WO2012046442A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012046442A1
WO2012046442A1 PCT/JP2011/005606 JP2011005606W WO2012046442A1 WO 2012046442 A1 WO2012046442 A1 WO 2012046442A1 JP 2011005606 W JP2011005606 W JP 2011005606W WO 2012046442 A1 WO2012046442 A1 WO 2012046442A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
columnar spacer
crystal display
display device
Prior art date
Application number
PCT/JP2011/005606
Other languages
French (fr)
Japanese (ja)
Inventor
崇文 水卜
健司 御園
渡辺 典子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012046442A1 publication Critical patent/WO2012046442A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix

Definitions

  • the present invention relates to a liquid crystal display device having columnar spacers for maintaining the thickness of a liquid crystal layer constant.
  • a liquid crystal display device includes a TFT substrate on which a plurality of thin film transistors (TFTs) are formed, a counter substrate facing the TFT substrate, and a liquid crystal layer provided between the TFT substrate and the counter substrate. is doing.
  • a plurality of columnar spacers are interposed between the TFT substrate and the counter substrate in order to keep the thickness of the liquid crystal layer constant.
  • a TFT substrate 101 has a glass substrate 102 on which the above-described TFT and the like (not shown) are formed.
  • An interlayer insulating film (not shown) that covers the TFT is formed on the glass substrate 102, and a transparent electrode 103 made of ITO (Indium Tin Oxide) or the like is formed on the surface thereof.
  • a plurality of columnar spacers 104 are formed on the surface of the transparent electrode 103.
  • the transparent electrode 103 is covered with an alignment film 105.
  • the counter substrate 107 also has a glass substrate 108, and a transparent electrode 109 such as ITO is formed on the surface of the glass substrate 108.
  • the transparent electrode 109 of the counter substrate 107 is also covered with the alignment film 110. Then, as shown in FIG. 21, the gap between the TFT substrate 101 and the counter substrate 107 (that is, the thickness of the liquid crystal layer) is kept constant by the tips of the columnar spacers 104 coming into contact with the surface of the counter substrate 107. Yes.
  • Patent Document 1 As shown in FIG. 22, for the columnar spacer 104 formed on the TFT substrate 101, the area of the tip 111 of the columnar spacer 104 is indicated at the base end portion 112 of the columnar spacer 104. It is disclosed that the area is smaller than the area of the end face. As a result, the stress applied to the columnar spacers 104 is dispersed on the base end side of the columnar spacers 104 to prevent destruction of the elements and the like.
  • the tip of the columnar spacer is formed in a convex shape, so that stress concentration is more likely to occur.
  • Such a crack in the transparent electrode causes light leakage on the viewer side, leading to deterioration in display quality.
  • the present invention has been made in view of such a point, and an object thereof is to suppress light leakage to the observer side in the vicinity of the columnar spacer.
  • a liquid crystal display device includes a first substrate, a second substrate disposed opposite to the first substrate, and the first substrate and the second substrate.
  • the present invention is intended for a liquid crystal display device including a liquid crystal layer provided and a plurality of columnar spacers formed on the first substrate or the second substrate and defining a thickness of the liquid crystal layer to be constant.
  • a first transparent electrode is formed on the liquid crystal layer side of the first substrate, a second transparent electrode is formed on the liquid crystal layer side of the second substrate, and the first transparent electrode and the first transparent electrode are formed.
  • an opening is formed in a region where the columnar spacer is disposed, and an end of the columnar spacer is disposed inside the opening.
  • At least one of the first transparent electrode and the second transparent electrode is formed with an opening in the arrangement region of the columnar spacers.
  • the edge part of the columnar spacer is arrange
  • the present invention it is possible to suppress the occurrence of cracks in the first transparent electrode or the second transparent electrode, and to suppress light leakage to the observer side in the vicinity of the columnar spacer.
  • FIG. 1 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing the vicinity of the columnar spacer in the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the second embodiment.
  • FIG. 5 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the second embodiment.
  • FIG. 6 is an enlarged sectional view showing the vicinity of the columnar spacer in the second embodiment.
  • FIG. 7 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the third embodiment.
  • FIG. 8 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the fourth embodiment.
  • FIG. 9 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the fourth embodiment.
  • FIG. 10 is an enlarged sectional view showing the vicinity of the columnar spacer in the fourth embodiment.
  • FIG. 11 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the fifth embodiment.
  • FIG. 12 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the fifth embodiment.
  • FIG. 13 is an enlarged sectional view showing the vicinity of the columnar spacer in the fifth embodiment.
  • FIG. 14 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the sixth embodiment.
  • FIG. 15 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the sixth embodiment.
  • FIG. 16 is an enlarged sectional view showing the vicinity of the columnar spacer in the sixth embodiment.
  • FIG. 17 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the seventh embodiment.
  • FIG. 18 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the seventh embodiment.
  • FIG. 19 is an enlarged sectional view showing the vicinity of the columnar spacer in the seventh embodiment.
  • FIG. 20 is a cross-sectional view showing a conventional TFT substrate and a counter substrate before being bonded to each other.
  • FIG. 21 is an enlarged cross-sectional view showing a main part structure of a conventional liquid crystal display device.
  • FIG. 22 is an enlarged sectional view showing the vicinity of a conventional columnar spacer.
  • Embodiment 1 of the Invention 1 to 3 show Embodiment 1 of the present invention.
  • FIG. 1 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing the vicinity of the columnar spacer 20 in the first embodiment.
  • the liquid crystal display device 1 includes a liquid crystal display panel 10 and a backlight unit (not shown) that is an illumination device disposed to face the liquid crystal display panel 10 and is configured to perform at least transmissive display. Yes.
  • the liquid crystal display panel 10 includes a TFT substrate 11 that is a first substrate configured as an active matrix substrate, and a counter substrate 12 that is a second substrate disposed to face the TFT substrate 11. And a liquid crystal layer 13 provided between the TFT substrate 11 and the counter substrate 12.
  • the counter substrate 12 has a transparent plastic substrate 22 as a flexible substrate.
  • a common electrode 15 as a second transparent electrode is formed on the liquid crystal layer 13 side of the counter substrate 12.
  • the common electrode 15 is made of, for example, a transparent conductive film such as ITO, and is formed over substantially the entire display area (not shown).
  • the display area is an area in which an image is displayed, and a plurality of pixels (not shown) arranged in a matrix are formed.
  • An alignment film 16 made of polyimide or the like is formed on the surface of the common electrode 15 on the liquid crystal layer 13 side.
  • the counter substrate 12 is provided with a color filter and a black matrix (light shielding film) (not shown).
  • the TFT substrate 11 has a transparent plastic substrate 21 as a flexible substrate.
  • a TFT (not shown) is formed for each pixel on the liquid crystal layer 13 side of the TFT substrate 11.
  • the TFT is covered with an interlayer insulating film (not shown).
  • a pixel electrode 17 as a first transparent electrode is formed on the surface of the interlayer insulating film on the liquid crystal layer 13 side of the plastic substrate 21.
  • the pixel electrode 17 is made of, for example, a transparent conductive film such as ITO, and is provided for each pixel. In each pixel, the pixel electrode 17 is connected to the TFT.
  • An alignment film 18 made of polyimide or the like is formed on the surface of the pixel electrode 17 on the liquid crystal layer 13 side.
  • a plurality of columnar spacers 20 having the same height are formed on the TFT substrate 11.
  • the columnar spacer 20 is made of a photosensitive resin material and is formed by photolithography.
  • Each columnar spacer 20 is for defining the thickness of the liquid crystal layer 13 to be constant, and is formed to protrude from the surface of the TFT substrate 11 toward the counter substrate 12.
  • the columnar spacer 20 has an end surface area on the TFT substrate 11 side larger than an end surface area on the counter substrate 12 side, and is formed in a trapezoidal cross section.
  • the common electrode 15 has an opening 25 in a region where the columnar spacer 20 is disposed (that is, a region facing the tip of the columnar spacer 20). In other words, a part of the common electrode 15 is removed in a region facing the tip of the columnar spacer 20.
  • the edge part of the columnar spacer 20 is arrange
  • a portion of the alignment film 18 is interposed between the tip of the columnar spacer 20 and the plastic substrate 22 of the counter substrate 12.
  • the liquid crystal display device 1 is manufactured by bonding a TFT substrate 11 and a counter substrate 12 that are manufactured in advance to each other via a liquid crystal layer 13 and a seal member (not shown).
  • the sealing member is drawn on the counter substrate 12 in a rectangular frame shape, and a liquid crystal material is dropped and supplied into the frame of the sealing member.
  • the counter substrate 12 is aligned and attached to the TFT substrate 11.
  • the sealing member is cured by irradiating the sealing member with ultraviolet rays.
  • the sealing member may be drawn not on the counter substrate 12 but on the TFT substrate 11.
  • a TFT (not shown) is formed on the plastic substrate 21 by photolithography.
  • an interlayer insulating film (not shown) covering the TFT, an ITO film as a transparent conductive film material is formed on the surface of the interlayer insulating film.
  • a plurality of pixel electrodes 17 are formed by etching this ITO film.
  • a photosensitive resin film (not shown) is formed on the surface of the pixel electrode 17, and a plurality of columnar spacers 20 are formed by performing photolithography and etching on the photosensitive resin film. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
  • the common electrode 15 is formed by forming an ITO film on at least the entire display region on the surface of the plastic substrate 22. Next, the common electrode 15 is etched to form a plurality of openings 25 so as to open in a region facing the tip of the columnar spacer 20. Thereafter, the alignment film 16 is formed on the surface of the common electrode 15 to manufacture the counter substrate 12.
  • the TFT substrate 11 and the counter substrate 12 are bonded to each other.
  • the tip of the columnar spacer 20 is inserted into the opening 25 in the common electrode 15.
  • the liquid crystal display device 1 is manufactured.
  • the column spacer 20 supports the counter substrate 12.
  • no stress concentration occurs in the common electrode 15 due to the end of the columnar spacer 20 in the opening 25. That is, the stress applied to the counter substrate 12 from the tip of the columnar spacer 20 is applied to the plastic substrate 22 through the alignment film 16 in the opening 25 as shown in FIG. No stress is applied. Therefore, as a result of suppressing the occurrence of cracks in the common electrode 15, it is possible to suppress light leakage to the observer side in the vicinity of the columnar spacer 20.
