically, the beam expander 16 adjusts so that the beam diameter of the condensing part F1 in the processing target 1 of the laser light L1 is within a predetermined range, together with condensing by the condensing lens 19 described later. . The expansion ratio of the beam diameter by the beam expander 16 is set according to the aperture of the condenser lens 19 described later.
 ビームコンバイナ17は、レーザ光L1を透過させ、一方でガイド用のレーザ光L2を反射させることで、両者を同一の光路上に合成するハーフミラー等である。 The beam combiner 17 is a half mirror or the like that combines the laser beam L1 on the same optical path by transmitting the laser beam L1 and reflecting the laser beam L2 for guide.
 ガイド用のレーザ光L2は、ガイド用のLD21により出射されるレーザ光であり、ビームコンバイナ17によってレーザ光L1と同一の光路上に組み込まれ集光レンズ19により加工対象物1上に集光される距離測定、又はサーボ駆動用のレーザ光である。レーザ光L2の光路上には、ビーム成形用のレンズ、集光レンズ又はシリンドリカルレンズ等、用途に応じたガイド用光学系22が配置される。 The guide laser beam L2 is a laser beam emitted from the guide LD 21, and is incorporated in the same optical path as the laser beam L1 by the beam combiner 17, and is condensed on the workpiece 1 by the condenser lens 19. Laser light for distance measurement or servo drive. On the optical path of the laser beam L2, a guide optical system 22 corresponding to the application, such as a beam shaping lens, a condensing lens, or a cylindrical lens, is disposed.
 レンズブロック18は、集光レンズ19を保持するレンズユニットであり、集光レンズ19をレーザ光L1の光軸方向に移動させるスライド機構等を有する。 The lens block 18 is a lens unit that holds the condenser lens 19 and includes a slide mechanism that moves the condenser lens 19 in the optical axis direction of the laser light L1.
 集光レンズ19は、主にレーザ光L1を加工対象物1の表面又は内部に集光し、典型的には、焦点位置に集光部F1を形成するレンズである。集光レンズ19の開口度は、集光部F1のビーム径に合わせて設定されることが好ましい。レンズブロック18は、例えば、制御部10からの制御信号に応じて集光レンズ19をレーザ光L1の光軸方向に移動させることで、加工対象物1の表面又は内部の所望の位置に集光部F1を移動する。 The condensing lens 19 is a lens that mainly condenses the laser light L1 on the surface or inside of the workpiece 1 and typically forms a condensing part F1 at the focal position. The aperture of the condenser lens 19 is preferably set in accordance with the beam diameter of the condenser part F1. For example, the lens block 18 moves the condensing lens 19 in the optical axis direction of the laser light L1 in accordance with a control signal from the control unit 10, thereby condensing the lens block 18 at a desired position on the surface of the workpiece 1 or inside. Move part F1.
 ステージ40は、加工対象物1を載置する載置台である。また、ステージ40は、レーザ光L1の光軸方向に対して直行する面内等において加工対象物1を移動可能な機構を備えていてもよい。このような機構を備える場合、ステージ40は、制御部10から供給される制御信号に応じた速度で加工対象物1を移動させることで、加工対象物1をレーザ光L1の集光部F1に対して相対的に移動させることが出来る。尚、レーザ加工装置3は、その他の加工対象物1とレーザ光L1の集光部F1とを相対的に移動可能な機構を備えていてもよい。 The stage 40 is a mounting table on which the workpiece 1 is mounted. Further, the stage 40 may include a mechanism capable of moving the workpiece 1 in a plane orthogonal to the optical axis direction of the laser light L1. In the case of including such a mechanism, the stage 40 moves the workpiece 1 at a speed according to the control signal supplied from the controller 10, thereby moving the workpiece 1 to the condensing unit F <b> 1 for the laser light L <b> 1. It is possible to move relative to it. In addition, the laser processing apparatus 3 may be provided with the mechanism which can move relatively the other workpiece 1 and the condensing part F1 of the laser beam L1.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うレーザ加工方法及び装置等もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and a laser processing method involving such changes Also, devices and the like are also included in the technical scope of the present invention.
 C クラック領域、
 R 改質領域、
 1 加工対象物
 2 分断予定面
 3 レーザ加工装置、
 10 制御部、
 11 レーザ電源
 12 レーザ光源、
 13、15 ミラー、
 14 1/2波長板、
 16 ビームエキスパンダ、
 17 ビームコンバイナ、
 18 レンズブロック、
 19 集光レンズ、
 40 ステージ、
 50 加工対象物、
 L1 (加工用)レーザ光、
 L2 (ガイド用)レーザ光。
C crack region,
R reforming region,
1 Processing object 2 Planned cutting surface 3 Laser processing equipment,
10 control unit,
11 Laser power source 12 Laser light source,
13, 15 mirror,
14 1/2 wavelength plate,
16 beam expander,
17 Beam combiner,
18 Lens block,
19 Condensing lens,
40 stages,
50 processing object,
L1 (for processing) laser light,
L2 (for guide) laser light.

