WO2012015101A1 - Topology processing method for a power supply system - Google Patents

Topology processing method for a power supply system Download PDF

Info

Publication number
WO2012015101A1
WO2012015101A1 PCT/KR2010/006568 KR2010006568W WO2012015101A1 WO 2012015101 A1 WO2012015101 A1 WO 2012015101A1 KR 2010006568 W KR2010006568 W KR 2010006568W WO 2012015101 A1 WO2012015101 A1 WO 2012015101A1
Authority
WO
WIPO (PCT)
Prior art keywords
topology
substation
processing
bus
switchgear
Prior art date
Application number
PCT/KR2010/006568
Other languages
French (fr)
Korean (ko)
Inventor
윤상윤
송일근
권성철
추철민
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2012015101A1 publication Critical patent/WO2012015101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a method for processing a topology of a power supply system.
  • the topology processing method of the conventional distribution network performs topology processing only on a single trunk line of a radial distribution system, and thus cannot process a system topology in which multiple substations are linked and operated by a constant loop, and through topology analysis of multiple trunks and multiple substations. There is a problem that there is no function of generating an electrical island. In addition, as the introduction of a microgrid type operation due to the inflow of distributed power, etc., a function of determining the validity of each independent system and checking the validity of each facility is required.
  • FIG. 3 is a flowchart illustrating a topology processor of the existing power distribution operating system.
  • the information of the trunk to perform the topology processing designated by the user is input, and the starting equipment information of the trunk is input.
  • save the list of discovered facilities and finally display the disconnection diagram and exit.
  • the topology processor of the existing distribution system operating system only performs topology processing using a physical node for one designated trunk, cannot identify and validate independent systems, and also cannot perform facility validation. In addition, each time the calculation unit and the control unit of the power supply system performs a current calculation, fault calculation, voltage control, etc., the topology processing must be performed.
  • An object of the present invention is to provide a topology processing method of a power supply system that performs topology processing and independent system processing of a plurality of substations in consideration of a stand-alone operation situation by a constant loop and a distributed power supply of a distribution system.
  • a method for processing a topology of a power supply system is provided.
  • the topology processing method of a power supply system in which multiple substations are linked includes (a) determining a mode of performing topology processing in an initial driving state and other performance states, and (b) performing topology processing for each substation according to the determination result. (C) performing one of a first process of processing an independent system for a distribution system and a second process of performing topology processing only on substations whose state of switchgear is changed and partially updating the remaining link structure; and (c) Generating an independent system using the connection relationship between the electric busbar and the branch generated according to the execution of step (b), the link switch, and the state; and (d) checking the validity of the independent system, the branch, and the injection. Steps.
  • the first process may include receiving a measured value and inspecting an initial topology error, using an electrical bus using a physical bus and switch device connection information and switch state information of a substation in a system. Generating; And creating a link between the generated electrical busbar and the substation, the physical busbar, the branch and the injection.
  • the step of generating the electrical bus to generate the electrical bus by using the connection between the physical bus and the switchgear unit and the state of the switchgear in the power distribution system substation unit.
  • the checking of the initial topology error further includes processing the topology error.
  • the second process may include checking an error of a state change topology; Generating an electric bus in the substation to which the switchgear with the changed state belongs; Generating a link between the generated electrical busbar and the substation, the physical busbar, the branch and the injection.
  • (d) checks the existence of a generator and a load in operation belonging to the independent system to check the validity of the independent system and each facility.
  • the present invention has a hierarchical data structure including at least one data table of a branch, a substation, a physical defect, the electrical defect, an associated switch, a switch, a branch, and an injection.
  • the topology processing of all grids in a substation unit may be sequentially processed, thereby enabling topology processing of the entire distribution grid linked by a constant loop.
  • the topology processing method of the power supply system can detect the independent system, and can detect the independent operation system by the distributed power source and the micro grid by suggesting a method capable of validating the independent system and the facility. For this purpose, we can suggest a linked switch model.
  • the topology processing method of the power supply system can save the computation time by presenting the data structure for the input and output of the topology processor, the subsequent operation and control programs can share the same processing result through the storage of the execution result.
  • FIG. 1 is a diagram schematically showing a configuration of a power supply system.
  • FIG. 2 is a diagram illustrating a topology processing method of a power supply system according to an exemplary embodiment.
  • 3 is a diagram for explaining topology error checking.
  • FIG. 4 shows an example system to which a power supply system is applied.
  • FIG. 5 is a diagram illustrating a result of topology processing in which all switch devices of FIG. 4 are assumed to be in a closed state.
  • FIG. 6 and 7 are diagrams illustrating a topology characteristic matrix when the topology processing is performed with the physical bus bar and the electrical bus with respect to the first substation A of the example system of FIG. 4.
  • FIG. 8 is a diagram illustrating storage of the number of bus generations for each substation.
  • FIG. 9 illustrates a linkage interlock between substations modeled as a zero impedance line with opening and closing information.
  • FIG. 10 is a configuration diagram of a database for topology processing according to an embodiment of the present invention.
  • one component when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
  • the power supply system and the topology processor will be described before describing the topology processing method of the power supply system according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a configuration of a power supply system.
  • an energy management system (EMS) of a power system accurately understands the current state of the system 501 to solve various problems such as voltage and overload occurring in the system 501. It is a system that manages the software and hardware for presenting to the operator.
  • the power supply system includes a measurement device 503 for measuring data of each part of the system 501, a measurement data server 505 for processing measurement data, a main server 507 for calculating and controlling processed measurement data, topology processing,
  • the topology processor 510 performs periodic and sequential programs such as system state estimation, tidal current calculation, and voltage control, and is calculated in the analysis programs using the topology characteristics of the system 501 generated by the topology processor 510.
  • a client terminal 513 that receives information necessary for system operation and a data management server 515 managing data.
  • the topology processor 510 is used to search the topology of the system and recognize the path. This checks the electrical connection information and the individual equipment's energized and de-energized operation of the power supply system. For example, the topology processor 510 may identify buses 1, 2, and 3 that are systems connected through topology search, and may identify that the generator and the load are valid independent systems under pressure.
  • the topology processor 510 transmits admittance matrix (Y matrix) information, which is topology characteristic information, to the calculation unit and the control unit of the power supply system.
  • the admittance matrix information consists of each element of the admittance matrix calculated as in Equation (1).
  • FIG. 2 is a diagram illustrating a topology processing method of a power supply system according to an exemplary embodiment.
  • the current performance is the first performance (S10). In this case, it is determined whether the first execution is performed to suit the situation whether the current power supply system has topology information or changes.
  • the initial topology error is checked with the analog measurement value (S20).
  • an electrical bus is generated using physical buses and switch connection information and switch state information of all substations (S30).
  • step S40 is completed for all substations (S50).
  • step S40 when the determination progress step S40 is completed, the independent grid which is the scope of analysis is generated by using the connection relationship between the generated electrical buses, the link switch state and the transmission line (S60). Or if step S40 has not been completed, the process returns to step S30.
  • the analytical nodes at both ends of the linkage switch belong to the same independent system. If the linkage switch is open, check whether the linkage is connected to another path. If the search results of all paths do not connect the analytical nodes at both ends, the two nodes are treated as belonging to different independent systems.
  • step S70 is performed for all buses (S80). As a result of the determination, when the validation is completed, the topology processing ends. Or, if the validation is not completed, the process returns to step S60.
  • the topology error of the change switch is checked with the surrounding analog measurement value (S100). Or, if there is no state change of the switchgear, it is determined that the validation of all buses is completed and the topology processing is terminated.
  • step S60 and step S70 of the first execution mode are performed.
  • step S60 it is determined whether or not step S60 has been performed for all buses (S60). As a result of the determination, when the validation is completed, the topology processing ends. Or, if the validation is not completed, the process returns to step S60.
  • FIG. 2 the topology processing method illustrated in FIG. 2 will be described in detail with reference to FIGS. 3 to 10.
  • 3 is a diagram for explaining topology error checking.
  • FIG 3 illustrates that the first switch S1 connects the first load LD1 and the second load LD2 to flow tidal currents P / Q due to active power P and reactive power Q. It is shown as an enemy.
  • step S20 the first branch (line and transformer) BR1 and the third physical busbar 3 on the side of the physical node and the closest second physical busbar 2 connected to the physical node across all switchgear of the entire substation. Find the second branch BR2 and check whether the algae P / Q flowing above the set value of the branch flows. If the open / close device is searched during the search, the search is stopped.
  • the estimated state of the first switchgear S1 is closed. Therefore, when the measured value is open, the measured value is corrected and an alarm is generated. If there is no first branch BR1 and second branch BR2 on the left and right sides, the branch is considered to have a value below the set value.
  • the algae measurement value P4 / Q4 of the second load LD2 is greater than or equal to the set value.
  • the estimated state of the first switchgear S1 is closed. Therefore, if the measured value is open, correct the measured value and generate an alarm. If the flow direction is opposite to FIG. 3 and the flow rate measurement value P1 / Q1 of the first load LD1 is greater than or equal to the set value, the estimated state of the first switchgear S1 is closed. Therefore, if the measured value is open, correct the measured value and generate an alarm. If there is no load on the left and right sides, the load is considered to have a value below the set value.
  • the estimated state of the first switchgear S1 is open. Therefore, if the measured value is closed, correct the measured value and generate an alarm.
  • steps S30 and S40 the topology processing of all the grids is sequentially processed in the substation unit, thereby solving the problem that the topology of the entire grid is not processed by performing the topology processing on only one designated trunk line.
  • a case in which the topology is processed based on a physical bus node and a case in which the topology is processed as in the case of the present invention will be described with reference to FIGS. 4 to 7.
  • the example system is the first substation (A) and the second substation (B) and the transformer (TR1, TR2) connected to them, the switchgear (S1 ⁇ S11), load (LD1 ⁇ LD7), generator ( G1 to G3) and physical buses 1, 2, ..., 25.
  • the example system is divided into the main system 40 and the micro grid system 50 when the switch S10 is opened, the micro grid system 50 is capable of independent operation.
  • FIG. 5 is a diagram illustrating a result of topology processing in which all switch devices of FIG. 4 are assumed to be in a closed state.
  • FIG. 6 and 7 are diagrams illustrating a topology characteristic matrix when the main system 40 of FIG. 4 is subjected to a topology processing with a physical busbar and an electrical busbar with respect to the first substation A.
  • the matrix size of 25 ⁇ 25 is reduced to 15 ⁇ 15, resulting in an admittance matrix size of about 64%. This reduces the amount of calculation of the calculation unit and the control unit.
  • the node processing indicator 1 is allocated to the physical node to which the facility is connected.
  • node processing indicators include 0, 1, and 2, where 0 is a node that has not been processed and no branch or injection is connected, 1 is a node that has not been processed but a branch or injection is connected, and 2 is a processed node. .
  • FIG. 8 is a diagram illustrating storage of the number of bus generations for each substation.
  • each substation is composed of first to Nth substations A, B, C, ..., N.
  • each substation is composed of first to Nth substations A, B, C, ..., N.
  • the grouping of physical buses inside the individual substations is performed by exploring the connection status of the switchgear centering on the node processing indicator 1, which was processed in step 1 above, and if the contact measurement is closed, group the nodes at both ends and if there is another switchgear. Search. Continue until you find a node that has already been processed or that has a node processing indicator of 1 and assign it to one electrical bus. Repeat until all physical busbars in the substation have been processed.
  • step S40 the link between the electrical bus bar and the substation (substation number to which the electric bus belongs, the next bus number belonging to the same substation, the first bus number included in the substation) is stored.
  • the first_station_bus (i) and last_station_bus (i) stored in each substation are extracted, the first_bus and last_bus are extracted, the first bus number for each substation i is assigned, the substation number to which each bus bar belongs, and the next bus bar belonging to the same substation. Assign a number.
  • step S40 a free bus is processed.
  • a free bus means an empty bus room and must store the free bus position for the next time the number of buses changes.
  • step S40 a link between the electric bus and related facilities is created. Create a link between the electrical busbar and the physical busbar. The link between the physical busbar and each facility (branch / injection, switchgear) is used to create a link between the electrical busbar and each facility.
  • step S100 it is checked in which substation a state change has occurred.
  • the inspection is performed by comparing the previous measurement state and the current measurement state of all the switchgear with reference to Table 1.
  • Table 1 shows detailed field information and relations for topology processing of the associated switchgear, switchgear, physical bus and substation.
  • the linked switch and the switch table there are Old Status and New Status fields to recognize the change of status. Replaced and stored.
  • step S100 the error of the topology whose state has changed is checked.
  • all the switchgear belonging to the state-changed substation finds and inspects the physical nodes at both ends and the nearest branches and loads connected to the physical nodes.
  • step S110 physical buses for the substations in which the state change has occurred are generated to generate electrical bus numbers.
  • step S110 the bus merge is inspected for the substation in which the state change has occurred. Based on the current state, the topology processing finds the equipment connected to all physical buses belonging to the bus based on the generated electric bus. Extract the equipment (branch / injection) number to which the first physical busbar belonging to the electrical busbar is connected, and extract the old topology busbar number (old_bus_number), which is the electrical busbar to which this facility is connected as a result of previous topology processing. For all remaining physical busies belonging to the electric busbar, the connection equipment and the electrical bus (brij_old_bs_num) connected to the equipment as a result of the previous topology processing are extracted.
  • step S110 the bus split is inspected for the substation where the state change has occurred.
  • the number of branches and injection connections of the corresponding bus bar (state change criterion) obtained in step S110 is compared with the number of connections before the state change, and if the number is different, it is determined that the electrical bus is separated.
  • step S110 a free bus is processed.
  • additional free buses are designated as many as the merged number. To do this, add a free bus immediately after the valid bus and modify the relevant links.
  • the added valid mothership shall be specified by adding it directly above the maximum parent and modifying the related links.
  • step S120 a link is created with facilities related to the electric busbar of the substation in which the state change has occurred. At this time, the link between the electrical busbar and the physical busbar is corrected. In addition, the link between the physical busbar and each facility (branch / injection, switchgear) is used to modify the link between the electrical busbar and each facility.
  • the topology processing method of the power supply system identifies the independent system 63 and checks the validity of the independent system and equipment.
  • the initialization is performed in the first step.
  • the bus type is initialized with the load and the bus state is set to live.
  • the state changes to dead. It also changes the type of bus by looking at the branch / injection connected to the bus. At this time, the branch state is designated as live.
  • the independent system to which the mothership belongs is treated as invalid, the status of the connected branches is also changed to dead.
  • the injection state is set to live. Like branches, they can be changed. Independent systems are designated as invalid. Independent systems can be changed as well as busbars, branches and injections.
  • the independent system is created by grouping the electrical buses using the connection state of the electric buses and branches (such as lines and transformers) and the open / closed states of the link switches. If the linked switchgear is closed, it is added to the same independent system. If the linked switchgear is open, it is checked whether it belongs to the same independent system through a different path. Repeat this process for all buses.
  • the first check checks the validity and invalidity by comparing the minimum live parent set point of the independent system with the live parent player of the independent system. Further, in the third step, as a second check, the minimum live generator and load number setting values of the independent system are compared with the live generator and load numbers of the independent system to check the validity / invalidity. If the measured value is less than the designated value, it is treated as invalid. In addition, in the third step, when the absolute amount of the difference between the sum of the measured generation amounts of the independent system and the sum of the load measurement amounts is equal to or greater than the specified value, the third check is invalid.
  • the determination of validity is designated as a valid independent system only when the first check, the second check and the third check are valid.
  • FIG. 9 illustrates a linkage interlock between substations modeled as a zero impedance line with opening and closing information.
  • the interlocked switchgear between substations was treated as a model having physical buses 81 at both ends, a line impedance of 0, and opening / closing information 85 as shown in FIG. 9.
  • this model it is possible to process the linkage switchgear between substations in the form of a branch and reflect the state of the opening and closing.
  • the results of the topology processor are stored in the data structure of FIG. 10 by introducing the data structure shown in FIG. Make it available for sharing.
  • FIG. 10 is a configuration diagram of a database for topology processing according to an embodiment of the present invention.
  • a data table for topology processing is shown, where reference symbol 1 is one receiver and reference symbol N is a plurality of transmitters.
  • the topology processing is performed on a point 91, which is a bundle of substations, and after the transformation of the physical buses 105 into the electric buses 97 in units of the substations 93 belonging to the points.
  • the independent system 95 which is a connection of the electric buses 97, is processed.
  • the substation linkage switch 107 has a link with the physical busbar 105 and belongs to the point 91. The state of the link switch 107 can be recognized because there is measurement information.
  • the physical buses 105 belong to each substation 93, and the physical buses 105 are branches that are general switchgear (breaker, switchgear and other protection devices) 103 and two-node equipment (line, transformer, SVR, etc.) 101) and the link information of the injection 99 which is a one-node facility (load, generator, parallel device (Sh.C, Sh.R, SVC, etc.)).
  • the linkage switch 107 does not belong to the substation 93 so that the topology connection between the substations 93 can be handled, and all system structures have electrical nodes and facilities (switching device, linking switchgear, branch and injection). ), It is possible to process the topology of the entire point 91 including any connection state (radial, loop, etc.) and the substation 93 including any connection state (normally open and always loop) between the trunk lines. .
  • the topology processing of all grids in a substation unit may be sequentially processed, thereby enabling topology processing of the entire distribution grid linked by a constant loop.
  • the topology processing method of the power supply system can detect the independent system, and can detect the independent operation system by the distributed power source and the micro grid by suggesting a method capable of validating the independent system and the facility. For this purpose, we can suggest a linked switch model.
  • the topology processing method of the power supply system can save the computation time by presenting the data structure for the input and output of the topology processor, the subsequent operation and control programs can share the same processing result through the storage of the execution result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A topology processing method for a power supply system to which a plurality of transformer substations are linked comprises the steps of: (a) determining the topology processing run mode of the initial drive state and of other run states; (b) running one routine, out of a 1st routine that involves processing a network that is independent with respect to the entire electricity distribution network and a 2nd routine that involves running topology processing with respect to only those transformer substations in which the state of the switchgear has changed and involves partially updating the remaining link structure, after having run topology processing for each transformer substation individually, in accordance with the results of the determination; and (c) generating an independent network by using the connection relationships between electrical busses and branches generated in accordance with the results of the running of step (b), and associated switchgear and the state thereof; and also (d) testing the independent network, the branch and injection validity.