  • the pixel electrode 17 is formed at the base end of the columnar spacer 20. Since the generated stress can be dispersed, the occurrence of cracks can be suppressed not only in the common electrode 15 provided with the opening 25 but also in the pixel electrode 17.
  • Embodiment 2 of the Invention >> 4 to 6 show Embodiment 2 of the present invention.
  • FIG. 4 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 of the second embodiment.
  • FIG. 5 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the second embodiment.
  • FIG. 6 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the second embodiment.
  • the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the opening 26 is formed not only in the common electrode 15 but also in the pixel electrode 17 in the first embodiment.
  • the pixel electrode 17 in the present embodiment has an opening 26 in a region where the columnar spacer 20 is disposed.
  • the base end of the columnar spacer 20 is formed on the plastic substrate 21 in the opening 26 of the pixel electrode 17.
  • the end of the columnar spacer 20 is disposed in the opening 25 of the common electrode 15 and supports the plastic substrate 22 via the alignment film 16.
  • the TFT substrate 11 in the present embodiment As in the first embodiment, after forming an ITO film on the surface of the interlayer insulating film, by performing photolithography and etching on the ITO film, An opening 26 is formed in the pixel electrode 17. Thereafter, a photosensitive resin film is formed on the pixel electrode 17, and a plurality of columnar spacers 20 are formed in the opening 26 by performing photolithography and etching on the photosensitive resin film. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
  • the common electrode 15 of the counter substrate 12 is formed with the opening 25 in the region facing the tip of the columnar spacer 20.
  • no stress concentration occurs on the common electrode 15 due to the end of the columnar spacer 20 in the opening 25. That is, the stress applied to the counter substrate 12 from the tip of the columnar spacer 20 is applied to the plastic substrate 22 through the alignment film 16 in the opening 25 as shown in FIG. No stress is applied.
  • the columnar spacer 20 is formed on the plastic substrate 21 so that the base end of the columnar spacer 20 is disposed in the opening 26 formed in the pixel electrode 17, the columnar spacer 20 In a state where the counter substrate 12 is supported, stress concentration on the pixel electrode 17 due to the base end of the columnar spacer 20 can be prevented. As a result, the occurrence of cracks in the common electrode 15 and the pixel electrode 17 can be suppressed, so that light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
  • FIG. 7 shows Embodiment 3 of the present invention.
  • FIG. 7 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the third embodiment.
  • the opening 25 is formed in the common electrode 15, whereas in the third embodiment, the opening 26 is formed in the pixel electrode 17 instead of the common electrode 15.
  • the pixel electrode 17 has an opening 26 in a region where the columnar spacer 20 is disposed. As shown in FIG. 7, the base end of the columnar spacer 20 is formed on the plastic substrate 21 in the opening 26 of the pixel electrode 17.
  • the columnar spacer 20 is formed on the plastic substrate 21 so that the base end of the columnar spacer 20 is disposed in the opening 26 formed in the pixel electrode 17.
  • stress concentration on the pixel electrode 17 by the base end of the columnar spacer 20 can be prevented.
  • the occurrence of cracks in the pixel electrode 17 can be suppressed, so that light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
  • Embodiment 4 of the Invention >> 8 to 10 show Embodiment 4 of the present invention.
  • FIG. 8 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the fourth embodiment.
  • FIG. 9 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the fourth embodiment.
  • FIG. 10 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the fourth embodiment.
  • a light shielding film 28 is provided in a region corresponding to the columnar spacer 20 in the counter substrate 12 in the third embodiment.
  • the pixel electrode 17 in the present embodiment has an opening 26 in a region where the columnar spacer 20 is disposed.
  • the base end of the columnar spacer 20 is formed on the plastic substrate 21 in the opening 26 of the pixel electrode 17.
  • the tip of the columnar spacer 20 is in contact with the surface of the alignment film 16 in the counter substrate 12.
  • a plurality of light-shielding films 28 are formed on the plastic substrate 22 of the counter substrate 12 so as to face the tips of the plurality of columnar spacers 20, respectively.
  • the light shielding film 28 can be made of, for example, a light-shielding metal material or resin material.
  • a common electrode 15 is formed on the plastic substrate 22 so as to cover the light shielding film 28.
  • An alignment film 16 is formed so as to cover the common electrode 15.
  • the TFT substrate 11 can be manufactured in the same manner as in the second embodiment.
  • the counter substrate 12 is formed with a plurality of shapes that cover the tip of the columnar spacer 20 by forming a light shielding material layer on the surface of the plastic substrate 22 and then performing photolithography and etching on the light shielding material layer.
  • a light shielding film 28 is formed.
  • the common electrode 15 is formed by forming a transparent conductive film such as an ITO film on the plastic substrate 22 so as to cover each light shielding film 28.
  • the alignment film 16 is formed on the surface of the common electrode 15 to manufacture the counter substrate 12.
  • the liquid crystal display device 1 is manufactured by bonding the counter substrate 12 and the TFT substrate 11 together through the liquid crystal layer 13 and a seal member (not shown).
  • the common electrode 15 since the light shielding film 28 is formed in the region facing the tip of the columnar spacer 20, the common electrode 15 receives stress concentration from the tip of the columnar spacer 20 and cracks in the common electrode 15. 10, since light that is about to pass through the cracks to the viewer side can be blocked by the light shielding film 28 as shown in FIG. 10, the viewer side in the vicinity of the columnar spacer 20 also in this embodiment. Light leakage to the can be suppressed.
  • Embodiment 5 of the Invention >> 11 to 13 show Embodiment 5 of the present invention.
  • FIG. 11 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the fifth embodiment.
  • FIG. 12 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the fifth embodiment.
  • FIG. 13 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the fifth embodiment.
  • the light shielding film 29 is formed not only on the counter substrate 12 but also on the TFT substrate 11 in the fourth embodiment.
  • a light shielding film 29 is formed on the plastic substrate 21 of the TFT substrate 11 in the present embodiment in a region where the columnar spacer 20 is formed.
  • the light shielding film 29 can be made of, for example, a metal material or a resin material having a light shielding property.
  • the pixel electrode 17 is formed on the plastic substrate 21 so as to cover the light shielding film 29.
  • An alignment film 18 is formed so as to cover the pixel electrode 17.
  • a region where the columnar spacer 20 is formed by forming a light shielding material layer on the surface of the plastic substrate 21 and then performing photolithography and etching on the light shielding material layer.
  • a plurality of light shielding films 29 are formed.
  • a TFT (not shown) is formed on the plastic substrate 21 by photolithography.
  • an interlayer insulating film (not shown) covering the TFT, an ITO film as a transparent conductive film material is formed on the surface of the interlayer insulating film.
  • a plurality of pixel electrodes 17 are formed by etching this ITO film.
  • a photosensitive resin film (not shown) is formed on the surface of the pixel electrode 17, and a plurality of columnar spacers 20 are formed by performing photolithography and etching on the photosensitive resin film.
  • the base ends of the plurality of columnar spacers 20 thus formed are opposed to the light shielding film 29, respectively.
  • the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
  • the common electrode 15 since the light shielding film 28 is formed in the region facing the tip of the columnar spacer 20, the common electrode 15 receives stress concentration from the tip of the columnar spacer 20, and the common electrode 15 is cracked. Even if this occurs, the light to be transmitted from the crack to the viewer side can be blocked by the light shielding film 28 as shown in FIG. Further, since the light shielding film 29 is formed in the region facing the base end of the columnar spacer 20, even if the pixel electrode 17 receives stress concentration from the base end of the columnar spacer 20 and a crack occurs in the pixel electrode 17, As shown in FIG. 13, the light to be transmitted from the crack to the viewer side can be blocked by the light shielding film 28. Therefore, according to this embodiment, light leakage to the observer side in the vicinity of the columnar spacer 20 can be suppressed.
  • Embodiment 6 of the Invention 14 to 16 show Embodiment 6 of the present invention.
  • FIG. 14 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the sixth embodiment.
  • FIG. 15 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the sixth embodiment.
  • FIG. 16 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the sixth embodiment.
  • the columnar spacer 20 in the present embodiment is formed so that the cross section in the direction parallel to the plastic substrates 21 and 22 gradually increases from the substantially central portion toward both ends.
  • the columnar spacer 20 has a first spacer 20a formed on the TFT substrate 11 and a second spacer 20b formed on the counter substrate 12, as shown in FIGS.
  • the first spacer 20a the area of the front end surface on the counter substrate 12 side is smaller than the area of the base end surface on the TFT substrate 11 side.
  • the second spacer 20b the area of the front end surface on the TFT substrate 11 side is smaller than the area of the base end surface on the counter substrate 12 side.
  • the first spacer 20a and the second spacer 20b are arranged to face each other, and the tip end surfaces are formed in the same size and abut against each other, whereby the columnar spacer 20 is formed as a whole.
  • a TFT (not shown) is formed on the plastic substrate 21 by photolithography.
  • an interlayer insulating film (not shown) covering the TFT, an ITO film as a transparent conductive film material is formed on the surface of the interlayer insulating film.
  • a plurality of pixel electrodes 17 are formed by etching this ITO film.
  • a photosensitive resin film (not shown) is formed on the surface of the pixel electrode 17, and a plurality of first spacers 20a are formed by performing photolithography and etching on the photosensitive resin film. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
  • the common electrode 15 is formed by forming an ITO film on at least the entire display region on the surface of the plastic substrate 22.
  • a photosensitive resin film (not shown) is formed on the surface of the alignment film 16, and the photosensitive resin film is subjected to photolithography and etching.
  • a plurality of second spacers 20b are formed, and the counter substrate 12 is manufactured.
  • the area of both end surfaces of the columnar spacer 20 (that is, the end surface on the TFT substrate 11 side and the end surface on the counter substrate 12 side) is made larger than the cross section of the central portion of the columnar spacer 20. Therefore, as shown in FIG. 16, the stress applied to the common electrode 15 and the pixel electrode 17 from both ends of the columnar spacer 20 can be dispersed. Therefore, generation of cracks in the common electrode 15 and the pixel electrode 17 can be suppressed, and light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
  • Embodiment 7 of the Invention >> 17 to 19 show Embodiment 7 of the present invention.
  • FIG. 17 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the seventh embodiment.
  • FIG. 18 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the seventh embodiment.
  • FIG. 19 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the seventh embodiment.
