WO2011157873A1 - System and method for obtaining data on the breathing cycle of a patient - Google Patents

System and method for obtaining data on the breathing cycle of a patient Download PDF

Info

Publication number
WO2011157873A1
WO2011157873A1 PCT/ES2011/070242 ES2011070242W WO2011157873A1 WO 2011157873 A1 WO2011157873 A1 WO 2011157873A1 ES 2011070242 W ES2011070242 W ES 2011070242W WO 2011157873 A1 WO2011157873 A1 WO 2011157873A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
respiratory
video sequence
abdomen
regions
Prior art date
Application number
PCT/ES2011/070242
Other languages
Spanish (es)
French (fr)
Inventor
Luís GOLDMAN TARLOVKY
Original Assignee
Fundación Para La Investigación Biomédica Del Hospital Universitario De La Paz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Para La Investigación Biomédica Del Hospital Universitario De La Paz filed Critical Fundación Para La Investigación Biomédica Del Hospital Universitario De La Paz
Publication of WO2011157873A1 publication Critical patent/WO2011157873A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • A61B5/0878Measuring breath flow using temperature sensing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis

Definitions

  • the object of the present invention is a non-invasive system and method for obtaining data about the respiratory cycle of a patient. Specifically, the procedure evaluates: 1) periodic changes related to breathing that occur in certain areas of a patient's body by processing a video sequence obtained by means of a thermal imager and 2) from the curves of the chest, abdomen and Nasal airflow resulting from the previous procedure, accurately measures respiratory synchrony without virtually no instrumental lag. BACKGROUND OF THE INVENTION
  • the Obstructive Sleep Apnea Syndrome is characterized by more or less prolonged respiratory pauses and an obstruction in the upper airways that decreases the air flow.
  • respiratory pauses can also occur due to neurological and muscular conditions or prolonged apnea of etiology not yet fully elucidated as Sudden Infant Death Syndrome. Therefore, it is necessary to know data about the patient's respiratory cycle to be able to make an accurate differential diagnosis and take the necessary life support measures if the event is prolonged putting the patient's life at risk.
  • the respiratory cycle of a patient originates primarily in the cyclic contraction of the diaphragm muscle and results in displacements of the chest and abdomen causing a bidirectional air flow detectable at the level of the nostrils and / or in the mouth.
  • the lack of relative synchrony between Displacements of the thorax and abdomen and air flow may be indicative of different respiratory pathologies.
  • Nasal air flow refers to the air entering and exiting through the nose during inspiration and expiration
  • thoracic and abdominal displacements refer respectively to the way in which the chest and abdomen swell and deflate during the breathing. Under physiological conditions these processes are synchronous, accepted as a normal angle thoraco abdominal desfazamiento between 0 and 54 ° or.
  • thermographic video sequence of a region of interest of a patient and of a duration that can range from a few seconds to a few minutes is taken, and then the thermal map variations (of size, of shape, position and / or magnitude) in said region of interest. That is, considering that the map of surface temperatures of, for example, a patient's chest is relatively constant, the periodic changes that occur in a thermographic image of the region of interest should be the consequence of movements related to breathing.
  • One aspect of the invention describes a method for obtaining data about a patient's respiratory cycle from a video sequence of the patient recorded with a thermal imager.
  • the thermal imager is capable of detecting thermal emissions whose wavelength corresponds to the range of surface temperatures of a person and their environment in a hospital ward, for example between 25 ° C and 40 ° C.
  • the data obtained about the respiratory cycle are represented as graphs that allow a user to identify the moments of beginning and end of the inspiration and expiration phases, as well as possible respiratory pauses, inspiration or forced expiration, or other respiratory abnormalities and provide the angle of lag between the respiratory movements of the thorax and abdomen.
  • the process of the invention comprises the following steps:
  • thermographic video sequence 1) Identify in the thermographic video sequence the regions of the thoracic, abdominal patient and at least one nasal vestibule.
  • this step in turn comprises the steps of:
  • the difference between areas 1 and 0 represents the value of the thermal variation in each region of interest. This value is updated 50 times per second (which is the number of frames recorded per second) giving rise to a series of time whose magnitude varies with the respiratory displacements of the thorax and abdomen and the change in temperature in the nostrils. Finally, a cross-correlation analysis allows to obtain the offset angle or delay time between the signals.
  • the respiratory rate may range between approximately 12 and 40 breaths per minute, while the heart rate may be between approximately 60 and 100 pulses per minute, both values being dependent on the subject's age. Accordingly, it is possible to filter frequencies greater than 0.8 Hz to prevent changes due to heart rate interfering with the identification of data about the respiratory cycle. That is, the filter will eliminate artifacts at more than 48 cycles per second. More preferably, a low-pass filter of Chebyshev type II and order 6 is used.
  • the described invention is directed to a procedure, it is understood that said procedure is capable of being encoded as a computer program.
  • the program may have the form of source code, object code, an intermediate source of code and object code (for example, in partially compiled form), or in any other form suitable for the implementation of the method according to the invention.
  • Said computer program may be located on or within a carrier, any entity or device capable of supporting the program being a carrier.
  • the carrier can be a storage medium such as a ROM, a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example, a flexible disk or a hard disk.
  • the carrier can also be a transmissible carrier, for example, an electrical or optical signal that could be transported through electrical or optical cable, by radio or by any other means.
  • the carrier When the program is incorporated into a signal that can be directly transported by a cable or other device or medium, the carrier may be constituted by said cable or other device or means.
  • the carrier could also be an integrated circuit in which the program is included, the integrated circuit adapted to execute, or to be used in the execution of, the corresponding processes.
  • a second aspect of the present invention describes a system capable of carrying out the process described above comprising
  • thermographic video camera capable of obtaining a video sequence of at least one region of interest of a patient; and - a processing medium, preferably a PC, connected to the thermographic video camera and configured to carry out the procedure described above.
  • Fig. 1 shows an example in grayscale of a frame corresponding to a thermographic video sequence of the torso and face of a patient where thermal zones are displayed that move with the respiratory movements of the thorax and abdomen.
  • Fig. 2 shows a pair of thermographic frames corresponding to the nasal region highlighting the predominance of the gray areas (lower temperature) at the end of inspiration (Fig. 2A) and a decrease of these areas (higher temperature) at the end of the expiration (Fig. 2B).
  • the inhalation of air at room temperature is what causes the thermal decrease in the nostrils.
  • Fig. 3 shows the result of subtracting pixel by pixel consecutive frames.
  • the non-significant results (around 0) were eliminated since they represent undetermined noise while the positive and negative results were respectively assigned to 1 and 0.
  • the complementary pattern of areas 1 and 0 is observed during inspiration and expiration.
  • Figs. 4A-C show respectively the fluctuations corresponding to the respiratory movements of the regions of interest TX, AB and NS, the nasal pressures obtained by means of a nasal probe used to check results and the correlation between thoracic and abdominal movements.
  • Figs. 4A-C show respectively the fluctuations corresponding to the respiratory movements of the regions of interest TX, AB and NS, the nasal pressures obtained by means of a nasal probe used to check results and the correlation between thoracic and abdominal movements.
  • the thermal imager used in this example is a Flir Thermovision A40 M (Flir Systems, AB, Sweden) controlled by software from the same company (Therma Cam Researcher software, Flir Systems, AB, Sweden) that measures thermal emissivity in a range spectral between 7.5-13 ⁇ .
  • the camera was connected to a PC through a firewire connection.
  • thermographic video sequences acquired in AVI format 50 frames per second, 76000 pixels per frame), lasting at least 10 minutes, were transformed to Matlab format (Matlab 7.0, Mathworks, Inc., Natick, MA) for post processing
  • Matlab format Matlab 7.0, Mathworks, Inc., Natick, MA
  • the room temperature was maintained between 22 0 and 24 °.
  • Fig. 1 shows a frame corresponding to a patient during the inspiration process. The lighter areas correspond to warmer temperatures, while the dark ones correspond to colder temperatures, such as It is seen on the scale on the right.
  • the three regions of interest usually used for the diagnosis of respiratory problems are also represented: abdomen (AB), thorax (TX) and nose (NS).
  • Fig. 2 shows the frames of a nostril corresponding to the end of inspiration (Fig. 2A) and expiration (Fig.
  • Figs. 4A-C show the signals obtained non-invasively and without any instrumental delay corresponding to the respiratory pattern in the abdominal, thoracic and nasal regions of a healthy patient.
  • thermographic curves corresponding to the regions mentioned and represented in arbitrary units have a totally physiological synchrony.
  • Fig. 5 shows the same curves but obtained in a patient with respiratory involvement, asynchrony is evident between the thermographic signals obtained (Fig. 5A).
  • the curves of the thorax and abdomen do not coincide with the nasal pressure (Fig. 5B) considered as a reference and confirming its lack of synchrony.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The invention relates to a system and non-invasive method for obtaining data on the breathing cycle of a patient from a video sequence of the patient recorded by a thermographic camera, that includes the following operations: identifying the thoracic region (TX), abdominal region (AB) and at least one nasal vestibule (NS) of the patient in the thermographic video sequence; and processing the thermographic video sequence in order to infer, as a function of periodic changes in said regions, data on the breathing cycle of the patient.

