WO2011149249A2 - Electric biosensor for detecting an infinitesimal sample - Google Patents

Electric biosensor for detecting an infinitesimal sample Download PDF

Info

Publication number
WO2011149249A2
WO2011149249A2 PCT/KR2011/003799 KR2011003799W WO2011149249A2 WO 2011149249 A2 WO2011149249 A2 WO 2011149249A2 KR 2011003799 W KR2011003799 W KR 2011003799W WO 2011149249 A2 WO2011149249 A2 WO 2011149249A2
Authority
WO
WIPO (PCT)
Prior art keywords
nano
gold
biosensor
receptor molecule
electrode
Prior art date
Application number
PCT/KR2011/003799
Other languages
French (fr)
Korean (ko)
Other versions
WO2011149249A3 (en
Inventor
김민곤
신용범
안준형
이태한
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2011149249A2 publication Critical patent/WO2011149249A2/en
Publication of WO2011149249A3 publication Critical patent/WO2011149249A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes

Definitions

  • the present invention relates to an electric biosensor for detecting a trace amount of a sample, and more specifically, (a) to fabricate a biosensor by immobilizing a receptor molecule that selectively binds to a target material of analysis on an electrically insulated nano-electrode chip.
  • step (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material; (d) treating and reducing gold ions around the reacted gold nanoparticles; And (e) measuring an electrical conductivity or impedance of the nano-electrode chip of which the gold ions are reduced to detect a target substance that specifically binds to the receptor molecule. It is about.
  • an enzyme-linked immunosorbent assay (ELISA) method which first immobilizes an antibody on a matrix, and prepares a sample solution in which an antigenic protein is mixed on the surface where the antibody is immobilized. After reacting for a certain time, a detection antibody that selectively binds to the antigenic protein on the surface to which the antigenic protein is bound is bound, and then a reaction substance capable of causing the enzyme to develop color or fluorescence by binding an enzyme to the detection antibody. It is a method of quantitating a small amount of antigenic protein by adding a color or fluorescence reaction to occur.
  • ELISA enzyme-linked immunosorbent assay
  • the ELISA method has been used as an effective method for measuring trace antigen proteins
  • the analysis range of antigen proteins is about 10 pg / ml ⁇ 1 ng / ml, and only one antigen protein can be analyzed at a time.
  • the disadvantage is that a large amount of sample is required to analyze various antigenic proteins.
  • the present inventors have diligently tried to develop a method for the electrical detection of a trace amount sample using a biosensor.
  • the biosensor was manufactured by immobilizing a receptor molecule that selectively binds to a target material on an electrically insulated nano-electrode chip.
  • the trace amount of the target material is easily measured. It was confirmed that the present invention can be completed.
  • An object of the present invention is to provide a method for the electrical detection of the trace amount sample using a biosensor.
  • the present invention comprises the steps of: (a) manufacturing a biosensor by immobilizing a receptor molecule that selectively binds to the target material of analysis on the electrically insulated nano-electrode chip; (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material; (d) treating and reducing gold ions around the reacted gold nanoparticles; And (e) measuring an electrical conductivity or impedance of the nano-electrode chip of which the gold ions are reduced to detect a target substance that specifically binds to the receptor molecule.
  • FIG. 1 is a schematic diagram illustrating a measurement method of a target material using a nano-electrode biosensor coupled by a gold nanoparticle-gold ion reduction reaction and a schematic diagram of a chromium electrode biosensor having an electrode interval of 400 nm.
  • A gold ion reduction solution without gold nanoparticles
  • B gold ion reduction solution with gold nanoparticles bound to antibodies
  • C comparison of absorbance over time at 970 nm
  • SEM scanning electron microscope
  • FIG. 4 is an image (A), and SEM images (B and C) of a 400 nm chromium electrode made by the method of Example 2.
  • FIG. 4 is an image (A), and SEM images (B and C) of a 400 nm chromium electrode made by the method of Example 2.
  • FIG. 5 shows the current of the electrode before the reduction of the gold ions to the electrode to which the gold nanoparticles were fixed for 0 pg / ml, 100 pg / ml, and 100 ng / ml of the IL5 antigen, by using a DC current-voltage method.
  • SEM 7 is a Scanning Electron Microscope (SEM) image of the surface of silicon oxide between chromium electrodes prepared by the method of Example 2 for concentrations of 0 pg / ml, 100 pg / ml, 100 ng / ml IL5 antigen to be.
  • FIG. 8 shows the results of measuring the current of the H1N1 virus 0 PFU and 10 3 PFU by using DC current-voltage method on the electrode before the reduction of gold ions to the electrode to which the gold nanoparticles were fixed (A: 0 PFU covered. 10 3 PFU (-)) and the current after reduction of gold ions (B: 0 PFU covered; 10 3 PFU (-)).
  • a biosensor by immobilizing a receptor molecule that selectively binds to the target material to be analyzed on an electrically insulated nano-electrode chip; (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material; (d) treating and reducing gold ions around the reacted gold nanoparticles; And (e) measuring an electrical conductivity or impedance of the nano-electrode chip of which the gold ions are reduced to detect a target substance specifically binding to the receptor molecule. It is about.
  • the nano-electrode chip can be produced by a process selected from the group consisting of photolithography, electron beam lithography, ion-focused lithography and nanoimprinting, the interval between the electrodes in the nano-electrode chip is As demonstrated in the experiment, any nano-electrode chip having a spacing of 1 ⁇ m or less may be applicable, for example, 10 nm to 1 ⁇ m, but is not limited thereto.
  • nano-electrode chip means that a gap between electrodes constituting a generally known biochip is 1 ⁇ m or less or 100 nm or less.
  • the method for measuring electrical conductivity or impedance in the present invention is not particularly limited, and any conventional electrical detection method may be applied to the present invention without limitation.
  • the substrate may be a silicon wafer, glass, or the like
  • the electrode may be chromium, titanium, gold, or the like.
  • one embodiment of the present invention exemplifies IL5 and H1N1 viruses as target substances, but in addition to this, various cytokine, various enzymes, proteins (eg, interleukin), DNA, RNA, microorganisms, viruses, animal cells, plant cells , Organ cells and neurons may be applicable, and the receptor molecule may be selected from the group consisting of antibodies, DNA, aptamers, peptide nucleic acids (PNAs), and ligands.
  • PNAs peptide nucleic acids
  • the gold nanoparticles in the step (c) may be characterized in that the binding to the target material using the additional sensing receptor molecules capable of binding to the target material.
  • the receptor molecule may be an antibody and an antigen-binding agent, with the target substance as an antigen, and thus, detection using the sandwich method as exemplified in the examples may be performed, and at this time, an additional agent for detecting a target substance may be used.
  • Sensing receptor molecules are needed.
  • Such further sensing receptor molecules may also be selected from the group consisting of antibodies, DNA, aptamers, peptide nucleic acids (PNAs) and ligands.
  • the gold nanoparticles may be characterized in that the size of 2nm ⁇ 100nm.
  • the gold nanoparticles can be prepared by mixing gold ions with a reducing agent, and are readily available commercially from reagent companies such as Sigma.
  • the present invention provides the advantage that by using a gold nanoparticle-nano electrode, by reducing the gold ions, one gold nanoparticle can be connected to the electrode during the reduction reaction to increase the current intensity to increase the analysis sensitivity do.
  • the measurement method of the present invention as shown in the following examples, it is possible to detect the target substance at a low concentration of about 1 pg / ml, or even in the case of viruses, 10 PFU. By confirming that the electrical detection is possible, it was confirmed that the detection of a very small amount of sample is possible.
  • the surface of the silicon oxide substrate is modified with an amine group, and then the surface of the substrate modified with the amine group is modified with a biotin group.
  • streptavidin is immobilized on the surface of the substrate modified with the biotin group
  • the biotin-coupled antibody is immobilized.
  • the antigen is reacted, and the gold nanoparticle-bound antibody is reacted to measure sandwich immunity.
  • a gold reduction solution is induced by using a gold chloride solution and a hydroxylamine solution to generate a metal reduction product on the substrate surface. do. After washing the substrate, it can be observed by scanning electron microscopy (SEM) that the precipitate is formed by drying with nitrogen gas.
  • the gold ions are reduced to the gold ions and the reduced electrode respectively, the current flows after the current, after measuring the current, the gold ions are reduced It can be seen that the conductivity of the electrode is increased compared to the electrode that is not reduced, and the current value increases as the concentration of the antigen increases.
  • the concentration of the target substance to be analyzed can be measured.
  • a reducing material obtained through a reduction reaction of gold nanoparticles-gold ions to an electrically insulated nano-electrode chip fills the nano-gap to flow an electric current.
  • a biosensor for detection FIG. 1.
  • the silicon oxide substrate (16 ⁇ 16 mm) was immersed in a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, followed by distilled water and ethanol.
  • the washed silicon oxide substrate was immersed in an ethanol solution dissolved in 1% 3-aminopropyltrimethoxysilane (3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA) for 1 hour, then washed with ethanol, 100 Treatment at 1 ° C. for 1 hour allowed the substrate surface to be modified with an amine group.
  • the rate buffer solution pH 4.0 was reacted with time.
  • FIG. 2 illustrates a process of forming a reduced product reacted with gold nanoparticles in a liquid phase by using the reducing solution prepared above.
  • gold ions are formed after 5 minutes and 10 minutes. It was confirmed that the maximum afterwards.
  • Figure 3 shows a scanning electron microscope (Scanning Electron Microscope, SEM) image of the silicon oxide substrate prepared above, as a result of confirming the size of the gold nanoparticles according to the reduction time (reduction time) of the gold ions, the reduction time will be longer As the size of the gold nanoparticles gradually increased, it was confirmed that the reduction reaction was about 1 ⁇ m after 7 minutes. This result means that nano-electrodes having a gap of 1 ⁇ m or less can be electrically connected by gold ion reduction.
  • Example 2 IL5 Detection Using Gold Nanoparticle-Gold Ion Reduction at 400 nm Chromium Electrode
  • a 400 nm chromium electrode was prepared by a stepper photolithography process and an electron beam deposition process (FIG. 4). After the silicon oxide film was formed on the silicon wafer by low pressure chemical vapor deposition (LPCVD), the pattern was first patterned by stepper photolithography to form a line having a 400 nm line width on the surface. Cr 100 nm was deposited by a thermal evaporator.
  • Figure 4 shows an SEM image of the electrode (that is, interdigitated electrode) manufactured by the above process, it can be seen that the electrode insulated at intervals of 400 nm.
  • the prepared electrode was immersed in a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, and then washed with distilled water and ethanol.
  • the washed electrode was immersed in an ethanol solution in which 1% 3-aminopropyltrimethoxysilane (Aldrich, St. Louis, MO, USA) was dissolved for 1 hour, washed with ethanol, and then washed at 100 ° C. After processing for 1 hour, the silicon oxide surface between the chromium electrodes was modified with an amine group.
  • NHS-LC-biotin (10 mg / ml) dissolved in dimethyl sulfooxide (DMSO, dimethy sulfoxide, SImga-Aldrich, St. Louis, MO, USA) at a concentration of 10 mg / ml ( NHS-LC-biotin, Thermo sciences, Rockford, IL, USA) was treated with a solution adjusted to a concentration of 1 mg / ml with PBS buffer, and reacted at room temperature for 1 hour to replace an amine group with a biotin group.
  • DMSO dimethyl sulfooxide
  • SImga-Aldrich SImga-Aldrich, St. Louis, MO, USA
  • streptavidin Streptavidin, SImga-Aldrich, St. Louis, MO, USA
  • PBS buffer pH 7.4
  • the biotin-bound IL5 antibody was immobilized on the surface of streptavidin, and the antigen-antibody reaction was performed at an concentration of 0 pg / ml-100 ng / ml.
  • the IL5 antibody with 10 nm gold nanoparticles was reacted with the antigen immobilized on the surface, followed by 25 mM gold tetrachloride (HAuCl 4 , hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA) and 5 mM hydroxylamine.
  • 10 mM citrate buffer (pH 4.0) dissolved in (hydroxylamine hydrochloride, Sigma, St. Louis, MO, USA) was reacted for 10 minutes to reduce gold ions to gold nanoparticles.
  • the currents of the electrodes in which the gold ions were not reduced and the electrodes in which the gold ions were reduced were measured.
  • FIG. 6 is a graph showing the current value for 1 V after the gold ion reduction according to the concentration of IL5 antigen, it was confirmed that the current value increases as the concentration of the antigen increases.
  • Example 3 H1N1 Virus Detection Using Gold Nanoparticle-Gold Ion Reduction at 400 nm Titanium Electrodes
  • a 400 nm titanium electrode was fabricated by a stepper photolithography process and an electron beam deposition process.
  • a silicon oxide film was formed on the silicon wafer by low pressure chemical vapor deposition (LPCVD), and then patterned by stepper photolithography to form a line having a 400 nm line width on the surface.
  • Titanium 30 nm was deposited by thermal evaporator.
  • the silicon oxide surface between the titanium electrodes was made into the streptavidin surface in the same manner as in Example 2. Then, biotin-bound H1N1 virus antibody (rabbit polyclonal) was immobilized on the surface of streptavidin, 17 ⁇ l of H1N1 virus solution (suspended in pH 7.4 PBS buffer) was reacted on the sensor surface, and the amount of virus reacted was 0. , 10 1 , 10 2 , and 10 3 PFU (plaque forming units).
  • each electrode was washed with PBS and reacted with a H1N1 antibody (mouse monoclonal) with 10 nm gold nanoparticles followed by 25 mM gold tetrachloride (HAuCl 4 , hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA). And 10 mM citrate buffer (pH 4.0) dissolved in 5 mM hydroxylamine (Sigma, St. Louis, MO, USA) were reacted for 10 minutes to reduce gold ions to gold nanoparticles.
  • the electrical detection method of the trace amount sample using the biosensor according to the present invention can not only connect between the nano-electrodes by one gold nanoparticle-gold ion reduction reaction, but also between the electrically insulated nano-electrodes
  • the electrical conductivity is increased by increasing the electrical conductivity, so that the measurement sensitivity is high, the trace sample can be quantitatively analyzed, and the selectively bound antigen-antibody binding can be measured very simply by an electrical method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)

