WO2011158784A1 - Method for large-scale parallel nucleic acid analysis - Google Patents

Method for large-scale parallel nucleic acid analysis Download PDF

Info

Publication number
WO2011158784A1
WO2011158784A1 PCT/JP2011/063492 JP2011063492W WO2011158784A1 WO 2011158784 A1 WO2011158784 A1 WO 2011158784A1 JP 2011063492 W JP2011063492 W JP 2011063492W WO 2011158784 A1 WO2011158784 A1 WO 2011158784A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sequence
nucleic acid
base
bases
Prior art date
Application number
PCT/JP2011/063492
Other languages
French (fr)
Japanese (ja)
Inventor
浩子 松永
秀記 神原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011158784A1 publication Critical patent/WO2011158784A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Definitions

  • the present invention relates to a method for analyzing a target nucleic acid in a sample. Specifically, the present invention relates to a method including a step of performing a complementary strand synthesis reaction of a target nucleic acid using a probe containing a mismatch base.
  • ⁇ ⁇ ⁇ ⁇ Monitoring gene expression levels is widely used for examining gene functions, examining the effects of drugs, and diagnosing diseases.
  • a technique is used in which mRNA is taken out from a cell, and its complementary strand cDNA is synthesized and measured.
  • it is necessary to subdivide the number of cells as much as possible, and it is also necessary to analyze at the single cell level.
  • the number of cells to be used is small, it is necessary to amplify the cDNA and measure the expression level of the gene because of problems such as the accuracy of the measuring apparatus and detection sensitivity.
  • a general method for amplification is the polymerase chain reaction (PCR) method.
  • PCR polymerase chain reaction
  • the first is the complementary strand-binding reaction between the poly A sequence (several tens to hundreds of bases in length) at the 3 'end of mRNA and an oligo (dT) DNA probe consisting of poly T sequences (usually 20 to 30 bases in length). And then extending an oligo (dT) probe using mRNA as a template to obtain a cDNA strand.
  • a cDNA strand containing the 3 ′ end can be reliably obtained. It is also known that the capture efficiency is high because the poly A chain and the capture probe poly T chain slide and hybridize.
  • the second method is to prepare a set of mixed primers consisting of various sequences of about 6 to 9 bases called random primers, and to obtain cDNA strands by extending the random primers with complementary strands at several locations in the mRNA. Is.
  • a cDNA chain covering all regions can be obtained regardless of the mRNA chain length.
  • the extension reaction of one random primer stops at the site where the next random primer binds to the complementary strand, so the cDNA strand length is often short, and it is almost impossible to obtain a full-length cDNA by this method. is there.
  • Non-patent Document 1 For the purpose of exhaustive analysis of genes expressed in cells or tissues, the full length or a certain site, particularly the 3 ′ end portion that is considered to have a lot of gene specific information (Non-patent Document 1) An obtainable method is desirable, and a method using an oligo (dT) probe is used.
  • dT oligo
  • cDNA obtained from mRNA is amplified in a batch. It is essential.
  • PCR is performed by combining complementary strands with primers at two locations across the amplification target region, and the target region is repeatedly synthesized by complementary strand synthesis, or the amplification target region is converted into a ring DNA by ligation
  • RCA Rolling Circle Amplification
  • Non-Patent Document 2 As a representative method for comprehensively amplifying all cDNAs present in a single-cell level cDNA library, there is a method described in Non-Patent Document 2. This method has a poly (T) sequence complementary to the 3 'end poly (A) base of mRNA (consisting of a 24 base T sequence) and a unique sequence of about 20 bases in length at the 5' end.
  • the probe (1) linked with (i) is bonded to the mRNA in a complementary strand, and a first strand cDNA is synthesized from the mRNA. Subsequently, a poly (A) base is introduced into the 3 ′ end of the synthesized first strand cDNA.
  • a homopolymer site composed of a complementary strand of poly T / poly A is always inserted at the end.
  • a homopolymer sequence is not a preferred sequence for a polymerase reaction because the complementary strand binding force is weak, so that the primer is difficult to bind to the complementary strand in the amplification step, and if it exists in the middle, the extension reaction often stops there. If there is a homopolymer (several consecutive bases) in the DNA to be amplified, the polymerase will synthesize the homopolymer with the wrong chain length, resulting in the length of the amplified product that should be the same length. Is known to be non-uniform (Non-Patent Document 3).
  • Non-patent Document 4 Non-patent Document 4
  • a base sequence that is not a homopolymer for the part where the probe in the gene analysis is coupled to the complementary chain it can be used as a priming site in the amplification reaction, and the probe is accurately and stably amplified by accurately binding the complementary chain to the target. can do.
  • a base sequence that is not a homopolymer for the part where the probe in the gene analysis is coupled to the complementary chain it can be used as a priming site in the amplification reaction, and the probe is accurately and stably amplified by accurately binding the complementary chain to the target. can do.
  • PCR polymerase amplification reaction
  • a completely complementary homozygous probe is used as a probe (for example, a probe for capturing mRNA) used for the first complementary strand synthesis from a target nucleic acid. It has been found that by performing a complementary chain synthesis reaction using a probe having a sequence that is not a polymer, the resulting extended chain is different from the homopolymer sequence. In other words, if the target nucleic acid is mRNA, prepare a probe containing a mismatch base to the extent that it does not interfere with complementary strand synthesis as a probe for capturing the polyA sequence located at the 3 'end of the mRNA. Perform complementary strand binding and synthesis reaction.
  • the base of the homopolymer part (poly A sequence) is replaced with a different base.
  • the elimination of the homopolymer portion in the extended chain causes problems in the subsequent analysis of the target nucleic acid (PCR amplification and sequencing), that is, the homopolymer's complementary chain bond is unstable, slipping, etc. The problem of can be overcome.
  • the present invention includes the following [1] to [22].
  • [1] A step of preparing a target nucleic acid from a sample, A step of binding to the target nucleic acid a first probe that has a complementary strand binding to a common sequence of the target nucleic acid; and a complementary strand synthesis reaction of the target nucleic acid using the first probe as a primer, Including a step of generating an extended strand, wherein the sequence of the first probe is not completely complementary to the common sequence of the target nucleic acid and has one or several mismatched bases
  • a method for analyzing a target nucleic acid in a sample A method for analyzing a target nucleic acid in a sample.
  • the target nucleic acid is an mRNA having a homopolymer sequence consisting of a poly A sequence at its 3 ′ end, or a DNA or RNA having a homopolymer sequence consisting of a sequence of at least 6 bases of the same type, The method according to [1], wherein the first probe is not completely complementary to the homopolymer sequence as a common sequence and has one or several mismatch bases.
  • the method according to [2], wherein [6] The method according to any one of [1] to [5], further comprising a step of performing a complementary strand synthesis reaction using the first extended strand as a template and the second probe as a primer to generate a second extended strand The method described.
  • a probe having a mismatched base has a VN sequence (V represents A, C or G base, N represents A, C, G or T base) at the 3 ′ end thereof, [1] to [ [10] The method according to any one of [10].
  • a probe having a mismatched base has a VVN sequence (V represents A, C or G base and N represents A, C, G or T base) at the 3 ′ end thereof, [1] to [ [10] The method according to any one of [10].
  • a probe having a mismatched base has a VN sequence (V represents A, C or G base, N represents A, C, G or T base) at its 3 ′ end, and its 3 ′ Any one of [1] to [10], which is a mixture with a probe having a VVN sequence at the end (V represents A, C or G base, and N represents A, C, G or T base) the method of.
  • the probe having a mismatched base has an adapter sequence consisting of a known sequence at its 5 ′ end.
  • the adapter sequence comprises a class IIS type restriction enzyme recognition sequence.
  • the present invention provides a method for analyzing a target nucleic acid in a sample.
  • the problem caused by the homopolymer sequence can be solved by base substitution of the homopolymer sequence contained in the target nucleic acid.
  • a primer binding site is provided that realizes an increase in the melting temperature Tm of the generated extended strand and enables stable complementary strand binding in the subsequent nucleic acid amplification reaction and sequencing reaction. Therefore, according to the present invention, nucleic acids can be analyzed with high efficiency, speed and accuracy.
  • the outline of the reaction process of this invention is shown. It is a graph which shows the arrangement
  • the present invention relates to a method for analyzing a target nucleic acid in a sample. That is, in order to amplify a target nucleic acid from a sample, determine a sequence of the target nucleic acid, or construct a cDNA library from the target nucleic acid, the target nucleic acid is quickly and efficiently captured and processed.
  • the method of the present invention comprises the following steps: Preparing a target nucleic acid from a sample; A step of binding to the target nucleic acid a first probe that has a complementary strand binding to a common sequence of the target nucleic acid; and a complementary strand synthesis reaction of the target nucleic acid using the first probe as a primer, Generating an extended chain;
  • target nucleic acid is prepared from the sample.
  • the sample is not particularly limited as long as it is a sample containing nucleic acid, and can be any biological sample (eg, cell sample, tissue sample, liquid sample, etc.), or synthetic sample (eg, nucleic acid library such as cDNA library). A sample can be used.
  • the living body from which the sample is derived is not particularly limited, and vertebrates (eg, mammals, birds, reptiles, fishes, amphibians, etc.), invertebrates (eg, insects, nematodes, crustaceans, etc.) ),
  • vertebrates eg, mammals, birds, reptiles, fishes, amphibians, etc.
  • invertebrates eg, insects, nematodes, crustaceans, etc.
  • a sample derived from any living organism such as a protist, a plant, a fungus, a bacterium, or a virus can be used.
  • the target nucleic acid is not particularly limited as long as it contains the sequence to be analyzed.
  • mRNA having a homopolymer sequence consisting of a polyA sequence at its 3 ′ end, or DNA or RNA having a homopolymer sequence consisting of a sequence of at least 6 bases of the same type is used as mRNA having a homopolymer sequence consisting of a polyA sequence at its 3 ′ end, or DNA or RNA having a homopolymer sequence consisting of a sequence of at least 6 bases of the same type is used. It is preferable to do.
  • the “homopolymer sequence” means a sequence in which the same kind of bases are continuously present.
  • a poly A sequence (A bases are continuously present) is well known.
  • the “homopolymer sequence” has at least 6 bases
  • Preparation of nucleic acid from a sample can be performed by a method known in the art.
  • a proteolytic enzyme such as Proteinase K
  • a chaotropic salt such as guanidine thiocyanate or guanidine hydrochloride
  • a surfactant such as Tween or SDS
  • a commercially available reagent for cell lysis when preparing a target nucleic acid from cells, use a proteolytic enzyme such as Proteinase K, a chaotropic salt such as guanidine thiocyanate or guanidine hydrochloride, a surfactant such as Tween or SDS, or a commercially available reagent for cell lysis.
  • the cells can be lysed and the nucleic acids contained therein, ie DNA and RNA, can be eluted.
  • RNA When RNA is prepared, among the nucleic acids eluted by cell lysis, DNA is decomposed with a DNA degrading enzyme (DNase), and a sample containing only RNA as a nucleic acid is obtained.
  • DNase DNA degrading enzyme
  • mRNA since the mRNA contains a poly A sequence, only the mRNA can be captured from the RNA sample prepared as described above using a DNA probe containing a poly T sequence.
  • kits are sold from many manufacturers, and the target nucleic acid can be easily purified.
  • the first probe that binds to the common sequence of the target nucleic acid and complementary strand is bound to the target nucleic acid prepared as described above.
  • the common sequence possessed by the target nucleic acid means a sequence commonly contained in a plurality of types of target nucleic acids to be analyzed. Examples of such a common sequence include a poly A sequence in mRNA, a specific repetitive sequence, and a ligation. For example, there may be a chemically synthesized oligo DNA portion introduced in the previous step by the above method, or a sequence of the plasmid portion when inserted into the plasmid in the previous step.
  • the first probe is not completely complementary to the common sequence of the target nucleic acid and is designed to have one or several mismatch bases. That is, the first probe has a sequence containing a base in which one or several bases are not complementary in a sequence complementary to the common sequence of the target nucleic acid.
  • such non-complementary bases are referred to as “mismatch (base)”, while complementary bases are referred to as “match (base)”.
  • base complementary bases
  • a probe or primer binds complementarily to a template nucleic acid even if it contains several mismatched bases with respect to the template nucleic acid.
  • the probe can be prepared by a known oligonucleotide synthesis method. Even if the base contained in the probe is a natural base (adenine A, glycine G, cytosine C, thymine T, uracil U, inosine I, etc.) It may be an artificial nucleic acid (for example, peptide nucleic acid PNA). Alternatively, the probe may be a mixture of a natural base and an artificial nucleic acid, and at least one base can be an artificial nucleic acid.
  • the probe is designed in consideration of the common sequence of the target nucleic acid, the length of the sequence, the melting temperature (Tm), and the like.
  • Melting temperature The (Tm M elting T emperature), the temperature at which 50% of the probes and the target nucleic acid to form complementary strands is indicative of complement form stability.
  • the length of the sequence having a function as a probe (or primer) is preferably 10 bases or more, more preferably 15 bases or more, and further preferably 18 bases or more.
  • the length of the probe can be 10-50 bases, 15-50 bases, 15-30 bases, or 20-50 bases.
  • the target nucleic acid is mRNA and the common sequence is a poly A sequence
  • This is a probe that binds complementarily to the poly A sequence at the 3 ′ end of mRNA and the boundary portion of the gene-specific sequence portion that follows.
  • the probe has a melting temperature Tm of 52.6 ° C.
  • the probe may have a VVN sequence (V represents A, C, or G base, and N represents A, C, G, or T base) at its 3 ′ end.
  • VN sequence V represents A, C or G base, N represents A, C, G or T base
  • VVN V represents A, C or T base
  • a probe having a VN sequence V represents A, C or G base, N represents A, C, G or T base
  • VVN at its 3 ′ end
  • Tm is increased by 1.6 to 1.9 ° C. by replacing only one base with G in 20 consecutive T sequences.
  • Tm decreases by about 1 ° C. This indicates that the insertion of a single mismatch base into the probe has little effect on the reaction.
  • the most commonly used enzyme for reverse transcription (complementary strand synthesis) of mRNA to cDNA (ReversemTranscriptase) is 42-50 °C, so probes with Tm higher than this range are Under the reaction conditions at a low temperature, most of them are considered to form complementary strands.
  • the Tm of the probe before insertion of the mismatched base and the Tm of the designed probe are calculated and compared, and the Tm of the designed probe is within the target range (for example, It can be confirmed whether or not the temperature is within the optimum temperature range of the reverse transcriptase to be used.
  • the probe it is preferable to design the probe so that the melting temperature (Tm) increases.
  • Tm melting temperature
  • the melting temperature Tm is calculated from the designed primer / probe sequence composition and base length manually or using a known program, and it is confirmed whether the Tm is within the target temperature range. .
  • mismatch bases can be inserted up to about 3 bases out of a homopolymer consisting of T bases having a total length of 20 bases.
  • the frequency of mismatch base insertion is not limited to 3 bases because the complementary strand binding ability varies depending on the type of reverse transcriptase and the base type of the mismatch base used.
  • a probe composed of 20 bases 1 to 10, preferably 1 to 5, more preferably 1 to 3 mismatch bases can be inserted.
  • the optimum conditions can be determined by calculating Tm using a primer design program, or by actually conducting experiments each time.
  • the base species inserted as a mismatch base may be the same or a combination of different base species.
  • the frequency of mismatch base insertion need not be the same, and it is possible even if the intervals at which mismatch bases are inserted are different.
  • the mRNA capture probe (first probe) should be a probe of at least 15 bases comprising a sequence comprising a combination of at least 2 to 4 consecutive T bases and an A, G, or C base other than T. Can do.
  • the mRNA capture probe (first probe) is a probe of at least 15 bases comprising a sequence comprising a combination of at least 5 to 7 consecutive T bases and A, G or C bases other than T. be able to.
  • the probe for mRNA capture (first probe) should be a probe of at least 15 bases comprising a sequence comprising a combination of at least 8 to 10 consecutive T bases and A, G, or C bases other than T. Can do. Specific examples of probe sequences that can be used in accordance with the present invention are shown in SEQ ID NOs: 2-16.
  • a probe in which a mismatched base of 3 bases is introduced into the aforementioned probe is, for example, 5'-TTCTTTTTCTTTTTCTTTTTVN-3 '(SEQ ID NO: 12).
  • part C is a mismatch base with respect to the poly A sequence contained in the target nucleic acid.
  • the portion where T is linked by 5 bases is the longest and is no longer a homopolymer sequence.
  • Tm increases from 52.6 ° C to 59.6 ° C by 7 ° C by replacing 3 bases with C base. This works very advantageously when the region corresponding to the probe containing the mismatched base is used as a primer priming site for PCR after the generation of the extended strand.
  • the PCR reaction can improve the accuracy in product specificity as it reacts at a higher temperature. If the Tm of the primer is low, the reaction temperature must be set low in the complementary strand binding step, resulting in a high probability of mismatched complementary strand binding to a site different from the target, resulting in amplification as a by-product after PCR amplification. End up.
  • the melting temperature (Tm) in the obtained extended chain is designed to be a temperature suitable for analysis to be performed later. That is, by designing a probe (such as the first probe and / or the second or third probe described later) in accordance with the present invention, the melting temperature Tm of the extended chain produced is suitable for the analysis of the target nucleic acid to be performed later. Temperature can be controlled. For example, when performing a nucleic acid amplification reaction, design the probe so that the melting temperature (Tm) of the region to which the primer for nucleic acid amplification in the extended chain binds is within the optimum temperature range of the polymerase used in the nucleic acid amplification reaction. To do.
  • the melting temperature (Tm) of the region to which the sequencing primer in the extended strand binds is 45 to 70 ° C., preferably 50 to 68 ° C., more preferably 55 to Design the probe to 65 ° C.
  • the probe (the first probe and / or the second or third probe described later) may have an adapter sequence consisting of a known sequence at its 5 ′ end.
  • the adapter sequence should be of any composition of any length as long as it does not affect reactions for nucleic acid analysis, such as mRNA capture, nucleic acid amplification reactions, sequencing reactions, etc. Can do.
  • a sequence known as an adapter sequence is introduced into the resulting extended strand. Therefore, it is possible to comprehensively amplify the target nucleic acid in parallel by a nucleic acid amplification reaction using the known sequence as a priming site. In addition, sequencing using a known adapter sequence as a priming site is also possible. Further, by placing a restriction enzyme recognition sequence matched to the cloning vector in the adapter sequence and inserting it into the vector, amplification by cloning becomes possible.
  • the adapter sequence can be a sequence including a restriction enzyme recognition sequence, for example.
  • Restriction enzyme recognition sequences include, but are not limited to, 4-base recognition restriction enzymes MseI (T ⁇ TAA), MboI ( ⁇ GATC), BfaI (C ⁇ TAG), FatI ( ⁇ CATG) recognition sequences; 6 Base recognition restriction enzymes PsiI (TTA ⁇ TAA), SspI (AAT ⁇ ATT), HindIII (A ⁇ AGCTT) recognition sequence; Class IIS type restriction enzyme recognition sequence such as GsuI (CTGGAG or GACCTC) (16 bases from the recognition sequence) (Upstream chain) or 14 bases (downstream chain) sites), BbrI, HgaI (JP 2000-197493 A, EP-1006180 B) recognition sequences.
  • MseI T ⁇ TAA
  • MboI ⁇ GATC
  • BfaI C ⁇ TAG
  • FatI ⁇ CATG
  • 6 Base recognition restriction enzymes PsiI
  • the probe (the first probe and / or the second or third probe described later) may be designed so that a restriction enzyme recognition sequence is introduced into the generated extended chain.
  • a restriction enzyme recognition sequence may be introduced into the generated extended chain.
  • an adapter sequence containing a restriction enzyme recognition sequence may be added to the 5 ′ end, or a restriction enzyme recognition sequence may be inserted into the probe itself using a mismatch base ( That is, it becomes possible to insert a restriction enzyme recognition sequence that originally does not have the target nucleic acid by substitution with a mismatched base).
  • the first probe may be in a free state, or the 5 ′ end may be immobilized on a solid support.
  • the target nucleic acid can be captured on the solid phase carrier.
  • the solid phase carrier to be used is not particularly limited as long as it is a solid phase carrier generally used for nucleic acid manipulation. Specifically, it is preferably a solid support that is insoluble in water and does not melt during heat denaturation.
  • the material examples include metals such as gold, silver, copper, aluminum, tungsten, molybdenum, chromium, platinum, titanium, and nickel; alloys such as stainless steel, hastelloy, inconel, monel, and duralumin; silicon; glass, quartz glass, Glass materials such as fused quartz, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; polyester resin, polystyrene, polyethylene resin, polypropylene resin, ABS resin (Acrylonitrile Butadiene Styrene resin), nylon, acrylic resin, fluorine resin , Polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin, melamine resin, epoxy resin, vinyl chloride resin and other plastics; agarose, dextran, cellulose, polyvinyl alcohol, nitro Cellulose, chitin, chitosan.
  • metals such as gold, silver, copper, aluminum, tungsten, molybdenum, chromium,
  • the shape of the solid phase carrier is not particularly limited, and examples thereof include those formed by a flat surface (for example, titer plate, porous or pore array), flat plates, films, tubes, and particles. Furthermore, by using magnetized or magnetizable magnetic beads as particles, separation processing and the like can be automated, made efficient, or accelerated.
  • the particle diameter is usually 50 ⁇ m or less, for example, 1.0 ⁇ m to 3.0 ⁇ m.
  • the method for immobilizing the oligonucleotide or nucleic acid such as the first probe on the solid phase carrier is not particularly limited.
  • covalent bond for example, covalent bond, ionic bond, physical adsorption, biological bond (for example, biotin and avidin or streptavidin) And the like, and the like.
  • the first probe may be immobilized on the solid support via a spacer sequence, for example, a hydrocarbon group containing 1 to 10 carbon atoms.
  • T bases, TC sequences, and the like can be continuously arranged and used as a spacer sequence, and any spacer sequence can be used as long as it is a spacer sequence recommended by each oligo synthesis manufacturer.
  • Immobilization of the probe to the solid phase carrier via a covalent bond is performed, for example, by introducing a functional group into the probe and introducing a functional group reactive with the functional group into the solid phase carrier and reacting both. it can.
  • a covalent bond can be formed by introducing an amino group into the probe and introducing an active ester group, epoxy group, aldehyde group, carbodiimide group, isothiocyanate group or isocyanate group into the solid phase carrier.
  • a mercapto group may be introduced into the probe, and an active ester group, maleimide group or disulfide group may be introduced into the solid phase carrier.
  • Examples of the active ester group include a p-nitrophenyl group, an N-hydroxysuccinimide group, a succinimide group, a phthalimide group, and a 5-norbornene-2,3-dicarboximide group.
  • a method of treating a solid surface with a silane coupling agent having a desired functional group there is a method of treating a solid surface with a silane coupling agent having a desired functional group.
  • coupling agents include ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, Alternatively, ⁇ -glycidoxypropyltrimethoxysilane or the like can be used.
  • Another method for introducing a functional group to be a binding site into a solid phase carrier is plasma treatment. By such plasma treatment, a functional group such as a hydroxyl group or an amino group can be introduced into the solid phase carrier.
  • the plasma treatment can be performed using an apparatus known to those skilled in the art.
  • Examples of a method for immobilizing a probe to a solid phase carrier by physical adsorption include a method of electrostatically binding a solid phase carrier surface-treated with a polycation (polylysine, polyallylamine, polyethyleneimine, etc.) using the charge of a nucleic acid. Is mentioned. Subsequently, after the first probe is bound to the target nucleic acid, a complementary strand synthesis reaction of the target nucleic acid is performed using the first probe as a primer. In the method of the present invention, complementary strand synthesis can be performed according to a method known in the art, for example, using an appropriate reverse transcriptase or polymerase in the presence of a base (such as dNTP) serving as a substrate.
  • a base such as dNTP
  • complementary strand synthesis can be performed by reverse transcription using reverse transcriptase.
  • the extended strand can be generated, for example, by a replication reaction using a polymerase.
  • Reverse transcriptase is an enzyme that has the activity of extending a primer in the 5 'to 3' direction by adding a new base (nucleotide) to the hydroxyl group at the 3 'end of the primer using RNA as a template.
  • M-MLV RT and AMV-RT both supplied from almost all reagent manufacturers, and those that can react at high temperatures include Super Script III RT (Invitrogen) and MonsterScript (Epicentre) It is commercially available.
  • the polymerase used for complementary strand synthesis is an enzyme that has the activity of extending a primer in the 5 'to 3' direction by adding a new base (nucleotide) to the hydroxyl group at the 3 'end of the primer using DNA as a template.
  • E. coli DNA polymerase DNA polymerase or Klenow Polymerase (supplied from almost all reagent manufacturers), ⁇ 29 DNA polymerase with strand displacement function, Bst DNA polymerase (Fermentase, New England Biolabs, etc.) Can do.