Description

SISTEMA Y PROCEDIMIENTO PARA OBTENER DATOS ACERCA DEL CICLO RESPIRATORIO DE UN PACIENTE  SYSTEM AND PROCEDURE FOR OBTAINING DATA ABOUT A PATIENT'S RESPIRATORY CYCLE
OBJETIVO DE LA INVENCIÓN OBJECTIVE OF THE INVENTION
El objeto de la presente invención es un sistema y procedimiento no invasivo para la obtención de datos acerca del ciclo respiratorio de un paciente. Concretamente, el procedimiento evalúa: 1 ) los cambios periódicos relacionados con la respiración que se producen en determinadas zonas del cuerpo de un paciente procesando una secuencia de vídeo obtenida mediante una cámara termográfica y 2) a partir de las curvas del tórax, abdomen y del flujo aéreo nasal resultantes del procedimiento anterior, mide exactamente la sincronía respiratoria sin prácticamente ningún desfase instrumental. ANTECEDENTES DE LA INVENCIÓN The object of the present invention is a non-invasive system and method for obtaining data about the respiratory cycle of a patient. Specifically, the procedure evaluates: 1) periodic changes related to breathing that occur in certain areas of a patient's body by processing a video sequence obtained by means of a thermal imager and 2) from the curves of the chest, abdomen and Nasal airflow resulting from the previous procedure, accurately measures respiratory synchrony without virtually no instrumental lag. BACKGROUND OF THE INVENTION
Se ha demostrado que una multitud de patologías respiratorias producen alteraciones en los volúmenes inspirados y espirados de aire y en la frecuencia respiratoria. Así por ejemplo, el Síndrome de Apnea Obstructiva del Sueño se caracteriza por pausas respiratorias mas ó menos prolongadas y una obstrucción en las vías aéreas altas que disminuye el flujo de aire. En niños, también pueden producirse pausas respiratorias por afecciones neurológicas y musculares o bien apneas prolongadas de etiología aún no del todo dilucidada como el Síndrome de Muerte Súbita del Lactante. Por tanto, es necesario conocer datos acerca del ciclo respiratorio del paciente para poder realizar un diagnóstico diferencial preciso y tomar las medidas de soporte vital necesario si el evento se prolonga poniendo en riesgo la vida del paciente. It has been shown that a multitude of respiratory pathologies produce alterations in the inspired and exhaled volumes of air and in the respiratory rate. Thus, for example, the Obstructive Sleep Apnea Syndrome is characterized by more or less prolonged respiratory pauses and an obstruction in the upper airways that decreases the air flow. In children, respiratory pauses can also occur due to neurological and muscular conditions or prolonged apnea of etiology not yet fully elucidated as Sudden Infant Death Syndrome. Therefore, it is necessary to know data about the patient's respiratory cycle to be able to make an accurate differential diagnosis and take the necessary life support measures if the event is prolonged putting the patient's life at risk.
El ciclo respiratorio de un paciente se origina fundamentalmente en la contracción cíclica del músculo diafragma y se traduce en desplazamientos del tórax y abdomen provocando un flujo de aire bidireccional detectable a nivel de los orificios nasales y/o en la boca. La falta de sincronía relativa entre los desplazamientos del tórax y abdomen y el flujo de aire puede ser indicativa de diferentes patologías respiratorias. El flujo de aire nasal hace referencia al aire que entra y sale a través de la nariz durante la inspiración y la espiración, mientras que los desplazamientos torácico y abdominal se refieren respectivamente al modo en que el pecho y el abdomen se hinchan y deshinchan durante la respiración. En condiciones fisiológicas estos procesos son sincrónicos, aceptándose como normal un ángulo de desfazamiento tóraco- abdominal entre 0o y 54°. Actualmente existen algunos métodos que permiten obtener datos acerca del ciclo respiratorio de un paciente con el objeto de diagnosticar enfermedades respiratorias. Por ejemplo, algunos médicos muy expertos pueden identificar pequeñas pausas respiratorias y episodios de apnea a través de la simple observación de los desplazamientos torácico y abdominal. Incluso pueden detectar episodios de obstrucción de las vías respiratorias a través del reconocimiento de maniobras inspiratorias ó espiratorias forzadas. Sin embargo, estos métodos no son útiles para la monitorización objetiva y a largo plazo del ciclo respiratorio de un paciente. En pacientes que requieren una monitorización del ciclo respiratorio es frecuente utilizar bandas elásticas provistas de transductores alrededor del tórax y del abdomen del paciente que miden los desplazamientos torácico y abdominal, así como el uso de una máscara dotada de un pneumotacógrafo para detectar el flujo de aire nasal. Sin embargo, este sistema es muy invasivo y puede influir sobre el patrón respiratorio del paciente. Además, estos sistemas son especialmente inadecuados para la toma de medidas en niños de corta edad, que pueden sentirse incómodos y quedarse accidentalmente enganchados a los cables y sensores utilizados. En consecuencia, existe aún la necesidad de un sistema que permita obtener de forma fiable y repetitiva el ciclo respiratorio de un paciente. DESCRIPCIÓN DE LA INVENCIÓN The respiratory cycle of a patient originates primarily in the cyclic contraction of the diaphragm muscle and results in displacements of the chest and abdomen causing a bidirectional air flow detectable at the level of the nostrils and / or in the mouth. The lack of relative synchrony between Displacements of the thorax and abdomen and air flow may be indicative of different respiratory pathologies. Nasal air flow refers to the air entering and exiting through the nose during inspiration and expiration, while thoracic and abdominal displacements refer respectively to the way in which the chest and abdomen swell and deflate during the breathing. Under physiological conditions these processes are synchronous, accepted as a normal angle thoraco abdominal desfazamiento between 0 and 54 ° or. There are currently some methods that allow obtaining data about the respiratory cycle of a patient in order to diagnose respiratory diseases. For example, some very skilled doctors can identify small respiratory pauses and apnea episodes through the simple observation of thoracic and abdominal displacements. They can even detect episodes of airway obstruction through the recognition of inspiratory or forced expiratory maneuvers. However, these methods are not useful for the objective and long-term monitoring of a patient's respiratory cycle. In patients who require monitoring of the respiratory cycle, it is common to use elastic bands provided with transducers around the thorax and abdomen of the patient that measure thoracic and abdominal displacements, as well as the use of a mask equipped with a pneumotachograph to detect air flow nasal. However, this system is very invasive and can influence the patient's respiratory pattern. In addition, these systems are especially inadequate for taking measurements in young children, who may feel uncomfortable and accidentally get hooked on the cables and sensors used. Consequently, there is still a need for a system that allows a patient's respiratory cycle to be obtained reliably and repetitively. DESCRIPTION OF THE INVENTION
