WO2012014444A1 - Optical communication processing device in optical network, and wavelength conversion method thereof - Google Patents

Optical communication processing device in optical network, and wavelength conversion method thereof Download PDF

Info

Publication number
WO2012014444A1
WO2012014444A1 PCT/JP2011/004200 JP2011004200W WO2012014444A1 WO 2012014444 A1 WO2012014444 A1 WO 2012014444A1 JP 2011004200 W JP2011004200 W JP 2011004200W WO 2012014444 A1 WO2012014444 A1 WO 2012014444A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
network
external
wavelengths
Prior art date
Application number
PCT/JP2011/004200
Other languages
French (fr)
Japanese (ja)
Inventor
博一 尾崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012526308A priority Critical patent/JPWO2012014444A1/en
Publication of WO2012014444A1 publication Critical patent/WO2012014444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures

Definitions

  • the present invention relates to a wavelength division multiplexing (hereinafter abbreviated as WDM) optical network system, and more particularly to an optical communication processing apparatus and a wavelength conversion method in an optical network.
  • WDM wavelength division multiplexing
  • PON passive optical network
  • Patent Document 1 in PON using WDM, a common wavelength is used for IP broadcast data transmission from a station side device (OLT) to each user side device (ONU), and an individual wavelength is used for individual data transmission from each ONU.
  • OLT station side device
  • ONU user side device
  • Patent Document 2 discloses a wavelength allocation method for automatically acquiring a wavelength used between an OLT and an ONU by negotiation.
  • the number of wavelengths that can be used in WDM technology is limited.
  • the wavelength resources that can be used in WDM can be effectively used. Can not. Therefore, it is clear that the problem of depletion of wavelength resources becomes more prominent as the WDM-PON usage range expands from the public network to the private network.
  • an object of the present invention is to provide an optical communication processing apparatus and a wavelength conversion method in an optical network that enable effective and flexible use of WDM wavelength resources.
  • An optical communication processing apparatus is an optical communication processing apparatus for processing an optical signal entering and exiting a wavelength division multiplexing (hereinafter referred to as WDM) optical network, and is assigned to the optical network from an external network.
  • WDM wavelength division multiplexing
  • An association means for associating at least one external wavelength with a plurality of internal wavelengths used independently in the optical network, and performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association.
  • a wavelength conversion means for performing for performing.
  • a wavelength conversion method is a wavelength conversion method in a wavelength division multiplexing (WDM) optical network, and is independent of at least one external wavelength assigned to the optical network from an external network within the optical network.
  • WDM wavelength division multiplexing
  • a plurality of internal wavelengths to be used are associated with each other, and wavelength conversion is performed between the external wavelength and the plurality of internal wavelengths according to the association.
  • WDM wavelength resources can be used effectively and flexibly.
  • FIG. 1 is a network configuration diagram schematically showing an example of an optical network system to which the present invention is applied.
  • FIG. 2 is a block diagram showing a functional configuration of the downstream optical wavelength address converter in the optical gateway device shown in FIG.
  • FIG. 3 is a block diagram showing a functional configuration of the upstream optical wavelength address converter in the optical gateway device shown in FIG.
  • FIG. 4 is a network configuration diagram schematically showing an optical network system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an example of downstream optical wavelength address conversion in each private network shown in FIG.
  • FIG. 6 is a schematic diagram showing an example of upstream optical wavelength address conversion in each private network shown in FIG.
  • FIG. 7 is a schematic diagram for explaining an example of use of the downstream optical wavelength address converter shown in FIG.
  • FIG. 8 is a schematic diagram showing an example of optical wavelength address conversion in the usage example shown in FIG.
  • the “private network” in the following description should be understood most widely as an optical network including a virtual private network, and the “optical gateway device” is provided at the edge of the private network and enters and exits the private network. This corresponds to an optical communication processing device that processes signals to be transmitted.
  • an optical WDM network system to which the present invention is applied comprises a plurality of private networks 10a, 10b, 10c,... And a public network 20 to which they are connected.
  • the basic configuration is a passive optical network (WDM-PON) of wavelength division multiplexing.
  • WDM-PON passive optical network
  • the private network 10a will be exemplified and described in detail. It is assumed that the downstream wavelength ⁇ AD and the upstream wavelength ⁇ AU are assigned to the private network 10 a for communication with the public network 20.
  • the optical gateway device 11 connected to the public network 20 is provided at the edge of the private network 10a, and the optical gateway device 11 is provided with the optical wavelength address conversion unit 100 according to the present invention.
  • the optical wavelength address conversion unit 100 is preferably provided in the optical gateway device 11 provided at the edge of the private network 10a.
  • the optical wavelength address converter 100 converts the downstream wavelength ⁇ AD into n different downstream wavelengths ⁇ 1D - ⁇ nD used in the private network 10a, and n used in the private network 10a.
  • the different upstream wavelengths ⁇ 1U - ⁇ nU are converted to upstream wavelength ⁇ AU .
  • the downstream wavelengths ⁇ 1D - ⁇ nD and the upstream wavelengths ⁇ 1U - ⁇ nU used in the private network 10a can be assigned to the terminal devices T1-Tn, respectively.
  • the conversion contents in the optical wavelength address conversion unit 100 can be monitored and updated by the monitoring control system 13 of the private network 10a.
  • the supervisory control system 13 can perform supervisory control of the optical wavelength address converter 100 locally as shown in FIG. 1, but remote supervisory control via a network may also be used.
  • the optical wavelength router 12 separates and transmits the downstream wavelengths ⁇ 1D - ⁇ nD to the corresponding terminal devices, multiplexes the upstream wavelengths ⁇ 1U - ⁇ nU from the terminal devices T 1 -Tn , and forwards them to the optical gateway device 11. To do.
  • the downstream wavelengths ⁇ 1D - ⁇ nD and the upstream wavelengths ⁇ 1U - ⁇ nU used in the private network 10a are associated with each of the terminal devices T1-Tn, these wavelengths are designated as “private wavelength addresses”. That's it.
  • the downstream wavelengths ⁇ 1D - ⁇ nD and the upstream wavelengths ⁇ 1U - ⁇ nU are defined for use in the private network 10 a in the optical gateway device 11. Therefore, the wavelength used in the private network 10a can be determined independently of the wavelengths used in the public network 20 and other private networks, and a finite number of WDM wavelengths are repeatedly assigned in a plurality of private networks. WDM wavelength resources can be used effectively.
  • the optical wavelength address conversion unit 100 of the optical gateway device 11 provided in each private network will be described in detail.
  • the optical wavelength address converter 100 includes a downstream optical wavelength address converter 100DL shown in FIG. 2 and an upstream optical wavelength address converter 100UL shown in FIG. 2.1) Downlink Optical Wavelength Allocation
  • FIG. 2 shows the downstream optical wavelength address conversion unit 100DL of the optical gateway apparatus 11 showing the processing of signals from the public network 20 toward the private network 10.
  • the downstream optical wavelength address conversion unit 100DL is provided with an optical / electrical conversion unit (O / E) 101 and a separation unit 102.
  • the O / E 101 converts a downstream optical signal having a wavelength ⁇ D obtained by multiplexing signals addressed to a plurality of terminal devices accommodated by the private network into an electrical signal
  • the separation unit 102 converts the received electrical signal into a main signal addressed to the terminal device.
  • the individual main signals separated by the separation unit 102 are input to the corresponding electrical / optical conversion units (E / O) 104-1 to 104-n through the control information monitoring unit 103 and used in the private network. Each is converted into an optical main signal having a downstream wavelength ⁇ 1D - ⁇ nD . These optical main signals are multiplexed by the optical wavelength multiplexer 105 and sent to the optical wavelength router 12.
  • the control information monitoring unit 103 uses the address and control information (for example, MAC address, VLAN identification information, public network side IP address (global IP address), TCP / UDP port number, etc.) from the individual main signal separated by the separation unit 102. Is output to the control unit 106.
  • the control unit 106 refers to the downstream optical wavelength address conversion table 107 using the acquired address and control information, and controls each transmission wavelength of the E / Os 104-1 to 104-n. For example, if the transmission destination of the main signal input to the E / O 104-1 is the terminal device T1, the E / O 104-1 is controlled to emit light at the downstream wavelength ⁇ 1D assigned to the terminal device T1.
  • a plurality of downstream wavelengths (for example, ⁇ 1D and ⁇ 2D ) are assigned to the terminal device T1
  • a plurality of main signals are transmitted to the terminal device T1 by emitting a plurality of E / Os at these wavelengths, respectively. It is also possible.
  • each of the E / Os 104-1 to 104-n may be a light source that can change the emission wavelength in accordance with a control signal from the control unit 106, or the light emission wavelength is fixed to ⁇ 1D - ⁇ nD. It may be a single light source.
  • the downstream optical wavelength address conversion table 107 provides a means for converting the downstream wavelength ⁇ D on the public network side into n different downstream wavelengths ⁇ 1D - ⁇ nD used in the private network. It may be fixed or may change over time (dynamic). In addition to wavelength conversion, IP address conversion can also be provided.
  • the downstream optical wavelength address conversion table 107 is monitored and controlled by the monitoring control system 13.
  • FIG. 3 shows the upstream optical wavelength address conversion unit 100UL of the optical gateway apparatus 11 showing the processing of signals from the private network 10 to the public network 20.
  • the upstream optical wavelength address converter 100UL is provided with an optical wavelength separator 201 and optical / electrical converters (O / E) 202-1 to 202-n.
  • the optical wavelength demultiplexing unit 201 demultiplexes the upstream wavelength multiplexed signal received from the optical wavelength router 12 into n different upstream wavelengths ⁇ 1U - ⁇ nU used in the private network, and O / E 202-1 to 202-n Converts upstream optical signals of wavelengths ⁇ 1U - ⁇ nU into electrical signals, respectively.
  • the main signal converted into an electric signal is input to the multiplexing unit 204 through the control information monitoring unit 203, are electrically multiplexed by multiplexing section 204, the electric / optical converter section (E / O) 205 of the upstream wavelength lambda U light It is converted into a main signal and sent to the public network 20.
  • the control information monitoring unit 203 converts the address and control information (for example, MAC address, VLAN identification information, public network side IP address (global IP address)) from the individual main signals converted into electric signals by the O / Es 202-1 to 202-n. ), TCP / UDP port number, etc.) are acquired and output to the control unit 206.
  • the control unit 206 controls the transmission wavelength of the E / O 205 with reference to the upstream optical wavelength address conversion table 207.
  • the upstream optical wavelength address conversion table 207 provides means for converting n different upstream wavelengths ⁇ 1U - ⁇ nU used in the private network into upstream wavelengths ⁇ U on the public network side, but this correspondence is fixed. Or dynamic. In addition to wavelength conversion, IP address conversion may be provided.
  • the upstream optical wavelength address conversion table 207 is monitored and controlled by the monitoring control system 13.
  • the downstream optical wavelength address conversion unit 100DL shown in FIG. 2 and the upstream optical wavelength address conversion unit 100UL shown in FIG. 3 are provided in one optical gateway device 11 to perform wavelength conversion of optical signals entering and exiting the private network. it can.
  • the control units 106 and 206 can be realized by one gateway control unit, and the downstream optical wavelength address conversion table 107 and the upstream optical wavelength address conversion table 207 are stored in a storage means that can be referred to by the gateway control unit. Can do.
  • the program stored in the recording medium is a program control processor such as a CPU (Central Processing Unit).
  • a program control processor such as a CPU (Central Processing Unit).
  • Embodiment As shown in FIG. 4, it is assumed that three private networks A, B, and C are connected to a public network 20.
  • the public network 20 uses WDM-PON and has an OLT (Optical Line Termination) 21 as a station apparatus and an AWG (Array Waveguide Grating) 22 as an optical wavelength router. Downlink wavelengths ⁇ AD , ⁇ BD , and ⁇ CD separated by the AWG 22 are assigned to the private networks A, B, and C, respectively.
  • the wavelength assignment by the public network may be fixed or dynamic.
  • AWG is a passive device that performs wavelength allocation and multiplexing, and is used in WDM-PON.
  • Private networks A, B, and C are also configured by WDM-PON.
  • AWG is used for the optical wavelength router 12, and the terminal device is an ONU (Optical Network Unit).