  • the second extended strand may be generated by performing a complementary strand synthesis reaction using the generated first extended strand as a template and the second probe as a primer.
  • a third extended strand may be generated by performing a complementary strand synthesis reaction using the second extended strand as a template and the third probe as a primer.
  • complementary strand synthesis can also be performed in the same manner as described above.
  • the second probe can be a probe having an arbitrary sequence capable of performing complementary strand synthesis using the first extended strand as a template.
  • a person skilled in the art can generate a second extension strand having an appropriate length and including a necessary region according to the subsequent analysis (for example, nucleic acid amplification reaction, sequencing reaction, cDNA library preparation).
  • an appropriate probe can be designed based on common general knowledge.
  • the third probe may be the same as or different from the first probe.
  • the first probe is used as the third probe, it is completely complementary chain-bonded (matched) with the complementary sequence portion of the first probe in the second extended strand.
  • the third probe binds to the complementary sequence portion of the first probe in the second extended strand, but is 1 or to the complementary sequence portion of the first probe. It is preferably designed to have several mismatched bases.
  • the “complementary sequence portion of the first probe” means that a complementary strand is synthesized with the portion of the first probe in the first extension strand that is the template when the second extension strand is generated. Means a portion having a sequence complementary to the first probe.
  • the third probe can be designed in the same manner as described above for the design of the first probe.
  • the amplification reaction of the target nucleic acid can be performed by mixing the probes.
  • the nucleic acid amplification reaction of the target nucleic acid can be performed by mixing the first probe and the second probe, or by mixing the first probe, the second probe, and the third probe. It is preferable to adjust the mixing ratio of the probe (for the amplification primer) so that the concentration of the primer for generating the extended strand having the required sequence finally becomes the highest.
  • the extended chain generated as described above can be used for further nucleic acid analysis.
  • nucleic acid analysis includes, but is not limited to, nucleic acid amplification reactions (PCR, RCA, etc.), sequencing reactions, cDNA library preparation, cloning, and the like.
  • the extension strand produced according to the method of the present invention has a controlled melting temperature (Tm) of the binding site (priming site) of a primer used in nucleic acid amplification reaction or sequencing reaction, and is suitable for such reaction. .
  • the method of the present invention may further include a step of performing a nucleic acid amplification reaction, a sequencing reaction, or a cDNA library preparation using the obtained extended strand.
  • a nucleic acid analysis methods are known in the art, and those skilled in the art can select and carry out appropriate methods.
  • Example 1 Explains the details of reverse transcription reaction of RNA sample using mismatched mRNA capture probe, eliminating homopolymer sequence, and preparing double-stranded cDNA with gene-specific sequence following mRNA polyA sequence (Figs. 1-2).
  • Total RNA was extracted from cells and tissues.
  • Total RNA was extracted from the cells to be analyzed using RNeasy® Plus® Mini® Kit (QIAGEN). Oligonucleotides having the following sequences were prepared as mRNA capture probes.
  • a 22-base long mRNA capture probe was used.
  • the base length is not limited to this, and in particular, the Tm value (MeltingelTemperature: the temperature at which the complementary strand is formed for 50% of the strands, which is a measure of the stability of complementary strand binding) 15 A length of ⁇ 30 bases is appropriate. It is also possible to insert a sequence portion (adapter) that does not contribute to mRNA capture at the 5 ′ end, and in that case, the base length is further increased.
  • the base species that are intentionally inserted into the mismatch portion need not be the same, and may be composed of A, C, or G bases other than T. The mismatch insertion frequency need not be the same, and can be realized even if the mismatch intervals are different.
  • a probe for capturing mRNA (1 pmol) was added to 20 ng of total RNA prepared in the above step to make 4 ⁇ L with sterilized water, incubated at 70 ° C. for 5 minutes, and then cooled to 4 ° C.
  • the mRNA capture probe (101) and the 3′-terminal poly A sequence (103) of mRNA (102) in Total RNA were bound by complementary strands.
  • a probe 13 including three mismatches (110) is shown as an example.
  • V (104) in the sequence of the above-mentioned mRNA capture probe (101) means a mixed base of 3 bases of A, C or G other than T, and N (105) is 4 of A, C, G or T. By seed mixed base.
  • the VN sequence at the 3 ′ end By arranging the VN sequence at the 3 ′ end, it becomes an mRNA capture probe capable of binding a complementary strand only at the boundary with a poly A sequence in which a sequence other than T appears.
  • the arrangement at the 3 ′ end is not limited to the VN sequence, and the object can also be achieved by a VVN sequence or a mixture of a VN sequence and a VNN sequence.
  • RT buffer 2 ⁇ L 5 ⁇ RT buffer 2 ⁇ L, 0.1 M Dithiothreitol (DTT), 0.5 ⁇ L, RNaseOUT TM (40 units / ⁇ L, Invitrogen) 0.25 ⁇ L, 10 mM dNTP mixture 1 ⁇ L, Super Script III RT (200 units / ⁇ L, Invitrogen 1 ⁇ L and 1 ⁇ L of sterilized water were added, mixed by pipetting, and reacted at 50 ° C. for 1 hour. After completion of the reaction, the enzyme was inactivated by heat treatment at 85 ° C. for 90 seconds. By this reaction, the mRNA capture probe (101) was extended using mRNA (102) as a template, and 1st strand cDNA (106) reversely transcribed from mRNA was synthesized.
  • DTT Dithiothreitol
  • 2nd strand cDNA was synthesized.
  • 5x second strand buffer 100 mM Tris-Cl (pH 6.9), 23 mM MgCl 2 , 450 mM KCl, 0.75 mM ⁇ -NAD +, 50 mM (NH 4 ) 2 SO 4 ) 20 ⁇ L, 10 mM dNTP 2 ⁇ L, E Coli.
  • DNA Polymerase (4 units / ⁇ L, Invitrogen) 2 ⁇ L, E Coli.
  • RnaseH (0.2 units / ⁇ L, Invitrogen 1 ⁇ L was added, and 64 ⁇ L of sterilized water was added to make the total volume 100 ⁇ L. The solution was mixed by pipetting and then reacted at 16 ° C. for 2 hours. After completion of the reaction, 1 ⁇ L of 2.5 mM EDTA was added and heat treatment was performed at 65 ° C. for 10 minutes to inactivate the enzyme.
  • the complementary strand binding between the mRNA (102) and the mRNA capture probe (101) contained a mismatch (110), whereas the 2nd strand cDNA (111) was the 1st strand cDNA (106) followed by the mRNA capture probe ( 101) is used as a template, and the resulting double-stranded cDNA does not have a mismatch portion, and all are matched exactly (complementary strand binding) (112).
  • Fig. 2-1, Fig. 2-2, and Fig. 2-3 show the results of cDNA synthesis efficiency when using the mismatched mRNA capture probes shown in Table 1.
  • Probe 1 is a standard probe containing no mismatch, and the amount of cDNA synthesis product when this probe was used was taken as 1, and the synthesis efficiency was calculated. The amount of the synthesized product was measured by qPCR using ABI7900HT (Applied Biosystems).
  • Probes 2 to 6 are probes with a single base G as a mismatch
  • probes 7 to 11 are probes with a single base C as a mismatch.
  • a mismatch was placed at 3, 4, 5, 6 or 7 bases from the 3 ′ end to examine the effect on the synthesis efficiency.
  • Probes 12 to 15 were arranged with mismatches every 6 bases, every 5 bases, every 4 bases or every 3 bases, and the influence of mismatch frequency on the synthesis efficiency was examined.
  • reaction temperature was 50 ° C and 48 ° C lower by 2 ° C in the protocol recommended by the manufacturer of Super Script III used as reverse transcriptase.
  • the reaction efficiency decreased more markedly as the mismatch frequency increased.
  • the efficiency could be improved at 48 ° C., which was obtained by reducing the reaction temperature by 2 ° C. from the optimum temperature.
  • the probe 14 has mismatches every 4 bases, and 4 bases out of 22 bases are mismatches. Even when such a probe is used, cDNA is synthesized with an efficiency of 50% as compared with the probe 1 of perfect match.
  • the Tm of the probe 1 is 52.6 ° C.
  • the Tm of the probe 13 is 62.0 ° C.
  • the Tm value increases by about 10 ° C.
  • this probe portion After synthesis of 2nd strand cDNA, which is the complementary strand of the mismatched mRNA capture probe portion, this probe portion becomes a very stable priming site.
  • the primer since the homopolymer is eliminated, the primer is shifted little by little and complementary chain bond slipping does not occur, so that it can be used as a priming site for PCR and sequencing.
  • mismatches are arranged at equal intervals in the probes 12 to 15, but the mismatch arrangement method is not limited to this.
  • the reaction efficiency is determined by the mismatched base species, the distance from the 3 'end, the frequency, and several factors. It is possible to use a mismatched mRNA capture probe that meets the requirements.
  • artificial nucleic acids such as PNA (peptide nucleic acid) are known to have increased binding power to DNA and RNA. By replacing several bases in the probe with artificial nucleic acids, mismatches occur. It is also possible to increase the binding strength of the complementary strand bond that decreases.
  • the base is formed by complementary chain binding and extension reaction including a mismatch between the homopolymer sequence part derived from the poly-A sequence of mRNA and a sequence other than T arranged intentionally on the mRNA capture probe. It was possible to obtain a double-stranded cDNA product in which the homopolymer derived from the poly A sequence of mRNA was eliminated. As a result, the sequence portion derived from poly A increased in Tm value due to base substitution, and can be used as a stable priming site in subsequent PCR reactions and sequencing reactions.
  • Example 2 Details of a method for introducing a restriction enzyme recognition sequence into a poly A sequence portion derived from mRNA using a probe for capturing mismatched mRNA will be described in the present example (FIGS. 3 to 5).
  • Double-stranded cDNA is synthesized by the same method as shown in Example 1, but by introducing a restriction enzyme recognition sequence that can be used in subsequent reactions by devising a probe for capturing mRNA used at that time. Is possible. That is, in this example, 1st strand cDNA was synthesized using the following mismatched mRNA capture probe: 5'-TTTTTTTTTTTTTTAA TTTT C TTTTT G TTVN-3 '(SEQ ID NO: 16) The underlined part of the sequence is a mismatch.
  • the above-mentioned mismatched mRNA capture probe (151) is prepared by preparing a probe in which the 5 ′ end is modified with two biotin molecules, followed by six carbons inserted as spacers, and a magnetic bead particle having a streptavidin group modified on the surface ( 203) (diameter 2.8 ⁇ m, Dynal BIOTECH) (FIG. 3). According to the method attached to the manufacturer, 10 6 molecules of mRNA capture probe (151) were immobilized per bead.
  • the material of the solid phase carrier is not particularly limited as long as it is insoluble in water.
  • metals such as gold, silver, copper, aluminum, platinum, titanium, nickel, alloys such as stainless steel and duralumin, silicon Glass materials such as glass, quartz glass, and ceramics, plastics such as polyester resin, polystyrene, polypropylene resin, nylon, epoxy resin, and vinyl chloride resin, agarose, dextran, cellulose, polyvinyl alcohol, chitosan, and the like may be used.
  • the shape of the carrier is not particularly limited, and may be a flat shape or a shape having a plurality of holes.
  • the method for immobilizing the probe on the solid phase carrier is not particularly limited. Covalent bond, ion bond, physical adsorption, biological bond (for example, binding between biotin and avidin or streptavidin, binding between antigen and antibody) The same effect can be obtained by the method by the above.
  • a probe-immobilized magnetic bead (203) for capturing mRNA was suspended in 10 mM Tris-Cl (pH 7.5) and 0.1% Tween 20 solution (1 ⁇ 10 6 beads / ⁇ L), and the same as in Example 1 was performed.
  • the procedure up to the synthesis reaction of 2nd strand cDNA (111) was performed to obtain a double-stranded cDNA.
  • the resulting double strand is free from mismatches, and the homopolymer sequence portion derived from the poly A sequence of mRNA is replaced with a sequence other than T artificially arranged in the probe for capturing mRNA.
  • TTAA is a recognition site for restriction enzyme MseI (T ⁇ TAA), and restriction enzyme recognition that did not exist in the poly-A sequence part of mRNA by a mismatched mRNA capture probe.
  • the sequence could be inserted ( Figure 3).
  • the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 4 ⁇ L of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended with Tween20. By this reaction, only the MboI cleaved fragment (161) on the 3 ′ side of the mRNA was purified while immobilized on the beads (FIG. 4).
  • adapter B (152 and 153) having a known sequence was introduced into the restriction enzyme cleavage end by a ligation reaction (FIG. 4).
  • the prepared adapter is oligo B (153) (5′- GATCGGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG -3 ′: SEQ ID NO: 17) that binds to the end of cDNA by a phosphodiester bond, and oligo B ′ (152) having a sequence complementary to this oligo (5′- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3 ′: SEQ ID NO: 18).
  • Oligo B (153) is modified with a phosphate group at the 5 ′ end, allowing phosphodiester bonding with the end of the MboI cleavage fragment. Oligo B (153) is shorter by one base at the 3 ′ end than oligo B ′ (152). This is a function to prevent the coupling between the adapters.
  • a cleavage treatment (162) with restriction enzyme MseI (T ⁇ TAA) was performed (FIG. 4).
  • 10 ⁇ NEB ⁇ ⁇ buffer 2 (New England BioLabs) was added to the bead solution resuspended in 10 ⁇ L of 10 M Tris-Cl (pH7.5), 0.1% (w / v) Tween20 after the above ligation.
  • 2 ⁇ L, 1 ⁇ L of MseI (10 units / ⁇ L; New England BioLabs), 0.2 ⁇ L of 10 mg / mL BSA, and 6.8 ⁇ L of sterilized water were added and stirred, followed by reaction at 37 ° C. for 1 hour.
  • MseI was used as the restriction enzyme introduced by the mismatch probe, but the present invention is not limited to this.
  • PsiI TTA ⁇ TAA
  • SspI AAT ⁇ ATT
  • BfaI C ⁇ TAG
  • FatI The same effect can be obtained with ⁇ CATG.
  • the obtained fragment is a 3 ′ terminal fragment following the poly A sequence of mRNA, but since it does not have a poly A sequence, this fragment can be easily amplified by PCR (FIG. 5). Furthermore, the same sequence of the base substitution site derived from the mRNA poly A sequence and adapter B is inserted at both ends of all the cDNA restriction enzyme fragments contained in the sample.
  • Comprehensive parallel amplification utilized as One of the primers / probes used in this case consists of a sequence (154) that includes a part of the sequence part that has undergone base substitution due to mismatch on the 3 ′ side, and the primer / probe on the opposite side is the sequence part of the adapter B ′.
  • the mixing ratio of the probes may be adjusted so that the concentration of the primer having the finally required sequence becomes the highest.
  • the homopolymer sequence part derived from the polyA sequence of mRNA is replaced with a sequence other than T artificially arranged in the probe for capturing mRNA, and the homopolymer derived from the polyA sequence of mRNA is eliminated.
  • a double-stranded cDNA restriction enzyme fragment (156) having a known sequence inserted at both ends was obtained (FIG. 5).
  • this product has sequence information at the 3 ′ end of mRNA, which is said to have a lot of gene-specific information, and has a certain length of fragment between cDNAs by restriction enzyme treatment.
  • MboI was used as a restriction enzyme.
  • the restriction enzyme is not limited to MboI, and the recognition base length is not limited to 4 bases as long as the same effect can be obtained.
  • the sequence of any adapter used in this example is not limited, and any adapter can be designed as long as it has the optimum effect when used for subsequent purposes (PCR, cloning, sequencing). Can do.
  • the base length of the primer or probe can be changed each time.
  • Example 3 This example describes in detail how to prepare a sample for comprehensive gene amplification using a probe in which a sequence part (adapter) that does not contribute to mRNA capture is inserted at the 5 ′ end of the mismatched mRNA capture probe. (FIG. 6).
  • a double-stranded cDNA is synthesized using the method described in Example 1.
  • a mismatched mRNA capture probe (201) has an adapter sequence A (sequence underlined portion) (202) at the 5 ′ end.
  • the following sequence was used: 5′-GA TCATCATAAGCAATGACGGCAG CTGAAGTATCTTTCTTTTCTTTTCTTTTVN-3 ′ (SEQ ID NO: 19).
  • the above-mentioned mismatched mRNA capture probe (201) is prepared by preparing a magnetic bead (203) with a 5 ′ end modified with two biotin molecules, followed by six carbon atoms inserted as a spacer, and a streptavidin group modified on the surface. ) (Diameter 2.8 ⁇ m, Dynal BIOTECH) (FIG. 6).
  • a carbon spacer was disposed between the surface of the solid support and the probe.
  • the space is not limited to this, and the same effect can be expected with spacers recommended by each oligo synthesis manufacturer. For example, a method in which T bases, TC sequences, etc. are continuously arranged and used as spacers. Is also possible.
  • 10 mM Tris-Cl pH 7.5
  • 0.1% Tween20 solution 1 ⁇ 10 6 beads / ⁇ L
  • 1 ⁇ 10 6 beads 1 ⁇ L of the above-mentioned mismatched mRNA capture probe immobilized beads (203) is used to synthesize 2nd strand cDNA (111). And double-stranded cDNA was obtained.
  • the end of the synthesized double-stranded cDNA is not necessarily smooth, and it is considered that there are a plurality of ones protruding from the 3 ′ end of 1st strand cDNA (106).
  • the degree of protrusion (number of bases) is unknown. For this reason, in order to perform the subsequent ligation of the adapter without bias to all cDNAs, it is necessary to smooth the ends (treat the ends so as to have the same conditions).
  • 10 ⁇ Blunting buffer (1.2 M Tris-Cl (pH 8.0), 15) was added to a solution obtained by suspending the above 1 ⁇ 10 6 beads in 8 ⁇ L of 10 mM Tris-Cl (pH 7.5) and 0.1% Tween20 solution.
  • the enzyme used for blunt-end is not limited to T4 DNA polymerase, but can be replaced with KOD DNA polymerase (TOYOBO) that can achieve the same effect.
  • adapter D having a known sequence at the end of the above-mentioned blunt-ended double-stranded cDNA was introduced by ligation reaction.
  • the prepared adapter is oligo D (215) (5′- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3 ′: SEQ ID NO: 20) that binds to the end of cDNA by a phosphodiester bond, and oligo D ′ (216) having a sequence complementary to this oligo. (5′- GGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG -3 ′: SEQ ID NO: 21).
  • Oligo D ′ is modified at its 5 ′ end with a phosphate group to enable a phosphodiester bond. Oligo D ′ (216) is shorter by one base at the 3 ′ end than oligo D (215). This is a function to prevent the coupling between the adapters.
  • the sequence of adapter A (202) derived from the probe for capturing mRNA is located on the side immobilized with the magnetic beads (203), and adapter D (215 and 216) is located on the opposite cDNA end by ligation. Inserted. That is, according to this example, the homopolymer sequence part derived from the polyA sequence of mRNA was replaced with a sequence other than T that was artificially arranged on the probe for capturing mRNA, and the homopolymer derived from the polyA sequence of mRNA was eliminated. And a double-stranded cDNA product with known sequences inserted at both ends was obtained (FIG. 6).
  • adapter A (202) and adapter D (215) sequences as priming sites, it is possible to amplify cDNA in parallel by PCR reaction, and to recognize the restriction enzyme according to the cloning vector in the adapter. Amplification by cloning is also possible by arranging the sequence and inserting it into the vector. In addition, sequencing using the adapter sequence as a priming site is possible.
  • This embodiment can be applied more effectively by the following method (FIG. 7).
  • the bias of amplification efficiency is less when the target base length is as long as possible (in general, the shorter base length is the better the amplification efficiency) ).
  • the size of cDNA varies from several hundred base length to over 5,000 base length.
  • adapter C (302 and 303) having a known sequence was introduced into the restriction enzyme cleavage terminal by a ligation reaction.
  • the prepared adapter is an oligo C ′ (303) (5′- GATCGGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG-3 ′: SEQ ID NO: 22) that binds to the end of cDNA by a phosphodiester bond, and an oligo C (302) having a sequence complementary to this oligo. (5′- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3 ′: SEQ ID NO: 23).
  • Oligo C ′ (303) is modified with a phosphate group at the 5 ′ end to enable a phosphodiester bond.
  • oligo C ′ (303) is shorter by one base on the 3 ′ end side than oligo C (302). This is a function to prevent the coupling between the adapters.
  • the sequence of adapter A (202) derived from the probe for capturing mRNA is located on the side immobilized with magnetic beads (203), and adapter C (302 and 303) is located on the opposite cDNA end by ligation. Inserted.
  • the homopolymer sequence part derived from the polyA sequence of mRNA was replaced with a sequence other than T that was artificially arranged in the oligo DNA for mRNA capture, and the homopolymer derived from the polyA sequence of mRNA was eliminated.
  • a double-stranded cDNA restriction enzyme fragment with known sequences inserted at both ends was obtained.
  • This product has sequence information at the 3 ′ end of mRNA, which is said to have a lot of gene-specific information, and has a certain length of fragment between cDNAs by restriction enzyme treatment. This makes it possible to minimize the bias between samples when performing amplification by PCR using adapter A (202) and adapter C (302) as priming sites, enabling more accurate gene-wide parallel amplification. became.
  • MboI was used as a restriction enzyme.
  • the restriction enzyme is not limited to MboI, and the recognition base length is not limited to 4 bases as long as the same effect can be obtained.
  • the sequence of any adapter used in this example is not limited, and any adapter can be designed as long as it has the optimum effect when used for subsequent purposes (PCR, cloning, sequencing). Can do.
  • the base length of the primer or probe can be changed each time.
  • ClassIIS restriction enzyme is known as a restriction enzyme having a cleavage site outside the recognition site.
  • GsuI was used.
  • the recognition sites for this enzyme are as follows: 5'- CTGGAG NNNNNNNNNNNNNNNN-3 '(SEQ ID NO: 24) 3'- GACCTC NNNNNNNNNNNN -5 '(SEQ ID NO: 25).
  • N may be any base species of A, C, G or T.
  • 5′-GATCATCATAAGCAATGACGGCAG CTGGAG TCTTTTCTTTTCTTTTCTTTTTVN-3 ′ (SEQ ID NO: 26) having an adapter sequence F (411) was used as the mRNA capture probe (401).
  • double-stranded cDNA (402 and 403) was prepared using the mRNA capture probe (401) immobilized on a solid support, followed by 4-base recognition restriction enzyme. The cutting process was performed with MboI.
  • the ligation reaction of the adapter to the cleaved fragment was also carried out in the same manner as described in Example 2, except that the adapter was oligo E (404) (5′-TACCTCGAAGCCCCTG-3 ′: SEQ ID NO: 27) and this oligo.
  • Adapter E consisting of oligo E ′ (405) (5′-GATCGCAGGGGCTTCGAGGTAC -3 ′: SEQ ID NO: 28) having a sequence complementary to the above was used.
  • oligo E (404) and oligo E ′ (405) having the 5 ′ end subjected to phosphate group modification (P) (407) were used.
  • the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 10 ⁇ L of 10 mM Tris-Cl (pH 7.5), 0.1 The beads were resuspended with% (w / v) Tween20. Subsequently, cleavage treatment (406) with GsuI was performed, and the inserted product of adapter E (404 and 405) was separated from the bead (203).
  • the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 5 ⁇ L of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended with Tween20.
  • the RCA oligo (502) (5′-NBAAAAAGGTACCTCGAAGCCCCTGCGATC-3 ′: SEQ ID NO: 29) immobilized on the solid phase carrier (501) is used in advance.
  • the material and shape of the solid phase carrier are not particularly limited.
  • by arranging a spacer composed of carbon or the like on the 5 ′ end side of the RCA oligo, and taking the distance from the solid phase carrier surface to the base the complementary chain binding ability can be increased.
  • the method for immobilizing the oligo DNA on the solid phase carrier is not particularly limited.
  • the single-stranded DNA (503) can be circularly arranged to allow complementary strand binding, and the nicked portion (511) of the circular DNA is bound by a ligation reaction.
  • a ligation reaction is not limited to any enzyme species as long as it can achieve the above purpose, such as T4TLigase DNA or Ampligase (Epicentre).
  • an RCA reaction (504) is performed using ⁇ 29 DNA-polymerase, which is a DNA-polymerase having a strand displacement function, or Bst DNA-polymerase (Fermentase, New England Biolabs, etc.), and then mRNA 3 ' It is a restriction enzyme fragment derived from a terminal, which has no homopolymer sequence derived from poly A, and has a single-stranded DNA (503) having known sequences of CTTTTTVN (409) and adapter E ′ (405) at both ends, respectively.
  • An amplification reaction (504) could be realized (FIG. 9).
  • the enzyme used for RCA is not particularly limited as long as it has a strand displacement action other than the above enzymes.
  • a container (612) having a large number of fine holes is prepared, and a wall in each hole (611) is prepared.
  • immobilizing the mRNA capture probe (601) and immobilizing the RCA oligo DNA (602) on the bottom surface it is possible to effectively obtain an amplification product in one hole.
  • the product after the RCA reaction is immobilized on the bottom surface, and gene expression analysis can be performed by inserting a fluorescent probe having a gene-specific sequence to form a complementary strand. It is also possible to perform gene expression analysis quantitatively by real-time PCR technology.
  • the bottom of the hole (711) of the reaction vessel (703) is made of a material (701) from which a solution such as a membrane can flow out, and the solution is held in the hole during the reaction. It is also possible to take the form of removing the solution by suction or the like (702) and adding the solution of the next reaction. This can also be achieved by immobilizing the mRNA capture probe (601) and the immobilized RCA oligo DNA (602) on the wall surface.
  • the present invention provides a method for analyzing a target nucleic acid in a sample.
  • the problem caused by the homopolymer sequence can be solved by base substitution of the homopolymer sequence contained in the target nucleic acid.
  • a primer binding site is provided that realizes an increase in the melting temperature Tm of the generated extended strand and enables stable complementary strand binding in the subsequent nucleic acid amplification reaction and sequencing reaction. Therefore, according to the present invention, nucleic acids can be analyzed with high efficiency, speed and accuracy.
  • SEQ ID NOs: 1 to 29 Artificial (synthetic oligonucleotide)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided are means or a method for solving the problems of nucleic acid analysis that are associated with homopolymer sequences having a low complementary strand bindability. A method for analyzing a target nucleic acid in a sample comprises: a step for preparing a target nucleic acid from a sample; a step for causing a first probe, the complementary strand of which will bind with the shared sequence possessed by the target nucleic acid, to bind with the target nucleic acid; and a step for forming a first extended strand by complementary strand synthesis reaction of the target nucleic acid using the first probe as the primer, wherein the first probe sequence is designed such as to not completely complement the shared sequence possessed by the target nucleic acid, but rather to have one or several mismatched bases.