Los inventores de la presente solicitud han desarrollado un procedimiento que permite obtener datos acerca del ciclo respiratorio de un paciente a partir de una secuencia de vídeo termográfica del paciente, evitándose así la necesidad de conectar aparatos de medida tales como bandas elásticas provistas de transductores o similares y sensores de flujo aéreo. Para ello, fundamentalmente se toma una secuencia de vídeo termográfica de una región de interés de un paciente y de una duración que puede oscilar entre algunos segundos y algunos minutos, y a continuación se realiza un seguimiento de las variaciones del mapa térmico (de tamaño, de forma, de posición y/o de magnitud) en dicha región de interés. Es decir, considerando que el mapa de temperaturas superficiales de, por ejemplo, el pecho de un paciente es relativamente constante, los cambios periódicos que se producen en una imagen termográfica de la región de interés deben ser la consecuencia de movimientos relacionados con la respiración. The inventors of the present application have developed a procedure that allows obtaining data about the respiratory cycle of a patient from a thermographic video sequence of the patient, thus avoiding the need to connect measuring devices such as elastic bands provided with transducers or the like. and air flow sensors. To do this, a thermographic video sequence of a region of interest of a patient and of a duration that can range from a few seconds to a few minutes is taken, and then the thermal map variations (of size, of shape, position and / or magnitude) in said region of interest. That is, considering that the map of surface temperatures of, for example, a patient's chest is relatively constant, the periodic changes that occur in a thermographic image of the region of interest should be the consequence of movements related to breathing.
Un aspecto de la invención, por tanto, describe un procedimiento para obtener datos acerca del ciclo respiratorio de un paciente a partir de una secuencia de vídeo del paciente grabada con una cámara termográfica. En el presente documento, se entiende que la cámara termográfica es capaz de detectar emisiones térmicas cuya longitud de onda corresponde al rango de temperaturas superficiales de una persona y de su entorno en una sala de un hospital, por ejemplo entre 25°C y 40°C. Por otro lado, los datos obtenidos acerca del ciclo respiratorio se representan como gráficas que permitan a un usuario identificar los momentos de comienzo y final de las fases de inspiración y espiración, así como posibles pausas respiratorias, inspiración o espiración forzada, u otras anomalías respiratorias y proporcionar el ángulo de desfase entre los movimientos respiratorios del tórax y abdomen. El procedimiento de la invención comprende las siguientes etapas: One aspect of the invention, therefore, describes a method for obtaining data about a patient's respiratory cycle from a video sequence of the patient recorded with a thermal imager. In this document, it is understood that the thermal imager is capable of detecting thermal emissions whose wavelength corresponds to the range of surface temperatures of a person and their environment in a hospital ward, for example between 25 ° C and 40 ° C. On the other hand, the data obtained about the respiratory cycle are represented as graphs that allow a user to identify the moments of beginning and end of the inspiration and expiration phases, as well as possible respiratory pauses, inspiration or forced expiration, or other respiratory abnormalities and provide the angle of lag between the respiratory movements of the thorax and abdomen. The process of the invention comprises the following steps:
1 ) Identificar en la secuencia de vídeo termográfica las regiones del paciente torácica, abdominal y al menos un vestíbulo nasal. 1) Identify in the thermographic video sequence the regions of the thoracic, abdominal patient and at least one nasal vestibule.
2) Deducir de los cambios periódicos en la secuencia de vídeo termográfica en dichas regiones datos acerca del ciclo respiratorio del paciente, más preferentemente el grado de sincronización entre los movimientos del tórax y abdomen y el flujo de aire a través de las vías respiratorias del paciente. 2) Deducing from the periodic changes in the thermographic video sequence in said regions data about the patient's respiratory cycle, more preferably the degree of synchronization between the movements of the chest and abdomen and the air flow through the patient's airways .
Según una realización preferida de la invención, esta etapa comprende a su vez los pasos de: According to a preferred embodiment of the invention, this step in turn comprises the steps of:
- Restar píxel a píxel fotogramas consecutivos de la secuencia de vídeo en la región de interés. En cada píxel, esta operación puede dar como resultado cero ó bien valores positivos o negativos según la variación térmica entre los pixeles correspondientes. - Subtract pixel by pixel consecutive frames of the video sequence in the region of interest. In each pixel, this operation can result in zero or positive or negative values depending on the thermal variation between the corresponding pixels.
- Eliminar los pixeles cuyos valores fluctúan alrededor de 0 y que representan variaciones térmicas poco significativas, probablemente ruido indeterminado.  - Eliminate pixels whose values fluctuate around 0 and that represent insignificant thermal variations, probably undetermined noise.
