WO2012033326A2 - Dense rare earth metal oxide coating film for sealing porous ceramic surface, and preparation method thereof - Google Patents

Dense rare earth metal oxide coating film for sealing porous ceramic surface, and preparation method thereof Download PDF

Info

Publication number
WO2012033326A2
WO2012033326A2 PCT/KR2011/006586 KR2011006586W WO2012033326A2 WO 2012033326 A2 WO2012033326 A2 WO 2012033326A2 KR 2011006586 W KR2011006586 W KR 2011006586W WO 2012033326 A2 WO2012033326 A2 WO 2012033326A2
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth metal
metal oxide
porous ceramic
coating film
Prior art date
Application number
PCT/KR2011/006586
Other languages
French (fr)
Korean (ko)
Other versions
WO2012033326A3 (en
Inventor
박동수
이병국
한병동
이정환
변응선
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2012033326A2 publication Critical patent/WO2012033326A2/en
Publication of WO2012033326A3 publication Critical patent/WO2012033326A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • Dense rare earth metal oxide coating film for sealing porous ceramic surface and its manufacturing method Dense rare earth metal oxide coating film for sealing porous ceramic surface and its manufacturing method
  • the present invention relates to a dense rare earth metal oxide coated membrane for sealing a porous ceramic surface and a method for producing the same.
  • a chamber of a facility used in a semiconductor manufacturing process is made using a ceramic bulk such as anodized aluminum alloy or alumina for insulation.
  • a ceramic bulk such as anodized aluminum alloy or alumina for insulation.
  • CVD chemical vapor deposition
  • etching equipment using plasma etching has increased.
  • the chamber is manufactured through a method of spraying ceramic-ol plasma, such as alumina, thermal spray, or compacting and sintering on the aluminum alloy.
  • the semiconductor manufacturing process performed in the chamber takes a large number of high temperature processes such as a heat treatment process and a chemical vapor deposition film, the chamber is required to have heat resistance.
  • the parts of the semiconductor manufacturing equipment such as the chamber is cut. It is necessary to minimize the particle generation and wafer contamination during the manufacturing process by requiring softness, heat resistance, corrosion resistance, and polarization resistance, and maintaining a strong bonding force between the coating layer and the substrate so that the coating layer does not peel off. .
  • the thick film In the case of the plasma spraying or thermal spraying method, which is mainly used for the formation of the thick film, there is an advantage that the thick film can be formed.
  • the ceramic material is coated on the metal substrate. Engraving process after coating In this case, there is a problem in that the bonding force is lowered according to the difference in thermal expansion between the metal and the ceramic, and in some cases, there is a limit in that the high temperature process, such as melting of a metal substrate, produces an oxidized worm.
  • the aerosol film formation method can overcome the above problems and produce a dense thick film.
  • it is difficult to make a dense thick film of 100 ⁇ or more. Therefore, problems may occur in the life of the thick film exposed to high voltage and plasma.
  • the present inventors have completed the present invention to provide a dense plasma coating film that seals the surface of a porous thick film or a porous ceramic of more than 100 ⁇ . It was possible to produce a coating film to overcome the problem that the lack of.
  • An object of the present invention is to provide a dense rare earth metal oxide coating film for sealing a porous ceramic surface and a method of manufacturing the same.
  • the present invention has an average surface roughness of 0.4 to 2.3
  • a rare earth metal oxide coating film formed on a porous ceramic layer of a substrate including a porous ceramic worm having a ⁇ .
  • the present invention comprises the step of forming a porous ceramic coating layer on the substrate through a plasma spray process (step 1);
  • the surface of the porous ceramic coating layer formed in step 1 is 0.4 to 2.3 Processing to have an average surface roughness (step 2);
  • It provides a rare earth metal oxide coating film comprising the step (step 3) of coating the rare earth metal oxide powder on the porous ceramic coating layer subjected to the processing of step 2 by the aerosol film formation method.
  • the present invention comprises the steps of forming a porous ceramic substrate through a sintering process (step a);
  • step b (24) processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 ym (step b);
  • a rare earth metal oxide coating film comprising the step (step C) of coating a rare earth metal oxide powder on a porous ceramic substrate subjected to the processing of step b through an aerosol film formation method.
  • the dense rare earth metal oxide coating film for sealing the porous ceramic surface according to the present invention and a method for manufacturing the same are characterized in that the voltage resistance is secured by the porous ceramic coating layer of sufficient thickness and the plasma corrosion resistance is secured by the dense rare earth metal oxide coating film.
  • FIG. 1 is a schematic view showing a cross section of a rare earth metal oxide coating film according to the present invention
  • FIG. 2 is a schematic view showing a schematic diagram of a process of performing an aerosol-based film
  • FIG. 4 is a photograph showing a surface which is not subjected to sand blast and a surface which is performed only up to sand blast in Examples 1 to 3 of the present invention
  • FIG. 5 is a photograph showing a surface which is only sandblasted and a surface which is not sandblasted in Comparative Examples 1 to 3 of the present invention
  • FIG. 8 is a photograph of a cross section of a rare earth metal oxide coating film prepared according to Example 1 of the present invention with a scanning electron microscope; FIG.
  • FIG. 9 is a photograph of a cross-section of a rare earth metal trioxide coating film prepared according to Example 4 of the present invention with a scanning electron microscope; FIG.
  • FIG. 10 is a schematic diagram showing a method of performing an adhesive strength analysis in Experimental Example 4 of the present invention.
  • FIG. 11 is a photograph of a cross section of a specimen subjected to the adhesive strength analysis in Experimental Example 4 of the present invention through a main prescan microscope;
  • EDS 12 is a photograph of a cross section of a specimen subjected to the adhesive strength analysis in Experimental Example 4 of the present invention through an energy dispersive X-ray spectrometer (EDS).
  • EDS energy dispersive X-ray spectrometer
  • the present invention provides a rare earth metal oxide coating film formed on a porous ceramic layer of a substrate including a porous ceramic layer having an average surface roughness of 0.4 to 2.3 ⁇ 1 GPa .
  • An example of the rare earth metal oxide coating film is shown in FIG. 1 as a schematic cross-sectional view.
  • the porous ceramic layer has an average surface roughness of 0.4 to 2.3 ⁇
  • the adhesive force with the rare earth metal oxide coating film according to the present invention is high. If the average surface roughness of the surface of the porous ceramic layer is less than 0.4 urn, there is a problem in that the adhesion between the porous ceramic layer and the rare earth metal oxide coating film is inferior, and if the average surface roughness exceeds 2.3 11 m, the porous ceramic layer is over It is difficult to form a rare earth metal oxide coating film on the substrate.
  • the porous ceramic layer is a porous coating layer formed by the coating, for example, may be coated through a plasma spray process, but is not limited thereto.
  • the substrate may be a porous ceramic substrate of the same material as the porous ceramic layer having an average surface roughness of 0.4 to 2.3 ⁇ , for example, a porous ceramic formed of the same material as the porous ceramic layer and formed through a sintering process.
  • a substrate may be used, but is not limited thereto.
  • a metal substrate, a ceramic substrate, a polymer substrate, and the like may be used, and the metal substrate may be an iron (Fe) substrate , an iron alloy substrate, a magnet (Mg) substrate, or a magnet.
  • a chest alloy substrate, an aluminum (A1) substrate, an aluminum alloy substrate, and the like may be used, and the ceramic substrate may be Si0 2 , MgO, CaC0 3> alumina substrate, or the like, and the polymer substrate may be polyethylene terephthalate.
  • PET polyethylene naphthalate
  • PPA polypropylene aditite
  • PI polyisocyanate
  • the porous ceramic layer is preferably a porous alumina layer.
  • the porous ceramic insect is a porous alumina insect, it is possible to maintain the characteristics of the substrate itself and at the same time excellent corrosion resistance can be applied to the rare earth metal oxide coating film according to the invention as a semiconductor equipment component requiring corrosion resistance such as semiconductor etching equipment. .
  • the density of the rare earth metal oxide coating film according to the present invention is preferably 90% or more.
  • the density of the rare earth metal oxide coating film is less than 90%, there is a problem that it is difficult to secure corrosion resistance to high-density plasma, and it is difficult to control the breakdown voltage and leakage current.
  • the rare earth metal oxide coating layer preferably has a thickness of 1 to 50 ⁇ . If the thickness of the rare earth metal oxide coating film is less than 1 ⁇ , there is a problem in that the film is easily peeled off when exposed to the plasma. If the thickness of the rare earth metal oxide coating film exceeds 50! Im, the peeling occurs due to the residual force of the coating film. There is a problem, and there is also a problem that peeling may occur during post-processing. Furthermore, there is a problem in that economic losses are caused by excessive use of expensive rare earth metals.
  • yttria Y 2 0 3
  • disprocia Dy 2 0 3
  • avia Er 2 0 3
  • samaria 3 ⁇ 4
  • Rare earth metal oxides such as yttria (Y 2 0 3 ) ⁇ disprocia (Dy 2 0 3 ), ervia (Er 2 0 3 ), and samaria (Sm 2 0 3 ) are plasma exposed during semiconductor processing.
  • Y 2 0 3 yttria
  • Dy 2 0 3 disprocia
  • Er 2 0 3 ervia
  • Sm 2 0 3 samaria
  • the rare earth metal oxide coating film according to the present invention has a high corrosion resistance to plasma that can be exposed to semiconductor processes, and a compact structure makes it easy to control breakdown voltage and leakage current, and thus includes semiconductor etching equipment. It can be applied to existing semiconductor equipment parts.
  • step 2 Processing the surface of the porous ceramic coating layer formed in step 1 to have an average surface roughness of 0.4 to 2.3 ⁇ (step 2); And
  • It provides a rare earth metal oxide coating film comprising the step (step 3) of coating the rare earth metal oxide on the porous ceramic coating layer subjected to the processing of step 2 by the aerosol film forming method.
  • step 1 is a step of forming a porous ceramic coating layer on a substrate through a plasma spray process.
  • the porous ceramic coating is preferably a porous alumina coating, but is not limited thereto.
  • the porous ceramic coating layer is a porous alumina coating layer, while maintaining the characteristics of the substrate itself and at the same time can exhibit excellent corrosion resistance semiconductor equipment components that require corrosion resistance of the rare earth metal oxide coating film produced by the manufacturing method such as semiconductor etching equipment Can be applied as
  • the substrate of step 1 may be a metal substrate, a ceramic substrate, a polymer substrate, and the like
  • the metal substrate may be an iron (Fe) substrate, an iron alloy substrate, a magnesium (Mg) substrate, a magnesium-based alloy substrate, an aluminum ( A1) substrate, an aluminum-based alloy substrate, etc.
  • the ceramic substrate may be Si0 2 , MgO, CaC0 3 , alumina substrate, etc.
  • the polymer substrate may be polyethylene terephthalate (PET), polyethylene, Phthalate (PEN), polypropylene adipate (PPA), polyisocyanate (PI) substrates and the like can be used, but are not limited thereto.
  • step 2 is a step of processing so that the surface of the porous ceramic coating layer formed in step 1 has an average surface roughness of 0.4 to 2.3 iim
  • step 1 After the porous ceramic coating layer formed in the grinding process to have a uniform thickness, the surface is roughened so that the surface of the porous ceramic coating layer has an average surface roughness of 0.4 to 2.3 ⁇ .
  • the processing may be performed using a sandblast, but is not limited thereto.
  • the surface of the porous ceramic coating layer formed in step 1 through the processing is 0.4
  • the sand blast is preferably carried out by the air pressure of 1 to 5 atm. If sandblasting is performed at an air pressure of less than 1 atm, there is a problem that the surface roughness of the porous ceramic coating layer cannot be increased. There is a problem that this is not done properly.
  • step 3 is a step of coating a rare earth metal oxide on the porous ceramic coating layer subjected to the processing in step 2 by an aerosol film formation method, wherein the aerosol film formation is performed.
  • the rare earth metal oxide coating layer may be formed by coating rare earth metal oxides on the ceramic coating layer through the aerosol deposition method of Step 3.
  • the rare earth metal oxide is a group including yttria ( ⁇ 2 0 3 ), dysprosia (Dy 2 0 3 ), a via (Er 2 0 3 ), and samaria (Sm 2 0 3 ). It is preferably selected from.
  • the rare earth metal oxide has a strong resistance to the plasma exposed to the semiconductor process, so that the rare earth metal oxide coating film produced by the manufacturing method according to the present invention has the characteristics of corrosion resistance and voltage resistance for the plasma of the semiconductor process To secure it.
  • the compressed air of the medical grade when performing the aerosol deposition of step 3 Preference is given to using.
  • the compressed air of the medical grade it is generally possible to prevent a problem that aerosolization is not performed by moisture contained in the air, and also to prevent the formation of impurities such as oil inside the air during aerosol film formation. have.
  • step a Forming a porous ceramic substrate through the sintering process (step a);
  • step b Processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 ⁇ (step b);
  • a rare earth metal oxide coating film comprising a step (step C) of coating a rare earth metal oxide on the porous ceramic substrate subjected to the processing of step b through an aerosol film formation method.
  • step a is a step of forming a porous ceramic substrate through a sintering process.
  • the porous ceramic substrate formed through the sintering process of step a is preferably a porous alumina substrate, but is not limited thereto.
  • step b is a step of processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 ⁇ .
  • the processing of step b may be performed through a sand blast, but is not limited thereto.
  • the surface of the porous ceramic substrate formed in step a may be roughened, thereby improving adhesion between the porous ceramic substrate and the rare earth metal oxide layer.
  • the processing of step b may be omitted.
  • the sand blast is preferably carried out at an air pressure of 1 to 5 atm ⁇ If the sand blast is carried out at a pneumatic pressure of less than the industrial pressure there is a problem that can not increase the surface roughness of the porous ceramic substrate, In case of air pressure of 5 atm or higher, the surface roughness becomes excessively high and the porous ceramic substrate There is a problem that the coating is not made properly.
  • step C is a step of coating the rare earth metal oxide on the porous ceramic substrate subjected to the processing of step b by an aerosol film formation method, and forming the aerosol film. This process is shown schematically through the schematic diagram of FIG.
  • the rare earth metal oxide coating film may be formed by coating the rare earth metal oxide on the porous ceramic substrate on which the processing of step b is performed through the aerosol film formation method of step C.
  • the rare earth metal oxide is selected from the group consisting of yttria (3 ⁇ 4), dysprocia (Dy 2 0 3 ), avia (Er 2 3 ⁇ 4), and samaria (Sm 2 0 3 ). desirable.
  • the rare earth metal oxide has a strong resistance to the plasma exposed during the semiconductor process
  • the rare earth metal oxide coating film produced through the manufacturing method according to the invention ensures the corrosion resistance and withstand voltage characteristics for the plasma of the semiconductor process To do it.
  • step C it is preferable to use compressed air of medical grade when performing the aerosol film formation of step C.
  • compressed air of the medical grade it is generally possible to prevent a problem that aerosolization is not performed by moisture contained in the air, and also to prevent the formation of impurities such as oil in the air during film formation. have.
  • Step 1 Alumina coated layer having a thickness of 500 ⁇ was formed on the 2 cm X 2 cm surface by a plasma spray method on a 2 cm X 2 cm x 0.5 cm (thick) aluminum plate.
  • Step 2 Grinding the alumina coating layer of step 1 and 200 grit white aluminium B powder was used to sand blast with air pressure of 2 atmospheres.
  • Step 3 A yttria coating layer was formed on the alumina coating layer subjected to sand blasting in step 2 by aerosol film formation to prepare a rare earth metal oxide coating layer (yttria).
  • step 2 of Example 1 to 200 grit white alumina to 4 atm air pressure
  • a rare earth metal oxide coating layer (yttria) was prepared in the same manner as in Example 1 except that the furnace sand blast was performed.
  • a rare earth metal oxide coating film (Tria) was prepared in the same manner as in Example 1 except that sand blasting was performed at 5 atmospheres of air pressure in Step 2 of Example 1.
  • Example 2 In the same manner as in Example 1 except that a commercially available porous alumina ceramic substrate manufactured by sintering instead of the alumina coating layer was prepared in Step 1 of Example 1, a rare earth metal oxide coating layer (Yttria) was manufactured. It was.
  • Yttria rare earth metal oxide coating layer
  • a rare earth metal oxide coating film (disprocia) was prepared in the same manner as in Example 1, except that the disprocia coating layer was formed instead of the yttria coating layer in Step 3 of Example 3.
  • a rare earth metal oxide coating (Avia) was prepared in the same manner as in Example 1, except that the Avia coating layer was formed instead of the yttria coating layer in Step 3 of Example 3.
  • Example 7 Preparation of Rare Earth Metal Oxide Coating Film 7
  • a rare earth metal oxide coating layer (samaria) was prepared in the same manner as in Example 1 except that the samaria coating layer was formed instead of the yttria coating layer in Step 3 of Example 3.
  • FIG. 3 A rare earth metal oxide coating film surface photograph prepared through Examples 3, 5, 6, and 7 of the present invention is shown in FIG. 3.
  • the rare earth metal oxide coating layer was manufactured in the same manner as in Example 1, except that sand blasting was carried out using 40 grit white alumina powder in step 2 of Example 1 at an air pressure of 1 atmosphere. Prepared.
  • Comparative Example 1 except that sand blasting was performed at an air pressure of 3 atmospheres.
  • Comparative Example 1 except that sand blasting was performed at an air pressure of 5 atmospheres.
  • a rare earth metal oxide coating was prepared in the same manner as in Example 1, except that the yttria coating layer was formed on the alumina coating layer by aerosol deposition without performing sand blasting.
  • Example 1 to 3 and Comparative Examples 1 to 3 of the present invention the surface roughness of the alumina coating layer and the surface roughness and the alumina coating layer not performing sandblasting were measured until sand blasting before aerosol deposition was performed. The results are shown in Table 1 below, and FIGS. 4 and 5.
  • Example 1 the surface roughnesses of Examples 1 to 3 where sandblasting was performed with 200 grit white alumina were 0.5 to 1.8 ⁇ , and Comparative Examples 1 to 3 were sandblasting with 40 grit white alumina. A surface roughness of 2.3 to 4.3 ⁇ was shown. It also exhibited a surface roughness of 0.3 to 0.4 m without sandblasting. Through this it was confirmed that it is possible to increase the surface roughness of the alumina coating layer through the sand blast.
  • the degree of peeling was analyzed according to the surface roughness of the rare earth metal oxide coating film prepared through Examples 1 to 3 and Comparative Examples 1 to 4 of the present invention, and the results are shown in FIGS. 6 and 7.
  • the rare earth metal oxide coating film prepared in Comparative Example 4 was confirmed that the coated portion is peeled off a lot. This is because the surface roughness was low because the coating was carried out without performing sandblasting, thereby lowering the bonding strength with the alumina coating layer was easily peeled off.
  • the rare earth metal oxide coating film prepared in Examples 1 to 3 of the present invention was confirmed that the peeling was hardly made.
  • the coating film prepared through Comparative Examples 1 to 3 'It was confirmed that a large number of the portion is not coated.
  • the cross-section of the rare earth metal oxide coating film prepared according to Example 4 of the present invention also confirmed that the yttria layer was smoothly coated on the alumina layer, and the coated yttria layer was It was confirmed that the structure is very dense. Through this, it can be seen that a compact rare earth oxide coating film can be formed on the ceramic porous sintered body.
  • the rare earth metal oxide coating film prepared according to Example 6 of the present invention is shown in FIG.
  • Example 6 of the present invention it was confirmed that the rare earth metal oxide coating layer (yttria coating layer) formed in Example 6 of the present invention was very strongly adhered to the sandblasted alumina insect. This means that the cohesion strength and the adhesion strength between the rare earth metal oxide coating layer and the alumina layer are higher than that in the alumina coating layer formed by the plasma spraying process. As can be seen that the rare earth metal oxide coating film according to the present invention is not easily peeled or damaged.
  • the density of the rare earth metal oxide coating film prepared in Example 1 of the present invention was measured by the Archimedes method.
  • the rare earth metal oxide coating film prepared in Example 1 of the present invention As a result of measuring the density of the rare earth metal oxide coating film prepared in Example 1 of the present invention by the Archimedes method, a numerical value having a relative density of 95.3% was obtained. This means that the rare earth metal oxide coating film has a very dense structure according to the present invention. Accordingly, it was confirmed that the rare earth metal oxide coating film according to the present invention overcomes the problems caused by the existing high porosity and exhibits a dense structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The present invention relates to a dense rare earth metal oxide coating film for sealing a porous ceramic surface, and a preparation method thereof. Particularly, the present invention relates to a rare earth metal oxide coating film formed on a porous ceramic film of a substrate, wherein the porous ceramic film has an average surface roughness of 0.4 to 2.3 m. The dense rare earth metal oxide coating film for sealing a porous ceramic surface, and the preparation method thereof, according to the present invention, can provide not only the effect of ensuring withstand voltage characteristics due to the porous ceramic coating film having a sufficient thickness but also the effect of ensuring plasma resistivity due to the dense rare earth metal oxide coating film, and can therefore be applied to various parts of a semiconductor apparatus including a semiconductor etching apparatus.