Description

大規模並列核酸分析方法Large-scale parallel nucleic acid analysis method
 本発明は、試料中のターゲット核酸の分析方法に関する。具体的には、本発明は、ミスマッチ塩基を含むプローブを用いてターゲット核酸の相補鎖合成反応を行う工程を含む方法に関する。 The present invention relates to a method for analyzing a target nucleic acid in a sample. Specifically, the present invention relates to a method including a step of performing a complementary strand synthesis reaction of a target nucleic acid using a probe containing a mismatch base.
 遺伝子の発現量をモニターすることは、遺伝子の機能を調べたり、薬の効果を調べたり、あるいは疾患の診断を行ったりなど幅広く使用されている。これには細胞からmRNAを取り出し、その相補鎖であるcDNAを合成して計測する技術が用いられる。より詳細な解析を行うには、細胞の数をできる限り細分化する必要があり、単一細胞レベルでの解析の必要もある。しかし、使用する細胞数が少ない場合には、測定装置の精度及び検出感度の問題等からcDNAを増幅して遺伝子の発現量を計測する必要が生じる。 モ ニ タ ー Monitoring gene expression levels is widely used for examining gene functions, examining the effects of drugs, and diagnosing diseases. For this purpose, a technique is used in which mRNA is taken out from a cell, and its complementary strand cDNA is synthesized and measured. In order to perform a more detailed analysis, it is necessary to subdivide the number of cells as much as possible, and it is also necessary to analyze at the single cell level. However, when the number of cells to be used is small, it is necessary to amplify the cDNA and measure the expression level of the gene because of problems such as the accuracy of the measuring apparatus and detection sensitivity.
 増幅方法として一般的な方法はポリメラーゼ連鎖反応(PCR)法である。以下現在用いられている技術を紹介する。まず、ターゲットとなる核酸を捕獲するには、そのターゲットの一部と相補的な塩基配列を含む数十塩基長からなるプローブを用いて、ターゲットとプローブとを相補鎖結合させることで捕獲する。mRNAを捕獲し、その逆転写産物であるcDNAを生成するには、いくつかの方法がある。 A general method for amplification is the polymerase chain reaction (PCR) method. The technologies currently in use are introduced below. First, in order to capture a target nucleic acid, a target consisting of several tens of bases including a base sequence complementary to a part of the target is used to capture the target and the probe by complementary strand bonding. There are several ways to capture mRNA and generate its reverse transcript, cDNA.
 第1は、mRNAの3'末端に存在するポリA配列(数十から数百塩基長)をポリT配列(通常20~30塩基長)からなるオリゴ(dT)DNAプローブとの相補鎖結合反応により捕獲し、次いでmRNAを鋳型としてオリゴ(dT)プローブを伸長しcDNA鎖を得る方法である。この方法の場合、mRNAの3'末端からcDNAを合成するため、3'末端部を含むcDNA鎖を確実に取得できる。また、ポリA鎖と捕獲プローブポリT鎖はスライドしてハイブリダイズするので捕獲効率が高いことが知られている。この方法を利用して全長cDNAを得ることが可能ではあるが、mRNAが長鎖(5~10k塩基長程度以上)の場合、mRNAが高次構造をとるために末端まで伸長反応が進まず、5'末端の情報が欠落したcDNAライブラリーしか構築できないこともある。 The first is the complementary strand-binding reaction between the poly A sequence (several tens to hundreds of bases in length) at the 3 'end of mRNA and an oligo (dT) DNA probe consisting of poly T sequences (usually 20 to 30 bases in length). And then extending an oligo (dT) probe using mRNA as a template to obtain a cDNA strand. In the case of this method, since cDNA is synthesized from the 3 ′ end of mRNA, a cDNA strand containing the 3 ′ end can be reliably obtained. It is also known that the capture efficiency is high because the poly A chain and the capture probe poly T chain slide and hybridize. Although it is possible to obtain a full-length cDNA using this method, when the mRNA is long (5 to 10 k base length or more), the extension reaction does not proceed to the end because the mRNA has a higher order structure. Only cDNA libraries lacking 5'-end information can be constructed.
 第2の方法は、ランダムプライマーと呼ばれる6~9塩基程度の種々の配列からなる混合プライマーのセットを用意し、このランダムプライマーをmRNAの複数個所で相補鎖結合させ伸長させることでcDNA鎖を得るものである。この方法の場合、mRNAの鎖長に関わらず全ての領域を網羅したcDNA鎖を得ることができる。しかし、ある1つのランダムプライマーの伸長反応は次のランダムプライマーが相補鎖結合した部位で止まってしまうため、cDNAの鎖長が短いことが多く、この方法で全長cDNAを得ることはほぼ不可能である。 The second method is to prepare a set of mixed primers consisting of various sequences of about 6 to 9 bases called random primers, and to obtain cDNA strands by extending the random primers with complementary strands at several locations in the mRNA. Is. In the case of this method, a cDNA chain covering all regions can be obtained regardless of the mRNA chain length. However, the extension reaction of one random primer stops at the site where the next random primer binds to the complementary strand, so the cDNA strand length is often short, and it is almost impossible to obtain a full-length cDNA by this method. is there.
 また、上記2つの方法の長所を生かし、オリゴ(dT)プローブとランダムプライマーを混合して使用する方法も知られている。 In addition, a method of using an oligo (dT) probe and a random primer by mixing the advantages of the above two methods is also known.
 細胞若しくは組織中に発現する遺伝子の網羅的解析を目的とする場合、全長、若しくはある決まった部位、特に遺伝子の特異的情報が多いとされる3'末端部(非特許文献1)を確実に取得できる方法が望ましく、オリゴ(dT)プローブを用いる方法が用いられる。 For the purpose of exhaustive analysis of genes expressed in cells or tissues, the full length or a certain site, particularly the 3 ′ end portion that is considered to have a lot of gene specific information (Non-patent Document 1) An obtainable method is desirable, and a method using an oligo (dT) probe is used.
 一方、細胞や組織レベルでの網羅的遺伝子解析、特に最近注目されている単一細胞から抽出したmRNAを用いた遺伝子発現解析を実現するためには、mRNAから得られるcDNAを一括して増幅することが必須となる。一般的な増幅方法には増幅対象領域をはさんだ2箇所にプライマーを相補鎖結合させ、対象領域を繰り返し相補鎖合成することで増幅させるPCRや、増幅対象領域をライゲーションによりリング状のDNAとし、このリングの一部と相補的な配列を有するプライマーを用いて相補鎖合成をリングに沿って何周にもわたって行い、目的領域を増幅するRCA(Rolling Circle Amplification)などが知られている。 On the other hand, in order to realize comprehensive gene analysis at the cell and tissue level, especially gene expression analysis using mRNA extracted from a single cell that has recently attracted attention, cDNA obtained from mRNA is amplified in a batch. It is essential. In a general amplification method, PCR is performed by combining complementary strands with primers at two locations across the amplification target region, and the target region is repeatedly synthesized by complementary strand synthesis, or the amplification target region is converted into a ring DNA by ligation, RCA (Rolling Circle Amplification) that amplifies a target region by performing complementary strand synthesis for many turns along a ring using a primer having a sequence complementary to a part of this ring is known.
 単一細胞レベルのcDNAライブラリー中に存在する全てのcDNAを網羅的に増幅する代表的な方法としては、非特許文献2に記載の方法がある。この方法では、mRNAの3'末端のpoly(A)塩基と相補的なpoly(T)(24塩基のT配列からなる)配列を有し、更に5'末端に20塩基長程度の固有の配列(i)が連結したプローブ(1)をmRNAに相補鎖結合させ、mRNAから第一鎖cDNAを合成する。続いて、合成された第一鎖cDNAの3'末端にpoly(A)塩基を導入する。このpoly(A)塩基と相補的なpoly(T)(24塩基のT配列からなる)配列を有し、更に5'末端にプローブ(1)とは異なる20塩基長程度の固有の配列(ii)が連結したプローブ(2)を用意し、第一鎖cDNAを鋳型とし、固有配列とpoly(T)配列からなるプローブ(1)とプローブ(2)を用いてPCRにより増幅した結果得られる産物を解析の対象としている。 As a representative method for comprehensively amplifying all cDNAs present in a single-cell level cDNA library, there is a method described in Non-Patent Document 2. This method has a poly (T) sequence complementary to the 3 'end poly (A) base of mRNA (consisting of a 24 base T sequence) and a unique sequence of about 20 bases in length at the 5' end. The probe (1) linked with (i) is bonded to the mRNA in a complementary strand, and a first strand cDNA is synthesized from the mRNA. Subsequently, a poly (A) base is introduced into the 3 ′ end of the synthesized first strand cDNA. It has a poly (T) sequence complementary to this poly (A) base (consisting of a 24 base T sequence), and a unique sequence of about 20 base length different from the probe (1) at the 5 ′ end (ii ) -Linked probe (2), product obtained as a result of PCR amplification using probe (1) and probe (2) consisting of a unique sequence and a poly (T) sequence using the first strand cDNA as a template Are subject to analysis.
 オリゴ(dT)DNAプローブを利用してcDNAを調製した場合、必ずその末端にポリT/ポリAの相補鎖結合からなるホモポリマー部位が挿入される。ホモポリマー配列は、相補鎖結合力が弱いため、増幅工程においてプライマーが相補鎖結合しにくく、また、途中に存在する場合にはそこで伸長反応がしばしばストップするなどポリメラーゼ反応に好ましい配列ではない。増幅対象となるDNAの中にホモポリマー(同一塩基が複数連続)が存在すると、ポリメラーゼがこのホモポリマー部の鎖長を間違えて合成してしまい、本来長さが同一であるべき増幅産物の長さが不均一となってしまうことが知られている(非特許文献3)。 When a cDNA is prepared using an oligo (dT) DNA probe, a homopolymer site composed of a complementary strand of poly T / poly A is always inserted at the end. A homopolymer sequence is not a preferred sequence for a polymerase reaction because the complementary strand binding force is weak, so that the primer is difficult to bind to the complementary strand in the amplification step, and if it exists in the middle, the extension reaction often stops there. If there is a homopolymer (several consecutive bases) in the DNA to be amplified, the polymerase will synthesize the homopolymer with the wrong chain length, resulting in the length of the amplified product that should be the same length. Is known to be non-uniform (Non-Patent Document 3).
 また、増幅後に配列決定を行なう場合には、ホモポリマー部で伸長反応がとまってしまい配列決定できない事象が観察される。ホモポリマー部にプライマーを相補鎖結合しようとすると、同一塩基なためプライマーが少しずつずれて相補鎖結合する可能性もある(一般にスリッピングと呼ばれる事象である)(非特許文献4)。このように、ホモポリマーが原因でポリメラーゼによる伸長反応で望むべき結果を得られないことが知られている。 Also, when sequencing is performed after amplification, an event is observed in which the elongation reaction stops at the homopolymer portion and sequencing cannot be performed. When trying to join a complementary strand of a primer to a homopolymer part, the primer may be slightly shifted due to the same base, and the complementary strand may be bound (this is an event generally called slipping) (Non-patent Document 4). As described above, it is known that a desired result cannot be obtained in the extension reaction by the polymerase due to the homopolymer.
 従って、遺伝子の網羅的な解析のためには、遺伝子情報として重要なmRNAの3'末端部からcDNAを作製することが望ましいが、この際に、ホモポリマー配列を含まないcDNAを生成することも望まれている。このような課題を解決するための手法が依然として必要とされている。 Therefore, for comprehensive analysis of genes, it is desirable to create cDNA from the 3 ′ end of mRNA, which is important as genetic information. At this time, it is also possible to generate cDNA that does not contain homopolymer sequences. It is desired. There remains a need for techniques to solve these challenges.
 例えば遺伝子解析時のプローブが相補鎖結合する部分をホモポリマーではない塩基配列とすることで、増幅反応におけるプライミングサイトとして利用でき、正確にしかも安定にプローブをターゲットに相補鎖結合させて精度よく増幅することができる。また、既知配列からなるアダプター配列を5'末端に有するオリゴ(dT)DNAプローブを利用してcDNAを作製し、アダプター配列部分をプライミングサイトとして利用してポリメラーゼ増幅反応(PCR)を行う場合にも、ホモポリマー部分の塩基が別の塩基に置換されていれば、安定度が低いために相補鎖合成が停止してしまうという問題も解決できる。 For example, by using a base sequence that is not a homopolymer for the part where the probe in the gene analysis is coupled to the complementary chain, it can be used as a priming site in the amplification reaction, and the probe is accurately and stably amplified by accurately binding the complementary chain to the target. can do. Also, when preparing cDNA using an oligo (dT) DNA probe having an adapter sequence consisting of a known sequence at the 5 ′ end, and performing a polymerase amplification reaction (PCR) using the adapter sequence portion as a priming site If the base of the homopolymer portion is replaced with another base, the problem of the complementary strand synthesis being stopped due to low stability can be solved.
 従って、本発明者は、上記課題を解決するための鋭意検討を行った結果、ターゲット核酸から最初の相補鎖合成を行う際に用いるプローブ(例えばmRNA捕獲用プローブ)として、完全に相補的なホモポリマーではない配列を有するプローブを用いて相補鎖合成反応を行うことで、得られる伸長鎖がホモポリマー配列とは異なる配列となることを見出した。すなわち、ターゲット核酸がmRNAである場合には、mRNAの3'末端に配置されるポリA配列を捕獲するためのプローブに、相補鎖合成に支障のない程度にミスマッチ塩基を含んだプローブを用意し、相補鎖結合及び合成反応を行う。得られたプローブの伸長鎖は、ホモポリマー部分(ポリA配列)の塩基が異なる塩基に置換される。このように、伸長鎖におけるホモポリマー部分がなくなることで、以後のターゲット核酸の分析(PCR増幅や配列決定)における問題点、すなわちホモポリマーの相補鎖結合が不安定であることや、スリッピング等の問題点を克服することができる。 Therefore, as a result of intensive studies to solve the above problems, the present inventor has found that a completely complementary homozygous probe is used as a probe (for example, a probe for capturing mRNA) used for the first complementary strand synthesis from a target nucleic acid. It has been found that by performing a complementary chain synthesis reaction using a probe having a sequence that is not a polymer, the resulting extended chain is different from the homopolymer sequence. In other words, if the target nucleic acid is mRNA, prepare a probe containing a mismatch base to the extent that it does not interfere with complementary strand synthesis as a probe for capturing the polyA sequence located at the 3 'end of the mRNA. Perform complementary strand binding and synthesis reaction. In the extended chain of the obtained probe, the base of the homopolymer part (poly A sequence) is replaced with a different base. Thus, the elimination of the homopolymer portion in the extended chain causes problems in the subsequent analysis of the target nucleic acid (PCR amplification and sequencing), that is, the homopolymer's complementary chain bond is unstable, slipping, etc. The problem of can be overcome.
 従って、本発明は、以下の[1]~[22]である。
[1]試料からターゲット核酸を調製する工程、
 該ターゲット核酸に、該ターゲット核酸が有する共通配列と相補鎖結合する第1のプローブを結合させる工程、及び
 第1のプローブをプライマーとして用いて該ターゲット核酸の相補鎖合成反応を行い、第1の伸長鎖を生成する工程
を含み、第1のプローブの配列が、該ターゲット核酸が有する共通配列に対して完全に相補的ではなく、かつ1若しくは数個のミスマッチ塩基を有するように設計されていることを特徴とする、試料中のターゲット核酸を分析する方法。
[2]ターゲット核酸が、その3'末端に、ポリA配列からなるホモポリマー配列を有するmRNA、又は同じ種類の塩基が少なくとも6塩基連続した配列からなるホモポリマー配列を有するDNA若しくはRNAであり、第1のプローブが、共通配列としての該ホモポリマー配列に対して完全に相補的ではなく、かつ1若しくは数個のミスマッチ塩基を有するように設計されている、[1]に記載の方法。
[3]ターゲット核酸がmRNAであり、第1のプローブが、少なくとも2~4塩基の連続するT塩基と、A若しくはG若しくはC塩基との組み合わせからなる配列を含む少なくとも15塩基のmRNA捕獲用プローブである、[2]に記載の方法。
[4]ターゲット核酸がmRNAであり、第1のプローブが、少なくとも5~7塩基の連続するT塩基と、A若しくはG若しくはC塩基との組み合わせからなる配列を含む少なくとも15塩基のmRNA捕獲用プローブである、[2]に記載の方法。
[5]ターゲット核酸がmRNAであり、第1のプローブが、少なくとも8~10塩基の連続するT塩基と、A若しくはG若しくはC塩基との組み合わせからなる配列を含む少なくとも15塩基のmRNA捕獲用プローブである、[2]に記載の方法。
[6]第1の伸長鎖を鋳型として第2のプローブをプライマーとして用いる相補鎖合成反応を行い、第2の伸長鎖を生成する工程をさらに含む、[1]~[5]のいずれかに記載の方法。
[7]第2の伸長鎖を鋳型として第3のプローブをプライマーとして用いる相補鎖合成反応を行い、第3の伸長鎖を生成する工程をさらに含む、[6]に記載の方法。
[8]第3のプローブが、第1のプローブと同じものである、[7]に記載の方法。
[9]第3のプローブが、第2の伸長鎖における第1のプローブの相補配列部分と相補鎖結合するものであり、かつ第1のプローブの相補配列部分に対して1若しくは数個のミスマッチ塩基を有するように設計されている、[7]に記載の方法。
[10]プローブに含まれる少なくとも1塩基が人工核酸である、[1]~[9]のいずれかに記載の方法。
Therefore, the present invention includes the following [1] to [22].
[1] A step of preparing a target nucleic acid from a sample,
A step of binding to the target nucleic acid a first probe that has a complementary strand binding to a common sequence of the target nucleic acid; and a complementary strand synthesis reaction of the target nucleic acid using the first probe as a primer, Including a step of generating an extended strand, wherein the sequence of the first probe is not completely complementary to the common sequence of the target nucleic acid and has one or several mismatched bases A method for analyzing a target nucleic acid in a sample.
[2] The target nucleic acid is an mRNA having a homopolymer sequence consisting of a poly A sequence at its 3 ′ end, or a DNA or RNA having a homopolymer sequence consisting of a sequence of at least 6 bases of the same type, The method according to [1], wherein the first probe is not completely complementary to the homopolymer sequence as a common sequence and has one or several mismatch bases.
[3] A probe for capturing mRNA having at least 15 bases, wherein the target nucleic acid is mRNA and the first probe includes a sequence comprising a combination of at least 2 to 4 consecutive T bases and A, G, or C bases. The method according to [2], wherein
[4] The target nucleic acid is mRNA, and the first probe is an at least 15-base mRNA capture probe comprising a sequence comprising a combination of at least 5 to 7 consecutive T bases and A, G, or C bases The method according to [2], wherein
[5] The target nucleic acid is mRNA, and the first probe is a probe for capturing mRNA of at least 15 bases comprising a sequence comprising a combination of at least 8 to 10 consecutive T bases and A, G, or C bases The method according to [2], wherein
[6] The method according to any one of [1] to [5], further comprising a step of performing a complementary strand synthesis reaction using the first extended strand as a template and the second probe as a primer to generate a second extended strand The method described.
[7] The method according to [6], further comprising a step of performing a complementary strand synthesis reaction using the second extended strand as a template and the third probe as a primer to generate a third extended strand.
[8] The method according to [7], wherein the third probe is the same as the first probe.
[9] The third probe has a complementary strand binding to the complementary sequence portion of the first probe in the second extended strand, and one or several mismatches to the complementary sequence portion of the first probe The method according to [7], which is designed to have a base.
[10] The method according to any one of [1] to [9], wherein at least one base contained in the probe is an artificial nucleic acid.
[11]ミスマッチ塩基を有するプローブが、その3'末端にVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有する、[1]~[10]のいずれかに記載の方法。
[12]ミスマッチ塩基を有するプローブが、その3'末端にVVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有する、[1]~[10]のいずれかに記載の方法。
[13]ミスマッチ塩基を有するプローブが、その3'末端にVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するプローブと、その3'末端にVVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するプローブとの混合物である、[1]~[10]のいずれかに記載の方法。
[14]ミスマッチ塩基を有するプローブが、その5'末端に既知配列からなるアダプター配列を有する、[1]~[13]のいずれかに記載の方法。
[15]アダプター配列が、クラスIISタイプの制限酵素認識配列を含む、[14]に記載の方法。
[16]プローブの配列の融解温度(Tm)が上昇するようにプローブが設計される、[1]~[15]のいずれかに記載の方法。
[17]融解温度(Tm)が核酸増幅反応に適した温度となるようにプローブが設計される、[1]~[16]のいずれかに記載の方法。
[18]融解温度(Tm)が核酸の配列決定反応に適した温度となるようにプローブが設計される、[1]~[16]のいずれかに記載の方法。
[19]伸長鎖に制限酵素認識配列が導入されるようにプローブが設計される、[1]~[18]のいずれかに記載の方法。
[20]第1のプローブが固相担体に固定化されている、[1]~[19]のいずれかに記載の方法。
[21]得られた伸長鎖を用いて、核酸増幅反応、配列決定反応、又はcDNAライブラリの調製を行う工程をさらに含む、[1]~[20]のいずれかに記載の方法。
[22]第1のプローブ及び第2のプローブを混合して、又は第1のプローブ及び第2のプローブ及び第3のプローブを混合して、ターゲット核酸の核酸増幅反応を行う、[21]に記載の方法。
[11] A probe having a mismatched base has a VN sequence (V represents A, C or G base, N represents A, C, G or T base) at the 3 ′ end thereof, [1] to [ [10] The method according to any one of [10].
[12] A probe having a mismatched base has a VVN sequence (V represents A, C or G base and N represents A, C, G or T base) at the 3 ′ end thereof, [1] to [ [10] The method according to any one of [10].
[13] A probe having a mismatched base has a VN sequence (V represents A, C or G base, N represents A, C, G or T base) at its 3 ′ end, and its 3 ′ Any one of [1] to [10], which is a mixture with a probe having a VVN sequence at the end (V represents A, C or G base, and N represents A, C, G or T base) the method of.
[14] The method according to any one of [1] to [13], wherein the probe having a mismatched base has an adapter sequence consisting of a known sequence at its 5 ′ end.
[15] The method according to [14], wherein the adapter sequence comprises a class IIS type restriction enzyme recognition sequence.
[16] The method according to any one of [1] to [15], wherein the probe is designed to increase the melting temperature (Tm) of the probe sequence.
[17] The method according to any one of [1] to [16], wherein the probe is designed so that the melting temperature (Tm) is a temperature suitable for the nucleic acid amplification reaction.
[18] The method according to any one of [1] to [16], wherein the probe is designed such that the melting temperature (Tm) is a temperature suitable for the nucleic acid sequencing reaction.
[19] The method according to any one of [1] to [18], wherein the probe is designed so that a restriction enzyme recognition sequence is introduced into the extended strand.
[20] The method according to any one of [1] to [19], wherein the first probe is immobilized on a solid phase carrier.
[21] The method according to any one of [1] to [20], further comprising a step of performing a nucleic acid amplification reaction, a sequencing reaction, or preparation of a cDNA library using the obtained extended strand.
[22] The nucleic acid amplification reaction of the target nucleic acid is performed by mixing the first probe and the second probe, or by mixing the first probe, the second probe, and the third probe. The method described.
 本発明により、試料中のターゲット核酸の分析方法が提供される。本発明の方法では、ターゲット核酸に含まれるホモポリマー配列を塩基置換することによって、ホモポリマー配列に起因する問題を解決することができる。また、生成される伸長鎖の融解温度Tmの上昇を実現し、続いて行う核酸増幅反応や配列決定反応において、安定した相補鎖結合を行うことができるプライマー結合部位が提供される。従って、本発明により、核酸を高効率、迅速かつ正確に分析することが可能となる。 The present invention provides a method for analyzing a target nucleic acid in a sample. In the method of the present invention, the problem caused by the homopolymer sequence can be solved by base substitution of the homopolymer sequence contained in the target nucleic acid. In addition, a primer binding site is provided that realizes an increase in the melting temperature Tm of the generated extended strand and enables stable complementary strand binding in the subsequent nucleic acid amplification reaction and sequencing reaction. Therefore, according to the present invention, nucleic acids can be analyzed with high efficiency, speed and accuracy.
本発明の反応工程の概略を示す。The outline of the reaction process of this invention is shown. 実施例において使用したプローブの配列と、そのプローブを用いたcDNA合成反応効率を示すグラフである。It is a graph which shows the arrangement | sequence of the probe used in the Example, and the cDNA synthesis reaction efficiency using the probe. 実施例において使用したプローブの配列と、そのプローブを用いたcDNA合成反応効率を示すグラフである。It is a graph which shows the arrangement | sequence of the probe used in the Example, and the cDNA synthesis reaction efficiency using the probe. 実施例において使用したプローブの配列と、そのプローブを用いたcDNA合成反応効率を示すグラフである。It is a graph which shows the arrangement | sequence of the probe used in the Example, and the cDNA synthesis reaction efficiency using the probe. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention. 本発明の反応工程の一実施形態を示す図である。It is a figure which shows one Embodiment of the reaction process of this invention.
 以下、本発明を詳細に説明する。本願は、2010年6月16日に出願された日本国特許出願第2010-137073号の優先権を主張するものであり、上記特許出願の明細書及び/又は図面に記載される内容を包含する。 Hereinafter, the present invention will be described in detail. This application claims the priority of Japanese Patent Application No. 2010-137073 filed on June 16, 2010, and includes the contents described in the specification and / or drawings of the above patent application. .
 本発明は、試料中のターゲット核酸を分析する方法に関する。すなわち、試料中からターゲット核酸を増幅したり、ターゲット核酸の配列決定を行ったり、ターゲット核酸からcDNAライブラリを構築するために、試料からターゲット核酸を迅速、効率的かつ確実に捕捉し、処理する。 The present invention relates to a method for analyzing a target nucleic acid in a sample. That is, in order to amplify a target nucleic acid from a sample, determine a sequence of the target nucleic acid, or construct a cDNA library from the target nucleic acid, the target nucleic acid is quickly and efficiently captured and processed.
 具体的には、本発明の方法は、以下の工程を含む:
 試料からターゲット核酸を調製する工程、
 該ターゲット核酸に、該ターゲット核酸が有する共通配列と相補鎖結合する第1のプローブを結合させる工程、及び
 第1のプローブをプライマーとして用いて該ターゲット核酸の相補鎖合成反応を行い、第1の伸長鎖を生成する工程。
Specifically, the method of the present invention comprises the following steps:
Preparing a target nucleic acid from a sample;
A step of binding to the target nucleic acid a first probe that has a complementary strand binding to a common sequence of the target nucleic acid; and a complementary strand synthesis reaction of the target nucleic acid using the first probe as a primer, Generating an extended chain;