- Binarizar la imagen diferencial resultante obteniendo una serie de matrices cuyos elementos toman el valor de 1 ó 0 según hayan respectivamente aumentado ó disminuido las diferencias píxel a píxel entre fotogramas consecutivos.  - Binarize the resulting differential image obtaining a series of matrices whose elements take the value of 1 or 0 depending on whether the pixel-to-pixel differences between consecutive frames have respectively increased or decreased.
- Estimar el área de los pixeles 1 y 0 en las matrices binarias obtenidas teniendo en cuenta el peso relativo de los 2x2 pixeles vecinos. Por ejemplo, si ninguno de los 4 pixeles vecinos es significativo el área es 0, si dos pixeles en diagonal son positivos el área vale ¾ y si todos los pixeles son positivos el área vale la unidad.  - Estimate the area of pixels 1 and 0 in the binary matrices obtained taking into account the relative weight of the 2x2 neighboring pixels. For example, if none of the 4 neighboring pixels is significant the area is 0, if two diagonal pixels are positive the area is worth ¾ and if all pixels are positive the area is worth the unit.
- La diferencia entre las áreas 1 y 0 representa el valor de la variación térmica en cada región de interés. Dicho valor es actualizado 50 veces por segundo (que es el número de fotogramas grabado por segundo) dando lugar a una serie de tiempo cuya magnitud varia con los desplazamientos respiratorios del tórax y abdomen y el cambio de temperatura en los orificios nasales. Finalmente un análisis de correlación cruzada permite obtener el ángulo de desfase ó tiempo de retardo entre las señales. - The difference between areas 1 and 0 represents the value of the thermal variation in each region of interest. This value is updated 50 times per second (which is the number of frames recorded per second) giving rise to a series of time whose magnitude varies with the respiratory displacements of the thorax and abdomen and the change in temperature in the nostrils. Finally, a cross-correlation analysis allows to obtain the offset angle or delay time between the signals.
En individuos normales, la frecuencia respiratoria puede oscilar entre aproximadamente 12 y 40 respiraciones por minuto, mientras que la frecuencia cardíaca puede estar entre aproximadamente 60 y 100 pulsos por minuto, siendo ambos valores dependientes de la edad del sujeto. De acuerdo con esto, es posible realizar un filtrado de frecuencias mayores de 0,8 Hz para evitar que cambios debidos a la frecuencia cardíaca interfieran en la identificación de datos acerca del ciclo respiratorio. Es decir, el filtro eliminará artefactos a más de 48 ciclos por segundo. Más preferentemente, se utiliza un filtro paso-bajo de Chebyshev de tipo II y orden 6.. In normal individuals, the respiratory rate may range between approximately 12 and 40 breaths per minute, while the heart rate may be between approximately 60 and 100 pulses per minute, both values being dependent on the subject's age. Accordingly, it is possible to filter frequencies greater than 0.8 Hz to prevent changes due to heart rate interfering with the identification of data about the respiratory cycle. That is, the filter will eliminate artifacts at more than 48 cycles per second. More preferably, a low-pass filter of Chebyshev type II and order 6 is used.
Además, aunque la invención descrita está dirigida a un procedimiento, se entiende que dicho procedimiento es susceptible de ser codificado como un programa de ordenador. El programa puede tener la forma de código fuente, código objeto, una fuente intermedia de código y código objeto (por ejemplo, en forma parcialmente compilada), o en cualquier otra forma adecuada para la puesta en práctica del procedimiento según la invención. Furthermore, although the described invention is directed to a procedure, it is understood that said procedure is capable of being encoded as a computer program. The program may have the form of source code, object code, an intermediate source of code and object code (for example, in partially compiled form), or in any other form suitable for the implementation of the method according to the invention.
Dicho programa de ordenador puede estar situado sobre o dentro de una portadora, siendo una portadora cualquier entidad o dispositivo capaz de soportar el programa. La portadora puede ser un medio de almacenamiento como una memoria ROM, una memoria CD ROM o una memoria ROM de semiconductor, o un soporte de grabación magnética, por ejemplo, un disco flexible o un disco duro. La portadora puede ser también una portadora transmisible, por ejemplo, una señal eléctrica u óptica que podría transportarse a través de cable eléctrico u óptico, por radio o por cualesquiera otros medios. Cuando el programa está incorporado en una señal que puede ser transportada directamente por un cable u otro dispositivo o medio, la portadora puede estar constituida por dicho cable u otro dispositivo o medio. La portadora podría ser también un circuito integrado en el que está incluido el programa, estando el circuito integrado adaptado para ejecutar, o para ser utilizado en la ejecución de, los procesos correspondientes. Said computer program may be located on or within a carrier, any entity or device capable of supporting the program being a carrier. The carrier can be a storage medium such as a ROM, a CD ROM or a semiconductor ROM, or a magnetic recording medium, for example, a flexible disk or a hard disk. The carrier can also be a transmissible carrier, for example, an electrical or optical signal that could be transported through electrical or optical cable, by radio or by any other means. When the program is incorporated into a signal that can be directly transported by a cable or other device or medium, the carrier may be constituted by said cable or other device or means. The carrier could also be an integrated circuit in which the program is included, the integrated circuit adapted to execute, or to be used in the execution of, the corresponding processes.
Un segundo aspecto de la presente invención describe un sistema capaz de llevar a cabo el procedimiento descrito anteriormente que comprende A second aspect of the present invention describes a system capable of carrying out the process described above comprising