  • the columnar spacer 20 in the present embodiment is made of a material having the same hardness as the constituent material of the plastic substrates 21 and 22, or a material having a lower hardness than the constituent material of the plastic substrates 21 and 22.
  • the columnar spacer 20 is formed, for example, on the surface of the pixel electrode 17 in the TFT substrate 11, and the tip thereof is in contact with the alignment film 16 of the counter substrate 12.
  • the material of the columnar spacer 20 for example, “Optomer NN series” (a product of JSR Corporation), which is a photosensitive material having a Young's modulus of about 11 GPa, is applied.
  • a plastic substrate obtained by adding about 50% glass cloth to an alicyclic epoxy resin having a rate of about 13 GPa can be applied.
  • plastic substrates 21 and 22 it is also possible to increase the hardness of the plastic substrates 21 and 22 to be the same as or larger than that of the columnar spacer 20 by vacuum-depositing a silicone hard coat such as SiO 2 on the plastic substrate.
  • the stress applied to the common electrode 15 and the pixel electrode 17 from both ends of the columnar spacer 20 spreads in the direction in which the columnar spacer 20 is parallel to the plastic substrates 21 and 22.
  • it can be made smaller by deforming. That is, according to the present embodiment as well, the occurrence of cracks in the common electrode 15 and the pixel electrode 17 due to the stress received from the columnar spacer 20 can be suppressed, so that light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
  • the first substrate is an active matrix substrate.
  • the present invention is not limited to this, and other materials such as a passive matrix substrate having a plurality of strip-shaped first transparent electrodes may be used as long as a transparent substrate and columnar spacers are formed. You may comprise by the board
  • both the TFT substrate 11 and the opposing substrate 12 consist of a flexible substrate
  • this invention is not limited to this,
  • at least one of the TFT substrate 11 and the opposing substrate 12 may be a flexible substrate
  • both the TFT substrate 11 and the counter substrate 12 may be configured by a non-flexible substrate such as a glass substrate.
  • the common electrode (second transparent electrode) 15 and the pixel electrode (first transparent electrode) 17 are not limited to ITO, and may be formed of other transparent conductive films such as IZO (Indium Zinc Oxide), for example.
  • IZO Indium Zinc Oxide
  • the columnar spacer 20 is formed on the TFT substrate 11 in each of the above embodiments.
  • the present invention is not limited to this, and the columnar spacer 20 may be formed on the counter substrate 12.
  • the present invention is not limited to Embodiments 1 to 7 described above, and the present invention includes a configuration in which these Embodiments 1 to 7 are appropriately combined.
  • the configuration of the columnar spacer 20 in the sixth and seventh embodiments may be applied as the columnar spacer 20 in the first to fifth embodiments.
  • liquid crystal display device 1 is a liquid crystal display device that performs a transmissive display having a backlight unit. Applicable to.
  • the present invention is useful for a liquid crystal display device having columnar spacers for maintaining the thickness of the liquid crystal layer constant.
  • Liquid crystal display device 11 TFT substrate (first substrate) 12 Counter substrate (second substrate) 13 Liquid crystal layer 15 Common electrode (second transparent electrode) 16 Alignment film 17 Pixel electrode (first transparent electrode) 18 Alignment film 20 Columnar spacer 21, 22 Plastic substrate 25, 26 opening

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is a liquid crystal display device that comprises a plurality of columnar spacers which are formed on a first substrate or a second substrate and define the thickness of a liquid crystal layer to a constant value. A first transparent electrode is formed on the liquid crystal layer side of the first substrate, while a second transparent electrode is formed on the liquid crystal layer side of the second substrate. The first transparent electrode and/or the second transparent electrode is provided with openings in regions where the columnar spacers are arranged, and end portions of the columnar spacers are respectively arranged inside the openings.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶層の厚みを一定に維持するための柱状スペーサを有する液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device having columnar spacers for maintaining the thickness of a liquid crystal layer constant.
 一般に、液晶表示装置は、複数のTFT(Thin-Film Transistor:薄膜トランジスタ)が形成されたTFT基板と、これに対向する対向基板と、TFT基板及び対向基板の間に設けられた液晶層とを有している。TFT基板及び対向基板の間には、液晶層の厚みを一定に維持するために複数の柱状スペーサが介在されている。 In general, a liquid crystal display device includes a TFT substrate on which a plurality of thin film transistors (TFTs) are formed, a counter substrate facing the TFT substrate, and a liquid crystal layer provided between the TFT substrate and the counter substrate. is doing. A plurality of columnar spacers are interposed between the TFT substrate and the counter substrate in order to keep the thickness of the liquid crystal layer constant.
 図20に示すように、TFT基板101は、上記TFT等(図示省略)が形成されたガラス基板102を有している。ガラス基板102上には、TFTを覆う層間絶縁膜(図示省略)が形成され、その表面にITO(Indium Tin Oxide)等からなる透明電極103が形成されている。透明電極103の表面には、柱状スペーサ104が複数形成されている。透明電極103は配向膜105によって覆われている。 As shown in FIG. 20, a TFT substrate 101 has a glass substrate 102 on which the above-described TFT and the like (not shown) are formed. An interlayer insulating film (not shown) that covers the TFT is formed on the glass substrate 102, and a transparent electrode 103 made of ITO (Indium Tin Oxide) or the like is formed on the surface thereof. A plurality of columnar spacers 104 are formed on the surface of the transparent electrode 103. The transparent electrode 103 is covered with an alignment film 105.
 また、対向基板107もガラス基板108を有し、そのガラス基板108の表面にはITO等の透明電極109が形成されている。この対向基板107の透明電極109も配向膜110によって覆われている。そして、図21に示すように、各柱状スペーサ104の先端が対向基板107の表面に当接することにより、TFT基板101と対向基板107との間隙(すなわち液晶層の厚み)が一定に維持されている。 The counter substrate 107 also has a glass substrate 108, and a transparent electrode 109 such as ITO is formed on the surface of the glass substrate 108. The transparent electrode 109 of the counter substrate 107 is also covered with the alignment film 110. Then, as shown in FIG. 21, the gap between the TFT substrate 101 and the counter substrate 107 (that is, the thickness of the liquid crystal layer) is kept constant by the tips of the columnar spacers 104 coming into contact with the surface of the counter substrate 107. Yes.
 ここで、TFT基板の柱状スペーサと対向基板とが接触した状態で、当該柱状スペーサの端部近傍に応力が集中すると、TFT基板に形成されている素子等が破壊される虞がある。これに対し、特許文献1には、図22に示すように、TFT基板101に形成された柱状スペーサ104について、その柱状スペーサ104の先端111の面積を、当該柱状スペーサ104の基端部112における端面の面積よりも小さくすることが開示されている。そのことにより、柱状スペーサ104に加わる応力を当該柱状スペーサ104の基端側で分散させて、上記素子等の破壊を防止しようとしている。 Here, if stress concentrates in the vicinity of the end of the columnar spacer in a state where the columnar spacer of the TFT substrate and the counter substrate are in contact with each other, there is a possibility that an element or the like formed on the TFT substrate is destroyed. On the other hand, in Patent Document 1, as shown in FIG. 22, for the columnar spacer 104 formed on the TFT substrate 101, the area of the tip 111 of the columnar spacer 104 is indicated at the base end portion 112 of the columnar spacer 104. It is disclosed that the area is smaller than the area of the end face. As a result, the stress applied to the columnar spacers 104 is dispersed on the base end side of the columnar spacers 104 to prevent destruction of the elements and the like.
特開2000-171805号公報JP 2000-171805 A
 しかし、図22に示すように、上記特許文献1の液晶表示装置では、柱状スペーサ104の先端111の面積が小さいために、柱状スペーサ104の先端111に接触している対向基板107の表面に応力が集中してしまう。その結果、対向基板107の透明電極109にクラック等が発生する虞がある。 However, as shown in FIG. 22, in the liquid crystal display device of Patent Document 1, since the area of the tip 111 of the columnar spacer 104 is small, stress is applied to the surface of the counter substrate 107 that is in contact with the tip 111 of the columnar spacer 104. Will concentrate. As a result, cracks or the like may occur in the transparent electrode 109 of the counter substrate 107.
 また、フォトリソグラフィによって柱状スペーサを形成した場合には、その柱状スペーサの先端が凸面状に形成されるため、より応力集中が生じ易くなる。 Further, when the columnar spacer is formed by photolithography, the tip of the columnar spacer is formed in a convex shape, so that stress concentration is more likely to occur.
 このような透明電極のクラックは、観察者側に光漏れが生じて表示品位の低下を招くこととなる。 Such a crack in the transparent electrode causes light leakage on the viewer side, leading to deterioration in display quality.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、柱状スペーサの近傍において観察者側への光漏れを抑制することにある。 The present invention has been made in view of such a point, and an object thereof is to suppress light leakage to the observer side in the vicinity of the columnar spacer.
 上記の目的を達成するために、本発明に係る液晶表示装置は、第1基板と、上記第1基板に対向して配置された第2基板と、上記第1基板及び第2基板の間に設けられた液晶層と、上記第1基板又は第2基板に形成され、上記液晶層の厚みを一定に規定する複数の柱状スペーサとを備えた液晶表示装置を対象としている。 In order to achieve the above object, a liquid crystal display device according to the present invention includes a first substrate, a second substrate disposed opposite to the first substrate, and the first substrate and the second substrate. The present invention is intended for a liquid crystal display device including a liquid crystal layer provided and a plurality of columnar spacers formed on the first substrate or the second substrate and defining a thickness of the liquid crystal layer to be constant.
 そして、上記第1基板の上記液晶層側には、第1透明電極が形成され、上記第2基板の上記液晶層側には、第2透明電極が形成され、上記第1透明電極及び上記第2透明電極の少なくとも一方には、上記柱状スペーサが配置される領域において開口部が形成され、上記開口部の内側には、上記柱状スペーサの端部が配置されている。 A first transparent electrode is formed on the liquid crystal layer side of the first substrate, a second transparent electrode is formed on the liquid crystal layer side of the second substrate, and the first transparent electrode and the first transparent electrode are formed. In at least one of the two transparent electrodes, an opening is formed in a region where the columnar spacer is disposed, and an end of the columnar spacer is disposed inside the opening.