  • the optical gateway devices 11a, 11b, and 11c installed at the edges of the private networks A, B, and C are devices that realize wavelength address conversion according to this embodiment.
  • the optical wavelength address converter (100a, 100b, 100c) of the optical gateway device (11a, 11b, 11c) has a block configuration equivalent to the downstream and upstream optical wavelength address converters shown in FIGS. 2 and 3, respectively. To do.
  • the downstream optical wavelength address conversion table 107 of the optical gateway device 11a provides a correspondence for converting the downstream wavelength ⁇ AD to the downstream wavelengths ⁇ 1D - ⁇ 3D used in the private network A.
  • the downstream optical wavelength address conversion table 107 of the device 11b provides a correspondence for converting the downstream wavelength ⁇ BD to downstream wavelengths ⁇ 1D - ⁇ 3D used in the private network B, and the downstream optical wavelength address conversion table of the optical gateway device 11c. 107 provides a correspondence to convert the downstream wavelength ⁇ CD to the downstream wavelengths ⁇ 1D - ⁇ 3D used in the private network C.
  • the wavelengths in each private network can be determined independently of the wavelengths used in the public network 20 and other private networks, so the same downstream wavelength (here, ⁇ 1D - ⁇ 3D ) is set to a plurality of wavelengths. It can be used repeatedly in a private network.
  • a private IP address is also assigned to each terminal device (ONU) in the private network.
  • the upstream optical wavelength address conversion table 207 of the optical gateway device 11a provides a correspondence for converting the upstream wavelengths ⁇ 1U - ⁇ 3U used in the private network A to the upstream wavelength ⁇ AU .
  • the upstream optical wavelength address conversion table 207 of the device 11b provides a correspondence for converting the upstream wavelengths ⁇ 1U - ⁇ 3U used in the private network B to the upstream wavelength ⁇ BU, and the upstream optical wavelength address conversion table of the optical gateway device 11c.
  • 207 provides a correspondence for converting the upstream wavelengths ⁇ 1U - ⁇ 3U used in the private network C to the upstream wavelength ⁇ CU .
  • the wavelength used in each private network can be determined independently of the wavelength used in the public network 20 and other private networks, so the same upstream wavelength (here, ⁇ 1U - ⁇ 3U ) is set. It is possible to repeatedly assign within multiple private networks.
  • the public network 20 assigns reception and transmission optical wavelengths to the optical gateway devices 11a, 11b, and 11c. This assignment may be fixed or performed dynamically. However, a different wavelength is assigned to each optical gateway device in order to perform wavelength multiplexing. A wavelength assigned from the public network side to the optical gateway device of each private network is called a global wavelength address.
  • Each optical gateway device assigns a wavelength for transmission and reception to a plurality of terminal devices ONU connected in the private network.
  • a wavelength allocated from the optical gateway device to the terminal device ONU in the private network is called a private wavelength address.
  • an optical signal received from the public network 20 is converted into an electric signal by the O / E 101 and separated into a signal to each terminal apparatus ONU by the separation unit 102.
  • the control information monitoring unit 103 obtains address and control information (for example, MAC address, VLAN, public network side IP address (global IP address), TCP / IP port number, etc. as shown in FIG. 5) from these separated signals. To do.
  • the control unit 106 refers to the wavelength address conversion table 107 shown in FIG. 5 to determine the wavelength to be assigned to each terminal apparatus ONU on the private network side, and transmits it in the E / Os 104-1 to 104-3. Control the wavelength.
  • the outputs from the E / Os 104-1 to 104-3 are multiplexed into one optical signal by the optical wavelength multiplexing unit 105 and sent to the terminal device side.
  • the upstream wavelength address conversion will be described with reference to FIG. 3.
  • the optical wavelength demultiplexing unit 201 demultiplexes the optical signal received from the terminal device side for each wavelength, and each of them is converted into an electric signal by the O / Es 202-1 to 202-3. Converted.
  • the control signal monitoring unit 203 obtains address and control information (for example, MAC address, VLAN, public network side IP address (global IP address), TCP / IP port number, etc. as shown in FIG. 5) from these separated signals. To do.
  • the control unit 206 refers to the wavelength address conversion table 207 to determine the wavelength to be transmitted to the public network side, and controls the transmission wavelength in the E / O 205.
  • Each electric signal is bundled by the multiplexing unit 204 and transmitted to the public network side via the E / O 205.
  • the contents of the wavelength address conversion table are set in the optical gateway device locally or remotely from the supervisory control system 13 of the private network.
  • wavelength resources can be used effectively and flexibly.
  • a wavelength address used in a public network can be freely used in a private network.
  • each optical gateway device the wavelength allocation in the private network is determined by referring to the optical wavelength address conversion table, so by rewriting the optical wavelength address conversion table as desired by the user by the supervisory control system, There is also an advantage that it is easy to select optical signals of a plurality of wavelengths received through the public network for each terminal.
  • the control unit 106 can determine the wavelength allocation in the private network by referring to the downstream optical wavelength address conversion table 107. By rewriting 107, the change of the service provider and the change of the provided service can be easily executed.
  • each terminal device ONU provides WDM. It is assumed that it corresponds.
  • the contents of the downstream optical wavelength address conversion table 107 for a certain end user are changed from the global wavelength addresses ⁇ 3 , ⁇ 5 , ⁇ 7 to the private wavelength addresses ⁇ 1 , ⁇ 2 , ⁇ 3 , respectively. It is easy to select three services from a plurality of services provided by three service providers simply by rewriting them so as to convert them.
  • the video service is selected from the service provider SP A
  • the data service is selected from the service provider SP B
  • the voice service is selected from the service provider SP C.
  • optical wavelength address conversion according to the present invention can be applied to other WDM network configurations (for example, P2P, rings, etc.). Also, there may be a plurality of wavelengths (global wavelength addresses) assigned from the public network to the optical gateway device.
  • An optical communication processing apparatus for processing an optical signal entering and exiting an optical network of a wavelength division multiplexing (hereinafter referred to as WDM) system, Association means for associating at least one external wavelength assigned to the optical network from an external network and a plurality of internal wavelengths used independently in the optical network; Wavelength converting means for performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
  • An optical communication processing device comprising:
  • Appendix 2 The optical communication processing apparatus according to appendix 1, wherein the association unit further sets the allocation of the plurality of internal wavelengths to a plurality of terminal apparatuses accommodated in the optical network.
  • the association means includes a correspondence between the external wavelength and the plurality of internal wavelengths, a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the optical network, 4.
  • the optical communication processing device according to any one of appendices 1-3, further including a wavelength address conversion table for setting the address to be changeable.
  • the wavelength converting means is Optical / electrical conversion means for converting the optical signal of the external wavelength into an electrical signal; Separating means for separating signals addressed to a plurality of terminal devices multiplexed on the electrical signal; A plurality of electrical / optical conversion means for generating optical signals of the plurality of internal wavelengths according to the signals addressed to the plurality of terminal devices; A multiplexing means for multiplexing the optical signals of the plurality of internal wavelengths into one optical signal; Control means for controlling the transmission wavelengths of the plurality of electrical / optical conversion means according to the correspondence;
  • the optical communication processing device according to any one of appendixes 1-4, characterized by comprising:
  • the external network is a public network
  • the optical network is a private network
  • the public network and the private network are passive optical networks using WDM, according to any one of appendix 1-5, Optical communication processing device.
  • a wavelength conversion method in a wavelength division multiplexing (WDM) optical network Associating at least one external wavelength assigned to the optical network from an external network with a plurality of internal wavelengths used independently in the optical network; Performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association; The wavelength conversion method characterized by the above-mentioned.
  • WDM wavelength division multiplexing
  • the association includes a correspondence between the external wavelength and the plurality of internal wavelengths, and a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the optical network.
  • the wavelength conversion method according to any one of appendixes 7-9, wherein the wavelength address conversion table is set to be changeable.
  • the wavelength conversion is An optical / electrical conversion means converts the optical signal of the external wavelength into an electrical signal; Separating means separates signals destined for a plurality of terminal devices multiplexed on the electrical signal, A plurality of electrical / optical conversion means respectively generate optical signals of the plurality of internal wavelengths in accordance with signals addressed to the plurality of terminal devices, Multiplexing means multiplexes the optical signals of the plurality of internal wavelengths into one optical signal, A control unit controls transmission wavelengths of the plurality of electrical / optical conversion units according to the correspondence; Item 11.
  • the wavelength conversion method according to any one of Appendices 7-10, wherein:
  • An optical network system comprising a wavelength division multiplexing (hereinafter referred to as WDM) public network and a plurality of private networks connected to the public network, Each of the plurality of private networks is provided with an optical gateway device at a connection point with the public network, The optical gateway device is Association means for associating at least one external wavelength assigned from the public network and a plurality of internal wavelengths used independently in the private network; Wavelength converting means for performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
  • An optical network system comprising:
  • the association means includes a correspondence between the external wavelength and the plurality of internal wavelengths, a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the private network, 15.
  • the optical network system according to any one of appendices 12-14, further comprising a wavelength address conversion table for setting the address to be changeable.
  • the wavelength converting means is Optical / electrical conversion means for converting the optical signal of the external wavelength into an electrical signal; Separating means for separating signals addressed to a plurality of terminal devices multiplexed on the electrical signal; A plurality of electrical / optical conversion means for generating optical signals of the plurality of internal wavelengths according to the signals addressed to the plurality of terminal devices; A multiplexing means for multiplexing the optical signals of the plurality of internal wavelengths into one optical signal; Control means for controlling the transmission wavelengths of the plurality of electrical / optical conversion means according to the correspondence; 16.
  • the optical network system according to any one of appendices 12-15, characterized by comprising:
  • Appendix 17 17. The optical network system according to any one of appendix 12-16, wherein the public network and the private network are passive optical networks using WDM.
  • Appendix 18 An optical gateway device including the optical communication processing device according to any one of appendix 1-6.
  • Appendix 19 A program for functioning a program control processor of an optical communication processing device that processes an optical signal entering and exiting an optical network of a wavelength division multiplexing (WDM) system, A function of associating at least one external wavelength assigned to the optical network from an external network with a plurality of internal wavelengths used independently in the optical network; A function of performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association; Is realized by the program control processor.
  • WDM wavelength division multiplexing
  • Appendix 20 The program according to appendix 19, wherein the association further sets assignment of the plurality of internal wavelengths to a plurality of terminal devices accommodated in the optical network.
  • the present invention can be applied to an optical network system employing WDM-PON.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Disclosed is an optical communication processing device that is in an optical network and that enables the effective and flexible use of a WDM wavelength resource. Further disclosed is a wavelength conversion method. The optical communication processing device (11) that performs processing of an optical signal that enters/exits a WDM optical network (10a) has an optical wavelength address conversion unit that associates at least one external wavelength (λAD, λAU) allocated from an external network (20) and a plurality of internal wavelengths (λ1DnU, λ1UnU) independently used within the optical network, and in accordance with the association, performs wavelength conversion between the external wavelength and the plurality of internal wavelengths.