- una cámara de vídeo termográfica capaz de obtener una secuencia de vídeo de al menos una región de interés de un paciente; y - un medio de procesamiento, preferiblemente un PC, conectado a la cámara de vídeo termográfica y configurado para llevar a cabo el procedimiento descrito anteriormente. - a thermographic video camera capable of obtaining a video sequence of at least one region of interest of a patient; and - a processing medium, preferably a PC, connected to the thermographic video camera and configured to carry out the procedure described above.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La Fig. 1 muestra un ejemplo en escala de grises de un fotograma correspondiente a una secuencia de vídeo termográfica del torso y rostro de un paciente donde se visualizan zonas térmicas que se desplazan con los movimientos respiratorios del tórax y abdomen. Fig. 1 shows an example in grayscale of a frame corresponding to a thermographic video sequence of the torso and face of a patient where thermal zones are displayed that move with the respiratory movements of the thorax and abdomen.
La Fig. 2 muestra un par de fotogramas termográficos correspondientes a la región nasal resaltando el predominio de las zonas más grises (menor temperatura) al final de inspiración (Fig. 2A) y una disminución de dichas zonas (mayor temperatura) al final de la espiración (Fig. 2B). La inhalación de aire a temperatura ambiente es lo que provoca la disminución térmica en los orificios nasales. Fig. 2 shows a pair of thermographic frames corresponding to the nasal region highlighting the predominance of the gray areas (lower temperature) at the end of inspiration (Fig. 2A) and a decrease of these areas (higher temperature) at the end of the expiration (Fig. 2B). The inhalation of air at room temperature is what causes the thermal decrease in the nostrils.
La Fig. 3 muestra el resultado de restar píxel a píxel fotogramas consecutivos. Los resultados no significativos (en torno a 0) fueron eliminados ya que representan ruido no determinado mientras los resultados positivos y negativos fueron respectivamente asignados a 1 y 0. Se observa el patrón complementario de las áreas 1 y 0 durante la inspiración y expiración. Las Figs. 4A-C muestran respectivamente las fluctuaciones correspondientes a los movimientos respiratorios de las regiones de interés TX, AB y NS, las presiones nasales obtenidas mediante una sonda nasal empleada para la comprobación de resultados y la correlación entre los movimientos torácico y abdominal. Fig. 3 shows the result of subtracting pixel by pixel consecutive frames. The non-significant results (around 0) were eliminated since they represent undetermined noise while the positive and negative results were respectively assigned to 1 and 0. The complementary pattern of areas 1 and 0 is observed during inspiration and expiration. Figs. 4A-C show respectively the fluctuations corresponding to the respiratory movements of the regions of interest TX, AB and NS, the nasal pressures obtained by means of a nasal probe used to check results and the correlation between thoracic and abdominal movements.
Las Figs. 4A-C muestran respectivamente las fluctuaciones correspondientes a los movimientos respiratorios de las regiones de interés TX, AB y NS, las presiones nasales obtenidas mediante una sonda nasal empleada para la comprobación de resultados y la correlación entre los movimientos torácico y abdominal. Figs. 4A-C show respectively the fluctuations corresponding to the respiratory movements of the regions of interest TX, AB and NS, the nasal pressures obtained by means of a nasal probe used to check results and the correlation between thoracic and abdominal movements.
REALIZACIÓN PREFERIDA DE LA INVENCIÓN Se describe a continuación un ejemplo de realización de la presente invención haciendo referencia a las figuras adjuntas. PREFERRED EMBODIMENT OF THE INVENTION An exemplary embodiment of the present invention is described below with reference to the attached figures.
La cámara termográfica utilizada en este ejemplo es una Flir Thermovision A40 M (Flir Systems, AB, Suecia) controlada por un software de la misma empresa (Therma Cam Researcher software, Flir Systems, AB, Suecia) que mide la emisividad térmica en un rango espectral entre 7,5-13 μηπ. La cámara se conectó a un PC a través de una conexión firewire. La cámara dispone de una lente estándar de 24° y F=1 dirigida hacia el rostro, tórax y abdomen de pacientes situados a una distancia de entre 70-120 cm. Las secuencias termográficas de vídeo adquiridas en formato AVI (50 fotogramas por segundo, 76000 pixeles por fotograma), de una duración de al menos 10 minutos, fueron transformadas a formato Matlab (Matlab 7.0, Mathworks, Inc., Natick, MA) para su procesamiento posterior. La temperatura de la habitación se mantuvo entre 22 0 y 24°. La Fig. 1 muestra un fotograma correspondiente a un paciente durante el proceso de inspiración. Las zonas más claras corresponden a temperaturas más calientes, mientras que las oscuras corresponden a temperaturas más frías, como se observa en la escala de la derecha. Se representan también las tres regiones de interés habitualmente empleadas para el diagnóstico de problemas respiratorios: abdomen (AB), tórax (TX) y nariz (NS). Concretamente, la Fig. 2 muestra los fotogramas de una fosa nasal correspondientes al fin de la inspiración (Fig. 2A) y de la espiración (Fig. 2B) en un paciente normal. Se aprecia cómo, durante la inspiración (Fig. 2A), la distribución de temperaturas en la zona central tiene zonas frías que no existen durante la espiración (Fig. 2B). Esto es debido a que el aire inhalado durante la inspiración está a una temperatura menor en comparación con la temperatura del aire espirado. Este cambio en la distribución de las temperaturas en la zona nasal ocurrirá, por tanto, de forma periódica con la respiración. Similarmente, las variaciones del volumen abdominal y torácico que se producen durante la respiración provocan cambios periódicos de la distribución de temperaturas en esas zonas. Como se ha mencionado anteriormente en el presente documento, el procedimiento de la invención aprovecha esos cambios periódicos en las distribuciones de temperatura para obtener datos acerca del ciclo respiratorio. En primer lugar, se restan fotogramas consecutivos píxel a píxel: los píxeles resultantes cuyo valor prácticamente no ha variado se eliminan ya que representan ruido, mientras que los píxeles cuyo valor ha aumentado o disminuido se les asignan respectivamente los valores 1 y 0. La Fig. 3 muestra el resultado de esta operación en las regiones abdominal y nasal. The thermal imager used in this example is a Flir Thermovision A40 M (Flir Systems, AB, Sweden) controlled by software from the same company (Therma Cam Researcher software, Flir Systems, AB, Sweden) that measures thermal emissivity in a range spectral