Description

【명세서】  【Specification】
【발명의명칭】  [Name of invention]
다공성 세라믹 표면을 밀봉하는 치밀한 회토류 금속 산화물 코팅막 및 이의 제조방법  Dense rare earth metal oxide coating film for sealing porous ceramic surface and its manufacturing method
【기술분야】  Technical Field
<ι> 본 발명은 다공성 세라믹 표면을 밀봉하는 치밀한 희토류 금속 산화물 코팅 막 및 이의 제조방법에 관한 것이다.  The present invention relates to a dense rare earth metal oxide coated membrane for sealing a porous ceramic surface and a method for producing the same.
<2>  <2>
【배경기술】  Background Art
<3> 일반적으로 반도체 제조공정에 사용되는 설비의 챔버 (chamber)는 절연을 위 하여 애노다이징 (Anodizing) 처리한 알루미늄 합금 또는 알루미나 등의 세라믹 벌 크를 사용하여 만들어진다. 최근에는 화학기상증착 (CVD) 등을 이용한 증착설비 또 는 플라즈마 식각 등을 이용한 식각설비 등의 반도체 제조공정에서 사용되는 부식 성이 높은 가스나 플라즈마 등에 대한 내식성의 필요성이 보다 높아짐에 따라 이러 한 높은 내식성을 갖기 위하여 상기 알루미늄 합금에 알루미나 등의 세라믹올 플라 즈마 분사, 열적분사 (thermal spray), 또는 컴팩팅 후 소결 등의 방법을 통하여 상 기 챔버를 제작하고 있다. 또한 상기 챔버내에서 진행되는 반도체 제조공정은 열처 리공정, 화학기상성막 등과 같은 고온공정이 다수를 차지하므로 상기 챔버는 내열 성도 함께 가질 것이 요구된다. 즉 상기 챔버와 같은 반도체 제조설비의 부품은 절 . 연, 내열성, 내식성, 내폴라즈마성을 필요로 하고 코팅층과 기재가 강한 결합력을 유지하여 상기 코팅층의 벗겨짐이 없도록 하여 제조공정 중에 파티클 (particle) 발 생 및 이에 의한 웨이퍼 오염을 최소화하는 것이 필요하다.  In general, a chamber of a facility used in a semiconductor manufacturing process is made using a ceramic bulk such as anodized aluminum alloy or alumina for insulation. Recently, as the need for corrosion resistance for highly corrosive gas or plasma used in semiconductor manufacturing processes, such as deposition equipment using chemical vapor deposition (CVD) or etching equipment using plasma etching, has increased. In order to have corrosion resistance, the chamber is manufactured through a method of spraying ceramic-ol plasma, such as alumina, thermal spray, or compacting and sintering on the aluminum alloy. In addition, since the semiconductor manufacturing process performed in the chamber takes a large number of high temperature processes such as a heat treatment process and a chemical vapor deposition film, the chamber is required to have heat resistance. That is, the parts of the semiconductor manufacturing equipment such as the chamber is cut. It is necessary to minimize the particle generation and wafer contamination during the manufacturing process by requiring softness, heat resistance, corrosion resistance, and polarization resistance, and maintaining a strong bonding force between the coating layer and the substrate so that the coating layer does not peel off. .
<4>  <4>
<5> 이를 위하여 기존에는 일반적으로 사용되는 화학기상증착법이나 물리기상증 착법 또는 스퍼터링 등을 적용한 경우가 있으나 이 경우에 있어서는 박막제조공정 이므로 상기 내식성 등의 요건을 만족할 정도의 후막을 형성하기 위해서는 공정시 간이 너무 오래 걸리는 등 경제성이 떨어지는 문제가 있으며, 기재와 코팅층 간의 강한 결합력을 얻기도 어려운 문제점이 있다.  <5> To this end, conventional chemical vapor deposition, physical vapor deposition, or sputtering may be used. However, in this case, since it is a thin film manufacturing process, a process for forming a thick film that satisfies the requirements of corrosion resistance, etc. may be performed. There is a problem that the economy is inferior, such as taking too long time, it is difficult to obtain a strong bonding force between the substrate and the coating layer.
<6>  <6>
<7> 이외에 후막의 형성을 위해서 주로사용되어지는 플라즈마용사 또는 열적분 사방법의 경우에는 후막형성이 가능한 장점이 있으나 일반적으로 금속기재에 세라 믹 물질을 코팅하게 되므로 상기와 같은 열간 프로세스의 경우는 코팅 후 넁각과정 에서 금속과 세라믹간의 열팽창를의 차이에 따라 결합력이 떨어지는 문제점이 있 고, 경우에 따라서는 금속기재가 용융되어 산화충이 생성되는 등의 고온공정이 가 지는 한계가 있다. In the case of the plasma spraying or thermal spraying method, which is mainly used for the formation of the thick film, there is an advantage that the thick film can be formed. However, in the case of the above-mentioned hot process, the ceramic material is coated on the metal substrate. Engraving process after coating In this case, there is a problem in that the bonding force is lowered according to the difference in thermal expansion between the metal and the ceramic, and in some cases, there is a limit in that the high temperature process, such as melting of a metal substrate, produces an oxidized worm.
<8>  <8>
<9> 한편, 에어로졸 성막법은 상기의 문제점을 극복하고 치밀한 후막을 제조할 수 있으나, 희토류 금속 산화물의 경우 100 μη 이상의 치밀한후막을 만들기는 어 렵다는 문제가 있다. 따라서 고전압 및 플라즈마에 노출되는 후막의 수명 상의 문 제점이 발생할수 있다.  On the other hand, the aerosol film formation method can overcome the above problems and produce a dense thick film. However, in the case of rare earth metal oxide, it is difficult to make a dense thick film of 100 μηη or more. Therefore, problems may occur in the life of the thick film exposed to high voltage and plasma.
<10>  <10>
<ιι> 또한, 100 urn 이상의 후막을 코팅하기 위해 플라스마 용사공정을 통하여 후 막올 코팅하는 방법이 대한민국 공개특허 2003-0077155에 나타내어져 있으나 플라 즈마 용사공정을 통하여 후막올 코팅 시에는 치밀한 코팅막을 제조하기 어려운 문 제점이 있다.  <ιι> In addition, a method for coating a thick film by plasma spraying to coat a thick film of 100 urn or more is shown in Korean Patent Laid-Open Publication No. 2003-0077155. However, when the thick film is coated through a plasma spraying process, a dense coating is prepared. There is a difficult problem.
<12>  <12>
<13> 이에 본 발명자들은 100 μιτι를 초과하는 다공성 후막 또는 다공성 세라믹의 표면을 밀봉하는 치밀한 내플라즈마 코팅막을 제공하는 본 발명을 완성하였으며 이 를 통하여 기존의 치밀하나 얇은 두께에서 생기는 문제점 및 두꺼우나 치밀함이 부 족했던 문제점을 극복하는 코팅막을 제조할 수 있었다.  Accordingly, the present inventors have completed the present invention to provide a dense plasma coating film that seals the surface of a porous thick film or a porous ceramic of more than 100 μιτι. It was possible to produce a coating film to overcome the problem that the lack of.
<14>  <14>
【발명의 내용】  [Content of invention]
【기술적 과제】  [Technical problem]
<15> 본 발명의 목적은 다공성 세라믹 표면을 밀봉하는 치밀한 희토류 금속 산화 물 코팅막 및 이의 제조방법을 제공하는 것이다.  An object of the present invention is to provide a dense rare earth metal oxide coating film for sealing a porous ceramic surface and a method of manufacturing the same.
<16>  <16>
【기술적 해결방법】  Technical Solution
<π> 상기 목적을 달성하기 위하여, 본 발명은 평균 표면 거칠기가 0.4 내지 2.3  <π> In order to achieve the above object, the present invention has an average surface roughness of 0.4 to 2.3
μιη인 다공성 세라믹충을 포함하는 기판의 다공성 세라믹층 상에 형성된 회토류 금 속산화물 코팅막을 제공한다.  Provided is a rare earth metal oxide coating film formed on a porous ceramic layer of a substrate including a porous ceramic worm having a μιη.
<18>  <18>
<19> 또한, 본 발명은 플라즈마 용사 공정을 통해 기판상에 다공성 세라믹 코팅층 을 형성하는 단계 (단계 1);  In addition, the present invention comprises the step of forming a porous ceramic coating layer on the substrate through a plasma spray process (step 1);
<20> 상기 단계 1에서 형성된 다공성 세라믹 코팅층의 표면이 0.4 내지 2.3 인 평균 표면거칠기를 갖도록 가공하는 단계 (단계 2); 및 <20> The surface of the porous ceramic coating layer formed in step 1 is 0.4 to 2.3 Processing to have an average surface roughness (step 2); And
<21> 상기 단계 2의 가공이 수행된 다공성 세라믹 코팅층에 에어로졸 성막법을 통 하여 회토류 금속 산화물 분말을 코팅하는 단계 (단계 3)를 포함하는 희토류 금속 산화물 코팅막의 제조방법을 제공한다. It provides a rare earth metal oxide coating film comprising the step (step 3) of coating the rare earth metal oxide powder on the porous ceramic coating layer subjected to the processing of step 2 by the aerosol film formation method.
<22>  <22>
<23> 나아가, 본 발명은 소결공정을 통하여 다공성 세라믹 기판을 형성하는 단계 ( 단계 a);  Further, the present invention comprises the steps of forming a porous ceramic substrate through a sintering process (step a);
<24> 상기 단계 a에서 형성된 다공성 세라믹 기판의 표면이 0.4 내지 2.3 ym인 평균 표면거칠기를 갖도록 가공하는 단계 (단계 b); 및  (24) processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 ym (step b); And
<25> 상기 단계 b의 가공이 수행된 다공성 세라믹 기판에 에어로졸 성막법을 통하 여 희토류 금속 산화물 분말올 코팅하는 단계 (단계 C)를 포함하는 회토류 금속 산 화물 코팅막의 제조방법을 제공한다.  Provided is a rare earth metal oxide coating film comprising the step (step C) of coating a rare earth metal oxide powder on a porous ceramic substrate subjected to the processing of step b through an aerosol film formation method.
<26>  <26>
【유리한 효과】  Advantageous Effects
<27> 본 발명에 따른 다공성 세라믹 표면을 밀봉하는 치밀한 희토류 금속 산화물 코팅막 및 이의 제조방법은 충분한 두께의 다공성 세라믹 코팅층에 의해 내전압 특 성 확보 및 치밀한 희토류 금속 산화물 코팅막에 의한 플라즈마 내식성 확보가 동 시에 이루어질 수 있는 효과가 있어, 반도체 식각장비를 포함하는 다양한 반도체 장비용 부품에 적용될 수 있다.  The dense rare earth metal oxide coating film for sealing the porous ceramic surface according to the present invention and a method for manufacturing the same are characterized in that the voltage resistance is secured by the porous ceramic coating layer of sufficient thickness and the plasma corrosion resistance is secured by the dense rare earth metal oxide coating film. There is an effect that can be achieved, it can be applied to various semiconductor equipment components, including semiconductor etching equipment.
<28>  <28>
【도면의 간단한 설명】  [Brief Description of Drawings]
<29> 도 1은 본 발명에 따른 회토류 금속 산화물 코팅막의 단면을 나타낸 개략도 이고;  1 is a schematic view showing a cross section of a rare earth metal oxide coating film according to the present invention;
<30> 도 2는 에어로졸성막을수행하는 공정을 개략도를 나타낸모식도이고;  2 is a schematic view showing a schematic diagram of a process of performing an aerosol-based film;
<31> 도 3은 본 발명에 따른 회토류금속 산화물 코팅막표면을나타낸 사진이고; 3 is a photograph showing the surface of the rare earth metal oxide coating film according to the present invention;