Description

급전 시스템의 토폴로지 처리 방법How Topology Is Handled in Feeding Systems
본 발명은 급전 시스템의 토폴로지 처리 방법에 관한 것이다.The present invention relates to a method for processing a topology of a power supply system.
대량의 분산 전원이 연계되고 배전 계통의 상시 루프 운전 등으로 다중 변전소의 연계 운전이 수용되는 스마트 배전 계통의 원활한 운용 및 제어를 위해서는 간선(Distribution Line, D/L) 단위의 감시 및 제어 범위를 확장하여 지점 단위의 배전 계통에 대한 토폴로지 처리가 필요하다.Expansion of the monitoring and control range in the distribution line (D / L) unit for smooth operation and control of the smart distribution system in which a large amount of distributed power supply is connected and the continuous operation of the distribution system accommodates the linkage operation of multiple substations. Therefore, topology processing for the distribution system on a branch basis is required.
종래의 배전망의 토폴로지 처리 방법은 방사상 배전 계통의 단일 간선에 대해서만 토폴로지 처리를 수행하도록 되어 상시 루프 등으로 다중 변전소가 연계 운전되는 계통 토폴로지는 처리할 수 없으며 복수 간선 및 다수 변전소의 토폴로지 해석을 통한 전기적 독립 계통(electrical island)의 생성의 기능이 없다는 문제점이 있다. 또한, 분산 전원 등의 유입으로 인한 마이크로 그리드(microgrid) 방식의 운전 등이 도입되면서 각 독립 계통의 유효성을 판단하고 이에 따른 각 설비의 유효성을 검사하는 기능이 요구되고 있다.The topology processing method of the conventional distribution network performs topology processing only on a single trunk line of a radial distribution system, and thus cannot process a system topology in which multiple substations are linked and operated by a constant loop, and through topology analysis of multiple trunks and multiple substations. There is a problem that there is no function of generating an electrical island. In addition, as the introduction of a microgrid type operation due to the inflow of distributed power, etc., a function of determining the validity of each independent system and checking the validity of each facility is required.
기존 배전운영시스템의 토폴로지 처리기의 처리 흐름도를 도면 3에 도시하였다. 우선 사용자가 지정한 토폴로지 처리를 수행할 간선의 정보를 입력받고, 간선의 시작 설비 정보를 입력받는다. 해당 간선의 모든 설비에 대해 탐색이 완료될 때까지 탐색을 수행하고 중간에 루프(loop) 상태를 검사하여 루프 구성이면 알람(alarm)을 발생시키고 종료되며 루프가 발생하지 않고 모든 설비에 대해 탐색이 완료되었으면 탐색한 설비의 리스트를 저장하고 최종적으로 단선도를 표출하고 종료한다.3 is a flowchart illustrating a topology processor of the existing power distribution operating system. First of all, the information of the trunk to perform the topology processing designated by the user is input, and the starting equipment information of the trunk is input. Perform a search until all the facilities in the trunk are complete and check the loop status in the middle to generate a loop if the loop is configured. When complete, save the list of discovered facilities and finally display the disconnection diagram and exit.
기존 배전계통 운영시스템의 토폴로지 처리기는 지정된 1개 간선에 대한 물리적모선(node)을 이용한 토폴로지 처리만을 수행하고, 독립계통의 식별 및 유효성 점검을 할 수 없으며 설비의 유효성 검사도 수행할 수 없다. 또한, 급전시스템의 연산부 및 제어부에서 조류계산, 고장계산, 전압제어 등을 수행할 때마다 토폴로지 처리를 해야한다.The topology processor of the existing distribution system operating system only performs topology processing using a physical node for one designated trunk, cannot identify and validate independent systems, and also cannot perform facility validation. In addition, each time the calculation unit and the control unit of the power supply system performs a current calculation, fault calculation, voltage control, etc., the topology processing must be performed.
본 발명이 해결하고자 하는 과제는 배전 계통의 상시 루프 및 분산 전원에 의한 단독 운전 상황을 고려한 다수 변전소의 토폴로지 처리 및 독립 계통 처리를 수행하는 급전 시스템의 토폴로지 처리 방법을 제공하는 것이다.An object of the present invention is to provide a topology processing method of a power supply system that performs topology processing and independent system processing of a plurality of substations in consideration of a stand-alone operation situation by a constant loop and a distributed power supply of a distribution system.
본 발명의 일 측면에 따르면, 급전 시스템의 토폴로지 처리 방법을 제공한다.According to an aspect of the present invention, a method for processing a topology of a power supply system is provided.
다중 변전소가 연계된 급전 시스템의 토폴로지 처리 방법은 (a) 초기 구동 상태와 그 외 수행 상태의 토폴로지 처리 수행 모드를 판별하는 단계, (b) 판별 결과에 따라, 변전소 별로 토폴로지 처리를 수행한 후 전체 배전 계통에 대해 독립 계통을 처리하는 제1 과정 및 개폐기기의 상태가 변경된 변전소에 대해서만 토폴로지 처리를 수행하고 부분적으로 나머지 링크 구조를 갱신하는 제2 과정 중 하나의 과정을 수행하는 단계 및 (c) 상기 (b)의 수행 결과에 따라 생성된 전기적 모선과 브랜치의 연결 관계, 연계개폐기 및 그 상태를 이용하여 독립 계통을 생성하는 단계 및 (d) 상기 독립 계통, 상기 브랜치 및 인젝션의 유효성을 검사하는 단계를 포함한다. The topology processing method of a power supply system in which multiple substations are linked includes (a) determining a mode of performing topology processing in an initial driving state and other performance states, and (b) performing topology processing for each substation according to the determination result. (C) performing one of a first process of processing an independent system for a distribution system and a second process of performing topology processing only on substations whose state of switchgear is changed and partially updating the remaining link structure; and (c) Generating an independent system using the connection relationship between the electric busbar and the branch generated according to the execution of step (b), the link switch, and the state; and (d) checking the validity of the independent system, the branch, and the injection. Steps.
본 발명의 일 실시 예에 따르면, 상기 제1 과정은, 측정값을 수신하여 초기 토폴로지 오류를 검사하는 단계, 계통 내의 변전소의 물리적 모선과 개폐기기 연결 정보 및 개폐기기 상태 정보를 이용하여 전기적 모선을 생성하는 단계; 및 생성된 전기적 모선과 변전소, 물리적 모선, 브랜치 및 인젝션과의 링크를 생성하는 단계를 포함한다.According to an embodiment of the present disclosure, the first process may include receiving a measured value and inspecting an initial topology error, using an electrical bus using a physical bus and switch device connection information and switch state information of a substation in a system. Generating; And creating a link between the generated electrical busbar and the substation, the physical busbar, the branch and the injection.
본 발명의 일 실시 예에 따르면, 상기 전기적 모선을 생성하는 단계는 배전 계통을 변전소 단위로 물리적 모선과 개폐기기의 연결 관계 및 개폐기기의 상태를 이용하여 전기적 모선을 생성한다.According to one embodiment of the present invention, the step of generating the electrical bus to generate the electrical bus by using the connection between the physical bus and the switchgear unit and the state of the switchgear in the power distribution system substation unit.
본 발명의 일 실시 예에 따르면, 상기 초기 토폴로지 오류를 검사하는 단계는 상기 토폴로지 에러를 처리하는 단계를 더 포함한다.According to an embodiment of the present disclosure, the checking of the initial topology error further includes processing the topology error.
본 발명의 일 실시 예에 따르면, 상기 제2 과정은, 상태 변경 토폴로지의 오류를 점검하는 단계; 상기 상태가 변경된 개폐기기가 속한 변전소 내 전기적 모선을 생성하는 단계; 상기 생성된 전기적 모선과 변전소, 물리적 모선, 브랜치 및 인젝션과의 링크를 생성하는 단계를 포함한다.According to an embodiment of the present disclosure, the second process may include checking an error of a state change topology; Generating an electric bus in the substation to which the switchgear with the changed state belongs; Generating a link between the generated electrical busbar and the substation, the physical busbar, the branch and the injection.
본 발명의 일 실시 예에 따르면, 상기 (d)는 독립 계통에 속하는 운전 중인 발전기와 부하의 존재 여부를 확인하여 독립 계통 및 각 설비의 유효성을 검사한다.According to an embodiment of the present invention, (d) checks the existence of a generator and a load in operation belonging to the independent system to check the validity of the independent system and each facility.
본 발명의 일 실시 예에 따르면, 지점, 변전소, 물리적 결점, 상기 전기적 결점, 연계개폐기, 개폐기기, 브랜치 및 인젝션 중 적어도 하나의 데이터 테이블을 포함하는 계층적 데이터 구조를 갖는다.According to an embodiment of the present invention, it has a hierarchical data structure including at least one data table of a branch, a substation, a physical defect, the electrical defect, an associated switch, a switch, a branch, and an injection.
본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법은 변전소 단위로 모든 계통의 토폴로지 처리를 순차적으로 처리함으로써 상시 루프 등으로 연계된 배전 계통 전체의 토폴로지 처리가 가능하다.In the topology processing method of a power supply system according to an embodiment of the present invention, the topology processing of all grids in a substation unit may be sequentially processed, thereby enabling topology processing of the entire distribution grid linked by a constant loop.
또한, 급전 시스템의 토폴로지 처리 방법은 독립 계통을 식별하고, 독립 계통과 설비의 유효성을 검사할 수 있는 방법을 제시함으로써 분산 전원 및 마이크로 그리드에 의한 단독 운전 계통을 검출할 수 있다. 이를 위해 연계개폐기 모델을 제시할 수 있다.In addition, the topology processing method of the power supply system can detect the independent system, and can detect the independent operation system by the distributed power source and the micro grid by suggesting a method capable of validating the independent system and the facility. For this purpose, we can suggest a linked switch model.
또한, 급전 시스템의 토폴로지 처리 방법은 토폴로지 처리기의 입출력을 위한 데이터 구조를 제시함으로써 수행 결과의 저장을 통해 이후의 연산 및 제어 프로그램들이 동일한 처리 결과를 공유하여 사용할 수 있으므로 연산 시간 절약이 가능하다.In addition, the topology processing method of the power supply system can save the computation time by presenting the data structure for the input and output of the topology processor, the subsequent operation and control programs can share the same processing result through the storage of the execution result.