between 7.5-13 μηπ. The camera was connected to a PC through a firewire connection. The camera has a standard lens of 24 ° and F = 1 directed towards the face, thorax and abdomen of patients located between 70-120 cm. The thermographic video sequences acquired in AVI format (50 frames per second, 76000 pixels per frame), lasting at least 10 minutes, were transformed to Matlab format (Matlab 7.0, Mathworks, Inc., Natick, MA) for post processing The room temperature was maintained between 22 0 and 24 °. Fig. 1 shows a frame corresponding to a patient during the inspiration process. The lighter areas correspond to warmer temperatures, while the dark ones correspond to colder temperatures, such as It is seen on the scale on the right. The three regions of interest usually used for the diagnosis of respiratory problems are also represented: abdomen (AB), thorax (TX) and nose (NS). Specifically, Fig. 2 shows the frames of a nostril corresponding to the end of inspiration (Fig. 2A) and expiration (Fig. 2B) in a normal patient. It can be seen how, during inspiration (Fig. 2A), the distribution of temperatures in the central zone has cold areas that do not exist during expiration (Fig. 2B). This is because the air inhaled during inspiration is at a lower temperature compared to the temperature of the exhaled air. This change in the distribution of temperatures in the nasal area will therefore occur periodically with breathing. Similarly, variations in abdominal and thoracic volume that occur during breathing cause periodic changes in the distribution of temperatures in these areas. As previously mentioned herein, the process of the invention takes advantage of these periodic changes in temperature distributions to obtain data about the respiratory cycle. First, consecutive pixel-to-pixel frames are subtracted: the resulting pixels whose value has practically not changed are eliminated as they represent noise, while the pixels whose value has increased or decreased are assigned respectively the values 1 and 0. Fig. 3 shows the result of this operation in the abdominal and nasal regions.
Las áreas formadas por los píxeles 1 y 0 fueron calculadas teniendo en cuenta el valor de cada píxel relativo a los 2x2 de su entorno. La diferencia entre dichas áreas calculada 50 veces por segundo generó las series de tiempo de las Figs. 4A-C y 5A-C que contienen las fluctuaciones respiratorias en tórax, abdomen y fosas nasales correspondientes a dos pacientes. Concretamente, Figs. 4A-C muestran las señales obtenidas de forma no invasiva y sin ningún retardo instrumental correspondientes al patrón respiratorio en las regiones abdominal, torácica y nasal de un paciente sano. En la Fig. 4A, las curvas termográficas correspondientes a las regiones mencionadas y representadas en unidades arbitrarias presentan una sincronía totalmente fisiológica. Es lo previsible en un sujeto normal desde el punto de vista respiratorio donde la expansión del tórax y abdomen y la consiguiente inspiración de aire a través de las fosas nasales es prácticamente simultánea. En la Fig. 4B se representa la presión control en las fosas nasales donde se observa una disminución de la amplitud que se corresponde totalmente con las curvas termográficas (comparar con Fig. 4A) Finalmente en la Fig. 4C, se representa la correlación cruzada entre los movimientos del tórax y abdomen en función del número de muestras que se obtiene desplazando mutuamente ambas curvas un cierto tiempo ó "lag" y calculando nuevamente la correlación. Si el pico de la función correlación cruzada se corresponde con un desplazamiento cero de las curvas analizadas, estas son absolutamente sincrónicas. Si el pico ocurre con un cierto retardo, esta es la medida de la falta de sincronía entre el tórax y abdomen. La Fig. 5, por otro lado, muestra las mismas curvas pero obtenidas en un paciente con afectación respiratoria siendo evidente la asincronía entre las señales termográficas obtenidas (Fig. 5A). A su vez, las curvas del tórax y abdomen tampoco coinciden con la presión nasal (Fig. 5B) considerada como referencia y confirmando su falta de sincronía. La correlación cruzada (Fig. 5C) permite cuantificar el desfazamiento tóraco-abdominal como la diferencia entre los tiempos correspondientes al máximo de la función correlación y al "lag"=0. Su valor en este caso es claramente anormal. The areas formed by pixels 1 and 0 were calculated taking into account the value of each pixel relative to the 2x2 of its environment. The difference between these areas calculated 50 times per second generated the time series of Figs. 4A-C and 5A-C containing respiratory fluctuations in the chest, abdomen and nostrils corresponding to two patients. Specifically, Figs. 4A-C show the signals obtained non-invasively and without any instrumental delay corresponding to the respiratory pattern in the abdominal, thoracic and nasal regions of a healthy patient. In Fig. 4A, the thermographic curves corresponding to the regions mentioned and represented in arbitrary units have a totally physiological synchrony. It is predictable in a normal subject from the respiratory point of view where the expansion of the chest and abdomen and the consequent inspiration of air through the nostrils is practically simultaneous. In Fig. 4B the control pressure is shown in the nostrils where a decrease in amplitude is observed that corresponds totally with the thermographic curves (compare with Fig. 4A) Finally in Fig. 4C, the cross correlation between the movements of the thorax and abdomen depending on the number of samples obtained by mutually displacing both curves for a certain time or "lag" and calculating the correlation again. If the peak of the cross-correlation function corresponds to a zero displacement of the curves analyzed, these are absolutely synchronous. If the peak occurs with a certain delay, this is the measure of the lack of synchrony between the thorax and abdomen. Fig. 5, on the other hand, shows the same curves but obtained in a patient with respiratory involvement, asynchrony is evident between the thermographic signals obtained (Fig. 5A). In turn, the curves of the thorax and abdomen do not coincide with the nasal pressure (Fig. 5B) considered as a reference and confirming its lack of synchrony. Cross correlation (Fig. 5C) allows quantification of thoraco-abdominal displacement as the difference between the times corresponding to the maximum correlation function and the "lag" = 0. Its value in this case is clearly abnormal.