 まず、試料からターゲット核酸を調製する。試料は、核酸を含む試料であれば特に限定されるものではなく、生体由来試料(例えば細胞試料、組織試料、液体試料など)、及び合成試料(例えばcDNAライブラリなどの核酸ライブラリなど)の任意の試料を用いることができる。生体由来試料の場合、試料の由来となる生体も特に限定されるものではなく、脊椎動物(例えば哺乳類、鳥類、爬虫類、魚類、両生類など)、無脊椎動物(例えば昆虫、線虫、甲殻類など)、原生生物、植物、真菌、細菌、ウイルスなどの任意の生体に由来する試料を用いることができる。 First, target nucleic acid is prepared from the sample. The sample is not particularly limited as long as it is a sample containing nucleic acid, and can be any biological sample (eg, cell sample, tissue sample, liquid sample, etc.), or synthetic sample (eg, nucleic acid library such as cDNA library). A sample can be used. In the case of a sample derived from a living body, the living body from which the sample is derived is not particularly limited, and vertebrates (eg, mammals, birds, reptiles, fishes, amphibians, etc.), invertebrates (eg, insects, nematodes, crustaceans, etc.) ), A sample derived from any living organism such as a protist, a plant, a fungus, a bacterium, or a virus can be used.
 ターゲット核酸は、分析しようとする配列を含む核酸であれば特に限定されるものではなく、デオキシリボ核酸(DNA)、例えばcDNA、及びリボ核酸(RNA)、例えばメッセンジャーRNA(mRNA)、並びにそれらの断片及びハイブリッド核酸などである。本発明においては、ターゲット核酸として、その3'末端にポリA配列からなるホモポリマー配列を有するmRNA、又は同じ種類の塩基が少なくとも6塩基連続した配列からなるホモポリマー配列を有するDNA若しくはRNAを使用することが好ましい。ここで「ホモポリマー配列」とは、同じ種類の塩基が連続して存在する配列を意味し、例えばポリA配列(A塩基が連続して存在する)がよく知られている。本発明では、「ホモポリマー配列」は、同じ種類の塩基が少なくとも6塩基、好ましくは少なくとも8塩基連続して存在する。 The target nucleic acid is not particularly limited as long as it contains the sequence to be analyzed. Deoxyribonucleic acid (DNA), such as cDNA, and ribonucleic acid (RNA), such as messenger RNA (mRNA), and fragments thereof And hybrid nucleic acids. In the present invention, as a target nucleic acid, mRNA having a homopolymer sequence consisting of a polyA sequence at its 3 ′ end, or DNA or RNA having a homopolymer sequence consisting of a sequence of at least 6 bases of the same type is used. It is preferable to do. Here, the “homopolymer sequence” means a sequence in which the same kind of bases are continuously present. For example, a poly A sequence (A bases are continuously present) is well known. In the present invention, the “homopolymer sequence” has at least 6 bases, preferably at least 8 bases, of the same kind of bases.
 試料からの核酸の調製は、当技術分野で公知の方法により行うことができる。例えば、細胞からターゲット核酸を調製する場合には、Proteinase Kのようなタンパク質分解酵素、チオシアン酸グアニジン・グアニジン塩酸といったカオトロピック塩、Tween及びSDSといった界面活性剤、あるいは市販の細胞溶解用試薬を用いて、細胞を溶解し、それに含まれる核酸、すなわちDNA及びRNAを溶出することができる。RNAを調製する場合には、上記の細胞溶解により溶出された核酸のうち、DNAをDNA分解酵素(DNase)により分解し、核酸としてRNAのみを含む試料が得られる。mRNAを調製する場合には、mRNAはポリA配列を含むことから、上記のように調製したRNA試料から、ポリT配列を含むDNAプローブを用いてmRNAのみを捕捉することができる。このような核酸の調製を行うために、多数のメーカーからキットが販売されており、目的とする核酸を簡便に精製することが可能である。 Preparation of nucleic acid from a sample can be performed by a method known in the art. For example, when preparing a target nucleic acid from cells, use a proteolytic enzyme such as Proteinase K, a chaotropic salt such as guanidine thiocyanate or guanidine hydrochloride, a surfactant such as Tween or SDS, or a commercially available reagent for cell lysis. The cells can be lysed and the nucleic acids contained therein, ie DNA and RNA, can be eluted. When RNA is prepared, among the nucleic acids eluted by cell lysis, DNA is decomposed with a DNA degrading enzyme (DNase), and a sample containing only RNA as a nucleic acid is obtained. When mRNA is prepared, since the mRNA contains a poly A sequence, only the mRNA can be captured from the RNA sample prepared as described above using a DNA probe containing a poly T sequence. In order to prepare such a nucleic acid, kits are sold from many manufacturers, and the target nucleic acid can be easily purified.
 上述のように調製したターゲット核酸に、該ターゲット核酸が有する共通配列と相補鎖結合する第1のプローブを結合させる。ターゲット核酸が有する共通配列とは、分析しようとする複数種のターゲット核酸に共通して含まれる配列を意味し、そのような共通配列としては、例えばmRNAにおけるポリA配列、特定の繰り返し配列、ライゲーション等により前工程で導入された化学合成オリゴDNA部、又は、前工程でプラスミドに挿入されている場合のプラスミド部の配列などがある。 The first probe that binds to the common sequence of the target nucleic acid and complementary strand is bound to the target nucleic acid prepared as described above. The common sequence possessed by the target nucleic acid means a sequence commonly contained in a plurality of types of target nucleic acids to be analyzed. Examples of such a common sequence include a poly A sequence in mRNA, a specific repetitive sequence, and a ligation. For example, there may be a chemically synthesized oligo DNA portion introduced in the previous step by the above method, or a sequence of the plasmid portion when inserted into the plasmid in the previous step.
 本発明において、第1のプローブは、ターゲット核酸が有する共通配列に対して完全に相補的ではなく、1若しくは数個のミスマッチ塩基を有するように設計される。すなわち、第1のプローブは、ターゲット核酸の共通配列に対して相補的な配列において1若しくは数個の塩基が相補的ではない塩基を含む配列を有する。本発明では、そのような相補的ではない塩基を「ミスマッチ(塩基)」と呼び、一方、相補的な塩基を「マッチ(塩基)」と呼ぶ。当技術分野では、プローブ又はプライマーは、鋳型核酸に対して数個のミスマッチ塩基を含む場合でも、鋳型核酸と相補鎖結合することが知られている。 In the present invention, the first probe is not completely complementary to the common sequence of the target nucleic acid and is designed to have one or several mismatch bases. That is, the first probe has a sequence containing a base in which one or several bases are not complementary in a sequence complementary to the common sequence of the target nucleic acid. In the present invention, such non-complementary bases are referred to as “mismatch (base)”, while complementary bases are referred to as “match (base)”. It is known in the art that a probe or primer binds complementarily to a template nucleic acid even if it contains several mismatched bases with respect to the template nucleic acid.
 プローブは、公知のオリゴヌクレオチド合成方法により作製することができ、プローブに含まれる塩基は、天然の塩基(アデニンA、グリシンG、シトシンC、チミンT、ウラシルU、イノシンIなど)であってもよいし、あるいは人工核酸(例えばペプチド核酸PNA)であってもよい。あるいは、プローブは、天然の塩基と人工核酸との混合物であってもよく、少なくとも1塩基を人工核酸とすることが可能である。 The probe can be prepared by a known oligonucleotide synthesis method. Even if the base contained in the probe is a natural base (adenine A, glycine G, cytosine C, thymine T, uracil U, inosine I, etc.) It may be an artificial nucleic acid (for example, peptide nucleic acid PNA). Alternatively, the probe may be a mixture of a natural base and an artificial nucleic acid, and at least one base can be an artificial nucleic acid.
 プローブの設計は、ターゲット核酸が有する共通配列、配列の長さや融解温度(Tm)などを考慮して行う。融解温度(Tm:Melting Temperature)とは、プローブとターゲット核酸の50%が相補鎖を形成する温度であり、相補鎖形成安定性の指標である。プローブ(又はプライマー)としての機能を有する配列の長さとしては、10塩基以上が好ましく、より好ましくは15塩基以上であり、さらに好ましくは18塩基以上である。例えば、プローブの長さは、10~50塩基、15~50塩基、15~30塩基、又は20~50塩基とすることができる。 The probe is designed in consideration of the common sequence of the target nucleic acid, the length of the sequence, the melting temperature (Tm), and the like. Melting temperature: The (Tm M elting T emperature), the temperature at which 50% of the probes and the target nucleic acid to form complementary strands is indicative of complement form stability. The length of the sequence having a function as a probe (or primer) is preferably 10 bases or more, more preferably 15 bases or more, and further preferably 18 bases or more. For example, the length of the probe can be 10-50 bases, 15-50 bases, 15-30 bases, or 20-50 bases.
 ターゲット核酸がmRNAであり、共通配列がポリA配列である場合について詳細に説明する。ポリA配列を有するmRNAを捕獲するためのプローブ(mRNA捕獲用プローブ)として、一般的に5'-TTTTTTTTTTTTTTTTTTTTVN-3'(配列番号1)(配列中、V=A、C及びGの混合塩基、N=A、C、G及びTの混合塩基)の配列を有するプローブが使用されている。これは、mRNAの3'末端のポリA配列と、それに続く遺伝子特異配列部分の境界部分に相補鎖結合するプローブである。なお、このプローブの融解温度Tmは52.6℃である(Integrated DNA technologies社 Oligo Analyzer3.1で計算)。また、プローブは、その3'末端にVVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するものであってもよい。本発明の方法においては、その3'末端にVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するプローブと、その3'末端にVVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するプローブとの混合物を用いることも可能である。 The case where the target nucleic acid is mRNA and the common sequence is a poly A sequence will be described in detail. As a probe (mRNA capture probe) for capturing mRNA having a poly A sequence, generally 5′-TTTTTTTTTTTTTTTTTTTTVN-3 ′ (SEQ ID NO: 1) (in the sequence, a mixed base of V = A, C and G, A probe having a sequence of N = A, C, G and T) is used. This is a probe that binds complementarily to the poly A sequence at the 3 ′ end of mRNA and the boundary portion of the gene-specific sequence portion that follows. The probe has a melting temperature Tm of 52.6 ° C. (calculated by Integrated DNA Technologies, Inc., Oligo Analyzer 3.1). The probe may have a VVN sequence (V represents A, C, or G base, and N represents A, C, G, or T base) at its 3 ′ end. In the method of the present invention, a probe having a VN sequence (V represents A, C or G base, N represents A, C, G or T base) at its 3 ′ end, and VVN at its 3 ′ end. It is also possible to use a mixture with a probe having the sequence (V represents A, C or G base and N represents A, C, G or T base).
 第1のプローブの設計において、上記のポリA配列に対して相補的な配列に、1若しくは数個のミスマッチ塩基を挿入する。上記配列(配列番号1)において、20塩基連続するT配列のうち1塩基をGに置換するだけで、Tmは1.6~1.9℃上昇する。一方でミスマッチ塩基が1塩基存在すると、Tmが約1℃低下するとされる。このことから、プローブに1塩基のミスマッチ塩基を挿入することは、反応にはほとんど影響を与えないことがわかる。一般的に使用されるmRNAをcDNAに逆転写(相補鎖合成)するための酵素(Reverse Transcriptase)は42~50℃が至適温度であるため、この範囲より高いTmを有するプローブは、Tmより低い温度での反応条件下ではほとんどが相補鎖を形成していると考えられる。このことから、配列番号1のプローブのTm(=52.6℃)より10℃近く温度が下がっても逆転写反応の至適温度においては相補鎖を形成することが可能である。例えば、実施例1に記載のように、ミスマッチ塩基を挿入する前のプローブのTm、及び設計したプローブのTmを計算し、両者を比較して、設計したプローブのTmが目的の範囲内(例えば使用する逆転写酵素の至適温度範囲)であるか否かを確認することができる。 In the design of the first probe, one or several mismatch bases are inserted into a sequence complementary to the above poly A sequence. In the above sequence (SEQ ID NO: 1), Tm is increased by 1.6 to 1.9 ° C. by replacing only one base with G in 20 consecutive T sequences. On the other hand, if there is one mismatched base, Tm decreases by about 1 ° C. This indicates that the insertion of a single mismatch base into the probe has little effect on the reaction. The most commonly used enzyme for reverse transcription (complementary strand synthesis) of mRNA to cDNA (ReversemTranscriptase) is 42-50 ℃, so probes with Tm higher than this range are Under the reaction conditions at a low temperature, most of them are considered to form complementary strands. From this, it is possible to form a complementary strand at the optimum temperature for the reverse transcription reaction even when the temperature drops by about 10 ° C. from the Tm (= 52.6 ° C.) of the probe of SEQ ID NO: 1. For example, as described in Example 1, the Tm of the probe before insertion of the mismatched base and the Tm of the designed probe are calculated and compared, and the Tm of the designed probe is within the target range (for example, It can be confirmed whether or not the temperature is within the optimum temperature range of the reverse transcriptase to be used.
 本発明においては、融解温度(Tm)が上昇するようにプローブを設計することが好ましい。具体的には、手動で又は公知のプログラムを用いて、設計したプライマー/プローブの配列の組成及び塩基長から融解温度Tmを計算し、そのTmが目的とする温度範囲であるかどうかを確認する。 In the present invention, it is preferable to design the probe so that the melting temperature (Tm) increases. Specifically, the melting temperature Tm is calculated from the designed primer / probe sequence composition and base length manually or using a known program, and it is confirmed whether the Tm is within the target temperature range. .
 ミスマッチ塩基はその数が増えるほどTmが劇的に下がり、3塩基挿入されると約10℃低下する(Primer解析ソフトウエアOligo ver6.71で計算)。従って、mRNA捕獲用プローブの場合、全長20塩基のT塩基からなるホモポリマーのうち3塩基程度まではミスマッチ塩基の挿入が可能となる。但し、ミスマッチ塩基の挿入の頻度については、逆転写酵素の種類や、使用するミスマッチ塩基の塩基種によっても相補鎖結合能が異なることから、3塩基までに限定されるものではない。例えば、20塩基からなるプローブの場合には、1~10個、好ましくは1~5個、より好ましくは1~3個のミスマッチ塩基を挿入することができ、当業者であれば、公知のプローブ/プライマー設計用のプログラムを使用してTmを計算したり、あるいは都度実験を実際に行って、至適条件を決定することが可能である。また、ミスマッチ塩基として挿入される塩基種は同一であってもよいし、あるいは異なる塩基種の組合せであってもよい。ミスマッチ塩基の挿入頻度も同一である必要はなく、ミスマッチ塩基が挿入される間隔が異なっていても可能である。 Tm decreases dramatically as the number of mismatched bases increases, and decreases by about 10 ° C when 3 bases are inserted (calculated by Primer analysis software Oligo ver6.71). Therefore, in the case of a probe for capturing mRNA, mismatch bases can be inserted up to about 3 bases out of a homopolymer consisting of T bases having a total length of 20 bases. However, the frequency of mismatch base insertion is not limited to 3 bases because the complementary strand binding ability varies depending on the type of reverse transcriptase and the base type of the mismatch base used. For example, in the case of a probe composed of 20 bases, 1 to 10, preferably 1 to 5, more preferably 1 to 3 mismatch bases can be inserted. / The optimum conditions can be determined by calculating Tm using a primer design program, or by actually conducting experiments each time. Further, the base species inserted as a mismatch base may be the same or a combination of different base species. The frequency of mismatch base insertion need not be the same, and it is possible even if the intervals at which mismatch bases are inserted are different.
 例えば、mRNA捕獲用プローブ(第1のプローブ)は、少なくとも2~4塩基の連続するT塩基と、T以外のA若しくはG若しくはC塩基の組み合わせからなる配列を含む少なくとも15塩基のプローブとすることができる。また例えば、mRNA捕獲用プローブ(第1のプローブ)は、少なくとも5~7塩基の連続するT塩基と、T以外のA若しくはG若しくはC塩基の組み合わせからなる配列を含む少なくとも15塩基のプローブとすることができる。あるいは、mRNA捕獲用プローブ(第1のプローブ)は、少なくとも8~10塩基の連続するT塩基と、T以外のA若しくはG若しくはC塩基の組み合わせからなる配列を含む少なくとも15塩基のプローブとすることができる。本発明に従って使用することができるプローブ配列の具体例を配列番号2~16に示す。 For example, the mRNA capture probe (first probe) should be a probe of at least 15 bases comprising a sequence comprising a combination of at least 2 to 4 consecutive T bases and an A, G, or C base other than T. Can do. Further, for example, the mRNA capture probe (first probe) is a probe of at least 15 bases comprising a sequence comprising a combination of at least 5 to 7 consecutive T bases and A, G or C bases other than T. be able to. Alternatively, the probe for mRNA capture (first probe) should be a probe of at least 15 bases comprising a sequence comprising a combination of at least 8 to 10 consecutive T bases and A, G, or C bases other than T. Can do. Specific examples of probe sequences that can be used in accordance with the present invention are shown in SEQ ID NOs: 2-16.
 前述のプローブ(配列番号1)に3塩基のミスマッチ塩基を導入したプローブは、例えば5'-TTCTTTTTCTTTTTCTTTTTVN-3'(配列番号12)となる。配列中、Cの部分がターゲット核酸に含まれるポリA配列に対してミスマッチ塩基となる。このミスマッチ塩基を有するプローブを用いて伸長した伸長鎖において、Tが5塩基連なっている部分が最長であり、もはやホモポリマー配列ではなくなっている。 A probe in which a mismatched base of 3 bases is introduced into the aforementioned probe (SEQ ID NO: 1) is, for example, 5'-TTCTTTTTCTTTTTCTTTTTVN-3 '(SEQ ID NO: 12). In the sequence, part C is a mismatch base with respect to the poly A sequence contained in the target nucleic acid. In the extended chain extended using the probe having this mismatched base, the portion where T is linked by 5 bases is the longest and is no longer a homopolymer sequence.
 更に、3塩基がC塩基に置換されることで、Tmが52.6℃から59.6℃へと7℃も上昇する。これは、伸長鎖生成後に、このミスマッチ塩基を含むプローブに対応する領域をPCR用のプライマープライミングサイトとして使用する際に非常に有利に働く。PCR反応は、逆転写反応とは異なり高い温度で反応するほど産物の特異性における精度を向上させることが可能である。プライマーのTmが低いと、相補鎖結合のステップにおいて反応温度を低く設定せざるをえず、結果的に目的とは異なる部位にミスマッチで相補鎖結合する確率が高くなりPCR増幅後に副産物として増幅されてしまう。上述したようにミスマッチ塩基を含むプローブを使用することで、mRNAの3'末端部のポリA塩基のホモポリマー配列の塩基置換を効率的に行なうことができ、これによって続く増幅の工程では塩基置換によってTm値が上昇したプライミングサイトを確保することが可能となる。 Furthermore, Tm increases from 52.6 ° C to 59.6 ° C by 7 ° C by replacing 3 bases with C base. This works very advantageously when the region corresponding to the probe containing the mismatched base is used as a primer priming site for PCR after the generation of the extended strand. Unlike the reverse transcription reaction, the PCR reaction can improve the accuracy in product specificity as it reacts at a higher temperature. If the Tm of the primer is low, the reaction temperature must be set low in the complementary strand binding step, resulting in a high probability of mismatched complementary strand binding to a site different from the target, resulting in amplification as a by-product after PCR amplification. End up. By using a probe containing a mismatched base as described above, it is possible to efficiently perform base substitution of the homopolymer sequence of the poly A base at the 3 ′ end of the mRNA, thereby allowing base substitution in the subsequent amplification step. It is possible to secure a priming site with an increased Tm value.
 このように、本発明においては、得られる伸長鎖における融解温度(Tm)が後に行う分析に適した温度となるように設計することが好ましい。すなわち、本発明に従ってプローブ(第1のプローブ及び/又は後述する第2若しくは第3のプローブなど)を設計することによって、生成される伸長鎖の融解温度Tmを、後に行うターゲット核酸の分析に適した温度に制御することが可能である。例えば核酸増幅反応を行う場合には、伸長鎖における核酸増幅用プライマーの結合する領域の融解温度(Tm)が、核酸増幅反応に使用するポリメラーゼの至適温度範囲内となるように、プローブを設計する。あるいは配列決定反応を行う場合には、伸長鎖における配列決定用プライマーの結合する領域の融解温度(Tm)が、45~70℃であり、好ましくは50~68℃であり、より好ましくは55~65℃となるように、プローブを設計する。 Thus, in the present invention, it is preferable that the melting temperature (Tm) in the obtained extended chain is designed to be a temperature suitable for analysis to be performed later. That is, by designing a probe (such as the first probe and / or the second or third probe described later) in accordance with the present invention, the melting temperature Tm of the extended chain produced is suitable for the analysis of the target nucleic acid to be performed later. Temperature can be controlled. For example, when performing a nucleic acid amplification reaction, design the probe so that the melting temperature (Tm) of the region to which the primer for nucleic acid amplification in the extended chain binds is within the optimum temperature range of the polymerase used in the nucleic acid amplification reaction. To do. Alternatively, when performing a sequencing reaction, the melting temperature (Tm) of the region to which the sequencing primer in the extended strand binds is 45 to 70 ° C., preferably 50 to 68 ° C., more preferably 55 to Design the probe to 65 ° C.
 またプローブ(第1のプローブ及び/又は後述する第2若しくは第3のプローブなど)は、その5'末端に既知配列からなるアダプター配列を有していてもよい。アダプター配列は、核酸の分析のための反応、例えばmRNAの捕獲、核酸増幅反応、配列決定反応などに影響を及ぼすことのない配列であれば、任意の長さの任意の組成の配列とすることができる。 The probe (the first probe and / or the second or third probe described later) may have an adapter sequence consisting of a known sequence at its 5 ′ end. The adapter sequence should be of any composition of any length as long as it does not affect reactions for nucleic acid analysis, such as mRNA capture, nucleic acid amplification reactions, sequencing reactions, etc. Can do.
 アダプター配列を有するプローブを用いて相補鎖合成反応を行った場合、得られる伸長鎖には、アダプター配列として既知の配列が導入される。そのため、その既知の配列をプライミングサイトとして利用して核酸増幅反応により網羅的にターゲット核酸を並列増幅することも可能である。また、アダプター配列の既知配列をプライミングサイトとして利用した配列決定も可能となる。また、アダプター配列にクローニング用のベクターに合わせた制限酵素認識配列を配置し、ベクターに挿入することでクローニングによる増幅も可能となる。 When a complementary strand synthesis reaction is performed using a probe having an adapter sequence, a sequence known as an adapter sequence is introduced into the resulting extended strand. Therefore, it is possible to comprehensively amplify the target nucleic acid in parallel by a nucleic acid amplification reaction using the known sequence as a priming site. In addition, sequencing using a known adapter sequence as a priming site is also possible. Further, by placing a restriction enzyme recognition sequence matched to the cloning vector in the adapter sequence and inserting it into the vector, amplification by cloning becomes possible.
 アダプター配列は、例えば制限酵素認識配列を含む配列とすることができる。制限酵素認識配列としては、限定されるものではないが、4塩基認識制限酵素MseI(T↓TAA)、MboI(↓GATC)、BfaI(C↓TAG)、FatI(↓CATG)の認識配列;6塩基認識制限酵素PsiI(TTA↓TAA)、SspI(AAT↓ATT)、HindIII(A↓AGCTT)の認識配列;クラスIISタイプの制限酵素認識配列、例えばGsuI(CTGGAG若しくはGACCTC)(認識配列から16塩基(上流鎖)若しくは14塩基(下流鎖)離れた部位を切断する)、BbrI、HgaI(特開2000-197493号公報、EP 1006180 B)の認識配列が挙げられる。 The adapter sequence can be a sequence including a restriction enzyme recognition sequence, for example. Restriction enzyme recognition sequences include, but are not limited to, 4-base recognition restriction enzymes MseI (T ↓ TAA), MboI (↓ GATC), BfaI (C ↓ TAG), FatI (↓ CATG) recognition sequences; 6 Base recognition restriction enzymes PsiI (TTA ↓ TAA), SspI (AAT ↓ ATT), HindIII (A ↓ AGCTT) recognition sequence; Class IIS type restriction enzyme recognition sequence such as GsuI (CTGGAG or GACCTC) (16 bases from the recognition sequence) (Upstream chain) or 14 bases (downstream chain) sites), BbrI, HgaI (JP 2000-197493 A, EP-1006180 B) recognition sequences.
 プローブ(第1のプローブ及び/又は後述する第2若しくは第3のプローブなど)は、生成される伸長鎖に制限酵素認識配列が導入されるように設計してもよい。例えば、上述したように、制限酵素認識配列を含むアダプター配列を5'末端に付加してもよいし、あるいはプローブ自体の配列にミスマッチ塩基を利用して制限酵素認識配列を挿入してもよい(すなわち、ミスマッチ塩基による置換によって、本来ターゲット核酸が有していない制限酵素認識配列を作為的に挿入することが可能となる)。 The probe (the first probe and / or the second or third probe described later) may be designed so that a restriction enzyme recognition sequence is introduced into the generated extended chain. For example, as described above, an adapter sequence containing a restriction enzyme recognition sequence may be added to the 5 ′ end, or a restriction enzyme recognition sequence may be inserted into the probe itself using a mismatch base ( That is, it becomes possible to insert a restriction enzyme recognition sequence that originally does not have the target nucleic acid by substitution with a mismatched base).
 第1のプローブは、遊離状態であってもよいし、又は5'末端側が固相担体に固定化されていてもよい。第1のプローブを固相担体に固定化することによって、固相担体にターゲット核酸を捕捉することができる。使用する固相担体は、核酸の操作に一般的に使用される固相担体であれば特に限定されるものではない。具体的には、水不溶性で、加熱変性時に溶融しない固相担体であることが好ましい。その材料としては、例えば、金、銀、銅、アルミニウム、タングステン、モリブデン、クロム、白金、チタン、ニッケル等の金属;ステンレス、ハステロイ、インコネル、モネル、ジュラルミン等の合金;シリコン;ガラス、石英ガラス、溶融石英、合成石英、アルミナ、サファイア、セラミクス、フォルステライト及び感光性ガラス等のガラス材料;ポリエステル樹脂、ポリスチレン、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂(Acrylonitrile Butadiene Styrene 樹脂)、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂及び塩化ビニル樹脂等のプラスチック;アガロース、デキストラン、セルロース、ポリビニルアルコール、ニトロセルロース、キチン、キトサンが挙げられる。また、固相担体の形状についても、特に限定はなく、平面により形成されるもの(例えばタイタープレート、多孔質若しくは細孔アレーなど)、平板、フィルム、チューブ及び粒子等が挙げられる。さらに、粒子として磁化された又は磁化可能な磁気ビーズを用いることによって、分離処理等について、自動化、効率化又は迅速化することができる。また固相担体として粒子を用いる場合、粒子の径は、通常50μm以下、例えば1.0μm~3.0μmである。 The first probe may be in a free state, or the 5 ′ end may be immobilized on a solid support. By immobilizing the first probe on the solid phase carrier, the target nucleic acid can be captured on the solid phase carrier. The solid phase carrier to be used is not particularly limited as long as it is a solid phase carrier generally used for nucleic acid manipulation. Specifically, it is preferably a solid support that is insoluble in water and does not melt during heat denaturation. Examples of the material include metals such as gold, silver, copper, aluminum, tungsten, molybdenum, chromium, platinum, titanium, and nickel; alloys such as stainless steel, hastelloy, inconel, monel, and duralumin; silicon; glass, quartz glass, Glass materials such as fused quartz, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; polyester resin, polystyrene, polyethylene resin, polypropylene resin, ABS resin (Acrylonitrile Butadiene Styrene resin), nylon, acrylic resin, fluorine resin , Polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin, melamine resin, epoxy resin, vinyl chloride resin and other plastics; agarose, dextran, cellulose, polyvinyl alcohol, nitro Cellulose, chitin, chitosan. Also, the shape of the solid phase carrier is not particularly limited, and examples thereof include those formed by a flat surface (for example, titer plate, porous or pore array), flat plates, films, tubes, and particles. Furthermore, by using magnetized or magnetizable magnetic beads as particles, separation processing and the like can be automated, made efficient, or accelerated. When particles are used as the solid support, the particle diameter is usually 50 μm or less, for example, 1.0 μm to 3.0 μm.