 上記液晶表示装置は、第1透明電極及び第2透明電極の少なくとも一方が、柱状スペーサの配置領域において開口部が形成されている。そして、その開口部の内側に柱状スペーサの端部が配置されているため、柱状スペーサが第1基板又は第2基板を支持した状態で、その第1透明電極又は第2透明電極には、上記開口部内の柱状スペーサの端部による応力集中が生じない。したがって、第1透明電極又は第2透明電極におけるクラックの発生が抑制されるため、柱状スペーサの近傍における観察者側への光漏れを抑制することができる。 In the liquid crystal display device, at least one of the first transparent electrode and the second transparent electrode is formed with an opening in the arrangement region of the columnar spacers. And since the edge part of the columnar spacer is arrange | positioned inside the opening part, in the state which the columnar spacer supported the 1st board | substrate or the 2nd board | substrate, in the said 1st transparent electrode or a 2nd transparent electrode, Stress concentration due to the end of the columnar spacer in the opening does not occur. Therefore, since generation | occurrence | production of the crack in a 1st transparent electrode or a 2nd transparent electrode is suppressed, the light leak to the observer side in the vicinity of a columnar spacer can be suppressed.
 本発明によれば、第1透明電極又は第2透明電極におけるクラックの発生を抑制して、柱状スペーサの近傍における観察者側への光漏れを抑制することができる。 According to the present invention, it is possible to suppress the occurrence of cracks in the first transparent electrode or the second transparent electrode, and to suppress light leakage to the observer side in the vicinity of the columnar spacer.
図1は、本実施形態1の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 1 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the first embodiment. 図2は、本実施形態1における互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 2 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the first embodiment. 図3は、本実施形態1における柱状スペーサの近傍を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view showing the vicinity of the columnar spacer in the first embodiment. 図4は、本実施形態2の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the second embodiment. 図5は、本実施形態2における互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 5 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the second embodiment. 図6は、本実施形態2における柱状スペーサの近傍を拡大して示す断面図である。FIG. 6 is an enlarged sectional view showing the vicinity of the columnar spacer in the second embodiment. 図7は、本実施形態3の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the third embodiment. 図8は、本実施形態4の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 8 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the fourth embodiment. 図9は、本実施形態4における互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 9 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the fourth embodiment. 図10は、本実施形態4における柱状スペーサの近傍を拡大して示す断面図である。FIG. 10 is an enlarged sectional view showing the vicinity of the columnar spacer in the fourth embodiment. 図11は、本実施形態5の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 11 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the fifth embodiment. 図12は、本実施形態5における互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 12 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the fifth embodiment. 図13は、本実施形態5における柱状スペーサの近傍を拡大して示す断面図である。FIG. 13 is an enlarged sectional view showing the vicinity of the columnar spacer in the fifth embodiment. 図14は、本実施形態6の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 14 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the sixth embodiment. 図15は、本実施形態6における互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 15 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the sixth embodiment. 図16は、本実施形態6における柱状スペーサの近傍を拡大して示す断面図である。FIG. 16 is an enlarged sectional view showing the vicinity of the columnar spacer in the sixth embodiment. 図17は、本実施形態7の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 17 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device according to the seventh embodiment. 図18は、本実施形態7における互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 18 is a cross-sectional view showing the TFT substrate and the counter substrate before being bonded to each other in the seventh embodiment. 図19は、本実施形態7における柱状スペーサの近傍を拡大して示す断面図である。FIG. 19 is an enlarged sectional view showing the vicinity of the columnar spacer in the seventh embodiment. 図20は、従来の互いに貼り合わされる前のTFT基板及び対向基板を示す断面図である。FIG. 20 is a cross-sectional view showing a conventional TFT substrate and a counter substrate before being bonded to each other. 図21は、従来の液晶表示装置の要部構造を拡大して示す断面図である。FIG. 21 is an enlarged cross-sectional view showing a main part structure of a conventional liquid crystal display device. 図22は、従来の柱状スペーサの近傍を拡大して示す断面図である。FIG. 22 is an enlarged sectional view showing the vicinity of a conventional columnar spacer.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
 《発明の実施形態1》
 図1~図3は、本発明の実施形態1を示している。
Embodiment 1 of the Invention
1 to 3 show Embodiment 1 of the present invention.
 図1は、本実施形態1の液晶表示装置1の要部構造を拡大して示す断面図である。図2は、本実施形態1における互いに貼り合わされる前のTFT基板11及び対向基板12を示す断面図である。図3は、本実施形態1における柱状スペーサ20の近傍を拡大して示す断面図である。 FIG. 1 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the first embodiment. FIG. 2 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the first embodiment. FIG. 3 is an enlarged cross-sectional view showing the vicinity of the columnar spacer 20 in the first embodiment.
 液晶表示装置1は、液晶表示パネル10と、この液晶表示パネル10に対向して配置された照明装置であるバックライトユニット(不図示)とを有し、少なくとも透過表示を行うように構成されている。 The liquid crystal display device 1 includes a liquid crystal display panel 10 and a backlight unit (not shown) that is an illumination device disposed to face the liquid crystal display panel 10 and is configured to perform at least transmissive display. Yes.
 液晶表示パネル10は、図1に示すように、アクティブマトリクス基板に構成された第1基板であるTFT基板11と、このTFT基板11に対向して配置された第2基板である対向基板12と、TFT基板11及び対向基板12の間に設けられた液晶層13とを有している。 As shown in FIG. 1, the liquid crystal display panel 10 includes a TFT substrate 11 that is a first substrate configured as an active matrix substrate, and a counter substrate 12 that is a second substrate disposed to face the TFT substrate 11. And a liquid crystal layer 13 provided between the TFT substrate 11 and the counter substrate 12.
 対向基板12は、フレキシブル基板としての透明なプラスチック基板22を有している。対向基板12の液晶層13側には、第2透明電極としての共通電極15が形成されている。共通電極15は、例えばITO等の透明導電膜によって構成され、少なくとも表示領域(不図示)の略全体に亘って形成されている。表示領域は、画像が表示される領域であって、マトリクス状に配置された複数の画素(図示省略)が形成されている。 The counter substrate 12 has a transparent plastic substrate 22 as a flexible substrate. A common electrode 15 as a second transparent electrode is formed on the liquid crystal layer 13 side of the counter substrate 12. The common electrode 15 is made of, for example, a transparent conductive film such as ITO, and is formed over substantially the entire display area (not shown). The display area is an area in which an image is displayed, and a plurality of pixels (not shown) arranged in a matrix are formed.
 共通電極15の液晶層13側表面には、ポリイミド等からなる配向膜16が形成されている。また、対向基板12には、それぞれ図示省略のカラーフィルタ及びブラックマトリクス(遮光膜)が形成されている。 An alignment film 16 made of polyimide or the like is formed on the surface of the common electrode 15 on the liquid crystal layer 13 side. The counter substrate 12 is provided with a color filter and a black matrix (light shielding film) (not shown).
 TFT基板11は、フレキシブル基板としての透明なプラスチック基板21を有している。TFT基板11の液晶層13側には、各画素毎にTFT(図示省略)が形成されている。TFTは層間絶縁膜(図示省略)によって覆われている。 The TFT substrate 11 has a transparent plastic substrate 21 as a flexible substrate. A TFT (not shown) is formed for each pixel on the liquid crystal layer 13 side of the TFT substrate 11. The TFT is covered with an interlayer insulating film (not shown).
 そして、プラスチック基板21の液晶層13側には、第1透明電極としての画素電極17が上記層間絶縁膜の表面に形成されている。画素電極17は、例えばITO等の透明導電膜によって構成され、各画素毎にそれぞれ設けられている。各画素において、画素電極17はTFTにそれぞれ接続されている。また、画素電極17の液晶層13側表面には、ポリイミド等からなる配向膜18が形成されている。 A pixel electrode 17 as a first transparent electrode is formed on the surface of the interlayer insulating film on the liquid crystal layer 13 side of the plastic substrate 21. The pixel electrode 17 is made of, for example, a transparent conductive film such as ITO, and is provided for each pixel. In each pixel, the pixel electrode 17 is connected to the TFT. An alignment film 18 made of polyimide or the like is formed on the surface of the pixel electrode 17 on the liquid crystal layer 13 side.
 TFT基板11には、図2に示すように、互いに同じ高さを有する複数の柱状スペーサ20が形成されている。柱状スペーサ20は感光性樹脂材料によって構成され、フォトリソグラフィによって形成されている。各柱状スペーサ20は、液晶層13の厚みを一定に規定するためのものであり、TFT基板11の表面から対向基板12側に突出して形成されている。また、図3に示すように、柱状スペーサ20は、TFT基板11側の端面の面積が、対向基板12側の端面の面積よりも大きくなっており、断面台形状に形成されている。 As shown in FIG. 2, a plurality of columnar spacers 20 having the same height are formed on the TFT substrate 11. The columnar spacer 20 is made of a photosensitive resin material and is formed by photolithography. Each columnar spacer 20 is for defining the thickness of the liquid crystal layer 13 to be constant, and is formed to protrude from the surface of the TFT substrate 11 toward the counter substrate 12. Further, as shown in FIG. 3, the columnar spacer 20 has an end surface area on the TFT substrate 11 side larger than an end surface area on the counter substrate 12 side, and is formed in a trapezoidal cross section.
 共通電極15には、柱状スペーサ20が配置される領域(つまり、柱状スペーサ20の先端に対向する領域)において、開口部25が形成されている。言い換えれば、共通電極15の一部は、柱状スペーサ20の先端に対向する領域において除去されている。 The common electrode 15 has an opening 25 in a region where the columnar spacer 20 is disposed (that is, a region facing the tip of the columnar spacer 20). In other words, a part of the common electrode 15 is removed in a region facing the tip of the columnar spacer 20.
 そして、図3に示すように、開口部25の内側には、柱状スペーサ20の端部が配置されている。尚、柱状スペーサ20の先端と対向基板12のプラスチック基板22との間には、配向膜18の一部が介在されている。 And as shown in FIG. 3, the edge part of the columnar spacer 20 is arrange | positioned inside the opening part 25. As shown in FIG. A portion of the alignment film 18 is interposed between the tip of the columnar spacer 20 and the plastic substrate 22 of the counter substrate 12.
  -製造方法-
 次に、上記液晶表示装置1の製造方法について説明する。
-Production method-
Next, a method for manufacturing the liquid crystal display device 1 will be described.
 液晶表示装置1は、それぞれ予め製造したTFT基板11と対向基板12とを液晶層13及びシール部材(図示省略)を介して貼り合わせることによって製造する。 The liquid crystal display device 1 is manufactured by bonding a TFT substrate 11 and a counter substrate 12 that are manufactured in advance to each other via a liquid crystal layer 13 and a seal member (not shown).