도 1은 급전 시스템의 구성을 개략적으로 나타내는 도면이다.1 is a diagram schematically showing a configuration of a power supply system.
도 2는 본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법을 나타내는 도면이다.2 is a diagram illustrating a topology processing method of a power supply system according to an exemplary embodiment.
도 3은 토폴로지 오류 점검을 설명하기 위한 도면이다.3 is a diagram for explaining topology error checking.
도 4는 급전 시스템이 적용되는 예제 계통을 나타낸다.4 shows an example system to which a power supply system is applied.
도 5는 도 4의 모든 개폐기기가 폐로(close) 상태로 가정한 토폴로지 처리 결과를 나타내는 도면이다.FIG. 5 is a diagram illustrating a result of topology processing in which all switch devices of FIG. 4 are assumed to be in a closed state.
도 6 및 도 7 각각은 도 4의 예제 계통의 제1 변전소(A)를 기준으로 물리적 모선으로 토폴로지 처리하였을 경우와 전기적 모선으로 처리하였을 경우의 토폴로지 특성 행렬을 나타내는 도면이다.6 and 7 are diagrams illustrating a topology characteristic matrix when the topology processing is performed with the physical bus bar and the electrical bus with respect to the first substation A of the example system of FIG. 4.
도 8은 각 변전소 별 모선 생성 개수의 저장을 나타내는 도면이다.8 is a diagram illustrating storage of the number of bus generations for each substation.
도 9는 개폐정보가 있는 영 임피던스 선로로 모델링된 변전소간 연계 계폐기를 도시한 것이다.FIG. 9 illustrates a linkage interlock between substations modeled as a zero impedance line with opening and closing information.
도 10은 본 발명의 일 실시 예에 따른 토폴로지 처리를 위한 데이터베이스 구성도이다.10 is a configuration diagram of a database for topology processing according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention may be variously modified and have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail with reference to the accompanying drawings. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.In describing the present invention, when it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, numerals (eg, first, second, etc.) used in the description process of the present specification are merely identification symbols for distinguishing one component from another component.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.In addition, in the present specification, when one component is referred to as "connected" or "connected" with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
우선, 본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법을 설명하기에 앞서 급전 시스템 및 토폴로지 처리기를 설명한다.First, the power supply system and the topology processor will be described before describing the topology processing method of the power supply system according to an embodiment of the present invention.
도 1은 급전 시스템의 구성을 개략적으로 나타내는 도면이다.1 is a diagram schematically showing a configuration of a power supply system.
도 1을 참조하면, 전력계통의 급전시스템(energy management system, EMS)은 계통(501)의 현재 상태를 정확히 파악하여 계통(501) 내에 발생하는 전압, 과부하 등의 여러 가지 문제를 해결하기 위한 해법을 운전원에게 제시하기 위한 소프트웨어 및 하드웨어를 총괄하는 시스템이다.Referring to FIG. 1, an energy management system (EMS) of a power system accurately understands the current state of the system 501 to solve various problems such as voltage and overload occurring in the system 501. It is a system that manages the software and hardware for presenting to the operator.
급전 시스템은 계통(501) 각 부분의 데이터를 측정하는 계측 장치(503), 측정 데이터를 처리하는 계측 데이터 서버(505), 처리된 측정 데이터를 연산 및 제어하는 메인 서버(507), 토폴로지 처리, 계통의 상태 추정, 조류 계산 및 전압 제어 등의 프로그램을 주기적이고 순차적으로 수행하는 토폴로지 처리기(510), 토폴로지 처리기(510)에서 생성한 계통(501)의 토폴로지 특성을 이용하여 해석 프로그램들에서 연산된 계통 운전에 필요한 정보를 수신받는 클라이언트 단말기(513) 및 데이터를 관리하는 데이터 관리 서버(515)를 포함한다.The power supply system includes a measurement device 503 for measuring data of each part of the system 501, a measurement data server 505 for processing measurement data, a main server 507 for calculating and controlling processed measurement data, topology processing, The topology processor 510 performs periodic and sequential programs such as system state estimation, tidal current calculation, and voltage control, and is calculated in the analysis programs using the topology characteristics of the system 501 generated by the topology processor 510. A client terminal 513 that receives information necessary for system operation and a data management server 515 managing data.
여기서 토폴로지 처리기(510)는 계통의 토폴로지를 탐색하여 그 경로를 인식하기 위해 사용된다. 이를 통해 급전 시스템의 연산부 및 제어부들에 전기적 연결 정보 및 개별 설비들의 가압(energized) 및 비가압(de-energized) 여부를 검사한다. 예를 들어, 토폴로지 처리기(510)는 모선 1, 2, 및 3을 토폴로지 탐색을 통해 연결된 계통임을 식별하고, 발전기와 부하가 가압 상태인 유효 독립 계통임을 식별할 수 있다.Here, the topology processor 510 is used to search the topology of the system and recognize the path. This checks the electrical connection information and the individual equipment's energized and de-energized operation of the power supply system. For example, the topology processor 510 may identify buses 1, 2, and 3 that are systems connected through topology search, and may identify that the generator and the load are valid independent systems under pressure.
또한, 토폴로지 처리기(510)는 급전 시스템의 연산부 및 제어부에 토폴로지 특성 정보인 어드미턴스 행렬(Y 행렬) 정보를 전달한다. 어드미턴스 행렬 정보는 수학식 1과 같이 계산된 어드미턴스 행렬의 각 요소로 이루어진다.In addition, the topology processor 510 transmits admittance matrix (Y matrix) information, which is topology characteristic information, to the calculation unit and the control unit of the power supply system. The admittance matrix information consists of each element of the admittance matrix calculated as in Equation (1).
수학식 1
Figure PCTKR2010006568-appb-M000001
Equation 1
Figure PCTKR2010006568-appb-M000001
이하에서는 본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법에 관하여 상세히 설명한다.Hereinafter, a topology processing method of a power supply system according to an embodiment of the present invention will be described in detail.
도 2는 본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법을 나타내는 도면이다.2 is a diagram illustrating a topology processing method of a power supply system according to an exemplary embodiment.
도 2를 참조하여 우선, 현재의 수행이 최초 수행인지 아닌지를 판별한다(S10). 여기서는 현재 급전 시스템의 토폴로지 정보를 가지고 있는지 또는 변경된 사항이 있는지를 상황에 맞게 수행하기 위해 최초 수행 여부를 판별한다.First, referring to FIG. 2, it is first determined whether or not the current performance is the first performance (S10). In this case, it is determined whether the first execution is performed to suit the situation whether the current power supply system has topology information or changes.
판별 결과, 최초 수행이면 아날로그 측정값을 가지고 초기 토폴로지 오류를 검사한다(S20).As a result of the determination, if the first execution, the initial topology error is checked with the analog measurement value (S20).
다음 모든 변전소의 물리적 모선과 개폐기 연결 정보 및 개폐기 상태 정보를 이용하여 전기적 모선을 생성한다(S30).Next, an electrical bus is generated using physical buses and switch connection information and switch state information of all substations (S30).
다음, 생성된 전기적 모선과 변전소, 물리적 모선, 브랜치 및 인젝션과의 링크를 생성한다(S40).Next, a link between the generated electrical bus and substation, physical bus, branch and injection is generated (S40).
다음, 모든 변전소에 대해 단계 S40이 완료되었는지 판별한다(S50).Next, it is determined whether step S40 is completed for all substations (S50).
다음, 판별 경과 단계 S40이 완료되었으면 생성된 전기적 모선들과 연계 개폐기 상태 및 송전 선로와의 연결 관계를 이용하여 해석의 범위인 독립 계통을 생성하고 관련된 링크를 생성한다(S60). 또는 단계 S40이 완료되지 않았으면 단계 S30으로 돌아간다.Next, when the determination progress step S40 is completed, the independent grid which is the scope of analysis is generated by using the connection relationship between the generated electrical buses, the link switch state and the transmission line (S60). Or if step S40 has not been completed, the process returns to step S30.
여기서 만약 연계 개폐기의 상태가 폐로(close)이면 연계 개폐기 양단의 해석적 절점은 동일독립 계통에 소속되고 만약 연계 개폐기의 상태가 개로(open)이면 다른 경로로 연결되어 있는지 확인한다. 만약 모든 경로의 탐색 결과 양단의 해석적 절점이 연결되지 않으면 두 절점은 서로 다른 독립 계통에 속하는 것으로 처리된다. If the state of the linkage switch is closed, the analytical nodes at both ends of the linkage switch belong to the same independent system. If the linkage switch is open, check whether the linkage is connected to another path. If the search results of all paths do not connect the analytical nodes at both ends, the two nodes are treated as belonging to different independent systems.
다음, 독립 계통에 속하는 운전중인 발전기와 부하의 존재 여부를 검토하여 독립 계통 및 각 설비의 유효성을 검사한다(S70).Next, the existence of the generator and the load in operation belonging to the independent system is examined to check the validity of the independent system and each facility (S70).
다음, 모든 모선에 대한 단계 S70의 수행 여부를 판별한다(S80). 판별 결과, 유효성 검사의 수행이 완료되었으면 토폴로지 처리를 종료한다. 또는 유효성 검사의 수행이 완료되지 않았으면 단계 S60으로 돌아간다.Next, it is determined whether step S70 is performed for all buses (S80). As a result of the determination, when the validation is completed, the topology processing ends. Or, if the validation is not completed, the process returns to step S60.