 第1のプローブなどのオリゴヌクレオチド又は核酸を固相担体に固定化する方法は、特に限定されないが、例えば、共有結合、イオン結合、物理吸着、生物学的結合(例えば、ビオチンとアビジン又はストレプトアビジンとの結合、抗原と抗体との結合など)によって固定化する方法などを例示することができる。第1のプローブは、スペーサー配列、例えば1~10個の炭素原子を含む炭化水素基を介して、固相担体に固定してもよい。あるいは、例えばT塩基やTC配列等を連続的に配置し、スペーサー配列として使用することも可能であり、各オリゴ合成メーカーが推奨するスペーサー配列であれば任意のスペーサー配列を使用することができる。 The method for immobilizing the oligonucleotide or nucleic acid such as the first probe on the solid phase carrier is not particularly limited. For example, covalent bond, ionic bond, physical adsorption, biological bond (for example, biotin and avidin or streptavidin) And the like, and the like. The first probe may be immobilized on the solid support via a spacer sequence, for example, a hydrocarbon group containing 1 to 10 carbon atoms. Alternatively, for example, T bases, TC sequences, and the like can be continuously arranged and used as a spacer sequence, and any spacer sequence can be used as long as it is a spacer sequence recommended by each oligo synthesis manufacturer.
 共有結合を介したプローブの固相担体への固定化は、例えば、プローブに官能基を導入しかつ該官能基と反応性の官能基を固相担体に導入して両者を反応させることにより実施できる。例えば、プローブにアミノ基を導入し、固相担体に活性エステル基、エポキシ基、アルデヒド基、カルボジイミド基、イソチオシアネート基又はイソシアネート基を導入することにより共有結合を形成できる。また、プローブにメルカプト基を導入し、固相担体に活性エステル基、マレイミド基又はジスルフィド基を導入してもよい。活性エステル基としては、例えば、p-ニトロフェニル基、N-ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5-ノルボルネン-2,3-ジカルボキシイミド基等が挙げられる。 Immobilization of the probe to the solid phase carrier via a covalent bond is performed, for example, by introducing a functional group into the probe and introducing a functional group reactive with the functional group into the solid phase carrier and reacting both. it can. For example, a covalent bond can be formed by introducing an amino group into the probe and introducing an active ester group, epoxy group, aldehyde group, carbodiimide group, isothiocyanate group or isocyanate group into the solid phase carrier. Further, a mercapto group may be introduced into the probe, and an active ester group, maleimide group or disulfide group may be introduced into the solid phase carrier. Examples of the active ester group include a p-nitrophenyl group, an N-hydroxysuccinimide group, a succinimide group, a phthalimide group, and a 5-norbornene-2,3-dicarboximide group.
 官能基を固相担体に導入する方法の一つとしては、所望の官能基を有するシランカップリング剤によって固体表面を処理する方法が挙げられる。カップリング剤の例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-β-アミノプロピルメチルジメトキシシラン、あるいはγ-グリシドキシプロピルトリメトキシシラン等を用いることができる。結合部位となる官能基を固相担体に導入する別の方法としては、プラズマ処理が挙げられる。このようなプラズマ処理により、固相担体に、水酸基やアミノ基等の官能基を導入することができる。プラズマ処理は、当業者には既知の装置を用いて行うことができる。 As one of the methods for introducing a functional group into a solid phase carrier, there is a method of treating a solid surface with a silane coupling agent having a desired functional group. Examples of coupling agents include γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -β-aminopropylmethyldimethoxysilane, Alternatively, γ-glycidoxypropyltrimethoxysilane or the like can be used. Another method for introducing a functional group to be a binding site into a solid phase carrier is plasma treatment. By such plasma treatment, a functional group such as a hydroxyl group or an amino group can be introduced into the solid phase carrier. The plasma treatment can be performed using an apparatus known to those skilled in the art.
 物理吸着によってプローブを固相担体に固定する方法としては、ポリ陽イオン(ポリリシン、ポリアリルアミン、ポリエチレンイミン等)で表面処理した固相担体に、核酸の荷電を利用して静電結合させる方法などが挙げられる。続いて、ターゲット核酸に第1のプローブを結合させた後、第1のプローブをプライマーとして用いて該ターゲット核酸の相補鎖合成反応を行う。本発明の方法において、相補鎖合成は、当技術分野で公知の方法に従って、例えば基質となる塩基(dNTPなど)の存在下で適当な逆転写酵素又はポリメラーゼを用いることにより行うことができる。 Examples of a method for immobilizing a probe to a solid phase carrier by physical adsorption include a method of electrostatically binding a solid phase carrier surface-treated with a polycation (polylysine, polyallylamine, polyethyleneimine, etc.) using the charge of a nucleic acid. Is mentioned. Subsequently, after the first probe is bound to the target nucleic acid, a complementary strand synthesis reaction of the target nucleic acid is performed using the first probe as a primer. In the method of the present invention, complementary strand synthesis can be performed according to a method known in the art, for example, using an appropriate reverse transcriptase or polymerase in the presence of a base (such as dNTP) serving as a substrate.
 ターゲット核酸がmRNAであり、その第1の伸長鎖としてcDNAを生成する場合には、逆転写酵素を用いた逆転写反応によって相補鎖合成することができる。ターゲット核酸がDNAであり、その第1の伸長鎖としてDNAを生成する場合には、例えばポリメラーゼを用いた複製反応によって伸長鎖を生成することができる。 When the target nucleic acid is mRNA and cDNA is generated as the first extension strand, complementary strand synthesis can be performed by reverse transcription using reverse transcriptase. When the target nucleic acid is DNA and DNA is generated as the first extended strand, the extended strand can be generated, for example, by a replication reaction using a polymerase.
 逆転写酵素は、RNAを鋳型として、プライマーの3'末端の水酸基に新たな塩基(ヌクレオチド)を付加し、プライマーを5'から3'方向へ伸長させる活性を有する酵素であり、例えば一般的なものとしてはM-MLV RTやAMV-RT(共にほとんど全ての試薬メーカーから供給)、また高温での反応可能なものとしては、Super Script III RT(Invitrogen社)や、MonsterScript (Epicentre社)などが市販されている。また相補鎖合成に使用するポリメラーゼは、DNAを鋳型として、プライマーの3'末端の水酸基に新たな塩基(ヌクレオチド)を付加し、プライマーを5'から3'方向へ伸長させる活性を有する酵素であり、例えば大腸菌DNAポリメラーゼ、DNA polymeraseやKlenow Polymerase(ほとんど全ての試薬メーカーから供給)、鎖置換機能を有するDNAポリメラーゼであるφ29 DNAポリメラーゼ、Bst DNAポリメラーゼ(Fermentase社、New England Biolabs社等)を用いることができる。 Reverse transcriptase is an enzyme that has the activity of extending a primer in the 5 'to 3' direction by adding a new base (nucleotide) to the hydroxyl group at the 3 'end of the primer using RNA as a template. M-MLV RT and AMV-RT (both supplied from almost all reagent manufacturers), and those that can react at high temperatures include Super Script III RT (Invitrogen) and MonsterScript (Epicentre) It is commercially available. The polymerase used for complementary strand synthesis is an enzyme that has the activity of extending a primer in the 5 'to 3' direction by adding a new base (nucleotide) to the hydroxyl group at the 3 'end of the primer using DNA as a template. Use, for example, E. coli DNA polymerase, DNA polymerase or Klenow Polymerase (supplied from almost all reagent manufacturers), φ29 DNA polymerase with strand displacement function, Bst DNA polymerase (Fermentase, New England Biolabs, etc.) Can do.
 また、本発明の方法では、生成された第1の伸長鎖を鋳型として第2のプローブをプライマーとして用いて相補鎖合成反応を行い、第2の伸長鎖を生成してもよい。さらに、第2の伸長鎖を鋳型として第3のプローブをプライマーとして用いて相補鎖合成反応を行い、第3の伸長鎖を生成してもよい。この場合の相補鎖合成も、上記と同様に行うことができる。 In the method of the present invention, the second extended strand may be generated by performing a complementary strand synthesis reaction using the generated first extended strand as a template and the second probe as a primer. Furthermore, a third extended strand may be generated by performing a complementary strand synthesis reaction using the second extended strand as a template and the third probe as a primer. In this case, complementary strand synthesis can also be performed in the same manner as described above.
 第2のプローブは、第1の伸長鎖を鋳型として相補鎖合成を行うことができる任意の配列を有するプローブとすることができる。その後の分析(例えば核酸増幅反応、配列決定反応、cDNAライブラリ作製)に応じて、適当な長さを有しかつ必要な領域を含む第2の伸長鎖が生成されるように、当業者であれば技術常識に基づいて適当なプローブを設計することができる。 The second probe can be a probe having an arbitrary sequence capable of performing complementary strand synthesis using the first extended strand as a template. A person skilled in the art can generate a second extension strand having an appropriate length and including a necessary region according to the subsequent analysis (for example, nucleic acid amplification reaction, sequencing reaction, cDNA library preparation). For example, an appropriate probe can be designed based on common general knowledge.
 第3のプローブは、第1のプローブと同じものであってもよいし、異なるものであってもよい。第1のプローブを第3のプローブとして使用する場合には、第2の伸長鎖における第1のプローブの相補配列部分と完全に相補鎖結合(マッチ)する。第1のプローブと異なる場合には、第3のプローブは、第2の伸長鎖における第1のプローブの相補配列部分と相補鎖結合するが、第1のプローブの相補配列部分に対して1若しくは数個のミスマッチ塩基を有するように設計されることが好ましい。ここで「第1のプローブの相補配列部分」とは、第2の伸長鎖が生成される際に、鋳型となる第1の伸長鎖における、第1のプローブの部分に対して相補鎖合成されて生じる第1のプローブに対して相補的な配列を有する部分を意味する。第3のプローブは、第1のプローブの設計について上述したのと同様に設計することができる。 The third probe may be the same as or different from the first probe. In the case where the first probe is used as the third probe, it is completely complementary chain-bonded (matched) with the complementary sequence portion of the first probe in the second extended strand. When different from the first probe, the third probe binds to the complementary sequence portion of the first probe in the second extended strand, but is 1 or to the complementary sequence portion of the first probe. It is preferably designed to have several mismatched bases. Here, the “complementary sequence portion of the first probe” means that a complementary strand is synthesized with the portion of the first probe in the first extension strand that is the template when the second extension strand is generated. Means a portion having a sequence complementary to the first probe. The third probe can be designed in the same manner as described above for the design of the first probe.
 また、ミスマッチ塩基を含むプローブを複数種使用することにより、ターゲット核酸から生じる伸長鎖の塩基を順次置換することが可能であり、後に行う核酸の分析反応に適した配列とすることができる。例えば上述したように、制限酵素認識配列を順次挿入することができる。また、ターゲット核酸において塩基置換しようとする塩基数が多い場合には、第1のプローブ、第3のプローブ、及び必要な場合にはさらなるプローブにおいてミスマッチ塩基を1~数個挿入して相補鎖合成を行い、その合成反応の過程で徐々に塩基を置換することが可能である。 In addition, by using a plurality of types of probes containing mismatched bases, it is possible to sequentially replace the bases of the extended chain generated from the target nucleic acid, and it is possible to obtain a sequence suitable for the subsequent nucleic acid analysis reaction. For example, as described above, restriction enzyme recognition sequences can be sequentially inserted. If the target nucleic acid has a large number of bases to be substituted, complementary strand synthesis can be performed by inserting one to several mismatched bases in the first probe, third probe, and further probes if necessary. It is possible to gradually replace the base in the course of the synthesis reaction.
 上記のように複数のプローブを使用する場合には、それらのプローブを混合して、ターゲット核酸の増幅反応を行うことができる。例えば、第1のプローブ及び第2のプローブを混合して、又は第1のプローブ及び第2のプローブ及び第3のプローブを混合して、ターゲット核酸の核酸増幅反応を行うことができる。最終的に必要とする配列を有する伸長鎖を生成するためのプライマーの濃度が一番高くなるように、プローブ(増幅用プライマーの)の混合比を調整することが好ましい。 When using a plurality of probes as described above, the amplification reaction of the target nucleic acid can be performed by mixing the probes. For example, the nucleic acid amplification reaction of the target nucleic acid can be performed by mixing the first probe and the second probe, or by mixing the first probe, the second probe, and the third probe. It is preferable to adjust the mixing ratio of the probe (for the amplification primer) so that the concentration of the primer for generating the extended strand having the required sequence finally becomes the highest.
 上記のようにして生成された伸長鎖は、さらなる核酸分析に供することができる。そのような核酸の分析としては、限定されるものではないが、核酸増幅反応(PCR、RCA等)、配列決定反応、cDNAライブラリの調製、クローニングなどが挙げられる。本発明の方法に従って生成された伸長鎖は、核酸増幅反応や配列決定反応に使用するプライマーの結合部位(プライミングサイト)の融解温度(Tm)が制御されており、そのような反応に好適である。 The extended chain generated as described above can be used for further nucleic acid analysis. Such nucleic acid analysis includes, but is not limited to, nucleic acid amplification reactions (PCR, RCA, etc.), sequencing reactions, cDNA library preparation, cloning, and the like. The extension strand produced according to the method of the present invention has a controlled melting temperature (Tm) of the binding site (priming site) of a primer used in nucleic acid amplification reaction or sequencing reaction, and is suitable for such reaction. .
 従って、本発明の方法は、得られた伸長鎖を用いて、核酸増幅反応、配列決定反応、又はcDNAライブラリの調製を行う工程をさらに含んでもよい。このような核酸分析の方法は、当技術分野で公知であり、当業者であれば適当な方法を選択して、実施することができる。 Therefore, the method of the present invention may further include a step of performing a nucleic acid amplification reaction, a sequencing reaction, or a cDNA library preparation using the obtained extended strand. Such nucleic acid analysis methods are known in the art, and those skilled in the art can select and carry out appropriate methods.
 以下、本発明を実施例によりさらに具体的に説明する。ただし、以下の実施例は、本発明を限定するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples do not limit the present invention.
[実施例1]
 ミスマッチmRNA捕獲用プローブを用いてRNA試料の逆転写反応を行ない、ホモポリマー配列を解消し、mRNAのポリA配列に続く遺伝子特異的配列を有する2本鎖cDNAの調製を行なう方法の詳細について説明する(図1~2)。
[Example 1]
Explains the details of reverse transcription reaction of RNA sample using mismatched mRNA capture probe, eliminating homopolymer sequence, and preparing double-stranded cDNA with gene-specific sequence following mRNA polyA sequence (Figs. 1-2).
 細胞や組織からTotal RNAの抽出を行なった。本実施例においては、RNeasy Plus Mini Kit(QIAGEN社)を用いて解析対象細胞からTotal RNA抽出を行なった。mRNA捕獲用プローブとして下記の配列を有するオリゴヌクレオチドを用意した。 Total RNA was extracted from cells and tissues. In this example, Total RNA was extracted from the cells to be analyzed using RNeasy® Plus® Mini® Kit (QIAGEN). Oligonucleotides having the following sequences were prepared as mRNA capture probes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例においては、mRNA捕獲用プローブに22塩基長のものを使用した。なお、塩基長はこれに限定されず、なかでもTm値(Melting Temperature;50%の鎖について相補鎖が形成される温度であり、相補鎖結合の安定性の目安となる)を考慮して15~30塩基長が適当である。また、5'末端部にmRNA捕獲には寄与しない配列部(アダプター)を挿入することも可能で、その場合はさらに塩基長が長くなる。また、ミスマッチ部に作為的に挿入する塩基種も同一である必要はなく、T以外のA、C若しくはGの塩基で構成されていればよい。ミスマッチの挿入頻度も同一である必要はなく、ミスマッチの間隔が異なっていても実現可能である。 In this example, a 22-base long mRNA capture probe was used. The base length is not limited to this, and in particular, the Tm value (MeltingelTemperature: the temperature at which the complementary strand is formed for 50% of the strands, which is a measure of the stability of complementary strand binding) 15 A length of ~ 30 bases is appropriate. It is also possible to insert a sequence portion (adapter) that does not contribute to mRNA capture at the 5 ′ end, and in that case, the base length is further increased. In addition, the base species that are intentionally inserted into the mismatch portion need not be the same, and may be composed of A, C, or G bases other than T. The mismatch insertion frequency need not be the same, and can be realized even if the mismatch intervals are different.
 上記工程で調製されたTotal RNA 20 ngに対してmRNA捕獲用プローブ(1 pmol)を加え滅菌水で4μLとし、70℃5分のインキュベーションの後、4℃まで冷却した。これにより、mRNA捕獲用プローブ(101)とTotal RNA中のmRNA(102)の3'末端ポリA配列(103)が相補鎖結合した。図1においては、3箇所のミスマッチ(110)を含んでいるプローブ13を例に示している。上記mRNA捕獲用プローブ(101)の配列におけるV(104)は、T以外のA、C若しくはGの3塩基の混合塩基を意味し、N(105)は、A、C、G若しくはTの4種混合塩基を意味する。VN配列を3'末端に配置することによりT以外の配列が現れるポリA配列との境界部でしか相補鎖を結合できないmRNA捕獲用プローブとなる。なお、3'末端部に配置するのはVN配列に限らず、VVN配列、又はVN配列とVNN配列との混合物でも目的を達成することが可能である。続いて、5×RT buffer 2μL、0.1 M Dithiothreitol(DTT)、0.5μL、RNaseOUTTM(40 units/μL、Invitrogen社)0.25μL、10 mM dNTP mixture 1μL、Super Script III RT(200 units/μL、Invitrogen社)1μL及び滅菌水1μLを加え、ピペッティングにより混合した後、50℃で一時間反応させた。反応終了後、85℃90秒間の熱処理を行い酵素の失活を行った。この反応により、mRNA捕獲用プローブ(101)がmRNA(102)を鋳型として伸長し、mRNAから逆転写された1st strand cDNA(106)が合成された。 A probe for capturing mRNA (1 pmol) was added to 20 ng of total RNA prepared in the above step to make 4 μL with sterilized water, incubated at 70 ° C. for 5 minutes, and then cooled to 4 ° C. As a result, the mRNA capture probe (101) and the 3′-terminal poly A sequence (103) of mRNA (102) in Total RNA were bound by complementary strands. In FIG. 1, a probe 13 including three mismatches (110) is shown as an example. V (104) in the sequence of the above-mentioned mRNA capture probe (101) means a mixed base of 3 bases of A, C or G other than T, and N (105) is 4 of A, C, G or T. By seed mixed base. By arranging the VN sequence at the 3 ′ end, it becomes an mRNA capture probe capable of binding a complementary strand only at the boundary with a poly A sequence in which a sequence other than T appears. Note that the arrangement at the 3 ′ end is not limited to the VN sequence, and the object can also be achieved by a VVN sequence or a mixture of a VN sequence and a VNN sequence. Next, 5 × RT buffer 2 μL, 0.1 M Dithiothreitol (DTT), 0.5 μL, RNaseOUT (40 units / μL, Invitrogen) 0.25 μL, 10 mM dNTP mixture 1 μL, Super Script III RT (200 units / μL, Invitrogen 1 μL and 1 μL of sterilized water were added, mixed by pipetting, and reacted at 50 ° C. for 1 hour. After completion of the reaction, the enzyme was inactivated by heat treatment at 85 ° C. for 90 seconds. By this reaction, the mRNA capture probe (101) was extended using mRNA (102) as a template, and 1st strand cDNA (106) reversely transcribed from mRNA was synthesized.
 続いて、2nd strand cDNAの合成を行った。上記1st strand cDNA反応溶液に、5×second strand buffer(100 mM Tris-Cl(pH6.9)、23 mM MgCl2、450 mM KCl、0.75 mM β-NAD+、50 mM (NH4)2SO4)20μL、10 mM dNTP 2μL、E Coli. DNA Ligease(1 units/μL、Invitrogen社)1μL、E Coli. DNA Polymerase(4 units/μL、Invitrogen社)2μL、E Coli. RnaseH(0.2 units/μL、Invitrogen社)1μLを添加し、滅菌水64μLを加え全量を100μLとした。ピペッティングにより溶液を混合した後、16℃で2時間反応させた。反応終了後、2.5mM EDTAを1μL加え、65℃10分間の熱処理を行い、酵素を失活させた。mRNA(102)とmRNA捕獲用プローブ(101)の間の相補鎖結合はミスマッチ(110)を含んでいたが、2nd strand cDNA(111)は1st strand cDNA(106)及びそれに続くmRNA捕獲用プローブ(101)を鋳型として伸長するため、生成される2本鎖cDNAにはミスマッチ部がなく、全てが正確にマッチ(相補鎖結合)(112)している。 Subsequently, 2nd strand cDNA was synthesized. 5x second strand buffer (100 mM Tris-Cl (pH 6.9), 23 mM MgCl 2 , 450 mM KCl, 0.75 mM β-NAD +, 50 mM (NH 4 ) 2 SO 4 ) 20 μL, 10 mM dNTP 2 μL, E Coli. DNA Ligease (1 units / μL, Invitrogen) 1 μL, E Coli. DNA Polymerase (4 units / μL, Invitrogen) 2 μL, E Coli. RnaseH (0.2 units / μL, Invitrogen 1 μL was added, and 64 μL of sterilized water was added to make the total volume 100 μL. The solution was mixed by pipetting and then reacted at 16 ° C. for 2 hours. After completion of the reaction, 1 μL of 2.5 mM EDTA was added and heat treatment was performed at 65 ° C. for 10 minutes to inactivate the enzyme. The complementary strand binding between the mRNA (102) and the mRNA capture probe (101) contained a mismatch (110), whereas the 2nd strand cDNA (111) was the 1st strand cDNA (106) followed by the mRNA capture probe ( 101) is used as a template, and the resulting double-stranded cDNA does not have a mismatch portion, and all are matched exactly (complementary strand binding) (112).
 図2-1、図2-2及び図2-3に、表1に示すミスマッチmRNA捕獲用プローブを用いた場合のcDNA合成効率の結果を示す。プローブ1はミスマッチを含まないスタンダードプローブであり、このプローブを用いた場合のcDNA合成産物量を1とし、合成効率を算出した。尚、合成産物量の定量は、ABI7900HT(Applied Biosystems社)を用いたqPCRにより計測した。 Fig. 2-1, Fig. 2-2, and Fig. 2-3 show the results of cDNA synthesis efficiency when using the mismatched mRNA capture probes shown in Table 1. Probe 1 is a standard probe containing no mismatch, and the amount of cDNA synthesis product when this probe was used was taken as 1, and the synthesis efficiency was calculated. The amount of the synthesized product was measured by qPCR using ABI7900HT (Applied Biosystems).
 プローブ2~6(図2-1)は1塩基のGをミスマッチとして配置したプローブであり、プローブ7~11(図2-2)は1塩基のCをミスマッチとして配置したプローブである。それぞれ3'末端から3、4、5、6又は7塩基目にミスマッチを配置し合成効率への影響を検討した。またプローブ12~15(図2-3)は、それぞれ6塩基ごと、5塩基ごと、4塩基ごと又は3塩基ごとにミスマッチを配置し、ミスマッチ頻度の合成効率への影響を検討した。 Probes 2 to 6 (Fig. 2-1) are probes with a single base G as a mismatch, and probes 7 to 11 (Fig. 2-2) are probes with a single base C as a mismatch. A mismatch was placed at 3, 4, 5, 6 or 7 bases from the 3 ′ end to examine the effect on the synthesis efficiency. Probes 12 to 15 (Fig. 2-3) were arranged with mismatches every 6 bases, every 5 bases, every 4 bases or every 3 bases, and the influence of mismatch frequency on the synthesis efficiency was examined.
 また、逆転写酵素として使用したSuper Script III RTのメーカー推奨のプロトコールにおける反応至適温度50℃、及びそれより2℃低い48℃でそれぞれ検討を行なった。 In addition, the optimum reaction temperature was 50 ° C and 48 ° C lower by 2 ° C in the protocol recommended by the manufacturer of Super Script III used as reverse transcriptase.
 その結果、1塩基のミスマッチを配置した場合では、50℃では反応効率が低下するが、2℃反応温度を下げることでミスマッチを配置しても概ね80%以上の効率でcDNAが合成できることを確認した(図2-1~2-3)。また、若干ではあるがミスマッチがCの場合もGの場合も、伸長末端である3'末端直近である3塩基目にミスマッチを配置するよりも、3'末端から5塩基程度に配置する方が影響の少ないことが確認できた。更には、ミスマッチの塩基としてはCよりGのほうが、反応効率への影響が少ないことを確認した。プローブ12~15を使用した場合の結果(図2-3)からは、ミスマッチの頻度が高くなるほど反応効率の低下が顕著であることを確認した。また、ミスマッチを1塩基挿入した場合と同様に、反応温度を至適温度から2℃さげた48℃の方が効率を改善できることも確認した。プローブ14はミスマッチが4塩基ごとに配置され、全長22塩基中4塩基はミスマッチとなる。このようなプローブを用いた場合も、完全マッチのプローブ1と比較して50%の効率でcDNAが合成されている。一方で、表1に示すようにプローブ1のTmが52.6℃なのに対し、プローブ13のTmは62.0℃であり、約10℃もTm値が上昇する。ミスマッチmRNA捕獲用プローブ部分の相補鎖である2nd strand cDNA合成後は、このプローブ部分が非常に安定性の高いプライミングサイトとなる。また、ホモポリマーが解消していることからプライマーが少しずつずれて相補鎖結合スリッピングも起きないため、PCRや配列決定のためのプライミングサイトとしての利用が可能となる。 As a result, when a single-base mismatch was placed, the reaction efficiency decreased at 50 ° C, but it was confirmed that cDNA could be synthesized with an efficiency of approximately 80% or more even if the mismatch was placed by lowering the reaction temperature at 2 ° C. (Figs. 2-1 to 2-3). In addition, in both cases where the mismatch is slightly C or G, it is better to place the mismatch at about 5 bases from the 3 'end than to place the mismatch at the 3rd base closest to the 3' end, which is the extension end. It was confirmed that there was little influence. Furthermore, it was confirmed that G as a mismatched base had less influence on reaction efficiency than C. From the results when probes 12 to 15 were used (FIG. 2-3), it was confirmed that the reaction efficiency decreased more markedly as the mismatch frequency increased. In addition, as in the case where one mismatch was inserted, it was confirmed that the efficiency could be improved at 48 ° C., which was obtained by reducing the reaction temperature by 2 ° C. from the optimum temperature. The probe 14 has mismatches every 4 bases, and 4 bases out of 22 bases are mismatches. Even when such a probe is used, cDNA is synthesized with an efficiency of 50% as compared with the probe 1 of perfect match. On the other hand, as shown in Table 1, the Tm of the probe 1 is 52.6 ° C., whereas the Tm of the probe 13 is 62.0 ° C., and the Tm value increases by about 10 ° C. After synthesis of 2nd strand cDNA, which is the complementary strand of the mismatched mRNA capture probe portion, this probe portion becomes a very stable priming site. In addition, since the homopolymer is eliminated, the primer is shifted little by little and complementary chain bond slipping does not occur, so that it can be used as a priming site for PCR and sequencing.