 例えば対向基板12に上記シール部材を矩形枠状に描画し、そのシール部材の枠内に液晶材料を滴下して供給する。次に、対向基板12をTFT基板11に位置合わせして貼り付ける。その後、シール部材に紫外線を照射して当該シール部材を硬化させる。そうして、液晶表示装置1を製造する。尚、シール部材を描画するのは、対向基板12でなく、TFT基板11であってもよい。 For example, the sealing member is drawn on the counter substrate 12 in a rectangular frame shape, and a liquid crystal material is dropped and supplied into the frame of the sealing member. Next, the counter substrate 12 is aligned and attached to the TFT substrate 11. Thereafter, the sealing member is cured by irradiating the sealing member with ultraviolet rays. Thus, the liquid crystal display device 1 is manufactured. The sealing member may be drawn not on the counter substrate 12 but on the TFT substrate 11.
 TFT基板11を製造する場合には、プラスチック基板21上にTFT(不図示)をフォトリソグラフィによって形成する。次に、TFTを覆う層間絶縁膜(不図示)を形成した後に、その層間絶縁膜の表面に透明導電膜材料としてのITO膜を形成する。そして、このITO膜をエッチングすることにより、複数の画素電極17を形成する。 When the TFT substrate 11 is manufactured, a TFT (not shown) is formed on the plastic substrate 21 by photolithography. Next, after forming an interlayer insulating film (not shown) covering the TFT, an ITO film as a transparent conductive film material is formed on the surface of the interlayer insulating film. Then, a plurality of pixel electrodes 17 are formed by etching this ITO film.
 次に、画素電極17の表面に感光性樹脂膜(不図示)を形成し、この感光性樹脂膜をフォトリソグラフィ及びエッチングを行うことにより、複数の柱状スペーサ20を形成する。その後、配向膜18を画素電極17の表面に形成し、TFT基板11を製造する。 Next, a photosensitive resin film (not shown) is formed on the surface of the pixel electrode 17, and a plurality of columnar spacers 20 are formed by performing photolithography and etching on the photosensitive resin film. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
 一方、対向基板12を製造する場合には、プラスチック基板22の表面における少なくとも表示領域の全体にITO膜を形成することによって、共通電極15を形成する。次に、共通電極15にエッチングを行い、柱状スペーサ20の先端に対向する領域で開口するように複数の開口部25を形成する。その後、共通電極15の表面に配向膜16を形成し、対向基板12を製造する。 On the other hand, when the counter substrate 12 is manufactured, the common electrode 15 is formed by forming an ITO film on at least the entire display region on the surface of the plastic substrate 22. Next, the common electrode 15 is etched to form a plurality of openings 25 so as to open in a region facing the tip of the columnar spacer 20. Thereafter, the alignment film 16 is formed on the surface of the common electrode 15 to manufacture the counter substrate 12.
 その後、上記TFT基板11及び対向基板12を互いに貼り合わせる。このとき、柱状スペーサ20の先端が、共通電極15における開口部25内に挿入される。こうして、液晶表示装置1を製造する。 Thereafter, the TFT substrate 11 and the counter substrate 12 are bonded to each other. At this time, the tip of the columnar spacer 20 is inserted into the opening 25 in the common electrode 15. Thus, the liquid crystal display device 1 is manufactured.
  -実施形態1の効果-
 したがって、この実施形態1によると、対向基板12の共通電極15には、柱状スペーサ20の先端に対向する領域において開口部25が形成されているため、柱状スペーサ20が対向基板12を支持した状態で、その共通電極15には、開口部25内の柱状スペーサ20の端部によって応力集中が生じない。すなわち、柱状スペーサ20の先端から対向基板12に加えられる応力は、図3に示すように、開口部25内の配向膜16を介してプラスチック基板22へ加えられるため、共通電極15には直接に応力が加わらない。したがって、共通電極15におけるクラックの発生を抑制できる結果、柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。
-Effect of Embodiment 1-
Therefore, according to the first embodiment, since the opening 25 is formed in the common electrode 15 of the counter substrate 12 in the region facing the tip of the column spacer 20, the column spacer 20 supports the counter substrate 12. Thus, no stress concentration occurs in the common electrode 15 due to the end of the columnar spacer 20 in the opening 25. That is, the stress applied to the counter substrate 12 from the tip of the columnar spacer 20 is applied to the plastic substrate 22 through the alignment film 16 in the opening 25 as shown in FIG. No stress is applied. Therefore, as a result of suppressing the occurrence of cracks in the common electrode 15, it is possible to suppress light leakage to the observer side in the vicinity of the columnar spacer 20.
 さらに、図3に示すように、柱状スペーサ20におけるTFT基板11側の先端面の面積を、対向基板12側の基端面の面積よりも大きくしたので、柱状スペーサ20の基端において画素電極17に発生する応力を分散させることができるため、上記開口部25を設けた共通電極15だけでなく画素電極17においてもクラックの発生を抑制することができる。 Further, as shown in FIG. 3, since the area of the front end surface on the TFT substrate 11 side in the columnar spacer 20 is made larger than the area of the base end surface on the counter substrate 12 side, the pixel electrode 17 is formed at the base end of the columnar spacer 20. Since the generated stress can be dispersed, the occurrence of cracks can be suppressed not only in the common electrode 15 provided with the opening 25 but also in the pixel electrode 17.
 《発明の実施形態2》
 図4~図6は、本発明の実施形態2を示している。
<< Embodiment 2 of the Invention >>
4 to 6 show Embodiment 2 of the present invention.
 図4は、本実施形態2の液晶表示装置1の要部構造を拡大して示す断面図である。図5は、本実施形態2における互いに貼り合わされる前のTFT基板11及び対向基板12を示す断面図である。図6は、本実施形態2における柱状スペーサ20の近傍を拡大して示す断面図である。尚、以降の各実施形態では、図1~図3と同じ部分については同じ符号を付して、その詳細な説明を省略する。 FIG. 4 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 of the second embodiment. FIG. 5 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the second embodiment. FIG. 6 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the second embodiment. In the following embodiments, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施形態2は、上記実施形態1において、共通電極15だけでなく、さらに画素電極17にも開口部26を形成したものである。 In the second embodiment, the opening 26 is formed not only in the common electrode 15 but also in the pixel electrode 17 in the first embodiment.
 すなわち、図5に示すように、本実施形態における画素電極17には、柱状スペーサ20が配置される領域に開口部26が形成されている。そして、図4に示すように、柱状スペーサ20の基端は、画素電極17の開口部26内においてプラスチック基板21に形成されている。一方、柱状スペーサ20の先端は、共通電極15の開口部25内に配置され、配向膜16を介してプラスチック基板22を支持している。 That is, as shown in FIG. 5, the pixel electrode 17 in the present embodiment has an opening 26 in a region where the columnar spacer 20 is disposed. As shown in FIG. 4, the base end of the columnar spacer 20 is formed on the plastic substrate 21 in the opening 26 of the pixel electrode 17. On the other hand, the end of the columnar spacer 20 is disposed in the opening 25 of the common electrode 15 and supports the plastic substrate 22 via the alignment film 16.
 本実施形態におけるTFT基板11を製造する場合には、上記実施形態1と同様に、層間絶縁膜の表面にITO膜を形成した後に、当該ITO膜に対してフォトリソグラフィ及びエッチングを行うことにより、画素電極17に開口部26を形成する。その後、画素電極17上に感光性樹脂膜を形成し、この感光性樹脂膜をフォトリソグラフィ及びエッチングを行うことにより、複数の柱状スペーサ20を開口部26内に形成する。その後、配向膜18を画素電極17の表面に形成し、TFT基板11を製造する。 When manufacturing the TFT substrate 11 in the present embodiment, as in the first embodiment, after forming an ITO film on the surface of the interlayer insulating film, by performing photolithography and etching on the ITO film, An opening 26 is formed in the pixel electrode 17. Thereafter, a photosensitive resin film is formed on the pixel electrode 17, and a plurality of columnar spacers 20 are formed in the opening 26 by performing photolithography and etching on the photosensitive resin film. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
 したがって、本実施形態2によれば、上記実施形態1と同様に、対向基板12の共通電極15には、柱状スペーサ20の先端に対向する領域において開口部25が形成されているため、柱状スペーサ20が対向基板12を支持した状態で、その共通電極15には、開口部25内の柱状スペーサ20の端部によって応力集中が生じない。すなわち、柱状スペーサ20の先端から対向基板12に加えられる応力は、図6に示すように、開口部25内の配向膜16を介してプラスチック基板22へ加えられるため、共通電極15には直接に応力が加わらない。 Therefore, according to the second embodiment, as in the first embodiment, the common electrode 15 of the counter substrate 12 is formed with the opening 25 in the region facing the tip of the columnar spacer 20. In the state where 20 supports the counter substrate 12, no stress concentration occurs on the common electrode 15 due to the end of the columnar spacer 20 in the opening 25. That is, the stress applied to the counter substrate 12 from the tip of the columnar spacer 20 is applied to the plastic substrate 22 through the alignment film 16 in the opening 25 as shown in FIG. No stress is applied.
 さらに、図6に示すように、画素電極17に形成した開口部26内に柱状スペーサ20の基端が配置されるように、当該柱状スペーサ20をプラスチック基板21に形成したので、柱状スペーサ20が対向基板12を支持した状態で、柱状スペーサ20の基端による画素電極17への応力集中を防止できる。そのことにより、共通電極15及び画素電極17におけるクラックの発生を抑制できる結果、柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。 Furthermore, as shown in FIG. 6, since the columnar spacer 20 is formed on the plastic substrate 21 so that the base end of the columnar spacer 20 is disposed in the opening 26 formed in the pixel electrode 17, the columnar spacer 20 In a state where the counter substrate 12 is supported, stress concentration on the pixel electrode 17 due to the base end of the columnar spacer 20 can be prevented. As a result, the occurrence of cracks in the common electrode 15 and the pixel electrode 17 can be suppressed, so that light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
 《発明の実施形態3》
 図7は、本発明の実施形態3を示している。
<< Embodiment 3 of the Invention >>
FIG. 7 shows Embodiment 3 of the present invention.