한편, 판별 결과 현재 수행 상태가 최초 수행 모드가 아니면, 개폐기의 상태 변경이 있는지 판별한다(S90)On the other hand, if it is determined that the current execution state is not the first execution mode, it is determined whether there is a state change of the switch (S90).
만약 개폐기의 상태 변경이 있는 경우 주변 아날로그 측정값을 가지고 변경 개폐기의 토폴로지 오류를 점검한다(S100). 또는 만약 개폐기의 상태 변경이 없는 경우 모든 모선에 대한 유효성 검사의 수행이 완료된 것으로 판단하여 토폴로지 처리를 종료한다.If there is a change in the state of the switch, the topology error of the change switch is checked with the surrounding analog measurement value (S100). Or, if there is no state change of the switchgear, it is determined that the validation of all buses is completed and the topology processing is terminated.
다음, 변경된 개폐기가 속한 변전소에 대해서만 전기적 모선을 갱신한다(S110).Next, update the electrical bus only for the substation to which the changed switch belongs (S110).
다음, 변경된 변전소에 생성된 전기적 모선과 변전소, 물리적 모선, 송전선로 및 설비들(인젝션)과의 링크를 갱신한다(S120)Next, the link between the electric bus and the substation, physical bus, transmission line and facilities (injection) generated in the changed substation is updated (S120).
다음, 최초 수행 모드의 단계 S60 및 단계 S70을 수행한다.Next, step S60 and step S70 of the first execution mode are performed.
다음, 모든 모선에 대한 단계 S60의 수행 여부를 판별한다(S60). 판별 결과, 유효성 검사의 수행이 완료되었으면 토폴로지 처리를 종료한다. 또는 유효성 검사의 수행이 완료되지 않았으면 단계 S60으로 돌아간다.Next, it is determined whether or not step S60 has been performed for all buses (S60). As a result of the determination, when the validation is completed, the topology processing ends. Or, if the validation is not completed, the process returns to step S60.
이하에서는 도 3 내지 도 10을 더 참조하여 도 2에 도시된 토폴로지 처리 방법을 상세하게 설명한다.Hereinafter, the topology processing method illustrated in FIG. 2 will be described in detail with reference to FIGS. 3 to 10.
도 3은 토폴로지 오류 점검을 설명하기 위한 도면이다.3 is a diagram for explaining topology error checking.
도 3에서는 제1 개폐기기(S1)가 제1 부하(LD1)와 제2 부하(LD2)를 연결하여 유효 전력(P)과 무효 전력(Q)에 의한 조류(P/Q)가 흐르는 것을 예시적으로 나타내고 있다.3 illustrates that the first switch S1 connects the first load LD1 and the second load LD2 to flow tidal currents P / Q due to active power P and reactive power Q. It is shown as an enemy.
단계 S20에서는 전체 변전소의 모든 개폐기기 양단의 물리적 노드와 물리적 노드에 연결된 가장 가까운 제2 물리적 모선(2) 측의 제1 브랜치(선로 및 변압기)(BR1) 및 제3 물리적 모선(3) 측의 제2 브랜치(BR2)를 찾고 해당 브랜치의 설정치 이상의 조류(P/Q)가 흐르는지 확인한다. 탐색 도중 개로(open)된 개폐기기가 탐색된 경우 탐색을 중지한다.In step S20, the first branch (line and transformer) BR1 and the third physical busbar 3 on the side of the physical node and the closest second physical busbar 2 connected to the physical node across all switchgear of the entire substation. Find the second branch BR2 and check whether the algae P / Q flowing above the set value of the branch flows. If the open / close device is searched during the search, the search is stopped.
예를 들어, 제1 경우로 제1 브랜치(BR1)와 제2 브랜치(BR2)의 측정치가 모두 설정치 이상의 값을 가지는 경우 제1 개폐기기(S1)의 추정 상태는 폐로(close)이다. 따라서 측정치가 개로(open)인 경우 측정값을 수정하고 알람(alarm)을 발생시킨다. 만일 좌우측의 제1 분기(BR1) 및 제2 분기(BR2)가 없는 경우 브랜치는 설정치 이하의 값을 가지는 것으로 본다.For example, in the first case, when the measured values of the first branch BR1 and the second branch BR2 both have a value greater than or equal to the set value, the estimated state of the first switchgear S1 is closed. Therefore, when the measured value is open, the measured value is corrected and an alarm is generated. If there is no first branch BR1 and second branch BR2 on the left and right sides, the branch is considered to have a value below the set value.
제2 경우는 제1 브랜치(BR1)와 제2 브랜치(BR2) 중 1개의 측정치가 설정치 이하인 경우 조류 방향이 도 3과 같으면 제2 부하(LD2)의 조류 측정치(P4/Q4)가 설정치 이상일 경우 제1 개폐기기(S1)의 추정 상태는 폐로(close)이다. 따라서 측정치가 개로인 경우 측정값을 수정하고 알람을 발생시킨다. 만일 조류 방향이 도 3과 반대이고 제1 부하(LD1)의 조류 측정치(P1/Q1)가 설정치 이상인 경우 제1 개폐기기(S1)의 추정 상태는 폐로(close)이다. 따라서 측정치가 개로인 경우 측정값을 수정하고 알람을 발생시킨다. 만일 좌우측의 부하가 없는 경우 부하는 설정치 이하의 값을 가지는 것으로 본다.In the second case, when one of the first branch BR1 and the second branch BR2 is less than or equal to the set value, and when the tidal flow direction is the same as in FIG. 3, the algae measurement value P4 / Q4 of the second load LD2 is greater than or equal to the set value. The estimated state of the first switchgear S1 is closed. Therefore, if the measured value is open, correct the measured value and generate an alarm. If the flow direction is opposite to FIG. 3 and the flow rate measurement value P1 / Q1 of the first load LD1 is greater than or equal to the set value, the estimated state of the first switchgear S1 is closed. Therefore, if the measured value is open, correct the measured value and generate an alarm. If there is no load on the left and right sides, the load is considered to have a value below the set value.
제3 경우는 제1 경우와 제2 경우를 제외하고는 제1 개폐기기(S1)의 추정상태는 개로이다. 따라서 측정치가 폐로인 경우 측정값을 수정하고 알람을 발생시킨다.In the third case, except for the first case and the second case, the estimated state of the first switchgear S1 is open. Therefore, if the measured value is closed, correct the measured value and generate an alarm.
단계 S30 및 S40에서는 변전소 단위로 모든 계통의 토폴로지 처리를 순차적으로 처리함으로써 지정된 1개 간선에 대해서만 토폴로지 처리를 수행하여 계통 전체의 토폴로지를 처리하지 못하는 문제점을 해소한다. 물리적 모선(node)를 기준으로 토폴로지를 처리하였을 경우와 본 발명의 경우처럼 전기적 모선(bus)으로 처리하였을 경우를 도 4 내지 도 7을 참조하여 설명한다.In steps S30 and S40, the topology processing of all the grids is sequentially processed in the substation unit, thereby solving the problem that the topology of the entire grid is not processed by performing the topology processing on only one designated trunk line. A case in which the topology is processed based on a physical bus node and a case in which the topology is processed as in the case of the present invention will be described with reference to FIGS. 4 to 7.
도 4는 급전 시스템이 적용되는 예제 계통을 나타낸다. 도 4를 참조하면, 예제 계통은 제1 변전소(A) 및 제2 변전소(B)와 이들에 연결된 변압기(TR1,TR2), 개폐기기(S1 ~ S11), 부하(LD1 ~ LD7), 발전기(G1 ~ G3) 및 물리적 모선(1, 2, …, 25)으로 구성된다. 또한, 예제 계통은 개폐기 S10이 개로되는 경우 메인 계통(40)과 마이크로그리드 계통(50)으로 분리되며, 마이크로그리드 계통(50)은 단독 운전이 가능하게 된다.4 shows an example system to which a power supply system is applied. Referring to Figure 4, the example system is the first substation (A) and the second substation (B) and the transformer (TR1, TR2) connected to them, the switchgear (S1 ~ S11), load (LD1 ~ LD7), generator ( G1 to G3) and physical buses 1, 2, ..., 25. In addition, the example system is divided into the main system 40 and the micro grid system 50 when the switch S10 is opened, the micro grid system 50 is capable of independent operation.
도 5는 도 4의 모든 개폐기기가 폐로(close) 상태로 가정한 토폴로지 처리 결과를 나타내는 도면이다.FIG. 5 is a diagram illustrating a result of topology processing in which all switch devices of FIG. 4 are assumed to be in a closed state.
도 6 및 도 7 각각은 도 4의 메인 계통(40)에서 제1 변전소(A)를 기준으로 물리적 모선으로 토폴로지 처리하였을 경우와 전기적 모선으로 처리하였을 경우의 토폴로지 특성 행렬을 나타내는 도면이다.6 and 7 are diagrams illustrating a topology characteristic matrix when the main system 40 of FIG. 4 is subjected to a topology processing with a physical busbar and an electrical busbar with respect to the first substation A. Referring to FIG.
도 6 및 도 7를 참조하면, 도 4에 도시된 물리적 모선을 도 5에 도시된전기적 모선으로 처리한 결과 25ㅧ25 크기의 행렬이 15ㅧ15 행렬로 줄어듬으로써 약 64% 정도의 어드미턴스 행렬 크기를 감소시킬 수 있으며 이를 통해 연산부 및 제어부들의 연산량 또한 줄어든다.Referring to FIGS. 6 and 7, as a result of processing the physical bus shown in FIG. 4 with the electrical bus shown in FIG. 5, the matrix size of 25 × 25 is reduced to 15 × 15, resulting in an admittance matrix size of about 64%. This reduces the amount of calculation of the calculation unit and the control unit.
단계 S30에서는 설비가 연결된 물리적 모선(node)에 노드 처리 표시자 1을 할당한다. 변전소 내에서의 물리적 모선의 그룹화(grouping)시 그 시작 포인트를 노드 처리 표시자가 1인 노드를 중심으로 수행하며 이것은 설비(브랜치나 인젝션)에는 전기적 모선이 생성되어야만 한다는 것을 의미한다. 노드 처리 표시자는 0, 1, 2가 있으며, 0은 처리되지 않았고 브랜치나 인젝션이 연결되지 않은 노드이고, 1은 처리되지는 않았으나 브랜치나 인젝션이 연결된 노드이고, 2는 처리가 끝난 노드를 의미한다.In step S30, the node processing indicator 1 is allocated to the physical node to which the facility is connected. When grouping physical buses in a substation, their starting point is centered around nodes with node processing indicators of 1, which means that electrical buses must be created in the facility (branch or injection). Node processing indicators include 0, 1, and 2, where 0 is a node that has not been processed and no branch or injection is connected, 1 is a node that has not been processed but a branch or injection is connected, and 2 is a processed node. .
또한, 단계 S30에서는 물리적 모선(node)을 그룹화하여 전기적 모선(bus)의 번호를 생성한다. 여기서는 도 8을 참조하여 설명한다.In operation S30, physical buses are grouped to generate a number of electrical buses. This will be described with reference to FIG. 8.
도 8은 각 변전소 별 모선 생성 개수의 저장을 나타내는 도면이다.8 is a diagram illustrating storage of the number of bus generations for each substation.
도 8에서 각 변전소는 제1 내지 제 N 변전소(A, B, C, …, N)으로 구성된다.In FIG. 8, each substation is composed of first to Nth substations A, B, C, ..., N. In FIG.