Claims (8)

  1.  加工対象物の内部に集光部を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成する照射工程と、
     前記改質領域の周囲に形成されるクラック領域が、前記加工対象物のレーザ光入射面側に対して反対側となる表面から該レーザ光入射面側の表面まで連続するよう、前記改質領域を複数形成する切断工程と
     を備えることを特徴とするレーザ加工方法。
    An irradiation step of irradiating a laser beam with a condensing part inside the object to be processed, and forming a modified region by multiphoton absorption inside the object to be processed,
    The modified region is formed such that a crack region formed around the modified region is continuous from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side. And a cutting step of forming a plurality of the laser processing method.
  2.  前記切断工程では、
     前記レーザ光の光軸と直交する方向において連続して前記クラック領域を形成するよう前記レーザ光の集光部又は前記加工対象物の少なくとも一方を移動する第1の工程と、
     前記レーザ光の集光部を前記レーザ光の光軸方向に前記クラック領域のサイズに応じた所定距離移動する第2の工程と
     が繰り返し実施されることを特徴とする請求項1に記載のレーザ加工方法。
    In the cutting step,
    A first step of moving at least one of the condensing portion of the laser light or the processing object so as to continuously form the crack region in a direction orthogonal to the optical axis of the laser light;
    2. The laser according to claim 1, wherein the second step of moving the laser beam condensing unit by a predetermined distance according to the size of the crack region in the optical axis direction of the laser beam is repeatedly performed. Processing method.
  3.  前記照射工程では、前記加工対象物の内部における前記レーザ光の光軸方向において、前記改質領域が10μm乃至90μmの間隔で複数形成することを特徴とする請求項1又は2に記載のレーザ加工方法。 3. The laser processing according to claim 1, wherein, in the irradiation step, a plurality of the modified regions are formed at intervals of 10 μm to 90 μm in the optical axis direction of the laser light inside the workpiece. Method.
  4.  前記照射工程では、パルス幅が5ns乃至20ns、繰り返し周波数が15kHz乃至50kHz、平均出力が0.05W乃至0.2Wの条件を満たす条件で前記レーザ光を照射し、
     前記切断工程では、前記レーザ光と前記加工対象物との相対速度が5mm/s乃至300mm/sの条件で前記レーザ光の集光部が前記加工対象物の内部を前記レーザ光の光軸と直交する方向に移動するよう、前記レーザ光の集光部又は前記加工対象物の少なくとも一方を移動させることを特徴とする請求項1から3のいずれか一項に記載のレーザ加工方法。
    In the irradiation step, the laser beam is irradiated under the conditions that the pulse width is 5 ns to 20 ns, the repetition frequency is 15 kHz to 50 kHz, and the average output is 0.05 W to 0.2 W.
    In the cutting step, the laser beam condensing unit moves the inside of the workpiece to the optical axis of the laser beam under the condition that the relative speed between the laser beam and the workpiece is 5 mm / s to 300 mm / s. 4. The laser processing method according to claim 1, wherein at least one of the laser beam condensing unit or the processing target is moved so as to move in an orthogonal direction. 5.
  5.  前記照射工程では、波長が355nmである前記レーザ光を照射することを特徴とする請求項1から4のいずれか一項に記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 4, wherein in the irradiation step, the laser beam having a wavelength of 355 nm is irradiated.
  6.  前記加工対象物は、前記レーザ光に対して透過性を有することを特徴とする請求項1から5のいずれか一項に記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 5, wherein the object to be processed has transparency to the laser light.
  7.  前記加工対象物は、複数の基板を張り合わせたものであることを特徴とする請求項1から6のいずれか一項に記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 6, wherein the object to be processed is a laminate of a plurality of substrates.
  8.  加工対象物の内部に集光部を合わせてレーザ光を照射し、前記加工対象物の内部に多光子吸収による改質領域を形成する照射手段と、
     前記改質領域の周囲に形成されるクラック領域が、前記加工対象物のレーザ光入射面側に対して反対側となる表面から該レーザ光入射面側の表面まで連続するよう、前記改質領域を複数形成する切断手段と
     を備えることを特徴とするレーザ加工装置。
    An irradiation unit that irradiates a laser beam with a condensing part inside the processing target, and forms a modified region by multiphoton absorption inside the processing target;
    The modified region is formed such that a crack region formed around the modified region is continuous from the surface opposite to the laser light incident surface side of the workpiece to the surface on the laser light incident surface side. And a cutting means for forming a plurality of laser processing devices.
PCT/JP2010/070130 2010-11-11 2010-11-11 Laser processing method and device WO2012063348A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011543744A JPWO2012063348A1 (en) 2010-11-11 2010-11-11 Laser processing method and apparatus
PCT/JP2010/070130 WO2012063348A1 (en) 2010-11-11 2010-11-11 Laser processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070130 WO2012063348A1 (en) 2010-11-11 2010-11-11 Laser processing method and device