 図7は、本実施形態3の液晶表示装置1の要部構造を拡大して示す断面図である。 FIG. 7 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the third embodiment.
 上記実施形態1では、共通電極15に開口部25を形成したのに対し、本実施形態3は、共通電極15の代わりに画素電極17に開口部26を形成したものである。 In the first embodiment, the opening 25 is formed in the common electrode 15, whereas in the third embodiment, the opening 26 is formed in the pixel electrode 17 instead of the common electrode 15.
 すなわち、図7に示すように、共通電極15には開口部が形成されておらず、柱状スペーサ20の先端が当接している。一方、画素電極17には、柱状スペーサ20が配置される領域に開口部26が形成されている。そして、図7に示すように、柱状スペーサ20の基端は、画素電極17の開口部26内においてプラスチック基板21に形成されている。 That is, as shown in FIG. 7, no opening is formed in the common electrode 15, and the tip of the columnar spacer 20 is in contact. On the other hand, the pixel electrode 17 has an opening 26 in a region where the columnar spacer 20 is disposed. As shown in FIG. 7, the base end of the columnar spacer 20 is formed on the plastic substrate 21 in the opening 26 of the pixel electrode 17.
 したがって、本実施形態3によれば、画素電極17に形成した開口部26内に柱状スペーサ20の基端が配置されるように、当該柱状スペーサ20をプラスチック基板21に形成したので、柱状スペーサ20が対向基板12を支持した状態で、柱状スペーサ20の基端による画素電極17への応力集中を防止できる。そのことにより、画素電極17におけるクラックの発生を抑制できる結果、柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。 Therefore, according to the third embodiment, the columnar spacer 20 is formed on the plastic substrate 21 so that the base end of the columnar spacer 20 is disposed in the opening 26 formed in the pixel electrode 17. In the state where the counter substrate 12 is supported, stress concentration on the pixel electrode 17 by the base end of the columnar spacer 20 can be prevented. As a result, the occurrence of cracks in the pixel electrode 17 can be suppressed, so that light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
 《発明の実施形態4》
 図8~図10は、本発明の実施形態4を示している。
<< Embodiment 4 of the Invention >>
8 to 10 show Embodiment 4 of the present invention.
 図8は、本実施形態4の液晶表示装置1の要部構造を拡大して示す断面図である。図9は、本実施形態4における互いに貼り合わされる前のTFT基板11及び対向基板12を示す断面図である。図10は、本実施形態4における柱状スペーサ20の近傍を拡大して示す断面図である。 FIG. 8 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the fourth embodiment. FIG. 9 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the fourth embodiment. FIG. 10 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the fourth embodiment.
 本実施形態4は、上記実施形態3において、対向基板12における柱状スペーサ20に対応する領域に遮光膜28を設けるようにしたものである。 In the fourth embodiment, a light shielding film 28 is provided in a region corresponding to the columnar spacer 20 in the counter substrate 12 in the third embodiment.
 すなわち、図9に示すように、本実施形態における画素電極17には、柱状スペーサ20が配置される領域に開口部26が形成されている。そして、図8に示すように、柱状スペーサ20の基端は、画素電極17の開口部26内においてプラスチック基板21に形成されている。一方、柱状スペーサ20の先端は、対向基板12における配向膜16の表面に当接している。 That is, as shown in FIG. 9, the pixel electrode 17 in the present embodiment has an opening 26 in a region where the columnar spacer 20 is disposed. As shown in FIG. 8, the base end of the columnar spacer 20 is formed on the plastic substrate 21 in the opening 26 of the pixel electrode 17. On the other hand, the tip of the columnar spacer 20 is in contact with the surface of the alignment film 16 in the counter substrate 12.
 対向基板12のプラスチック基板22には、複数の柱状スペーサ20の先端にそれぞれ対向するように複数の遮光膜28が形成されている。遮光膜28は、例えば遮光性を有する金属材料や樹脂材料によって構成することが可能である。プラスチック基板22には、遮光膜28を覆うように共通電極15が形成されている。そして、その共通電極15を覆うように配向膜16が形成されている。 A plurality of light-shielding films 28 are formed on the plastic substrate 22 of the counter substrate 12 so as to face the tips of the plurality of columnar spacers 20, respectively. The light shielding film 28 can be made of, for example, a light-shielding metal material or resin material. A common electrode 15 is formed on the plastic substrate 22 so as to cover the light shielding film 28. An alignment film 16 is formed so as to cover the common electrode 15.
 本実施形態の液晶表示装置を製造する場合、TFT基板11については、上記実施形態2と同様に製造することができる。一方、対向基板12については、プラスチック基板22の表面に遮光材料層を形成した後に、この遮光材料層にフォトリソグラフィ及びエッチングを行うことにより、柱状スペーサ20の先端を覆うような形状を有する複数の遮光膜28を形成する。その後、各遮光膜28を覆うように、プラスチック基板22に例えばITO膜等の透明導電膜を形成することにより、共通電極15を形成する。次に、共通電極15の表面に配向膜16を形成し、対向基板12を製造する。 When manufacturing the liquid crystal display device of the present embodiment, the TFT substrate 11 can be manufactured in the same manner as in the second embodiment. On the other hand, the counter substrate 12 is formed with a plurality of shapes that cover the tip of the columnar spacer 20 by forming a light shielding material layer on the surface of the plastic substrate 22 and then performing photolithography and etching on the light shielding material layer. A light shielding film 28 is formed. Thereafter, the common electrode 15 is formed by forming a transparent conductive film such as an ITO film on the plastic substrate 22 so as to cover each light shielding film 28. Next, the alignment film 16 is formed on the surface of the common electrode 15 to manufacture the counter substrate 12.
 そうして、上記対向基板12とTFT基板11とを液晶層13及びシール部材(不図示)を介して貼り合わせることにより、液晶表示装置1を製造する。 Thus, the liquid crystal display device 1 is manufactured by bonding the counter substrate 12 and the TFT substrate 11 together through the liquid crystal layer 13 and a seal member (not shown).
 したがって、本実施形態4によれば、柱状スペーサ20の先端に対向する領域に遮光膜28を形成したので、共通電極15が柱状スペーサ20の先端から応力集中を受けて、当該共通電極15にクラックが生じたとしても、図10に示すように、そのクラックから観察者側に透過しようとする光を遮光膜28によって遮ることができるため、本実施形態によっても柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。 Therefore, according to the fourth embodiment, since the light shielding film 28 is formed in the region facing the tip of the columnar spacer 20, the common electrode 15 receives stress concentration from the tip of the columnar spacer 20 and cracks in the common electrode 15. 10, since light that is about to pass through the cracks to the viewer side can be blocked by the light shielding film 28 as shown in FIG. 10, the viewer side in the vicinity of the columnar spacer 20 also in this embodiment. Light leakage to the can be suppressed.
 《発明の実施形態5》
 図11~図13は、本発明の実施形態5を示している。
<< Embodiment 5 of the Invention >>
11 to 13 show Embodiment 5 of the present invention.
 図11は、本実施形態5の液晶表示装置1の要部構造を拡大して示す断面図である。図12は、本実施形態5における互いに貼り合わされる前のTFT基板11及び対向基板12を示す断面図である。図13は、本実施形態5における柱状スペーサ20の近傍を拡大して示す断面図である。 FIG. 11 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the fifth embodiment. FIG. 12 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the fifth embodiment. FIG. 13 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the fifth embodiment.
 本実施形態5は、上記実施形態4において、対向基板12だけでなくTFT基板11にも遮光膜29を形成するようにしたものである。 In the fifth embodiment, the light shielding film 29 is formed not only on the counter substrate 12 but also on the TFT substrate 11 in the fourth embodiment.
 すなわち、図12に示すように、本実施形態におけるTFT基板11のプラスチック基板21には、柱状スペーサ20が形成される領域に遮光膜29が形成されている。遮光膜29は、上記実施形態4と同様に、例えば遮光性を有する金属材料や樹脂材料によって構成することが可能である。プラスチック基板21には、遮光膜29を覆うように画素電極17が形成されている。そして、その画素電極17を覆うように配向膜18が形成されている。 That is, as shown in FIG. 12, a light shielding film 29 is formed on the plastic substrate 21 of the TFT substrate 11 in the present embodiment in a region where the columnar spacer 20 is formed. As in the fourth embodiment, the light shielding film 29 can be made of, for example, a metal material or a resin material having a light shielding property. The pixel electrode 17 is formed on the plastic substrate 21 so as to cover the light shielding film 29. An alignment film 18 is formed so as to cover the pixel electrode 17.
 本実施形態におけるTFT基板11を製造する場合には、プラスチック基板21の表面に遮光材料層を形成した後に、この遮光材料層にフォトリソグラフィ及びエッチングを行うことにより、柱状スペーサ20が形成される領域に複数の遮光膜29を形成する。さらに、プラスチック基板21上にTFT(不図示)をフォトリソグラフィによって形成する。次に、TFTを覆う層間絶縁膜(不図示)を形成した後に、その層間絶縁膜の表面に透明導電膜材料としてのITO膜を形成する。そして、このITO膜をエッチングすることにより、複数の画素電極17を形成する。 In the case of manufacturing the TFT substrate 11 in the present embodiment, a region where the columnar spacer 20 is formed by forming a light shielding material layer on the surface of the plastic substrate 21 and then performing photolithography and etching on the light shielding material layer. A plurality of light shielding films 29 are formed. Further, a TFT (not shown) is formed on the plastic substrate 21 by photolithography. Next, after forming an interlayer insulating film (not shown) covering the TFT, an ITO film as a transparent conductive film material is formed on the surface of the interlayer insulating film. Then, a plurality of pixel electrodes 17 are formed by etching this ITO film.