모선개수는 1부터 시작해서 모든 변전소에 대해 처리를 완료할때까지 누적하여 증가된다. 변전소 N에 대해 실제 변전소 처리에 들어가기 전에 first_bus 변수에 이전까지 생성된 모선 개수에 1을 더하여 저장하고, 변전소 처리가 끝난 후(새로운 모선 개수가 생성된 후) 누적된 모선 개수를 last_bus 변수에 저장한다. 변전소 N에 대해 first_station_bus(i)=first_bus를 저장하고, last_station_bus(i)=last _bus를 저장하면 도 8에 도시된 바와 같다.The number of busbars increases from 1 to cumulatively until all substations have been processed. For substation N, add 1 to the number of previously created busbars in the first_bus variable before entering the actual substation process, and store the accumulated busbar counts in the last_bus variable after the substation finishes (after the number of new busbars is created). . Storing first_station_bus (i) = first_bus and storing last_station_bus (i) = last_bus for the substation N is shown in FIG. 8.
개별 변전소 내부의 물리적 모선의 그룹화는 앞서 단계 1에서 처리한 노드 처리 표시자가 1인 노드를 중심으로 개폐기기의 연결상태를 탐색하고 그 접점 측정치가 폐로이면 양단의 노드를 그룹화하고 또 다른 개폐기기가 있는지 탐색한다. 이미 처리되었거나 노드 처리 표시자가 1인 노드가 검색될 때까지 계속하고 이를 1개의 전기적 모선(bus)으로 할당한다. 변전소 내의 모든 물리적 모선에 대해 처리될 때까지 반복하여 수행한다.The grouping of physical buses inside the individual substations is performed by exploring the connection status of the switchgear centering on the node processing indicator 1, which was processed in step 1 above, and if the contact measurement is closed, group the nodes at both ends and if there is another switchgear. Search. Continue until you find a node that has already been processed or that has a node processing indicator of 1 and assign it to one electrical bus. Repeat until all physical busbars in the substation have been processed.
단계 S40에서는 전기적 모선과 변전소간 링크(전기적 모선이 속하는 변전소 번호, 동일 변전소에 속하는 다음 모선 번호, 변전소가 포함하는 첫 번째 모선번호)를 저장한다. 각 변전소 마다 저장해 놓은 first_station_bus(i)와 last_station_bus(i)를 이용하여 first_bus와 last_bus를 추출하고, 각 변전소 i에 대한 첫 번째 모선번호를 할당하고, 각 모선이 속하는 변전소 번호 및 동일 변전소에 속하는 다음 모선 번호를 할당한다.In step S40, the link between the electrical bus bar and the substation (substation number to which the electric bus belongs, the next bus number belonging to the same substation, the first bus number included in the substation) is stored. The first_station_bus (i) and last_station_bus (i) stored in each substation are extracted, the first_bus and last_bus are extracted, the first bus number for each substation i is assigned, the substation number to which each bus bar belongs, and the next bus bar belonging to the same substation. Assign a number.
또한, 단계 S40에서는 자유 모선(free bus)을 처리한다. 자유 모선(free bus)은 비어있는 모선의 방을 의미하며 다음번 모선갯수가 변경될 때를 위해 free bus 위치를 저장해야만 한다.In step S40, a free bus is processed. A free bus means an empty bus room and must store the free bus position for the next time the number of buses changes.
또한, 단계 S40에서는 전기적모선과 관련 설비들과의 링크를 생성한다. 전기적 모선과 물리적 모선간 링크를 생성한다. 물리적 모선과 각 설비(브랜치/인젝션, 연계개폐기)와의 링크를 이용하여 전기적 모선과 각 설비와의 링크를 생성한다.Further, in step S40, a link between the electric bus and related facilities is created. Create a link between the electrical busbar and the physical busbar. The link between the physical busbar and each facility (branch / injection, switchgear) is used to create a link between the electrical busbar and each facility.
한편, 단계 S100에서는 어느 변전소에서 상태변경이 발생했는지 검사한다. 단계 S100에서는 표 1을 참조하여 모든 개폐기기의 이전 측정상태 및 현재 측정 상태를 비교하여 검사를 수행한다.On the other hand, in step S100, it is checked in which substation a state change has occurred. In step S100, the inspection is performed by comparing the previous measurement state and the current measurement state of all the switchgear with reference to Table 1.
표 1
Figure PCTKR2010006568-appb-T000001
Table 1
Figure PCTKR2010006568-appb-T000001
표 1은 연계 개폐기 및 개폐기와 물리적모선 및 변전소 등의 토폴로지 처리를 위한 상세 필드 정보 및 연관 관계를 나타낸다. 연계개폐기(연계개폐기) 테이블과 개폐장치(Switch) 테이블에는 상태 변화를 인지하기 위해 이전 상태(Old Status)와 현재 상태(New Status) 필드가 있으며 이 데이터는 측정장치를 통해 계측된 정보가 주기적으로 교체되어 저장된다.Table 1 shows detailed field information and relations for topology processing of the associated switchgear, switchgear, physical bus and substation. In the linked switch and the switch table, there are Old Status and New Status fields to recognize the change of status. Replaced and stored.
또한, 단계 S100에서는 상태가 변경된 토폴로지의 오류를 점검한다. 상태 변경된 변전소에 소속된 모든 개폐기기에 대해 초기 토폴로지 오류점검(60)과 마찬가지로 양단의 물리적 노드와 물리적 노드에 연결된 가장 가까운 브랜치 및 부하를 찾아 검사한다.In step S100, the error of the topology whose state has changed is checked. As with the initial topology error check (60), all the switchgear belonging to the state-changed substation finds and inspects the physical nodes at both ends and the nearest branches and loads connected to the physical nodes.
단계 S110에서는 상태변경이 발생한 변전소에 대한 물리적 모선(node)을 그룹화하여 전기적 모선(bus) 번호를 생성한다. 또한, 단계 S110에서는 상태변경이 발생한 변전소에 대해 전기적 모선의 합체(bus merge)를 검사한다. 현재 상태를 기준으로 토폴로지 처리 결과, 생성된 전기적 모선을 기준으로 그 모선에 소속된 모든 물리적 모선들이 연결된 설비를 찾는다. 전기적 모선에 속하는 첫 번째 물리적 모선이 연결된 설비(브랜치/인젝션) 번호를 추출하고 이 설비가 이전 토폴로지 처리결과 연결된 전기적 모선인 이전 토폴로지 모선 번호(old_bus_number)을 추출한다. 전기적 모선에 속하는 나머지 모든 물리적 모선에 대해 연결 설비와 이 설비가 이전 토폴로지 처리 결과 연결된 전기적 모선(brij_old_bs_num)을 추출한다.In step S110, physical buses for the substations in which the state change has occurred are generated to generate electrical bus numbers. In addition, in step S110, the bus merge is inspected for the substation in which the state change has occurred. Based on the current state, the topology processing finds the equipment connected to all physical buses belonging to the bus based on the generated electric bus. Extract the equipment (branch / injection) number to which the first physical busbar belonging to the electrical busbar is connected, and extract the old topology busbar number (old_bus_number), which is the electrical busbar to which this facility is connected as a result of previous topology processing. For all remaining physical busies belonging to the electric busbar, the connection equipment and the electrical bus (brij_old_bs_num) connected to the equipment as a result of the previous topology processing are extracted.
또한, 단계 S110에서는 해당 모선에 대한 브랜치 및 인젝션의 연결 개수를 카운트한다. 여기서 이전 토폴로지 모선 번호(old_bus_number)와 이전 토폴로지 처리 결과 연결된 전기적 모선(brij_old_bs_num)이 서로 다른 것이 발견되면 전기적 모선의 합체가 발생한 것으로 파악한다.In operation S110, the number of branches and injection connections for the corresponding bus is counted. Here, if it is found that the previous topology bus number (old_bus_number) and the connected electrical bus (brij_old_bs_num) are different from each other as a result of the previous topology processing, it is determined that coalescing of the electrical busbars has occurred.
또한, 단계 S110에서는 상태변경이 발생한 변전소에 대해 전기적 모선의 분리(bus split)를 검사한다. 여기서 단계 S110에서 구해놓은 해당 모선(상태변경 기준)의 브랜치 및 인젝션의 연결 개수와 상태 변경 전의 연결 개수를 비교하여 개수가 다르면 전기적 모선의 분리가 발생한 것으로 파악한다.In addition, in step S110, the bus split is inspected for the substation where the state change has occurred. Here, the number of branches and injection connections of the corresponding bus bar (state change criterion) obtained in step S110 is compared with the number of connections before the state change, and if the number is different, it is determined that the electrical bus is separated.
또한, 단계 S110에서는 자유 모선(free bus)을 처리한다. 전기적 모선의 합체(bus merge)가 발생한 경우에는 합체된 개수만큼 자유 모선(free bus)을 추가로 지정한다. 이를 위해 유효 모선 바로 다음부터 자유 모선(free bus)을 추가하고 관련 링크를 수정한다.In step S110, a free bus is processed. When a bus merge occurs, additional free buses are designated as many as the merged number. To do this, add a free bus immediately after the valid bus and modify the relevant links.
또는 전기적 모선의 분리(bus split)가 발생한 경우에는 분리된 개수만큼 자유 모선(free bus)을 감소시켜 지정한다. 이를 위해 추가된 유효 모선을 최대 모선수 바로 위부터 추가하여 지정하고 관련 링크를 수정한다.Alternatively, when a bus split occurs, the number of free buses is reduced by the number of the split. To this end, the added valid mothership shall be specified by adding it directly above the maximum parent and modifying the related links.
단계 S120에서는 상태 변경이 발생한 변전소의 전기적 모선과 관련된 설비들과의 링크를 생성한다. 이때, 전기적 모선과 물리적 모선 간의 링크를 수정한다. 또한, 물리적 모선과 각 설비(브랜치/인젝션, 연계개폐기)와의 링크를 이용하여 전기적 모선과 각 설비와의 링크를 수정한다.In step S120, a link is created with facilities related to the electric busbar of the substation in which the state change has occurred. At this time, the link between the electrical busbar and the physical busbar is corrected. In addition, the link between the physical busbar and each facility (branch / injection, switchgear) is used to modify the link between the electrical busbar and each facility.
본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법은 독립계통을 식별(63)하고 독립계통과 설비의 유효성을 검사한다.The topology processing method of the power supply system according to an embodiment of the present invention identifies the independent system 63 and checks the validity of the independent system and equipment.