 本実施例では、プローブ12~15ではミスマッチを等間隔で配置したが、ミスマッチの配置方法はこれに限定されるものではない。図2-1~2-3に示されるように、反応効率は、ミスマッチの塩基種、3'末端部からの距離、そして頻度と、複数の要素によって決定されるものであり、都度最適化を行ない、必要条件を満たすミスマッチmRNA捕獲用プローブを使用することが可能である。また、PNA(ペプチド核酸)等に代表される人工核酸は、DNAやRNAとの結合力が増大することが知られており、プローブの途中数塩基程度を人工核酸に置換することで、ミスマッチで低下する相補鎖結合の結合力を上げることも可能である。 In this embodiment, mismatches are arranged at equal intervals in the probes 12 to 15, but the mismatch arrangement method is not limited to this. As shown in Figures 2-1 to 2-3, the reaction efficiency is determined by the mismatched base species, the distance from the 3 'end, the frequency, and several factors. It is possible to use a mismatched mRNA capture probe that meets the requirements. In addition, artificial nucleic acids such as PNA (peptide nucleic acid) are known to have increased binding power to DNA and RNA. By replacing several bases in the probe with artificial nucleic acids, mismatches occur. It is also possible to increase the binding strength of the complementary strand bond that decreases.
 以上に示す本実施例により、mRNAのポリA配列由来のホモポリマー配列部がmRNA捕獲用プローブに作為的に配置されたT以外の配列とのミスマッチを含む相補鎖結合及び伸長反応により、塩基が置き換えられ、mRNAのポリA配列由来のホモポリマーが解消された2本鎖cDNA産物を得ることが可能となった。これにより、ポリA由来の配列部分は、塩基置換によりTm値が上昇し、安定したプライミングサイトとして、続くPCR反応や配列決定反応に使用可能となった。 According to the present example as described above, the base is formed by complementary chain binding and extension reaction including a mismatch between the homopolymer sequence part derived from the poly-A sequence of mRNA and a sequence other than T arranged intentionally on the mRNA capture probe. It was possible to obtain a double-stranded cDNA product in which the homopolymer derived from the poly A sequence of mRNA was eliminated. As a result, the sequence portion derived from poly A increased in Tm value due to base substitution, and can be used as a stable priming site in subsequent PCR reactions and sequencing reactions.
[実施例2]
 ミスマッチmRNA捕獲用プローブを使用してmRNA由来のポリA配列部分に制限酵素認識配列を導入する方法について本実施例で詳細を説明する(図3~5)。
[Example 2]
Details of a method for introducing a restriction enzyme recognition sequence into a poly A sequence portion derived from mRNA using a probe for capturing mismatched mRNA will be described in the present example (FIGS. 3 to 5).
 実施例1に示すのと同様の方法で2本鎖cDNAを合成するが、その際に使用するmRNA捕獲用プローブを工夫することで、後に続く反応に使用可能な制限酵素認識配列を導入することが可能となる。すなわち、本実施例では、下記ミスマッチmRNA捕獲用プローブを使用して1st strand cDNAの合成を行なった:
   5'- TTTTTTTTTTTTTAATTTTCTTTTTGTTVN -3' (配列番号16)
 配列中、下線で示す部分がミスマッチとなる。
Double-stranded cDNA is synthesized by the same method as shown in Example 1, but by introducing a restriction enzyme recognition sequence that can be used in subsequent reactions by devising a probe for capturing mRNA used at that time. Is possible. That is, in this example, 1st strand cDNA was synthesized using the following mismatched mRNA capture probe:
5'-TTTTTTTTTTTTTT AA TTTT C TTTTT G TTVN-3 '(SEQ ID NO: 16)
The underlined part of the sequence is a mismatch.
 上記ミスマッチmRNA捕獲用プローブ(151)は、5'末端がビオチン2分子で修飾され、続いてカーボン6つがスペーサーとして挿入されたものを用意し、表面にストレプトアビジン基が修飾された磁気ビーズ粒子(203)(直径2.8μm、Dynal BIOTECH社)に固定化した(図3)。メーカー添付の方法に従いビーズ当り106分子のmRNA捕獲用プローブ(151)を固定化した。 The above-mentioned mismatched mRNA capture probe (151) is prepared by preparing a probe in which the 5 ′ end is modified with two biotin molecules, followed by six carbons inserted as spacers, and a magnetic bead particle having a streptavidin group modified on the surface ( 203) (diameter 2.8 μm, Dynal BIOTECH) (FIG. 3). According to the method attached to the manufacturer, 10 6 molecules of mRNA capture probe (151) were immobilized per bead.
 なお、固相担体の材料としては、水不溶性であれば特に限定されるものではなく、例えば、金、銀、銅、アルミニウム、白金、チタン、ニッケル等の金属、ステンレスやジュラルミンなどの合金、シリコン、ガラス、石英ガラス、セラミクス等のガラス材料、ポリエステル樹脂、ポリスチレン、ポリプロピレン樹脂、ナイロン、エポキシ樹脂、及び塩化ビニル樹脂等のプラスチック、アガロース、デキストラン、セルロース、ポリビニルアルコール、キトサン等でもよい。また、担体の形状についても特に限定はなく、平面で形成されるものや、複数の孔が開いた形状のものでもよい。また、プローブの固相担体上への固定方法は特に限定されず、共有結合やイオン結合、物理吸着、生物学的結合(例えばビオチンとアビジン、又はストレプトアビジンとの結合、抗原と抗体との結合など)等による方法でも同様の効果が得られる。 The material of the solid phase carrier is not particularly limited as long as it is insoluble in water. For example, metals such as gold, silver, copper, aluminum, platinum, titanium, nickel, alloys such as stainless steel and duralumin, silicon Glass materials such as glass, quartz glass, and ceramics, plastics such as polyester resin, polystyrene, polypropylene resin, nylon, epoxy resin, and vinyl chloride resin, agarose, dextran, cellulose, polyvinyl alcohol, chitosan, and the like may be used. Further, the shape of the carrier is not particularly limited, and may be a flat shape or a shape having a plurality of holes. In addition, the method for immobilizing the probe on the solid phase carrier is not particularly limited. Covalent bond, ion bond, physical adsorption, biological bond (for example, binding between biotin and avidin or streptavidin, binding between antigen and antibody) The same effect can be obtained by the method by the above.
 続いて、mRNA捕獲用プローブ固定化磁気ビーズ(203)を10 mM Tris-Cl(pH7.5)、0.1%Tween20溶液に懸濁して(1×106ビーズ/μL)、実施例1と同様の方法で2nd strand cDNA(111)の合成反応までを行い、2本鎖cDNAを得た。得られた2本鎖はミスマッチが解消されており、mRNAのポリA配列由来のホモポリマー配列部が、mRNA捕獲用プローブに作為的に配置されたT以外の配列に置き換えられている。更には、この置換により得られた配列の一部TTAAは制限酵素MseI(T↓TAA)の認識部位であり、ミスマッチmRNA捕獲用プローブによりmRNAのポリA配列部に従来存在しなかった制限酵素認識配列を挿入することができた(図3)。 Subsequently, a probe-immobilized magnetic bead (203) for capturing mRNA was suspended in 10 mM Tris-Cl (pH 7.5) and 0.1% Tween 20 solution (1 × 10 6 beads / μL), and the same as in Example 1 was performed. The procedure up to the synthesis reaction of 2nd strand cDNA (111) was performed to obtain a double-stranded cDNA. The resulting double strand is free from mismatches, and the homopolymer sequence portion derived from the poly A sequence of mRNA is replaced with a sequence other than T artificially arranged in the probe for capturing mRNA. Furthermore, part of the sequence obtained by this substitution, TTAA is a recognition site for restriction enzyme MseI (T ↓ TAA), and restriction enzyme recognition that did not exist in the poly-A sequence part of mRNA by a mismatched mRNA capture probe. The sequence could be inserted (Figure 3).
 続いて、この2本鎖を4塩基認識制限酵素MboI(↓GATC)で切断した(301)(図3及び4)。この制限酵素の認識配列は、概ね44=256塩基に1回の頻度で存在するため、得られる切断断片長も概ね256塩基長程度となる。すなわち、上記2nd strand cDNA(111)調製後の5μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20で再懸濁されたビーズ溶液に、10×NEB buffer 4(New England BioLabs社)を1μL、MboI(5 units/μL; New England BioLabs社)を1μL、及び滅菌水を3μL加え撹拌の後、37℃で1時間反応させた。反応後に上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、4μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。本反応により、mRNAの3'側のMboI切断断片(161)のみがビーズ上に固定化された状態で精製された(図4)。 Subsequently, this double strand was cleaved with a 4-base recognition restriction enzyme MboI (↓ GATC) (301) (FIGS. 3 and 4). Since this restriction enzyme recognition sequence is present at a frequency of about once every 4 4 = 256 bases, the length of the obtained fragment is also about 256 bases. That is, to the bead solution resuspended in 5 μL of 10 mM Tris-Cl (pH 7.5) and 0.1% (w / v) Tween 20 after the preparation of the second strand cDNA (111), 10 × NEB buffer 4 (New 1 μL of England BioLabs), 1 μL of MboI (5 units / μL; New England BioLabs), and 3 μL of sterilized water were added, and the mixture was allowed to react at 37 ° C. for 1 hour. After removing the supernatant after the reaction, the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 4 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended with Tween20. By this reaction, only the MboI cleaved fragment (161) on the 3 ′ side of the mRNA was purified while immobilized on the beads (FIG. 4).
 続いて、上記制限酵素切断末端へ既知配列を有するアダプターB(152及び153)をライゲーション反応により導入した(図4)。用意したアダプターは、cDNAの末端にホスホジエステル結合により結合するオリゴB(153)(5'- GATCGGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG -3':配列番号17)、及びこのオリゴと相補的な配列を有するオリゴB'(152)(5'- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3':配列番号18)からなる。オリゴB(153)は、5'末端がリン酸基で修飾されており、MboI切断断片の末端とホスホジエステル結合が可能となっている。また、オリゴB(153)はオリゴB'(152)より3'末端側が一塩基短い。これはアダプター同士間での結合を防ぐ機能となる。以上2種類のオリゴ溶液(それぞれ10 pmol/μL)を2μLずつ混合し、72℃で2分間インキュベーションの後、0.1℃/secの割合で温度を4℃まで下げ、オリゴB(153)とオリゴB'(152)を相補鎖結合させ、2本鎖のアダプターB(152及び153)を調製した。先に調製されたビーズ懸濁液に2本鎖のアダプターB(152及び153)を1μL、及びLigation High(TOYOBO社)を2.5μL加え混合したのち、16℃で30分間反応させた。反応後に上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、10μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。以上の反応により、cDNA末端にはライゲーションによりアダプターB(152及び153)が挿入された(図4)。 Subsequently, adapter B (152 and 153) having a known sequence was introduced into the restriction enzyme cleavage end by a ligation reaction (FIG. 4). The prepared adapter is oligo B (153) (5′- GATCGGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG -3 ′: SEQ ID NO: 17) that binds to the end of cDNA by a phosphodiester bond, and oligo B ′ (152) having a sequence complementary to this oligo (5′- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3 ′: SEQ ID NO: 18). Oligo B (153) is modified with a phosphate group at the 5 ′ end, allowing phosphodiester bonding with the end of the MboI cleavage fragment. Oligo B (153) is shorter by one base at the 3 ′ end than oligo B ′ (152). This is a function to prevent the coupling between the adapters. Mix 2 μL of each of the above two oligo solutions (10 μpmol / μL each), incubate at 72 ° C for 2 minutes, lower the temperature to 4 ° C at a rate of 0.1 ° C / sec, and add oligo B (153) and oligo B ′ (152) was bound to a complementary strand to prepare double-stranded adapter B (152 and 153). 1 μL of double-stranded adapter B (152 and 153) and 2.5 μL of Ligation High (TOYOBO) were added to and mixed with the previously prepared bead suspension, and reacted at 16 ° C. for 30 minutes. After the reaction, the supernatant was removed, and the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution. 10 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended in Tween20. Through the above reaction, adapter B (152 and 153) was inserted into the cDNA end by ligation (FIG. 4).
 続いて、制限酵素MseI(T↓TAA)での切断処理(162)を行なった(図4)。すなわち、上記ライゲーション後の、10μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20で再懸濁されたビーズ溶液に、10×NEB buffer 2(New England BioLabs社)を2μL、MseI(10 units/μL; New England BioLabs社)を1μL、10mg/mL BSAを0.2μL及び滅菌水を6.8μL加え撹拌の後、37℃で1時間反応させた。反応後に上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、10μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。この処理により、ビーズ上に固定化されたmRNAの3'末端側のMboI切断断片がビーズ上から切断された。ビーズ側のMseI認識配列は、前述のミスマッチmRNA捕獲用プローブを使用した伸長反応により導入されたものである。本実施例では、ミスマッチプローブで導入する制限酵素としてMseIとしたが、これに限定されることはなく、PsiI(TTA↓TAA)、SspI(AAT↓ATT)、BfaI(C↓TAG)、FatI(↓CATG)などでも同様の効果が得られる。 Subsequently, a cleavage treatment (162) with restriction enzyme MseI (T ↓ TAA) was performed (FIG. 4). Specifically, 10 × NEB ラ イ buffer 2 (New England BioLabs) was added to the bead solution resuspended in 10µL of 10 M Tris-Cl (pH7.5), 0.1% (w / v) Tween20 after the above ligation. 2 μL, 1 μL of MseI (10 units / μL; New England BioLabs), 0.2 μL of 10 mg / mL BSA, and 6.8 μL of sterilized water were added and stirred, followed by reaction at 37 ° C. for 1 hour. After the reaction, the supernatant was removed, and the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution. 10 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended in Tween20. By this treatment, the MboI cleaved fragment on the 3 ′ end side of the mRNA immobilized on the beads was cleaved from the beads. The bead-side MseI recognition sequence was introduced by an extension reaction using the aforementioned mismatched mRNA capture probe. In this example, MseI was used as the restriction enzyme introduced by the mismatch probe, but the present invention is not limited to this. PsiI (TTA ↓ TAA), SspI (AAT ↓ ATT), BfaI (C ↓ TAG), FatI ( The same effect can be obtained with ↓ CATG).
 得られた断片はmRNAのポリA配列に続く3'末端断片であるが、ポリA配列を有さないため、この断片をPCRにより容易に増幅することが可能である(図5)。さらには、サンプル中に含まれる全てのcDNAの制限酵素断片の両末端に、mRNAポリA配列由来の塩基置換された部位とアダプターBとの同じ配列が挿入されているため、この部分をプライミングサイトとして利用した網羅的並列増幅が可能となる。この際に使用するプライマー/プローブの一方は、ミスマッチにより塩基置換された配列部分の一部を3'側に含む配列(154)からなり、反対側のプライマー/プローブは、アダプターB'の配列部分と同じか若しくは一部を3'側に含む配列(155)からなる(図5)。この際、プライマー/プローブの一部にミスマッチを再度挿入することで(図5におけるプライマー/プローブ154の配列下線部)、PCR産物はさらに塩基置換されることになる。本実施例に示すプライマー/プローブ154を用いた結果得られる置換配列は、制限酵素HindIII(A↓AGCTT)の認識配列である。このように、異なる種類のミスマッチプローブを複数回使用することで、塩基を置換していくことが可能であり、続く反応に望ましい(例えばクローニング等)制限酵素認識配列を都度挿入していくことも可能となる。また、当初の配列から塩基置換したい塩基数が多い場合は、PCRの際に少しずつ塩基を変化させたミスマッチプローブを2種以上混合し、サイクル反応の際にサイクルの度に徐々に塩基を置換していくことも可能である。この場合は、最終的に必要とする配列を有するプライマーの濃度が一番高くなるようプローブ(PCRプライマーの意味)の混合比を調整すればよい。ミスマッチプローブを用いた塩基置換により、より安定度の高い、すなわちTm値の高いプライミングサイトを獲得することが可能となる。 The obtained fragment is a 3 ′ terminal fragment following the poly A sequence of mRNA, but since it does not have a poly A sequence, this fragment can be easily amplified by PCR (FIG. 5). Furthermore, the same sequence of the base substitution site derived from the mRNA poly A sequence and adapter B is inserted at both ends of all the cDNA restriction enzyme fragments contained in the sample. Comprehensive parallel amplification utilized as One of the primers / probes used in this case consists of a sequence (154) that includes a part of the sequence part that has undergone base substitution due to mismatch on the 3 ′ side, and the primer / probe on the opposite side is the sequence part of the adapter B ′. It consists of the arrangement | sequence (155) which contains the same or a part on 3 'side (FIG. 5). At this time, by inserting the mismatch again into a part of the primer / probe (underlined portion of the primer / probe 154 in FIG. 5), the PCR product is further subjected to base substitution. The substitution sequence obtained as a result of using the primer / probe 154 shown in this example is a recognition sequence for the restriction enzyme HindIII (A ↓ AGCTT). In this way, it is possible to substitute bases by using different types of mismatch probes multiple times, and it is possible to insert a restriction enzyme recognition sequence that is desirable for subsequent reactions (for example, cloning) each time. It becomes possible. Also, if there are a large number of bases to replace from the original sequence, mix two or more mismatch probes whose bases are changed little by little during PCR, and gradually replace the bases with each cycle during the cycle reaction. It is also possible to continue. In this case, the mixing ratio of the probes (meaning PCR primers) may be adjusted so that the concentration of the primer having the finally required sequence becomes the highest. By performing base substitution using a mismatch probe, it is possible to obtain a priming site with higher stability, that is, a high Tm value.
 本実施例により、mRNAのポリA配列由来のホモポリマー配列部が、mRNA捕獲用プローブに作為的に配置されたT以外の配列に置き換えられ、mRNAのポリA配列由来のホモポリマーが解消され、かつ両側末端に既知配列が挿入された2本鎖cDNAの制限酵素断片(156)を得ることができた(図5)。さらに、この産物は、遺伝子特異的情報を多く持つとされるmRNAの3'末端の配列情報を持ち、かつ、制限酵素処理によりcDNA間での断片長がある程度揃えられたものとなる。このため、上記最終工程のPCRによる増幅をおこなう際のサンプル間バイアスを最小限に抑えることが可能となり、より精度の高い遺伝子網羅的並列増幅が可能となった。また、ミスマッチプローブを用いて塩基置換を行なうことで、本来の配列が有さない配列を挿入することが可能であり、プライミングサイトのTm値もポリTだけからなる場合47.6℃であるのに対し、プライマー/プローブ154のTm値は54.9℃であり、7℃以上上昇しているため相補鎖結合の安定性を増すことができ、より精度の高いPCR増幅が可能となった。更には、塩基置換により制限酵素認識配列などを挿入できるようになることで、後の反応に効果的に使用することが可能となった。 By this example, the homopolymer sequence part derived from the polyA sequence of mRNA is replaced with a sequence other than T artificially arranged in the probe for capturing mRNA, and the homopolymer derived from the polyA sequence of mRNA is eliminated. In addition, a double-stranded cDNA restriction enzyme fragment (156) having a known sequence inserted at both ends was obtained (FIG. 5). Furthermore, this product has sequence information at the 3 ′ end of mRNA, which is said to have a lot of gene-specific information, and has a certain length of fragment between cDNAs by restriction enzyme treatment. For this reason, it is possible to minimize the bias between samples when performing amplification by PCR in the final step, and it is possible to perform gene-overall parallel amplification with higher accuracy. In addition, by performing base substitution using a mismatch probe, it is possible to insert a sequence that does not have the original sequence, whereas the Tm value of the priming site is only 47.6 ° C when it consists only of poly-T The Tm value of the primer / probe 154 was 54.9 ° C. and increased by 7 ° C. or more, so that the stability of complementary strand binding could be increased and more accurate PCR amplification became possible. Furthermore, since it becomes possible to insert a restriction enzyme recognition sequence or the like by base substitution, it can be used effectively in subsequent reactions.
 本産物を得るために、制限酵素としてMboIを用いたが同様の効果が得られる制限酵素であればMboIに限定されず、また認識塩基長も4塩基に限定されない。さらに、本実施例において用いたいずれのアダプターの配列も限定されるものではなく、後の目的(PCR、クローニングや配列決定)に用いる際に最適な効果が得られる配列であれば適宜設計することができる。更には、プライマー又はプローブの塩基長も都度変更することが可能である。 In order to obtain this product, MboI was used as a restriction enzyme. However, the restriction enzyme is not limited to MboI, and the recognition base length is not limited to 4 bases as long as the same effect can be obtained. Furthermore, the sequence of any adapter used in this example is not limited, and any adapter can be designed as long as it has the optimum effect when used for subsequent purposes (PCR, cloning, sequencing). Can do. Furthermore, the base length of the primer or probe can be changed each time.
[実施例3]
 ミスマッチmRNA捕獲用プローブの5'末端部にmRNA捕獲には寄与しない配列部(アダプター)を挿入したプローブを用いて、網羅的遺伝子増幅用のサンプル調製を行う方法について本実施例で詳細を説明する(図6)。
[Example 3]
This example describes in detail how to prepare a sample for comprehensive gene amplification using a probe in which a sequence part (adapter) that does not contribute to mRNA capture is inserted at the 5 ′ end of the mismatched mRNA capture probe. (FIG. 6).
 実施例1に記載の方法を用いて2本鎖cDNAを合成するが、本実施例においてはミスマッチmRNA捕獲用プローブ(201)として5'末端にアダプター配列A(配列下線部)(202)を有する下記配列を用いた:
  5'-GATCATCATAAGCAATGACGGCAGCTGAAGTATCTTTCTTTTCTTTTCTTTTVN -3'(配列番号19)。
A double-stranded cDNA is synthesized using the method described in Example 1. In this example, a mismatched mRNA capture probe (201) has an adapter sequence A (sequence underlined portion) (202) at the 5 ′ end. The following sequence was used:
5′-GA TCATCATAAGCAATGACGGCAG CTGAAGTATCTTTCTTTTCTTTTCTTTTVN-3 ′ (SEQ ID NO: 19).
 上記ミスマッチmRNA捕獲用プローブ(201)は、5'末端がビオチン2分子で修飾され、続いてカーボン6つがスペーサーとして挿入されたものを用意し、表面にストレプトアビジン基が修飾された磁気ビーズ(203)(直径2.8μm、Dynal BIOTECH社)に固定化した(図6)。本実施例においては、固相担体表面とプローブとの間にカーボンスペーサーを配した。なお、スペースの確保はこれには限定されず、各オリゴ合成メーカーが推奨するスペーサーであれば同様の効果が期待でき、また例えばT塩基やTC配列等を連続的に配置しスペーサーとして使用する方法も可能である。 The above-mentioned mismatched mRNA capture probe (201) is prepared by preparing a magnetic bead (203) with a 5 ′ end modified with two biotin molecules, followed by six carbon atoms inserted as a spacer, and a streptavidin group modified on the surface. ) (Diameter 2.8 μm, Dynal BIOTECH) (FIG. 6). In this example, a carbon spacer was disposed between the surface of the solid support and the probe. The space is not limited to this, and the same effect can be expected with spacers recommended by each oligo synthesis manufacturer. For example, a method in which T bases, TC sequences, etc. are continuously arranged and used as spacers. Is also possible.
 メーカー添付の方法に従いビーズ当り106分子のmRNA捕獲用プローブ(201)を固定化した後、10 mM Tris-Cl(pH7.5)、0.1% Tween20溶液に懸濁し(1×106ビーズ/μL)、反応に使用した。実施例1に示すミスマッチmRNA捕獲用プローブ(1 pmol)にかえて上記ミスマッチmRNA捕獲用プローブ固定化ビーズ(203)を1×106ビーズ=1μL使用して、2nd strand cDNA(111)の合成反応までを行い、2本鎖cDNAを得た。 Immobilize 10 6 molecules of mRNA capture probe (201) per bead according to the method attached to the manufacturer, then suspend in 10 mM Tris-Cl (pH 7.5), 0.1% Tween20 solution (1 × 10 6 beads / μL ), Used for reaction. In place of the mismatched mRNA capture probe (1 pmol) shown in Example 1, 1 × 10 6 beads = 1 μL of the above-mentioned mismatched mRNA capture probe immobilized beads (203) is used to synthesize 2nd strand cDNA (111). And double-stranded cDNA was obtained.
 続いて、2本鎖cDNAのビーズ(203)に固定化されたのとは反対側の末端の平滑化処理を行った。本実施例の反応によれば、合成された2本鎖cDNAの末端は必ずしも平滑ではなく、1st strand cDNA(106)の3'末端側が突出しているものも複数存在すると考えられ、またこの場合、突出している部分の度合い(塩基数)は不明である。このため続くアダプターのライゲーションを全cDNAに対してバイアスなく行うため、末端部の平滑化(同一条件の末端を有するように処理する)が必要となる。そのため、上記1×106ビーズを8μLの10 mM Tris-Cl(pH7.5)、0.1% Tween20溶液に懸濁した溶液に、10×Blunting buffer(1.2 M Tris-Cl(pH8.0)、15 mM MgCl2、100 mM KCl、60 mM (NH4)2SO4、2 mM dNTP、1%TritonX-100、0.01% BSA)1μL、及びT4 DNA polymerase(3 units/μL、New England BioLabs社)1μLを添加し、ピペッティングにより溶液を混合した後、37℃で30分反応させ、続いて75℃で20分間の処理により酵素を失活させ氷上に移した。反応後に上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、5μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。平滑末端化に使用する酵素は、T4 DNA polymeraseに限定されるものでなく、同様の効果が得られるKOD DNA polymerase(TOYOBO社)などで置き換えることが可能である。 Subsequently, a smoothing treatment was performed on the end opposite to that immobilized on the double-stranded cDNA beads (203). According to the reaction of this example, the end of the synthesized double-stranded cDNA is not necessarily smooth, and it is considered that there are a plurality of ones protruding from the 3 ′ end of 1st strand cDNA (106). The degree of protrusion (number of bases) is unknown. For this reason, in order to perform the subsequent ligation of the adapter without bias to all cDNAs, it is necessary to smooth the ends (treat the ends so as to have the same conditions). Therefore, 10 × Blunting buffer (1.2 M Tris-Cl (pH 8.0), 15) was added to a solution obtained by suspending the above 1 × 10 6 beads in 8 μL of 10 mM Tris-Cl (pH 7.5) and 0.1% Tween20 solution. 1 μL of mM MgCl 2 , 100 mM KCl, 60 mM (NH 4 ) 2 SO 4 , 2 mM dNTP, 1% TritonX-100, 0.01% BSA), and 1 μL of T4 DNA polymerase (3 units / μL, New England BioLabs) After mixing the solution by pipetting, the mixture was reacted at 37 ° C. for 30 minutes, and then the enzyme was inactivated by treatment at 75 ° C. for 20 minutes and transferred to ice. After removing the supernatant after the reaction, the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 5 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended with Tween20. The enzyme used for blunt-end is not limited to T4 DNA polymerase, but can be replaced with KOD DNA polymerase (TOYOBO) that can achieve the same effect.