 次に、画素電極17の表面に感光性樹脂膜(不図示)を形成し、この感光性樹脂膜をフォトリソグラフィ及びエッチングを行うことにより、複数の柱状スペーサ20を形成する。こうして形成された複数の柱状スペーサ20の基端は、上記遮光膜29にそれぞれ対向している。その後、配向膜18を画素電極17の表面に形成し、TFT基板11を製造する。 Next, a photosensitive resin film (not shown) is formed on the surface of the pixel electrode 17, and a plurality of columnar spacers 20 are formed by performing photolithography and etching on the photosensitive resin film. The base ends of the plurality of columnar spacers 20 thus formed are opposed to the light shielding film 29, respectively. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
 したがって、本実施形態5によれば、柱状スペーサ20の先端に対向する領域に遮光膜28を形成したので、共通電極15が柱状スペーサ20の先端から応力集中を受けて、当該共通電極15にクラックが生じたとしても、図13に示すように、そのクラックから観察者側に透過しようとする光を遮光膜28によって遮ることができる。さらに、柱状スペーサ20の基端に対向する領域に遮光膜29を形成したので、画素電極17が柱状スペーサ20の基端から応力集中を受けて、当該画素電極17にクラックが生じたとしても、図13に示すように、そのクラックから観察者側に透過しようとする光を遮光膜28によって遮ることができる。そのため、本実施形態によっても柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。 Therefore, according to the fifth embodiment, since the light shielding film 28 is formed in the region facing the tip of the columnar spacer 20, the common electrode 15 receives stress concentration from the tip of the columnar spacer 20, and the common electrode 15 is cracked. Even if this occurs, the light to be transmitted from the crack to the viewer side can be blocked by the light shielding film 28 as shown in FIG. Further, since the light shielding film 29 is formed in the region facing the base end of the columnar spacer 20, even if the pixel electrode 17 receives stress concentration from the base end of the columnar spacer 20 and a crack occurs in the pixel electrode 17, As shown in FIG. 13, the light to be transmitted from the crack to the viewer side can be blocked by the light shielding film 28. Therefore, according to this embodiment, light leakage to the observer side in the vicinity of the columnar spacer 20 can be suppressed.
 《発明の実施形態6》
 図14~図16は、本発明の実施形態6を示している。
Embodiment 6 of the Invention
14 to 16 show Embodiment 6 of the present invention.
 図14、本実施形態6の液晶表示装置1の要部構造を拡大して示す断面図である。図15は、本実施形態6における互いに貼り合わされる前のTFT基板11及び対向基板12を示す断面図である。図16は、本実施形態6における柱状スペーサ20の近傍を拡大して示す断面図である。 FIG. 14 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the sixth embodiment. FIG. 15 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the sixth embodiment. FIG. 16 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the sixth embodiment.
 本実施形態における柱状スペーサ20は、その略中央部分から両端側へ向かって、プラスチック基板21,22に平行な方向の断面が、徐々に大きくなるように形成されている。 The columnar spacer 20 in the present embodiment is formed so that the cross section in the direction parallel to the plastic substrates 21 and 22 gradually increases from the substantially central portion toward both ends.
 すなわち、柱状スペーサ20は、図14及び図15に示すように、TFT基板11に形成された第1スペーサ20aと、対向基板12に形成された第2スペーサ20bとを有している。第1スペーサ20aは、対向基板12側の先端面の面積が、TFT基板11側の基端面の面積よりも小さくなっている。一方、第2スペーサ20bは、TFT基板11側の先端面の面積が、対向基板12側の基端面の面積よりも小さくなっている。 That is, the columnar spacer 20 has a first spacer 20a formed on the TFT substrate 11 and a second spacer 20b formed on the counter substrate 12, as shown in FIGS. In the first spacer 20a, the area of the front end surface on the counter substrate 12 side is smaller than the area of the base end surface on the TFT substrate 11 side. On the other hand, in the second spacer 20b, the area of the front end surface on the TFT substrate 11 side is smaller than the area of the base end surface on the counter substrate 12 side.
 第1スペーサ20aと第2スペーサ20bとは、それぞれ互いに対向して配置され、各先端面同士が同じ大きさに形成されると共に互いに当接することによって、全体として柱状スペーサ20が形成されている。 The first spacer 20a and the second spacer 20b are arranged to face each other, and the tip end surfaces are formed in the same size and abut against each other, whereby the columnar spacer 20 is formed as a whole.
 本実施形態におけるTFT基板11を製造する場合には、プラスチック基板21上にTFT(不図示)をフォトリソグラフィによって形成する。次に、TFTを覆う層間絶縁膜(不図示)を形成した後に、その層間絶縁膜の表面に透明導電膜材料としてのITO膜を形成する。そして、このITO膜をエッチングすることにより、複数の画素電極17を形成する。 When manufacturing the TFT substrate 11 in the present embodiment, a TFT (not shown) is formed on the plastic substrate 21 by photolithography. Next, after forming an interlayer insulating film (not shown) covering the TFT, an ITO film as a transparent conductive film material is formed on the surface of the interlayer insulating film. Then, a plurality of pixel electrodes 17 are formed by etching this ITO film.
 次に、画素電極17の表面に感光性樹脂膜(不図示)を形成し、この感光性樹脂膜をフォトリソグラフィ及びエッチングを行うことにより、複数の第1スペーサ20aを形成する。その後、配向膜18を画素電極17の表面に形成し、TFT基板11を製造する。 Next, a photosensitive resin film (not shown) is formed on the surface of the pixel electrode 17, and a plurality of first spacers 20a are formed by performing photolithography and etching on the photosensitive resin film. Thereafter, the alignment film 18 is formed on the surface of the pixel electrode 17 to manufacture the TFT substrate 11.
 一方、対向基板12を製造する場合には、プラスチック基板22の表面における少なくとも表示領域の全体にITO膜を形成することによって、共通電極15を形成する。次に、例えば、共通電極15の表面に配向膜16を形成した後に、その配向膜16の表面に感光性樹脂膜(不図示)を形成し、この感光性樹脂膜をフォトリソグラフィ及びエッチングを行うことにより、複数の第2スペーサ20bを形成し、対向基板12を製造する。 On the other hand, when the counter substrate 12 is manufactured, the common electrode 15 is formed by forming an ITO film on at least the entire display region on the surface of the plastic substrate 22. Next, for example, after the alignment film 16 is formed on the surface of the common electrode 15, a photosensitive resin film (not shown) is formed on the surface of the alignment film 16, and the photosensitive resin film is subjected to photolithography and etching. Thus, a plurality of second spacers 20b are formed, and the counter substrate 12 is manufactured.
 したがって、本実施形態6によれば、柱状スペーサ20の両端面(すなわち、TFT基板11側の端面及び対向基板12側の端面)の面積を、当該柱状スペーサ20の中央部分の断面よりも大きくしたので、図16に示すように、柱状スペーサ20の両端から共通電極15及び画素電極17へそれぞれ加わる応力を分散させることができる。そのため、共通電極15及び画素電極17におけるクラックの発生を抑制して、柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。 Therefore, according to the sixth embodiment, the area of both end surfaces of the columnar spacer 20 (that is, the end surface on the TFT substrate 11 side and the end surface on the counter substrate 12 side) is made larger than the cross section of the central portion of the columnar spacer 20. Therefore, as shown in FIG. 16, the stress applied to the common electrode 15 and the pixel electrode 17 from both ends of the columnar spacer 20 can be dispersed. Therefore, generation of cracks in the common electrode 15 and the pixel electrode 17 can be suppressed, and light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed.
 《発明の実施形態7》
 図17~図19は、本発明の実施形態7を示している。
<< Embodiment 7 of the Invention >>
17 to 19 show Embodiment 7 of the present invention.
 図17は、本実施形態7の液晶表示装置1の要部構造を拡大して示す断面図である。図18は、本実施形態7における互いに貼り合わされる前のTFT基板11及び対向基板12を示す断面図である。図19は、本実施形態7における柱状スペーサ20の近傍を拡大して示す断面図である。 FIG. 17 is an enlarged cross-sectional view showing the main structure of the liquid crystal display device 1 according to the seventh embodiment. FIG. 18 is a cross-sectional view showing the TFT substrate 11 and the counter substrate 12 before being bonded to each other in the seventh embodiment. FIG. 19 is an enlarged sectional view showing the vicinity of the columnar spacer 20 in the seventh embodiment.
 本実施形態における柱状スペーサ20は、プラスチック基板21,22の構成材料と同じ硬度である材料か、又はプラスチック基板21,22の構成材料よりも低い硬度である材料によって構成されている。 The columnar spacer 20 in the present embodiment is made of a material having the same hardness as the constituent material of the plastic substrates 21 and 22, or a material having a lower hardness than the constituent material of the plastic substrates 21 and 22.
 柱状スペーサ20は、図17に示すように、例えばTFT基板11における画素電極17の表面に形成され、その先端が対向基板12の配向膜16に当接している。柱状スペーサ20の材料には、例えばヤング率が約11GPa程度の感光性材料である「オプトマーNNシリーズ」(JSR株式会社の製品)を適用すると共に、プラスチック基板21,22の材料には、例えばヤング率が約13GPa程度である脂環式エポキシ樹脂にガラスクロスを50%程度添加したプラスチック基板を適用することができる。 As shown in FIG. 17, the columnar spacer 20 is formed, for example, on the surface of the pixel electrode 17 in the TFT substrate 11, and the tip thereof is in contact with the alignment film 16 of the counter substrate 12. As the material of the columnar spacer 20, for example, “Optomer NN series” (a product of JSR Corporation), which is a photosensitive material having a Young's modulus of about 11 GPa, is applied. A plastic substrate obtained by adding about 50% glass cloth to an alicyclic epoxy resin having a rate of about 13 GPa can be applied.
 尚、プラスチック基板に例えばSiO等のシリコーン系のハードコートを真空蒸着することによって、プラスチック基板21,22の硬度を、柱状スペーサ20と同じに又は大きくすることも可能である。 It is also possible to increase the hardness of the plastic substrates 21 and 22 to be the same as or larger than that of the columnar spacer 20 by vacuum-depositing a silicone hard coat such as SiO 2 on the plastic substrate.
 したがって、本実施形態7によれば、図19に示すように、柱状スペーサ20の両端から共通電極15及び画素電極17に加わる応力を、柱状スペーサ20がプラスチック基板21,22と平行な方向に広がるように変形することにより小さくすることができる。すなわち、本実施形態によっても、柱状スペーサ20から受ける応力による共通電極15及び画素電極17のクラックの発生を抑制できるため、柱状スペーサ20の近傍における観察者側への光漏れを抑制することができる。 Therefore, according to the seventh embodiment, as shown in FIG. 19, the stress applied to the common electrode 15 and the pixel electrode 17 from both ends of the columnar spacer 20 spreads in the direction in which the columnar spacer 20 is parallel to the plastic substrates 21 and 22. Thus, it can be made smaller by deforming. That is, according to the present embodiment as well, the occurrence of cracks in the common electrode 15 and the pixel electrode 17 due to the stress received from the columnar spacer 20 can be suppressed, so that light leakage to the viewer side in the vicinity of the columnar spacer 20 can be suppressed. .