Abstract

The present invention relates to an electric biosensor for detecting an infinitesimal sample. More specifically, the present invention relates to a method for electrical detection of an infinitesimal sample, comprising the steps of: (a) preparing a biosensor by fixing, to an electrically insulated nano-electrode chip, a receptor molecule that is selectively coupled to a target substance to be subjected to an assay; (b) adding a sample that contains the target substance selectively coupled with the receptor molecule to the biosensor for reaction; (c) subjecting the nano-electrode chip that has been reacted with the target substance-containing sample to treatment and reaction with gold nanoparticles; (d) treating peripheral regions of the reacted gold nanoparticles with gold ions to induce reduction of the gold ions; and (e) measuring the electric conductivity or impedance of the nano-electrode chip where the gold ions have been reduced, thereby detecting a target substance that is specifically bonded to the receptor molecule. The method for electrical detection of an infinitesimal sample using the biosensor according to the present invention not only interconnects nano-electrodes through a single reduction reaction between gold nanoparticles and gold ions, but it also electrically interconnects the electrically insulated nano-electrodes such that the electrical conductivity is increased. As a result, the measurement sensitivity is high, the quantitative assay of an infinitesimal sample becomes possible, and a selective antigen-antibody bond can be measured with a very simple, electrical method.

Description

극미량 시료 검출용 전기 바이오센서 Electric Biosensor for Ultra Trace Sample Detection
본 발명은 극미량 시료 검출용 전기 바이오센서에 관한 것으로, 보다 구체적으로는, (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시켜 바이오센서를 제작하는 단계; (b) 상기 바이오센서에 상기 리셉터 분자와 선택적으로 결합하는 목적 물질을 함유하는 시료를 첨가하고 반응시키는 단계; (c) 상기 목적 물질을 함유한 시료와 반응된 나노-전극 칩에 금 나노입자를 처리하여 반응시키는 단계; (d) 상기 반응된 금 나노입자 주위에 금 이온을 처리하여 환원시키는 단계; 및 (e) 상기 금 이온이 환원된 나노-전극 칩의 전기전도도 또는 임피던스를 측정하여 상기 리셉터 분자와 특이적으로 결합하는 목적 물질을 검출하는 단계를 포함하는 바이오센서를 이용한 극미량 시료의 전기적 검출 방법에 관한 것이다.The present invention relates to an electric biosensor for detecting a trace amount of a sample, and more specifically, (a) to fabricate a biosensor by immobilizing a receptor molecule that selectively binds to a target material of analysis on an electrically insulated nano-electrode chip. step; (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material; (d) treating and reducing gold ions around the reacted gold nanoparticles; And (e) measuring an electrical conductivity or impedance of the nano-electrode chip of which the gold ions are reduced to detect a target substance that specifically binds to the receptor molecule. It is about.
극미량의 단백질, DNA 등 생체 분자를 정량 측정하는 기술은 임상적 진단, 프로테오믹스(proteomics) 연구 등에 중요한 기술이다. Quantitative measurement of biomolecules such as trace proteins and DNA is important for clinical diagnosis and proteomics research.
단백질을 측정하기 위하여, 종래에는 주로 ELISA(enzyme-linked immunosorbent assay) 방법을 사용하는데, 이는 항체를 먼저 지지체(matrix)에 고정화시키고, 상기 항체가 고정화된 표면에 항원 단백질이 혼합되어 있는 시료 용액을 일정 시간 반응시킨 후, 상기 항원 단백질이 결합된 표면 위에 항원 단백질과 선택적으로 결합하는 감지용 항체를 결합시킨 다음, 상기 감지용 항체에 효소를 결합시켜 효소가 발색 또는 형광 특성을 일으킬 수 있는 반응 물질을 첨가하여 발색 또는 형광 반응이 일어나도록 함으로써 미량의 항원 단백질을 정량하는 방법이다. ELISA 방법이 현재까지 효과적으로 미량 항원 단백질을 측정하는 방법으로 사용되고 있기는 하나, 항원 단백질의 분석 범위가 10 pg/㎖~1 ng/㎖ 정도이며, 한 번에 하나의 항원 단백질만을 분석할 수 있기 때문에 다양한 항원 단백질을 분석하기 위해서는 많은 양의 시료를 요구한다는 단점이 있다.In order to measure proteins, conventionally, an enzyme-linked immunosorbent assay (ELISA) method is mainly used, which first immobilizes an antibody on a matrix, and prepares a sample solution in which an antigenic protein is mixed on the surface where the antibody is immobilized. After reacting for a certain time, a detection antibody that selectively binds to the antigenic protein on the surface to which the antigenic protein is bound is bound, and then a reaction substance capable of causing the enzyme to develop color or fluorescence by binding an enzyme to the detection antibody. It is a method of quantitating a small amount of antigenic protein by adding a color or fluorescence reaction to occur. Although the ELISA method has been used as an effective method for measuring trace antigen proteins, the analysis range of antigen proteins is about 10 pg / ml ~ 1 ng / ml, and only one antigen protein can be analyzed at a time. The disadvantage is that a large amount of sample is required to analyze various antigenic proteins.
최근 ELISA의 원리를 바이오센서 및 바이오칩에 적용하여 간편하게 항원의 농도를 측정하는 다양한 방법들이 개발되고 있다. ELISA 과정에 의해 항원 농도에 비례하여 표면에 부착된 효소가 침전 반응을 유도하여 효소 반응 생성물이 표면에 부착되도록 한 후, 표면 플라즈몬 공명(surface plasmon resonance, SPR), 미량 수정 저울(quartz crystal microbalance, QCM), 전기 화학 센서 등으로 측정하는 연구 결과들이 발표된 바 있다. 상기 방법은 극미량의 항원을 간편하게 측정할 수 있을 뿐만 아니라, 다양한 종류의 항원을 동시에 측정할 수 있다 (Kim et al., J. Immunol. Meth., 297:125, 2005; Abad et al., Anal. Chim. Acta, 368:183, 1998). 그러나, 상기 방법의 경우 기존의 ELISA와 비교하여 측정 민감도 면에서 크게 향상되지 않은 결과를 나타내고 있다.Recently, various methods for simply measuring antigen concentration by applying the principle of ELISA to biosensors and biochips have been developed. After the ELISA process, the enzyme attached to the surface in proportion to the antigen concentration induces a precipitation reaction to allow the enzyme reaction product to adhere to the surface, followed by surface plasmon resonance (SPR), quartz crystal microbalance, QCM), electrochemical sensors and other research results have been published. This method can not only measure trace amounts of antigens easily, but can also measure various kinds of antigens simultaneously (Kim et al., J. Immunol. Meth., 297: 125, 2005; Abad et al., Anal Chim.Acta, 368: 183, 1998). However, the method does not significantly improve the measurement sensitivity compared to the conventional ELISA.
이에, 본 발명자들은 바이오센서를 이용한 극미량 시료의 전기적 검출 방법을 개발하고자 예의 노력한 결과, 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시켜 바이오센서를 제작한 다음, 상기 바이오센서에 목적 물질을 처리한 후, 금 나노입자-금 이온 환원 반응을 통해 나노-전극 사이를 연결시키고, 나노-전극 사이의 전기전도도를 측정함으로써, 극미량의 목적 물질을 용이하게 측정할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have diligently tried to develop a method for the electrical detection of a trace amount sample using a biosensor. As a result, the biosensor was manufactured by immobilizing a receptor molecule that selectively binds to a target material on an electrically insulated nano-electrode chip. Next, after processing the target material in the biosensor, by connecting the nano-electrodes through a gold nanoparticle-gold ion reduction reaction, by measuring the electrical conductivity between the nano-electrode, the trace amount of the target material is easily measured It was confirmed that the present invention can be completed.
발명의 요약Summary of the Invention
본 발명의 목적은 바이오센서를 이용한 극미량 시료의 전기적 검출 방법을 제공하는데 있다.An object of the present invention is to provide a method for the electrical detection of the trace amount sample using a biosensor.