Description

光ネットワークにおける光通信処理装置およびその波長変換方法Optical communication processing apparatus in optical network and wavelength conversion method thereof
 本発明は波長分離多重(Wavelength Division Multiplexing;以下WDMと略記する。)方式の光ネットワークシステムに係り、特に光ネットワークにおける光通信処理装置および波長変換方法に関する。 The present invention relates to a wavelength division multiplexing (hereinafter abbreviated as WDM) optical network system, and more particularly to an optical communication processing apparatus and a wavelength conversion method in an optical network.
 近年、アクセスネットワークにおいてブロードバンド化が急速に進展しており、パッシブ光ネットワーク(Passive Optical Network;以下PONと略記する。)等による光ネットワーク化が進められている。現状は時分割多重(TDM)によるPONが主流であるが、将来の超大容量・高速通信に向けてWDMを利用するPONの研究開発も進められており、いくつかの提案もされている。 In recent years, broadband access networks have been rapidly developed, and an optical network using a passive optical network (hereinafter abbreviated as PON) is being promoted. At present, PON based on time division multiplexing (TDM) is the mainstream, but research and development of PON using WDM is underway for future ultra-high-capacity and high-speed communication, and several proposals have been made.
 たとえば特許文献1には、WDMによるPONにおいて、局側装置(OLT)から各ユーザ側装置(ONU)へのIP放送データ送信には共通波長を用い、各ONUからの個別データ送信には個別波長を用いるシステムが開示されている。また特許文献2には、OLTとONUとの間で使用される波長を交渉により自動的に獲得する波長割当方法が開示されている。 For example, in Patent Document 1, in PON using WDM, a common wavelength is used for IP broadcast data transmission from a station side device (OLT) to each user side device (ONU), and an individual wavelength is used for individual data transmission from each ONU. A system using is disclosed. Patent Document 2 discloses a wavelength allocation method for automatically acquiring a wavelength used between an OLT and an ONU by negotiation.
特開2009-081887号公報JP 2009-081887 A 特開2009-182997号公報JP 2009-182997 A
 現在、PONは公衆網での導入が進められているが、将来は私設網にも利用が広がるものと予想される。例えば大量のデータを格納・保存するストレージエリアネットワーク(SAN)への利用が有望視されている。技術の進展および広帯域需要の増加により、いずれWDM-PONが公衆網、私設網の双方で利用されるものと考えられる。 Currently, PON is being introduced on the public network, but in the future, it is expected that it will also be used on private networks. For example, it is considered promising for use in a storage area network (SAN) for storing and storing a large amount of data. With the progress of technology and the increase in broadband demand, WDM-PON will eventually be used for both public and private networks.
 しかしながら、WDM技術において利用可能な波長の数は限られている。上述した特許文献では、OLTとONUとの間で使用される波長の利用あるいは割当がWDMで使用可能な波長資源内において考慮されているだけであるために、波長資源の有効利用を図ることができない。したがってWDM-PONの利用範囲が公衆網から私設網へと広がるにつれ、波長資源の枯渇問題が顕著になることは明らかである。 However, the number of wavelengths that can be used in WDM technology is limited. In the above-mentioned patent document, since the use or allocation of the wavelengths used between the OLT and the ONU is only considered in the wavelength resources that can be used in WDM, the wavelength resources can be effectively used. Can not. Therefore, it is clear that the problem of depletion of wavelength resources becomes more prominent as the WDM-PON usage range expands from the public network to the private network.
 そこで本発明の目的は、WDM波長資源の有効かつ柔軟な利用を可能とする光ネットワークにおける光通信処理装置および波長変換方法を提供することにある。 Therefore, an object of the present invention is to provide an optical communication processing apparatus and a wavelength conversion method in an optical network that enable effective and flexible use of WDM wavelength resources.
 本発明による光通信処理装置は、波長分離多重(以下、WDMと記す。)方式の光ネットワークに出入りする光信号の処理を行う光通信処理装置であって、外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付ける対応付け手段と、前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う波長変換手段と、を有することを特徴とする。 An optical communication processing apparatus according to the present invention is an optical communication processing apparatus for processing an optical signal entering and exiting a wavelength division multiplexing (hereinafter referred to as WDM) optical network, and is assigned to the optical network from an external network. An association means for associating at least one external wavelength with a plurality of internal wavelengths used independently in the optical network, and performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association. And a wavelength conversion means for performing.
 本発明による波長変換方法は、波長分離多重(WDM)方式の光ネットワークにおける波長変換方法であって、外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付け、前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う、ことを特徴とする。 A wavelength conversion method according to the present invention is a wavelength conversion method in a wavelength division multiplexing (WDM) optical network, and is independent of at least one external wavelength assigned to the optical network from an external network within the optical network. A plurality of internal wavelengths to be used are associated with each other, and wavelength conversion is performed between the external wavelength and the plurality of internal wavelengths according to the association.
 本発明によれば、光ネットワーク内で複数の内部波長を外部波長から独立して使用することができるためにWDM波長資源の有効かつ柔軟な利用が可能となる。 According to the present invention, since a plurality of internal wavelengths can be used independently from external wavelengths in an optical network, WDM wavelength resources can be used effectively and flexibly.
図1は、本発明が適用される光ネットワークシステムの一例を概略的に示すネットワーク構成図である。FIG. 1 is a network configuration diagram schematically showing an example of an optical network system to which the present invention is applied. 図2は、図1に示す光ゲートウェイ装置における下り光波長アドレス変換部の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the downstream optical wavelength address converter in the optical gateway device shown in FIG. 図3は、図1に示す光ゲートウェイ装置における上り光波長アドレス変換部の機能的構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the upstream optical wavelength address converter in the optical gateway device shown in FIG. 図4は、本発明の一実施例による光ネットワークシステムを概略的に示すネットワーク構成図である。FIG. 4 is a network configuration diagram schematically showing an optical network system according to an embodiment of the present invention. 図5は、図4に示す各私設網における下り光波長アドレス変換の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of downstream optical wavelength address conversion in each private network shown in FIG. 図6は、図4に示す各私設網における上り光波長アドレス変換の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of upstream optical wavelength address conversion in each private network shown in FIG. 図7は、図2に示す下り光波長アドレス変換部の一使用例を説明するための模式図である。FIG. 7 is a schematic diagram for explaining an example of use of the downstream optical wavelength address converter shown in FIG. 図8は、図7に示す使用例における光波長アドレス変換の一例を示す模式図である。FIG. 8 is a schematic diagram showing an example of optical wavelength address conversion in the usage example shown in FIG.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、以下の説明における「私設網」は後述するように仮想私設網を含む光ネットワークとして最も広く解すべきであり、また「光ゲートウェイ装置」は、私設網のエッジに設けられ当該私設網に出入りする信号の処理を行う光通信処理装置に対応する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The “private network” in the following description should be understood most widely as an optical network including a virtual private network, and the “optical gateway device” is provided at the edge of the private network and enters and exits the private network. This corresponds to an optical communication processing device that processes signals to be transmitted.
 1.光ネットワークシステム
 図1に示すように、本発明が適用される光WDMネットワークシステムは、複数の私設網10a、10b、10c・・・とそれらが接続される公衆網20とからなり、各私設網の基本的構成はいずれも波長分離多重方式のパッシブ光ネットワーク(WDM―PON)である。以下、私設網10aを例示して詳細に説明する。私設網10aには、公衆網20との通信に下り波長λAD、上り波長λAUが割り当てられているものとする。
1. Optical Network System As shown in FIG. 1, an optical WDM network system to which the present invention is applied comprises a plurality of private networks 10a, 10b, 10c,... And a public network 20 to which they are connected. The basic configuration is a passive optical network (WDM-PON) of wavelength division multiplexing. Hereinafter, the private network 10a will be exemplified and described in detail. It is assumed that the downstream wavelength λ AD and the upstream wavelength λ AU are assigned to the private network 10 a for communication with the public network 20.
 私設網10aのエッジには、公衆網20と接続する光ゲートウェイ装置11が設けられ、光ゲートウェイ装置11には本発明による光波長アドレス変換部100が設けられている。光波長アドレス変換部100は私設網10aのエッジに設けられた光ゲートウェイ装置11に配備するのが望ましい。 The optical gateway device 11 connected to the public network 20 is provided at the edge of the private network 10a, and the optical gateway device 11 is provided with the optical wavelength address conversion unit 100 according to the present invention. The optical wavelength address conversion unit 100 is preferably provided in the optical gateway device 11 provided at the edge of the private network 10a.
 後述するように、光波長アドレス変換部100は、下り波長λADを私設網10a内で使用されるn個の異なる下り波長λ1D-λnDへ変換し、私設網10a内で使用されるn個の異なる上り波長λ1U-λnUを上り波長λAUへ変換する。私設網10a内で使用される下り波長λ1D-λnDおよび上り波長λ1U-λnUは端末装置T1-Tnにそれぞれ対応づけて割り当てることができる。光波長アドレス変換部100における変換内容は、当該私設網10aの監視制御システム13により監視され更新可能である。なお、監視制御システム13は、図1に示すようにローカルに光波長アドレス変換部100の監視制御を行うこともできるが、ネットワーク経由のリモート監視制御であってもよい。 As will be described later, the optical wavelength address converter 100 converts the downstream wavelength λ AD into n different downstream wavelengths λ 1DnD used in the private network 10a, and n used in the private network 10a. The different upstream wavelengths λ 1UnU are converted to upstream wavelength λ AU . The downstream wavelengths λ 1DnD and the upstream wavelengths λ 1UnU used in the private network 10a can be assigned to the terminal devices T1-Tn, respectively. The conversion contents in the optical wavelength address conversion unit 100 can be monitored and updated by the monitoring control system 13 of the private network 10a. The supervisory control system 13 can perform supervisory control of the optical wavelength address converter 100 locally as shown in FIG. 1, but remote supervisory control via a network may also be used.
 光波長ルータ12は、下り波長λ1D-λnDをそれぞれ分離して対応する端末装置へ転送し、端末装置T1-Tnからの上り波長λ1U-λnUを多重して光ゲートウェイ装置11へ転送する。私設網10a内で使用される下り波長λ1D-λnDおよび上り波長λ1U-λnUが端末装置T1-Tnの各々に対応づけられている場合には、これらの波長を「プライベート波長アドレス」という。 The optical wavelength router 12 separates and transmits the downstream wavelengths λ 1DnD to the corresponding terminal devices, multiplexes the upstream wavelengths λ 1UnU from the terminal devices T 1 -Tn , and forwards them to the optical gateway device 11. To do. When the downstream wavelengths λ 1DnD and the upstream wavelengths λ 1UnU used in the private network 10a are associated with each of the terminal devices T1-Tn, these wavelengths are designated as “private wavelength addresses”. That's it.
 上述したように、下り波長λ1D-λnDおよび上り波長λ1U-λnUは光ゲートウェイ装置11において私設網10aで使用するために定義されている。したがって、私設網10a内で使用される波長は、公衆網20や他の私設網で使用される波長とは独立に決めることができ、有限個数のWDM波長を複数の私設網内で繰り返し割り当てることが可能となり、WDM波長資源の有効利用が可能となる。以下、各私設網に設けられた光ゲートウェイ装置11の光波長アドレス変換部100について詳細に説明する。 As described above, the downstream wavelengths λ 1DnD and the upstream wavelengths λ 1UnU are defined for use in the private network 10 a in the optical gateway device 11. Therefore, the wavelength used in the private network 10a can be determined independently of the wavelengths used in the public network 20 and other private networks, and a finite number of WDM wavelengths are repeatedly assigned in a plurality of private networks. WDM wavelength resources can be used effectively. Hereinafter, the optical wavelength address conversion unit 100 of the optical gateway device 11 provided in each private network will be described in detail.