이를 위해, 제1 단계로 초기화를 수행한다. 모선 타입(type)은 부하로 초기화하고, 모선 상태는 라이브(live)로 지정한다. 최종적으로 만일 모선이 속한 독립 계통이 무효함(dead)으로 처리되면 상태는 데드(dead)로 바꾼다. 또한 모선에 연결된 브랜치/인젝션을 보고 모선 타입도 변경한다. 이때, 브랜치 상태는 라이브(live)로 지정한다. 최종적으로 만일 모선이 속한 독립계통이 무효함으로 처리되면 연결된 브랜치들의 상태도 데드(dead)로 변경한다. 인젝션 상태는 live로 지정한다. 브랜치와 마찬가지로 변경될 수 있다. 독립 계통은 무효함으로 지정한다. 독립 계통은 모선, 브랜치 및 인젝션과 마찬가지로 변경될 수 있다.To do this, the initialization is performed in the first step. The bus type is initialized with the load and the bus state is set to live. Finally, if the independent system to which the mothership belongs is treated as dead, the state changes to dead. It also changes the type of bus by looking at the branch / injection connected to the bus. At this time, the branch state is designated as live. Finally, if the independent system to which the mothership belongs is treated as invalid, the status of the connected branches is also changed to dead. The injection state is set to live. Like branches, they can be changed. Independent systems are designated as invalid. Independent systems can be changed as well as busbars, branches and injections.
다음 제2 단계로 모선 전체를 반복하면서 다음을 수행한다. 물리적 모선(node)의 그룹화와 유사하게, 전기적 모선(bus)과 브랜치(선로 및 변압기 등)의 연결 상태 및 연계개폐기의 개폐 상태를 이용하여 전기적 모선을 그룹화하면서 독립 계통을 생성한다. 연계개폐기의 개폐상태가 폐로(close)이면 동일 독립계통에 추가하고 연계개폐기 개폐상태가 개로(open)이면 다른 경로로 동일 독립계통에 속하는지 검사한다. 모든 모선에 대해 위 과정을 반복 수행한다.In the next step, repeat the entire busbar: Similar to the grouping of physical nodes, the independent system is created by grouping the electrical buses using the connection state of the electric buses and branches (such as lines and transformers) and the open / closed states of the link switches. If the linked switchgear is closed, it is added to the same independent system. If the linked switchgear is open, it is checked whether it belongs to the same independent system through a different path. Repeat this process for all buses.
다음 제3 단계로 생성된 독립계통 전체에 대해 다음을 반복하면서 수행한다. 제3 단계에서는 제1 점검으로서 독립계통의 최소 live 모선수 설정치와 해당 독립계통의 live 모선수를 비교하여 유/무효성을 점검한다. 또한, 제3 단계에서는 제2 점검으로서 독립계통의 최소 라이브(live) 발전기 및 부하 개수 설정치와 해당 독립계통의 라이브(live) 발전기 및 부하 개수를 비교하여 유/무효성을 점검한다. 이때, 측정치가 지정값 이하인 경우 무효함으로 처리한다. 또한, 제3 단계에서는 제3 점검으로서 독립계통의 발전 측정량 합과 부하 측정량 합의 차이의 절대량이 지정값 이상인 경우 무효함으로 처리한다.The following steps are repeated for the entire independent system created in the next step. In the third stage, the first check checks the validity and invalidity by comparing the minimum live parent set point of the independent system with the live parent player of the independent system. Further, in the third step, as a second check, the minimum live generator and load number setting values of the independent system are compared with the live generator and load numbers of the independent system to check the validity / invalidity. If the measured value is less than the designated value, it is treated as invalid. In addition, in the third step, when the absolute amount of the difference between the sum of the measured generation amounts of the independent system and the sum of the load measurement amounts is equal to or greater than the specified value, the third check is invalid.
여기서 유무효성의 판정은 제1 점검, 제2 점검 및 제3 점검이 모두 유효한 경우만 유효 독립계통으로 지정한다.Here, the determination of validity is designated as a valid independent system only when the first check, the second check and the third check are valid.
다음 제4 단계로 무효 독립계통을 처리한다. 만일 무효함으로 점검된 독립계통의 경우 여기 속한 모든 모선 및 모선에 연결된 브랜치, 인젝션의 상태를 데드(dead)로 처리한다. 여기서는 도 9를 더 참조하여 설명한다.The next four steps deal with the invalid independent system. In the case of an independent system checked as invalid, all buses belonging to it and the branches and busts connected to it are treated as dead. This will be described with reference to FIG. 9 further.
도 9는 개폐정보가 있는 영 임피던스 선로로 모델링된 변전소간 연계 계폐기를 도시한 것이다.FIG. 9 illustrates a linkage interlock between substations modeled as a zero impedance line with opening and closing information.
다수 변전소의 토폴로지 처리를 위해 변전소간 연계 개폐기의 경우 도 9와 같이 양단에 물리적 모선(81)을 가지며 선로 임피던스가 0이며 개폐정보(85)가 있는 모델로 처리하였다. 이 모델을 이용하면 변전소간 연계개폐기를 브랜치 형태로 처리하는 것이 가능하며 그 개폐 상태를 반영하는 것도 가능하다.In order to process the topology of a plurality of substations, the interlocked switchgear between substations was treated as a model having physical buses 81 at both ends, a line impedance of 0, and opening / closing information 85 as shown in FIG. 9. Using this model, it is possible to process the linkage switchgear between substations in the form of a branch and reflect the state of the opening and closing.
본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법은 도 10에 도시된 데이터 구조를 도입함으로써 토폴로지 처리기가 수행한 결과를 도 10의 데이터 구조로 저장함으로써 이후의 연산부 및 제어부들이 동일한 처리결과를 공유하여 사용할 수 있도록 한다.In the topology processing method of the power supply system according to an embodiment of the present invention, the results of the topology processor are stored in the data structure of FIG. 10 by introducing the data structure shown in FIG. Make it available for sharing.
도 10은 본 발명의 일 실시 예에 따른 토폴로지 처리를 위한 데이터베이스 구성도이다. 도 10에서는 토폴로지 처리를 위한 데이터 테이블이 도시되었으며, 참조 기호 1은 하나의 수신단이고 참조 기호 N은 복수의 송신단이다.10 is a configuration diagram of a database for topology processing according to an embodiment of the present invention. In FIG. 10, a data table for topology processing is shown, where reference symbol 1 is one receiver and reference symbol N is a plurality of transmitters.
도 10에 보는 바와 같이, 토폴로지 처리는 변전소들의 묶음인 지점(91)에 대해 이루어지며, 지점에 속한 변전소(93) 단위로 물리적 모선(105)의 전기적 모선(97)으로의 변환을 수행한 후 전기적 모선(97)의 연결 관계인 독립계통(95)을 처리한다. 변전소간 연계개폐기(107)는 물리적 모선(105)과의 링크를 가지며 지점(91)에 소속시킨다. 연계개폐기(107)의 상태는 측정정보가 있어 인지할 수 있다. 각 변전소(93)에 물리적 모선(105)이 소속되고 물리적 모선(105)은 일반 개폐기기(차단기, 개폐기 및 기타 보호기기)(103)와 2절점 설비(선로, 변압기, SVR 등)인 브랜치(101)와 1절점 설비(부하, 발전기, 병렬장치(Sh.C, Sh.R, SVC 등))인 인젝션(99)의 링크 정보를 가지게 된다. 이 구조를 이용하면 연계개폐기(107)가 변전소(93)에 소속되지 않음으로써 변전소(93)간 토폴로지 연결을 처리할 수 있으며 모든 계통 구조는 전기적 절점과 설비(개폐장치, 연계 개폐기, 브랜치 및 인젝션)의 연결관계로 정의되므로 간선간 임의의 연결상태(방사상, 루프 등) 및 변전소(93)가 임의의 연결상태(상시 개방 및 상시 루프)를 포함한 지점(91) 전체에 대한 토폴로지 처리가 가능하다.As shown in FIG. 10, the topology processing is performed on a point 91, which is a bundle of substations, and after the transformation of the physical buses 105 into the electric buses 97 in units of the substations 93 belonging to the points. The independent system 95, which is a connection of the electric buses 97, is processed. The substation linkage switch 107 has a link with the physical busbar 105 and belongs to the point 91. The state of the link switch 107 can be recognized because there is measurement information. The physical buses 105 belong to each substation 93, and the physical buses 105 are branches that are general switchgear (breaker, switchgear and other protection devices) 103 and two-node equipment (line, transformer, SVR, etc.) 101) and the link information of the injection 99 which is a one-node facility (load, generator, parallel device (Sh.C, Sh.R, SVC, etc.)). By using this structure, the linkage switch 107 does not belong to the substation 93 so that the topology connection between the substations 93 can be handled, and all system structures have electrical nodes and facilities (switching device, linking switchgear, branch and injection). ), It is possible to process the topology of the entire point 91 including any connection state (radial, loop, etc.) and the substation 93 including any connection state (normally open and always loop) between the trunk lines. .
본 발명의 일 실시 예에 따른 급전 시스템의 토폴로지 처리 방법은 변전소 단위로 모든 계통의 토폴로지 처리를 순차적으로 처리함으로써 상시 루프 등으로 연계된 배전 계통 전체의 토폴로지 처리가 가능하다.In the topology processing method of a power supply system according to an embodiment of the present invention, the topology processing of all grids in a substation unit may be sequentially processed, thereby enabling topology processing of the entire distribution grid linked by a constant loop.
또한, 급전 시스템의 토폴로지 처리 방법은 독립 계통을 식별하고, 독립 계통과 설비의 유효성을 검사할 수 있는 방법을 제시함으로써 분산 전원 및 마이크로 그리드에 의한 단독 운전 계통을 검출할 수 있다. 이를 위해 연계개폐기 모델을 제시할 수 있다.In addition, the topology processing method of the power supply system can detect the independent system, and can detect the independent operation system by the distributed power source and the micro grid by suggesting a method capable of validating the independent system and the facility. For this purpose, we can suggest a linked switch model.
또한, 급전 시스템의 토폴로지 처리 방법은 토폴로지 처리기의 입출력을 위한 데이터 구조를 제시함으로써 수행 결과의 저장을 통해 이후의 연산 및 제어 프로그램들이 동일한 처리 결과를 공유하여 사용할 수 있으므로 연산 시간 절약이 가능하다.In addition, the topology processing method of the power supply system can save the computation time by presenting the data structure for the input and output of the topology processor, the subsequent operation and control programs can share the same processing result through the storage of the execution result.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (7)

  1. 다중 변전소가 연계된 급전 시스템의 토폴로지를 처리하는 방법에 있어서,In the method of processing the topology of a power supply system linked to multiple substations,
    (a) 초기 구동 상태와 그 외 수행 상태의 토폴로지 처리 수행 모드를 판별하는 단계;(a) determining a topology processing execution mode of an initial driving state and other execution states;
    (b) 판별 결과에 따라, 변전소 별로 토폴로지 처리를 수행한 후 전체 배전 계통에 대해 독립 계통을 처리하는 제1 과정 및 개폐기기의 상태가 변경된 변전소에 대해서만 토폴로지 처리를 수행하고 부분적으로 나머지 링크 구조를 갱신하는 제2 과정 중 하나의 과정을 수행하는 단계; 및(b) According to the result of the determination, after performing the topology processing for each substation, the first process of processing the independent system for the entire distribution system and only the substations in which the state of the switchgear is changed, and partially rest the link structure. Performing one of the second processes of updating; And
    (c) 상기 (b)의 수행 결과에 따라 생성된 전기적 모선과 브랜치의 연결 관계, 연계개폐기 및 그 상태를 이용하여 독립 계통을 생성하는 단계; 및(c) generating an independent system by using the connection relationship between the electric busbar and the branch, the link switch, and the state generated according to the result of performing the step (b); And
    (d) 상기 독립 계통, 상기 브랜치 및 인젝션의 유효성을 검사하는 단계를 포함하는 급전 시스템의 토폴로지 처리 방법.(d) validating said independent system, said branch and injection.
  2. 제1 항에 있어서,According to claim 1,
    상기 제1 과정은,The first process,
    측정값을 수신하여 초기 토폴로지 오류를 검사하는 단계;Receiving a measurement to check for an initial topology error;
    계통 내의 변전소의 물리적 모선과 개폐기기 연결 정보 및 개폐기기 상태 정보를 이용하여 전기적 모선을 생성하는 단계; 및Generating an electrical bus using the physical bus and switchgear connection information and the switch state information of the substation in the system; And
    생성된 전기적 모선과 변전소, 물리적 모선, 브랜치 및 인젝션과의 링크를 생성하는 단계를 포함하는 것을 특징으로 하는 급전 시스템의 토폴로지 처리 방법.And generating a link between the generated electrical busbar and the substation, the physical busbar, the branch, and the injection.
  3. 제2 항에 있어서,The method of claim 2,
    상기 전기적 모선을 생성하는 단계는Generating the electrical bus bar
    배전 계통을 변전소 단위로 물리적 모선과 개폐기기의 연결 관계 및 개폐기기의 상태를 이용하여 전기적 모선을 생성하는 것을 특징으로 하는 급전 시스템의 토폴로지 처리 방법.A method for processing a topology of a power supply system, comprising generating an electrical bus by using a connection system between a physical bus and a switchgear and a state of a switchgear in a substation unit.
  4. 제2 항에 있어서,The method of claim 2,
    상기 초기 토폴로지 오류를 검사하는 단계는Examining the initial topology error
    상기 토폴로지 에러를 처리하는 단계를 더 포함하는 것을 특징으로 하는 급전 시스템의 토폴로지 처리 방법.Processing the topology error further comprising the step of processing the topology of the power supply system.
  5. 제1 항에 있어서,According to claim 1,
    상기 제2 과정은,The second process,
    상태 변경 토폴로지의 오류를 점검하는 단계;Checking for errors in the state change topology;
    상기 상태가 변경된 개폐기기가 속한 변전소 내 전기적 모선을 생성하는 단계;Generating an electric bus in the substation to which the switchgear with the changed state belongs;
    상기 생성된 전기적 모선과 변전소, 물리적 모선, 브랜치 및 인젝션과의 링크를 생성하는 단계를 포함하는 것을 특징으로 하는 급전 시스템의 토폴로지 처리 방법.And generating a link between the generated electrical busbar and the substation, the physical busbar, the branch, and the injection.
  6. 제1 항에 있어서,According to claim 1,
    상기 (d)는 (D) is
    독립 계통에 속하는 운전 중인 발전기와 부하의 존재 여부를 확인하여 독립 계통 및 각 설비의 유효성을 검사하는 것을 특징으로 하는 급전 시스템의 토폴로지 처리 방법.A method for processing a topology of a power supply system, characterized by checking the existence of an operating generator and a load belonging to an independent system to check the validity of the independent system and each facility.
  7. 제1 항에 있어서,According to claim 1,
    지점, 변전소, 물리적 결점, 상기 전기적 결점, 연계개폐기, 개폐기기, 브랜치 및 인젝션 중 적어도 하나의 데이터 테이블을 포함하는 계층적 데이터 구조를 갖는 것을 특징으로 하는 급전 시스템의 토폴로지 처리 방법.And a hierarchical data structure comprising a data table of at least one of a point, a substation, a physical defect, the electrical defect, an associated switchgear, a switchgear, a branch, and an injection.
PCT/KR2010/006568 2010-07-30 2010-09-28 Topology processing method for a power supply system WO2012015101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0074411 2010-07-30
KR1020100074411A KR101020877B1 (en) 2010-07-30 2010-07-30 Topology processing method of power supplying system