상기 목적을 달성하기 위하여, 본 발명은 (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시켜 바이오센서를 제작하는 단계; (b) 상기 바이오센서에 상기 리셉터 분자와 선택적으로 결합하는 목적 물질을 함유하는 시료를 첨가하고 반응시키는 단계; (c) 상기 목적 물질을 함유한 시료와 반응된 나노-전극 칩에 금 나노입자를 처리하여 반응시키는 단계; (d) 상기 반응된 금 나노입자 주위에 금 이온을 처리하여 환원시키는 단계; 및 (e) 상기 금 이온이 환원된 나노-전극 칩의 전기전도도 또는 임피던스를 측정하여 상기 리셉터 분자와 특이적으로 결합하는 목적 물질을 검출하는 단계를 포함하는 바이오센서를 이용한 극미량 시료의 전기적 검출 방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of: (a) manufacturing a biosensor by immobilizing a receptor molecule that selectively binds to the target material of analysis on the electrically insulated nano-electrode chip; (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material; (d) treating and reducing gold ions around the reacted gold nanoparticles; And (e) measuring an electrical conductivity or impedance of the nano-electrode chip of which the gold ions are reduced to detect a target substance that specifically binds to the receptor molecule. To provide.
도 1은 전극 간격 400 nm의 크롬 전극 바이오센서의 모식도 및 금 나노입자-금 이온 환원 반응에 의해 결합된 나노-전극 바이오센서를 이용한 목적 물질의 측정방법을 개략적으로 나타낸 모식도이다.FIG. 1 is a schematic diagram illustrating a measurement method of a target material using a nano-electrode biosensor coupled by a gold nanoparticle-gold ion reduction reaction and a schematic diagram of a chromium electrode biosensor having an electrode interval of 400 nm.
도 2는 본 발명에 따른 액상에서의 금 나노입자를 금 이온 환원에 의한 침전물 형성 과정이다. (A: 금 나노입자가 없는 금 이온 환원 용액; B: 항체가 결합된 금 나노입자가 있는 금 이온 환원 용액; C: 970 nm에서의 시간 별 흡광도 비교)2 is a process of forming a precipitate by gold ion reduction of gold nanoparticles in a liquid phase according to the present invention. (A: gold ion reduction solution without gold nanoparticles; B: gold ion reduction solution with gold nanoparticles bound to antibodies; C: comparison of absorbance over time at 970 nm)
도 3은 금 이온의 환원 시간에 따른 실시예 1의 방법으로 제작된 산화실리콘기판의 주사 전자 현미경(SEM) 이미지이다. (a: 환원시간 1 분 후; b: 환원시간 2 분 후; c: 환원시간 5 분 후; d: 환원시간 7 분 후; e: 환원시간 10 분 후; f: 대조군으로서 금 나노입자가 고정되어 있지 않은 산화실리콘 기판에서 환원시간 10 분 후)3 is a scanning electron microscope (SEM) image of a silicon oxide substrate prepared by the method of Example 1 according to the reduction time of gold ions. (a: after 1 minute of reduction time; b: after 2 minutes of reduction time; c: after 5 minutes of reduction time; d: after 7 minutes of reduction time; e: after 10 minutes of reduction time; f: fixation of gold nanoparticles as a control After 10 minutes of reduction time on the silicon oxide substrate)
도 4는 실시예 2의 방법으로 제작된 400nm 크롬 전극의 이미지 (A), 및 SEM 이미지 (B 및 C)이다.4 is an image (A), and SEM images (B and C) of a 400 nm chromium electrode made by the method of Example 2. FIG.
도 5는 IL5 항원 0 pg/ml, 100 pg/ml, 100 ng/ml에 대하여, 금 나노입자가 고정된 전극에 금 이온이 환원되기 전의 전극을 직류 전류-전압법을 이용하여 전류를 측정한 결과 (A: 0 pg/ml(…); 100 pg/ml(--); 100 ng/ml(―)) 및 금 이온이 환원된 이후의 전류(B: 0 pg/ml(…); 100 pg/ml(--); 100 ng/ml(―))를 측정한 결과이다.FIG. 5 shows the current of the electrode before the reduction of the gold ions to the electrode to which the gold nanoparticles were fixed for 0 pg / ml, 100 pg / ml, and 100 ng / ml of the IL5 antigen, by using a DC current-voltage method. Results (A: 0 pg / ml (…); 100 pg / ml (-); 100 ng / ml (−)) and current after gold ions were reduced (B: 0 pg / ml (…); 100 pg / ml (-); 100 ng / ml (-)).
도 6은 IL5 항원 0 pg/ml~100 ng/ml 농도에 대하여, 1 V 전압하에서의 전류를 측정한 결과이다.6 is a result of measuring the current under 1 V voltage with respect to the concentration of 0 pg / ml ~ 100 ng / ml IL5 antigen.
도 7은 IL5 항원 0 pg/ml, 100 pg/ml, 100 ng/ml 농도에 대하여, 실시예 2의 방법으로 제작된 크롬 전극 사이의 산화실리콘 표면의 주사전자 현미경(Scanning Electron Microscope, SEM)이미지 이다.7 is a Scanning Electron Microscope (SEM) image of the surface of silicon oxide between chromium electrodes prepared by the method of Example 2 for concentrations of 0 pg / ml, 100 pg / ml, 100 ng / ml IL5 antigen to be.
도 8은 H1N1 바이러스 0 PFU, 103 PFU에 대하여, 금 나노입자가 고정된 전극에 금 이온이 환원되기 전의 전극을 직류 전류-전압법을 이용하여 전류를 측정한 결과 (A: 0 PFU (…); 103 PFU (―)) 및 금 이온이 환원된 이후의 전류(B: 0 PFU (…); 103 PFU (―))를 측정한 결과이다.FIG. 8 shows the results of measuring the current of the H1N1 virus 0 PFU and 10 3 PFU by using DC current-voltage method on the electrode before the reduction of gold ions to the electrode to which the gold nanoparticles were fixed (A: 0 PFU (…). 10 3 PFU (-)) and the current after reduction of gold ions (B: 0 PFU (…); 10 3 PFU (-)).
도 9는 H1N1 바이러스 0 PFU~103 PFU 농도 (0, 101, 102, 103 PFU)에 대하여, 금 이온 환원 후 1 V 전압하에서의 전류를 측정한 결과이다.9 is a result of measuring the current at 1 V voltage after gold ion reduction with respect to H1N1 virus 0 PFU-10 3 PFU concentration (0, 10 1 , 10 2 , 10 3 PFU).
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명은 일 관점에서, (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시켜 바이오센서를 제작하는 단계; (b) 상기 바이오센서에 상기 리셉터 분자와 선택적으로 결합하는 목적 물질을 함유하는 시료를 첨가하고 반응시키는 단계; (c) 상기 목적 물질을 함유한 시료와 반응된 나노-전극 칩에 금 나노입자를 처리하여 반응시키는 단계; (d) 상기 반응된 금 나노입자 주위에 금 이온을 처리하여 환원시키는 단계; 및 (e) 상기 금 이온이 환원된 나노-전극 칩의 전기전도도 또는 임피던스를 측정하여 상기 리셉터 분자와 특이적으로 결합하는 목적 물질을 검출하는 단계를 포함하는 바이오센서를 이용한 극미량 시료의 전기적 검출 방법에 관한 것이다.In one aspect, (a) manufacturing a biosensor by immobilizing a receptor molecule that selectively binds to the target material to be analyzed on an electrically insulated nano-electrode chip; (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material; (d) treating and reducing gold ions around the reacted gold nanoparticles; And (e) measuring an electrical conductivity or impedance of the nano-electrode chip of which the gold ions are reduced to detect a target substance specifically binding to the receptor molecule. It is about.
본 발명에 있어서, 상기 나노-전극 칩은 포토리소그라피, 전자빔 리소그라피, 이온 집중 리소그라피 및 나노임프린팅으로 구성된 군에서 선택되는 공정에 의하여 제작할 수 있으며, 상기 나노-전극 칩 내에 전극 사이의 간격은 실시예의 실험에서 입증된 바와 같이, 1μm 이하의 간격을 가지는 나노-전극 칩이라면 모두 적용가능하며, 예컨대, 10nm~1μm일 수도 있으나, 이에 한정되지 않고, 10nm 이하에서도 가능하다. In the present invention, the nano-electrode chip can be produced by a process selected from the group consisting of photolithography, electron beam lithography, ion-focused lithography and nanoimprinting, the interval between the electrodes in the nano-electrode chip is As demonstrated in the experiment, any nano-electrode chip having a spacing of 1 μm or less may be applicable, for example, 10 nm to 1 μm, but is not limited thereto.
본 발명에 있어서, “나노-전극 칩”이라는 것은, 일반적으로 알려져 있는 바이오 칩에 있어서 구성하고 있는 전극의 간격이 1μm 이하, 또는 100nm 이하의 나노 갭(gap)인 것을 의미한다. In the present invention, the term "nano-electrode chip" means that a gap between electrodes constituting a generally known biochip is 1 μm or less or 100 nm or less.
본 발명에서 전기전도도 또는 임피던스를 측정하는 방법은 특별히 한정되지 않고 종래의 전기적 검출방법이라면 제한 없이 본 발명에 적용가능하다.The method for measuring electrical conductivity or impedance in the present invention is not particularly limited, and any conventional electrical detection method may be applied to the present invention without limitation.
마이크로 전극 상에서 금 나노입자-은 환원 반응을 활용한 연구는 이미 발표된 바 있는데 (Park et al., Science, 2002; Marcon et al., Biosensors and Bioelectronics, 2007), 은 환원 방법은 금 환원과 비교하여 긴 시간을 요구하며, 염소 이온과 침전을 일으켜 전 단계 용액에 염화나트륨과 같은 염소 이온이 있는 경우 제거하여 주어야 하는 문제점을 가지고 있는데 반해, 본 발명은 마이크론 이하의 전극을 사용하고, 10분 이내에 가능한 금 환원 반응을 이용함으로써 상기와 같은 문제점을 해소할 수 있다. Studies using gold nanoparticle-silver reduction reactions on microelectrodes have already been published (Park et al., Science, 2002; Marcon et al., Biosensors and Bioelectronics, 2007). It requires a long time, and has a problem that if the chlorine ions such as sodium chloride in the previous solution caused by the chlorine ions and precipitates to be removed, the present invention is possible within 10 minutes using an electrode of less than a micron By using a gold reduction reaction, the above problems can be solved.