 2.光波長割当
 光波長アドレス変換部100は、図2に示す下り光波長アドレス変換部100DLと図3に示す上り光波長アドレス変換部100ULを含むものとする。
 2.1)下り光波長割当
 図2は公衆網20から私設網10へ向かう信号の処理を示す光ゲートウェイ装置11の下り光波長アドレス変換部100DLを示す。下り光波長アドレス変換部100DLには光/電気変換部(O/E)101および分離部102が設けられている。O/E101は当該私設網が収容する複数の端末装置宛の信号を多重した波長λの下り光信号を電気信号に変換し、分離部102は受信した電気信号を端末装置宛の主信号に分離する。分離部102により分離された個別の主信号は、制御情報監視部103を通して、対応する電気/光変換部(E/O)104-1~104-nに入力し、私設網内で使用される下り波長λ1D-λnDの光主信号にそれぞれ変換される。これら光主信号は光波長多重部105により多重され、光波長ルータ12へ送出される。
2. Optical wavelength allocation The optical wavelength address converter 100 includes a downstream optical wavelength address converter 100DL shown in FIG. 2 and an upstream optical wavelength address converter 100UL shown in FIG.
2.1) Downlink Optical Wavelength Allocation FIG. 2 shows the downstream optical wavelength address conversion unit 100DL of the optical gateway apparatus 11 showing the processing of signals from the public network 20 toward the private network 10. The downstream optical wavelength address conversion unit 100DL is provided with an optical / electrical conversion unit (O / E) 101 and a separation unit 102. The O / E 101 converts a downstream optical signal having a wavelength λ D obtained by multiplexing signals addressed to a plurality of terminal devices accommodated by the private network into an electrical signal, and the separation unit 102 converts the received electrical signal into a main signal addressed to the terminal device. To separate. The individual main signals separated by the separation unit 102 are input to the corresponding electrical / optical conversion units (E / O) 104-1 to 104-n through the control information monitoring unit 103 and used in the private network. Each is converted into an optical main signal having a downstream wavelength λ 1DnD . These optical main signals are multiplexed by the optical wavelength multiplexer 105 and sent to the optical wavelength router 12.
 制御情報監視部103は、分離部102により分離された個別の主信号からアドレスおよび制御情報(例えばMACアドレス、VLAN識別情報、公衆網側IPアドレス(グローバルIPアドレス)、TCP/UDPポート番号等)を取得し、制御部106へ出力する。制御部106は、取得したアドレスおよび制御情報を用いて下り光波長アドレス変換テーブル107を参照しE/O104-1~104-nの各々の送信波長を制御する。たとえば、E/O104-1に入力する主信号の送信先が端末装置T1であれば、当該端末装置T1に割り当てられた下り波長λ1Dで発光するようにE/O104-1を制御する。さらに端末装置T1に複数の下り波長(たとえばλ1Dとλ2D)が割り当てられていれば、これらの波長で複数のE/Oをそれぞれ発光させることで複数の主信号を端末装置T1へ送信することも可能である。 The control information monitoring unit 103 uses the address and control information (for example, MAC address, VLAN identification information, public network side IP address (global IP address), TCP / UDP port number, etc.) from the individual main signal separated by the separation unit 102. Is output to the control unit 106. The control unit 106 refers to the downstream optical wavelength address conversion table 107 using the acquired address and control information, and controls each transmission wavelength of the E / Os 104-1 to 104-n. For example, if the transmission destination of the main signal input to the E / O 104-1 is the terminal device T1, the E / O 104-1 is controlled to emit light at the downstream wavelength λ 1D assigned to the terminal device T1. Further, if a plurality of downstream wavelengths (for example, λ 1D and λ 2D ) are assigned to the terminal device T1, a plurality of main signals are transmitted to the terminal device T1 by emitting a plurality of E / Os at these wavelengths, respectively. It is also possible.
 なお、E/O104-1~104-nの各々は制御部106からの制御信号に従って発光波長を変更可能な光源であってもよいし、発光波長がλ1D-λnDにそれぞれ固定されたn個の光源であってもよい。 Note that each of the E / Os 104-1 to 104-n may be a light source that can change the emission wavelength in accordance with a control signal from the control unit 106, or the light emission wavelength is fixed to λ 1DnD. It may be a single light source.
 下り光波長アドレス変換テーブル107は、公衆網側の下り波長λを当該私設網内で使用されるn個の異なる下り波長λ1D-λnDへ変換する手段を提供するが、この対応付けは固定的であってもよいし時間と共に変化しても(動的であっても)よい。波長変換だけでなくIPアドレス変換を提供することもできる。下り光波長アドレス変換テーブル107は、監視制御システム13により監視制御される。 The downstream optical wavelength address conversion table 107 provides a means for converting the downstream wavelength λ D on the public network side into n different downstream wavelengths λ 1DnD used in the private network. It may be fixed or may change over time (dynamic). In addition to wavelength conversion, IP address conversion can also be provided. The downstream optical wavelength address conversion table 107 is monitored and controlled by the monitoring control system 13.
 2.2)上り光波長割当
 図3は私設網10から公衆網20へ向かう信号の処理を示す光ゲートウェイ装置11の上り光波長アドレス変換部100ULを示す。上り光波長アドレス変換部100ULには光波長分離部201および光/電気変換部(O/E)202-1~202-nが設けられている。光波長分離部201は光波長ルータ12から受信した上り波長多重信号を当該私設網内で使用されるn個の異なる上り波長λ1U-λnUに分離し、O/E202-1~202-nは波長λ1U-λnUの上り光信号をそれぞれ電気信号に変換する。電気信号に変換された主信号は制御情報監視部203を通して多重部204に入力し、多重部204で電気的に多重され、電気/光変換部(E/O)205により上り波長λの光主信号に変換されて公衆網20へ送出される。
2.2) Uplink Optical Wavelength Allocation FIG. 3 shows the upstream optical wavelength address conversion unit 100UL of the optical gateway apparatus 11 showing the processing of signals from the private network 10 to the public network 20. The upstream optical wavelength address converter 100UL is provided with an optical wavelength separator 201 and optical / electrical converters (O / E) 202-1 to 202-n. The optical wavelength demultiplexing unit 201 demultiplexes the upstream wavelength multiplexed signal received from the optical wavelength router 12 into n different upstream wavelengths λ 1UnU used in the private network, and O / E 202-1 to 202-n Converts upstream optical signals of wavelengths λ 1UnU into electrical signals, respectively. The main signal converted into an electric signal is input to the multiplexing unit 204 through the control information monitoring unit 203, are electrically multiplexed by multiplexing section 204, the electric / optical converter section (E / O) 205 of the upstream wavelength lambda U light It is converted into a main signal and sent to the public network 20.
 制御情報監視部203は、O/E202-1~202-nにより電気信号に変換された個別の主信号からアドレスおよび制御情報(例えばMACアドレス、VLAN識別情報、公衆網側IPアドレス(グローバルIPアドレス)、TCP/UDPポート番号等)を取得し、制御部206へ出力する。制御部206は、上り光波長アドレス変換テーブル207を参照してE/O205の送信波長を制御する。 The control information monitoring unit 203 converts the address and control information (for example, MAC address, VLAN identification information, public network side IP address (global IP address)) from the individual main signals converted into electric signals by the O / Es 202-1 to 202-n. ), TCP / UDP port number, etc.) are acquired and output to the control unit 206. The control unit 206 controls the transmission wavelength of the E / O 205 with reference to the upstream optical wavelength address conversion table 207.
 上り光波長アドレス変換テーブル207は、当該私設網内で使用されるn個の異なる上り波長λ1U-λnUを公衆網側の上り波長λへ変換する手段を提供するが、この対応は固定的でも動的でもよい。また波長変換だけでなくIPアドレス変換を提供してもよい。上り光波長アドレス変換テーブル207は、監視制御システム13により監視制御される。 The upstream optical wavelength address conversion table 207 provides means for converting n different upstream wavelengths λ 1UnU used in the private network into upstream wavelengths λ U on the public network side, but this correspondence is fixed. Or dynamic. In addition to wavelength conversion, IP address conversion may be provided. The upstream optical wavelength address conversion table 207 is monitored and controlled by the monitoring control system 13.
 図2に示す下り光波長アドレス変換部100DLと図3に示す上り光波長アドレス変換部100ULとが1つの光ゲートウェイ装置11に設けられ、当該私設網に出入りする光信号の波長変換を行うことができる。その際、制御部106および206は1つのゲートウェイ制御部で実現可能であり、下り光波長アドレス変換テーブル107および上り光波長アドレス変換テーブル207は当該ゲートウェイ制御部が参照可能な記憶手段に格納することができる。 The downstream optical wavelength address conversion unit 100DL shown in FIG. 2 and the upstream optical wavelength address conversion unit 100UL shown in FIG. 3 are provided in one optical gateway device 11 to perform wavelength conversion of optical signals entering and exiting the private network. it can. At that time, the control units 106 and 206 can be realized by one gateway control unit, and the downstream optical wavelength address conversion table 107 and the upstream optical wavelength address conversion table 207 are stored in a storage means that can be referred to by the gateway control unit. Can do.
 なお、下り波長アドレス変換を制御する制御部106と上り波長アドレス変換を制御する制御部206(あるいはゲートウェイ制御部)については、記録媒体に格納したプログラムをCPU(Central Processing Unit)等のプログラム制御プロセッサ上で実行することにより同等の機能を実現することもできる。 For the control unit 106 that controls the downstream wavelength address conversion and the control unit 206 (or the gateway control unit) that controls the upstream wavelength address conversion, the program stored in the recording medium is a program control processor such as a CPU (Central Processing Unit). An equivalent function can be realized by executing the above.
 3.実施例
 図4に示すように、公衆網20に3つの私設網A、BおよびCが接続されているものとする。公衆網20はWDM-PONを利用し、局装置としてのOLT(Optical Line Termination)21と光波長ルータとしてAWG(Array Waveguide Grating)22とを有する。AWG22により分離された下り波長λAD、λBD、λCDが私設網A、B、Cにそれぞれ割り当てられている。この公衆網による波長割当は固定的でも動的でもよい。AWGは、波長の振り分けおよび多重を行う受動素子(Passive Device)であり、WDM-PONで利用されるものである。
3. Embodiment As shown in FIG. 4, it is assumed that three private networks A, B, and C are connected to a public network 20. The public network 20 uses WDM-PON and has an OLT (Optical Line Termination) 21 as a station apparatus and an AWG (Array Waveguide Grating) 22 as an optical wavelength router. Downlink wavelengths λ AD , λ BD , and λ CD separated by the AWG 22 are assigned to the private networks A, B, and C, respectively. The wavelength assignment by the public network may be fixed or dynamic. AWG is a passive device that performs wavelength allocation and multiplexing, and is used in WDM-PON.
 私設網A、B、CもWDM-PONによって構成されている。ここでは図1に示す私設網10a、10b、10cに対応しているので、同様の機能を有するブロックには図1における参照番号にサフィックスa、b、cを付して示す。ただし、光波長ルータ12にはAWGを用い、端末装置はONU(Optical Network Unit)である。また、私設網A、B、Cのエッジにそれぞれ設置された光ゲートウェイ装置11a、11b、11cが本実施例による波長アドレス変換を実現する装置である。光ゲートウェイ装置(11a、11b、11c)の光波長アドレス変換部(100a、100b、100c)は、図2および図3にそれぞれ示す下りおよび上り光波長アドレス変換部と同等のブロック構成を有するものとする。 Private networks A, B, and C are also configured by WDM-PON. Here, since it corresponds to the private networks 10a, 10b, and 10c shown in FIG. 1, suffixes a, b, and c are added to the reference numerals in FIG. However, AWG is used for the optical wavelength router 12, and the terminal device is an ONU (Optical Network Unit). The optical gateway devices 11a, 11b, and 11c installed at the edges of the private networks A, B, and C are devices that realize wavelength address conversion according to this embodiment. The optical wavelength address converter (100a, 100b, 100c) of the optical gateway device (11a, 11b, 11c) has a block configuration equivalent to the downstream and upstream optical wavelength address converters shown in FIGS. 2 and 3, respectively. To do.
 図5に示すように、光ゲートウェイ装置11aの下り光波長アドレス変換テーブル107は下り波長λADを私設網A内で使用される下り波長λ1D-λ3Dへ変換する対応を提供し、光ゲートウェイ装置11bの下り光波長アドレス変換テーブル107は下り波長λBDを私設網B内で使用される下り波長λ1D-λ3Dへ変換する対応を提供し、光ゲートウェイ装置11cの下り光波長アドレス変換テーブル107は下り波長λCDを私設網C内で使用される下り波長λ1D-λ3Dへ変換する対応を提供する。 As shown in FIG. 5, the downstream optical wavelength address conversion table 107 of the optical gateway device 11a provides a correspondence for converting the downstream wavelength λ AD to the downstream wavelengths λ 1D3D used in the private network A. The downstream optical wavelength address conversion table 107 of the device 11b provides a correspondence for converting the downstream wavelength λ BD to downstream wavelengths λ 1D3D used in the private network B, and the downstream optical wavelength address conversion table of the optical gateway device 11c. 107 provides a correspondence to convert the downstream wavelength λ CD to the downstream wavelengths λ 1D3D used in the private network C.