<32> 도 4는 본 발명의 실시예 1 내지 3에서 샌드블라스트까지만 수행한 표면과 샌드블라스트를 수행하지 않는표면을 나타낸 사진이고; 4 is a photograph showing a surface which is not subjected to sand blast and a surface which is performed only up to sand blast in Examples 1 to 3 of the present invention;
<33> 도 5는 본 발명의 비교예 1 내지 3에서 샌드블라스트까지만 수행한 표면과 샌드블라스트를 수행하지 않는 표면을 나타낸 사진이고;  FIG. 5 is a photograph showing a surface which is only sandblasted and a surface which is not sandblasted in Comparative Examples 1 to 3 of the present invention; FIG.
<34> 도 6은 본 발명의 실시예 1 내지 3과 비교예 4를 통하여 제조된 희토류 금속 산화물 코팅막의 박리되는 정도를 나타낸 사진이고;  6 is a photograph showing the degree of peeling of the rare earth metal oxide coating film prepared through Examples 1 to 3 and Comparative Example 4 of the present invention;
<35> 도 7은 본 발명의 비교예 1 내지 3과 비교예 4를 통하여 제조된 희토류 금속 산화물 코팅막의 박리되는 정도를 나타낸 사진이고; 7 is a rare earth metal prepared through Comparative Examples 1 to 3 and Comparative Example 4 of the present invention. It is a photograph which shows the peeling degree of an oxide coating film;
<36> 도 8은 본 발명의 실시예 1을 통해 제조된 회토류 금속 산화물 코팅막의 단 면을 주사전자현미경으로 관찰한사진이고;  FIG. 8 is a photograph of a cross section of a rare earth metal oxide coating film prepared according to Example 1 of the present invention with a scanning electron microscope; FIG.
<37> 도 9는 본 발명의 실시예 4을 통해 제조된 회토류 금속 삼화물 코팅막의 단 면을 주사전자현미경으로 관찰한사진이고;  FIG. 9 is a photograph of a cross-section of a rare earth metal trioxide coating film prepared according to Example 4 of the present invention with a scanning electron microscope; FIG.
<38> 도 10은 본 발명의 실험예 4에서 접착강도 분석을 수행하는 방법을 나타낸 모식도이고;  10 is a schematic diagram showing a method of performing an adhesive strength analysis in Experimental Example 4 of the present invention;
<39> 도 11은 본 발명의 실험예 4에서 접착강도 분석을 수행한 시편의 단면을 주 사전자현미경을 통해 관찰한사진이고;  11 is a photograph of a cross section of a specimen subjected to the adhesive strength analysis in Experimental Example 4 of the present invention through a main prescan microscope;
<40> 도 12는 본 발명의 실험예 4에서 접착강도 분석을 수행한 시편의 단면을 에 너지 분산형 X선 분광기 (EDS)를 통해 관찰한사진이다.  12 is a photograph of a cross section of a specimen subjected to the adhesive strength analysis in Experimental Example 4 of the present invention through an energy dispersive X-ray spectrometer (EDS).
<41>  <41>
【발명의 실시를 위한최선의 형태】  [Best form for implementation of the invention]
<42> 이하, 본 발명을상세하게 설명한다.  Hereinafter, the present invention will be described in detail.
<43>  <43>
<44> 본 발명은 평균 표면 거칠기가 0.4 내지 2.3 μ인 다공성 세라믹층을 포함 하는 기판의 다공성 세라믹층 상에 형성된 회토류 금속 산화물 코팅막을 제공한다. 상기 희토류 금속산화물 코팅막의 예를 개략적인 단면도로서 도 1에 나타내었다.The present invention provides a rare earth metal oxide coating film formed on a porous ceramic layer of a substrate including a porous ceramic layer having an average surface roughness of 0.4 to 2.3 μ 1 GPa . An example of the rare earth metal oxide coating film is shown in FIG. 1 as a schematic cross-sectional view.
<45> <45>
<46> 상기 다공성 세라믹층은 0.4 내지 2.3 μπι인 평균 표면 거칠기를 가짐으로써 The porous ceramic layer has an average surface roughness of 0.4 to 2.3 μπι
본 발명에 따른 회토류 금속 산화물 코팅막과의 접착력이 높은 장점이 있다. 상기 다공성 세라믹층 표면의 평균 표면 거칠기가 0.4 urn 미만인 경우에는 다공성 세라 믹층과 희토류 금속 산화물 코팅막과의 접착력이 떨어지는 문제점이 발생하며, 평 균 표면 거칠기가 2.3 11 m를 초과하는 경우에는 다공성 세라믹층 상에 희토류 금속 산화물 코팅막을 형성하는 것이 어려운 문제가 있다. The adhesive force with the rare earth metal oxide coating film according to the present invention is high. If the average surface roughness of the surface of the porous ceramic layer is less than 0.4 urn, there is a problem in that the adhesion between the porous ceramic layer and the rare earth metal oxide coating film is inferior, and if the average surface roughness exceeds 2.3 11 m, the porous ceramic layer is over It is difficult to form a rare earth metal oxide coating film on the substrate.
<47> 이때, 상기 다공성 세라믹층은 코팅에 의해 형성된 다공성 코팅층으로써, 예 를 들어 플라즈마 용사 공정을 통해 코팅될 수 있으나, 이에 제한되는 것은 아니 다.  In this case, the porous ceramic layer is a porous coating layer formed by the coating, for example, may be coated through a plasma spray process, but is not limited thereto.
<48> 또한, 상기 기판은 평균 표면 거칠기가 0.4 내지 2.3 μιη인 다공성 세라믹층 과 동일 소재의 다공성 세라믹 기판을 사용할 수 있으며, 예를 들어, 다공성 세라 믹층과 동일 소재이며 소결공정을 통해 형성된 다공성 세라믹 기판을 사용할 수 있 으나, 이에 제한되는 것은 아니다. <49> 상기 다공성 세라믹층과 동일 소재의 다공성 세라믹 기판 외에도 금속기판, 세라믹 기판, 고분자 기판 등올 사용할 수 있으며, 상기 금속기판은 철 (Fe) 기판, 철 합금 기판, 마그네슴 (Mg) 기판, 마그네슴계 합금 기판, 알루미늄 (A1) 기판, 알 루미늄계 합금 기판 등을 사용할 수 있고, 상기 세라믹 기판은 Si02, MgO, CaC03> 알루미나 기판 등을 사용할 수 있으며, 상기 고분자 기판은 폴리에틸렌테레프탈레 '이트 (PET), 폴리에틸렌 나프탈레이트 (PEN), 플리프로필렌 아디꽤이트 (PPA), 폴리아 이소시아네이트 (PI) 기판등을사용할수 있으나, 이에 제한되는 것은 아니다.In addition, the substrate may be a porous ceramic substrate of the same material as the porous ceramic layer having an average surface roughness of 0.4 to 2.3 μιη, for example, a porous ceramic formed of the same material as the porous ceramic layer and formed through a sintering process. A substrate may be used, but is not limited thereto. In addition to the porous ceramic substrate of the same material as the porous ceramic layer, a metal substrate, a ceramic substrate, a polymer substrate, and the like may be used, and the metal substrate may be an iron (Fe) substrate , an iron alloy substrate, a magnet (Mg) substrate, or a magnet. A chest alloy substrate, an aluminum (A1) substrate, an aluminum alloy substrate, and the like may be used, and the ceramic substrate may be Si0 2 , MgO, CaC0 3> alumina substrate, or the like, and the polymer substrate may be polyethylene terephthalate. (PET), polyethylene naphthalate (PEN), polypropylene aditite (PPA), polyisocyanate (PI) substrates and the like can be used, but is not limited thereto.
<50> ' <50>'
<51> 한편, 상기 다공성 세라믹층은 다공성 알루미나층인 것이 바람직하다. 상기 다공성 세라믹충이 다공성 알루미나충인 경우, 기판 자체의 특성을 유지함과 동시 에 우수한 내식성을 나타낼 수 있어 본 발명에 따른 희토류 금속 산화물 코팅막을 반도체 식각장비와 같이 내식성이 요구되는 반도체 장비 부품으로 적용할 수 있다. On the other hand, the porous ceramic layer is preferably a porous alumina layer. When the porous ceramic insect is a porous alumina insect, it is possible to maintain the characteristics of the substrate itself and at the same time excellent corrosion resistance can be applied to the rare earth metal oxide coating film according to the invention as a semiconductor equipment component requiring corrosion resistance such as semiconductor etching equipment. .
<52> <52>
<53> 본 발명에 따른 희토류 금속 산화물 코팅막의 치밀도는 90 % 이상인 것이 바 람직하다. 상기 회토류 금속 산화물 코팅막의 치밀도가 90 % 미만인 경우에는 고밀 도 플라즈마에 대한 내식성을 확보하기 어려운 문제가 있고, 또한 내전압 및 누설 전류 제어가 어려운 문제가 있다.  The density of the rare earth metal oxide coating film according to the present invention is preferably 90% or more. When the density of the rare earth metal oxide coating film is less than 90%, there is a problem that it is difficult to secure corrosion resistance to high-density plasma, and it is difficult to control the breakdown voltage and leakage current.
<54> 또한, 상기 희토류 금속산화물 코팅막의 두께는 1 내지 50 μιη인 것이 바람 직하다. 만약 희토류 금속 산화물 코팅막의 두께가 1 μηι 미만인 경우에는 폴라즈 마에 노출 시 쉽게 박리되는 문제가 있고, 희토류 금속 산화물 코팅막의 두께가 50 !im를 초과하는 경우에는 코팅막의 잔류웅력으로 인하여 박리가 발생하는 문제가 있고, 또한 후 가공 시에도 박리가 발생할 수 있는 문제가 있다. 나아가, 고가의 희토류 금속이 과도하게 사용됨으로써 경제적인 손실이 생기는문제가 있다. In addition, the rare earth metal oxide coating layer preferably has a thickness of 1 to 50 μιη. If the thickness of the rare earth metal oxide coating film is less than 1 μηι , there is a problem in that the film is easily peeled off when exposed to the plasma. If the thickness of the rare earth metal oxide coating film exceeds 50! Im, the peeling occurs due to the residual force of the coating film. There is a problem, and there is also a problem that peeling may occur during post-processing. Furthermore, there is a problem in that economic losses are caused by excessive use of expensive rare earth metals.
<55>  <55>
<56> 한편, 상기 희토류 금속 산화물은 이트리아 (Y203)ᅳ 디스프로시아 (Dy203), 어 비아 (Er203), 사마리아 ( ¾) 등을사용할수 있다. Meanwhile, as the rare earth metal oxide, yttria (Y 2 0 3 ) ᅳ disprocia (Dy 2 0 3 ), avia (Er 2 0 3 ), samaria (¾) and the like may be used.
<57> 이트리아 (Y203)ᅳ 디스프로시아 (Dy203), 어비아 (Er203), 사마리아 (Sm203) 등의 희토류 금속 산화물은 반도체 공정 중에 노출되는 플라즈마에 강한 저항성을 가짐 으로써, 본 발명의 회토류 금속산화물 코팅막을 반도체 식각장비와 같이 내식성이 요구되는 반도체 장비 부품에 적용 시 반도체 공정의 플라즈마에 대한 내식성 및 내전압특성을 확보할 수 있게 한다. <58> Rare earth metal oxides such as yttria (Y 2 0 3 ) ᅳ disprocia (Dy 2 0 3 ), ervia (Er 2 0 3 ), and samaria (Sm 2 0 3 ) are plasma exposed during semiconductor processing. By having a strong resistance to, it is possible to ensure the corrosion resistance and withstand voltage characteristics for the plasma of the semiconductor process when the rare earth metal oxide coating film of the present invention is applied to the semiconductor equipment components requiring corrosion resistance, such as semiconductor etching equipment. <58>