Publications (1)

Publication Number Publication Date
WO2012015101A1 true WO2012015101A1 (en) 2012-02-02

Family

ID=43938658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006568 WO2012015101A1 (en) 2010-07-30 2010-09-28 Topology processing method for a power supply system

Country Status (2)

Country Link
KR (1) KR101020877B1 (en)
WO (1) WO2012015101A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872781A (en) * 2014-03-31 2014-06-18 国网上海市电力公司 Power distribution automation system
EP2905860A4 (en) * 2012-10-01 2015-11-04 Fujitsu Ltd Power distribution management device, power distribution management method, and power distribution management program
CN105223437A (en) * 2015-09-22 2016-01-06 国网上海市电力公司 Based on the grid equipment electriferous state method for verifying correctness of multi-data source
CN110086255A (en) * 2019-05-06 2019-08-02 广东电网有限责任公司 A kind of distribution open loop point management method
CN111262346A (en) * 2020-04-26 2020-06-09 国网江西省电力有限公司电力科学研究院 Integrated automatic acceptance system and method for transformer substation
CN112531709A (en) * 2021-01-01 2021-03-19 谭世克 Power grid topology configuration method
CN113507117A (en) * 2021-07-08 2021-10-15 国网河北省电力有限公司电力科学研究院 Power distribution network topology model generation method and terminal equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453671B1 (en) 2013-05-13 2014-10-23 엘에스산전 주식회사 Integrated interface system for monitoring and controling electric power system
CN109426677A (en) * 2017-08-23 2019-03-05 许昌许继软件技术有限公司 A kind of electric topology recognition methods for relay protection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827571B1 (en) * 2006-10-31 2008-05-07 한국전력공사 Facts simulator system connected scada in online
EP2056424A2 (en) * 2007-10-30 2009-05-06 General Electric Company System and method for control of power distribution networks
KR100964298B1 (en) * 2009-12-15 2010-06-16 한국전력거래소 A network analysis system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827571B1 (en) * 2006-10-31 2008-05-07 한국전력공사 Facts simulator system connected scada in online
EP2056424A2 (en) * 2007-10-30 2009-05-06 General Electric Company System and method for control of power distribution networks
KR100964298B1 (en) * 2009-12-15 2010-06-16 한국전력거래소 A network analysis system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANG-YUN YUN ET AL.: "Development of Network Application Softwares for Prototype Korean Energy Management Systems", THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS, THE 40TH KIEE SUMMER ANNUAL CONFERENCE, 17 July 2009 (2009-07-17), pages 217 - 218 *
YOON-SUNG CHO ET AL.: "Development of the Contingency Analysis Program of Korean Energy Management System", THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS, JOURNAL OF KIEE, vol. 59, no. 2, 28 February 2010 (2010-02-28), pages 232 - 241 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905860A4 (en) * 2012-10-01 2015-11-04 Fujitsu Ltd Power distribution management device, power distribution management method, and power distribution management program
US10333300B2 (en) 2012-10-01 2019-06-25 Fujitsu Limited Power distribution management apparatus, power distribution management method, and recording medium
CN103872781A (en) * 2014-03-31 2014-06-18 国网上海市电力公司 Power distribution automation system
CN105223437A (en) * 2015-09-22 2016-01-06 国网上海市电力公司 Based on the grid equipment electriferous state method for verifying correctness of multi-data source
CN105223437B (en) * 2015-09-22 2018-06-05 国网上海市电力公司 Grid equipment electriferous state method for verifying correctness based on multi-data source
CN110086255A (en) * 2019-05-06 2019-08-02 广东电网有限责任公司 A kind of distribution open loop point management method
CN111262346A (en) * 2020-04-26 2020-06-09 国网江西省电力有限公司电力科学研究院 Integrated automatic acceptance system and method for transformer substation
CN112531709A (en) * 2021-01-01 2021-03-19 谭世克 Power grid topology configuration method
CN112531709B (en) * 2021-01-01 2022-09-16 湖北方源东力电力科学研究有限公司 Power grid topology configuration method
CN113507117A (en) * 2021-07-08 2021-10-15 国网河北省电力有限公司电力科学研究院 Power distribution network topology model generation method and terminal equipment
CN113507117B (en) * 2021-07-08 2022-09-02 国网河北省电力有限公司电力科学研究院 Power distribution network topology model generation method and terminal equipment

Also Published As

Publication number Publication date
KR101020877B1 (en) 2011-03-11

Similar Documents

Publication Publication Date Title
WO2012015101A1 (en) Topology processing method for a power supply system
Yehsakul et al. A topology-based algorithm for tracking network connectivity
WO2013032044A1 (en) System and method for managing a power distribution system
McDonald et al. Alarm processing and fault diagnosis using knowledge based systems for transmission and distribution network control
WO2015126029A1 (en) Power entry point energy measuring apparatus and energy measurement information labeling system using same
Emami et al. Tracking changes in the external network model
CN113283041B (en) Power failure area rapid studying and judging method based on multi-source information fusion perception algorithm
WO2016032130A1 (en) Section load calculation system, for power distribution, on the basis of amount of ami power use
CN104730397B (en) Interoperability test system and method between a kind of distribution power automation terminal
CN109142993A (en) A kind of multifunction insulating detector suitable for DC power system
Farrokhabadi et al. An efficient automated topology processor for state estimation of power transmission networks
CN107644564A (en) A kind of secondary system of intelligent substation functional simulation method for emulation training
Jakovljevic et al. Advanced substation data collecting and processing for state estimation enhancement
CN103163357A (en) Multi-channel leakage current monitoring system
WO2014046328A1 (en) System data compression system and method thereof
Billakanti et al. An effective binary integer linear programmed approach for optimal placement of PMUs in power systems
Farrokhabadi et al. State-of-the-art of topology processors for EMS and PMU applications and their limitations
CN115473334A (en) Intelligent substation secondary safety measure checking method based on digital twinning
WO2014193057A1 (en) Method for determining problematic equipment using defect map of faulty samples and apparatus for same
Sachdev et al. Topology detection for adaptive protection of distribution networks
WO2014046315A1 (en) Apparatus and method for integrated analysis of power system linked with distributed generation
Honeth et al. Distributed topology inference for electric power grids
e Sousa et al. Viability assessment for centralised protection and control system architectures in medium voltage (MV) substations
Mokhlis et al. Locating fault using voltage sags profile for underground distribution system
Teoh et al. A solution to eliminate conventional busbar protection with process bus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855373

Country of ref document: EP

Kind code of ref document: A1