본 발명에 있어서, 상기 기판은 실리콘 웨이퍼, 유리 등일 수 있으며, 상기 전극은 크롬, 티타늄, 금 등일 수 있다.In the present invention, the substrate may be a silicon wafer, glass, or the like, and the electrode may be chromium, titanium, gold, or the like.
또한, 본 발명의 일 실시예에서는 목적 물질로서 IL5 및 H1N1 바이러스를 예시하고 있으나, 이것 이외에도, 다양한 cytokine, 다양한 효소, 단백질 (예컨대, 인터루킨), DNA, RNA, 미생물, 바이러스, 동물세포, 식물세포, 기관세포 및 신경세포 등이 적용가능하며, 상기 리셉터 분자는 항체, DNA, 압타머(aptamer), PNA(peptide nucleic acids) 및 리간드로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다. In addition, one embodiment of the present invention exemplifies IL5 and H1N1 viruses as target substances, but in addition to this, various cytokine, various enzymes, proteins (eg, interleukin), DNA, RNA, microorganisms, viruses, animal cells, plant cells , Organ cells and neurons may be applicable, and the receptor molecule may be selected from the group consisting of antibodies, DNA, aptamers, peptide nucleic acids (PNAs), and ligands.
본 발명에 있어서, 상기 (c) 단계에서 금 나노입자는 상기 목적물질에 결합가능한 추가 감지용 리셉터 분자를 이용하여 목적 물질과 결합하는 것을 특징으로 할 수 있다. 예컨대, 상기 리셉터 분자는 항체, 대상 물질은 항원으로 하여, 항체-항원 결합 일 수 있고, 따라서, 실시예에서 예시된 바와 같은 샌드위치법을 이용한 검출이 가능하며, 이때, 목적 물질을 감지하기 위한 추가 감지용 리셉터 분자가 필요한 것이다. 이러한 추가 감지용 리셉터 분자 역시, 항체, DNA, 압타머(aptamer), PNA(peptide nucleic acids) 및 리간드로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다. In the present invention, the gold nanoparticles in the step (c) may be characterized in that the binding to the target material using the additional sensing receptor molecules capable of binding to the target material. For example, the receptor molecule may be an antibody and an antigen-binding agent, with the target substance as an antigen, and thus, detection using the sandwich method as exemplified in the examples may be performed, and at this time, an additional agent for detecting a target substance may be used. Sensing receptor molecules are needed. Such further sensing receptor molecules may also be selected from the group consisting of antibodies, DNA, aptamers, peptide nucleic acids (PNAs) and ligands.
본 발명에 있어서, 상기 금 나노입자는 크기가 2nm~100nm 인 것을 특징으로 할 수 있다. 상기 금 나노입자는 금 이온과 환원제를 혼합하여 제조할 수 있으며, Sigma와 같은 시약회사에서도 상업적으로 용이하게 입수 가능하다. In the present invention, the gold nanoparticles may be characterized in that the size of 2nm ~ 100nm. The gold nanoparticles can be prepared by mixing gold ions with a reducing agent, and are readily available commercially from reagent companies such as Sigma.
효소 반응에 의한 침전물 형성에 의해 마이크로 전극을 전기적으로 연결하는 방법에 대해서는 많은 연구가 진행 중에 있다 (Mo1ller et al., Nano Lett., 5:1475, 2005; WO 02/103037). 그러나 상기 연구는 마이크로 전극을 이용하기 때문에 표면에 결합하는 효소의 양이 많아야 하거나, 효소 침전 반응 후 추가적인 침전 반응을 유도하여야 전극이 연결되어 전류가 흐르게 된다는 단점이 있었다.Much research is underway on the method of electrically connecting micro electrodes by deposit formation by enzymatic reactions (Mo1ller et al., Nano Lett. , 5: 1475, 2005; WO 02/103037). However, since the study uses a micro electrode, the amount of enzyme binding to the surface should be large, or an additional precipitation reaction must be induced after the enzyme precipitation reaction to connect the electrodes so that current flows.
한편, 나노-전극에 금 나노 입자를 결합시키는 방법에 의해 목적 물질을 측정하는 방법이 보고되었으나 (Malaquin et al., Microelectron. Eng., 73~74:887, 2004), 금 나노 입자는 전극을 완전하게 연결시켜 주지 못하기 때문에 전류 증가가 크지 않다는 단점을 가지고 있고, 또한, 나노 크기의 전극을 사용하여 목적 물질을 측정한 방법이 보고되었는데 (Kim et al., Nanotechnology, art. No. 455502:20, 2009), 이 또한 신호의 변화가 크게 변하지 않는 단점이 있다. On the other hand, the method of measuring the target material by the method of bonding the gold nanoparticles to the nano-electrode (Malaquin et al., Microelectron. Eng ., 73 ~ 74: 887, 2004), but the gold nanoparticles There is a disadvantage that the current increase is not large because it is not completely connected, and a method of measuring a target material using a nano-sized electrode has been reported (Kim et al., Nanotechnology , art.No. 455502: 20, 2009), which also has the disadvantage that the change of the signal does not change significantly.
따라서, 본 발명은 금 나노입자-나노 전극을 이용하되, 금 이온을 환원시킴으로써, 금 나노입자 하나가 환원 반응시 전극을 연결하여 전류 세기를 크게 할 수 있어 분석 감도를 증가시킬 수 있다는 장점을 제공한다. 또한, 이러한 분석감도의 증가로 인하여, 아래 실시예에서 확인된 바와 같이, 본 발명의 측정 방법에 따르면 1 pg/ml 정도의 낮은 농도의 목적 물질의 검출이 가능하며, 또는 바이러스의 경우도 10 PFU에서도 전기적 검출이 가능함을 확인함으로써, 극미량의 시료의 검출이 가능함을 확인하였다.Accordingly, the present invention provides the advantage that by using a gold nanoparticle-nano electrode, by reducing the gold ions, one gold nanoparticle can be connected to the electrode during the reduction reaction to increase the current intensity to increase the analysis sensitivity do. In addition, due to the increased sensitivity of the assay, according to the measurement method of the present invention, as shown in the following examples, it is possible to detect the target substance at a low concentration of about 1 pg / ml, or even in the case of viruses, 10 PFU. By confirming that the electrical detection is possible, it was confirmed that the detection of a very small amount of sample is possible.
본 발명의 일 실시예에 있어서, 산화 실리콘 기판 표면을 아민기로 개질한 후, 아민기로 개질된 기판 표면을 바이오틴기로 개질한다. 상기 바이오틴기로 개질된 기판 표면에 스트렙타비딘를 고정화한 후, 바이오틴이 결합된 항체를 고정한다. 이후 항원을 반응시키고, 금 나노입자가 결합된 항체를 반응시켜 샌드위치 면역 측정을 한 후, 염화 금 용액과 하이드록실아민 용액을 이용하여 금 이온 환원 반응을 유도하여 기판 표면에 금속 환원물이 생성되도록 한다. 상기 기판을 세척한 후, 질소 가스로 건조시켜 침전물이 형성된 것을 주사 전자현미경(SEM)으로 관찰할 수 있다.In one embodiment of the invention, the surface of the silicon oxide substrate is modified with an amine group, and then the surface of the substrate modified with the amine group is modified with a biotin group. After streptavidin is immobilized on the surface of the substrate modified with the biotin group, the biotin-coupled antibody is immobilized. Then, the antigen is reacted, and the gold nanoparticle-bound antibody is reacted to measure sandwich immunity. Then, a gold reduction solution is induced by using a gold chloride solution and a hydroxylamine solution to generate a metal reduction product on the substrate surface. do. After washing the substrate, it can be observed by scanning electron microscopy (SEM) that the precipitate is formed by drying with nitrogen gas.
본 발명의 일 실시예에서, 금 나노입자를 고정시킨 후, 금 이온이 환원되지 않은 전극과 환원된 전극에 각각 금 이온을 환원시켜 전류가 흐르게 한 후, 전류를 측정한 결과, 금 이온이 환원된 전극이 환원되지 않은 전극에 비하여 전도도가 증가됨을 확인할 수 있으며, 항원의 농도가 증가함에 따라 전류값이 증가하는 것을 확인할 수 있다. In one embodiment of the present invention, after fixing the gold nanoparticles, the gold ions are reduced to the gold ions and the reduced electrode respectively, the current flows after the current, after measuring the current, the gold ions are reduced It can be seen that the conductivity of the electrode is increased compared to the electrode that is not reduced, and the current value increases as the concentration of the antigen increases.
따라서, 본 발명에서는 항원-항체, DNA-DNA, DNA-RNA, PNA-DNA 등 다양한 결합 반응에 금 나노입자를 결합시킨 후, 금 나노입자-금 이온 환원 반응을 유도한 다음, 전류 또는 저항을 측정하는 방법에 의해 분석하고자 하는 목적 물질의 농도를 측정할 수 있다.Therefore, in the present invention, after binding the gold nanoparticles to various binding reactions such as antigen-antibody, DNA-DNA, DNA-RNA, PNA-DNA, induce gold nanoparticle-gold ion reduction reaction, and then apply current or resistance. By the measuring method, the concentration of the target substance to be analyzed can be measured.
이러한 측정 방법을 통해, 최종적으로는, 전기적으로 절연되어 있던 나노-전극 칩에 금나노입자-금이온의 환원반응을 통해 얻어진 환원물이 상기 나노 간격을 채워줌으로써 전류를 흐르게 하는 것을 특징으로 하는 전기적 검출용 바이오센서를 제공한다 (도 1).Through this measuring method, finally, a reducing material obtained through a reduction reaction of gold nanoparticles-gold ions to an electrically insulated nano-electrode chip fills the nano-gap to flow an electric current. There is provided a biosensor for detection (FIG. 1).
실시예EXAMPLE
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1: 산화 실리콘 기판에 고정된 금 나노입자의 시간에 따른 금 이온 환원 반응Example 1 Gold Ion Reduction over Time of Gold Nanoparticles Immobilized on Silicon Oxide Substrate
산화 실리콘 기판(16 × 16 mm)을 95 % 황산과 30 % 과산화수소수를 3:1의 부피비로 혼합한 용액에 60~65 ℃에서 20분 동안 담지한 다음, 증류수, 에탄올 순으로 세척하였다. 상기 세척한 산화 실리콘 기판을 1 % 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA)을 녹인 에탄올 용액에 1 시간 동안 담지한 후, 에탄올로 세척하고, 100 ℃에서 1 시간 동안 처리하여, 기판 표면을 아민기로 개질하였다.The silicon oxide substrate (16 × 16 mm) was immersed in a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, followed by distilled water and ethanol. The washed silicon oxide substrate was immersed in an ethanol solution dissolved in 1% 3-aminopropyltrimethoxysilane (3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA) for 1 hour, then washed with ethanol, 100 Treatment at 1 ° C. for 1 hour allowed the substrate surface to be modified with an amine group.
상기 아민기로 개질된 표면에 10 nm 금 나노입자(British Biocell International, Cardiff, UK) 용액을 증류수로 10,000배 희석한 용액을 10분 동안 반응하였다. 다음으로 25 mM 사염화 금(HAuCl4, hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA)과 5 mM 하이드록실아민(hydroxylamine hydrochloride, Sigma, St. Louis, MO, USA)이 녹아 있는 10 mM 사이트레이트 완충용액(pH 4.0)을 시간을 변화시키면 반응하였다.A 10 nm gold nanoparticle (British Biocell International, Cardiff, UK) solution diluted 10,000-fold with distilled water was reacted on the surface modified with the amine group for 10 minutes. Next, a 10 mM site containing 25 mM gold tetrachloride (HAuCl 4 , hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA) and 5 mM hydroxylamine (Sigma, St. Louis, MO, USA) The rate buffer solution (pH 4.0) was reacted with time.
도 2는 상기에서 조제된 환원 용액에 의해, 액상에서 금 나노입자와 반응한 환원물이 형성되는 과정을 나타낸 것으로, 금 나노입자 용액을 1 μl 넣은 경우, 금 이온이 5 분 이후 형성되고 10 분 후에 최대가 되는 것을 확인할 수 있었다.FIG. 2 illustrates a process of forming a reduced product reacted with gold nanoparticles in a liquid phase by using the reducing solution prepared above. When 1 μl of a gold nanoparticle solution is added, gold ions are formed after 5 minutes and 10 minutes. It was confirmed that the maximum afterwards.
도 3은 상기에서 제작된 산화실리콘기판의 주사전자 현미경(Scanning Electron Microscope, SEM) 이미지를 나타낸 것으로, 금 이온의 환원 시간(reduction time)에 따른 금 나노입자의 크기를 확인한 결과, 환원 시간이 길어질수록 금 나노입자의 크기도 점점 증가하여 환원 반응 7 분 후 약 1 μm가 되는 것을 확인하였다. 이러한 결과는 1 μm 이하의 갭을 가지는 나노-전극을 금 이온 환원에 의해 전기적으로 이어줄 수 있음을 의미한다. Figure 3 shows a scanning electron microscope (Scanning Electron Microscope, SEM) image of the silicon oxide substrate prepared above, as a result of confirming the size of the gold nanoparticles according to the reduction time (reduction time) of the gold ions, the reduction time will be longer As the size of the gold nanoparticles gradually increased, it was confirmed that the reduction reaction was about 1 μm after 7 minutes. This result means that nano-electrodes having a gap of 1 μm or less can be electrically connected by gold ion reduction.
실시예 2: 400 nm 크롬 전극에서의 금 나노입자-금 이온 환원 반응을 이용한 IL5 검출Example 2: IL5 Detection Using Gold Nanoparticle-Gold Ion Reduction at 400 nm Chromium Electrode
스텝퍼 포토리소그라피(stepper photolithography) 공정과 전자빔 증착 공정에 의해 400 nm 크롬 전극을 제작하였다 (도 4). 실리콘 웨이퍼 상에서 산화실리콘 막(Silicon oxide)을 저압력 화학증착법(LPCVD, low pressure chemical vapor deposition)으로 박막을 형성시킨 후, 상기 표면에서 먼저 400 nm 선폭을 가진 선이 만들어지도록 stepper photolithography로 패턴을 하고, thermal Evaporator로 Cr 100 nm 증착시켰다. 도 4는 상기 공정에 의해 제작된 전극(즉, 인터디지테이티드 전극(interdigitated electrode))의 SEM 이미지를 나타낸 것으로, 400 nm 간격으로 절연된 전극이 제조되었음을 확인할 수 있다.A 400 nm chromium electrode was prepared by a stepper photolithography process and an electron beam deposition process (FIG. 4). After the silicon oxide film was formed on the silicon wafer by low pressure chemical vapor deposition (LPCVD), the pattern was first patterned by stepper photolithography to form a line having a 400 nm line width on the surface. Cr 100 nm was deposited by a thermal evaporator. Figure 4 shows an SEM image of the electrode (that is, interdigitated electrode) manufactured by the above process, it can be seen that the electrode insulated at intervals of 400 nm.
상기 제작된 전극을 95 % 황산과 30 % 과산화수소수를 3:1의 부피비로 혼합한 용액에 60~65 ℃에서 20 분 동안 담지한 다음, 증류수, 에탄올 순으로 세척하였다. 상기 세척한 전극을 1 % 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA)을 녹인 에탄올 용액에 1 시간 동안 담지한 후, 에탄올로 세척하고, 100 ℃에서 1 시간 동안 처리하여, 크롬 전극 사이의 산화 실리콘 표면을 아민기로 개질하였다.The prepared electrode was immersed in a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, and then washed with distilled water and ethanol. The washed electrode was immersed in an ethanol solution in which 1% 3-aminopropyltrimethoxysilane (Aldrich, St. Louis, MO, USA) was dissolved for 1 hour, washed with ethanol, and then washed at 100 ° C. After processing for 1 hour, the silicon oxide surface between the chromium electrodes was modified with an amine group.
상기 아민기로 개질된 표면을 바이오틴기로 개질하기 위하여, 디메틸 설포옥사이드(DMSO, dimethy sulfoxide, SImga-Aldrich, St. Louis, MO, USA)에 10 mg/ml 농도로 용해되어 있는 NHS-LC-바이오틴(NHS-LC-biotin, Thermo sciences, Rockford, IL, USA)을 PBS 완충용액으로 1 mg/ml 농도로 맞춘 용액을 처리하여 1 시간 동안 실온에서 반응시켜, 아민기를 바이오틴기로 치환하였다. 스트렙타비딘(streptavidin, SImga-Aldrich, St. Louis, MO, USA) 0.1 mg/ml를 PBS 완충용액(pH 7.4)에 용해시킨 용액을 상기 바이오틴기로 개질된 기판 표면에 처리한 후, 상온에서 1시간 동안 반응시켜, 크롬 전극 사이의 산화 실리콘 표면을 스트렙타비딘 표면으로 만들었다.In order to modify the surface of the amine group modified with a biotin group, NHS-LC-biotin (10 mg / ml) dissolved in dimethyl sulfooxide (DMSO, dimethy sulfoxide, SImga-Aldrich, St. Louis, MO, USA) at a concentration of 10 mg / ml ( NHS-LC-biotin, Thermo sciences, Rockford, IL, USA) was treated with a solution adjusted to a concentration of 1 mg / ml with PBS buffer, and reacted at room temperature for 1 hour to replace an amine group with a biotin group. After treating 0.1 mg / ml of streptavidin (Streptavidin, SImga-Aldrich, St. Louis, MO, USA) in PBS buffer (pH 7.4) on the surface of the biotin-modified substrate, By reacting for a time, the silicon oxide surface between the chromium electrodes was made into the streptavidin surface.
이후, 바이오틴이 결합된 IL5 항체를 스트렙타비딘 표면에 고정시키고, IL5 항원을 0 pg/ml~100 ng/ml의 농도로 항원-항체반응을 시켰다. 다음으로 10 nm 금 나노입자를 붙인 IL5 항체를 표면에 고정된 항원에 반응시킨 후, 25 mM 사염화 금 (HAuCl4, hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA)과 5 mM 하이드록실아민(hydroxylamine hydrochloride, Sigma, St. Louis, MO, USA)이 녹아 있는 10 mM 사이트레이트 완충용액(pH 4.0)을 10 분간 반응시켜 금 이온을 금 나노입자에 환원시켰다.Thereafter, the biotin-bound IL5 antibody was immobilized on the surface of streptavidin, and the antigen-antibody reaction was performed at an concentration of 0 pg / ml-100 ng / ml. Next, the IL5 antibody with 10 nm gold nanoparticles was reacted with the antigen immobilized on the surface, followed by 25 mM gold tetrachloride (HAuCl 4 , hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA) and 5 mM hydroxylamine. 10 mM citrate buffer (pH 4.0) dissolved in (hydroxylamine hydrochloride, Sigma, St. Louis, MO, USA) was reacted for 10 minutes to reduce gold ions to gold nanoparticles.
금 이온이 환원되지 않은 전극과 상기에서 제조된 금 이온이 환원된 전극을 전류 측정하였다.The currents of the electrodes in which the gold ions were not reduced and the electrodes in which the gold ions were reduced were measured.
그 결과, 금 이온이 환원되지 않은 전극의 경우, 1V의 전압을 가했을 때 0 pg/ml IL5 항원 농도에서의 전류와 100 ng/ml IL5 항원 농도에서의 전류 차이가 1 nA인데 비하여, 금 이온이 환원된 전극의 경우 300 μA의 전류 차이가 나는 것을 알 수 있었다 (도 5). 이는 금 이온이 환원된 전극이 환원되지 않은 전극에 비하여 전도도의 증가를 유도한다는 것을 의미한다.As a result, in the case of the electrode without the reduction of gold ions, when the voltage of 1 V was applied, the current difference between the current at 0 pg / ml IL5 antigen concentration and the current at 100 ng / ml IL5 antigen concentration was 1 nA. For the reduced electrode it can be seen that the current difference of 300 μA (Fig. 5). This means that the electrode with reduced gold ions induces an increase in conductivity compared to the electrode which is not reduced.
도 6은 IL5 항원의 농도에 따른 금 이온 환원 후 1 V에 대한 전류값을 그래프로 나타낸 것으로, 항원의 농도가 증가함에 따라 전류값이 증가하는 것을 확인하였다.6 is a graph showing the current value for 1 V after the gold ion reduction according to the concentration of IL5 antigen, it was confirmed that the current value increases as the concentration of the antigen increases.
또한, 상기에서 제작된 크롬 전극 사이 산화실리콘의 표면을 확인하기 위해 주사전자 현미경(Scanning Electron Microscope, SEM)을 이용하였다.In addition, a scanning electron microscope (Scanning Electron Microscope, SEM) was used to confirm the surface of the silicon oxide between the chromium electrode prepared above.
그 결과, 도 7에서 나타난 바와 같이, 상기에서 제작된 크롬 전극 사이 산화실리콘 표면은 항원의 농도가 늘어남에 따라 수 마이크로 미터 이상의 금 이온 환원물의 형성이 증가되는 것을 확인하였다.As a result, as shown in Figure 7, it was confirmed that the surface of the silicon oxide between the chromium electrode prepared above, the formation of a gold ion reducing material of several micrometers or more as the concentration of the antigen increases.
실시예 3: 400 nm 티타늄 전극에서의 금 나노입자-금 이온 환원 반응을 이용한 H1N1 바이러스 검출Example 3: H1N1 Virus Detection Using Gold Nanoparticle-Gold Ion Reduction at 400 nm Titanium Electrodes
스텝퍼 포토리소그라피(stepper photolithography) 공정과 전자빔 증착 공정에 의해 400 nm 티타늄 전극을 제작하였다. 실리콘 웨이퍼 상에서 산화실리콘 막 (Silicon oxide)을 저압력 화학증착법(LPCVD, low pressure chemical vapor deposition)으로 박막을 형성시킨 후, 상기 표면에서 먼저 400 nm 선폭을 가진 선이 만들어지도록 stepper photolithography로 패턴을 하고, thermal Evaporator로 Titanium 30 nm 증착시켰다.A 400 nm titanium electrode was fabricated by a stepper photolithography process and an electron beam deposition process. A silicon oxide film was formed on the silicon wafer by low pressure chemical vapor deposition (LPCVD), and then patterned by stepper photolithography to form a line having a 400 nm line width on the surface. Titanium 30 nm was deposited by thermal evaporator.
전극에 항체를 고정화하기 위하여, 상기 실시예 2와 같은 방법으로 티타늄 전극 사이의 산화 실리콘 표면을 스트렙타비딘 표면으로 만들었다. 이후, 바이오틴이 결합된 H1N1 바이러스 항체(rabbit polyclonal)를 스트렙타비딘 표면에 고정시키고, H1N1 바이러스 용액(pH 7.4 PBS 완충용액에 현탁) 17 μl를 센서 표면에 반응시켰으며, 반응시킨 바이러스의 양은 0, 101, 102, 103 PFU(plaque forming units)가 되도록 하였다. 계속해서, 각 전극을 PBS로 세척 하고 10 nm 금 나노입자를 붙인 H1N1 항체(mouse monoclonal)를 반응시킨 후, 25 mM 사염화 금 (HAuCl4, hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA)과 5 mM 하이드록실아민(hydroxylamine hydrochloride, Sigma, St. Louis, MO, USA)이 녹아 있는 10 mM 사이트레이트 완충용액(pH 4.0)을 10 분간 반응시켜 금 이온을 금 나노입자에 환원시켰다.In order to immobilize the antibody on the electrode, the silicon oxide surface between the titanium electrodes was made into the streptavidin surface in the same manner as in Example 2. Then, biotin-bound H1N1 virus antibody (rabbit polyclonal) was immobilized on the surface of streptavidin, 17 μl of H1N1 virus solution (suspended in pH 7.4 PBS buffer) was reacted on the sensor surface, and the amount of virus reacted was 0. , 10 1 , 10 2 , and 10 3 PFU (plaque forming units). Subsequently, each electrode was washed with PBS and reacted with a H1N1 antibody (mouse monoclonal) with 10 nm gold nanoparticles followed by 25 mM gold tetrachloride (HAuCl 4 , hydrogen tetrachlorideaurate (III), Aldrich, Millwauke, WI, USA). And 10 mM citrate buffer (pH 4.0) dissolved in 5 mM hydroxylamine (Sigma, St. Louis, MO, USA) were reacted for 10 minutes to reduce gold ions to gold nanoparticles.
금 이온이 환원되지 않은 전극과 상기에서 제조된 금 이온이 환원된 전극의 전류를 측정한 결과, 금 이온이 환원되지 않은 전극의 경우에는 1V의 전압을 가했을 때의 0 PFU H1N1 바이러스 농도에서의 전류와 103 PFU H1N1 바이러스 농도에서의 전류 차이가 0.8 nA인데 비하여, 금 이온이 환원된 전극의 경우에는 96 μA의 전류 차이가 나는 것을 알 수 있었다 (도 8). 이는 금 이온이 환원된 전극이 환원되지 않은 전극에 비하여 전도도의 증가를 유도한다는 것을 의미한다. As a result of measuring the currents of the electrode with no reduced gold ions and the electrode with reduced gold ions, the current at 0 PFU H1N1 virus concentration when a voltage of 1 V was applied in the case of the electrode with no reduced gold ions. The current difference at and 10 3 PFU H1N1 virus concentration was 0.8 nA, whereas the gold ion-reduced electrode showed a difference of 96 μA (FIG. 8). This means that the electrode with reduced gold ions induces an increase in conductivity compared to the electrode which is not reduced.
도 9는 바이러스의 농도에 따른 금 이온 환원 후 1 V에 대한 전류값을 그래프로 나타낸 것으로, 바이러스의 농도가 증가함에 따라 전류값이 증가하는 것을 확인하였다. 9 is a graph showing the current value for 1 V after the gold ion reduction according to the concentration of the virus, it was confirmed that the current value increases as the concentration of the virus increases.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, such a specific description is only a preferred embodiment, which is not limited by the scope of the present invention Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
부호의 설명Explanation of the sign
11: 전극; 21: 절연체 표면; 31: 항체; 41: 항원; 51: 감지 항체; 61: 금 나노입자; 71: 환원 반응에 의한 침전물11: electrode; 21: insulator surface; 31: antibody; 41: antigen; 51: detection antibody; 61: gold nanoparticles; 71: precipitate by reduction reaction
이상 설명한 바와 같이, 본 발명에 따른 바이오센서를 이용한 극미량 시료의 전기적 검출 방법은 한 번의 금 나노입자-금 이온 환원 반응으로 나노-전극 사이를 연결할 수 있을 뿐만 아니라, 전기적으로 절연된 나노-전극 사이를 전기적으로 연결시켜 전기 전도도를 증가시키므로, 측정 감도가 높고, 극미량의 시료를 정량적으로 분석할 수 있으며, 선택적으로 결합된 항원-항체 결합을 매우 간단하게 전기적인 방법으로 측정할 수 있다.As described above, the electrical detection method of the trace amount sample using the biosensor according to the present invention can not only connect between the nano-electrodes by one gold nanoparticle-gold ion reduction reaction, but also between the electrically insulated nano-electrodes The electrical conductivity is increased by increasing the electrical conductivity, so that the measurement sensitivity is high, the trace sample can be quantitatively analyzed, and the selectively bound antigen-antibody binding can be measured very simply by an electrical method.

Claims (8)

  1. 다음 단계를 포함하는 바이오센서를 이용한 극미량 시료의 전기적 검출 방법:Electrical detection method of trace amount sample using a biosensor comprising the following steps:
    (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시켜 바이오센서를 제작하는 단계; (a) fabricating a biosensor by immobilizing a receptor molecule selectively binding to an analyte target material on an electrically insulated nano-electrode chip;
    (b) 상기 바이오센서에 상기 리셉터 분자와 선택적으로 결합하는 목적 물질을 함유하는 시료를 첨가하고 반응시키는 단계; (b) adding and reacting a sample containing a target substance selectively binding to the receptor molecule to the biosensor;
    (c) 상기 목적 물질을 함유한 시료와 반응된 나노-전극 칩에 금 나노입자를 처리하여 반응시키는 단계; (c) treating and reacting the gold nanoparticles to the nano-electrode chip reacted with the sample containing the target material;
    (d) 상기 반응된 금 나노입자 주위에 금 이온을 처리하여 환원시키는 단계; 및(d) treating and reducing gold ions around the reacted gold nanoparticles; And
    (e) 상기 금 이온이 환원된 나노-전극 칩의 전기전도도 또는 임피던스를 측정하여 상기 리셉터 분자와 특이적으로 결합하는 목적 물질을 검출하는 단계.(e) detecting a target substance specifically binding to the receptor molecule by measuring the electrical conductivity or impedance of the reduced nano-electrode chip.
  2. 제1항에 있어서, 상기 나노-전극 칩은 포토리소그라피, 전자빔 리소그라피, 이온 집중 리소그라피 및 나노임프린팅으로 구성된 군에서 선택되는 공정에 의하여 제작된 것임을 특징으로 하는 방법.The method of claim 1, wherein the nano-electrode chip is manufactured by a process selected from the group consisting of photolithography, electron beam lithography, ion-focused lithography, and nanoimprinting.
  3. 제1항에 있어서, 상기 나노-전극 칩 내에 전극 사이의 간격은 1μm 이하인 것을 특징으로 하는 방법.The method of claim 1, wherein the spacing between electrodes in the nano-electrode chip is less than 1 μm.
  4. 제1항에 있어서, 상기 목적 물질은 효소, 단백질, DNA, RNA, 미생물, 바이러스, 동물세포, 식물세포, 기관세포 및 신경세포로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the target material is selected from the group consisting of enzymes, proteins, DNA, RNA, microorganisms, viruses, animal cells, plant cells, organ cells and neurons.
  5. 제1항에 있어서, 상기 리셉터 분자는 항체, DNA, 압타머, PNA 및 리간드로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein the receptor molecule is selected from the group consisting of antibody, DNA, aptamer, PNA and ligand.
  6. 제1항에 있어서, 상기 금 나노입자는 크기가 2nm~100nm 인 것을 특징으로 하는 방법.The method of claim 1, wherein the gold nanoparticles are 2nm ~ 100nm in size.
  7. 제1항에 있어서, 상기 (c) 단계에서 금 나노입자는 상기 목적물질에 결합가능한 추가 감지용 리셉터 분자를 이용하여 목적 물질과 결합하는 것을 특징으로 하는 방법.The method of claim 1, wherein in step (c), the gold nanoparticles are bound to the target substance using an additional sensing receptor molecule capable of binding to the target substance.
  8. 제1항에 있어서, 상기 추가 감지용 리셉터 분자는 항체, DNA, 압타머, PNA 및 리간드로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 1, wherein said additional sensing receptor molecule is selected from the group consisting of antibody, DNA, aptamer, PNA and ligand.
PCT/KR2011/003799 2010-05-24 2011-05-24 Electric biosensor for detecting an infinitesimal sample WO2011149249A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0048277 2010-05-24
KR20100048277 2010-05-24