<59> 본 발명에 따른 희토류 금속 산화물 코팅막은 반도체 공정 증 노출될 수 있 는 플라즈마에 대한 내식성이 강하고, 또한 치밀한 구조로 인해 내전압 및 누설 전 류 제어가 쉬워 반도체 식각 장비를 포함하는 반도체 장비용 부품에 적용될 수 있 으며 , 기존의 반도체 장비용부품을 대체할 수 있다.  The rare earth metal oxide coating film according to the present invention has a high corrosion resistance to plasma that can be exposed to semiconductor processes, and a compact structure makes it easy to control breakdown voltage and leakage current, and thus includes semiconductor etching equipment. It can be applied to existing semiconductor equipment parts.
<60> ,  <60>,
<61> 또한본 발명은  In addition, the present invention
<62> 플라즈마 용사 공정을 통해 기판상에 다공성 세라믹 코팅충을 형성하는 단계  <62> forming a porous ceramic coating on the substrate through a plasma spray process
(단계 1);  (Step 1);
<63> 상기 단계 1에서 형성된 다공성 세라믹 코팅층의 표면이 0.4 내지 2.3 μιη인 평균 표면거칠기를 갖도록 가공하는 단계 (단계 2); 및  Processing the surface of the porous ceramic coating layer formed in step 1 to have an average surface roughness of 0.4 to 2.3 μιη (step 2); And
<64> 상기 단계 2의 가공이 수행된 다공성 세라믹 코팅층에 에어로졸 성막법을 통 하여 희토류 금속 산화물을 코팅하는 단계 (단계 3)를 포함하는 희토류 금속 산화물 코팅막의 제조방법을 제공한다.  It provides a rare earth metal oxide coating film comprising the step (step 3) of coating the rare earth metal oxide on the porous ceramic coating layer subjected to the processing of step 2 by the aerosol film forming method.
<65>  <65>
<66> 이하, 본 발명을단계별로구체적으로 설명한다.  Hereinafter, the present invention will be specifically described step by step.
<67>  <67>
<68> 본 발명에 따른 회토류 금속 산화물 코팅막의 제조방법에 있어서, 단계 1은 플라즈마 용사공정을 통해 기판상에 다공성 세라믹 코팅층을 형성하는 단계이다. In the method of manufacturing a rare earth metal oxide coating film according to the present invention, step 1 is a step of forming a porous ceramic coating layer on a substrate through a plasma spray process.
<69> 이때, 상기 다공성 세라믹 코팅충은 다공성 알루미나 코팅충인 것이 바람직 하나, 이에 제한올 두지는 않는다. 상기 다공성 세라믹 코팅층이 다공성 알루미나 코팅층인 경우, 기판 자체의 특성을 유지함과 동시에 우수한 내식성을 나타낼 수 있어 상기 제조방법을 통해 제조되는 희토류 금속 산화물 코팅막을 반도체 식각장 비와 같이 내식성이 요구되는 반도체 장비 부품으로 적용할수 있다. In this case, the porous ceramic coating is preferably a porous alumina coating, but is not limited thereto. When the porous ceramic coating layer is a porous alumina coating layer, while maintaining the characteristics of the substrate itself and at the same time can exhibit excellent corrosion resistance semiconductor equipment components that require corrosion resistance of the rare earth metal oxide coating film produced by the manufacturing method such as semiconductor etching equipment Can be applied as
<70> 상기 단계 1의 기판은 금속기판, 세라믹 기판, 고분자 기판 등을 사용할 수 있으며, 상기 금속기판은 철 (Fe) 기판, 철 합금 기판, 마그네슘 (Mg) 기판, 마그네 슘계 합금 기판, 알루미늄 (A1) 기판, 알루미늄계 합금 기판 등을 사용할 수 있고, 상기 세라믹 기판은 Si02, MgO, CaC03, 알투미나 기판등을 사용할 수 있으며, 상기 고분자 기판은 플리에틸렌테레프탈레이트 (PET), 플리에틸렌 나프탈레이트 (PEN), 폴 리프로필렌 아디페이트 (PPA), 폴리아이소시아네이트 (PI) 기판 등을 사용할 수 있으 나, 이에 제한되는 것은 아니다. <72> 본 발명에 따른 회토류 금속 산화물 코팅막의 제조방법에 있어서, 단계 2는 상기 단계 1에서 형성된 다공성 세라믹 코팅층의 표면이 0.4 내지 2.3 iim인 평균 표면거칠기를 갖도록 가공하는 단계로, 상기 단계 1에서 형성된 다공성 세라믹 코 팅층이 균일한 두께를 가지도록 연삭가공을 한 후, 그 표면을 거칠게 가공하여 다 공성 세라믹 코팅층의 표면이 0.4 내지 2.3 μηι인 평균 표면거칠기를 갖도록 한다. 이때, 상기 가공은 센드블라스트 (sand blast)를 이용하여 수행할 수 있으나, 이에 제한되는 것은 아니다. The substrate of step 1 may be a metal substrate, a ceramic substrate, a polymer substrate, and the like, and the metal substrate may be an iron (Fe) substrate, an iron alloy substrate, a magnesium (Mg) substrate, a magnesium-based alloy substrate, an aluminum ( A1) substrate, an aluminum-based alloy substrate, etc. may be used, and the ceramic substrate may be Si0 2 , MgO, CaC0 3 , alumina substrate, etc., and the polymer substrate may be polyethylene terephthalate (PET), polyethylene, Phthalate (PEN), polypropylene adipate (PPA), polyisocyanate (PI) substrates and the like can be used, but are not limited thereto. In the manufacturing method of the rare earth metal oxide coating film according to the present invention, step 2 is a step of processing so that the surface of the porous ceramic coating layer formed in step 1 has an average surface roughness of 0.4 to 2.3 iim, step 1 After the porous ceramic coating layer formed in the grinding process to have a uniform thickness, the surface is roughened so that the surface of the porous ceramic coating layer has an average surface roughness of 0.4 to 2.3 μηι. In this case, the processing may be performed using a sandblast, but is not limited thereto.
<73> 상기 가공을 통하여 단계 1에서 형성된 다공성 세라믹 코팅층의 표면이 0.4  The surface of the porous ceramic coating layer formed in step 1 through the processing is 0.4
내지 2.3 μηι인 평균 표면거칠기를 갖도록 거칠게 할 수 있으며 , 이를 통하여 다공 성 세라믹 코팅층과 회토류 금속 산화물 코팅막과의 접착력을 향상시킬 수 있게 된 다.  It can be roughened to have an average surface roughness of ~ 2.3 μηι, through which it is possible to improve the adhesion between the porous ceramic coating layer and the rare earth metal oxide coating film.
<74>  <74>
<75> 한편, 상기 샌드블라스트는 1 내지 5기압의 공기압으로 수행되는 것이 바람 직하다 . 만약 1 기압 미만의 공기압으로 샌드블라스트가 수행되는 경우 다공성 세 라믹 코팅층의 표면 거칠기를 높일 수 없는 문제점이 있으며 , 5 기압 이상의 공기 압으로 수행되는 경우에는 표면 거칠기가 과도하게 높아져 다공성 세라믹 코팅층 상으로 코팅이 제대로 이루어지지 않는 문제점이 있다.  On the other hand, the sand blast is preferably carried out by the air pressure of 1 to 5 atm. If sandblasting is performed at an air pressure of less than 1 atm, there is a problem that the surface roughness of the porous ceramic coating layer cannot be increased. There is a problem that this is not done properly.
<76>  <76>
<77> 본 발명에 따른 회토류 금속 산화물 코팅막의 제조방법에 있어서, 단계 3은 상기 단계 2의 가공이 수행된 다공성 세라믹 코팅층에 에어로졸 성막법을 통하여 희토류 금속 산화물을 코팅하는 단계로, 상기 에어로졸 성막이 수행되는 공정을 도 In the manufacturing method of the rare earth metal oxide coating film according to the present invention, step 3 is a step of coating a rare earth metal oxide on the porous ceramic coating layer subjected to the processing in step 2 by an aerosol film formation method, wherein the aerosol film formation is performed. Figure the process in which this is performed
2의 공정도를 통해 개략적으로 나타내었다. Shown schematically through the process diagram of 2.
<78> 상기 단계 3의 에어로졸 성막법을 통하여 상기 세라믹 코팅층에 희토류 금속 산화물올 코팅함으로써 치밀한 희토류 금속산화물 코팅막을 형성할수 있다. The rare earth metal oxide coating layer may be formed by coating rare earth metal oxides on the ceramic coating layer through the aerosol deposition method of Step 3.
<79> 이때, 상기 회토류 금속 산화물은 이트리아 (Υ203), 디스프로시아 (Dy203), 어 비아 (Er203) 및 사마리아 (Sm203)를포함하는 군으로부터 선택되는 것이 바람직하다.In this case, the rare earth metal oxide is a group including yttria (Υ 2 0 3 ), dysprosia (Dy 2 0 3 ), a via (Er 2 0 3 ), and samaria (Sm 2 0 3 ). It is preferably selected from.
<80> 상기 회토류 금속 산화물은 반도체 공정 증에 노출되는 플라즈마에 강한 저 항성을 가짐으로써, 본 발명에 따른 제조방법을 통해 제조되는 희토류 금속 산화물 코팅막이 반도체 공정의 플라즈마에 대한 내식성 및 내전압 특성을 확보할 수 있게 한다. The rare earth metal oxide has a strong resistance to the plasma exposed to the semiconductor process, so that the rare earth metal oxide coating film produced by the manufacturing method according to the present invention has the characteristics of corrosion resistance and voltage resistance for the plasma of the semiconductor process To secure it.
<81>  <81>
<82> 한편 상기 단계 3의 에어로졸 성막을 수행 시 메디컬 그레이드의 압축공기 를 사용하는 것이 바람직하다. 상기 메디컬 그레이드의 압축공기를 사용함으로써 일반적으로 공기가 포함하고 있는 수분에 의해 에어로졸 화가 이루어지지 않는 문 제점을 방지하며, 또한 에어로졸 성막 시 공기 내부의 기름과 같은 불순물이 같이 성막되는 것을 방지하는 효과가 있다. On the other hand, the compressed air of the medical grade when performing the aerosol deposition of step 3 Preference is given to using. By using the compressed air of the medical grade, it is generally possible to prevent a problem that aerosolization is not performed by moisture contained in the air, and also to prevent the formation of impurities such as oil inside the air during aerosol film formation. have.
<83>  <83>
<84> 또한, 본 발명은  In addition, the present invention
<85> 소결공정올 통하여 다공성 세라믹 기판을 형성하는 단계 (단계 a) ;  Forming a porous ceramic substrate through the sintering process (step a);
<86> 상기 단계 a에서 형성된 다공성 세라믹 기판의 표면이 0.4 내지 2.3 μιη인 평균 표면거칠기를 갖도록 가공하는 단계 (단계 b); 및  Processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 μιη (step b); And
<87> 상기 단계 b의 가공이 수행된 다공성 세라믹 기판에 에어로졸 성막법을 통하 여 희토류 금속 산화물을 코팅하는 단계 (단계 C)를 포함하는 회토류 금속 산화물 코팅막의 제조방법을 제공한다.  Provided is a rare earth metal oxide coating film comprising a step (step C) of coating a rare earth metal oxide on the porous ceramic substrate subjected to the processing of step b through an aerosol film formation method.
<88>  <88>
<89> 본 발명에 따른 회토류 금속 산화물 코팅막의 제조방법에 있어서, 단계 a은 소결공정을 통하여 다공성 세라믹 기판을 형성하는 단계이다. 상기 단계 a의 소결 공정을 통해 형성되는 다공성 세라믹 기판은 다공성 알루미나 기판인 것이 바람직 하나, 이에 제한되는 것은 아니다.  In the manufacturing method of the rare earth metal oxide coating film according to the present invention, step a is a step of forming a porous ceramic substrate through a sintering process. The porous ceramic substrate formed through the sintering process of step a is preferably a porous alumina substrate, but is not limited thereto.
<90>  <90>
<9!> 본 발명에 따른 회토류 금속 산화물 코팅막의 제조방법에 있어서, 단계 b는 상기 단계 a에서 형성된 다공성 세라믹 기판의 표면이 0.4 내지 2.3 μηι인 평균 표 면거칠기를 갖도록 가공하는 단계이다. 상기 단계 b의 가공은 샌드블라스트 (sand blast)를 통해 수행될 수 있으나, 이에 제한되는 것은 아니다.  In the manufacturing method of the rare earth metal oxide coating film according to the present invention, step b is a step of processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 μηι. The processing of step b may be performed through a sand blast, but is not limited thereto.
<92> 상기 가공을 통하여 단계 a에서 형성된 다공성 세라믹 기판의 표면을 거칠 게 할 수 있으며, 이를 통하여 다공성 세라믹 기판과 희토류 금속 산화물 층과의 접착력을 향상시킬 수 있게 된다. 그러나, 상기 단계 a에서 형성된 다공성 세라믹 기판의 표면이 0.4 내지 2.3 μηι인 평균 표면거칠기를 갖는다면, 상기 단계 b의 가 공은 생략할수 있다. Through the processing, the surface of the porous ceramic substrate formed in step a may be roughened, thereby improving adhesion between the porous ceramic substrate and the rare earth metal oxide layer. However, if the surface of the porous ceramic substrate formed in step a has an average surface roughness of 0.4 to 2.3 μηι, the processing of step b may be omitted.
<93>  <93>
<94> 한편, 상기 샌드블라스트는 1 내지 5기압의 공기압으로 수행되는 것이 바람 직하다ᅳ 만약 工 기압 미만의 공기압으로 샌드블라스트가 수행되는 경우 다공성 세 라믹 기판의 표면 거칠기를 높일 수 없는 문제점이 있으며, 5 기압 이상의 공기압 으로 수행되는 경우에는 표면 거칠기가 과도하게 높아져 다공성 세라먹 기판상으로 코팅이 제대로 이루어지지 않는문제점이 있다. On the other hand, the sand blast is preferably carried out at an air pressure of 1 to 5 atm ᅳ If the sand blast is carried out at a pneumatic pressure of less than the industrial pressure there is a problem that can not increase the surface roughness of the porous ceramic substrate, In case of air pressure of 5 atm or higher, the surface roughness becomes excessively high and the porous ceramic substrate There is a problem that the coating is not made properly.
<95>  <95>
<96> 본 발명에 따른 희토류 금속 산화물 코팅막의 제조방법에 있어서, 단계 C은 상기 단계 b의 가공이 수행된 다공성 세라믹 기판에 에어로졸 성막법을 통하여 희 토류 금속 산화물을 코팅하는 단계이며, 상기 에어로졸 성막이 수행되는 공정을 도 2의 모식도를 통해 개략적으로 나타내었다.  In the method of manufacturing a rare earth metal oxide coating film according to the present invention, step C is a step of coating the rare earth metal oxide on the porous ceramic substrate subjected to the processing of step b by an aerosol film formation method, and forming the aerosol film. This process is shown schematically through the schematic diagram of FIG.
<97> 상기 단계 C의 에어로졸 성막법을 통하여 상기 단계 b의 가공이 수행된 다공 성 세라믹 기판에 희토류 금속 산화물을 코팅함으로써 치밀한 회토류 금속 산화물 코팅막올 형성할수 있다.  The rare earth metal oxide coating film may be formed by coating the rare earth metal oxide on the porous ceramic substrate on which the processing of step b is performed through the aerosol film formation method of step C.
<98> 이때, 상기 회토류 금속 산화물은 이트리아 ( ¾), 디스프로시아 (Dy203), 어 비아 (Er2¾) 및 사마리아 (Sm203)를 포함하는 군으로부터 선택되는 것이 바람직하다.In this case, the rare earth metal oxide is selected from the group consisting of yttria (¾), dysprocia (Dy 2 0 3 ), avia (Er 2 ¾), and samaria (Sm 2 0 3 ). desirable.
<99> 상기 회토류 금속 산화물은 반도체 공정 중에 노출되는 플라즈마에 강한 저 항성을 가짐으로써, 본 발명에 따른 제조방법올 통해 제조되는 희토류 금속 산화물 코팅막이 반도체 공정의 플라즈마에 대한 내식성 및 내전압 특성을 확보할 수 있게 한다. The rare earth metal oxide has a strong resistance to the plasma exposed during the semiconductor process, the rare earth metal oxide coating film produced through the manufacturing method according to the invention ensures the corrosion resistance and withstand voltage characteristics for the plasma of the semiconductor process To do it.
<100>  <100>
<101> 한편, 상기 단계 C의 에어로졸 성막을 수행 시 메디컬 그레이드의 압축공기 를 사용하는 것이 바람직하다. 상기 메디컬 그레이드의 압축공기를 사용함으로써 일반적으로 공기가 포함하고 있는 수분에 의해 에어로졸 화가 이루어지지 않는 문 제점을 방지하며, 또한 에어로졸 성막 시 공기 내부의 기름과 같은 불순물이 같이 성막되는 것을 방지하는 효과가 있다.  Meanwhile, it is preferable to use compressed air of medical grade when performing the aerosol film formation of step C. By using the compressed air of the medical grade, it is generally possible to prevent a problem that aerosolization is not performed by moisture contained in the air, and also to prevent the formation of impurities such as oil in the air during film formation. have.
<102>  <102>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<103> 이하, 본 발명올 하기 실시예에 의해 상세히 설명한다.  Hereinafter, the present invention will be described in detail by the following examples.
<104> 단 , 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시 예에 의해 한정되는 것은 아니다.  However, the following examples are only to illustrate the present invention, but the content of the present invention is not limited by the following examples.
<105>  <105>
<106> <실시예 1> 희토류금속산화물 코팅막의 제조 1  <Example 1> Preparation of rare earth metal oxide coating film 1
<107> 단계 1: 2 cm X 2 cm x 0.5 cm (두께)의 알루미늄 판재 위에 플라즈마용사 법으로 2 cm X 2 cm 면에 두께 500 μιη의 알루미나코팅층을 형성하였다. Step 1: Alumina coated layer having a thickness of 500 μιη was formed on the 2 cm X 2 cm surface by a plasma spray method on a 2 cm X 2 cm x 0.5 cm (thick) aluminum plate.
<108> <108>
<109> 단계 2: 상기 단계 1의 알루미나 코팅층을 연삭하고 200 grit 화이트 알루미 나 분말을 사용하여 2기압의 공기맙으로 샌드 블라스트 하였다. Step 2: Grinding the alumina coating layer of step 1 and 200 grit white aluminium B powder was used to sand blast with air pressure of 2 atmospheres.
<110>  <110>
<πι> 단계 3: 상기 단계 2에서 샌드 블라스트가수행된 알루미나코팅층에 에어로 졸 성막법을 통하여 이트리아 코팅층을 형성하여 회토류 금속 산화물 코팅막 (이트 리아)을 제조하였다.  <πι> Step 3: A yttria coating layer was formed on the alumina coating layer subjected to sand blasting in step 2 by aerosol film formation to prepare a rare earth metal oxide coating layer (yttria).
<112>  <112>
<ιΐ3> <실시예 2>희토류 금속산화물 코팅막의 제조 2  <Example 2> <Example 2> Preparation of Rare Earth Metal Oxide Coating Film 2
<Π4> 상기 실시예 1의 단계 2에서 200 grit 화이트 알루미나로 4기압의 공기압으  <Π4> In step 2 of Example 1 to 200 grit white alumina to 4 atm air pressure
로 샌드 블라스트를 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 회토류 금속산화물 코팅막 (이트리아)을 제조하였다.  A rare earth metal oxide coating layer (yttria) was prepared in the same manner as in Example 1 except that the furnace sand blast was performed.
<115>  <115>
<ιΐ6> <실시예 3>회토류 금속산화물 코팅막의 제조 3  Example 3 Preparation of Rare Earth Metal Oxide Coating Film 3
<Π7> 상기 실시예 1의 단계 2에서 5기압의 공기압으로 샌드 블라스트를 수행한 것 을 제외하고는 상기 실시예 1과 동일하게 수행하여 희토류 금속 산화물 코팅막 (이 트리아)을 제조하였다.  A rare earth metal oxide coating film (Tria) was prepared in the same manner as in Example 1 except that sand blasting was performed at 5 atmospheres of air pressure in Step 2 of Example 1.
<118>  <118>
<Π9> <실시예 4> 회토류 금속산화물 코팅막의 제조 4  <Example 9> Example 4 Preparation of Rare Earth Metal Oxide Coating Film 4
<120> 상기 실시예 1의 단계 1에서 알루미나 코팅층 대신 소결을 통해 제조된 상용 다공성 알루미나 세라믹 기판을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 회토류 금속산화물 코팅막 (이트리아)을 제조하였다.  In the same manner as in Example 1 except that a commercially available porous alumina ceramic substrate manufactured by sintering instead of the alumina coating layer was prepared in Step 1 of Example 1, a rare earth metal oxide coating layer (Yttria) was manufactured. It was.
<121>  <121>
<122> <실시예 5>희토류 금속산화물 코팅막의 제조 5  Example 5 Preparation of Rare Earth Metal Oxide Coating Film 5
<123> 상기 실시예 3의 단계 3에서 이트리아 코팅층 대신 디스프로시아 코팅층을 형성한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 회토류 금속 산화물 코 팅막 (디스프로시아)을 제조하였다.  A rare earth metal oxide coating film (disprocia) was prepared in the same manner as in Example 1, except that the disprocia coating layer was formed instead of the yttria coating layer in Step 3 of Example 3.
<124>  <124>
<125> <실시예 6>희토류 금속산화물 코팅막의 제조 6  Example 6 Preparation of Rare Earth Metal Oxide Coating Film 6
<126> 상기 실시예 3의 단계 3에서 이트리아 코팅층 대신 어비아 코팅층을 형성한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 회토류 금속 산화물 코팅막 (어 비아)을 제조하였다.  A rare earth metal oxide coating (Avia) was prepared in the same manner as in Example 1, except that the Avia coating layer was formed instead of the yttria coating layer in Step 3 of Example 3.
<127>  <127>
<128> <실시예 7>회토류 금속산화물 코팅막의 제조 7 <129> 상기 실시예 3의 단계 3에서 이트리아 코팅충 대신 사마리아 코팅층을 형성 한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 희토류 금속 산화물 코팅막 (사마리아)을 제조하였다. Example 7 Preparation of Rare Earth Metal Oxide Coating Film 7 A rare earth metal oxide coating layer (samaria) was prepared in the same manner as in Example 1 except that the samaria coating layer was formed instead of the yttria coating layer in Step 3 of Example 3.
<130>  <130>
<131> 본 발명의 실시예 3, 5, 6 및 7을 통하여 제조된 희토류 금속 산화물 코팅막 표면 사진을 도 3에 나타내었다.  A rare earth metal oxide coating film surface photograph prepared through Examples 3, 5, 6, and 7 of the present invention is shown in FIG. 3.
<132>  <132>
<133> <비교예 1>회토류금속산화물 코팅막의 제조 8  Comparative Example 1 Preparation of Rare Earth Metal Oxide Coating Film 8
<134> 상기 실시예 1의 단계 2에서 40 grit 화이트 알루미나 분말을 사용하여 1기 압의 공기압으로 샌드 블라스트를 수행한 것을 제외하고는 상기 실시예 1과 동일하 게 수행하여 회토류 금속산화물 코팅막을 제조하였다.  The rare earth metal oxide coating layer was manufactured in the same manner as in Example 1, except that sand blasting was carried out using 40 grit white alumina powder in step 2 of Example 1 at an air pressure of 1 atmosphere. Prepared.
<135>  <135>
<136> <비교예 2>희토류금속산화물 코팅막의 제조 9  <Comparative Example 2> Preparation of Rare Earth Metal Oxide Coating Film 9
<137> 3기압의 공기압으로 샌드 블라스트를 수행한 것을 제외하고는 상기 비교예 1  Comparative Example 1, except that sand blasting was performed at an air pressure of 3 atmospheres.
과 동일하게 수행하여 회토류 금속산화물 코팅막을 제조하였다.  To perform the same as the to prepare a rare earth metal oxide coating film.
<138>  <138>
<139> <비교예 3>희토류금속산화물 코팅막의 제조 10  Comparative Example 3 Preparation of Rare Earth Metal Oxide Coating Film 10
<140> 5기압의 공기압으로 샌드 블라스트를 수행한 것을 제외하고는 상기 비교예 1  Comparative Example 1 except that sand blasting was performed at an air pressure of 5 atmospheres.
과 동일하게 수행하여 희토류 금속 산화물 코팅막을 제조하였다.  In the same manner as in the rare earth metal oxide coating film was prepared.
<141>  <141>
<)42> <비교예 4>회토류금속산화물 코팅막의 제조 11  <Comparative Example 4> Preparation of Rare Earth Metal Oxide Coating Film 11
<143> 샌드 블라스트를 수행하지 않고 알루미나 코팅층에 에어로졸 성막법을 통하 여 이트리아 코팅층을 형성한 것을 제외하고는 실시예 1과 동일하게 수행하여 회토 류 금속산화물 코팅막을 제조하였다.  A rare earth metal oxide coating was prepared in the same manner as in Example 1, except that the yttria coating layer was formed on the alumina coating layer by aerosol deposition without performing sand blasting.
<144>  <144>
<145> <실험예 1>표면 거칠기 측정  Experimental Example 1 Surface Roughness Measurement
<146> 본 발명의 실시예 1 내지 3과 비교예 1 내지 3에 있어 에어로졸 성막이 수행 되기 전 샌드블라스트까지만 수행된 알루미나 코팅층와 표면 거칠기 및 샌드블라스 트를 수행하지 않는 알루미나 코팅층의 표면 거칠기를 측정하였고 그 결과는 하기 표 1과 도 4 및 도 5에 나타내었다.  In Examples 1 to 3 and Comparative Examples 1 to 3 of the present invention, the surface roughness of the alumina coating layer and the surface roughness and the alumina coating layer not performing sandblasting were measured until sand blasting before aerosol deposition was performed. The results are shown in Table 1 below, and FIGS. 4 and 5.
<147>  <147>
<148> 【표 1】 구분 표^ 거칠기 (urn) <148> [Table 1] Classification Table ^ Roughness (urn)
샌드블라스트 수행 저 0.3  Sandblast Performs Low 0.3
비교예 1 2.36  Comparative Example 1 2.36
비교예 2 2.88  Comparative Example 2 2.88
비교예 3 4.29  Comparative Example 3 4.29
실시예 1 0.56  Example 1 0.56
실시예 2 1.60  Example 2 1.60
ᅳ실시예 3 1.76  Example 3 1.76
심시예 4 0.74  Examination Example 4 0.74
<149>  <149>
<150> 표 1에 나타낸 바와 같이 200 grit 화이트 알루미나로 샌드블라스트를 수행 한 실시예 1 내지 3의 표면 거칠기는 0.5 내지 1.8 μιη이었으며 , 40 grit 화이트 알루미나로 샌드블라스트를 수행한 비교예 1 내지 3은 2.3 내지 4.3 μ ΐΏ의 표면 거 칠기를 나타내었다. 또한 샌드블라스트를 수행하지 않은 0.3 내지 0.4 m의 표면 거칠기를 나타내었다. 이를 통하여 샌드블라스트를 통하여 알루미나 코팅층의 표면 거칠기를 높일 수 있음을 확인하였다.  As shown in Table 1, the surface roughnesses of Examples 1 to 3 where sandblasting was performed with 200 grit white alumina were 0.5 to 1.8 μιη, and Comparative Examples 1 to 3 were sandblasting with 40 grit white alumina. A surface roughness of 2.3 to 4.3 μΐ was shown. It also exhibited a surface roughness of 0.3 to 0.4 m without sandblasting. Through this it was confirmed that it is possible to increase the surface roughness of the alumina coating layer through the sand blast.
<151>  <151>
<152> <실험예 2>회토류 금속산화물 코팅막의 박리 분석  <Experiment 2> Peeling analysis of the rare earth metal oxide coating film
<153> 본 발명의 실시예 1 내지 3 및 비교예 1 내지 4을 통해 제조된 희토류 금속 산화물 코팅막의 표면 거칠기에 따라 박리되는 정도를 분석하였고 그 결과는 도 6 및 도 7에 나타내었다.  The degree of peeling was analyzed according to the surface roughness of the rare earth metal oxide coating film prepared through Examples 1 to 3 and Comparative Examples 1 to 4 of the present invention, and the results are shown in FIGS. 6 and 7.
<154> 도 6 및 도 7에 나타낸 바와 같이, 비교예 4를 통해 제조된 희토류 금속 산 화물 코팅막은 코팅된 부분이 많이 박리가 된 것을 확인할 수 있었다. 이는 샌드블 라스트를 수행하지 않고 코팅이 되었기에 표면거칠기가 낮았기 때문이며, 이로 인 해 알루미나 코팅층과의 결합력이 낮아져서 쉽게 박리가 되었다. 하지만 본 발명의 ᅳ 실시예 1 내지 3을 통해 제조된 회토류 금속 산화물 코팅막은 박리가 거의 이루어 - 지지 않은 것을 확인할 수 있었다. 또한, 비교예 1 내지 3을 통해 제조된 코팅막은 ' 코팅이 이루어지지 않은 부분이 다수 존재하는 것을 확인하였다. 이는 비교예 1 내 지 3의 알루미나층의 표면이 너무 거칠어서 희토류 금속 산화물의 코팅이 잘 이루 어지지 않았기 때문이며, 즉 본 발명에서 샌드블라스트를 통하여 표면거칠기를 최 적의 범위로 조절하고 희토류 금속산화물을 코팅하는 것이 효과적인 것을 확인할 수 있었다.  6 and 7, the rare earth metal oxide coating film prepared in Comparative Example 4 was confirmed that the coated portion is peeled off a lot. This is because the surface roughness was low because the coating was carried out without performing sandblasting, thereby lowering the bonding strength with the alumina coating layer was easily peeled off. However, the rare earth metal oxide coating film prepared in Examples 1 to 3 of the present invention was confirmed that the peeling was hardly made. In addition, the coating film prepared through Comparative Examples 1 to 3 'It was confirmed that a large number of the portion is not coated. This is because the surface of the alumina layer of Comparative Examples 1 to 3 is too rough to coat the rare earth metal oxide well, that is, in the present invention, the surface roughness is adjusted to the optimum range through sandblasting and the rare earth metal oxide is adjusted. It was confirmed that coating was effective.
<155>  <155>
<156> <실험예 3>주사전자현미경을 통한 분석  Experimental Example 3 Analysis by Scanning Electron Microscope
<157> 본 발명의 실시예 1 및 실시예 4에 의해 제조된 회토류 금속 산화물 코팅막 의 단면을 주사전자현미경을 통해 분석하였고, 그 결과는 도 8 및 도 9에 나타내었 다 · Rare Earth Metal Oxide Coating Films Prepared by Examples 1 and 4 of the Present Invention The cross section of was analyzed by scanning electron microscope, and the results are shown in FIGS. 8 and 9.
<158> 도 8에 나타낸 바와 같이, 본 발명의 실시예 1에 의해 제조된 회토류 금속 산화물 코팅막의 단면에서는 이트리아 층이 알투미나층 위로 매끄럽게 잘 코팅된 것을 확인할 수 있었다. 또한 코팅된 이트리아 층이 매우 치밀한 구조인 것을 확인 할수 있었다.  As shown in FIG. 8, it was confirmed that the yttria layer was smoothly coated on the alumina layer in the cross section of the rare earth metal oxide coating film prepared according to Example 1 of the present invention. It was also confirmed that the coated yttria layer was very dense.
<159> 도 9에 나타낸 바와 같이, 본 발명의 실시예 4에 의해 제조된 희토류 금속 산화물 코팅막의 단면 또한 이트리아 층이 알루미나층 위로 매끄럽게 잘 코팅된 것 을 확인할 수 있었으며, 코팅된 이트리아 층이 매우 치밀한 구조인 것을 확인할 수 있었다. 이를 통하여 세라믹 다공성 소결체에도 치밀한 회토류 산화물 코팅막을 형 성할수 있음을 알수 있다.  As shown in FIG. 9, the cross-section of the rare earth metal oxide coating film prepared according to Example 4 of the present invention also confirmed that the yttria layer was smoothly coated on the alumina layer, and the coated yttria layer was It was confirmed that the structure is very dense. Through this, it can be seen that a compact rare earth oxide coating film can be formed on the ceramic porous sintered body.
<160>  <160>
<161> <실험예 4> 접착강도 분석 (tensile adhesion test)  Experimental Example 4 Tensile Adhesion Test
<162> 본 발명의 실시예 6에 의해 제조된 희토류 금속 산화물 코팅막을 도 10의  The rare earth metal oxide coating film prepared according to Example 6 of the present invention is shown in FIG.
IS013779-4 규격에 제시된 것과 같이 코팅층의 상하면에 고강도 에폭시를 적용하여 인장시험기의 상하치구에 고정하여 접착강도 분석 (tensile adhesion test)을 실시 하였고 분석이 진행된 후의 단면을 SEM/EDS를 통하여 관찰하였으며 단면의 사진은 도 11 및 도 12에 나타내었다.  As shown in the IS013779-4 standard, high-strength epoxy was applied to the upper and lower surfaces of the coating layer and fixed to the upper and lower fixtures of the tensile tester. A tensile adhesion test was performed. The cross section after the analysis was observed through SEM / EDS. Photos are shown in FIGS. 11 and 12.
<163> 도 11 및 도 12에 나타낸 바와 같이 본 발명의 실시예 6에서 형성된 희토류 금속 산화물 코팅막 (이트리아 코팅층)은 샌드블라스트 처리된 알루미나충에 매우 강하게 접착되어 있음을 확인할 수 있었다. 이는 회토류 금속 산화물 코팅막 (이트 리아 코팅층) 내의 응집강도 (cohesion strength) 및 회토류 금속 산화물 코팅막과 알루미나층 간의 접착강도 (adhesion strength)가 플라즈마 용사공정으로 형성된 알 루미나 코팅층 내의 웅집강도보다 높은 것을 의미하는 것으로서 본 발명에 따른 희 토류 금속산화물 코팅막이 쉽게 박리되거나 훼손되지 않음을 확인할 수 있다. 11 and 12, it was confirmed that the rare earth metal oxide coating layer (yttria coating layer) formed in Example 6 of the present invention was very strongly adhered to the sandblasted alumina insect. This means that the cohesion strength and the adhesion strength between the rare earth metal oxide coating layer and the alumina layer are higher than that in the alumina coating layer formed by the plasma spraying process. As can be seen that the rare earth metal oxide coating film according to the present invention is not easily peeled or damaged.
<164> <164>
<165> <실험예 5>코팅막의 밀도 측정  Experimental Example 5 Density Measurement of Coating Film
<166> 본 발명의 실시예 1에서 제조된 희토류 금속산화물 코팅막의 밀도를 아르키 메데스법으로 측정하였다.  The density of the rare earth metal oxide coating film prepared in Example 1 of the present invention was measured by the Archimedes method.
<167> 상기 아르키메데스법으로 본 발명의 실시예 1에서 제조된 희토류 금속 산화 물 코팅막의 밀도를 측정한 결과 상대밀도 95.3%의 수치를 얻을 수 있었다. 이는 본 발명에 따라 희토류 금속 산화물 코팅막이 매우 치밀한 구조인 것을 의미하며, 이에 따라 본 발명에 따른 희토류 금속 산화물 코팅막이 기존의 높은 기공률로 인 하여 생겼던 문제점을 극복하여 치밀한 구조를 나타냄을 확인하였다 . As a result of measuring the density of the rare earth metal oxide coating film prepared in Example 1 of the present invention by the Archimedes method, a numerical value having a relative density of 95.3% was obtained. This means that the rare earth metal oxide coating film has a very dense structure according to the present invention. Accordingly, it was confirmed that the rare earth metal oxide coating film according to the present invention overcomes the problems caused by the existing high porosity and exhibits a dense structure.