 《その他の実施形態》
 上記各実施形態では、第1基板をTFT基板11とする一方、第2基板を対向基板12とした例について説明したが、これとは逆に、第1基板を対向基板12とする一方、第2基板をTFT基板11としてもよい。
<< Other Embodiments >>
In each of the above-described embodiments, the example in which the first substrate is the TFT substrate 11 and the second substrate is the counter substrate 12 has been described. On the contrary, the first substrate is the counter substrate 12, Two substrates may be used as the TFT substrate 11.
 また、第1基板はアクティブマトリクス基板としたが、本発明はこれに限らず、透明基板及び柱状スペーサが形成されていれば、例えば帯形状の第1透明電極を複数有するパッシブマトリクス基板等の他の基板によって構成してもよい。 The first substrate is an active matrix substrate. However, the present invention is not limited to this, and other materials such as a passive matrix substrate having a plurality of strip-shaped first transparent electrodes may be used as long as a transparent substrate and columnar spacers are formed. You may comprise by the board | substrate of.
 また、TFT基板11及び対向基板12の双方がフレキシブル基板からなる例について説明したが、本発明はこれに限らず、例えばTFT基板11及び対向基板12の少なくとも一方がフレキシブル基板であってもよく、また、TFT基板11及び対向基板12の双方がガラス基板等の非フレキシブル基板によって構成されていてもよい。 Moreover, although the example which both the TFT substrate 11 and the opposing substrate 12 consist of a flexible substrate was demonstrated, this invention is not limited to this, For example, at least one of the TFT substrate 11 and the opposing substrate 12 may be a flexible substrate, Moreover, both the TFT substrate 11 and the counter substrate 12 may be configured by a non-flexible substrate such as a glass substrate.
 また、共通電極(第2透明電極)15及び画素電極(第1透明電極)17は、ITOに限らず、例えばIZO(Indium Zinc Oxide)等の他の透明導電膜によって構成してもよい。 Further, the common electrode (second transparent electrode) 15 and the pixel electrode (first transparent electrode) 17 are not limited to ITO, and may be formed of other transparent conductive films such as IZO (Indium Zinc Oxide), for example.
 また、上記各実施形態では、柱状スペーサ20をTFT基板11に形成した例について説明したが、本発明はこれに限らず、柱状スペーサ20を対向基板12に形成するようにしてもよい。 In each of the above embodiments, the example in which the columnar spacer 20 is formed on the TFT substrate 11 has been described. However, the present invention is not limited to this, and the columnar spacer 20 may be formed on the counter substrate 12.
 また、本発明は上記実施形態1~7に限定されるものでなく、本発明には、これらの実施形態1~7を適宜組み合わせた構成が含まれる。 Further, the present invention is not limited to Embodiments 1 to 7 described above, and the present invention includes a configuration in which these Embodiments 1 to 7 are appropriately combined.
 例えば、実施形態6及び7における柱状スペーサ20の構成を、実施形態1~5の柱状スペーサ20として適用するようにしてもよい。 For example, the configuration of the columnar spacer 20 in the sixth and seventh embodiments may be applied as the columnar spacer 20 in the first to fifth embodiments.
 また、上記実施形態1では液晶表示装置1がバックライトユニットを有する透過表示を行う液晶表示装置である場合について説明したが、本発明はこれに限らず、反射表示を行う液晶表示装置についても同様に適用できる。 In the first embodiment, the case where the liquid crystal display device 1 is a liquid crystal display device that performs a transmissive display having a backlight unit has been described. Applicable to.
 以上説明したように、本発明は、液晶層の厚みを一定に維持するための柱状スペーサを有する液晶表示装置について有用である。 As described above, the present invention is useful for a liquid crystal display device having columnar spacers for maintaining the thickness of the liquid crystal layer constant.
      1   液晶表示装置 
     11   TFT基板(第1基板) 
     12   対向基板(第2基板)
     13   液晶層 
     15   共通電極(第2透明電極) 
     16   配向膜 
     17   画素電極(第1透明電極)
     18   配向膜 
     20   柱状スペーサ 
     21,22   プラスチック基板 
     25,26   開口部   
1 Liquid crystal display device
11 TFT substrate (first substrate)
12 Counter substrate (second substrate)
13 Liquid crystal layer
15 Common electrode (second transparent electrode)
16 Alignment film
17 Pixel electrode (first transparent electrode)
18 Alignment film
20 Columnar spacer
21, 22 Plastic substrate
25, 26 opening

Claims (7)

  1.  第1基板と、
     上記第1基板に対向して配置された第2基板と、
     上記第1基板及び第2基板の間に設けられた液晶層と、
     上記第1基板又は第2基板に形成され、上記液晶層の厚みを一定に規定する複数の柱状スペーサとを備えた液晶表示装置であって、
     上記第1基板の上記液晶層側には、第1透明電極が形成され、
     上記第2基板の上記液晶層側には、第2透明電極が形成され、
     上記第1透明電極及び上記第2透明電極の少なくとも一方には、上記柱状スペーサが配置される領域において開口部が形成され、
     上記開口部の内側には、上記柱状スペーサの端部が配置されている
    ことを特徴とする液晶表示装置。
    A first substrate;
    A second substrate disposed opposite the first substrate;
    A liquid crystal layer provided between the first substrate and the second substrate;
    A liquid crystal display device comprising a plurality of columnar spacers formed on the first substrate or the second substrate and defining a thickness of the liquid crystal layer constant,
    A first transparent electrode is formed on the liquid crystal layer side of the first substrate,
    A second transparent electrode is formed on the liquid crystal layer side of the second substrate,
    In at least one of the first transparent electrode and the second transparent electrode, an opening is formed in a region where the columnar spacer is disposed,
    The liquid crystal display device, wherein an end of the columnar spacer is disposed inside the opening.
  2.  請求項1に記載された液晶表示装置において、
     上記開口部は、上記第1透明電極に形成され、
     上記第2基板には、上記複数の柱状スペーサにそれぞれ対向するように複数の遮光膜が形成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    The opening is formed in the first transparent electrode,
    A liquid crystal display device, wherein a plurality of light shielding films are formed on the second substrate so as to face the plurality of columnar spacers, respectively.
  3.  請求項1に記載された液晶表示装置において、
     上記柱状スペーサは、上記第1基板に形成され、
     上記開口部は、上記第2透明電極に形成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    The columnar spacer is formed on the first substrate,
    The liquid crystal display device, wherein the opening is formed in the second transparent electrode.
  4.  請求項3に記載された液晶表示装置において、
     上記柱状スペーサは、上記第1基板側の端面の面積が、上記第2基板側の端面の面積よりも大きい
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 3,
    The columnar spacer is characterized in that an area of an end face on the first substrate side is larger than an area of an end face on the second substrate side.
  5.  請求項3に記載された液晶表示装置において、
     上記開口部は、さらに上記第1透明電極にも形成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 3,
    The liquid crystal display device, wherein the opening is further formed in the first transparent electrode.
  6.  請求項1乃至5の何れか1つに記載された液晶表示装置において、
     上記第1基板は、アクティブマトリクス基板である
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to any one of claims 1 to 5,
    The liquid crystal display device, wherein the first substrate is an active matrix substrate.
  7.  請求項1乃至6の何れか1つに記載された液晶表示装置において、
     上記第1基板及び第2基板の少なくとも一方は、フレキシブル基板によって構成されている
    ことを特徴とする液晶表示装置。
    The liquid crystal display device according to claim 1,
    A liquid crystal display device, wherein at least one of the first substrate and the second substrate is formed of a flexible substrate.
PCT/JP2011/005606 2010-10-08 2011-10-04 Liquid crystal display device WO2012046442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010228862 2010-10-08
JP2010-228862 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012046442A1 true WO2012046442A1 (en) 2012-04-12

Family

ID=45927447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005606 WO2012046442A1 (en) 2010-10-08 2011-10-04 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012046442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280852A (en) * 2021-12-31 2022-04-05 惠科股份有限公司 Display panel and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302640A (en) * 2002-04-09 2003-10-24 Rohm Co Ltd Liquid crystal panel
JP2006338011A (en) * 2005-06-01 2006-12-14 Samsung Electronics Co Ltd Liquid crystal display panel and method for manufacturing the same
JP2007233059A (en) * 2006-03-01 2007-09-13 Epson Imaging Devices Corp Liquid crystal display device and method for manufacturing the same
JP2009122644A (en) * 2007-10-23 2009-06-04 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302640A (en) * 2002-04-09 2003-10-24 Rohm Co Ltd Liquid crystal panel
JP2006338011A (en) * 2005-06-01 2006-12-14 Samsung Electronics Co Ltd Liquid crystal display panel and method for manufacturing the same
JP2007233059A (en) * 2006-03-01 2007-09-13 Epson Imaging Devices Corp Liquid crystal display device and method for manufacturing the same
JP2009122644A (en) * 2007-10-23 2009-06-04 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280852A (en) * 2021-12-31 2022-04-05 惠科股份有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
US10288945B2 (en) Liquid crystal display device
JP4961271B2 (en) Liquid crystal display panel manufacturing method and liquid crystal display panel
US10001676B2 (en) Display device
JP5840873B2 (en) Mother board
JP5457321B2 (en) Liquid crystal display
JP2009069321A (en) Display device
US10042213B2 (en) Display device including projections opposed to each other in a sealant
JP2017111290A (en) Liquid crystal display device
US20110299017A1 (en) Liquid crystal display manufacturing method, liquid crystal display, and electronic apparatus
JP6734441B2 (en) Display panel and display device
KR20160038964A (en) Curved liquid crystal display
US9335587B2 (en) Liquid crystal cell and method for manufacturing the same
US9507207B2 (en) Display device
US10048534B2 (en) Display device
JP2016157072A (en) Display
JP2010014985A (en) Liquid crystal display device
JP5247615B2 (en) Horizontal electric field type liquid crystal display device
WO2012124699A1 (en) Liquid crystal display
WO2012046442A1 (en) Liquid crystal display device
JP2011107391A (en) Display device
US8715433B2 (en) Method for fabricating liquid crystal display panel
KR20160035659A (en) Curved Display Device
JP2010054552A (en) Liquid crystal display device
JP5403539B2 (en) Horizontal electric field type liquid crystal display device
JP2009003049A (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP