WO2011148527A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2011148527A1
WO2011148527A1 PCT/JP2010/069588 JP2010069588W WO2011148527A1 WO 2011148527 A1 WO2011148527 A1 WO 2011148527A1 JP 2010069588 W JP2010069588 W JP 2010069588W WO 2011148527 A1 WO2011148527 A1 WO 2011148527A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
series
connection
windings
phase
Prior art date
Application number
PCT/JP2010/069588
Other languages
French (fr)
Japanese (ja)
Inventor
敏則 田中
信一 山口
詠吾 十時
茂夫 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2011148527A1 publication Critical patent/WO2011148527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present invention relates to a rotating electrical machine that is driven by a three-phase alternating current flowing.
  • a permanent magnet type synchronous motor provided with a cylindrical armature and a field pole provided inside the armature and rotatable with respect to the armature.
  • the field pole has ten magnets arranged in the circumferential direction.
  • the armature includes an armature core including 12 teeth facing the magnet, and two windings provided on each tooth and through which a three-phase AC current flows. Three in-phase windings are arranged side by side in the circumferential direction of the armature. Three windings arranged continuously in the circumferential direction of the armature are connected in series in order to prevent the generation of circulating current in the windings (see, for example, Patent Document 1).
  • This invention provides a rotating electrical machine that can suppress the generation of a circulating current in a winding and reduce the value of a no-load induced voltage applied to an inverter.
  • a rotating electrical machine includes a field pole having a plurality of magnets, an armature iron core including a plurality of teeth arranged so as to face the magnets, and a conductive wire wound around the teeth in a concentrated winding. And an armature having a plurality of windings through which a three-phase alternating current flows, and three or more windings of the same phase are continuously arranged in the direction in which the teeth are arranged.
  • the three in-phase windings arranged in succession and arranged side by side are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit.
  • the rotating electrical machine According to the rotating electrical machine according to the present invention, three or more windings through which in-phase current flows are arranged in a row in the direction in which the teeth are arranged, and three or more windings in the same phase arranged in succession. Since the lines are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit, generation of circulating current in the windings can be suppressed and applied to the inverter The value of the no-load induced voltage can be reduced.
  • FIG. 10 is a vector diagram showing voltages of windings in FIG. 9.
  • FIG. 10 is a connection diagram illustrating another connection of the winding of FIG. 9. It is a vector diagram which shows the voltage of the coil
  • FIG. 10 is a connection diagram illustrating still another connection of the windings of FIG. 9. It is a vector diagram which shows the voltage of the coil
  • FIG. 29 is a vector diagram showing winding voltages when all the windings in FIG. 28 have the same number of turns. It is a table
  • FIG. 32 is a connection diagram illustrating connection of windings when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is one.
  • FIG. 32 is a connection diagram illustrating connection of windings when the number of parallel connection circuits of the permanent magnet synchronous motor of FIG. 31 is two.
  • FIG. 32 is a connection diagram illustrating connection of windings when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is four.
  • FIG. 1 is a cross-sectional view showing a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor according to Embodiment 1 of the present invention.
  • a permanent magnet type synchronous motor (rotating electric machine) includes a rotatable field pole 1 and an armature 2 provided around the field pole 1.
  • the permanent magnet type synchronous motor is connected to an inverter (not shown).
  • the field pole 1 has a shaft 3 and ten magnets 4 fixed to the outer peripheral surface of the shaft 3.
  • the magnets 4 are arranged at equal intervals in the circumferential direction of the shaft 3. Moreover, the magnet 4 is arrange
  • the armature 2 has an armature core 5 and a winding 6 through which current of each phase of three-phase alternating current flows.
  • the armature core 5 includes a cylindrical base portion 5 a and twelve teeth 5 b that are formed to extend radially inward from the base portion 5 a and face the magnet 4.
  • the base portion 5a is disposed concentrically with the shaft 3.
  • the teeth 5b are arranged at equal intervals in the circumferential direction of the shaft 3.
  • a pair of windings 6 are arranged on each tooth 5b.
  • the winding 6 is formed by winding the conductive wire around the tooth 5b in a concentrated manner. That is, in this example, the field pole 1 has 10 magnetic poles and the armature 2 has 12 teeth.
  • the number of windings 6 through which the current of each phase of the three-phase alternating current flows is eight.
  • the names of the windings 6 through which the U-phase current flows are U11, U12, U13, U14, U21, U22, U23, and U24.
  • the names of the windings 6 through which the V-phase current flows are V11, V12, V13, V14, V21, V22, V23, and V24.
  • the names of the windings 6 through which the W-phase current flows are W11, W12, W13, W14, W21, W22, W23 and W24.
  • U11, U14, U22, U23, V12, V13, V21, V24, W12, W13, W21 and W24 have the same winding polarity (winding direction).
  • the winding polarities of U12, U13, U21, U24, V11, V14, V22, V23, W11, W14, W22 and W23 are the same.
  • the winding polarity of U11 and the winding polarity of U12 are opposite to each other.
  • FIG. 1 in order to indicate the winding polarity of each winding 6, + or-is attached to the rear part of each name.
  • U12 and U13 are arranged on the same tooth 5b.
  • U11 is arrange
  • U14 is arrange
  • U21 is arrange
  • U22 and U23 are arrange
  • U24 is arrange
  • V11 is arranged on the tooth 5b where U14 is arranged.
  • V12 and V13 are arranged in a tooth 5b different from the tooth 5b in which U12 and U13 are arranged, out of a pair of teeth 5b adjacent to the tooth 5b in which V11 is arranged.
  • V14 is arrange
  • V21 is arrange
  • V22 and V23 are disposed on the tooth 5b at a position opposite to the tooth 5b on which V12 and V13 are disposed.
  • V24 is arrange
  • W11 is arranged in the tooth 5b in which V24 is arranged.
  • W12 and W13 are arranged in a tooth 5b different from the tooth 5b in which V22 and V23 are arranged, out of a pair of teeth 5b adjacent to the tooth 5b in which W11 is arranged.
  • W14 is arrange
  • W21 is arrange
  • W22 and W23 are arranged on the tooth 5b at a position facing the teeth 5b on which W12 and W13 are arranged.
  • W24 is arrange
  • the combination of the windings 6 provided in the same tooth 5b is represented by (/), and the windings 6 in which the currents of the three-phase alternating currents flow are represented by U, V, and W.
  • the winding polarity of the winding 6 is represented by + and ⁇
  • the winding 6 is arranged in the following order in the direction in which the teeth 5b are arranged.
  • FIG. 2 is a connection diagram for explaining the connection of the winding 6 in FIG.
  • U11 and U14 are connected in series.
  • U12 and U13 are connected in series.
  • U21 and U24 are connected in series.
  • U22 and U23 are connected in series.
  • U11 and U14 connected in series, U12 and U13 connected in series, U21 and U24 connected in series, and U22 and U23 connected in series are connected in parallel. That is, U11 and U14 connected in series, U12 and U13 connected in series, U21 and U24 connected in series, and U22 and U23 connected in series constitute a U-phase parallel circuit.
  • the numbers of turns of U11, U14, U21 and U24 are all the same.
  • the numbers of turns of U12, U13, U22, and U23 are all the same.
  • V11 and V14 are connected in series.
  • V12 and V13 are connected in series.
  • V21 and V24 are connected in series.
  • V22 and V23 are connected in series.
  • V11 and V14 connected in series, V12 and V13 connected in series, V21 and V24 connected in series, and V22 and V23 connected in series are connected in parallel. That is, V11 and V14 connected in series, V12 and V13 connected in series, V21 and V24 connected in series, and V22 and V23 connected in series constitute a V-phase parallel circuit.
  • the numbers of turns of V11, V14, V21 and V24 are all the same.
  • the numbers of turns of V12, V13, V22, and V23 are all the same.
  • W11 and W14 are connected in series.
  • W12 and W13 are connected in series.
  • W21 and W24 are connected in series.
  • W22 and W23 are connected in series.
  • W11 and W14 connected in series, W12 and W13 connected in series, W21 and W24 connected in series, and W22 and W23 connected in series are connected in parallel. That is, W11 and W14 connected in series, W12 and W13 connected in series, W21 and W24 connected in series, and W22 and W23 connected in series constitute a W-phase parallel circuit.
  • the numbers of turns of W11, W14, W21 and W24 are all the same.
  • the numbers of turns of W12, W13, W22, and W23 are all the same.
  • Each phase is Y-connected.
  • the number of parallel connection circuits which is the number of columns connected in parallel for each phase of the permanent magnet synchronous motor, is four.
  • FIG. 3 is a vector diagram showing the voltage of the winding 6 in FIG.
  • the voltage phases of U12 and U13 are the same because U12 and U13 are arranged in the same tooth 5b.
  • the phase of the voltage of U11 is delayed by 30 degrees with respect to the phase of the voltage of U12 or U13.
  • the phase of the voltage of U14 is advanced 30 degrees with respect to the phase of the voltage of U12 or U13. That is, the phase of the voltage of U11 and U14 is shifted in the opposite direction by the same angle around the phase of the voltage of U12 or U13.
  • the direction of the combined vector obtained by combining the voltage vector of U11 and the voltage vector of U14 is the same as the direction of the voltage vector of U12 and U13. Thereby, it is suppressed that a circulating current flows between U11 and U14 and U12 and U13 which were connected in parallel.
  • the flow of circulating current is also suppressed between U21 and U24 and U22 and U23 connected in parallel. That is, in the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed. Also in the V phase and the W phase, similarly to the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed.
  • the interlinkage magnetic flux ⁇ to the winding is When used, the no-load induced voltage E induced in the winding by the rotation of the field pole satisfies the following formula (1).
  • E -(d ⁇ / dt) (1)
  • the interlinkage magnetic flux ⁇ satisfies the following formula (2) using the gap magnetic flux density B, the cross-sectional area S of the winding, and the number of turns W of the winding.
  • W ⁇ B ⁇ S (2)
  • the no-load induced voltage E satisfies the following formula (3).
  • E ⁇ WS (dB / dt) (3)
  • the no-load induced voltage E is proportional to the number of turns W of the winding.
  • the no-load induced voltage is determined in consideration of the power supply voltage of the inverter. For example, when the power supply voltage of the inverter is halved from V to V / 2, it is necessary to increase the number of parallel connection circuits or reduce the number of turns W of the winding in order to reduce the no-load induced voltage. There is.
  • FIG. 4 is a connection diagram for explaining the connection of the winding 6 in the conventional permanent magnet synchronous motor
  • FIG. 5 is a vector diagram showing the voltage of the winding 6 in FIG. All the in-phase windings 6 are connected in series. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is one. In this case, since there is no circuit through which the circulating current flows, generation of the circulating current is prevented. However, since all the in-phase windings 6 are all connected in series, the no-load induced voltage applied to the inverter is larger than that in the case of the permanent magnet synchronous motor according to the first embodiment of the present invention. End up.
  • FIG. 6 is a connection diagram for explaining the connection of the winding 6 in another conventional permanent magnet type synchronous motor
  • FIG. 7 is a vector diagram showing the voltage of the winding 6 in FIG.
  • the in-phase windings 6 are connected in parallel in two rows. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is two.
  • the direction of the combined vector of the voltage vectors U11, U12, U13, and U14 and the direction of the combined vector of the voltage vectors U21, U22, U23, and U24 are the same. Therefore, it is suppressed that a circulating current flows between U11, U12, U13 and U14 and U21, U22, U23 and U24 connected in parallel.
  • FIG. 8 is a sectional view showing still another conventional permanent magnet type synchronous motor.
  • the number of teeth 5b and the number of magnets 4 are the same as those of the permanent magnet type synchronous motor according to the first embodiment of the present invention.
  • One winding 6 is disposed on each tooth 5b.
  • the number of windings 6 through which the current of each phase of the three-phase alternating current flows is four.
  • the names of the windings 6 through which the U-phase current flows are U11, U12, U21, and U22.
  • the names of the windings 6 through which the V-phase current flows are V11, V12, V21, and V22.
  • the names of the windings 6 through which the W-phase current flows are W11, W12, W21, and W22.
  • the winding polarities of U11, U22, V12, V21, W12, and W21 are the same.
  • the winding polarities of U12, U21, V11, V22, W11, and W22 are the same.
  • the winding polarity of U11 and the winding polarity of U12 are opposite to each other.
  • U11 and U12 are disposed on adjacent teeth 5b.
  • U21 is arrange
  • U22 is arrange
  • V11 and V12 are arranged in adjacent teeth 5b.
  • V21 is arrange
  • V22 is arrange
  • W11 and W12 are arranged on adjacent teeth 5b.
  • W21 is arrange
  • W22 is arrange
  • U12 and V11 are arranged in adjacent teeth 5b.
  • V12 and W21 are arranged on adjacent teeth 5b.
  • FIG. 9 is a connection diagram for explaining the connection of the winding 6 in FIG.
  • U11, U12, U21 and U22 are connected in series.
  • V11, V12, V21 and V22 are connected in series.
  • W11, W12, W21 and W22 are connected in series. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is one.
  • the numbers of turns of U11, U12U21, U22, V11, V12, V21, V22, W11, W12, W21 and W22 are all the same.
  • FIG. 10 is a vector diagram showing the voltage of the winding 6 in FIG. Since there is no circuit through which the circulating current flows in each phase, the generation of the circulating current is prevented. However, since all the in-phase windings 6 are all connected in series, the no-load induced voltage applied to the inverter is larger than that in the case of the permanent magnet synchronous motor according to the first embodiment of the present invention. End up.
  • FIG. 11 is a connection diagram illustrating another connection of the winding 6 in FIG.
  • U11 and U12 are connected in series.
  • U21 and U22 are connected in series.
  • U11 and U12 and U21 and U22 are connected in parallel.
  • V11 and V12 are connected in series.
  • V21 and V22 are connected in series.
  • V11 and V12 and V21 and V22 are connected in parallel.
  • W11 and W12 are connected in series.
  • W21 and W22 are connected in series.
  • W11 and W12 and W21 and W22 are connected in parallel.
  • the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is two.
  • FIG. 12 is a vector diagram showing the voltage of the winding 6 in FIG.
  • the direction of the combined vector obtained by combining the voltage vectors of U11 and U12 is equal to the direction of the combined vector obtained by combining the voltage vectors of U21 and U22. Therefore, the circulating current is suppressed from flowing between U11 and U12 and U21 and U22 connected in parallel.
  • FIG. 13 is a connection diagram for explaining still another connection of the winding 6 in FIG.
  • U11, U12, U21 and U22 are all connected in parallel.
  • V11, V12, V21 and V22 are all connected in parallel.
  • W11, W12, W21 and W22 are all connected in parallel. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is four.
  • FIG. 14 is a vector diagram showing the voltage of the winding 6 in FIG. U11 and U21, and U12 and U22 are out of phase with the applied voltage. Therefore, a circulating current flows between U11 and U21 and U12 and U22. In order to suppress the generation of circulating current, the number of parallel circuit connections of the permanent magnet type synchronous motor needs to be two or less.
  • FIG. 15 is an enlarged view showing the main part of the armature 2 of FIG. 8, and FIG. 16 is a view showing the main part of the armature 2 when the number of turns of the winding 6 of FIG. 8 is reduced.
  • the number of turns of each winding 6 is 18 turns.
  • the number of turns of each winding 6 is reduced by a factor of 1/2 according to the above equation (3). It needs to be reduced to 9 turns.
  • the current flowing through each winding 6 must be increased by a factor of 2, which increases the copper loss in the winding 6 due to the increase in the current flowing through the winding 6. In order to prevent this, it is necessary to double the diameter of the conductive wire of each winding 6 by ⁇ 2.
  • each winding 6 When the wire diameter of each winding 6 is doubled, the gap between adjacent conductors becomes large. As a result, the number of turns of each winding 6 cannot be 9 turns, and the number of turns of each winding 6 may have to be 8 turns. That is, it is difficult to reduce the number of turns of the winding 6 and increase the wire diameter of the conductive wire constituting the winding 6 without increasing the number of parallel circuit connections of the permanent magnet type synchronous motor.
  • the permanent magnet type synchronous motor according to the first embodiment of the present invention, three windings 6 through which in-phase current flows are arranged side by side in the direction in which teeth 5b are arranged.
  • the three in-phase windings 6 arranged side by side are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit.
  • the generation of current can be suppressed and the value of the no-load induced voltage applied to the inverter can be reduced.
  • the combination of windings 6 provided on the same tooth 5b is represented by (/), the windings 6 of each phase of the three-phase alternating current are represented by U, V, W, and the winding polarity is represented by +,-.
  • the windings 6 are arranged in the following order in the direction in which the teeth 5b are arranged, and (U12 + / U13 +) (U14 ⁇ / V11 +) (V12 ⁇ / V13 ⁇ ) (V14 + / W21 ⁇ ) (W22 +) / W23 +) (W24- / U21 +) (U22- / U23-) (U24 + / V21-) (V22 + / V23 +) (V24- / W11 +) (W12- / W13-) (W14 + / U11-) and U12 + And U13 + are connected in series, V12 ⁇ and V13 ⁇ are connected in series, W22 + and W23 + are connected in series, U22 ⁇ and U23 ⁇ are connected
  • W12 ⁇ and W13 ⁇ are connected in series, U11 ⁇ and U14 ⁇ are connected in series, V11 + and V14 + are connected in series, W21 ⁇ and W24 ⁇ are connected in series, and U21 + and U24 + are connected in series.
  • V21 ⁇ and V24 ⁇ are connected in series, W11 + and W14 + are connected in series, U12 + and U13 + are connected in parallel with U11 ⁇ and U14 ⁇ , and V12 ⁇ and V13 ⁇ are connected in parallel with V11 + and V14 +.
  • W22 + and W23 + and W21 ⁇ and W24 ⁇ are connected in parallel
  • U22 ⁇ and U23 ⁇ and U21 + and U24 + are connected in parallel
  • V22 + and V23 + and V21 ⁇ and V24 ⁇ are connected in parallel
  • W12 -And W13- and W11 + and W14 + are connected in parallel
  • FIG. FIG. 17 is a cross-sectional view showing a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor according to Embodiment 2 of the present invention.
  • eight magnets 4 are arranged at equal intervals in the circumferential direction of the shaft 3.
  • Nine teeth 5b are arranged at equal intervals in the circumferential direction of the shaft 3.
  • One winding 6 is arranged for each tooth 5b. That is, in this example, the number of poles of the field pole 1 is 8, and the number of teeth of the armature 2 is 9.
  • the number of windings 6 through which the current of each phase of the three-phase AC flows is three each.
  • the names of the windings 6 through which the U-phase current flows are U11, U12, and U13.
  • the names of the windings 6 through which the V-phase current flows are V11, V12, and V13.
  • the names of the windings 6 through which the W-phase current flows are W11, W12, and W13.
  • the winding polarities of U11, U13, V11, V13, W11 and W13 are the same.
  • the winding polarities of U12, V12 and W12 are the same.
  • the winding polarity of U11 and the winding polarity of U12 are opposite to each other.
  • + or ⁇ is added to the rear of each name to indicate the winding polarity of each winding 6.
  • U11, U12, and U13 are continuously arranged in the direction in which the teeth 5b are arranged such that U11 and U13 sandwich U12.
  • V11, V12, and V13 are continuously arranged in the direction in which the teeth 5b are arranged such that V11 and V13 sandwich V12.
  • W11, W12, and W13 are continuously arranged in the direction in which the teeth 5b are arranged such that W11 and W13 sandwich W12.
  • U13 and V11 are adjacent to each other.
  • V13 and W11 are adjacent to each other.
  • W13 and U11 are adjacent to each other.
  • FIG. 18 is a connection diagram for explaining the connection of the winding 6 in FIG.
  • U11 and U13 are connected in series.
  • U11 and U13 and U12 are connected in parallel. That is, U11 and U13, and U12 constitute a U-phase parallel circuit.
  • Each turn number of U11 and U13 is the same.
  • V11 and V13 are connected in series.
  • V11 and V13 and V12 are connected in parallel. That is, V11, V13, and V12 constitute a V-phase parallel circuit.
  • the number of turns of V11 and V13 is the same.
  • W11 and W13 are connected in series. W11 and W13 and W12 are connected in parallel. That is, W11, W13, and W12 form a W-phase parallel circuit. The number of turns of W11 and W13 is the same.
  • Each phase is Y-connected.
  • the number of parallel connection circuits of the permanent magnet type synchronous motor according to Embodiment 2 of the present invention is two.
  • FIG. 19 is a vector diagram showing the voltage of the winding 6 in FIG.
  • the phase of the voltage of U11 is delayed by 20 degrees with respect to the phase of the voltage of U12.
  • the phase of the voltage of U13 is advanced 20 degrees with respect to the phase of the voltage of U12. That is, the phase of the voltage of U11 and U13 is shifted in the opposite direction by the same angle around the phase of the voltage of U12.
  • the direction of the combined vector obtained by combining the voltage vector of U11 and the voltage vector of U13 is the same as the direction of the voltage vector of U12.
  • the circulating current is suppressed from flowing between U11 and U13 and U12 connected in parallel. That is, in the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed.
  • FIG. 20 is a connection diagram for explaining the connection of the winding 6 in the conventional permanent magnet type synchronous motor.
  • U11, U12 and U13 are connected in series.
  • V11, V12 and V13 are connected in series.
  • W11, W12 and W13 are connected in series. Therefore, the number of parallel connection circuits of this conventional permanent magnet synchronous motor is one.
  • FIG. 21 is a vector diagram showing the voltage of the winding 6 in FIG. Since there is no circuit through which the circulating current flows in each phase, the generation of the circulating current is prevented. However, since all in-phase windings 6 are all connected in series, the no-load induced voltage applied to the inverter is larger than that in the case of the permanent magnet synchronous motor according to the second embodiment of the present invention. End up.
  • FIG. FIG. 22 is a plan view showing a main part of a permanent magnet type synchronous motor according to Embodiment 3 of the present invention.
  • each of U11, U12, U13 and U14 is constituted by a continuous winding of a conducting wire.
  • the winding start portion and the winding end portion of the conductive wires constituting U11, U12, U13, and U14 are connected to be conductive.
  • a connecting wire 7 is provided in each of the portion of the conducting wire between U11 and U12 and the portion of the conducting wire between U13 and U14.
  • Each of U21, U22, U23 and U24 is constituted by a continuous winding of conductive wires.
  • the winding start portion and the winding end portion of the conductors constituting U21, U22, U23, and U24 are connected to be conductive.
  • a connection line is provided in each of the portion of the conductive wire between U21 and U22 and the portion of the conductive wire between U23 and U24.
  • Each of V11, V12, V13, and V14 is comprised by the continuous winding of conducting wire.
  • the winding start portion and the winding end portion of the conducting wires constituting V11, V12, V13, and V14 are connected to be conductive.
  • a connection line is provided on each of the conductive wire portion between V11 and V12 and the conductive wire portion between V13 and V14.
  • Each of V21, V22, V23 and V24 is constituted by a continuous winding of a conducting wire.
  • the winding start portion and the winding end portion of the conductive wires constituting V21, V22, V23, and V24 are connected to be conductive.
  • a connection line is provided in each of the conductive wire portion between V21 and V22 and the conductive wire portion between V and V24.
  • Each of W11, W12, W13, and W14 is comprised by the continuous winding of conducting wire.
  • the winding start portion and the winding end portion of the conducting wires constituting W11, W12, W13, and W14 are connected to be conductive.
  • a connection line is provided in each of the conductive wire portion between W11 and W12 and the conductive wire portion between W13 and W14.
  • Each of W21, W22, W23 and W24 is constituted by a continuous winding of a conducting wire.
  • the winding start portion and the winding end portion of the conductive wires constituting W21, W22, W23, and W24 are connected to be conductive.
  • a connection line is provided in each of the conductive wire portion between W21 and W22 and the conductive wire portion between W23 and W24.
  • FIG. 23 is a plan view showing a main part of the armature 2 of FIG.
  • a first insulator 8 or a second insulator 9 is attached to each tooth 5b.
  • the 1st insulator 8 and the 2nd insulator 9 are arrange
  • the winding 6 is attached to the tooth 5b via the first insulator 8 or the second insulator 9.
  • FIG. 24 is a perspective view showing the first insulator 8 of FIG.
  • the first insulator 8 has an insulator body 8a, a first pin 8b, a second pin 8c, and a third pin 8d.
  • the first pin 8b, the second pin 8c, and the third pin 8d are made of metal.
  • the first pin 8b, the second pin 8c, and the third pin 8d have conductivity.
  • the first pin 8b, the second pin 8c, and the third pin 8d are attached to the insulator body 8a. Further, the first pin 8 b, the second pin 8 c, and the third pin 8 d protrude from the insulator body 8 a in the axial direction of the armature 2.
  • the 1st pin 8b and the 2nd pin 8c are arrange
  • the 1st pin 8b is arrange
  • the 3rd pin 8d is arrange
  • the connection line 7 is disposed on the third pin 8d.
  • the second insulator 9 includes an insulator body 9a having the same shape as the insulator body 8a of the first insulator 8, and a first pin 9b.
  • the first pin 9b is made of metal. Therefore, the first pin 9b has conductivity.
  • the first pin 9b is attached to the insulator body 9a.
  • the first pin 9 b protrudes from the insulator body 9 a in the axial direction of the armature 2.
  • the 1st pin 9b is arrange
  • the first pin 9 b of the insulator body 9 a is disposed at a position adjacent to the first pin 8 b of the insulator body 8 a of the insulator 8 adjacent to the insulator 9.
  • the connection line 7 is disposed on the first pin 9b.
  • a conducting wire is wound around the first pin 8b of the first insulator 8 on which U11 is disposed. Then, a conducting wire is wound around the insulator body 8a to form U11, and the conducting wire is further wound around the third pin 8d. Subsequently, the conductor is wound around the insulator body 9a of the second insulator 9 adjacent to the first insulator 8 around which the conductor is wound to form U12 and U13, and then wound around the first pin 9b. In this example, U13 is formed continuously with U12.
  • each of U11, U12, U13, and U14 is comprised by the continuous winding of conducting wire, and is connected so that the winding start part and winding end part of conducting wire may be conducted.
  • U21, U22, U23 and U24 The same applies to the V phase and the W phase. Other configurations are the same as those in the first embodiment.
  • each of U11 ⁇ , U12 +, U13 + and U14 ⁇ is constituted by a continuous winding of a conducting wire, and the winding of the conducting wire is performed.
  • the beginning portion and the end portion of the winding are connected so as to be conductive, and each of V11 +, V12 ⁇ , V13 ⁇ and V14 + is constituted by a continuous winding of the conducting wire, and the winding start portion and the winding end portion of the conducting wire W21 ⁇ , W22 +, W23 + and W24 ⁇ are each constituted by a continuous winding of a conducting wire, and the winding start portion and winding end portion of the conducting wire are conducted to each other.
  • U21 +, U22 ⁇ , U23 ⁇ , and U24 + are each configured by a continuous winding of a conductor, and the winding start portion of the conductor V21 ⁇ , V22 +, V23 + and V24 ⁇ are each constituted by a continuous winding of the conductor, and the winding start portion and the winding end portion of the conductor are conductive.
  • W11 +, W12 ⁇ , W13 ⁇ and W14 + are each constituted by a continuous winding of a conducting wire, and are connected so that a winding start portion and a winding end portion of the conducting wire are electrically connected, U11 -The portion of the lead between U12 +, the portion of the lead between U13 + and U14-, the portion of the lead between V11 + and V12-, the portion of the lead between V13- and V14 +, W21- The portion of the conductor between W22 +, the portion of the conductor between W23 + and W24 ⁇ , the portion of the conductor between U21 + and U22 ⁇ , the portion of the conductor between U23 ⁇ and U24 +, The portion of the conductor between 21- and V22 +, the portion of the conductor between V23 + and V24-, the portion of the conductor between W11 + and W12-, and the portion of the conductor between W13- and W14 + Since the connection line 7 provided for each is further provided, the time for producing the permanent magnet type synchronous
  • the first insulator 8 may further include an insulating wall 8e provided on the insulator body 8a as shown in FIGS.
  • the insulating wall 8e is disposed in the middle portion in the longitudinal direction of the tooth 5b.
  • windings 6 of different phases are arranged.
  • the insulating wall 8e can prevent the windings 6 of different phases from coming into contact with each other.
  • the second insulator 9 may further include a second pin 9c provided on the insulator body 9a.
  • the conducting wire is wound around the second pin 9 c of the second insulator 9.
  • a conducting wire is wound around the insulator body 9a to form U12 and U13, and the conducting wire is wound around the first pin 9b.
  • a conducting wire is wound around the second pin 8c of the first insulator 8 on which U14 is disposed, and further, the conducting wire is provided on the first pin 8b of the first insulator 8 on which U11 is disposed. Wrap.
  • the conducting wire is cut.
  • U22, U23 and U24 are formed in the same manner. Similarly to the U phase, the corresponding V-phase and W-phase windings 6 are formed. Then, a conducting wire is wound around the first pin 8b of the first insulator 8 provided with U11 to further form U11. Then, after winding a conducting wire around the second pin of the first insulator 8, the conducting wire is again wound around the second pin 9c of the second insulator 9 on which the conducting wire was first wound.
  • U21 is formed in the same manner.
  • the corresponding V-phase and W-phase windings 6 are formed, and the formation of the windings 6 is completed.
  • the first insulator 8 having three pins and the second insulator 9 having one pin have been described, but the number of pins of each insulator is as follows. Not limited, you may increase / decrease according to an installation.
  • FIG. FIG. 28 is a diagram showing the number of turns of the conductive wire in each winding 6 of the permanent magnet type synchronous motor according to Embodiment 4 of the present invention.
  • the number of turns of each winding 6 is T
  • the pair of windings 6 provided on the same tooth 5b is the same-phase winding 6
  • the number of turns of each winding 6 is 2 ⁇ T / ⁇ 3 when is a different-phase winding 6.
  • Other configurations are the same as those in the first embodiment.
  • FIG. 29 is a vector diagram showing the voltage of the winding 6 when all the windings 6 in FIG. 28 have the same number of turns.
  • the phase of the voltages of U11 and U14 is shifted by 30 degrees with respect to the phase of the voltages of U12 and U13. Therefore, the direction of the combined vector obtained by combining the respective voltage vectors of U11 and U14 and the direction of the voltage vector of U12 and U13 are the same.
  • the magnitude of the combined vector obtained by combining the voltage vectors of U11 and U14 is that of the combined vector obtained by combining the respective voltage vectors of U12 and U13. It will be smaller than the size.
  • FIG. 30 is a table showing the number of turns of the winding 6 in FIG. As shown in the figure, by selecting the number of turns of each winding 6 in consideration of the magnitude of the voltage vector, the difference in magnitude of the voltage vector can be reduced.
  • FIG. FIG. 31 is a connection diagram for explaining the connection of winding 6 of the permanent magnet type synchronous motor according to the fifth embodiment of the present invention.
  • U11, U12, U13, and U14 are connected in series in the order of U14, U11, U12, and U13.
  • U21, U22, U23 and U24 are connected in series in the order of U24, U21, U22 and U23.
  • ⁇ Current is input to U14.
  • a switch SW1 is provided between U14 and U24. When the switch SW1 is turned on, U14 and U24 are connected.
  • U14 and U13 are connected via a switch SW2. When the switch SW2 is turned on, U14 and U13 are conducted.
  • U13 and U24 are connected via a switch SW3. When the switch SW3 is turned on, U13 and U24 are conducted.
  • U24 and U23 are connected via a switch SW4. When the switch SW4 is turned on, U24 and U23 are conducted.
  • U11 and U12 and U24 are connected via a switch SW5.
  • the switch SW5 When the switch SW5 is turned on, U11 and U12 are connected to U24.
  • the output current line 10 through which current is output is connected to U21 and U22 via the switch SW6.
  • the switch SW6 is turned on, U21 and U22 and the output current line 10 are conducted.
  • U11 and U12 and the output current line 10 are connected via a switch SW7.
  • the switch SW7 When the switch SW7 is turned on, U11 and U12 and the output current line 10 are conducted.
  • U23 and the output current line 10 are connected via a switch SW8.
  • switch SW8 When the switch SW8 is turned on, U23 and the output current line 10 are brought into conduction.
  • FIG. 32 is a connection diagram for explaining the connection of the winding 6 when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is one.
  • the switch SW1, the switch SW2, the switch SW4, the switch SW5, the switch SW6, and the switch SW7 to the off state and the switch SW3 and the switch SW6 to the on state the U11, U14, U12, and U13 are connected in series.
  • U24 and U22 and U23 are connected in series.
  • U11, U12, U13, and U14 connected in series and U21, U22, U23, and U24 connected in series are connected in series.
  • FIG. 33 is a connection diagram for explaining the connection of the windings 6 when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is two.
  • the switches SW1, SW3, SW7 and SW8 are turned off, and the switches SW2, SW4, SW5 and SW6 are turned on, so that U11 and U14 are connected in parallel to U12 and U13, and U21 and U24 and U22 and U23 are connected in parallel. Furthermore, U11, U12, U13 and U14 and U21, U22, U23 and U24 are connected in series.
  • FIG. 34 is a connection diagram for explaining the connection of the windings 6 when the number of parallel connection circuits of the permanent magnet synchronous motor of FIG. 31 is four.
  • the switch SW1 the switch SW2, the switch SW4, the switch SW6 and the switch SW7 and turning off the switch SW3, the switch SW5 and the switch SW8, the U11 and U14 are connected in parallel with the U12 and U13.
  • U24 and U22 and U23 are connected in parallel.
  • U11, U12, U13 and U14 and U21, U22, U23 and U24 are connected in parallel.
  • connection can be switched between a serial connection and a parallel connection, and the connection between U22 and U23 and U21 and U24 can be switched between a series connection and a parallel connection.
  • U12, U13, and U14 connected in series with U21, U22, U23, and U24 can be switched between series connection and parallel connection. The same applies to the V phase and the W phase.
  • the connection between U12 and U13 and U11 and U14 can be switched between series connection and parallel connection
  • the connection between V12 and V13 and V11 and V14 can be switched between a series connection and a parallel connection
  • the connection between W22 and W23 and W21 and W24 can be switched between a series connection and a parallel connection.
  • the connection between U22 and U23 and U21 and U24 can be switched between series connection and parallel connection
  • the connection between V22 and V23 and V21 and V24 can be switched between series connection and parallel connection.
  • the connection between W12 and W13 and W11 and W14 can be switched between a series connection and a parallel connection. It is possible to easily change the number of parallel connection circuit of formula synchronous motor. As a result, the winding 6 can be easily adapted in switching between the low-speed rotation and the high-speed rotation of the permanent magnet type synchronous motor.
  • connection between U11, U12, U13 and U14 connected in series and U21, U22, U23 and U24 connected in series can be switched between series connection and parallel connection, and V11 connected in series
  • Connections between V21, V22, V23 and V24 connected in series with V12, V13 and V14 can be switched between series connection and parallel connection, and connected in series with W21, W22, W23 and W24 connected in series. Since the connection between W21, W22, W23 and W24 can be switched between series connection and parallel connection, the width of the parallel connection circuit number of the permanent magnet synchronous motor can be further increased. be able to. Thereby, the freedom degree of design of the coil
  • winding 6 can be improved. That is, at the time of mass production of the permanent magnet type synchronous motor, the winding 6 can be applied to the teeth 5b with the same equipment and the same setting.
  • FIG. 35 is a cross-sectional view showing a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor according to Embodiment 6 of the present invention
  • FIG. 36 is an enlarged view showing the main part of the armature 2 of FIG.
  • a first insulating material 11 and a second insulating material 12 are provided between a first insulator 8 and a second insulator 9.
  • the first insulating material 11 is arranged extending in the radial direction of the armature 2.
  • the first insulating material 11 is disposed between the different-phase windings 6 adjacent to each other in the circumferential direction of the armature 2.
  • the second insulating material 12 is disposed between the different-phase windings 6 adjacent to each other in the radial direction of the armature 2.
  • the space between the teeth 5b adjacent in the circumferential direction of the shaft 3 is narrowed by the first insulating material 11 and the second insulating material 12. Thereby, the effective cross-sectional area which can wind a conducting wire around the teeth 5b in the space between the teeth 5b adjacent to the circumferential direction of the shaft 3 decreases.
  • the wire diameter of the conductors constituting U12 and U13 is ⁇ a
  • the wire diameter of the conductors constituting U11 and U14 is ⁇ b
  • the first insulator 8 and the second insulator 9 Even if the effective cross-sectional area in which the conductive wire can be wound around the tooth 5b is reduced by providing the first insulating material 11 and the second insulating material 12 between them, the number of turns of U11 and U14 is reduced to U12 and U13. It becomes easy to make more than the number of turns.
  • each winding when the pair of windings 6 provided in the same tooth 5b are the windings 6 of the same phase.
  • the diameter of each conducting wire constituting each winding 6 in the case where the diameter of each conducting wire constituting the wire 6 is ⁇ a and the pair of windings 6 provided on the same tooth 5b are windings 6 of different phases is used.
  • ⁇ b is ⁇ b
  • the pair of windings 6 provided in the same tooth 5b are provided in the same tooth 5b rather than the number of turns of the windings when the pair of windings 6 are in-phase windings.
  • the pair of windings 6 are different-phase windings 6, the number of turns of the windings 6 can be easily increased.
  • the permanent magnet type synchronous motor in which the number of magnetic poles of the field pole 1 is 10 and the number of teeth of the armature 2 is 12 has been described.
  • the electric motor is described as an example of the rotating electric machine, but a generator may be used.
  • the armature core 5 having the cylindrical base portion 5a has been described.
  • the shape of the base portion 5a is not limited to the cylindrical shape.
  • an armature core having a plurality of base portions divided in the circumferential direction may be used.
  • the field pole 1 in which a plurality of magnets 4 are attached to the outer peripheral surface of the shaft 3 has been described.
  • a field pole in which a ring magnet having a plurality of poles is attached may be used. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Provided is a rotating electric machine capable of suppressing the occurrence of circulating current in the coil and reducing the value of no-load induced voltage applied to an inverter. The rotating electric machine comprises: a field pole (1) having a plurality of magnets (4); and an armature (2) having an armature iron core (5) including a plurality of teeth (5b) provided side by side so as to face the magnets (4) and a plurality of coils (6) provided by winding a conductive wire around the teeth (5b) in a concentrated winding form and conducting three-phase AC current. Three or more in-phase coils (6) are sequentially disposed side by side in a direction toward which the teeth (5b) are provided side by side. The three or more in-phase coils (6) sequentially disposed side by side are combined so that the voltage between both ends of each line has the same phase, forming a parallel circuit.

Description

回転電機Rotating electric machine
 この発明は、三相交流の電流が流れることより駆動する回転電機に関する。 The present invention relates to a rotating electrical machine that is driven by a three-phase alternating current flowing.
 従来、円筒形状の電機子と、電機子の内側に設けられ、電機子に対して回転可能な界磁極とを備えた永久磁石式同期モータが知られている。界磁極は、周方向に並べられた10個の磁石を有している。電機子は、磁石に対向した12個のティースを含んだ電機子鉄心と、各ティースに2個ずつ設けられ三相交流の電流が流れる巻線とを有している。同相の巻線は、電機子の周方向に連続して3個並んで配置されている。電機子の周方向に連続して並べられた3個の巻線は、巻線における循環電流の発生を防止するために直列接続されている(例えば、特許文献1参照)。 Conventionally, there is known a permanent magnet type synchronous motor provided with a cylindrical armature and a field pole provided inside the armature and rotatable with respect to the armature. The field pole has ten magnets arranged in the circumferential direction. The armature includes an armature core including 12 teeth facing the magnet, and two windings provided on each tooth and through which a three-phase AC current flows. Three in-phase windings are arranged side by side in the circumferential direction of the armature. Three windings arranged continuously in the circumferential direction of the armature are connected in series in order to prevent the generation of circulating current in the windings (see, for example, Patent Document 1).
特開2007-221961号公報JP 2007-221961 A
 しかしながら、巻線には、界磁極が回転することにより無負荷誘起電圧が発生する。永久磁石式同期モータに接続されるインバータには、直列接続された3個の巻線のそれぞれに発生する無負荷誘起電圧の値を加算した値の電圧が印加されるので、インバータの耐電圧を大きくしなければならないという問題点があった。 However, no-load induced voltage is generated in the winding due to the rotation of the field pole. Since the inverter connected to the permanent magnet type synchronous motor is applied with a voltage having a value obtained by adding the value of the no-load induced voltage generated in each of the three windings connected in series, the withstand voltage of the inverter is reduced. There was a problem that it had to be enlarged.
 この発明は、巻線における循環電流の発生を抑制するとともに、インバータに印加される無負荷誘起電圧の値を小さくすることができる回転電機を提供するものである。 This invention provides a rotating electrical machine that can suppress the generation of a circulating current in a winding and reduce the value of a no-load induced voltage applied to an inverter.
 この発明に係る回転電機は、複数の磁石を有した界磁極と、前記磁石に対向するように並べて設けられた複数のティースを含んだ電機子鉄心と、前記ティースに導線が集中巻で巻回されることにより設けられ、三相交流の電流が流れる複数の巻線とを有した電機子とを備え、同相の前記巻線は、前記ティースが並べられた方向に連続して3個以上並んで配置され、連続して3個以上並べて配置された同相の前記巻線は、各列の両端間における電圧の位相が同一となるように組み合わされて並列回路を構成している。 A rotating electrical machine according to the present invention includes a field pole having a plurality of magnets, an armature iron core including a plurality of teeth arranged so as to face the magnets, and a conductive wire wound around the teeth in a concentrated winding. And an armature having a plurality of windings through which a three-phase alternating current flows, and three or more windings of the same phase are continuously arranged in the direction in which the teeth are arranged. The three in-phase windings arranged in succession and arranged side by side are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit.
 この発明に係る回転電機によれば、同相の電流が流れる巻線は、ティースが並べられた方向に連続して3個以上並んで配置され、連続して3個以上並べて配置された同相の巻線は、各列の両端間における電圧の位相が同一となるように組み合わされて並列回路を構成しているので、巻線における循環電流の発生を抑制することができるとともに、インバータに印加される無負荷誘起電圧の値を小さくすることができる。 According to the rotating electrical machine according to the present invention, three or more windings through which in-phase current flows are arranged in a row in the direction in which the teeth are arranged, and three or more windings in the same phase arranged in succession. Since the lines are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit, generation of circulating current in the windings can be suppressed and applied to the inverter The value of the no-load induced voltage can be reduced.
この発明の実施の形態1に係る永久磁石式同期モータの軸線方向に垂直な断面を示す断面図である。It is sectional drawing which shows a cross section perpendicular | vertical to the axial direction of the permanent-magnet-type synchronous motor which concerns on Embodiment 1 of this invention. 図1の巻線の接続を説明する結線図である。It is a wiring diagram explaining the connection of the coil | winding of FIG. 図2の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. 従来の永久磁石式同期モータにおける巻線の接続を説明する結線図である。It is a connection diagram explaining the connection of the winding in the conventional permanent magnet type synchronous motor. 図4の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. 他の従来の永久磁石式同期モータにおける巻線の接続を説明する結線図である。It is a connection diagram explaining the connection of the winding in another conventional permanent magnet type synchronous motor. 図6の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. さらに他の従来の永久磁石式同期モータを示す断面図である。It is sectional drawing which shows another conventional permanent magnet type synchronous motor. 図8の巻線の接続を説明する結線図である。It is a connection diagram explaining the connection of the winding of FIG. 図9の巻線の電圧を示すベクトル図である。FIG. 10 is a vector diagram showing voltages of windings in FIG. 9. 図9の巻線の他の接続を説明する結線図である。FIG. 10 is a connection diagram illustrating another connection of the winding of FIG. 9. 図11の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. 図9の巻線のさらに他の接続を説明する結線図である。FIG. 10 is a connection diagram illustrating still another connection of the windings of FIG. 9. 図13の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. 図8の電機子の要部を示す拡大図である。It is an enlarged view which shows the principal part of the armature of FIG. 図8の巻線のターン数を減少させた場合の電機子の要部を示す図である。It is a figure which shows the principal part of an armature at the time of reducing the number of turns of the winding of FIG. この発明の実施の形態2に係る永久磁石式同期モータの軸線方向に垂直な断面を示す断面図である。It is sectional drawing which shows a cross section perpendicular | vertical to the axial direction of the permanent-magnet-type synchronous motor which concerns on Embodiment 2 of this invention. 図17の巻線の接続を説明する結線図である。It is a connection diagram explaining the connection of the winding of FIG. 図18の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. 従来の永久磁石式同期モータにおける巻線の接続を説明する結線図である。It is a connection diagram explaining the connection of the winding in the conventional permanent magnet type synchronous motor. 図20の巻線の電圧を示すベクトル図である。It is a vector diagram which shows the voltage of the coil | winding of FIG. この発明の実施の形態3に係る永久磁石式同期モータの要部を示す平面図である。It is a top view which shows the principal part of the permanent magnet type synchronous motor which concerns on Embodiment 3 of this invention. 図22の電機子の要部を示す平面図である。It is a top view which shows the principal part of the armature of FIG. 図23の第1のインシュレータを示す斜視図である。It is a perspective view which shows the 1st insulator of FIG. 図22の他の例の電機子の要部を示す平面図である。It is a top view which shows the principal part of the armature of the other example of FIG. 図25の第1のインシュレータを示す斜視図である。It is a perspective view which shows the 1st insulator of FIG. 図22のさらに他の例の電機子の要部を示す平面図である。It is a top view which shows the principal part of the armature of the further another example of FIG. この発明の実施の形態4に係る永久磁石式同期モータの各巻線における導線のターン数を示す図である。It is a figure which shows the number of turns of the conducting wire in each coil | winding of the permanent-magnet-type synchronous motor which concerns on Embodiment 4 of this invention. 図28の全ての巻線のターン数を同一としたときの巻線の電圧を示すベクトル図である。FIG. 29 is a vector diagram showing winding voltages when all the windings in FIG. 28 have the same number of turns. 図28の巻線のターン数を示す表である。It is a table | surface which shows the number of turns of the coil | winding of FIG. この発明の実施の形態5に係る永久磁石式同期モータの巻線の接続を説明する結線図である。It is a connection diagram explaining the connection of the coil | winding of the permanent-magnet-type synchronous motor which concerns on Embodiment 5 of this invention. 図31の永久磁石式同期モータの並列結線回路数が1個であるときの巻線の接続を説明する結線図である。FIG. 32 is a connection diagram illustrating connection of windings when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is one. 図31の永久磁石式同期モータの並列結線回路数が2個であるときの巻線の接続を説明する結線図である。FIG. 32 is a connection diagram illustrating connection of windings when the number of parallel connection circuits of the permanent magnet synchronous motor of FIG. 31 is two. 図31の永久磁石式同期モータの並列結線回路数が4個であるときの巻線の接続を説明する結線図である。FIG. 32 is a connection diagram illustrating connection of windings when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is four. この発明の実施の形態6に係る永久磁石式同期モータの軸線方向に垂直な断面を示す断面図である。It is sectional drawing which shows a cross section perpendicular | vertical to the axial direction of the permanent-magnet-type synchronous motor which concerns on Embodiment 6 of this invention. 図35の電機子の要部を示す拡大図である。It is an enlarged view which shows the principal part of the armature of FIG.
 以下、この発明の各実施の形態を図に基づいて説明するが、各図において、同一または相当の部材、部位については、同一符号を付して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding members and parts will be described with the same reference numerals.
 実施の形態1.
 図1はこの発明の実施の形態1に係る永久磁石式同期モータの軸線方向に垂直な断面を示す断面図である。図において、永久磁石式同期モータ(回転電機)は、回転可能な界磁極1と、界磁極1の周囲に設けられた電機子2とを備えている。永久磁石式同期モータは、インバータ(図示せず)に接続される。
Embodiment 1 FIG.
1 is a cross-sectional view showing a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor according to Embodiment 1 of the present invention. In the figure, a permanent magnet type synchronous motor (rotating electric machine) includes a rotatable field pole 1 and an armature 2 provided around the field pole 1. The permanent magnet type synchronous motor is connected to an inverter (not shown).
 界磁極1は、シャフト3と、シャフト3の外周面に固定された10個の磁石4とを有している。磁石4は、シャフト3の周方向に等間隔に並べられている。また、磁石4は、隣り合う磁石4の極性が異なるように配置されている。 The field pole 1 has a shaft 3 and ten magnets 4 fixed to the outer peripheral surface of the shaft 3. The magnets 4 are arranged at equal intervals in the circumferential direction of the shaft 3. Moreover, the magnet 4 is arrange | positioned so that the polarity of the adjacent magnet 4 may differ.
 電機子2は、電機子鉄心5と、三相交流の各相の電流が流れる巻線6とを有している。電機子鉄心5は、円筒形状の基部5aと、基部5aから径方向内側に延びて形成され、磁石4に対向する12個のティース5bとを有している。基部5aは、シャフト3と同心円上に配置されている。ティース5bは、シャフト3の周方向に等間隔に並べられている。巻線6は、各ティース5bに一対ずつ配置されている。巻線6は、導線がティース5bに集中巻で巻回されることにより形成されている。つまり、この例では、界磁極1の磁極数が10個、電機子2のティース数が12個である。 The armature 2 has an armature core 5 and a winding 6 through which current of each phase of three-phase alternating current flows. The armature core 5 includes a cylindrical base portion 5 a and twelve teeth 5 b that are formed to extend radially inward from the base portion 5 a and face the magnet 4. The base portion 5a is disposed concentrically with the shaft 3. The teeth 5b are arranged at equal intervals in the circumferential direction of the shaft 3. A pair of windings 6 are arranged on each tooth 5b. The winding 6 is formed by winding the conductive wire around the tooth 5b in a concentrated manner. That is, in this example, the field pole 1 has 10 magnetic poles and the armature 2 has 12 teeth.
 三相交流のうちの各相の電流が流れる巻線6の数は、それぞれ8個ずつとなっている。
U相の電流が流れる巻線6の各名称を、U11、U12、U13、U14、U21、U22、U23およびU24とする。V相の電流が流れる巻線6の各名称を、V11、V12、V13、V14、V21、V22、V23およびV24とする。W相の電流が流れる巻線6の各名称を、W11、W12、W13、W14、W21、W22、W23およびW24とする。
The number of windings 6 through which the current of each phase of the three-phase alternating current flows is eight.
The names of the windings 6 through which the U-phase current flows are U11, U12, U13, U14, U21, U22, U23, and U24. The names of the windings 6 through which the V-phase current flows are V11, V12, V13, V14, V21, V22, V23, and V24. The names of the windings 6 through which the W-phase current flows are W11, W12, W13, W14, W21, W22, W23 and W24.
 U11、U14、U22、U23、V12、V13、V21、V24、W12、W13、W21およびW24の巻極性(巻き方向)は、互いに同一となっている。U12、U13、U21、U24、V11、V14、V22、V23、W11、W14、W22およびW23の巻極性は、互いに同一となっている。U11の巻極性とU12の巻極性とは、互いに反対となっている。図1では、各巻線6の巻極性を示すために、各名称の後部に+または-を付している。 U11, U14, U22, U23, V12, V13, V21, V24, W12, W13, W21 and W24 have the same winding polarity (winding direction). The winding polarities of U12, U13, U21, U24, V11, V14, V22, V23, W11, W14, W22 and W23 are the same. The winding polarity of U11 and the winding polarity of U12 are opposite to each other. In FIG. 1, in order to indicate the winding polarity of each winding 6, + or-is attached to the rear part of each name.
 U12およびU13は、同一のティース5bに配置されている。U11は、U12およびU13が配置されているティース5bに隣り合う一対のティース5bのうちの一方のティース5bに配置されている。U14は、U12およびU13が配置されているティース5bに隣り合う一対のティース5bのうちの、U11が配置されているティース5bとは異なるティース5bに配置されている。 U12 and U13 are arranged on the same tooth 5b. U11 is arrange | positioned at one teeth 5b of the pair of teeth 5b adjacent to the teeth 5b where U12 and U13 are arrange | positioned. U14 is arrange | positioned at the teeth 5b different from the teeth 5b in which U11 is arrange | positioned among the pair of teeth 5b adjacent to the teeth 5b in which U12 and U13 are arrange | positioned.
 U21は、U11が配置されているティース5bに対向する位置にあるティース5bに配置されている。U22およびU23は、U12およびU13が配置されているティース5bに対向する位置にあるティース5bに配置されている。U24は、U14が配置されているティース5bに対向する位置にあるティース5bに配置されている。 U21 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which U11 is arrange | positioned. U22 and U23 are arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which U12 and U13 are arrange | positioned. U24 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which U14 is arrange | positioned.
 V11は、U14が配置されているティース5bに配置されている。V12およびV13は、V11が配置されているティース5bに隣り合う一対のティース5bのうちの、U12およびU13が配置されているティース5bとは異なるティース5bに配置されている。V14は、V12およびV13が配置されているティース5bに隣り合う一対のティース5bのうちの、V11が配置されているティース5bとは異なるティース5bに配置されている。 V11 is arranged on the tooth 5b where U14 is arranged. V12 and V13 are arranged in a tooth 5b different from the tooth 5b in which U12 and U13 are arranged, out of a pair of teeth 5b adjacent to the tooth 5b in which V11 is arranged. V14 is arrange | positioned at the teeth 5b different from the teeth 5b in which V11 is arrange | positioned among the pair of teeth 5b adjacent to the teeth 5b in which V12 and V13 are arrange | positioned.
 V21は、V11が配置されているティース5bに対向する位置にあるティース5bに配置されている。V22およびV23は、V12およびV13が配置されているティース5bに対向する位置にあるティース5bに配置されている。V24は、V14が配置されているティース5bに対向する位置にあるティース5bに配置されている。 V21 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which V11 is arrange | positioned. V22 and V23 are disposed on the tooth 5b at a position opposite to the tooth 5b on which V12 and V13 are disposed. V24 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which V14 is arrange | positioned.
 W11は、V24が配置されているティース5bに配置されている。W12およびW13は、W11が配置されているティース5bに隣り合う一対のティース5bのうちの、V22およびV23が配置されているティース5bとは異なるティース5bに配置されている。W14は、U11が配置されているティース5bに配置されている。 W11 is arranged in the tooth 5b in which V24 is arranged. W12 and W13 are arranged in a tooth 5b different from the tooth 5b in which V22 and V23 are arranged, out of a pair of teeth 5b adjacent to the tooth 5b in which W11 is arranged. W14 is arrange | positioned at the teeth 5b in which U11 is arrange | positioned.
 W21は、W11が配置されているティース5bに対向する位置にあるティース5bに配置されている。W22およびW23は、W12およびW13が配置されているティース5bに対向する位置にあるティース5bに配置されている。W24は、W14が配置されているティース5bに対向する位置にあるティース5bに配置されている。 W21 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which W11 is arrange | positioned. W22 and W23 are arranged on the tooth 5b at a position facing the teeth 5b on which W12 and W13 are arranged. W24 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which W14 is arrange | positioned.
 上述した各巻線6の配置について言い換えると、同一のティース5bに設けられる巻線6の組み合わせを( / )で表し、三相交流の各相の電流が流れる巻線6をU、V、Wで表し、巻線6の巻極性を+、-で表した場合、巻線6は、ティース5bが並べられた方向に次の順序となるように配置される。
 (U12+/U13+)(U14-/V11+)(V12-/V13-)(V14+/W21-)(W22+/W23+)(W24-/U21+)(U22-/U23-)(U24+/V21-)(V22+/V23+)(V24-/W11+)(W12-/W13-)(W14+/U11-)
 なお、同一のティース5bに設けられている一対の巻線6の配置順序は、逆であってもよい。つまり、この例では、例えば、U13がU12よりもシャフト3の径方向内側に配置されているが、U13がU12よりもシャフト3の径方向外側に配置されてもよい。
In other words, regarding the arrangement of the windings 6 described above, the combination of the windings 6 provided in the same tooth 5b is represented by (/), and the windings 6 in which the currents of the three-phase alternating currents flow are represented by U, V, and W. When the winding polarity of the winding 6 is represented by + and −, the winding 6 is arranged in the following order in the direction in which the teeth 5b are arranged.
(U12 + / U13 +) (U14- / V11 +) (V12- / V13-) (V14 + / W21-) (W22 + / W23 +) (W24- / U21 +) (U22- / U23-) (U24 + / V21-) (V22 + / V23 +) (V24- / W11 +) (W12- / W13-) (W14 + / U11-)
The arrangement order of the pair of windings 6 provided on the same tooth 5b may be reversed. That is, in this example, for example, U13 is disposed on the radially inner side of the shaft 3 with respect to U12, but U13 may be disposed on the radially outer side of the shaft 3 with respect to U12.
 図2は図1の巻線6の接続を説明する結線図である。図において、U11とU14とは、直列接続されている。U12とU13とは、直列接続されている。U21とU24とは、直列接続されている。U22とU23とは、直列接続されている。直列接続されたU11およびU14と、直列接続されたU12およびU13と、直列接続されたU21およびU24と、直列接続されたU22およびU23とは、並列接続されている。つまり、直列接続されたU11およびU14と、直列接続されたU12およびU13と、直列接続されたU21およびU24と、直列接続されたU22およびU23とは、U相の並列回路を構成している。U11、U14、U21およびU24のそれぞれのターン数は、全て同一となっている。U12、U13、U22およびU23のそれぞれのターン数は、全て同一となっている。 FIG. 2 is a connection diagram for explaining the connection of the winding 6 in FIG. In the figure, U11 and U14 are connected in series. U12 and U13 are connected in series. U21 and U24 are connected in series. U22 and U23 are connected in series. U11 and U14 connected in series, U12 and U13 connected in series, U21 and U24 connected in series, and U22 and U23 connected in series are connected in parallel. That is, U11 and U14 connected in series, U12 and U13 connected in series, U21 and U24 connected in series, and U22 and U23 connected in series constitute a U-phase parallel circuit. The numbers of turns of U11, U14, U21 and U24 are all the same. The numbers of turns of U12, U13, U22, and U23 are all the same.
 V11とV14とは、直列接続されている。V12とV13とは、直列接続されている。V21とV24とは、直列接続されている。V22とV23とは、直列接続されている。直列接続されたV11およびV14と、直列接続されたV12およびV13と、直列接続されたV21およびV24と、直列接続されたV22およびV23とは、並列接続されている。つまり、直列接続されたV11およびV14と、直列接続されたV12およびV13と、直列接続されたV21およびV24と、直列接続されたV22およびV23とは、V相の並列回路を構成している。V11、V14、V21およびV24のそれぞれのターン数は、全て同一となっている。V12、V13、V22およびV23のそれぞれのターン数は、全て同一となっている。 V11 and V14 are connected in series. V12 and V13 are connected in series. V21 and V24 are connected in series. V22 and V23 are connected in series. V11 and V14 connected in series, V12 and V13 connected in series, V21 and V24 connected in series, and V22 and V23 connected in series are connected in parallel. That is, V11 and V14 connected in series, V12 and V13 connected in series, V21 and V24 connected in series, and V22 and V23 connected in series constitute a V-phase parallel circuit. The numbers of turns of V11, V14, V21 and V24 are all the same. The numbers of turns of V12, V13, V22, and V23 are all the same.
 W11とW14とは、直列接続されている。W12とW13とは、直列接続されている。W21とW24とは、直列接続されている。W22とW23とは、直列接続されている。直列接続されたW11およびW14と、直列接続されたW12およびW13と、直列接続されたW21およびW24と、直列接続されたW22およびW23とは、並列接続されている。つまり、直列接続されたW11およびW14と、直列接続されたW12およびW13と、直列接続されたW21およびW24と、直列接続されたW22およびW23とは、W相の並列回路を構成している。W11、W14、W21およびW24のそれぞれのターン数は、全て同一となっている。W12、W13、W22およびW23のそれぞれのターン数は、全て同一となっている。 W11 and W14 are connected in series. W12 and W13 are connected in series. W21 and W24 are connected in series. W22 and W23 are connected in series. W11 and W14 connected in series, W12 and W13 connected in series, W21 and W24 connected in series, and W22 and W23 connected in series are connected in parallel. That is, W11 and W14 connected in series, W12 and W13 connected in series, W21 and W24 connected in series, and W22 and W23 connected in series constitute a W-phase parallel circuit. The numbers of turns of W11, W14, W21 and W24 are all the same. The numbers of turns of W12, W13, W22, and W23 are all the same.
 各相は、Y結線となっている。永久磁石式同期モータの各相の並列接続された列の数である並列結線回路数は、4個である。 Each phase is Y-connected. The number of parallel connection circuits, which is the number of columns connected in parallel for each phase of the permanent magnet synchronous motor, is four.
 図3は図2の巻線6の電圧を示すベクトル図である。U12およびU13のそれぞれの電圧の位相は、U12およびU13が同一のティース5bに配置されているので、互いに同一となっている。U11の電圧の位相は、U12またはU13の電圧の位相に対して、30度遅れている。U14の電圧の位相は、U12またはU13の電圧の位相に対して、30度進んでいる。つまり、U11およびU14の電圧の位相は、U12またはU13の電圧の位相を中心に、同一角度だけ互いに反対方向にずれている。 FIG. 3 is a vector diagram showing the voltage of the winding 6 in FIG. The voltage phases of U12 and U13 are the same because U12 and U13 are arranged in the same tooth 5b. The phase of the voltage of U11 is delayed by 30 degrees with respect to the phase of the voltage of U12 or U13. The phase of the voltage of U14 is advanced 30 degrees with respect to the phase of the voltage of U12 or U13. That is, the phase of the voltage of U11 and U14 is shifted in the opposite direction by the same angle around the phase of the voltage of U12 or U13.
 U11のターン数と、U14のターン数とが等しいので、U11の電圧ベクトルと、U14の電圧ベクトルとを合成した合成ベクトルの方向は、U12およびU13の電圧ベクトルの方向と同一となる。これにより、並列接続されたU11およびU14とU12およびU13との間に循環電流が流れることが抑制される。 Since the number of turns of U11 is equal to the number of turns of U14, the direction of the combined vector obtained by combining the voltage vector of U11 and the voltage vector of U14 is the same as the direction of the voltage vector of U12 and U13. Thereby, it is suppressed that a circulating current flows between U11 and U14 and U12 and U13 which were connected in parallel.
 並列接続されたU21およびU24とU22およびU23との間においても、同様にして、循環電流が流れることが抑制される。つまり、U相において、並列回路の各列の両端間における電圧の位相が同一となり、循環電流の発生が抑制される。V相およびW相においても、U相と同様に、並列回路の各列の両端間における電圧の位相が同一となり、循環電流の発生が抑制される。 Similarly, the flow of circulating current is also suppressed between U21 and U24 and U22 and U23 connected in parallel. That is, in the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed. Also in the V phase and the W phase, similarly to the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed.
 次に、インバータに印加される無負荷誘起電圧について説明する。一般に、シャフトの外周面に磁石が貼り付けられているSPMモータや、シャフトの外周面から径方向内側に磁石が埋め込まれた埋め込み磁石式のIPMモータにおいては、巻線への鎖交磁束Φを用いると、界磁極の回転により巻線に誘起される無負荷誘起電圧Eは、下記の式(1)を満たす。
   E=-(dΦ/dt)   (1)
 鎖交磁束Φは、空隙磁束密度B、巻線の断面積S、巻線のターン数Wを用いると、下記の式(2)を満たす。
   Φ=W・B・S   (2)
 上記の式(1)と、上記の式(2)とから、無負荷誘起電圧Eは、下記の式(3)を満たす。
   E=-WS(dB/dt)   (3)
Next, the no-load induced voltage applied to the inverter will be described. In general, in an SPM motor in which a magnet is attached to the outer peripheral surface of a shaft and an embedded magnet type IPM motor in which a magnet is embedded radially inward from the outer peripheral surface of the shaft, the interlinkage magnetic flux Φ to the winding is When used, the no-load induced voltage E induced in the winding by the rotation of the field pole satisfies the following formula (1).
E =-(dΦ / dt) (1)
The interlinkage magnetic flux Φ satisfies the following formula (2) using the gap magnetic flux density B, the cross-sectional area S of the winding, and the number of turns W of the winding.
Φ = W ・ B ・ S (2)
From the above formula (1) and the above formula (2), the no-load induced voltage E satisfies the following formula (3).
E = −WS (dB / dt) (3)
 したがって、無負荷誘起電圧Eは、巻線のターン数Wに比例する。モータ設計を行う際、インバータの電源電圧を考慮して、無負荷誘起電圧を決定する。例えば、インバータの電源電圧をVからV/2へと1/2倍にする場合、無負荷誘起電圧を小さくするために、並列結線回路数を増加させるか、巻線のターン数Wを減らす必要がある。 Therefore, the no-load induced voltage E is proportional to the number of turns W of the winding. When designing the motor, the no-load induced voltage is determined in consideration of the power supply voltage of the inverter. For example, when the power supply voltage of the inverter is halved from V to V / 2, it is necessary to increase the number of parallel connection circuits or reduce the number of turns W of the winding in order to reduce the no-load induced voltage. There is.
 図4は従来の永久磁石式同期モータにおける巻線6の接続を説明する結線図、図5は図4の巻線6の電圧を示すベクトル図である。同相の各巻線6は、全て直列接続されている。したがって、この従来の永久磁石式同期モータの並列回路結線数は、1個である。この場合、循環電流が流れる回路がないので、循環電流の発生は防止される。しかしながら、同相の各巻線6が全て直列接続されているので、インバータに印加される無負荷誘起電圧は、この発明の実施の形態1に係る永久磁石式同期モータの場合と比較して、大きくなってしまう。 4 is a connection diagram for explaining the connection of the winding 6 in the conventional permanent magnet synchronous motor, and FIG. 5 is a vector diagram showing the voltage of the winding 6 in FIG. All the in-phase windings 6 are connected in series. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is one. In this case, since there is no circuit through which the circulating current flows, generation of the circulating current is prevented. However, since all the in-phase windings 6 are all connected in series, the no-load induced voltage applied to the inverter is larger than that in the case of the permanent magnet synchronous motor according to the first embodiment of the present invention. End up.
 図6は他の従来の永久磁石式同期モータにおける巻線6の接続を説明する結線図、図7は図6の巻線6の電圧を示すベクトル図である。同相の各巻線6は、2列に並列接続されている。したがって、この従来の永久磁石式同期モータの並列回路結線数は、2個である。U11、U12、U13およびU14の各電圧ベクトルの合成ベクトルの方向と、U21、U22、U23およびU24の各電圧ベクトルの合成ベクトルの方向とが、互いに同一である。したがって、並列接続されたU11、U12、U13およびU14とU21、U22、U23およびU24との間に循環電流が流れることが抑制される。しかしながら、U11、U12、U13およびU14が直列接続され、また、U21、U22、U23およびU24が直列接続されているので、インバータに印加される無負荷誘起電圧は、この発明の実施の形態1に係る永久磁石式同期モータの場合と比較して、大きくなってしまう。 6 is a connection diagram for explaining the connection of the winding 6 in another conventional permanent magnet type synchronous motor, and FIG. 7 is a vector diagram showing the voltage of the winding 6 in FIG. The in-phase windings 6 are connected in parallel in two rows. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is two. The direction of the combined vector of the voltage vectors U11, U12, U13, and U14 and the direction of the combined vector of the voltage vectors U21, U22, U23, and U24 are the same. Therefore, it is suppressed that a circulating current flows between U11, U12, U13 and U14 and U21, U22, U23 and U24 connected in parallel. However, since U11, U12, U13, and U14 are connected in series, and U21, U22, U23, and U24 are connected in series, the no-load induced voltage applied to the inverter is the same as that in the first embodiment of the present invention. Compared with the case of the permanent magnet type synchronous motor, it becomes larger.
 図8はさらに他の従来の永久磁石式同期モータを示す断面図である。図において、ティース5bの数および磁石4の数は、この発明の実施の形態1に係る永久磁石式同期モータと同様である。各ティース5bには、巻線6が1個ずつ配置されている。三相交流のうちの各相の電流が流れる巻線6の数は、それぞれ4個ずつとなっている。U相の電流が流れる巻線6の各名称を、U11、U12、U21およびU22とする。V相の電流が流れる巻線6の各名称を、V11、V12、V21およびV22とする。W相の電流が流れる巻線6の各名称を、W11、W12、W21およびW22とする。 FIG. 8 is a sectional view showing still another conventional permanent magnet type synchronous motor. In the figure, the number of teeth 5b and the number of magnets 4 are the same as those of the permanent magnet type synchronous motor according to the first embodiment of the present invention. One winding 6 is disposed on each tooth 5b. The number of windings 6 through which the current of each phase of the three-phase alternating current flows is four. The names of the windings 6 through which the U-phase current flows are U11, U12, U21, and U22. The names of the windings 6 through which the V-phase current flows are V11, V12, V21, and V22. The names of the windings 6 through which the W-phase current flows are W11, W12, W21, and W22.
 U11、U22、V12、V21、W12、W21の巻極性は、互いに同一となっている。U12、U21、V11、V22、W11、W22の巻極性は、互いに同一となっている。U11の巻極性と、U12の巻極性とは、互いに反対となっている。図8では、各巻線6の巻極性を示すために、各名称の後部に+または-を付している。 The winding polarities of U11, U22, V12, V21, W12, and W21 are the same. The winding polarities of U12, U21, V11, V22, W11, and W22 are the same. The winding polarity of U11 and the winding polarity of U12 are opposite to each other. In FIG. 8, in order to indicate the winding polarity of each winding 6, + or-is added to the rear of each name.
 U11およびU12は、互いに隣り合うティース5bに配置されている。U21は、U11が配置されているティース5bに対向する位置にあるティース5bに配置されている。U22は、U12が配置されているティース5bに対向する位置にあるティース5bに配置されている。 U11 and U12 are disposed on adjacent teeth 5b. U21 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which U11 is arrange | positioned. U22 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which U12 is arrange | positioned.
 V11とV12とは、互いに隣り合うティース5bに配置されている。V21は、V11が配置されているティース5bに対向する位置にあるティース5bに配置されている。V22は、V12が配置されているティース5bに対向する位置にあるティース5bに配置されている。 V11 and V12 are arranged in adjacent teeth 5b. V21 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which V11 is arrange | positioned. V22 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which V12 is arrange | positioned.
 W11とW12とは、互いに隣り合うティース5bに配置されている。W21は、V11が配置されているティース5bに対向する位置にあるティース5bに配置されている。W22は、W12が配置されているティース5bに対向する位置にあるティース5bに配置されている。 W11 and W12 are arranged on adjacent teeth 5b. W21 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which V11 is arrange | positioned. W22 is arrange | positioned at the teeth 5b in the position which opposes the teeth 5b in which W12 is arrange | positioned.
 U12とV11とは、互いに隣り合うティース5bに配置されている。V12とW21とは、互いに隣り合うティース5bに配置されている。 U12 and V11 are arranged in adjacent teeth 5b. V12 and W21 are arranged on adjacent teeth 5b.
 図9は図8の巻線6の接続を説明する結線図である。図において、U11、U12、U21およびU22は、直列接続されている。V11、V12、V21およびV22は、直列接続されている。W11、W12、W21およびW22は、直列接続されている。したがって、この従来の永久磁石式同期モータの並列回路結線数は、1個である。U11、U12U21、U22、V11、V12、V21、V22、W11、W12、W21およびW22のそれぞれのターン数は、全て同一となっている。 FIG. 9 is a connection diagram for explaining the connection of the winding 6 in FIG. In the figure, U11, U12, U21 and U22 are connected in series. V11, V12, V21 and V22 are connected in series. W11, W12, W21 and W22 are connected in series. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is one. The numbers of turns of U11, U12U21, U22, V11, V12, V21, V22, W11, W12, W21 and W22 are all the same.
 図10は図9の巻線6の電圧を示すベクトル図である。各相には、循環電流が流れる回路がないので、循環電流の発生は防止される。しかしながら、同相の各巻線6が全て直列接続されているので、インバータに印加される無負荷誘起電圧は、この発明の実施の形態1に係る永久磁石式同期モータの場合と比較して、大きくなってしまう。 FIG. 10 is a vector diagram showing the voltage of the winding 6 in FIG. Since there is no circuit through which the circulating current flows in each phase, the generation of the circulating current is prevented. However, since all the in-phase windings 6 are all connected in series, the no-load induced voltage applied to the inverter is larger than that in the case of the permanent magnet synchronous motor according to the first embodiment of the present invention. End up.
 図11は図9の巻線6の他の接続を説明する結線図である。図において、U11とU12とは、直列接続されている。U21とU22とは、直列接続されている。U11およびU12と、U21およびU22とは、並列接続されている。V11とV12とは、直列接続されている。V21とV22とは、直列接続されている。V11およびV12と、V21およびV22とは、並列接続されている。W11とW12とは、直列接続されている。W21とW22とは、直列接続されている。W11およびW12と、W21およびW22とは、並列接続されている。この従来の永久磁石式同期モータの並列回路結線数は、2個である。 FIG. 11 is a connection diagram illustrating another connection of the winding 6 in FIG. In the figure, U11 and U12 are connected in series. U21 and U22 are connected in series. U11 and U12 and U21 and U22 are connected in parallel. V11 and V12 are connected in series. V21 and V22 are connected in series. V11 and V12 and V21 and V22 are connected in parallel. W11 and W12 are connected in series. W21 and W22 are connected in series. W11 and W12 and W21 and W22 are connected in parallel. The number of parallel circuit connections of this conventional permanent magnet type synchronous motor is two.
 図12は図11の巻線6の電圧を示すベクトル図である。U11およびU12のそれぞれの電圧ベクトルを合成した合成ベクトルの方向は、U21およびU22のそれぞれの電圧ベクトルを合成した合成ベクトルの方向と等しい。したがって、並列接続されたU11およびU12とU21およびU22との間に循環電流が流れることが抑制される。 FIG. 12 is a vector diagram showing the voltage of the winding 6 in FIG. The direction of the combined vector obtained by combining the voltage vectors of U11 and U12 is equal to the direction of the combined vector obtained by combining the voltage vectors of U21 and U22. Therefore, the circulating current is suppressed from flowing between U11 and U12 and U21 and U22 connected in parallel.
 図13は図9の巻線6のさらに他の接続を説明する結線図である。図において、U11、U12、U21およびU22は、全て並列接続されている。V11、V12、V21およびV22は、全て並列接続されている。W11、W12、W21およびW22は、全て並列接続されている。したがって、この従来の永久磁石式同期モータの並列回路結線数は、4個である。 FIG. 13 is a connection diagram for explaining still another connection of the winding 6 in FIG. In the figure, U11, U12, U21 and U22 are all connected in parallel. V11, V12, V21 and V22 are all connected in parallel. W11, W12, W21 and W22 are all connected in parallel. Therefore, the number of parallel circuit connections of this conventional permanent magnet type synchronous motor is four.
 図14は図13の巻線6の電圧を示すベクトル図である。U11およびU21と、U12およびU22とは、印加される電圧の位相がずれている。したがって、U11およびU21とU12およびU22との間には、循環電流が流れてしまう。循環電流の発生を抑制するためには、永久磁石式同期モータの並列回路結線数を2個以下にする必要がある。 FIG. 14 is a vector diagram showing the voltage of the winding 6 in FIG. U11 and U21, and U12 and U22 are out of phase with the applied voltage. Therefore, a circulating current flows between U11 and U21 and U12 and U22. In order to suppress the generation of circulating current, the number of parallel circuit connections of the permanent magnet type synchronous motor needs to be two or less.
 図15は図8の電機子2の要部を示す拡大図、図16は図8の巻線6のターン数を減少させた場合の電機子2の要部を示す図ある。各巻線6のターン数は、18ターンとなっている。永久磁石式同期モータの並列結線回路数を1個のまま、無負荷誘起電圧を1/2倍にするためには、上記(3)式により、各巻線6のターン数を1/2倍の9ターンに減少させる必要がある。しかしながら、ターン数を1/2倍に減少させる場合、各巻線6に流れる電流を2倍に増加させなければならないので、巻線6を流れる電流の増加による巻線6における銅損が増加することを防ぐために、各巻線6の導線の線径を√2倍にする必要がある。 15 is an enlarged view showing the main part of the armature 2 of FIG. 8, and FIG. 16 is a view showing the main part of the armature 2 when the number of turns of the winding 6 of FIG. 8 is reduced. The number of turns of each winding 6 is 18 turns. In order to reduce the no-load induced voltage by half while maintaining the number of parallel connection circuits of the permanent magnet type synchronous motor as one, the number of turns of each winding 6 is reduced by a factor of 1/2 according to the above equation (3). It needs to be reduced to 9 turns. However, when the number of turns is reduced by a factor of 1/2, the current flowing through each winding 6 must be increased by a factor of 2, which increases the copper loss in the winding 6 due to the increase in the current flowing through the winding 6. In order to prevent this, it is necessary to double the diameter of the conductive wire of each winding 6 by √2.
 各巻線6の導線の線径を√2倍にすると、隣接する導線間の隙間が大きくなってしまう。これにより、各巻線6のターン数を9ターンにすることができず、各巻線6のターン数を8ターンとしなければならない場合がある。つまり、永久磁石式同期モータの並列回路結線数を増加させずに、巻線6のターン数を減少させるとともに、巻線6を構成する導線の線径を増加させることは困難である。 When the wire diameter of each winding 6 is doubled, the gap between adjacent conductors becomes large. As a result, the number of turns of each winding 6 cannot be 9 turns, and the number of turns of each winding 6 may have to be 8 turns. That is, it is difficult to reduce the number of turns of the winding 6 and increase the wire diameter of the conductive wire constituting the winding 6 without increasing the number of parallel circuit connections of the permanent magnet type synchronous motor.
 以上説明したように、この発明の実施の形態1に係る永久磁石式同期モータによれば、同相の電流が流れる巻線6は、ティース5bが並べられた方向に連続して3個並んで配置され、連続して3個並べて配置された同相の巻線6は、各列の両端間における電圧の位相が同一となるように組み合わされて並列回路を構成しているので、巻線6における循環電流の発生を抑制することができるとともに、インバータに印加される無負荷誘起電圧の値を小さくすることができる。 As described above, according to the permanent magnet type synchronous motor according to the first embodiment of the present invention, three windings 6 through which in-phase current flows are arranged side by side in the direction in which teeth 5b are arranged. The three in-phase windings 6 arranged side by side are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit. The generation of current can be suppressed and the value of the no-load induced voltage applied to the inverter can be reduced.
 また、同一のティース5bに設けられる巻線6の組み合わせを( / )で表し、三相交流の各相の巻線6をU、V、Wで表し、巻極性を+、-で表した場合、巻線6が、ティース5bが並べられた方向に次の順序となるように配置され、(U12+/U13+)(U14-/V11+)(V12-/V13-)(V14+/W21-)(W22+/W23+)(W24-/U21+)(U22-/U23-)(U24+/V21-)(V22+/V23+)(V24-/W11+)(W12-/W13-)(W14+/U11-)、さらに、U12+とU13+とが直列接続され、V12-とV13-とが直列接続され、W22+とW23+とが直列接続され、U22-とU23-とが直列接続され、V22+とV23+とが直列接続され、W12-とW13-とが直列接続され、U11-とU14-とが直列接続され、V11+とV14+とが直列接続され、W21-とW24-とが直列接続され、U21+とU24+とが直列接続され、V21-とV24-とが直列接続され、W11+とW14+とが直列接続され、さらに、U12+およびU13+とU11-およびU14-とが並列接続され、V12-およびV13-とV11+およびV14+とが並列接続され、W22+およびW23+とW21-およびW24-とが並列接続され、U22-およびU23-とU21+およびU24+とが並列接続され、V22+およびV23+とV21-およびV24-とが並列接続され、W12-およびW13-とW11+およびW14+とが並列接続されているので、簡単な構成で、巻線6における循環電流の発生を抑制するとともに、インバータに印加される無負荷誘起電圧の値を小さくすることができる。 Also, the combination of windings 6 provided on the same tooth 5b is represented by (/), the windings 6 of each phase of the three-phase alternating current are represented by U, V, W, and the winding polarity is represented by +,-. The windings 6 are arranged in the following order in the direction in which the teeth 5b are arranged, and (U12 + / U13 +) (U14− / V11 +) (V12− / V13−) (V14 + / W21−) (W22 +) / W23 +) (W24- / U21 +) (U22- / U23-) (U24 + / V21-) (V22 + / V23 +) (V24- / W11 +) (W12- / W13-) (W14 + / U11-) and U12 + And U13 + are connected in series, V12− and V13− are connected in series, W22 + and W23 + are connected in series, U22− and U23− are connected in series, and V22 + and V23 + are connected in series. W12− and W13− are connected in series, U11− and U14− are connected in series, V11 + and V14 + are connected in series, W21− and W24− are connected in series, and U21 + and U24 + are connected in series. V21− and V24− are connected in series, W11 + and W14 + are connected in series, U12 + and U13 + are connected in parallel with U11− and U14−, and V12− and V13− are connected in parallel with V11 + and V14 +. W22 + and W23 + and W21− and W24− are connected in parallel, U22− and U23− and U21 + and U24 + are connected in parallel, V22 + and V23 + and V21− and V24− are connected in parallel, and W12 -And W13- and W11 + and W14 + are connected in parallel, In can be suppressed the occurrence of circulating currents in the windings 6, decreasing the value of no-load induced voltage applied to the inverter.
 実施の形態2.
 図17はこの発明の実施の形態2に係る永久磁石式同期モータの軸線方向に垂直な断面を示す断面図である。図において、磁石4は、シャフト3の周方向に8個、等間隔に並べられている。ティース5bは、シャフト3の周方向に9個、等間隔に並べられている。巻線6は、各ティース5bに1個ずつ配置されている。つまり、この例では、界磁極1の字極数が8個、電機子2のティース数が9個である。
Embodiment 2. FIG.
FIG. 17 is a cross-sectional view showing a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor according to Embodiment 2 of the present invention. In the figure, eight magnets 4 are arranged at equal intervals in the circumferential direction of the shaft 3. Nine teeth 5b are arranged at equal intervals in the circumferential direction of the shaft 3. One winding 6 is arranged for each tooth 5b. That is, in this example, the number of poles of the field pole 1 is 8, and the number of teeth of the armature 2 is 9.
 三相交流のうちの各相の電流が流れる巻線6の数は、それぞれ3個ずつとなっている。U相の電流が流れる巻線6の各名称を、U11、U12およびU13とする。V相の電流が流れる巻線6の各名称を、V11、V12およびV13とする。W相の電流が流れる巻線6の各名称を、W11、W12およびW13とする。 The number of windings 6 through which the current of each phase of the three-phase AC flows is three each. The names of the windings 6 through which the U-phase current flows are U11, U12, and U13. The names of the windings 6 through which the V-phase current flows are V11, V12, and V13. The names of the windings 6 through which the W-phase current flows are W11, W12, and W13.
 U11、U13、V11、V13、W11およびW13の巻極性は、互いに同一となっている。U12、V12およびW12の巻極性は、互いに同一となっている。U11の巻極性とU12の巻極性とは、互いに反対となっている。図17では、各巻線6の巻極性を示すために、各名称の後部に+または-を付している。 The winding polarities of U11, U13, V11, V13, W11 and W13 are the same. The winding polarities of U12, V12 and W12 are the same. The winding polarity of U11 and the winding polarity of U12 are opposite to each other. In FIG. 17, + or − is added to the rear of each name to indicate the winding polarity of each winding 6.
 U11、U12およびU13は、U11およびU13がU12を挟むようにして、ティース5bが並べられた方向に連続して配置されている。V11、V12およびV13は、V11およびV13がV12を挟むようにして、ティース5bが並べられた方向に連続して配置されている。W11、W12およびW13は、W11およびW13がW12を挟むようにして、ティース5bが並べられた方向に連続して配置されている。U13とV11とは、互いに隣り合っている。V13とW11とは、互いに隣り合っている。W13とU11とは、互いに隣り合っている。 U11, U12, and U13 are continuously arranged in the direction in which the teeth 5b are arranged such that U11 and U13 sandwich U12. V11, V12, and V13 are continuously arranged in the direction in which the teeth 5b are arranged such that V11 and V13 sandwich V12. W11, W12, and W13 are continuously arranged in the direction in which the teeth 5b are arranged such that W11 and W13 sandwich W12. U13 and V11 are adjacent to each other. V13 and W11 are adjacent to each other. W13 and U11 are adjacent to each other.
 図18は図17の巻線6の接続を説明する結線図である。図において、U11とU13とは、直列接続されている。U11およびU13と、U12とは、並列接続されている。つまり、U11およびU13と、U12とは、U相の並列回路を構成している。U11およびU13のそれぞれのターン数は、同一となっている。 FIG. 18 is a connection diagram for explaining the connection of the winding 6 in FIG. In the figure, U11 and U13 are connected in series. U11 and U13 and U12 are connected in parallel. That is, U11 and U13, and U12 constitute a U-phase parallel circuit. Each turn number of U11 and U13 is the same.
 V11とV13とは、直列接続されている。V11およびV13と、V12とは、並列接続されている。つまり、V11およびV13と、V12とは、V相の並列回路を構成している。V11およびV13のそれぞれのターン数は、同一となっている。 V11 and V13 are connected in series. V11 and V13 and V12 are connected in parallel. That is, V11, V13, and V12 constitute a V-phase parallel circuit. The number of turns of V11 and V13 is the same.
 W11とW13とは、直列接続されている。W11およびW13と、W12とは、並列接続されている。つまり、W11およびW13と、W12とは、W相の並列回路を構成している。W11およびW13のそれぞれのターン数は、同一となっている。 W11 and W13 are connected in series. W11 and W13 and W12 are connected in parallel. That is, W11, W13, and W12 form a W-phase parallel circuit. The number of turns of W11 and W13 is the same.
 各相は、Y結線となっている。この発明の実施の形態2に係る永久磁石式同期モータの並列結線回路数は、2個である。 Each phase is Y-connected. The number of parallel connection circuits of the permanent magnet type synchronous motor according to Embodiment 2 of the present invention is two.
 図19は図18の巻線6の電圧を示すベクトル図である。U11の電圧の位相は、U12の電圧の位相に対して、20度遅れている。U13の電圧の位相は、U12の電圧の位相に対して、20度進んでいる。つまり、U11およびU13の電圧の位相は、U12の電圧の位相を中心に、同一角度だけ互いに反対方向にずれている。 FIG. 19 is a vector diagram showing the voltage of the winding 6 in FIG. The phase of the voltage of U11 is delayed by 20 degrees with respect to the phase of the voltage of U12. The phase of the voltage of U13 is advanced 20 degrees with respect to the phase of the voltage of U12. That is, the phase of the voltage of U11 and U13 is shifted in the opposite direction by the same angle around the phase of the voltage of U12.
 U11のターン数と、U13のターン数とが等しいので、U11の電圧ベクトルと、U13の電圧ベクトルとを合成した合成ベクトルの方向は、U12の電圧ベクトルの方向と同一となる。その結果、並列接続されたU11およびU13とU12との間に循環電流が流れることが抑制される。つまり、U相において、並列回路の各列の両端間における電圧の位相が同一となり、循環電流の発生が抑制される。 Since the number of turns of U11 is equal to the number of turns of U13, the direction of the combined vector obtained by combining the voltage vector of U11 and the voltage vector of U13 is the same as the direction of the voltage vector of U12. As a result, the circulating current is suppressed from flowing between U11 and U13 and U12 connected in parallel. That is, in the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed.
 V相およびW相においても、U相と同様に、並列回路の各列の両端間における電圧の位相が同一となり、循環電流の発生が抑制される。その他の構成は、実施の形態1と同様である。 In the V phase and the W phase, similarly to the U phase, the phase of the voltage between both ends of each column of the parallel circuit is the same, and the generation of circulating current is suppressed. Other configurations are the same as those in the first embodiment.
 図20は従来の永久磁石式同期モータにおける巻線6の接続を説明する結線図である。図において、U11、U12およびU13は、直列接続されている。V11、V12およびV13は、直列接続されている。W11、W12およびW13は、直列接続されている。したがって、この従来の永久磁石同期モータの並列結線回路数は、1個である。 FIG. 20 is a connection diagram for explaining the connection of the winding 6 in the conventional permanent magnet type synchronous motor. In the figure, U11, U12 and U13 are connected in series. V11, V12 and V13 are connected in series. W11, W12 and W13 are connected in series. Therefore, the number of parallel connection circuits of this conventional permanent magnet synchronous motor is one.
 図21は図20の巻線6の電圧を示すベクトル図である。各相には、循環電流が流れる回路がないので、循環電流の発生は防止される。しかしながら、同相の各巻線6が全て直列接続されているので、インバータに印加される無負荷誘起電圧は、この発明の実施の形態2に係る永久磁石式同期モータの場合と比較して、大きくなってしまう。 FIG. 21 is a vector diagram showing the voltage of the winding 6 in FIG. Since there is no circuit through which the circulating current flows in each phase, the generation of the circulating current is prevented. However, since all in-phase windings 6 are all connected in series, the no-load induced voltage applied to the inverter is larger than that in the case of the permanent magnet synchronous motor according to the second embodiment of the present invention. End up.
 以上説明したように、この発明の実施の形態2に係る回転電機によれば、同相の巻線6は、ティース5bが並べられた方向に連続して3個だけ並んで配置され、連続して3個並べて配置された同相の巻線6のうちの両端に位置する一対の巻線6は、直列接続され、連続して3個並べて配置された同相の巻線6のうちの中央に位置する巻線6は、直列接続された一対の巻線6と並列接続されているので、簡単な構成で、巻線6における循環電流の発生を抑制するとともに、インバータに印加される無負荷誘起電圧の値を小さくすることができる。 As described above, according to the rotating electric machine according to the second embodiment of the present invention, only three windings 6 having the same phase are continuously arranged in the direction in which the teeth 5b are arranged. A pair of windings 6 located at both ends of three in-phase windings 6 arranged side by side are connected in series and located at the center of three in-phase windings 6 arranged in series. Since the winding 6 is connected in parallel with a pair of windings 6 connected in series, the generation of a circulating current in the winding 6 is suppressed with a simple configuration, and the no-load induced voltage applied to the inverter is reduced. The value can be reduced.
 実施の形態3.
 図22はこの発明の実施の形態3に係る永久磁石式同期モータの要部を示す平面図である。図において、U11、U12、U13およびU14のそれぞれは、導線の連続巻によって構成されている。U11、U12、U13およびU14を構成する導線の巻き始めの部分と巻き終わりの部分とは、導通するように接続されている。U11とU12との間の導線の部分と、U13とU14との間の導線の部分のそれぞれには、接続線7が設けられている。
Embodiment 3 FIG.
FIG. 22 is a plan view showing a main part of a permanent magnet type synchronous motor according to Embodiment 3 of the present invention. In the figure, each of U11, U12, U13 and U14 is constituted by a continuous winding of a conducting wire. The winding start portion and the winding end portion of the conductive wires constituting U11, U12, U13, and U14 are connected to be conductive. A connecting wire 7 is provided in each of the portion of the conducting wire between U11 and U12 and the portion of the conducting wire between U13 and U14.
 U21、U22、U23およびU24のそれぞれは、導線の連続巻によって構成されている。U21、U22、U23およびU24を構成する導線の巻き始めの部分と巻き終わりの部分とは、導通するように接続されている。U21とU22との間の導線の部分と、U23とU24との間の導線の部分のそれぞれには、接続線が設けられている。 Each of U21, U22, U23 and U24 is constituted by a continuous winding of conductive wires. The winding start portion and the winding end portion of the conductors constituting U21, U22, U23, and U24 are connected to be conductive. A connection line is provided in each of the portion of the conductive wire between U21 and U22 and the portion of the conductive wire between U23 and U24.
 V11、V12、V13およびV14のそれぞれは、導線の連続巻によって構成されている。V11、V12、V13およびV14を構成する導線の巻き始めの部分と巻き終わりの部分とは、導通するように接続されている。V11とV12との間の導線の部分と、V13とV14との間の導線の部分のそれぞれには、接続線が設けられている。 Each of V11, V12, V13, and V14 is comprised by the continuous winding of conducting wire. The winding start portion and the winding end portion of the conducting wires constituting V11, V12, V13, and V14 are connected to be conductive. A connection line is provided on each of the conductive wire portion between V11 and V12 and the conductive wire portion between V13 and V14.
 V21、V22、V23およびV24のそれぞれは、導線の連続巻によって構成されている。V21、V22、V23およびV24を構成する導線の巻き始めの部分と巻き終わりの部分とは、導通するように接続されている。V21とV22との間の導線の部分と、VとV24との間の導線の部分のそれぞれには、接続線が設けられている。 Each of V21, V22, V23 and V24 is constituted by a continuous winding of a conducting wire. The winding start portion and the winding end portion of the conductive wires constituting V21, V22, V23, and V24 are connected to be conductive. A connection line is provided in each of the conductive wire portion between V21 and V22 and the conductive wire portion between V and V24.
 W11、W12、W13およびW14のそれぞれは、導線の連続巻によって構成されている。W11、W12、W13およびW14を構成する導線の巻き始めの部分と巻き終わりの部分とは、導通するように接続されている。W11とW12との間の導線の部分と、W13とW14との間の導線の部分のそれぞれには、接続線が設けられている。 Each of W11, W12, W13, and W14 is comprised by the continuous winding of conducting wire. The winding start portion and the winding end portion of the conducting wires constituting W11, W12, W13, and W14 are connected to be conductive. A connection line is provided in each of the conductive wire portion between W11 and W12 and the conductive wire portion between W13 and W14.
 W21、W22、W23およびW24のそれぞれは、導線の連続巻によって構成されている。W21、W22、W23およびW24を構成する導線の巻き始めの部分と巻き終わりの部分とは、導通するように接続されている。W21とW22との間の導線の部分と、W23とW24との間の導線の部分のそれぞれには、接続線が設けられている。 Each of W21, W22, W23 and W24 is constituted by a continuous winding of a conducting wire. The winding start portion and the winding end portion of the conductive wires constituting W21, W22, W23, and W24 are connected to be conductive. A connection line is provided in each of the conductive wire portion between W21 and W22 and the conductive wire portion between W23 and W24.
 図23は図22の電機子2の要部を示す平面図である。各ティース5bには、第1のインシュレータ8または第2のインシュレータ9が取り付けられている。第1のインシュレータ8および第2のインシュレータ9は、互いに隣り合うように配置されている。巻線6は、第1のインシュレータ8または第2のインシュレータ9を介して、ティース5bに取り付けられている。
 図24は図23の第1のインシュレータ8を示す斜視図である。第1のインシュレータ8は、インシュレータ本体8aと、第1のピン8bと、第2のピン8cと、第3のピン8dとを有している。第1のピン8b、第2のピン8cおよび第3のピン8dは、金属から構成されている。したがって、第1のピン8b、第2のピン8cおよび第3のピン8dは、導電性を有している。また、第1のピン8b、第2のピン8cおよび第3のピン8dは、インシュレータ本体8aに取り付けられている。また、第1のピン8b、第2のピン8cおよび第3のピン8dは、電機子2の軸線方向にインシュレータ本体8aから突出している。第1のピン8bおよび第2のピン8cは、インシュレータ本体8aの電機子2の周方向についての一端部に配置されている。第1のピン8bは、第2のピン8cよりも電機子2の径方向内側に配置されている。第3のピン8dは、インシュレータ本体8aの電機子2の周方向についての他端部に配置されている。接続線7は、第3のピン8dに配置されている。
FIG. 23 is a plan view showing a main part of the armature 2 of FIG. A first insulator 8 or a second insulator 9 is attached to each tooth 5b. The 1st insulator 8 and the 2nd insulator 9 are arrange | positioned so that it may mutually adjoin. The winding 6 is attached to the tooth 5b via the first insulator 8 or the second insulator 9.
FIG. 24 is a perspective view showing the first insulator 8 of FIG. The first insulator 8 has an insulator body 8a, a first pin 8b, a second pin 8c, and a third pin 8d. The first pin 8b, the second pin 8c, and the third pin 8d are made of metal. Therefore, the first pin 8b, the second pin 8c, and the third pin 8d have conductivity. The first pin 8b, the second pin 8c, and the third pin 8d are attached to the insulator body 8a. Further, the first pin 8 b, the second pin 8 c, and the third pin 8 d protrude from the insulator body 8 a in the axial direction of the armature 2. The 1st pin 8b and the 2nd pin 8c are arrange | positioned at the one end part about the circumferential direction of the armature 2 of the insulator main body 8a. The 1st pin 8b is arrange | positioned in the radial direction inside of the armature 2 rather than the 2nd pin 8c. The 3rd pin 8d is arrange | positioned at the other end part about the circumferential direction of the armature 2 of the insulator main body 8a. The connection line 7 is disposed on the third pin 8d.
 図23に示すように、第2のインシュレータ9は、第1のインシュレータ8のインシュレータ本体8aと同じ形状のインシュレータ本体9aと、第1のピン9bとを有している。第1のピン9bは、金属から構成されている。したがって、第1のピン9bは、導電性を有している。また、第1のピン9bは、インシュレータ本体9aに取り付けられている。また、第1のピン9bは、電機子2の軸線方向にインシュレータ本体9aから突出している。第1のピン9bは、インシュレータ本体9aの電機子2の周方向についての他端部に配置されている。つまり、インシュレータ本体9aの第1のピン9bは、インシュレータ9に隣接するインシュレータ8のインシュレータ本体8aの第1のピン8bと隣接する位置に配置されている。接続線7は、第1のピン9bに配置されている。 23, the second insulator 9 includes an insulator body 9a having the same shape as the insulator body 8a of the first insulator 8, and a first pin 9b. The first pin 9b is made of metal. Therefore, the first pin 9b has conductivity. The first pin 9b is attached to the insulator body 9a. The first pin 9 b protrudes from the insulator body 9 a in the axial direction of the armature 2. The 1st pin 9b is arrange | positioned at the other end part about the circumferential direction of the armature 2 of the insulator main body 9a. That is, the first pin 9 b of the insulator body 9 a is disposed at a position adjacent to the first pin 8 b of the insulator body 8 a of the insulator 8 adjacent to the insulator 9. The connection line 7 is disposed on the first pin 9b.
 次に、導線をティース5bに巻回する手順について説明する。まず、U11が配置される第1のインシュレータ8の第1のピン8bに導線を巻き付ける。その後、インシュレータ本体8aに導線を巻回してU11を形成し、さらに、導線を第3のピン8dに巻き付ける。続いて、導線が巻回された第1のインシュレータ8に隣り合う第2のインシュレータ9のインシュレータ本体9aに導線を巻回してU12およびU13を形成した後、第1のピン9bに巻き付ける。この例では、U13は、U12に連続して形成される。 Next, the procedure for winding the conductive wire around the teeth 5b will be described. First, a conducting wire is wound around the first pin 8b of the first insulator 8 on which U11 is disposed. Then, a conducting wire is wound around the insulator body 8a to form U11, and the conducting wire is further wound around the third pin 8d. Subsequently, the conductor is wound around the insulator body 9a of the second insulator 9 adjacent to the first insulator 8 around which the conductor is wound to form U12 and U13, and then wound around the first pin 9b. In this example, U13 is formed continuously with U12.
 その後、導線が巻回された第2のインシュレータ9に隣り合う一対の第1のインシュレータ8のうちの既に導線が巻回された第2のインシュレータ8とは異なる第2のインシュレータ8のインシュレータ本体8aに導線を巻回してU14を形成し、さらに、第2のピン8cに巻き付ける。第2のピン8cに巻き付けられた導線は、既に導線が巻き付けられている第1のピン8bに再度巻き付ける。これにより、U11、U12、U13およびU14のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続される。U21、U22、U23およびU24についても同様である。また、V相およびW相についても同様である。その他の構成は、実施の形態1と同様である。 Then, the insulator body 8a of the second insulator 8 different from the second insulator 8 around which the conducting wire is already wound, out of the pair of first insulators 8 adjacent to the second insulator 9 around which the conducting wire is wound. A conductive wire is wound around to form U14, and is further wound around the second pin 8c. The conducting wire wound around the second pin 8c is again wound around the first pin 8b around which the conducting wire is wound. Thereby, each of U11, U12, U13, and U14 is comprised by the continuous winding of conducting wire, and is connected so that the winding start part and winding end part of conducting wire may be conducted. The same applies to U21, U22, U23 and U24. The same applies to the V phase and the W phase. Other configurations are the same as those in the first embodiment.
 以上説明したように、この発明の実施の形態3に係る永久磁石式同期モータによれば、U11-、U12+、U13+およびU14-のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、V11+、V12-、V13-およびV14+のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、W21-、W22+、W23+およびW24-のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、U21+、U22-、U23-およびU24+のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、V21-、V22+、V23+およびV24-のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、W11+、W12-、W13-およびW14+のそれぞれは、導線の連続巻によって構成され、かつ、導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、U11-とU12+との間の導線の部分、U13+とU14-との間の導線の部分、V11+とV12-との間の導線の部分、V13-とV14+との間の導線の部分、W21-とW22+との間の導線の部分、W23+とW24-との間の導線の部分、U21+とU22-との間の導線の部分、U23-とU24+との間の導線の部分、V21-とV22+との間の導線の部分、V23+とV24-との間の導線の部分、W11+とW12-との間の導線の部分、および、W13-とW14+との間の導線の部分のそれぞれに設けられた接続線7をさらに備えているので、永久磁石式同期モータを生産する時間を短縮させることができる。 As described above, according to the permanent magnet type synchronous motor according to the third embodiment of the present invention, each of U11−, U12 +, U13 + and U14− is constituted by a continuous winding of a conducting wire, and the winding of the conducting wire is performed. The beginning portion and the end portion of the winding are connected so as to be conductive, and each of V11 +, V12−, V13− and V14 + is constituted by a continuous winding of the conducting wire, and the winding start portion and the winding end portion of the conducting wire W21−, W22 +, W23 + and W24− are each constituted by a continuous winding of a conducting wire, and the winding start portion and winding end portion of the conducting wire are conducted to each other. U21 +, U22−, U23−, and U24 + are each configured by a continuous winding of a conductor, and the winding start portion of the conductor V21−, V22 +, V23 + and V24− are each constituted by a continuous winding of the conductor, and the winding start portion and the winding end portion of the conductor are conductive. W11 +, W12−, W13− and W14 + are each constituted by a continuous winding of a conducting wire, and are connected so that a winding start portion and a winding end portion of the conducting wire are electrically connected, U11 -The portion of the lead between U12 +, the portion of the lead between U13 + and U14-, the portion of the lead between V11 + and V12-, the portion of the lead between V13- and V14 +, W21- The portion of the conductor between W22 +, the portion of the conductor between W23 + and W24−, the portion of the conductor between U21 + and U22−, the portion of the conductor between U23− and U24 +, The portion of the conductor between 21- and V22 +, the portion of the conductor between V23 + and V24-, the portion of the conductor between W11 + and W12-, and the portion of the conductor between W13- and W14 + Since the connection line 7 provided for each is further provided, the time for producing the permanent magnet type synchronous motor can be shortened.
 なお、第1のインシュレータ8は、図25および図26に示すように、インシュレータ本体8aに設けられた絶縁壁8eをさらに有してもよい。絶縁壁8eは、ティース5bの長手方向中間部に配置されている。第1のインシュレータ8には、異なる相の巻線6が配置される。絶縁壁8eにより、異なる相の巻線6同士が接触することを防止することができる。 The first insulator 8 may further include an insulating wall 8e provided on the insulator body 8a as shown in FIGS. The insulating wall 8e is disposed in the middle portion in the longitudinal direction of the tooth 5b. In the first insulator 8, windings 6 of different phases are arranged. The insulating wall 8e can prevent the windings 6 of different phases from coming into contact with each other.
 また、第2のインシュレータ9は、図27に示すように、インシュレータ本体9aに設けられた第2のピン9cをさらに有してもよい。この場合、導線をティース5bに巻回する手順としては、まず、導線を第2のインシュレータ9の第2のピン9cに巻き付ける。その後、インシュレータ本体9aに導線を巻回してU12およびU13を形成し、さらに、第1のピン9bに導線を巻き付ける。その後、U14を形成した後、U14が配置された第1のインシュレータ8の第2のピン8cに導線を巻き付け、さらに、U11が配置される第1のインシュレータ8の第1のピン8bに導線を巻き付ける。ここで、導線を切断する。 Further, as shown in FIG. 27, the second insulator 9 may further include a second pin 9c provided on the insulator body 9a. In this case, as a procedure for winding the conducting wire around the tooth 5 b, first, the conducting wire is wound around the second pin 9 c of the second insulator 9. Then, a conducting wire is wound around the insulator body 9a to form U12 and U13, and the conducting wire is wound around the first pin 9b. Then, after forming U14, a conducting wire is wound around the second pin 8c of the first insulator 8 on which U14 is disposed, and further, the conducting wire is provided on the first pin 8b of the first insulator 8 on which U11 is disposed. Wrap. Here, the conducting wire is cut.
 その後、同様にして、U22、U23およびU24を形成する。また、U相と同様にして、対応するV相およびW相の巻線6を形成する。その後、U11が設けられる第1のインシュレータ8の第1のピン8bに導線を巻き付け、さらに、U11を形成する。その後、第1のインシュレータ8の第2のピンに導線を巻き付けた後、最初に導線が巻き付けられた第2のインシュレータ9の第2のピン9cに再度、導線を巻き付ける。 Thereafter, U22, U23 and U24 are formed in the same manner. Similarly to the U phase, the corresponding V-phase and W-phase windings 6 are formed. Then, a conducting wire is wound around the first pin 8b of the first insulator 8 provided with U11 to further form U11. Then, after winding a conducting wire around the second pin of the first insulator 8, the conducting wire is again wound around the second pin 9c of the second insulator 9 on which the conducting wire was first wound.
 その後、同様にして、U21を形成する。また、U相と同様にして、対応するV相およびW相の巻線6を形成して、巻線6の形成が終了する。この巻線を形成する方法を用いることにより、例えば、W14を形成する際に、U11とU12との間の導線を巻き込んでしまうことを防ぐことができる。 Thereafter, U21 is formed in the same manner. Similarly to the U-phase, the corresponding V-phase and W-phase windings 6 are formed, and the formation of the windings 6 is completed. By using this method of forming the winding, for example, when forming W14, it is possible to prevent the conductive wire between U11 and U12 from being caught.
 また、実施の形態3では、3個のピンを有した第1のインシュレータ8と、1個のピンを有した第2のインシュレータ9について説明したが、それぞれのインシュレータのピンの数は、これに限らず、設備に応じて増減させてもよい。 In the third embodiment, the first insulator 8 having three pins and the second insulator 9 having one pin have been described, but the number of pins of each insulator is as follows. Not limited, you may increase / decrease according to an installation.
 実施の形態4.
 図28はこの発明の実施の形態4に係る永久磁石式同期モータの各巻線6における導線のターン数を示す図である。図において、同一のティース5bに設けられた一対の巻線6が同相の巻線6である場合のそれぞれ巻線6のターン数をTとし、同一のティース5bに設けられた一対の巻線6が異相の巻線6である場合のそれぞれの巻線6のターン数を2×T/√3としている。その他の構成は、実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 28 is a diagram showing the number of turns of the conductive wire in each winding 6 of the permanent magnet type synchronous motor according to Embodiment 4 of the present invention. In the figure, when the pair of windings 6 provided on the same tooth 5b is the same-phase winding 6, the number of turns of each winding 6 is T, and the pair of windings 6 provided on the same tooth 5b. The number of turns of each winding 6 is 2 × T / √3 when is a different-phase winding 6. Other configurations are the same as those in the first embodiment.
 図29は図28の全ての巻線6のターン数を同一としたときの巻線6の電圧を示すベクトル図である。U11およびU14の電圧の位相は、U12およびU13の電圧の位相に対して、30度ずれている。したがって、U11およびU14のそれぞれの電圧ベクトルを合成した合成ベクトルの方向と、U12およびU13の電圧ベクトルの方向とは、互いに同一となる。 FIG. 29 is a vector diagram showing the voltage of the winding 6 when all the windings 6 in FIG. 28 have the same number of turns. The phase of the voltages of U11 and U14 is shifted by 30 degrees with respect to the phase of the voltages of U12 and U13. Therefore, the direction of the combined vector obtained by combining the respective voltage vectors of U11 and U14 and the direction of the voltage vector of U12 and U13 are the same.
 しかしながら、U11、U12、U13およびU14のターン数を同一とした場合、U11およびU14のそれぞれの電圧ベクトルを合成した合成ベクトルの大きさは、U12およびU13のそれぞれの電圧ベクトルを合成した合成ベクトルの大きさよりも小さくなってしまう。U11およびU14における導線のターン数を、U12およびU13における導線のターン数の2/√3倍とすることにより、U11およびU14のそれぞれの電圧ベクトルを合成した合成ベクトルの大きさと、U12およびU13のそれぞれの電圧ベクトルを合成した合成ベクトルの大きさとが同一となる。 However, when the number of turns of U11, U12, U13, and U14 is the same, the magnitude of the combined vector obtained by combining the voltage vectors of U11 and U14 is that of the combined vector obtained by combining the respective voltage vectors of U12 and U13. It will be smaller than the size. By setting the number of turns of the conductors in U11 and U14 to 2 / √3 times the number of turns of the conductors in U12 and U13, the magnitude of the combined vector obtained by combining the voltage vectors of U11 and U14, The size of the combined vector obtained by combining the respective voltage vectors is the same.
 2/√3=1.154700・・・であるので、2/√3は整数ではない。したがって、実際に永久磁石式同期モータを製造する際には、2/√3に近い数を用いてターン数を決定する。例えば、U12およびU13のターン数を10ターンとすると、U11およびU14のターン数は、2/(√3)×10=11.54705・・・であるから、11ターンまたは12ターンとする。この場合、U12およびU13は、直列接続されているので、合成されたベクトルの大きさは、20ターンに相当する大きさとなる。一方、U11およびU14のそれぞれを11ターンとすると、合成されたベクトルの大きさは、2×11×cos(30)=19.052・・・である。また、U11およびU14のそれぞれを12ターンとすると、合成されたベクトルの大きさは、2×12×cos(30)=20.784・・・である。このことから、U11およびU14のターン数を12ターンとした方が、U11およびU14の合成ベクトルの大きさが、U12およびU13の合成ベクトルの大きさに近い値となる。 Since 2 / √3 = 1.154700, 2 / √3 is not an integer. Therefore, when actually manufacturing a permanent magnet synchronous motor, the number of turns is determined using a number close to 2 / √3. For example, if the number of turns of U12 and U13 is 10, the number of turns of U11 and U14 is 2 / (√3) × 10 = 11.54705. In this case, since U12 and U13 are connected in series, the combined vector has a size corresponding to 20 turns. On the other hand, if each of U11 and U14 is 11 turns, the size of the combined vector is 2 × 11 × cos (30) = 19.052. If each of U11 and U14 is 12 turns, the size of the combined vector is 2 × 12 × cos (30) = 2.784. Therefore, when the number of turns of U11 and U14 is set to 12, the magnitude of the combined vector of U11 and U14 becomes a value closer to the magnitude of the combined vector of U12 and U13.
 図30は図28の巻線6のターン数を示す表である。図のように、電圧ベクトルの大きさを考慮して各巻線6のターン数を選択することで、電圧ベクトルの大きさの差異を小さくすることができる。 FIG. 30 is a table showing the number of turns of the winding 6 in FIG. As shown in the figure, by selecting the number of turns of each winding 6 in consideration of the magnitude of the voltage vector, the difference in magnitude of the voltage vector can be reduced.
 以上説明したように、この発明の実施の形態4に係る永久磁石式同期モータによれば、同一のティース5bに設けられた一対の巻線6が同相の巻線6である場合のそれぞれの巻線6のターン数をTとすると、同一のティース5bに設けられた一対の巻線6が異相の巻線6である場合のそれぞれの巻線6ターン数が2×T/√3であるので、並列回路の各列の両端間における電圧の大きさの差異を小さくすることができる。その結果、循環電流の発生を抑制することができる。 As described above, according to the permanent magnet type synchronous motor according to the fourth embodiment of the present invention, each winding in the case where the pair of windings 6 provided on the same tooth 5b are the windings 6 of the same phase. Assuming that the number of turns of the wire 6 is T, the number of turns of each winding 6 when the pair of windings 6 provided in the same tooth 5b are different-phase windings 6 is 2 × T / √3. The difference in voltage magnitude between the both ends of each column of the parallel circuit can be reduced. As a result, generation of circulating current can be suppressed.
 実施の形態5.
 図31はこの発明の実施の形態5に係る永久磁石式同期モータの巻線6の接続を説明する結線図である。図において、U11、U12、U13およびU14は、U14、U11、U12およびU13の順に直列に接続されている。U21、U22、U23およびU24は、U24、U21、U22およびU23の順に直列に接続されている。
Embodiment 5 FIG.
FIG. 31 is a connection diagram for explaining the connection of winding 6 of the permanent magnet type synchronous motor according to the fifth embodiment of the present invention. In the figure, U11, U12, U13, and U14 are connected in series in the order of U14, U11, U12, and U13. U21, U22, U23 and U24 are connected in series in the order of U24, U21, U22 and U23.
 U14には、電流が入力されるようになっている。U14とU24との間には、スイッチSW1が設けられている。スイッチSW1がオン状態となることで、U14とU24とが接続される。 ・ Current is input to U14. A switch SW1 is provided between U14 and U24. When the switch SW1 is turned on, U14 and U24 are connected.
 U14とU13とは、スイッチSW2を介して接続されている。スイッチSW2がオン状態となることで、U14とU13とが導通される。 U14 and U13 are connected via a switch SW2. When the switch SW2 is turned on, U14 and U13 are conducted.
 U13とU24とは、スイッチSW3を介して接続されている。スイッチSW3がオン状態となることで、U13とU24とが導通される。 U13 and U24 are connected via a switch SW3. When the switch SW3 is turned on, U13 and U24 are conducted.
 U24とU23とは、スイッチSW4を介して接続されている。スイッチSW4がオン状態となることで、U24とU23とが導通される。 U24 and U23 are connected via a switch SW4. When the switch SW4 is turned on, U24 and U23 are conducted.
 U11およびU12とU24とは、スイッチSW5を介して接続されている。スイッチSW5がオン状態となることで、U11およびU12と、U24とが導通される。 U11 and U12 and U24 are connected via a switch SW5. When the switch SW5 is turned on, U11 and U12 are connected to U24.
 U21およびU22には、スイッチSW6を介して、電流が出力される出力電流線10が接続されている。スイッチSW6がオン状態となることで、U21およびU22と出力電流線10とが導通される。 The output current line 10 through which current is output is connected to U21 and U22 via the switch SW6. When the switch SW6 is turned on, U21 and U22 and the output current line 10 are conducted.
 U11およびU12と出力電流線10とは、スイッチSW7を介して接続されている。スイッチSW7がオン状態となることで、U11およびU12と出力電流線10とが導通される。 U11 and U12 and the output current line 10 are connected via a switch SW7. When the switch SW7 is turned on, U11 and U12 and the output current line 10 are conducted.
 U23と出力電流線10とは、スイッチSW8を介して接続されている。スイッチSW8がオン状態となることで、U23と出力電流線10とが導通される。 U23 and the output current line 10 are connected via a switch SW8. When the switch SW8 is turned on, U23 and the output current line 10 are brought into conduction.
 図32は図31の永久磁石式同期モータの並列結線回路数が1個であるときの巻線6の接続を説明する結線図である。スイッチSW1、スイッチSW2、スイッチSW4、スイッチSW5、スイッチSW6およびスイッチSW7をオフ状態とし、スイッチSW3およびスイッチSW6をオン状態とすることにより、U11およびU14とU12およびU13とが直列接続され、U21およびU24とU22およびU23とが直列接続される。さらに、直列接続されたU11、U12、U13およびU14と、直列接続されたU21、U22、U23およびU24とが直列接続される。 32 is a connection diagram for explaining the connection of the winding 6 when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is one. By setting the switch SW1, the switch SW2, the switch SW4, the switch SW5, the switch SW6, and the switch SW7 to the off state and the switch SW3 and the switch SW6 to the on state, the U11, U14, U12, and U13 are connected in series. U24 and U22 and U23 are connected in series. Further, U11, U12, U13, and U14 connected in series and U21, U22, U23, and U24 connected in series are connected in series.