Claims

【청구의 범위】 [Range of request]
【청구항 11  [Claim 11
평균 표면 거칠기가 0.4 내지 2.3 m인 다공성 세라믹층을 포함하는 기판의 다공성 세라믹층 상에 형성된 희토류 금속 산화물 코팅막.  A rare earth metal oxide coating film formed on a porous ceramic layer of a substrate comprising a porous ceramic layer having an average surface roughness of 0.4 to 2.3 m.
【청구항 2] [Claim 2]
제 1항에 있어서, 상기 다공성 세라믹층은 코팅에 의해 형성된 다공성 코팅층 인 것을 특징으로 하는 희토류 금속 산화물 코팅막.  The rare earth metal oxide coating of claim 1, wherein the porous ceramic layer is a porous coating layer formed by coating.
【청구항 3] [Claim 3]
제 1항에 있어서, 상기 기판은 평균 표면 거칠기가 0. The method of claim 1, wherein the substrate has an average surface roughness of zero.
4 내지 2.3 m인 다공성 세라믹층과 동일 소재의 다공성 세라믹 기판인 것을 특징으로 하는 회토류 금속 산 화물 코팅막. ' 【청구항 4] Rare earth metal oxide coating film, characterized in that the porous ceramic substrate of the same material as the porous ceramic layer of 4 to 2.3 m. '[Claim 4]
거 U항에 있어서, 상기 다공성 세라믹층은 다공성 알루미나층인 것을 특징으 로 하는 희토류 금속 산화물 코팅막.  The rare earth metal oxide coating of claim 5, wherein the porous ceramic layer is a porous alumina layer.
【청구항 5] [Claim 5]
제 1항에 있어서, 상기 회토류 금속 산화물 코팅막은 90% 이상의 치밀도를 가 지는 것을 특징으로 하는 희토류 금속 산화물 코팅막.  The rare earth metal oxide coating film of claim 1, wherein the rare earth metal oxide coating film has a density of 90% or more.
【청구항 6] [Claim 6]
제 1항에 있어서, 상기 회토류 금속 산화물 코팅막의 두께는 1 내지 50 m인 것을 특징으로 하는 희토류 금속 산화물 코팅막.  The rare earth metal oxide coating film of claim 1, wherein the rare earth metal oxide coating film has a thickness of 1 to 50 m.
【청구항 7】 [Claim 7]
제 1항에 있어서, 상기 회토류 금속 산화물은 이트리아 (Y203), 디스프로시아 (Dy203), 어비아 (Er203) 및 사마리아 (Sm203)를 포함하는 군으로부터 선택되는 것을 특 징으로 하는 희토류 금속 산화물 코팅막. The rare earth metal oxide of claim 1, wherein the rare earth metal oxide comprises yttria (Y 2 0 3 ), dysprosia (Dy 2 0 3 ), aervia (Er 2 0 3 ), and samaria (Sm 2 0 3 ). Rare earth metal oxide coating film characterized in that it is selected from the group.
【청구항 8】 제 1항에 있어서, 상기 코팅막은 반도체 식각장비를 포함하는 반도체 장비용 부품에 적용되는 것을 특징으로 하는 희토류 금속 산화물 코팅막. [Claim 8] The rare earth metal oxide coating film of claim 1, wherein the coating film is applied to a component for a semiconductor device including a semiconductor etching device.
【청구항 9] [Claim 9]
풀라즈마 용사 공정을 통해 기판상에 다공성 세라믹 코팅층을 형성하는 단계 (단계 1);  Forming a porous ceramic coating layer on the substrate through a full-lasma spraying process (step 1);
상기 단계 1에서 형성된 다공성 세라믹 코팅층의 표면이 0.4 내지 2.3 m인 평균 표면거칠기를 갖도록 가공하는 단계 (단계 2); 및  Processing the surface of the porous ceramic coating layer formed in step 1 to have an average surface roughness of 0.4 to 2.3 m (step 2); And
상기 단계 2의 가공이 수행된 다공성 세라믹 코팅층에 에어로졸 성막법을 통 하여 희토류 금속 산화물을 코팅하는 단계 (단계 3)를 포함하는 희토류 금속 산화물 코팅막의 제조방법 .  A method of manufacturing a rare earth metal oxide coating film comprising the step (step 3) of coating a rare earth metal oxide on the porous ceramic coating layer in which the processing of step 2 is performed through an aerosol film formation method.
【청구항 10] [Claim 10]
거 19항에 있어서 상기 단계 2의 가공은 샌드블라스트 (sand blast)에 의해 수 행되는 것을 특징으로 하는 희토류 금속 산화물 코팅막의 제조방법.  20. The method of claim 19, wherein the processing of step 2 is performed by sand blast.
【청구항 11】  [Claim 11]
제 10항에 있어서, 상기 샌드블라스트는 1 내지 5 기압의 공기압으로 수행되 는 것을 특징으로 하는 희토류 금속 산화물 코팅막의 제조방법 .  The method of claim 10, wherein the sand blast is carried out at an air pressure of 1 to 5 atm.
【청구항 12] [Claim 12]
거 19항에 있어서, 상기 단계 3의 에어로졸 성막법은 메디컬 그레이드의 압축 공기를 사용하는 것을 특징으로 하는 희토류 금속 산화물 코팅막의 제조방법.  20. The method of claim 19, wherein the aerosol deposition method of Step 3 uses compressed air of medical grade.
【청구항 13] [Claim 13]
소결공정을 통하여 다공성 세라믹 기판을 형성하는 단계 (단계 a);  Forming a porous ceramic substrate through a sintering process (step a);
상기 단계 a에서 형성된 다공성 세라믹 기판의 표면이 0.4 내지 2.3 m인 평 균 표면거칠기를 갖도록 가공하는 단계 (단계 b); 및  Processing the surface of the porous ceramic substrate formed in step a to have an average surface roughness of 0.4 to 2.3 m (step b); And
상기 단계 b의 가공이 수행된 다공성 세라믹 기판에 에어로졸 성막법을 통하 여 희토류 금속 산화물을 코팅하는 단계 (단계 c)를 포함하는 희토류 금속 산화물 코팅막의 제조방법 .  A rare earth metal oxide coating film comprising the step (step c) of coating a rare earth metal oxide on the porous ceramic substrate subjected to the processing of step b through an aerosol film forming method.
【청구항 14] 제 13항에 있어서, 상기 단계 b의 가공은 샌드블라스트 (sand blast)에 의해 수행되는 것을 특징으로 하는 희토류 금속 산화물 코팅막의 제조방법. [Claim 14] The method of claim 13, wherein the processing of step b is performed by sand blast.
【청구항 15] [Claim 15]
제 14항에 있어서, 상기 샌드블라스트는 1 내지 5 기압의 공기압으로 수행되 는 것을 특징으로 하는 회토류 금속 산화물 코팅막의 제조방법 .  15. The method of claim 14, wherein the sand blast is carried out at an air pressure of 1 to 5 atm.
【청구항 16】 [Claim 16]
제 13항에 있어서, 상기 단계 c의 에어로졸 성막법은 메디컬 그레이드의 압축 공기를 사용하는 것올 특징으로 하는 희토류 금속 산화물 코팅막의 제조방법.  15. The method of claim 13, wherein the aerosol deposition method of step c comprises using medical grade compressed air.
PCT/KR2011/006586 2010-09-06 2011-09-06 Dense rare earth metal oxide coating film for sealing porous ceramic surface, and preparation method thereof WO2012033326A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0087099 2010-09-06
KR20100087099 2010-09-06
KR10-2011-0089675 2011-09-05
KR1020110089675A KR101108692B1 (en) 2010-09-06 2011-09-05 Dense rare earth metal oxides coating to seal the porous ceramic surface, and the method of rare earth metal oxides coating layer