 続いて、上記平滑末端化処理済の2本鎖cDNAの末端に既知配列を有するアダプターDをライゲーション反応により導入した。用意したアダプターは、cDNAの末端にホスホジエステル結合により結合するオリゴD(215)(5'- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3':配列番号20)、及びこのオリゴと相補的な配列を有するオリゴD'(216)(5'- GGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG -3':配列番号21)からなる。オリゴD'は、5'末端がリン酸基で修飾されており、ホスホジエステル結合が可能となっている。また、オリゴD'(216)はオリゴD(215)より3'末端側が一塩基短い。これはアダプター同士間での結合を防ぐ機能となる。以上2種類のオリゴ溶液(それぞれ10 pmol/μL)を2μLずつ混合し、72℃で2分間インキュベーションの後、0.1℃/secの割合で温度を4℃まで下げ、オリゴD(215)とオリゴD'(216)を相補鎖結合させ、2本鎖のアダプターD(215及び216)を調製した。先に調製されたビーズ懸濁液に2本鎖のアダプターDを1μL、及び10×T4 DNA Ligase bufferを1μL、T4 DNA Ligase(New England BioLabs社)1μL、滅菌水を3μLを加え、16℃で1時間反応させた。反応後に上清を除去し、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄した後、10μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。以上の反応により、磁気ビーズ(203)と固定化された側にはmRNA捕獲用プローブ由来のアダプターA(202)の配列が、反対側のcDNA末端にはライゲーションによりアダプターD(215及び216)が挿入された。すなわち、本実施例により、mRNAのポリA配列由来のホモポリマー配列部が、mRNA捕獲用プローブに作為的に配置されたT以外の配列に置き換えられ、mRNAのポリA配列由来のホモポリマーが解消され、かつ両側末端に既知配列が挿入された2本鎖cDNA産物を得ることができた(図6)。 Subsequently, adapter D having a known sequence at the end of the above-mentioned blunt-ended double-stranded cDNA was introduced by ligation reaction. The prepared adapter is oligo D (215) (5′- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3 ′: SEQ ID NO: 20) that binds to the end of cDNA by a phosphodiester bond, and oligo D ′ (216) having a sequence complementary to this oligo. (5′- GGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG -3 ′: SEQ ID NO: 21). Oligo D ′ is modified at its 5 ′ end with a phosphate group to enable a phosphodiester bond. Oligo D ′ (216) is shorter by one base at the 3 ′ end than oligo D (215). This is a function to prevent the coupling between the adapters. Mix 2 μL of each of the above two oligo solutions (10 μpmol / μL each), incubate at 72 ° C for 2 minutes, lower the temperature to 4 ° C at a rate of 0.1 ° C / sec, and add oligo D (215) and oligo D '(216) was complemented to form a double-stranded adapter D (215 and 216). Add 1 μL of double-stranded adapter D, 1 μL of 10 × T4 DNA Ligase buffer, 1 μL of T4 DNA Ligase (New England BioLabs), 3 μL of sterilized water to the bead suspension prepared earlier, and add 16 μC at 16 ° C. Reacted for 1 hour. After the reaction, the supernatant was removed, and the beads were washed with 10% mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween 20 solution, and then 10 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended in Tween20. By the above reaction, the sequence of adapter A (202) derived from the probe for capturing mRNA is located on the side immobilized with the magnetic beads (203), and adapter D (215 and 216) is located on the opposite cDNA end by ligation. Inserted. That is, according to this example, the homopolymer sequence part derived from the polyA sequence of mRNA was replaced with a sequence other than T that was artificially arranged on the probe for capturing mRNA, and the homopolymer derived from the polyA sequence of mRNA was eliminated. And a double-stranded cDNA product with known sequences inserted at both ends was obtained (FIG. 6).
 アダプターA(202)及びアダプターD(215)の配列をプライミングサイトとして利用してPCR反応により網羅的にcDNAを並列増幅することも可能であるし、アダプターにクローニング用のベクターに合わせた制限酵素認識配列を配置し、ベクターに挿入することでクローニングによる増幅も可能となる。また、アダプター配列をプライミングサイトとして利用した配列決定も可能となる。 Using the adapter A (202) and adapter D (215) sequences as priming sites, it is possible to amplify cDNA in parallel by PCR reaction, and to recognize the restriction enzyme according to the cloning vector in the adapter. Amplification by cloning is also possible by arranging the sequence and inserting it into the vector. In addition, sequencing using the adapter sequence as a priming site is possible.
 本実施例は次の方法により、さらに効果的な応用が可能となる(図7)。すなわち、アダプターA及びアダプターDが挿入された産物の並列増幅に当たっては、できる限りターゲットの塩基長がそろっている方が増幅効率のバイアスが少なくて済む(一般に塩基長が短い方が増幅効率は良い)。一方でcDNAのサイズは様々で数百塩基長のものから5,000塩基長を超えるものまで様々である。そこで、本実施例のように2本鎖cDNA(106及び111)を調製したのち、4塩基認識制限酵素MboI(↓GATC)で切断した(301)。この制限酵素の認識配列は、概ね44=256塩基に1回の頻度で存在するため、切断断片長も概ね256塩基長程度となる。すなわち、上記2nd strand cDNA(111)調製後の5μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20で再懸濁されたビーズ溶液に、10×NEB buffer 4(New England BioLabs社)を1μL、MboI(5 units/μL; New England BioLabs社)を1μL、及び滅菌水を3μL加え撹拌の後、37℃で1時間反応させた。反応後上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、4μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。 This embodiment can be applied more effectively by the following method (FIG. 7). In other words, in parallel amplification of products with adapter A and adapter D inserted, the bias of amplification efficiency is less when the target base length is as long as possible (in general, the shorter base length is the better the amplification efficiency) ). On the other hand, the size of cDNA varies from several hundred base length to over 5,000 base length. Thus, double-stranded cDNAs (106 and 111) were prepared as in this example, and then cleaved with a 4-base recognition restriction enzyme MboI (↓ GATC) (301). Since this restriction enzyme recognition sequence is present at a frequency of about once every 4 4 = 256 bases, the length of the cut fragment is also about 256 bases long. That is, to the bead solution resuspended in 5 μL of 10 mM Tris-Cl (pH 7.5) and 0.1% (w / v) Tween 20 after the preparation of the second strand cDNA (111), 10 × NEB buffer 4 (New 1 μL of England BioLabs), 1 μL of MboI (5 units / μL; New England BioLabs), and 3 μL of sterilized water were added, and the mixture was allowed to react at 37 ° C. for 1 hour. After the reaction, the supernatant was removed, and the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 4 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended with Tween20.
 続いて、上記制限酵素切断末端へ既知配列を有するアダプターC(302及び303)をライゲーション反応により導入した。用意したアダプターは、cDNAの末端にホスホジエステル結合により結合するオリゴC'(303)(5'- GATCGGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG-3':配列番号22)、及びこのオリゴと相補的な配列を有するオリゴC(302)(5'- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3':配列番号23)からなる。オリゴC'(303)は、5'末端がリン酸基で修飾されており、ホスホジエステル結合が可能となっている。また、オリゴC'(303)はオリゴC(302)より3'末端側が一塩基短い。これはアダプター同士間での結合を防ぐ機能となる。以上2種類のオリゴ溶液(それぞれ10 pmol/μL)を2μLずつ混合し、72℃で2分間インキュベーションの後、0.1℃/secの割合で温度を4℃まで下げ、オリゴC(302)とオリゴC'(303)を相補鎖結合させ、2本鎖のアダプターC(302及び303)を調製した。先に調製されたビーズ懸濁液に2本鎖のアダプターC(302及び303)を1μL、及びLigation High(TOYOBO社)を2.5μL加え混合したのち、16℃で30分間反応させた。反応後上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、10μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。以上の反応により、磁気ビーズ(203)と固定化された側にはmRNA捕獲用プローブ由来のアダプターA(202)の配列が、反対側のcDNA末端にはライゲーションによりアダプターC(302及び303)が挿入された。 Subsequently, adapter C (302 and 303) having a known sequence was introduced into the restriction enzyme cleavage terminal by a ligation reaction. The prepared adapter is an oligo C ′ (303) (5′- GATCGGTATTGTTGGAGGGCAGGTGGCTACACTAGATGGTTTAGGGTTG-3 ′: SEQ ID NO: 22) that binds to the end of cDNA by a phosphodiester bond, and an oligo C (302) having a sequence complementary to this oligo. (5′- CCAACCCTAAACCATCTAGTGTAGCCACCTGCCCTCCAACAATACC -3 ′: SEQ ID NO: 23). Oligo C ′ (303) is modified with a phosphate group at the 5 ′ end to enable a phosphodiester bond. In addition, oligo C ′ (303) is shorter by one base on the 3 ′ end side than oligo C (302). This is a function to prevent the coupling between the adapters. Mix 2 μL of each of the above 2 oligo solutions (each 10 pmol / μL), incubate at 72 ° C for 2 minutes, then reduce the temperature to 4 ° C at a rate of 0.1 ° C / sec. '(303) was complementary strand-bound to prepare double-stranded adapter C (302 and 303). 1 μL of double-stranded adapter C (302 and 303) and 2.5 μL of Ligation High (TOYOBO) were added to the previously prepared bead suspension and mixed, and then reacted at 16 ° C. for 30 minutes. After the reaction, the supernatant was removed, and the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution. 10 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended in Tween20. As a result of the above reaction, the sequence of adapter A (202) derived from the probe for capturing mRNA is located on the side immobilized with magnetic beads (203), and adapter C (302 and 303) is located on the opposite cDNA end by ligation. Inserted.
 すなわち、本実施例により、mRNAのポリA配列由来のホモポリマー配列部がmRNA捕獲用オリゴDNAに作為的に配置されたT以外の配列に置き換えられ、mRNAのポリA配列由来のホモポリマーが解消され、かつ両側末端に既知配列が挿入された2本鎖cDNAの制限酵素断片を得ることができた。この産物は、遺伝子特異的情報を多く持つとされるmRNAの3'末端の配列情報を持ち、かつ、制限酵素処理によりcDNA間での断片長がある程度揃えられたものとなる。このため、アダプターA(202)及びアダプターC(302)をプライミングサイトとしてPCRによる増幅をおこなう際のサンプル間バイアスを最小限に抑えることが可能となり、より精度の高い遺伝子網羅的並列増幅が可能となった。 That is, according to this example, the homopolymer sequence part derived from the polyA sequence of mRNA was replaced with a sequence other than T that was artificially arranged in the oligo DNA for mRNA capture, and the homopolymer derived from the polyA sequence of mRNA was eliminated. In addition, a double-stranded cDNA restriction enzyme fragment with known sequences inserted at both ends was obtained. This product has sequence information at the 3 ′ end of mRNA, which is said to have a lot of gene-specific information, and has a certain length of fragment between cDNAs by restriction enzyme treatment. This makes it possible to minimize the bias between samples when performing amplification by PCR using adapter A (202) and adapter C (302) as priming sites, enabling more accurate gene-wide parallel amplification. became.
 本産物を得るために、制限酵素としてMboIを用いたが同様の効果が得られる制限酵素であればMboIに限定されず、また認識塩基長も4塩基に限定されない。さらに、本実施例において用いたいずれのアダプターの配列も限定されるものではなく、後の目的(PCR、クローニングや配列決定)に用いる際に最適な効果が得られる配列であれば適宜設計することができる。更には、プライマー又はプローブの塩基長も都度変更することが可能である。 In order to obtain this product, MboI was used as a restriction enzyme. However, the restriction enzyme is not limited to MboI, and the recognition base length is not limited to 4 bases as long as the same effect can be obtained. Furthermore, the sequence of any adapter used in this example is not limited, and any adapter can be designed as long as it has the optimum effect when used for subsequent purposes (PCR, cloning, sequencing). Can do. Furthermore, the base length of the primer or probe can be changed each time.
[実施例4]
 ミスマッチを含むmRNA捕獲用プローブの5'末端側に任意の既知配列をあらかじめ配置し、この既知配列部分に認識部位の外に切断部位を有する制限酵素認識配列を配置し、2本鎖cDNA調製後にこの制限酵素を作用させ、mRNA捕獲用オリゴDNAの一部若しくは全部を切断除去することが可能である。一部を切断除去し、ローリングサークル増幅(RCA)法によりcDNAを増幅する方法について本実施例で詳細を説明する(図8)。
[Example 4]
Arbitrary known sequences are pre-arranged on the 5 'end side of the probe for capturing mRNA containing mismatches, and a restriction enzyme recognition sequence having a cleavage site in addition to the recognition site is placed in this known sequence part, and after double-stranded cDNA preparation It is possible to cleave and remove part or all of the oligo DNA for mRNA capture by acting this restriction enzyme. A method for amplifying cDNA by rolling circle amplification (RCA) method after cutting and removing a part will be described in detail in this example (FIG. 8).
 認識部位の外に切断部位を有する制限酵素としてClassIIS制限酵素が知られている。本実施例では、GsuIを用いた。この酵素の認識部位は以下の通りである:
  5'-CTGGAGNNNNNNNNNNNNNNNN-3'(配列番号24)
  3'-GACCTCNNNNNNNNNNNNNN -5'(配列番号25)。
ClassIIS restriction enzyme is known as a restriction enzyme having a cleavage site outside the recognition site. In this example, GsuI was used. The recognition sites for this enzyme are as follows:
5'- CTGGAG NNNNNNNNNNNNNNNN-3 '(SEQ ID NO: 24)
3'- GACCTC NNNNNNNNNNNNNN -5 '(SEQ ID NO: 25).
 すなわち、6塩基の認識配列(下線部)を有し、そこから16塩基(上流鎖)若しくは14塩基(下流鎖)離れたところを切断する。Nに示される部分はA、C、G若しくはTのいずれの塩基種でもよい。本実施例においては、mRNA捕獲用プローブ(401)として、アダプター配列F(411)を有する5'- GATCATCATAAGCAATGACGGCAGCTGGAGTCTTTTCTTTTCTTTTCTTTTTVN-3'(配列番号26)を使用した。実施例2に記載の方法に従い、固相担体上に固定化した上記mRNA捕獲用プローブ(401)を用いて、2本鎖cDNA(402及び403)の調製を行ない、続いて4塩基認識制限酵素であるMboIで切断処理を行なった。切断断片へのアダプターのライゲーション反応も実施例2に記載の方法と同様の方法をとったが、アダプターは、オリゴE(404)(5'- TACCTCGAAGCCCCTG -3':配列番号27)、及びこのオリゴと相補的な配列を有するオリゴE'(405)(5'- GATCGCAGGGGCTTCGAGGTAC -3':配列番号28)からなるアダプターEを用いた。またオリゴE(404)及びオリゴE'(405)の5'末端にはリン酸基修飾(P)(407)を施したものを使用した。 That is, it has a 6-base recognition sequence (underlined) and cleaves 16 bases (upstream chain) or 14 bases (downstream chain) away from it. The moiety represented by N may be any base species of A, C, G or T. In this example, 5′-GATCATCATAAGCAATGACGGCAG CTGGAG TCTTTTCTTTTCTTTTCTTTTTVN-3 ′ (SEQ ID NO: 26) having an adapter sequence F (411) was used as the mRNA capture probe (401). In accordance with the method described in Example 2, double-stranded cDNA (402 and 403) was prepared using the mRNA capture probe (401) immobilized on a solid support, followed by 4-base recognition restriction enzyme. The cutting process was performed with MboI. The ligation reaction of the adapter to the cleaved fragment was also carried out in the same manner as described in Example 2, except that the adapter was oligo E (404) (5′-TACCTCGAAGCCCCTG-3 ′: SEQ ID NO: 27) and this oligo. Adapter E consisting of oligo E ′ (405) (5′-GATCGCAGGGGCTTCGAGGTAC -3 ′: SEQ ID NO: 28) having a sequence complementary to the above was used. In addition, oligo E (404) and oligo E ′ (405) having the 5 ′ end subjected to phosphate group modification (P) (407) were used.
 ライゲーション反応後に上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、10μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。続いて、GsuIによる切断処理(406)を行ない、アダプターE(404及び405)挿入産物をビーズ(203)から切り離した。さらに5'末端にリン酸基修飾のある鎖を特異的に分解する酵素であるLambda exonucleaseを用いて、この産物の5'末端にリン酸基修飾(407)のある下流鎖(408)を分解し一本鎖化を行なった。すなわち、上記ライゲーション産物が固定化されたビーズ懸濁液に10×buffer B(Fermentas社)(100mM Tris-HCl(pH7.5)、100mM MgCl2及び1mg/ml BSA)を1μL、GsuI(5 units/μL; Fermentas社)を1μL、及び滅菌水を3μL加え撹拌の後、30℃で1時間反応させた。 After removing the supernatant after the ligation reaction, the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 10 μL of 10 mM Tris-Cl (pH 7.5), 0.1 The beads were resuspended with% (w / v) Tween20. Subsequently, cleavage treatment (406) with GsuI was performed, and the inserted product of adapter E (404 and 405) was separated from the bead (203). Furthermore, using Lambda exonuclease, an enzyme that specifically degrades the chain with phosphate group modification at the 5 'end, the downstream strand (408) with phosphate group modification (407) at the 5' end is degraded. Then, single strand formation was performed. That is, 1 μL of 10 × buffer B (Fermentas) (100 mM Tris-HCl (pH 7.5), 100 mM MgCl 2 and 1 mg / ml BSA) was added to the bead suspension on which the ligation product had been immobilized. / μL; 1 μL of Fermentas) and 3 μL of sterilized water were added and stirred, followed by reaction at 30 ° C. for 1 hour.
 制限酵素GsuIでの切断(406)にあたって、所望(固相担体上固定化プローブの認識配列)の認識配列以外のcDNA内在の認識配列で切断されるのを防ぐため、cDNAの伸長鎖に化学修飾を施すことができる。化学修飾の方法としては、メチル化による修飾が挙げられる。すなわち、伸長反応の際にメチル化された基質、例えば5-methyl dCTPを用いることで逆転写の際の伸長鎖のメチル化が可能である(この方法は、タカラバイオ株式会社より発売のcDNA Library construction Kitでも採用されている一般的な方法である)。尚、この方法が有効に働くのは、メチル化感受性制限酵素を用いた場合であり、本実施例で使用したGsuI以外にもBbrIやHgaI等がメチル化感受性のClassII制限酵素として知られている(特開2000-197493号公報、EP 1006180 B)。 When cleaving with restriction enzyme GsuI (406), chemically modify the extended strand of the cDNA to prevent it from being cleaved by a recognition sequence existing in the cDNA other than the desired (recognition sequence of the probe immobilized on the solid phase carrier). Can be applied. Examples of the chemical modification method include modification by methylation. That is, by using a methylated substrate during the extension reaction, for example, 5-methyl 伸長 dCTP, it is possible to methylate the extended strand during reverse transcription (this method is cDNA Library released by Takara Bio Inc.). This is a common method used in construction Kit). This method works effectively when a methylation sensitive restriction enzyme is used, and BbrI, HgaI, etc. are known as methylation sensitive Class II restriction enzymes in addition to GsuI used in this example. (JP 2000-197493 A, EP 1006180 B).
 反応後に上清を除去した後、10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20溶液でビーズを洗浄し、5μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。続いて、10×buffer(New England Biolabs社)(670mM Glycine-KOH、25mM MgCl2、500μg/ml BSA(pH 9.4))を1μL、Lambda Exonuclease(5 units/μL; New England Biolabs社)を1μL及び滅菌水を3μL加え撹拌の後、37℃で1時間反応させた。反応後75℃で10分間の熱失活処理を行ない、上記と同様にビーズを洗浄し、5μLの10 mM Tris-Cl(pH7.5)、0.1%(w/v) Tween20でビーズを再度懸濁した。これにより、mRNAの3'末端由来の制限酵素断片であって、ポリA由来のホモポリマー配列を有さず、両末端にそれぞれCTTTTTVN(409)及びアダプターE'(405)の既知配列をもつ一本鎖DNA(503)を得ることができた。 After removing the supernatant after the reaction, the beads were washed with 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) Tween20 solution, and 5 μL of 10 mM Tris-Cl (pH 7.5), 0.1% (w / v) The beads were resuspended with Tween20. Subsequently, 1 μL of 10 × buffer (New England Biolabs) (670 mM Glycine-KOH, 25 mM MgCl 2 , 500 μg / ml BSA (pH 9.4)), 1 μL of Lambda Exonuclease (5 units / μL; New England Biolabs) After adding 3 μL of sterilized water and stirring, the mixture was reacted at 37 ° C. for 1 hour. After the reaction, heat inactivation treatment was performed at 75 ° C for 10 minutes, and the beads were washed in the same manner as described above. The beads were suspended again with 5 µL of 10 mM Tris-Cl (pH 7.5) and 0.1% (w / v) Tween20. It became cloudy. Thus, a restriction enzyme fragment derived from the 3 ′ end of mRNA, having no homopolymer sequence derived from poly A and having known sequences of CTTTTTVN (409) and adapter E ′ (405) at both ends, respectively. A double-stranded DNA (503) could be obtained.
 この断片の網羅的増幅をRCAにより実現することも可能である(図9)。あらかじめ固相担体(501)上にRCA用オリゴ(502)(5'-NBAAAAAGGTACCTCGAAGCCCCTGCGATC-3':配列番号29)の5'末端を固定化したものを用いる。固相担体の材料及び形状は特に限定されない。また、RCA用オリゴの5'末端側に、カーボンなどから構成されるスペーサーを配置し、固相担体表面部から塩基までの距離をとることで、相補鎖結合能を上げることができる。オリゴDNAの固相担体上への固定方法は特に限定されず、共有結合やイオン結合、物理吸着、生物学的結合(例えばビオチンとアビジン、又はストレプトアビジンとの結合、抗原と抗体との結合など)等による方法が挙げられる。この固定化されたRCA用オリゴを鋳型とし、上記一本鎖DNA(503)を環状に配置することで相補鎖結合することが可能であり、環状DNAのニック部分(511)をライゲーション反応により結合させ、RCA増幅用鋳型となる環状DNA(503)を得た。ライゲーション反応には、T4 Ligase DNAや、Ampligase(Epicentre社)など、上記目的を達成できるものであれば酵素種に限定はない。 網羅 Comprehensive amplification of this fragment can also be realized by RCA (Fig. 9). The RCA oligo (502) (5′-NBAAAAAGGTACCTCGAAGCCCCTGCGATC-3 ′: SEQ ID NO: 29) immobilized on the solid phase carrier (501) is used in advance. The material and shape of the solid phase carrier are not particularly limited. In addition, by arranging a spacer composed of carbon or the like on the 5 ′ end side of the RCA oligo, and taking the distance from the solid phase carrier surface to the base, the complementary chain binding ability can be increased. The method for immobilizing the oligo DNA on the solid phase carrier is not particularly limited. Covalent bond, ionic bond, physical adsorption, biological bond (for example, binding between biotin and avidin or streptavidin, binding between antigen and antibody, etc.) ) And the like. Using this immobilized RCA oligo as a template, the single-stranded DNA (503) can be circularly arranged to allow complementary strand binding, and the nicked portion (511) of the circular DNA is bound by a ligation reaction. To obtain a circular DNA (503) as a template for RCA amplification. The ligation reaction is not limited to any enzyme species as long as it can achieve the above purpose, such as T4TLigase DNA or Ampligase (Epicentre).
 ライゲーション反応に続いて、鎖置換機能を持つDNA polymeraseであるφ29DNA polymeraseや、Bst DNA polymerase(Fermentase社やNew England Biolabs社等)を用いて、RCA反応(504)を行なうことにより、mRNAの3'末端由来の制限酵素断片であって、ポリA由来のホモポリマー配列を有さず、両末端にそれぞれCTTTTTVN(409)及びアダプターE'(405)の既知配列をもつ一本鎖DNA(503)の増幅反応(504)を実現することが可能となった(図9)。RCAに使用する酵素は、上記酵素以外にも鎖置換作用を持つものであれば特に限定はされない。 Following the ligation reaction, an RCA reaction (504) is performed using φ29 DNA-polymerase, which is a DNA-polymerase having a strand displacement function, or Bst DNA-polymerase (Fermentase, New England Biolabs, etc.), and then mRNA 3 ' It is a restriction enzyme fragment derived from a terminal, which has no homopolymer sequence derived from poly A, and has a single-stranded DNA (503) having known sequences of CTTTTTVN (409) and adapter E ′ (405) at both ends, respectively. An amplification reaction (504) could be realized (FIG. 9). The enzyme used for RCA is not particularly limited as long as it has a strand displacement action other than the above enzymes.
 本実施例を達成するために使用する反応容器の形状として、例えば図10に示すように、多数の微細な孔があいた容器(612)を用意し、それぞれの孔(611)の中の壁面にmRNA捕獲用プローブ(601)を固定化し、底面にはRCA用オリゴDNA(602)を固定化することで、一つの孔の中で効果的に増幅産物を得ることが可能となる。RCA反応後の産物は底面部に固定化されており、遺伝子特異的な配列を有する蛍光プローブを投入し相補鎖を形成させることで、遺伝子発現解析が可能となる。また、リアルタイムPCR技術により、定量的に遺伝子発現解析を行なうことも可能となる。 As the shape of the reaction vessel used to achieve this example, for example, as shown in FIG. 10, a container (612) having a large number of fine holes is prepared, and a wall in each hole (611) is prepared. By immobilizing the mRNA capture probe (601) and immobilizing the RCA oligo DNA (602) on the bottom surface, it is possible to effectively obtain an amplification product in one hole. The product after the RCA reaction is immobilized on the bottom surface, and gene expression analysis can be performed by inserting a fluorescent probe having a gene-specific sequence to form a complementary strand. It is also possible to perform gene expression analysis quantitatively by real-time PCR technology.
 さらには、図11に示すように、反応容器(703)の孔(711)の底をメンブレン等の溶液が流出可能な材料(701)とし、反応中は溶液を孔中で保持し、反応後には吸引等で溶液を抜き(702)、更に次の反応の溶液を加えるというような形態をとることも可能である。この場合も、mRNA捕獲用プローブ(601)及び固定化RCA用オリゴDNA(602)を壁面に固定化することで達成可能である。 Furthermore, as shown in FIG. 11, the bottom of the hole (711) of the reaction vessel (703) is made of a material (701) from which a solution such as a membrane can flow out, and the solution is held in the hole during the reaction. It is also possible to take the form of removing the solution by suction or the like (702) and adding the solution of the next reaction. This can also be achieved by immobilizing the mRNA capture probe (601) and the immobilized RCA oligo DNA (602) on the wall surface.
 本明細書中で引用した全ての刊行物、特許及び特許出願は、その全文を参考として本明細書中に取り入れるものとする。 All publications, patents and patent applications cited in this specification are hereby incorporated by reference in their entirety.
 本発明により、試料中のターゲット核酸の分析方法が提供される。本発明の方法では、ターゲット核酸に含まれるホモポリマー配列を塩基置換することによって、ホモポリマー配列に起因する問題を解決することができる。また、生成される伸長鎖の融解温度Tmの上昇を実現し、続いて行う核酸増幅反応や配列決定反応において、安定した相補鎖結合を行うことができるプライマー結合部位が提供される。従って、本発明により、核酸を高効率、迅速かつ正確に分析することが可能となる。 The present invention provides a method for analyzing a target nucleic acid in a sample. In the method of the present invention, the problem caused by the homopolymer sequence can be solved by base substitution of the homopolymer sequence contained in the target nucleic acid. In addition, a primer binding site is provided that realizes an increase in the melting temperature Tm of the generated extended strand and enables stable complementary strand binding in the subsequent nucleic acid amplification reaction and sequencing reaction. Therefore, according to the present invention, nucleic acids can be analyzed with high efficiency, speed and accuracy.
 101 mRNA捕獲用プローブ
 102 mRNA
 103 3'末端ポリA配列
 104 V=T以外のA、C若しくはGの3塩基の混合塩基
 105 N=A、C、G若しくはTの4種混合塩基
 106 1st strand cDNA
 110 ミスマッチ
 111 2nd strand cDNA
 112 マッチ(相補鎖結合)
 151 mRNA捕獲用プローブ
 152 アダプターB(オリゴB)
 153 アダプターB(オリゴB')
 154 プライマー/プローブ
 155 プライマー/プローブ
 156 2本鎖cDNAの制限酵素断片
 161 MboI切断断片
 162 制限酵素MseI(T↓TAA)による切断