Publications (1)

Publication Number Publication Date
WO2012063348A1 true WO2012063348A1 (en) 2012-05-18

Family

ID=46050529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070130 WO2012063348A1 (en) 2010-11-11 2010-11-11 Laser processing method and device

Country Status (2)

Country Link
JP (1) JPWO2012063348A1 (en)
WO (1) WO2012063348A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814591A (en) * 2012-05-23 2012-12-12 苏州德龙激光有限公司 Laser processing method and laser processing equipment
WO2013039012A1 (en) * 2011-09-16 2013-03-21 浜松ホトニクス株式会社 Laser machining method and laser machining device
WO2017068819A1 (en) * 2015-10-20 2017-04-27 日本電気硝子株式会社 Method for cutting and device for cutting tube glass, and method for manufacturing tube glass product
WO2017073118A1 (en) * 2015-10-30 2017-05-04 日本電気硝子株式会社 Method and device for cutting tubular glass, and method for manufacturing tubular glass
CN108028189A (en) * 2015-09-29 2018-05-11 浜松光子学株式会社 Laser processing
JP2019046862A (en) * 2017-08-30 2019-03-22 日亜化学工業株式会社 Method for manufacturing light-emitting element
JP2020010051A (en) * 2019-08-28 2020-01-16 日亜化学工業株式会社 Method for manufacturing light-emitting element
WO2021100477A1 (en) * 2019-11-21 2021-05-27 Agc株式会社 Glass sheet processing method and glass sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283871A (en) * 2003-03-24 2004-10-14 Nitto Denko Corp Method for manufacturing plastic structural body having micropore part and plastic structural body having micropore part made by the same method
JP2006147817A (en) * 2004-11-19 2006-06-08 Canon Inc Laser processing equipment and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (en) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
JP2005179154A (en) * 2003-12-22 2005-07-07 Shibuya Kogyo Co Ltd Method and apparatus for fracturing brittle material
JP2006245043A (en) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Method of manufacturing group iii nitride-based compound semiconductor element, and light emitting element
JP2009124035A (en) * 2007-11-16 2009-06-04 Tokyo Seimitsu Co Ltd Laser beam machine and laser beam machining method
JP2009152288A (en) * 2007-12-19 2009-07-09 Tokyo Seimitsu Co Ltd Laser dicing apparatus and dicing method
JP5098665B2 (en) * 2008-01-23 2012-12-12 株式会社東京精密 Laser processing apparatus and laser processing method
JP2009190943A (en) * 2008-02-15 2009-08-27 Seiko Epson Corp Separating device of substrate, separating method of substrate and substrate manufactured by using the method
JP2010110818A (en) * 2008-10-09 2010-05-20 Seiko Epson Corp Workpiece splitting method and object producing method
KR101757937B1 (en) * 2009-02-09 2017-07-13 하마마츠 포토닉스 가부시키가이샤 Workpiece cutting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283871A (en) * 2003-03-24 2004-10-14 Nitto Denko Corp Method for manufacturing plastic structural body having micropore part and plastic structural body having micropore part made by the same method
JP2006147817A (en) * 2004-11-19 2006-06-08 Canon Inc Laser processing equipment and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039012A1 (en) * 2011-09-16 2013-03-21 浜松ホトニクス株式会社 Laser machining method and laser machining device
CN102814591A (en) * 2012-05-23 2012-12-12 苏州德龙激光有限公司 Laser processing method and laser processing equipment
CN108028189A (en) * 2015-09-29 2018-05-11 浜松光子学株式会社 Laser processing
CN108028189B (en) * 2015-09-29 2022-06-24 浜松光子学株式会社 Laser processing method
JP2017077991A (en) * 2015-10-20 2017-04-27 日本電気硝子株式会社 Tube glass cutting method and cutting device, and method for producing tube glass product
WO2017068819A1 (en) * 2015-10-20 2017-04-27 日本電気硝子株式会社 Method for cutting and device for cutting tube glass, and method for manufacturing tube glass product
JP2017081804A (en) * 2015-10-30 2017-05-18 日本電気硝子株式会社 Method and device for cutting glass tube, and method for manufacturing glass tube product
WO2017073118A1 (en) * 2015-10-30 2017-05-04 日本電気硝子株式会社 Method and device for cutting tubular glass, and method for manufacturing tubular glass
JP2019046862A (en) * 2017-08-30 2019-03-22 日亜化学工業株式会社 Method for manufacturing light-emitting element
US10644193B2 (en) 2017-08-30 2020-05-05 Nichia Corporation Method of manufacturing light-emitting element
US10804427B2 (en) 2017-08-30 2020-10-13 Nichia Corporation Method of manufacturing light-emitting element
JP2020010051A (en) * 2019-08-28 2020-01-16 日亜化学工業株式会社 Method for manufacturing light-emitting element
WO2021100477A1 (en) * 2019-11-21 2021-05-27 Agc株式会社 Glass sheet processing method and glass sheet
CN114728832A (en) * 2019-11-21 2022-07-08 Agc株式会社 Glass plate processing method and glass plate