Publications (2)

Publication Number Publication Date
WO2012033326A2 true WO2012033326A2 (en) 2012-03-15
WO2012033326A3 WO2012033326A3 (en) 2012-05-03

Family

ID=45614653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006586 WO2012033326A2 (en) 2010-09-06 2011-09-06 Dense rare earth metal oxide coating film for sealing porous ceramic surface, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101108692B1 (en)
WO (1) WO2012033326A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073458A1 (en) * 2013-11-12 2015-05-21 Applied Materials, Inc. Rare-earth oxide based monolithic chamber material
US9583369B2 (en) 2013-07-20 2017-02-28 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
US9711334B2 (en) 2013-07-19 2017-07-18 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
US9725799B2 (en) 2013-12-06 2017-08-08 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US9850568B2 (en) 2013-06-20 2017-12-26 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US9869013B2 (en) * 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US9976211B2 (en) 2014-04-25 2018-05-22 Applied Materials, Inc. Plasma erosion resistant thin film coating for high temperature application
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US10364197B2 (en) 2012-02-22 2019-07-30 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
CN110158032A (en) * 2019-05-09 2019-08-23 成都超纯应用材料有限责任公司 A kind of corrosion-resistant finishes and preparation method thereof
CN110643993A (en) * 2019-10-18 2020-01-03 山东大学 Surface Sm of steel2O3Modified laser cladding material, composite coating and preparation method thereof
CN111279455A (en) * 2017-11-20 2020-06-12 Komico有限公司 Method for producing plasma-resistant coating film and plasma-resistant member formed thereby
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932429B1 (en) * 2012-05-04 2018-12-26 (주)코미코 Plasma resistant coating layer, method of manufacturing the same and Plasma resistant unit
WO2013176168A1 (en) * 2012-05-22 2013-11-28 株式会社東芝 Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
US20180240649A1 (en) * 2017-02-17 2018-08-23 Lam Research Corporation Surface coating for plasma processing chamber components
KR102016615B1 (en) 2017-09-14 2019-08-30 (주)코미코 Member Having Exellent Resistance Against Plasmacorrosion for Plasma Etching device and Method for Producing the Same
US11795547B2 (en) 2018-07-17 2023-10-24 Komico Ltd. Method of aerosol deposition coating for plasma resistant coating
KR102522277B1 (en) 2022-03-24 2023-04-17 주식회사 펨빅스 Anti-plasma Double-layered Coating Structure and Method of Making the Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050008855A (en) * 2002-06-27 2005-01-21 램 리서치 코포레이션 Thermal sprayed yttria-containing coating for plasma reactor
KR20050039565A (en) * 2003-10-24 2005-04-29 도시바세라믹스가부시키가이샤 Plasma resistant member, manufacturing method for the same and method of forming a thermal spray coat
KR20070090531A (en) * 2006-03-03 2007-09-06 가부시키가이샤 히다치 하이테크놀로지즈 Plasma etching apparatus and inner wall forming method of plasma precessing chamber
KR20080036530A (en) * 2006-10-23 2008-04-28 어플라이드 머티어리얼스, 인코포레이티드 Low temperature aerosol deposition of a plasma resistive layer
KR20090086896A (en) * 2008-11-07 2009-08-14 주식회사 코미코 Internal member of plasma processing apparatus and method for manufacturing the same
KR20100011582A (en) * 2008-07-25 2010-02-03 주식회사 코미코 Apparatus for forming ceramic coated layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050008855A (en) * 2002-06-27 2005-01-21 램 리서치 코포레이션 Thermal sprayed yttria-containing coating for plasma reactor
KR20050039565A (en) * 2003-10-24 2005-04-29 도시바세라믹스가부시키가이샤 Plasma resistant member, manufacturing method for the same and method of forming a thermal spray coat
KR20070090531A (en) * 2006-03-03 2007-09-06 가부시키가이샤 히다치 하이테크놀로지즈 Plasma etching apparatus and inner wall forming method of plasma precessing chamber
KR20080036530A (en) * 2006-10-23 2008-04-28 어플라이드 머티어리얼스, 인코포레이티드 Low temperature aerosol deposition of a plasma resistive layer
KR20100011582A (en) * 2008-07-25 2010-02-03 주식회사 코미코 Apparatus for forming ceramic coated layer
KR20090086896A (en) * 2008-11-07 2009-08-14 주식회사 코미코 Internal member of plasma processing apparatus and method for manufacturing the same

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US11279661B2 (en) 2012-02-22 2022-03-22 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US10364197B2 (en) 2012-02-22 2019-07-30 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US10734202B2 (en) 2013-06-05 2020-08-04 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US10119188B2 (en) 2013-06-20 2018-11-06 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US11680308B2 (en) 2013-06-20 2023-06-20 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US9850568B2 (en) 2013-06-20 2017-12-26 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10796888B2 (en) 2013-07-19 2020-10-06 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
US9711334B2 (en) 2013-07-19 2017-07-18 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
US11424136B2 (en) 2013-07-20 2022-08-23 Applied Materials, Inc. Rare-earth oxide based coatings based on ion assisted deposition
CN110016645A (en) * 2013-07-20 2019-07-16 应用材料公司 For covering the ion assisted deposition with the rare earth oxide base coating on nozzle
US9869012B2 (en) 2013-07-20 2018-01-16 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based coatings
US9583369B2 (en) 2013-07-20 2017-02-28 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
US10930526B2 (en) 2013-07-20 2021-02-23 Applied Materials, Inc. Rare-earth oxide based coatings based on ion assisted deposition
US9812341B2 (en) 2013-07-20 2017-11-07 Applied Materials, Inc. Rare-earth oxide based coatings based on ion assisted deposition
US10577286B2 (en) 2013-11-12 2020-03-03 Applied Materials, Inc. Rare-earth oxide based chamber material
US10584068B2 (en) 2013-11-12 2020-03-10 Applied Materials, Inc. Rare-earth oxide based chamber material
US9440886B2 (en) 2013-11-12 2016-09-13 Applied Materials, Inc. Rare-earth oxide based monolithic chamber material
US9884787B2 (en) 2013-11-12 2018-02-06 Applied Materials, Inc. Rare-earth oxide based monolithic chamber material
TWI632125B (en) * 2013-11-12 2018-08-11 應用材料股份有限公司 Rare-earth oxide based monolithic chamber material
TWI583654B (en) * 2013-11-12 2017-05-21 應用材料股份有限公司 Rare-earth oxide based monolithic chamber material
CN111333420A (en) * 2013-11-12 2020-06-26 应用材料公司 Rare earth oxide based monolithic chamber materials
US10934216B2 (en) 2013-11-12 2021-03-02 Applied Materials, Inc. Rare-earth oxide based chamber material
US9890086B2 (en) 2013-11-12 2018-02-13 Applied Materials, Inc. Rare-earth oxide based monolithic chamber material
US9617188B2 (en) 2013-11-12 2017-04-11 Applied Material, Inc. Rare-earth oxide based coating
WO2015073458A1 (en) * 2013-11-12 2015-05-21 Applied Materials, Inc. Rare-earth oxide based monolithic chamber material
US11566318B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US11566317B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US11566319B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US9725799B2 (en) 2013-12-06 2017-08-08 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US9797037B2 (en) 2013-12-06 2017-10-24 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US9869013B2 (en) * 2014-04-25 2018-01-16 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US10815562B2 (en) 2014-04-25 2020-10-27 Applied Materials, Inc. Plasma erosion resistant thin film coating for high temperature application
US10563297B2 (en) 2014-04-25 2020-02-18 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US10544500B2 (en) 2014-04-25 2020-01-28 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US9976211B2 (en) 2014-04-25 2018-05-22 Applied Materials, Inc. Plasma erosion resistant thin film coating for high temperature application
US9970095B2 (en) 2014-04-25 2018-05-15 Applied Materials, Inc. Ion assisted deposition top coat of rare-earth oxide
US11773479B2 (en) 2014-04-25 2023-10-03 Applied Materials, Inc. Plasma erosion resistant thin film coating for high temperature application
CN111279455A (en) * 2017-11-20 2020-06-12 Komico有限公司 Method for producing plasma-resistant coating film and plasma-resistant member formed thereby
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
CN110158032B (en) * 2019-05-09 2021-09-28 成都超纯应用材料有限责任公司 Corrosion-resistant coating and preparation method thereof
CN110158032A (en) * 2019-05-09 2019-08-23 成都超纯应用材料有限责任公司 A kind of corrosion-resistant finishes and preparation method thereof
CN110643993A (en) * 2019-10-18 2020-01-03 山东大学 Surface Sm of steel2O3Modified laser cladding material, composite coating and preparation method thereof

Also Published As

Publication number Publication date
KR101108692B1 (en) 2012-01-25
WO2012033326A3 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
WO2012033326A2 (en) Dense rare earth metal oxide coating film for sealing porous ceramic surface, and preparation method thereof
TWI615506B (en) Plasma resistant coating layer and method of forming the same
TW201900584A (en) Anti-corrosion component and manufacturing method
US9837296B2 (en) Electrostatic chuck apparatus
JP4540221B2 (en) Laminate, corrosion resistant member and halogen gas plasma member
Gao et al. Fabrication and high temperature oxidation resistance of ZrO2/Al2O3 micro-laminated coatings on stainless steel
JP2003277051A (en) Multilayer body having yttria - alumina compound oxide film, yttria - alumina compound oxide film, corrosion- resistant member, corrosion-resistant film and method for manufacturing yttria - alumina compound oxide film
WO2007108549A1 (en) Plasma processing apparatus and plasma processing method
Hahn et al. Fabrication and characterization of aluminum nitride thick film coated on aluminum substrate for heat dissipation
Gao et al. Preparation of YSZ/Al2O3 micro-laminated coatings and their influence on the oxidation and spallation resistance of MCrAlY alloys
JP2021500480A (en) Manufacturing method of plasma resistant coating film and plasma resistant member formed by this method
Wang et al. Microstructure and high temperature properties of two-step voltage-controlled MAO ceramic coatings formed on Ti2AlNb alloy
CN108754406A (en) A kind of die surface compounding method
Zhang et al. The pore structure and properties of microarc oxidation films on 2024 aluminum alloy prepared in electrolytes with oxide nanoparticles
Wang et al. Comparison in characterization of composite and sol-gel coating on AZ31 magnesium alloy
JP2020141123A (en) Member for semiconductor manufacturing device, semiconductor manufacturing device having the same, and display manufacturing device
US11760694B2 (en) Alumina sintered body and manufacturing method therefor
KR101208768B1 (en) A method for manufacturing ceramic coating layer for improving corrosion resistance of metal and a thing having a ceramic coating layer thereof
WO2011100527A1 (en) Method for texturing ceramic components
KR101254618B1 (en) Ceramic coating method for corrosion resistant member
Han et al. Densification of polycrystalline alumina with dense dislocation arrays via stainless steel sealed powder metallurgy hot isostatic press
KR20170073390A (en) Manufacturing method of tantalum coating layers, sputtering targer material and niobium coating layers
US20220285164A1 (en) Plasma Etching Apparatus Component for Manufacturing Semiconductor Comprising Composite Sintered Body and Manufacturing Method Therefor
KR102356172B1 (en) Method for Producing Plasma-Resistant Coating Layer
KR102411792B1 (en) Plasma etching device parts for semiconductor manufacturing including composite sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823759

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11823759

Country of ref document: EP

Kind code of ref document: A2