 201 mRNA捕獲用プローブ
 202 アダプター配列A
 203 磁気ビーズ
 215 アダプターD(オリゴD)
 216 アダプターD(オリゴD')

 301 4塩基認識制限酵素MboI(↓GATC)による切断
 302 アダプターC(オリゴC)
 303 アダプターC(オリゴC')

 401 mRNA捕獲用プローブ
 402 1st strand cDNA
 403 2nd strand cDNA
 404 アダプターE(オリゴE)
 405 アダプターE(オリゴE')
 406 GsuIによる切断処理
 407 リン酸基修飾
 408 下流鎖
 409 CTTTTTVN配列
 411 アダプター配列F

 501 固相担体
 502 RCA用オリゴ
 503 一本鎖DNA又は環状DNA
 504 増幅反応
 511 環状DNAのニック部分

 601 mRNA捕獲用プローブ
 602 RCA用オリゴDNA
 611 孔
 612 容器
 701 溶液が流出可能な材料
 702 吸引等による溶液の抜きとり
 703 反応容器
 711 孔
101 mRNA capture probe 102 mRNA
103 3 'terminal poly A sequence 104 V = mixed base of 3 bases of A, C or G other than T 105 N = 4 mixed bases of A, C, G or T 106 1st strand cDNA
110 mismatch 111 2nd strand cDNA
112 matches (complementary strand binding)
151 Probe for mRNA capture 152 Adapter B (Oligo B)
153 Adapter B (Oligo B ')
154 Primer / Probe 155 Primer / Probe 156 Restriction fragment of double-stranded cDNA 161 MboI cleavage fragment 162 Cleavage with restriction enzyme MseI (T ↓ TAA)

201 Probe for mRNA capture 202 Adapter sequence A
203 Magnetic beads 215 Adapter D (Oligo D)
216 Adapter D (Oligo D ')

301 Cleavage with 4-base recognition restriction enzyme MboI (↓ GATC) 302 Adapter C (Oligo C)
303 Adapter C (Oligo C ')

401 Probe for mRNA capture 402 1st strand cDNA
403 2nd strand cDNA
404 Adapter E (Oligo E)
405 Adapter E (Oligo E ')
406 Cleavage with GsuI 407 Phosphate modification 408 Downstream chain 409 CTTTTTVN sequence 411 Adapter sequence F

501 Solid phase carrier 502 RCA oligo 503 Single-stranded DNA or circular DNA
504 Amplification reaction 511 Nick part of circular DNA

601 Probe for mRNA capture 602 Oligo DNA for RCA
611 hole 612 container 701 Material from which solution can flow out 702 Extraction of solution by suction 703 Reaction container 711 hole
配列番号1~29:Artificial(合成オリゴヌクレオチド) SEQ ID NOs: 1 to 29: Artificial (synthetic oligonucleotide)

Claims (22)

  1.  試料からターゲット核酸を調製する工程、
     該ターゲット核酸に、該ターゲット核酸が有する共通配列と相補鎖結合する第1のプローブを結合させる工程、及び
     第1のプローブをプライマーとして用いて該ターゲット核酸の相補鎖合成反応を行い、第1の伸長鎖を生成する工程
    を含み、第1のプローブの配列が、該ターゲット核酸が有する共通配列に対して完全に相補的ではなく、かつ1若しくは数個のミスマッチ塩基を有するように設計されていることを特徴とする、試料中のターゲット核酸を分析する方法。
    Preparing a target nucleic acid from a sample;
    A step of binding to the target nucleic acid a first probe that has a complementary strand binding to a common sequence of the target nucleic acid; and a complementary strand synthesis reaction of the target nucleic acid using the first probe as a primer, Including a step of generating an extended strand, wherein the sequence of the first probe is not completely complementary to the common sequence of the target nucleic acid and has one or several mismatched bases A method for analyzing a target nucleic acid in a sample.
  2.  ターゲット核酸が、その3'末端に、ポリA配列からなるホモポリマー配列を有するmRNA、又は同じ種類の塩基が少なくとも6塩基連続した配列からなるホモポリマー配列を有するDNA若しくはRNAであり、第1のプローブが、共通配列としての該ホモポリマー配列に対して完全に相補的ではなく、かつ1若しくは数個のミスマッチ塩基を有するように設計されている、請求項1に記載の方法。 The target nucleic acid is an mRNA having a homopolymer sequence consisting of a polyA sequence at its 3 ′ end, or a DNA or RNA having a homopolymer sequence consisting of a sequence of at least 6 bases of the same type of base, The method according to claim 1, wherein the probe is not completely complementary to the homopolymer sequence as a consensus sequence and is designed to have one or several mismatched bases.
  3.  ターゲット核酸がmRNAであり、第1のプローブが、少なくとも2~4塩基の連続するT塩基と、A若しくはG若しくはC塩基との組み合わせからなる配列を含む少なくとも15塩基のmRNA捕獲用プローブである、請求項2に記載の方法。 The target nucleic acid is mRNA, and the first probe is a probe for capturing mRNA of at least 15 bases comprising a sequence comprising a combination of at least 2 to 4 consecutive T bases and A, G, or C bases. The method of claim 2.
  4.  ターゲット核酸がmRNAであり、第1のプローブが、少なくとも5~7塩基の連続するT塩基と、A若しくはG若しくはC塩基との組み合わせからなる配列を含む少なくとも15塩基のmRNA捕獲用プローブである、請求項2に記載の方法。 The target nucleic acid is mRNA, and the first probe is a probe for capturing mRNA of at least 15 bases comprising a sequence comprising a combination of at least 5 to 7 consecutive T bases and A, G, or C bases. The method of claim 2.
  5.  ターゲット核酸がmRNAであり、第1のプローブが、少なくとも8~10塩基の連続するT塩基と、A若しくはG若しくはC塩基との組み合わせからなる配列を含む少なくとも15塩基のmRNA捕獲用プローブである、請求項2に記載の方法。 The target nucleic acid is mRNA, and the first probe is a probe for capturing mRNA of at least 15 bases comprising a sequence comprising a combination of at least 8 to 10 consecutive T bases and A, G, or C bases. The method of claim 2.
  6.  第1の伸長鎖を鋳型として第2のプローブをプライマーとして用いる相補鎖合成反応を行い、第2の伸長鎖を生成する工程をさらに含む、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, further comprising a step of performing a complementary strand synthesis reaction using the first extended strand as a template and the second probe as a primer to generate a second extended strand. .
  7.  第2の伸長鎖を鋳型として第3のプローブをプライマーとして用いる相補鎖合成反応を行い、第3の伸長鎖を生成する工程をさらに含む、請求項6に記載の方法。 The method according to claim 6, further comprising a step of performing a complementary strand synthesis reaction using the second extended strand as a template and the third probe as a primer to generate a third extended strand.
  8.  第3のプローブが、第1のプローブと同じものである、請求項7に記載の方法。 The method according to claim 7, wherein the third probe is the same as the first probe.
  9.  第3のプローブが、第2の伸長鎖における第1のプローブの相補配列部分と相補鎖結合するものであり、かつ第1のプローブの相補配列部分に対して1若しくは数個のミスマッチ塩基を有するように設計されている、請求項7に記載の方法。 The third probe is complementary to the complementary sequence portion of the first probe in the second extension strand and has one or several mismatch bases with respect to the complementary sequence portion of the first probe. The method according to claim 7, which is designed as follows.
  10.  プローブに含まれる少なくとも1塩基が人工核酸である、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein at least one base contained in the probe is an artificial nucleic acid.
  11.  ミスマッチ塩基を有するプローブが、その3'末端にVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有する、請求項1~10のいずれか1項に記載の方法。 The probe having a mismatched base has a VN sequence (V represents A, C, or G base, and N represents A, C, G, or T base) at its 3 'end. 2. The method according to item 1.
  12.  ミスマッチ塩基を有するプローブが、その3'末端にVVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有する、請求項1~10のいずれか1項に記載の方法。 The probe having a mismatched base has a VVN sequence (V represents A, C or G base, and N represents A, C, G or T base) at its 3 'end. 2. The method according to item 1.
  13.  ミスマッチ塩基を有するプローブが、その3'末端にVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するプローブと、その3'末端にVVN配列(VはA、C若しくはG塩基を表し、NはA、C、G若しくはT塩基を表す)を有するプローブとの混合物である、請求項1~10のいずれか1項に記載の方法。 A probe having a mismatch base has a VN sequence (V represents A, C or G base, N represents A, C, G or T base) at its 3 ′ end, and VVN at its 3 ′ end. The method according to any one of claims 1 to 10, which is a mixture with a probe having the sequence (V represents A, C or G base and N represents A, C, G or T base).
  14.  ミスマッチ塩基を有するプローブが、その5'末端に既知配列からなるアダプター配列を有する、請求項1~13のいずれか1項に記載の方法。 The method according to any one of claims 1 to 13, wherein the probe having a mismatched base has an adapter sequence consisting of a known sequence at its 5 'end.
  15.  アダプター配列が、クラスIISタイプの制限酵素認識配列を含む、請求項14に記載の方法。 The method according to claim 14, wherein the adapter sequence comprises a class IIS type restriction enzyme recognition sequence.
  16.  プローブの配列の融解温度(Tm)が上昇するようにプローブが設計される、請求項1~15のいずれか1項に記載の方法。 The method according to any one of claims 1 to 15, wherein the probe is designed such that the melting temperature (Tm) of the probe sequence is increased.
  17.  融解温度(Tm)が核酸増幅反応に適した温度となるようにプローブが設計される、請求項1~16のいずれか1項に記載の方法。 The method according to any one of claims 1 to 16, wherein the probe is designed so that the melting temperature (Tm) is a temperature suitable for the nucleic acid amplification reaction.
  18.  融解温度(Tm)が核酸の配列決定反応に適した温度となるようにプローブが設計される、請求項1~16のいずれか1項に記載の方法。 The method according to any one of claims 1 to 16, wherein the probe is designed so that the melting temperature (Tm) is a temperature suitable for a nucleic acid sequencing reaction.
  19.  伸長鎖に制限酵素認識配列が導入されるようにプローブが設計される、請求項1~18のいずれか1項に記載の方法。 The method according to any one of claims 1 to 18, wherein the probe is designed so that a restriction enzyme recognition sequence is introduced into the extended strand.
  20.  第1のプローブが固相担体に固定化されている、請求項1~19のいずれか1項に記載の方法。 The method according to any one of claims 1 to 19, wherein the first probe is immobilized on a solid phase carrier.
  21.  得られた伸長鎖を用いて、核酸増幅反応、配列決定反応、又はcDNAライブラリの調製を行う工程をさらに含む、請求項1~20のいずれか1項に記載の方法。 The method according to any one of claims 1 to 20, further comprising a step of performing a nucleic acid amplification reaction, a sequencing reaction, or a cDNA library preparation using the obtained extended strand.
  22.  第1のプローブ及び第2のプローブを混合して、又は第1のプローブ及び第2のプローブ及び第3のプローブを混合して、ターゲット核酸の核酸増幅反応を行う、請求項21に記載の方法。 The method according to claim 21, wherein the nucleic acid amplification reaction of the target nucleic acid is performed by mixing the first probe and the second probe, or by mixing the first probe, the second probe, and the third probe. .
PCT/JP2011/063492 2010-06-16 2011-06-13 Method for large-scale parallel nucleic acid analysis WO2011158784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010137073A JP2012000044A (en) 2010-06-16 2010-06-16 Method for large-scale parallel nucleic acid analysis
JP2010-137073 2010-06-16

Publications (1)

Publication Number Publication Date
WO2011158784A1 true WO2011158784A1 (en) 2011-12-22

Family

ID=45348183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063492 WO2011158784A1 (en) 2010-06-16 2011-06-13 Method for large-scale parallel nucleic acid analysis

Country Status (2)

Country Link
JP (1) JP2012000044A (en)
WO (1) WO2011158784A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250382A (en) * 2015-02-17 2017-10-13 生物辐射实验室股份有限公司 Quantified using the small nucleic acids of division cyclic amplification
CN110225979A (en) * 2017-05-23 2019-09-10 深圳华大基因股份有限公司 Genome target region enrichment method and its application based on rolling circle amplification
CN110225979B (en) * 2017-05-23 2024-05-31 深圳华大基因股份有限公司 Rolling circle amplification-based genome target region enrichment method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299485A (en) * 1998-04-22 1999-11-02 Hitachi Ltd Method for amplifying nucleic acid and amplification primer for said method
JP2002532063A (en) * 1998-10-07 2002-10-02 マクギル ユニバーシティー Oligonucleotide primers capable of destabilizing non-specific duplex formation and uses thereof
JP2009273470A (en) * 2003-09-17 2009-11-26 Agency For Science Technology & Research Method for gene identification signature (gis) analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299485A (en) * 1998-04-22 1999-11-02 Hitachi Ltd Method for amplifying nucleic acid and amplification primer for said method
JP2002532063A (en) * 1998-10-07 2002-10-02 マクギル ユニバーシティー Oligonucleotide primers capable of destabilizing non-specific duplex formation and uses thereof
JP2009273470A (en) * 2003-09-17 2009-11-26 Agency For Science Technology & Research Method for gene identification signature (gis) analysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANG P. ET AL.: "Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction", SCIENCE, vol. 257, no. 5072, 1992, pages 967 - 971 *
SHULDINER A.R. ET AL.: "RNA template-specific polymerase chain reaction (RS-PCR): a novel strategy to reduce dramatically false positives", GENE, vol. 91, no. 1, 1990, pages 139 - 142 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250382A (en) * 2015-02-17 2017-10-13 生物辐射实验室股份有限公司 Quantified using the small nucleic acids of division cyclic amplification
EP3486329A1 (en) * 2015-02-17 2019-05-22 Bio-Rad Laboratories, Inc. Method of generating and amplifying cdna
US11066698B2 (en) 2015-02-17 2021-07-20 Bio-Rad Laboratories, Inc. Small nucleic acid quantification using split cycle amplification
CN110225979A (en) * 2017-05-23 2019-09-10 深圳华大基因股份有限公司 Genome target region enrichment method and its application based on rolling circle amplification
CN110225979B (en) * 2017-05-23 2024-05-31 深圳华大基因股份有限公司 Rolling circle amplification-based genome target region enrichment method and application thereof

Also Published As

Publication number Publication date
JP2012000044A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US10590411B2 (en) Crude biological derivatives competent for nucleic acid detection
WO2022143221A1 (en) Method and kit for labeling nucleic acid molecules
JP4651386B2 (en) Usage of primers encoding a single strand of a double-stranded promoter
CN107109401B (en) Polynucleotide enrichment Using CRISPR-CAS System
US7846666B2 (en) Methods of RNA amplification in the presence of DNA
CN109415758A (en) The label fragmentation carried out using the swivel base body through immobilization containing connector
EP3485032A1 (en) Compositions and methods for detecting nucleic acid regions
US20070077571A1 (en) Methods and apparatus for identifying allosterically regulated ribozymes
KR20220041875A (en) single cell analysis
CN117821565A (en) High sensitivity DNA methylation analysis method
JP6896620B2 (en) Sequence conversion and signal amplification DNA with locked nucleic acid and detection method using it
KR20160138579A (en) Systems and methods for clonal replication and amplification of nucleic acid molecules for genomic and therapeutic applications
JP2002262882A (en) Method for amplifying rna
JP2023547394A (en) Nucleic acid detection method by oligohybridization and PCR-based amplification
JP2009284834A (en) Large-scale parallel nucleic acid analysis method
US20230279470A1 (en) Efficient screening library preparation
CN110382710A (en) The method for constructing nucleic acid molecules copy
Jacobsen et al. Direct isolation of poly (A)+ RNA from 4 M guanidine thiocyanate‐lysed cell extracts using locked nucleic acid‐oligo (T) capture
JP2002537774A (en) Polymorphic DNA fragments and uses thereof
JPH09500278A (en) Oligonucleotide screening assay
JP2019509724A (en) A method for direct target sequencing using nuclease protection
JP2023537850A (en) Sequence-specific targeted transposition and selection and selection of nucleic acids
WO2011158784A1 (en) Method for large-scale parallel nucleic acid analysis
Chetverin et al. Molecular colony technique: a new tool for biomedical research and clinical practice
WO2023116376A1 (en) Labeling and analysis method for single-cell nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795690

Country of ref document: EP

Kind code of ref document: A1