Publications (2)

Publication Number Publication Date
WO2011149249A2 true WO2011149249A2 (en) 2011-12-01
WO2011149249A3 WO2011149249A3 (en) 2012-04-19

Family

ID=45004547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003799 WO2011149249A2 (en) 2010-05-24 2011-05-24 Electric biosensor for detecting an infinitesimal sample

Country Status (2)

Country Link
KR (1) KR20110128754A (en)
WO (1) WO2011149249A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182918A1 (en) * 2014-05-28 2015-12-03 주식회사 미코 Bio-sensor having nano-gap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875135B1 (en) * 2016-07-04 2018-07-06 부산대학교 산학협력단 Selecting method of aptamer using AC potential modulated microfluidic channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176051A1 (en) * 1998-12-23 2005-08-11 Genetrix B.V. Affinity sensor for detecting specific molecular binding events and use thereof
EP1516174B1 (en) * 2002-06-24 2007-12-26 Universite Catholique De Louvain Method and device for high sensitivity detection of the presence of dna and other probes
US20080241964A1 (en) * 2007-03-27 2008-10-02 Canon Kabushiki Kaisha Material for improving sensitivity of magnetic sensor and method thereof
US20090061451A1 (en) * 2007-09-04 2009-03-05 Catalina Achim Biosensors and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050176051A1 (en) * 1998-12-23 2005-08-11 Genetrix B.V. Affinity sensor for detecting specific molecular binding events and use thereof
EP1516174B1 (en) * 2002-06-24 2007-12-26 Universite Catholique De Louvain Method and device for high sensitivity detection of the presence of dna and other probes
US20080241964A1 (en) * 2007-03-27 2008-10-02 Canon Kabushiki Kaisha Material for improving sensitivity of magnetic sensor and method thereof
US20090061451A1 (en) * 2007-09-04 2009-03-05 Catalina Achim Biosensors and related methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSE M. PINGARRON ET AL.: 'Gold Nanoparticle-based Electrochemical Biosensors' ELECTROCHIMICA ACTA vol. 53, no. 19, 2008, pages 5848 - 5866 *
SILVANA ANDREESCU ET AL.: 'Steudies of the Binding and Signaling of Surface- immobilized Periplasmic Glucose Receptors on Gold Nanoparticles: A Glucose Biosensor Application' ANALYTICAL BIOCHEMISTRY vol. 375, no. 2, 2008, pages 282 - 290 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182918A1 (en) * 2014-05-28 2015-12-03 주식회사 미코 Bio-sensor having nano-gap

Also Published As

Publication number Publication date
KR20110128754A (en) 2011-11-30
WO2011149249A3 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
US20220276233A1 (en) Protein detection method
Shen et al. Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive
Chen et al. An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex
Chen et al. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation
Zhang et al. Silicon nanowire biosensor and its applications in disease diagnostics: a review
Pei et al. Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy
Pänke et al. Impedance spectroscopy and biosensing
Wu et al. Digital single virus electrochemical enzyme-linked immunoassay for ultrasensitive H7N9 avian influenza virus counting
Zhang et al. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions
WO2009085356A2 (en) Methods of using and constructing nanosensor platforms
US20100216256A1 (en) Nanobelt-based sensors and detection methods
Yu et al. An impedance array biosensor for detection of multiple antibody–antigen interactions
Hao et al. An electrochemical immunosensing method based on silver nanoparticles
Lin et al. Target DNA detection of human papilloma virus-16 E7 gene by capture-target-reporter sandwich on interdigitated electrode sensor
Takeda et al. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen–antibody interaction
Zhang et al. Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates
KR20130057721A (en) Biosensor, apparatus for detecting biomolecules using the biosensor and detecting method the same
Osaki et al. Optimization of electrochemical analysis for signal amplification in gold nanoparticle-probed immunoassays
WO2011149249A2 (en) Electric biosensor for detecting an infinitesimal sample
WO2009116803A2 (en) Biosensor for detecting a trace amount of sample and production method therefor
Liu et al. Enhanced conductometric immunoassay for hepatitis B surface antigen using double-codified nanogold particles as labels
JP2005077237A (en) Biosensor
Kong et al. Ultrasensitive electrical detection of nucleic acids by hematin catalysed silver nanoparticle formation in sub-microgapped biosensors
RU178317U1 (en) FIELD TRANSISTOR FOR DETERMINING BIOLOGICALLY ACTIVE COMPOUNDS
Yi et al. Colorimetric Sandwich Assays for Protein Detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786881

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786881

Country of ref document: EP

Kind code of ref document: A2