 このように、各私設網内の波長は、公衆網20や他の私設網で使用される波長とは独立に決めることができるので、同じ下り波長(ここではλ1D-λ3D)を複数の私設網内で繰り返し使用することが可能である。なお、図5において、各私設網内の下り光波長アドレス変換テーブルには、当該私設網内の端末装置(ONU)にプライベートIPアドレスもそれぞれ割り当てられている。 In this way, the wavelengths in each private network can be determined independently of the wavelengths used in the public network 20 and other private networks, so the same downstream wavelength (here, λ 1D3D ) is set to a plurality of wavelengths. It can be used repeatedly in a private network. In FIG. 5, in the downstream optical wavelength address conversion table in each private network, a private IP address is also assigned to each terminal device (ONU) in the private network.
 図6に示すように、光ゲートウェイ装置11aの上り光波長アドレス変換テーブル207は私設網A内で使用される上り波長λ1U-λ3Uを上り波長λAUへ変換する対応を提供し、光ゲートウェイ装置11bの上り光波長アドレス変換テーブル207は私設網B内で使用される上り波長λ1U-λ3Uを上り波長λBUへ変換する対応を提供し、光ゲートウェイ装置11cの上り光波長アドレス変換テーブル207は私設網C内で使用される上り波長λ1U-λ3Uを上り波長λCUへ変換する対応を提供する。このように、各私設網で使用される波長は、公衆網20や他の私設網で使用される波長とは独立に決めることができるので、同じ上り波長(ここではλ1U-λ3U)を複数の私設網内で繰り返し割り当てることが可能である。 As shown in FIG. 6, the upstream optical wavelength address conversion table 207 of the optical gateway device 11a provides a correspondence for converting the upstream wavelengths λ 1U3U used in the private network A to the upstream wavelength λ AU . The upstream optical wavelength address conversion table 207 of the device 11b provides a correspondence for converting the upstream wavelengths λ 1U3U used in the private network B to the upstream wavelength λ BU, and the upstream optical wavelength address conversion table of the optical gateway device 11c. 207 provides a correspondence for converting the upstream wavelengths λ 1U3U used in the private network C to the upstream wavelength λ CU . In this way, the wavelength used in each private network can be determined independently of the wavelength used in the public network 20 and other private networks, so the same upstream wavelength (here, λ 1U3U ) is set. It is possible to repeatedly assign within multiple private networks.
 上述したように、公衆網20は各光ゲートウェイ装置11a、11b、11cに受信および送信の光波長を割り当てる。この割り当ては固定的であってもよいし動的に行ってもよい。但し、波長多重を実行するために各光ゲートウェイ装置には異なる波長を割り当てるものとする。このように公衆網側から各私設網の光ゲートウェイ装置へ割り当てられる波長をグローバル波長アドレスと呼ぶ。 As described above, the public network 20 assigns reception and transmission optical wavelengths to the optical gateway devices 11a, 11b, and 11c. This assignment may be fixed or performed dynamically. However, a different wavelength is assigned to each optical gateway device in order to perform wavelength multiplexing. A wavelength assigned from the public network side to the optical gateway device of each private network is called a global wavelength address.
 各光ゲートウェイ装置は、当該私設網内に接続されている複数の端末装置ONUに送信および受信を行うための波長を割り当てる。光ゲートウェイ装置から私設網内の端末装置ONUに割り当てられる波長をプライベート波長アドレスと呼ぶ。 Each optical gateway device assigns a wavelength for transmission and reception to a plurality of terminal devices ONU connected in the private network. A wavelength allocated from the optical gateway device to the terminal device ONU in the private network is called a private wavelength address.
 下り波長アドレス変換について図2を参照して説明すると、公衆網20から受信した光信号はO/E101で電気信号に変換され、分離部102で各端末装置ONUへの信号に分離される。制御情報監視部103はこれらの分離された信号からアドレスおよび制御情報(例えば図5に示すようにMACアドレス、VLAN、公衆網側IPアドレス(グローバルIPアドレス)、TCP/IPポート番号等)を取得する。制御部106はこれらの情報を受信すると、図5に示す波長アドレス変換テーブル107を参照して私設網側で各端末装置ONUに割り当てる波長を決定し、E/O104-1~104-3における送信波長をコントロールする。E/O104-1~104-3からの出力は光波長多重部105で1本の光信号に多重され、端末装置側へ送出される。 Describing downstream wavelength address conversion with reference to FIG. 2, an optical signal received from the public network 20 is converted into an electric signal by the O / E 101 and separated into a signal to each terminal apparatus ONU by the separation unit 102. The control information monitoring unit 103 obtains address and control information (for example, MAC address, VLAN, public network side IP address (global IP address), TCP / IP port number, etc. as shown in FIG. 5) from these separated signals. To do. Upon receiving these pieces of information, the control unit 106 refers to the wavelength address conversion table 107 shown in FIG. 5 to determine the wavelength to be assigned to each terminal apparatus ONU on the private network side, and transmits it in the E / Os 104-1 to 104-3. Control the wavelength. The outputs from the E / Os 104-1 to 104-3 are multiplexed into one optical signal by the optical wavelength multiplexing unit 105 and sent to the terminal device side.
 上り波長アドレス変換について図3を参照して説明すると、光波長分離部201は端末装置側から受信した光信号を波長毎に分離し、それぞれがO/E202-1~202-3により電気信号に変換される。制御信号監視部203はこれらの分離された信号からアドレスおよび制御情報(例えば図5に示すようにMACアドレス、VLAN、公衆網側IPアドレス(グローバルIPアドレス)、TCP/IPポート番号等)を取得する。制御部206はこれらの情報を受信すると、波長アドレス変換テーブル207を参照して公衆網側に送信する波長を決定し、E/O205における送信波長をコントロールする。各電気信号は多重部204で1本に束ねられ、E/O205を経て公衆網側へ送信される。なお、波長アドレス変換テーブルの内容は私設網の監視制御システム13からローカルまたはリモートで光ゲートウェイ装置に設定される。 The upstream wavelength address conversion will be described with reference to FIG. 3. The optical wavelength demultiplexing unit 201 demultiplexes the optical signal received from the terminal device side for each wavelength, and each of them is converted into an electric signal by the O / Es 202-1 to 202-3. Converted. The control signal monitoring unit 203 obtains address and control information (for example, MAC address, VLAN, public network side IP address (global IP address), TCP / IP port number, etc. as shown in FIG. 5) from these separated signals. To do. Upon receiving these pieces of information, the control unit 206 refers to the wavelength address conversion table 207 to determine the wavelength to be transmitted to the public network side, and controls the transmission wavelength in the E / O 205. Each electric signal is bundled by the multiplexing unit 204 and transmitted to the public network side via the E / O 205. The contents of the wavelength address conversion table are set in the optical gateway device locally or remotely from the supervisory control system 13 of the private network.
 4.効果
 以上説明したように本実施例によれば、公衆網から割り当てられる波長(グローバル波長アドレス)とは独立に各私設網内で使用する波長(プライベート波長アドレス)を割り当てることが可能となり、限られた波長資源の有効かつ柔軟な利用が可能となる。たとえば、公衆網で使用される波長アドレスを私設網内で自由に使用できる。
4). As described above, according to this embodiment, it is possible to assign a wavelength (private wavelength address) to be used in each private network independently from the wavelength (global wavelength address) assigned from the public network. In addition, the wavelength resources can be used effectively and flexibly. For example, a wavelength address used in a public network can be freely used in a private network.
 また、各光ゲートウェイ装置では、光波長アドレス変換テーブルを参照することで私設網内の波長割当が決定されるので、監視制御システムにより光波長アドレス変換テーブルをユーザが希望するように書き換えることで、公衆網を通して受信する複数波長の光信号の端末ごとの選択が容易になるという利点もある。 Also, in each optical gateway device, the wavelength allocation in the private network is determined by referring to the optical wavelength address conversion table, so by rewriting the optical wavelength address conversion table as desired by the user by the supervisory control system, There is also an advantage that it is easy to select optical signals of a plurality of wavelengths received through the public network for each terminal.
 さらに、MACアドレス、VLAN、公衆網側IPアドレス(グローバルIPアドレス)、TCP/IPポート番号等とプライベート波長アドレスとの関連付けを行うことにより端末装置が移動しても設定のやり直しは不要であり、ネットワーク保守上の利便性も向上する。さらに波長アドレスの変換によりセキュリティが向上するという効果も奏する。 Furthermore, re-setting is unnecessary even if the terminal device moves by associating the private wavelength address with the MAC address, VLAN, public network side IP address (global IP address), TCP / IP port number, etc. Convenience in network maintenance is also improved. Furthermore, there is an effect that the security is improved by the conversion of the wavelength address.
 5.使用例
 図2に示す下り光波長アドレス変換部では、制御部106が下り光波長アドレス変換テーブル107を参照することで私設網内の波長割当を決定することができるので、下り光波長アドレス変換テーブル107を書き換えることでサービスプロバイダの変更や提供されるサービスの変更を容易に実行できる。
5). 2. Usage Example In the downstream optical wavelength address conversion unit shown in FIG. 2, the control unit 106 can determine the wavelength allocation in the private network by referring to the downstream optical wavelength address conversion table 107. By rewriting 107, the change of the service provider and the change of the provided service can be easily executed.
 たとえば、図7に示すように、公衆網20に複数のサービスプロバイダSP、SP、SPがあり(図4参照)、サービスプロバイダSPが音声、データおよび映像のサービスを異なる波長λ-λを用いて提供し、サービスプロバイダSPがそれらを波長λ-λを用いて、サービスプロバイダSPが波長λ-λを用いてそれぞれ提供し、各端末装置ONUがWDM対応であるとする。 For example, as shown in FIG. 7, there are a plurality of service providers SP A , SP B , and SP C in the public network 20 (see FIG. 4), and the service provider SP A has different wavelengths λ 1 for voice, data, and video services. -Λ 3 is provided, service provider SP B provides them using wavelengths λ 46 , service provider SP C provides them using wavelengths λ 79 , and each terminal device ONU provides WDM. It is assumed that it corresponds.
 この場合、図8に示すように、あるエンドユーザに対する下り光波長アドレス変換テーブル107の内容を、グローバル波長アドレスλ、λ、λをプライベート波長アドレスλ、λ、λへそれぞれ変換するように書き換えるだけで、3つのサービスプロバイダが提供する複数のサービスから3つのサービスを選択することが容易になる。図7に示す例では、サービスプロバイダSPからは映像サービスを、サービスプロバイダSPからはデータサービスを、サービスプロバイダSPからは音声サービスをそれぞれ選択している。 In this case, as shown in FIG. 8, the contents of the downstream optical wavelength address conversion table 107 for a certain end user are changed from the global wavelength addresses λ 3 , λ 5 , λ 7 to the private wavelength addresses λ 1 , λ 2 , λ 3 , respectively. It is easy to select three services from a plurality of services provided by three service providers simply by rewriting them so as to convert them. In the example shown in FIG. 7, the video service is selected from the service provider SP A , the data service is selected from the service provider SP B, and the voice service is selected from the service provider SP C.
 6.その他の実施例
 上記実施例ではPONを前提とした例を示したが、他のWDMネットワーク構成(たとえば、P2Pやリング等)であっても本発明による光波長アドレス変換を適用可能である。また、公衆網から光ゲートウェイ装置に割り当てられる波長(グローバル波長アドレス)は複数であってもよい。
6). Other Embodiments In the above-described embodiments, an example based on the PON has been shown. However, the optical wavelength address conversion according to the present invention can be applied to other WDM network configurations (for example, P2P, rings, etc.). Also, there may be a plurality of wavelengths (global wavelength addresses) assigned from the public network to the optical gateway device.
 7.付記
 上述した実施形態の一部あるいは全部は、以下の付記のようにも記載されうるが、これらに限定されるものではない。
7). Additional Notes Part or all of the above-described embodiments may be described as the following additional notes, but are not limited thereto.
(付記1)
 波長分離多重(以下、WDMと記す。)方式の光ネットワークに出入りする光信号の処理を行う光通信処理装置であって、
 外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付ける対応付け手段と、
 前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う波長変換手段と、
 を有することを特徴とする光通信処理装置。
(Appendix 1)
An optical communication processing apparatus for processing an optical signal entering and exiting an optical network of a wavelength division multiplexing (hereinafter referred to as WDM) system,
Association means for associating at least one external wavelength assigned to the optical network from an external network and a plurality of internal wavelengths used independently in the optical network;