Also Published As

Publication number Publication date
JPWO2012063348A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2012063348A1 (en) Laser processing method and device
KR102354665B1 (en) Wafer producing method
KR101770836B1 (en) Laser machining device and laser machining method
CN109641315B (en) Multi-zone focusing lens and laser processing system for wafer dicing or cutting
JP6422033B2 (en) Laser-based machining method and apparatus for sheet-like substrates using laser beam focal lines
US10074565B2 (en) Method of laser processing for substrate cleaving or dicing through forming “spike-like” shaped damage structures
JP5379384B2 (en) Laser processing method and apparatus for transparent substrate
JP5910075B2 (en) Workpiece processing method
JP2015519722A (en) Laser scribing with high depth action in the workpiece
WO2010116917A1 (en) Laser machining device and laser machining method
KR101426598B1 (en) Laser dicing method
JP2004528991A5 (en)
JP2005132694A (en) Glass cutting method
CN108472765B (en) Laser patterning method for semiconductor workpiece
JP2004528991A (en) Partial processing by laser
TWI625777B (en) Laser processing method for cutting semiconductor wafer with metal layer
KR20160108148A (en) Method of processing laminated substrate and apparatus for processing laminated substrate with laser light
JP2017056469A (en) Laser processing method and laser processing device
KR101232008B1 (en) The depth of the modified cutting device through a combination of characteristics
JP6744624B2 (en) Method and apparatus for cutting tubular brittle member
KR101570249B1 (en) Optical system and laser processing apparatus
TWI716589B (en) Breaking method and breaking device of brittle material substrate
KR100862522B1 (en) Laser beam machining system and method for cutting of substrate using the same
KR101621936B1 (en) Substrate cutting apparatus and method
KR100843411B1 (en) Laser beam machining system and method for cutting of substrate using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011543744

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859387

Country of ref document: EP

Kind code of ref document: A1