Claims

REIVINDICACIONES
1. Procedimiento para obtener datos acerca del ciclo respiratorio de un paciente a partir de una secuencia de vídeo del paciente grabada mediante una cámara termográfica, caracterizado porque comprende las siguientes operaciones: 1. Procedure to obtain data about the respiratory cycle of a patient from a video sequence of the patient recorded by means of a thermal imager, characterized in that it comprises the following operations:
- identificar en la secuencia de vídeo termográfica las regiones del paciente torácica (TX), abdominal (AB) y al menos un vestíbulo nasal (NS); y - identify in the thermographic video sequence the regions of the thoracic (TX), abdominal (AB) patient and at least one nasal vestibule (NS); Y
- procesar la secuencia de vídeo termográfica para deducir, en función de cambios periódicos en dichas regiones, datos acerca del ciclo respiratorio del paciente. - process the thermographic video sequence to deduce, based on periodic changes in said regions, data about the patient's respiratory cycle.
2. Procedimiento de acuerdo con la reivindicación 1 , donde la operación de procesamiento comprende: 2. Method according to claim 1, wherein the processing operation comprises:
- restar píxel a píxel fotogramas consecutivos de las imágenes de vídeo de la zona de interés, filtrando aquellos píxeles prácticamente invariables y asignando 1 ó 0 a los píxeles cuyo valor respectivamente ha aumentado o disminuido - Subtract pixel by pixel consecutive frames from video images of the area of interest, filtering those virtually unchanged pixels and assigning 1 or 0 to pixels whose value has respectively increased or decreased
- aplicar a los fotogramas obtenidos una transformación morfológica que permite calcular las diferencias entre áreas positivas y negativas relativizando el peso de cada píxel en función de los 2x2 adyacentes, obteniéndose series de tiempo que representan las fluctuaciones respiratorias en las regiones del tórax, abdomen y nariz. - apply a morphological transformation to the obtained frames that allow calculating the differences between positive and negative areas by relativizing the weight of each pixel according to the adjacent 2x2, obtaining time series representing respiratory fluctuations in the chest, abdomen and nose regions .
3. Procedimiento según la reivindicación 2, que además comprende determinar el grado de sincronía entre los movimientos del tórax y el abdomen. 3. Method according to claim 2, further comprising determining the degree of synchrony between the movements of the thorax and the abdomen.
4. Procedimiento según cualquiera de las reivindicaciones 2-3, que además comprende determinar el flujo de aire a través del vestíbulo nasal del paciente. 4. Method according to any of claims 2-3, further comprising determining the air flow through the patient's nasal vestibule.
5. Procedimiento de acuerdo con cualquiera de las reivindicaciones 2-4, que además comprende una etapa de filtrado de frecuencias mayores que aproximadamente 0,8 Hz. 5. Method according to any of claims 2-4, further comprising a step of filtering frequencies greater than about 0.8 Hz.
6. Procedimiento de acuerdo con la reivindicación 5, donde la etapa de filtrado se lleva a cabo mediante un filtro paso-bajo de Chebyshev de tipo I I y orden 6. 6. The method according to claim 5, wherein the filtering step is carried out by means of a Chebyshev low-pass filter of type I I and order 6.
7. Programa de ordenador que comprende instrucciones de programa para hacer que un ordenador lleve a la práctica el procedimiento según cualquiera de las reivindicaciones 1 a 6. 7. Computer program comprising program instructions for making a computer carry out the method according to any one of claims 1 to 6.
8. Programa de ordenador según la reivindicación 7, incorporado en medios de almacenamiento. 8. Computer program according to claim 7, incorporated into storage media.
9. Programa de ordenador según la reivindicación 7, soportado en una señal portadora. 9. Computer program according to claim 7, supported on a carrier signal.
10. Sistema para obtener datos acerca del patrón respiratorio de un paciente, caracterizado porque comprende una cámara termográfica conectada a un medio de procesamiento configurado para llevar a cabo el procedimiento de cualquiera de las reivindicaciones 1 -7. 10. System for obtaining data about the respiratory pattern of a patient, characterized in that it comprises a thermal imager connected to a processing means configured to carry out the procedure of any one of claims 1-7.
PCT/ES2011/070242 2010-06-16 2011-04-11 System and method for obtaining data on the breathing cycle of a patient WO2011157873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030927A ES2387153B1 (en) 2010-06-16 2010-06-16 SYSTEM AND PROCEDURE FOR OBTAINING DATA ABOUT A PATIENT'S RESPIRATORY CYCLE
ESP201030927 2010-06-16