Wavelength converting means for performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
An optical communication processing device comprising:
(付記2)
 前記対応付け手段は、さらに、前記光ネットワークに収容される複数の端末装置に対する前記複数の内部波長の割当を設定することを特徴とする付記1に記載の光通信処理装置。
(Appendix 2)
The optical communication processing apparatus according to appendix 1, wherein the association unit further sets the allocation of the plurality of internal wavelengths to a plurality of terminal apparatuses accommodated in the optical network.
(付記3)
 前記対応付けおよび/または前記割当は変更可能であることを特徴とする付記2に記載の光通信処理装置。
(Appendix 3)
The optical communication processing device according to attachment 2, wherein the association and / or the assignment can be changed.
(付記4)
 前記対応付け手段は、前記外部波長と前記複数の内部波長との間の対応と、前記複数の内部波長と前記光ネットワークに収容される複数の端末装置を識別する情報との間の対応と、を変更可能に設定する波長アドレス変換テーブルを含むことを特徴とする付記1-3の何れか1項に記載の光通信処理装置。
(Appendix 4)
The association means includes a correspondence between the external wavelength and the plurality of internal wavelengths, a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the optical network, 4. The optical communication processing device according to any one of appendices 1-3, further including a wavelength address conversion table for setting the address to be changeable.
(付記5)
 前記波長変換手段は、
 前記外部波長の光信号を電気信号に変換する光/電気変換手段と、
 前記電気信号に多重された複数の端末装置宛の信号を分離する分離手段と、
 前記複数の端末装置宛の信号に従って前記複数の内部波長の光信号をそれぞれ生成する複数の電気/光変換手段と、
 前記複数の内部波長の光信号を1つの光信号に多重する多重手段と、
 前記対応付けに従って前記複数の電気/光変換手段の送信波長を制御する制御手段と、
 を有することを特徴とする付記1-4の何れか1項に記載の光通信処理装置。
(Appendix 5)
The wavelength converting means is
Optical / electrical conversion means for converting the optical signal of the external wavelength into an electrical signal;
Separating means for separating signals addressed to a plurality of terminal devices multiplexed on the electrical signal;
A plurality of electrical / optical conversion means for generating optical signals of the plurality of internal wavelengths according to the signals addressed to the plurality of terminal devices;
A multiplexing means for multiplexing the optical signals of the plurality of internal wavelengths into one optical signal;
Control means for controlling the transmission wavelengths of the plurality of electrical / optical conversion means according to the correspondence;
The optical communication processing device according to any one of appendixes 1-4, characterized by comprising:
(付記6)
 前記外部網は公衆網、前記光ネットワークは私設網であり、前記公衆網および前記私設網はWDMを利用したパッシブ光ネットワークであることを特徴とする付記1-5の何れか1項に記載の光通信処理装置。
(Appendix 6)
The external network is a public network, the optical network is a private network, and the public network and the private network are passive optical networks using WDM, according to any one of appendix 1-5, Optical communication processing device.
(付記7)
 波長分離多重(WDM)方式の光ネットワークにおける波長変換方法であって、
 外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付け、
 前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う、
 ことを特徴とする波長変換方法。
(Appendix 7)
A wavelength conversion method in a wavelength division multiplexing (WDM) optical network,
Associating at least one external wavelength assigned to the optical network from an external network with a plurality of internal wavelengths used independently in the optical network;
Performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
The wavelength conversion method characterized by the above-mentioned.
(付記8)
 前記対応付けは、さらに、前記光ネットワークに収容される複数の端末装置に対する前記複数の内部波長の割当を設定することを特徴とする付記7に記載の波長変換方法。
(Appendix 8)
The wavelength conversion method according to appendix 7, wherein the association further sets assignment of the plurality of internal wavelengths to a plurality of terminal devices accommodated in the optical network.
(付記9)
 前記対応付けおよび/または前記割当は変更可能であることを特徴とする付記8に記載の波長変換方法。
(Appendix 9)
The wavelength conversion method according to appendix 8, wherein the association and / or the assignment can be changed.
(付記10)
 前記対応付けは、前記外部波長と前記複数の内部波長との間の対応と、前記複数の内部波長と前記光ネットワークに収容される複数の端末装置を識別する情報との間の対応と、を波長アドレス変換テーブルに変更可能に設定することを特徴とする付記7-9の何れか1項に記載の波長変換方法。
(Appendix 10)
The association includes a correspondence between the external wavelength and the plurality of internal wavelengths, and a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the optical network. The wavelength conversion method according to any one of appendixes 7-9, wherein the wavelength address conversion table is set to be changeable.
(付記11)
 前記波長変換は、
 光/電気変換手段が前記外部波長の光信号を電気信号に変換し、
 分離手段が前記電気信号に多重された複数の端末装置宛の信号を分離し、
 複数の電気/光変換手段が前記複数の端末装置宛の信号に従って前記複数の内部波長の光信号をそれぞれ生成し、
 多重手段が前記複数の内部波長の光信号を1つの光信号に多重し、
 制御手段が前記対応付けに従って前記複数の電気/光変換手段の送信波長を制御する、
 ことを特徴とする付記7-10の何れか1項に記載の波長変換方法。
(Appendix 11)
The wavelength conversion is
An optical / electrical conversion means converts the optical signal of the external wavelength into an electrical signal;
Separating means separates signals destined for a plurality of terminal devices multiplexed on the electrical signal,
A plurality of electrical / optical conversion means respectively generate optical signals of the plurality of internal wavelengths in accordance with signals addressed to the plurality of terminal devices,
Multiplexing means multiplexes the optical signals of the plurality of internal wavelengths into one optical signal,
A control unit controls transmission wavelengths of the plurality of electrical / optical conversion units according to the correspondence;
Item 11. The wavelength conversion method according to any one of Appendices 7-10, wherein:
(付記12)
 波長分離多重(以下、WDMと記す。)方式の公衆網と前記公衆網に接続された複数の私設網とからなる光ネットワークシステムであって、
 前記複数の私設網の各々は前記公衆網との接続点に光ゲートウェイ装置を設け、
 前記光ゲートウェイ装置は、
 前記公衆網から割り当てられた少なくとも1つの外部波長と前記私設網内で独立して使用される複数の内部波長とを対応付ける対応付け手段と、
 前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う波長変換手段と、
 を有することを特徴とする光ネットワークシステム。
(Appendix 12)
An optical network system comprising a wavelength division multiplexing (hereinafter referred to as WDM) public network and a plurality of private networks connected to the public network,
Each of the plurality of private networks is provided with an optical gateway device at a connection point with the public network,
The optical gateway device is
Association means for associating at least one external wavelength assigned from the public network and a plurality of internal wavelengths used independently in the private network;
Wavelength converting means for performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
An optical network system comprising:
(付記13)
 前記対応付け手段は、さらに、前記私設網に収容される複数の端末装置に対する前記複数の内部波長の割当を設定することを特徴とする付記12に記載の光ネットワークシステム。
(Appendix 13)
13. The optical network system according to appendix 12, wherein the associating unit further sets allocation of the plurality of internal wavelengths to a plurality of terminal devices accommodated in the private network.
(付記14)
 前記対応付けおよび/または前記割当は変更可能であることを特徴とする付記13に記載の光ネットワークシステム。
(Appendix 14)
14. The optical network system according to appendix 13, wherein the association and / or the assignment can be changed.
(付記15)
 前記対応付け手段は、前記外部波長と前記複数の内部波長との間の対応と、前記複数の内部波長と前記私設網に収容される複数の端末装置を識別する情報との間の対応と、を変更可能に設定する波長アドレス変換テーブルを含むことを特徴とする付記12-14の何れか1項に記載の光ネットワークシステム。
(Appendix 15)
The association means includes a correspondence between the external wavelength and the plurality of internal wavelengths, a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the private network, 15. The optical network system according to any one of appendices 12-14, further comprising a wavelength address conversion table for setting the address to be changeable.
(付記16)
 前記波長変換手段は、
 前記外部波長の光信号を電気信号に変換する光/電気変換手段と、
 前記電気信号に多重された複数の端末装置宛の信号を分離する分離手段と、
 前記複数の端末装置宛の信号に従って前記複数の内部波長の光信号をそれぞれ生成する複数の電気/光変換手段と、
 前記複数の内部波長の光信号を1つの光信号に多重する多重手段と、
 前記対応付けに従って前記複数の電気/光変換手段の送信波長を制御する制御手段と、
 を有することを特徴とする付記12-15の何れか1項に記載の光ネットワークシステム。
(Appendix 16)
The wavelength converting means is
Optical / electrical conversion means for converting the optical signal of the external wavelength into an electrical signal;
Separating means for separating signals addressed to a plurality of terminal devices multiplexed on the electrical signal;
A plurality of electrical / optical conversion means for generating optical signals of the plurality of internal wavelengths according to the signals addressed to the plurality of terminal devices;
A multiplexing means for multiplexing the optical signals of the plurality of internal wavelengths into one optical signal;
Control means for controlling the transmission wavelengths of the plurality of electrical / optical conversion means according to the correspondence;
16. The optical network system according to any one of appendices 12-15, characterized by comprising:
(付記17)
 前記公衆網および前記私設網はWDMを利用したパッシブ光ネットワークであることを特徴とする付記12-16の何れか1項に記載の光ネットワークシステム。
(Appendix 17)
17. The optical network system according to any one of appendix 12-16, wherein the public network and the private network are passive optical networks using WDM.
(付記18)
 付記1-6のいずれか1項に記載の光通信処理装置を含む光ゲートウェイ装置。
(Appendix 18)
An optical gateway device including the optical communication processing device according to any one of appendix 1-6.
(付記19)
 波長分離多重(WDM)方式の光ネットワークに出入りする光信号の処理を行う光通信処理装置のプログラム制御プロセッサを機能させるプログラムであって、
 外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付ける機能と、
 前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う機能と、
 を前記プログラム制御プロセッサで実現させることを特徴とするプログラム。
(Appendix 19)
A program for functioning a program control processor of an optical communication processing device that processes an optical signal entering and exiting an optical network of a wavelength division multiplexing (WDM) system,
A function of associating at least one external wavelength assigned to the optical network from an external network with a plurality of internal wavelengths used independently in the optical network;
A function of performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
Is realized by the program control processor.
(付記20)
 前記対応付けは、さらに、前記光ネットワークに収容される複数の端末装置に対する前記複数の内部波長の割当を設定することを特徴とする付記19に記載のプログラム。
(Appendix 20)
The program according to appendix 19, wherein the association further sets assignment of the plurality of internal wavelengths to a plurality of terminal devices accommodated in the optical network.
 本発明はWDM-PONを採用した光ネットワークシステムに適用可能である。 The present invention can be applied to an optical network system employing WDM-PON.
10a、10b、10c 私設網
11 光ゲートウェイ装置
12 光波長ルータ(AWG)
13 監視制御システム
20 公衆網
101 光/電気変換部
102 分離部
103 制御情報監視部
104-1~104-n 電気/光変換部
105 光波長多重部
106 制御部
107 下り光波長アドレス変換部
201 光波長分離部
202-1~202-n 光/電気変換部
203 制御情報監視部
204 多重部
205 電気/光変換部
206 制御部
207 上り光波長アドレス変換部
10a, 10b, 10c Private network 11 Optical gateway device 12 Optical wavelength router (AWG)
13 Monitoring and Control System 20 Public Network 101 Optical / Electric Conversion Unit 102 Separation Unit 103 Control Information Monitoring Units 104-1 to 104-n Electric / Optical Conversion Unit 105 Optical Wavelength Multiplexing Unit 106 Control Unit 107 Downlink Optical Wavelength Address Conversion Unit 201 Light Wavelength separation units 202-1 to 202-n Optical / electrical conversion unit 203 Control information monitoring unit 204 Multiplexing unit 205 Electric / optical conversion unit 206 Control unit 207 Upstream optical wavelength address conversion unit

Claims (10)

  1.  波長分離多重(以下、WDMと記す。)方式の光ネットワークに出入りする光信号の処理を行う光通信処理装置であって、
     外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付ける対応付け手段と、
     前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う波長変換手段と、
     を有することを特徴とする光通信処理装置。
    An optical communication processing apparatus for processing an optical signal entering and exiting an optical network of a wavelength division multiplexing (hereinafter referred to as WDM) system,
    Association means for associating at least one external wavelength assigned to the optical network from an external network and a plurality of internal wavelengths used independently in the optical network;
    Wavelength converting means for performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
    An optical communication processing device comprising:
  2.  前記対応付け手段は、さらに、前記光ネットワークに収容される複数の端末装置に対する前記複数の内部波長の割当を設定することを特徴とする請求項1に記載の光通信処理装置。 The optical communication processing device according to claim 1, wherein the association unit further sets the allocation of the plurality of internal wavelengths to the plurality of terminal devices accommodated in the optical network.
  3.  前記対応付けおよび/または前記割当は変更可能であることを特徴とする請求項2に記載の光通信処理装置。 3. The optical communication processing device according to claim 2, wherein the association and / or the assignment can be changed.
  4.  前記対応付け手段は、前記外部波長と前記複数の内部波長との間の対応と、前記複数の内部波長と前記光ネットワークに収容される複数の端末装置を識別する情報との間の対応と、を変更可能に設定する波長アドレス変換テーブルを含むことを特徴とする請求項1-3の何れか1項に記載の光通信処理装置。 The association means includes a correspondence between the external wavelength and the plurality of internal wavelengths, a correspondence between the plurality of internal wavelengths and information for identifying a plurality of terminal devices accommodated in the optical network, The optical communication processing device according to claim 1, further comprising: a wavelength address conversion table for setting the address to be changeable.
  5.  前記波長変換手段は、
     前記外部波長の光信号を電気信号に変換する光/電気変換手段と、
     前記電気信号に多重された複数の端末装置宛の信号を分離する分離手段と、
     前記複数の端末装置宛の信号に従って前記複数の内部波長の光信号をそれぞれ生成する複数の電気/光変換手段と、
     前記複数の内部波長の光信号を1つの光信号に多重する多重手段と、
     前記対応付けに従って前記複数の電気/光変換手段の送信波長を制御する制御手段と、
     を有することを特徴とする請求項1-4の何れか1項に記載の光通信処理装置。
    The wavelength converting means is
    Optical / electrical conversion means for converting the optical signal of the external wavelength into an electrical signal;
    Separating means for separating signals addressed to a plurality of terminal devices multiplexed on the electrical signal;
    A plurality of electrical / optical conversion means for generating optical signals of the plurality of internal wavelengths according to the signals addressed to the plurality of terminal devices;
    A multiplexing means for multiplexing the optical signals of the plurality of internal wavelengths into one optical signal;
    Control means for controlling the transmission wavelengths of the plurality of electrical / optical conversion means according to the correspondence;
    The optical communication processing device according to claim 1, further comprising:
  6.  前記外部網は公衆網、前記光ネットワークは私設網であり、前記公衆網および前記私設網はWDMを利用したパッシブ光ネットワークであることを特徴とする請求項1-5の何れか1項に記載の光通信処理装置。 6. The external network is a public network, the optical network is a private network, and the public network and the private network are passive optical networks using WDM. Optical communication processing device.
  7.  波長分離多重(WDM)方式の光ネットワークにおける波長変換方法であって、
     外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付け、
     前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う、
     ことを特徴とする波長変換方法。
    A wavelength conversion method in a wavelength division multiplexing (WDM) optical network,
    Associating at least one external wavelength assigned to the optical network from an external network with a plurality of internal wavelengths used independently in the optical network;
    Performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
    The wavelength conversion method characterized by the above-mentioned.
  8.  前記対応付けは、さらに、前記光ネットワークに収容される複数の端末装置に対する前記複数の内部波長の割当を設定することを特徴とする請求項7に記載の波長変換方法。 The wavelength conversion method according to claim 7, wherein the association further sets assignment of the plurality of internal wavelengths to a plurality of terminal devices accommodated in the optical network.
  9.  波長分離多重(以下、WDMと記す。)方式の公衆網と前記公衆網に接続された複数の私設網とからなる光ネットワークシステムであって、
     前記複数の私設網の各々は前記公衆網との接続点に光ゲートウェイ装置を設け、
     前記光ゲートウェイ装置は、
     前記公衆網から割り当てられた少なくとも1つの外部波長と前記私設網内で独立して使用される複数の内部波長とを対応付ける対応付け手段と、
     前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う波長変換手段と、
     を有することを特徴とする光ネットワークシステム。
    An optical network system comprising a wavelength division multiplexing (hereinafter referred to as WDM) public network and a plurality of private networks connected to the public network,
    Each of the plurality of private networks is provided with an optical gateway device at a connection point with the public network,
    The optical gateway device is
    Association means for associating at least one external wavelength assigned from the public network and a plurality of internal wavelengths used independently in the private network;
    Wavelength converting means for performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
    An optical network system comprising:
  10.  波長分離多重(WDM)方式の光ネットワークに出入りする光信号の処理を行う光通信処理装置のプログラム制御プロセッサを機能させるプログラムであって、
     外部網から前記光ネットワークに割り当てられた少なくとも1つの外部波長と前記光ネットワーク内で独立して使用される複数の内部波長とを対応付ける機能と、
     前記対応付けに従って前記外部波長と前記複数の内部波長との間で波長変換を行う機能と、
     を前記プログラム制御プロセッサで実現させることを特徴とするプログラム。
    A program for functioning a program control processor of an optical communication processing device that processes an optical signal entering and exiting an optical network of a wavelength division multiplexing (WDM) system,
    A function of associating at least one external wavelength assigned to the optical network from an external network with a plurality of internal wavelengths used independently in the optical network;
    A function of performing wavelength conversion between the external wavelength and the plurality of internal wavelengths according to the association;
    Is realized by the program control processor.
PCT/JP2011/004200 2010-07-29 2011-07-26 Optical communication processing device in optical network, and wavelength conversion method thereof WO2012014444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526308A JPWO2012014444A1 (en) 2010-07-29 2011-07-26 Optical communication processing apparatus in optical network and wavelength conversion method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010169974 2010-07-29
JP2010-169974 2010-07-29