Publications (1)

Publication Number Publication Date
WO2011157873A1 true WO2011157873A1 (en) 2011-12-22

Family

ID=44484913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070242 WO2011157873A1 (en) 2010-06-16 2011-04-11 System and method for obtaining data on the breathing cycle of a patient

Country Status (2)

Country Link
ES (1) ES2387153B1 (en)
WO (1) WO2011157873A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218668B2 (en) 2013-02-28 2015-12-22 Koninklijke Philips N.V. Differentiating among a plurality of subjects in a field-of-view based on vital signs
WO2019239124A1 (en) * 2018-06-13 2019-12-19 Braintrain2020 Limited Apparatus for sensing
US10602962B2 (en) 2013-11-01 2020-03-31 Koninklijke Philips N.V. System and method for determining vital sign information of a subject
EP3967215A1 (en) * 2020-09-15 2022-03-16 Alunos AG Measurement device and method for assessing vital data of a human or animal subject

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226754B1 (en) * 2014-12-02 2021-02-03 Brainlab AG Human body measurement using thermographic images

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000015A2 (en) * 2001-06-25 2003-01-03 Science Applications International Corporation Identification by analysis of physiometric variation
WO2007105951A1 (en) * 2006-03-15 2007-09-20 Van Den Boom Ipo Paulus Willem Method and device for coding and decoding data
JP2008086741A (en) * 2005-12-26 2008-04-17 Akira Tomono Respiration detection type chemical substance presenting device and respiration detector
WO2008130903A1 (en) * 2007-04-17 2008-10-30 Mikos, Ltd. System and method for using three dimensional infrared imaging for libraries of standardized medical imagery
US20090226043A1 (en) * 2008-03-05 2009-09-10 International Business Machines Corporation Detecting Behavioral Deviations by Measuring Respiratory Patterns in Cohort Groups

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000015A2 (en) * 2001-06-25 2003-01-03 Science Applications International Corporation Identification by analysis of physiometric variation
JP2008086741A (en) * 2005-12-26 2008-04-17 Akira Tomono Respiration detection type chemical substance presenting device and respiration detector
WO2007105951A1 (en) * 2006-03-15 2007-09-20 Van Den Boom Ipo Paulus Willem Method and device for coding and decoding data
WO2008130903A1 (en) * 2007-04-17 2008-10-30 Mikos, Ltd. System and method for using three dimensional infrared imaging for libraries of standardized medical imagery
US20090226043A1 (en) * 2008-03-05 2009-09-10 International Business Machines Corporation Detecting Behavioral Deviations by Measuring Respiratory Patterns in Cohort Groups

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218668B2 (en) 2013-02-28 2015-12-22 Koninklijke Philips N.V. Differentiating among a plurality of subjects in a field-of-view based on vital signs
US10602962B2 (en) 2013-11-01 2020-03-31 Koninklijke Philips N.V. System and method for determining vital sign information of a subject
WO2019239124A1 (en) * 2018-06-13 2019-12-19 Braintrain2020 Limited Apparatus for sensing
US20210212595A1 (en) * 2018-06-13 2021-07-15 Braintrain2020 Limited Apparatus for sensing
EP3967215A1 (en) * 2020-09-15 2022-03-16 Alunos AG Measurement device and method for assessing vital data of a human or animal subject

Also Published As

Publication number Publication date
ES2387153A1 (en) 2012-09-14
ES2387153B1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP6054584B2 (en) Treatment system having a patient interface for acquiring a patient's life state
US10368800B2 (en) Systems, methods and devices for diagnosing sleep apnea
Lapi et al. Respiratory rate assessments using a dual-accelerometer device
EP1274347B1 (en) Breathing movement measurements and apparatus
CN110035691B (en) Method and apparatus for measuring sleep apnea
WO2017183039A1 (en) Body motion monitor
JP7129097B2 (en) Sensor belts and positioning aids for neonatal electrical impedance tomography imaging
US20150289785A1 (en) Apparatus and Method for Monitoring Respiration Volumes and Synchronization of Triggering in Mechanical Ventilation by Measuring the Local Curvature of the Torso Surface
US8790274B2 (en) Non-invasive method for measuring changes in body position and respiration
JP5323532B2 (en) Respiration measurement method and respiration measurement device
CN109999305A (en) For keeping the device of humidity in patient interface
ES2306704T3 (en) PROCEDURE AND EQUIPMENT FOR THE NON-INVASIVE DETECTION OF CONCRETE DOLENCES OF THE STATE OF SLEEP THROUGH THE MONITORING OF THE PERIPHERAL VASCULAR SYSTEM.
US11234643B2 (en) Jugular venous assessment
WO2011157873A1 (en) System and method for obtaining data on the breathing cycle of a patient
CN105078426B (en) For diagnosing system, the method and apparatus of sleep apnea
Bernal et al. Non contact monitoring of respiratory function via depth sensing
Beck et al. Measurement of respiratory rate with inertial measurement units
Schulze et al. Unobtrusive ambulatory estimation of knee joint angles during walking using gyroscope and accelerometer data-a preliminary evaluation study
Nesar et al. Improving touchless respiratory monitoring via lidar orientation and thermal imaging
Fekr et al. Design of an e-health respiration and body posture monitoring system and its application for rib cage and abdomen synchrony analysis
Hill et al. Touchless respiratory monitor preliminary data and results
US20230144677A1 (en) User interface with integrated sensors
Huang et al. Development and verification of an accelerometer-based respiratory detection algorithm with wearable instrumented smart clothes
Gollee et al. Real-time detection of respiratory activity using an inertial measurement unit
Gaidhani Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11724683

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11724683

Country of ref document: EP

Kind code of ref document: A1