Publications (1)

Publication Number Publication Date
WO2012014444A1 true WO2012014444A1 (en) 2012-02-02

Family

ID=45529676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004200 WO2012014444A1 (en) 2010-07-29 2011-07-26 Optical communication processing device in optical network, and wavelength conversion method thereof

Country Status (2)

Country Link
JP (1) JPWO2012014444A1 (en)
WO (1) WO2012014444A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135822A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Communication monitor system, gateway device, and communication monitor device
JP2016536921A (en) * 2013-09-10 2016-11-24 アルカテル−ルーセント Method for merging metro network and access network, remote node, and optical line termination device
WO2023112282A1 (en) * 2021-12-16 2023-06-22 日本電信電話株式会社 Relay system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202921A (en) * 1993-12-27 1995-08-04 Toshiba Corp Optical communication system
JP2001111526A (en) * 1999-10-01 2001-04-20 Toshiba Corp Communication method and communication apparatus
JP2002247618A (en) * 2001-02-22 2002-08-30 Toshiba Corp Communication method, communication system, communication device and optical switch
JP2004208215A (en) * 2002-12-26 2004-07-22 Yutaka Katsuyama Local area optical network system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224145A (en) * 1999-02-01 2000-08-11 Hitachi Ltd Device and method for optical transmission
JP3772594B2 (en) * 1999-07-15 2006-05-10 富士通株式会社 Optical network repeater
JP4655610B2 (en) * 2004-12-07 2011-03-23 沖電気工業株式会社 Optical communication system
DE102005010610A1 (en) * 2005-03-08 2006-09-21 Siemens Ag Optical transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202921A (en) * 1993-12-27 1995-08-04 Toshiba Corp Optical communication system
JP2001111526A (en) * 1999-10-01 2001-04-20 Toshiba Corp Communication method and communication apparatus
JP2002247618A (en) * 2001-02-22 2002-08-30 Toshiba Corp Communication method, communication system, communication device and optical switch
JP2004208215A (en) * 2002-12-26 2004-07-22 Yutaka Katsuyama Local area optical network system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536921A (en) * 2013-09-10 2016-11-24 アルカテル−ルーセント Method for merging metro network and access network, remote node, and optical line termination device
WO2016135822A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Communication monitor system, gateway device, and communication monitor device
JPWO2016135822A1 (en) * 2015-02-23 2017-08-24 三菱電機株式会社 Communication monitoring system, gateway device, and communication monitoring device
WO2023112282A1 (en) * 2021-12-16 2023-06-22 日本電信電話株式会社 Relay system

Also Published As

Publication number Publication date
JPWO2012014444A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
KR101879850B1 (en) TWDM passive network with extended reach and capacity
US7734178B2 (en) Passive optical network system, optical line terminal, and optical network unit
US20090092394A1 (en) Orthogonal Frequency Division Multiple Access Based Virtual Passive Optical Network (VPON)
JP4676531B2 (en) Optical access network system
US20160365931A1 (en) Remote node configuration for providing upgraded services in a passive optical network and a passive optical network having the same
US8041217B2 (en) System and method for managing wavelength drift in an optical network
US8948598B2 (en) System and method for increasing upstream capacity in an optical network
JP2006165953A (en) Optical communication system
US10516479B1 (en) Feeder fiber and central office redundancy
TW201138353A (en) Method and system for wavelength allocation in a WDM/TDM passive optical network
JP6590017B2 (en) Station side device and station side device control program
JP2007028642A (en) Method and software for assigning light-trail in optical network
KR20140022923A (en) Communication system and method for transmitting data to one or more groups of nodes in a communication system
JPWO2007026749A1 (en) Optical communication network system, master station optical communication device, and slave station optical communication device
Maier WDM passive optical networks and beyond: the road ahead
JP5657747B2 (en) System for implementing fiber optic wireless transmission in a passive optical network
WO2012014444A1 (en) Optical communication processing device in optical network, and wavelength conversion method thereof
Ji et al. Optical layer traffic grooming in flexible optical WDM (FWDM) networks
WO2016106573A1 (en) Method, device and system for wavelength configuration in passive optical network
EP3217572B1 (en) Transmission method and system for optical burst transport network
JP2009081887A (en) Passive optical network system, optical terminating device, and optical network unit
Bock et al. Scalable two-stage multi-FSR WDM-PON access network offering centralized dynamic bandwidth allocation
Kim et al. A cost-efficient WDM-PON architecture supporting dynamic wavelength and time slot allocation
Pfeiffer New avenues of revenues-Open access and infrastructure virtualization
Shen et al. Experimental demonstration of reconfigurable long-reach ultraflow access: software-defined dual-mode networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526308

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812046

Country of ref document: EP

Kind code of ref document: A1