 図33は図31の永久磁石式同期モータの並列結線回路数が2個であるときの巻線6の接続を説明する結線図である。スイッチSW1、スイッチSW3、スイッチSW7およびスイッチSW8をオフ状態とし、スイッチSW2、スイッチSW4、スイッチSW5およびスイッチSW6をオン状態とすることにより、U11およびU14とU12およびU13とが並列接続され、U21およびU24とU22およびU23とが並列接続される。さらに、U11、U12、U13およびU14と、U21、U22、U23およびU24とは、直列接続される。 FIG. 33 is a connection diagram for explaining the connection of the windings 6 when the number of parallel connection circuits of the permanent magnet type synchronous motor of FIG. 31 is two. The switches SW1, SW3, SW7 and SW8 are turned off, and the switches SW2, SW4, SW5 and SW6 are turned on, so that U11 and U14 are connected in parallel to U12 and U13, and U21 and U24 and U22 and U23 are connected in parallel. Furthermore, U11, U12, U13 and U14 and U21, U22, U23 and U24 are connected in series.
 図34は図31の永久磁石式同期モータの並列結線回路数が4個であるときの巻線6の接続を説明する結線図である。スイッチSW1、スイッチSW2、スイッチSW4、スイッチSW6およびスイッチSW7をオン状態とし、スイッチSW3、スイッチSW5およびスイッチSW8をオフ状態とすることにより、U11およびU14とU12およびU13とが並列接続され、U21およびU24とU22およびU23とが並列接続される。さらに、U11、U12、U13およびU14と、U21、U22、U23およびU24とは、並列接続される。 FIG. 34 is a connection diagram for explaining the connection of the windings 6 when the number of parallel connection circuits of the permanent magnet synchronous motor of FIG. 31 is four. By turning on the switch SW1, the switch SW2, the switch SW4, the switch SW6 and the switch SW7 and turning off the switch SW3, the switch SW5 and the switch SW8, the U11 and U14 are connected in parallel with the U12 and U13. U24 and U22 and U23 are connected in parallel. Furthermore, U11, U12, U13 and U14 and U21, U22, U23 and U24 are connected in parallel.
 上述したように、スイッチSW1、スイッチSW2、スイッチSW3、スイッチSW4、スイッチSW5、スイッチSW6、スイッチSW7およびスイッチSW8をオン状態またはオフ状態に切り替えることにより、U12およびU13とU11およびU14との間の接続は、直列接続と並列接続とに切り替え可能であり、また、U22およびU23とU21およびU24との間の接続は、直列接続と並列接続とに切り替え可能であり、また、直列接続されたU11、U12、U13およびU14と直列接続されたU21、U22、U23およびU24との間の接続は、直列接続と並列接続とに切り替え可能である。V相およびW相についても同様である。 As described above, by switching the switch SW1, the switch SW2, the switch SW3, the switch SW4, the switch SW5, the switch SW6, the switch SW7, and the switch SW8 to the on state or the off state, between the U12 and U13 and the U11 and U14 The connection can be switched between a serial connection and a parallel connection, and the connection between U22 and U23 and U21 and U24 can be switched between a series connection and a parallel connection. , U12, U13, and U14 connected in series with U21, U22, U23, and U24 can be switched between series connection and parallel connection. The same applies to the V phase and the W phase.
 以上説明したように、この発明の実施の形態5に係る永久磁石式同期モータによれば、U12およびU13とU11およびU14との間の接続は、直列接続と並列接続とに切り替え可能であり、V12およびV13とV11およびV14との間の接続は、直列接続と並列接続とに切り替え可能であり、W22およびW23とW21およびW24との間の接続は、直列接続と並列接続とに切り替え可能であり、U22およびU23とU21およびU24との間の接続は、直列接続と並列接続とに切り替え可能であり、V22およびV23とV21およびV24との間の接続は、直列接続と並列接続とに切り替え可能であり、W12およびW13とW11およびW14との間の接続は、直列接続と並列接続とに切り替え可能であるので、永久磁石式同期モータの並列結線回路数を容易に変更することができる。その結果、永久磁石式同期モータの低速回転と高速回転との切り替えにおいて、巻線6を容易に対応させることができる。 As described above, according to the permanent magnet type synchronous motor according to the fifth embodiment of the present invention, the connection between U12 and U13 and U11 and U14 can be switched between series connection and parallel connection, The connection between V12 and V13 and V11 and V14 can be switched between a series connection and a parallel connection, and the connection between W22 and W23 and W21 and W24 can be switched between a series connection and a parallel connection. Yes, the connection between U22 and U23 and U21 and U24 can be switched between series connection and parallel connection, and the connection between V22 and V23 and V21 and V24 can be switched between series connection and parallel connection. The connection between W12 and W13 and W11 and W14 can be switched between a series connection and a parallel connection. It is possible to easily change the number of parallel connection circuit of formula synchronous motor. As a result, the winding 6 can be easily adapted in switching between the low-speed rotation and the high-speed rotation of the permanent magnet type synchronous motor.
 また、直列接続されたU11、U12、U13およびU14と直列接続されたU21、U22、U23およびU24との間の接続は、直列接続と並列接続とに切り替え可能であり、直列接続されたV11、V12、V13およびV14と直列接続されたV21、V22、V23およびV24との間の接続は、直列接続と並列接続とに切り替え可能であり、直列接続されたW21、W22、W23およびW24と直列接続されたW21、W22、W23およびW24との間の接続は、直列接続と並列接続とに切り替え可能であるので、さらに、永久磁石同期モータの並列結線回路数の変更することができる幅を大きくすることができる。これにより、巻線6の設計の自由度を向上させることができる。つまり、永久磁石式同期モータの量産時に、同一設備、同一設定で巻線6をティース5bに施すことができる。 The connection between U11, U12, U13 and U14 connected in series and U21, U22, U23 and U24 connected in series can be switched between series connection and parallel connection, and V11 connected in series, Connections between V21, V22, V23 and V24 connected in series with V12, V13 and V14 can be switched between series connection and parallel connection, and connected in series with W21, W22, W23 and W24 connected in series. Since the connection between W21, W22, W23 and W24 can be switched between series connection and parallel connection, the width of the parallel connection circuit number of the permanent magnet synchronous motor can be further increased. be able to. Thereby, the freedom degree of design of the coil | winding 6 can be improved. That is, at the time of mass production of the permanent magnet type synchronous motor, the winding 6 can be applied to the teeth 5b with the same equipment and the same setting.
 実施の形態6.
 図35はこの発明の実施の形態6に係る永久磁石式同期モータの軸線方向に垂直な断面を示す断面図、図36は図35の電機子2の要部を示す拡大図である。図において、第1のインシュレータ8と第2のインシュレータ9との間には、第1の絶縁材11と第2の絶縁材12とが設けられている。第1の絶縁材11は、電機子2の径方向に延びて配置されている。第1の絶縁材11は、電機子2の周方向に隣り合う異相の巻線6間に配置されている。第2の絶縁材12は、電機子2の径方向に隣り合う異相の巻線6間に配置されている。
Embodiment 6 FIG.
35 is a cross-sectional view showing a cross section perpendicular to the axial direction of a permanent magnet type synchronous motor according to Embodiment 6 of the present invention, and FIG. 36 is an enlarged view showing the main part of the armature 2 of FIG. In the figure, a first insulating material 11 and a second insulating material 12 are provided between a first insulator 8 and a second insulator 9. The first insulating material 11 is arranged extending in the radial direction of the armature 2. The first insulating material 11 is disposed between the different-phase windings 6 adjacent to each other in the circumferential direction of the armature 2. The second insulating material 12 is disposed between the different-phase windings 6 adjacent to each other in the radial direction of the armature 2.
 U12およびU13を構成する導線の線径をφa、U11およびU14を構成する導線の線径をφbとした場合、φa>φbとなっている。その他の構成は、実施の形態1と同様である。 When the wire diameter of the conducting wires constituting U12 and U13 is φa, and the wire diameter of the conducting wires constituting U11 and U14 is φb, φa> φb. Other configurations are the same as those in the first embodiment.
 シャフト3の周方向に隣り合うティース5b間の空間は、第1の絶縁材11および第2の絶縁材12により狭められている。これにより、シャフト3の周方向に隣り合うティース5b間の空間におけるティース5bに導線を巻回することができる有効断面積が減少する。 The space between the teeth 5b adjacent in the circumferential direction of the shaft 3 is narrowed by the first insulating material 11 and the second insulating material 12. Thereby, the effective cross-sectional area which can wind a conducting wire around the teeth 5b in the space between the teeth 5b adjacent to the circumferential direction of the shaft 3 decreases.
 U12およびU13のそれぞれのターン数を10ターンとする場合、実施の形態4で述べたように、循環電流の発生を抑制するためには、U11およびU14のターン数を、12ターンとする必要がある。つまり、U11およびU14のターン数を、U12およびU13のターン数よりも多くしなければならない。 When the number of turns of each of U12 and U13 is 10 turns, as described in the fourth embodiment, it is necessary to set the number of turns of U11 and U14 to 12 turns in order to suppress the generation of the circulating current. is there. That is, the number of turns of U11 and U14 must be larger than the number of turns of U12 and U13.
 U12およびU13を構成する導線の線径をφa、U11およびU14を構成する導線の線径をφbとした場合、φa>φbとなっているので、第1のインシュレータ8と第2のインシュレータ9との間に第1の絶縁材11および第2の絶縁材12を設けることによりティース5bに導線を巻回することができる有効断面積が減少しても、U11およびU14のターン数をU12およびU13のターン数よりも多くすることが容易となる。 If the wire diameter of the conductors constituting U12 and U13 is φa, and the wire diameter of the conductors constituting U11 and U14 is φb, then φa> φb, so the first insulator 8 and the second insulator 9 Even if the effective cross-sectional area in which the conductive wire can be wound around the tooth 5b is reduced by providing the first insulating material 11 and the second insulating material 12 between them, the number of turns of U11 and U14 is reduced to U12 and U13. It becomes easy to make more than the number of turns.
 以上説明したように、この発明の実施の形態6に係る永久磁石式同期モータによれば、同一のティース5bに設けられた一対の巻線6が同相の巻線6である場合のそれぞれの巻線6を構成する各導線の線径をφaとし、同一のティース5bに設けられた一対の巻線6が異相の巻線6である場合のそれぞれの巻線6を構成する各導線の線径をφbとした場合、φa>φbであるので、同一のティース5bに設けられた一対の巻線6が同相の巻線である場合の巻線のターン数よりも、同一のティース5bに設けられた一対の巻線6が異相の巻線6である場合の巻線6のターン数を容易に多くすることができる。 As described above, according to the permanent magnet type synchronous motor according to the sixth embodiment of the present invention, each winding when the pair of windings 6 provided in the same tooth 5b are the windings 6 of the same phase. The diameter of each conducting wire constituting each winding 6 in the case where the diameter of each conducting wire constituting the wire 6 is φa and the pair of windings 6 provided on the same tooth 5b are windings 6 of different phases is used. When φb is φb, since φa> φb, the pair of windings 6 provided in the same tooth 5b are provided in the same tooth 5b rather than the number of turns of the windings when the pair of windings 6 are in-phase windings. When the pair of windings 6 are different-phase windings 6, the number of turns of the windings 6 can be easily increased.
 なお、上記各実施の形態1、3、4、5、6では、界磁極1の磁極数が10、電機子2のティース数が12である永久磁石式同期モータについて説明したが、界磁極1の磁極数Pと電機子2のティース数Qとが、nを2以上の偶数としたときに、P=5×n、Q=6×nで表され、または、P=7×n、Q=6×nで表される永久磁石式同期モータであればよい。 In each of the first, third, fourth, fifth, and sixth embodiments, the permanent magnet type synchronous motor in which the number of magnetic poles of the field pole 1 is 10 and the number of teeth of the armature 2 is 12 has been described. The number of magnetic poles P and the number of teeth Q of the armature 2 are expressed by P = 5 × n, Q = 6 × n, or P = 7 × n, Q, where n is an even number equal to or greater than 2. Any permanent magnet type synchronous motor represented by = 6 × n may be used.
 また、各上記実施の形態では、回転電機として、電動機を例に説明したが、発電機であってもよい。 Further, in each of the above embodiments, the electric motor is described as an example of the rotating electric machine, but a generator may be used.
 また、各上記実施の形態では、円筒形状の基部5aを有した電機子鉄心5について説明したが、基部5aの形状は、円筒形状に限らない。例えば、周方向に分割された複数の基部を有した電機子鉄心であってもよい。 In each of the above embodiments, the armature core 5 having the cylindrical base portion 5a has been described. However, the shape of the base portion 5a is not limited to the cylindrical shape. For example, an armature core having a plurality of base portions divided in the circumferential direction may be used.
 また、各上記実施の形態では、シャフト3の外周面に複数の磁石4が取り付けられた界磁極1について説明したが、複数の極を有したリング磁石が取り付けられた界磁極であってもよい。 In each of the above embodiments, the field pole 1 in which a plurality of magnets 4 are attached to the outer peripheral surface of the shaft 3 has been described. However, a field pole in which a ring magnet having a plurality of poles is attached may be used. .
 1 界磁極、2 電機子、3 シャフト、4 磁石、5 電機子鉄心、5a 基部、5b ティース、6 巻線、7 接続線、8 第1のインシュレータ、8a インシュレータ本体、8b 第1のピン、8c 第2のピン、8d 第3のピン、8e 絶縁壁、9 第2のインシュレータ、9a インシュレータ本体、9b 第1のピン、9c 第2のピン、10 出力電流線、11 第1の絶縁材、12 第2の絶縁材。 1 field pole, 2 armatures, 3 shafts, 4 magnets, 5 armature cores, 5a base, 5b teeth, 6 windings, 7 connection lines, 8 first insulator, 8a insulator body, 8b first pin, 8c 2nd pin, 8d 3rd pin, 8e insulating wall, 9 second insulator, 9a insulator body, 9b first pin, 9c second pin, 10 output current line, 11 first insulating material, 12 Second insulating material.

Claims (8)

  1.  複数の磁石を有した界磁極と、
     前記磁石に対向するように並べて設けられた複数のティースを含んだ電機子鉄心と、前記ティースに導線が集中巻で巻回されることにより設けられ、三相交流の電流が流れる複数の巻線とを有した電機子とを備え、
     同相の前記巻線は、前記ティースが並べられた方向に連続して3個以上並んで配置され、
     連続して3個以上並べて配置された同相の前記巻線は、各列の両端間における電圧の位相が同一となるように組み合わされて並列回路を構成していることを特徴とする回転電機。
    A field pole having a plurality of magnets;
    An armature core including a plurality of teeth provided side by side so as to face the magnet, and a plurality of windings provided by winding a conductive wire around the teeth in a concentrated winding and through which a three-phase AC current flows And an armature having
    The windings of the same phase are arranged three or more consecutively in the direction in which the teeth are arranged,
    A rotating electric machine characterized in that three or more of the same-phase windings arranged side by side are combined so that the phase of the voltage between both ends of each column is the same to form a parallel circuit.
  2.  同相の前記巻線は、前記ティースが並べられた方向に連続して3個だけ並んで配置され、
     連続して3個並べて配置された同相の前記巻線のうちの両端に位置する一対の前記巻線は、直列接続され、
     連続して3個並べて配置された同相の前記巻線のうちの中央に位置する前記巻線は、直列接続された一対の前記巻線と並列接続されていることを特徴とする請求項1に記載の回転電機。
    The windings of the same phase are arranged side by side in a continuous manner in the direction in which the teeth are arranged,
    A pair of the windings located at both ends of the windings of the same phase arranged in a row three in series, are connected in series,
    The winding located at the center of the three in-phase windings arranged side by side in series is connected in parallel to a pair of windings connected in series. The rotating electrical machine described.
  3.  前記界磁極の磁極数Pと前記電機子のティース数Qとが、nを2以上の偶数としたとき、P=5×n、Q=6×nで表され、または、P=7×n、Q=6×nで表され、各前記ティースには、一対の前記巻線が配置される回転電機であって、
     同一の前記ティースに設けられる前記巻線の組み合わせを( / )で表し、前記三相交流の各相の前記巻線をU、V、Wで表し、巻極性を+、-で表した場合、前記巻線が、前記ティースが並べられた方向に次の順序またはその繰り返しとなるように配置され、
     (U12+/U13+)(U14-/V11+)(V12-/V13-)(V14+/W21-)(W22+/W23+)(W24-/U21+)(U22-/U23-)(U24+/V21-)(V22+/V23+)(V24-/W11+)(W12-/W13-)(W14+/U11-)、
     さらに、前記U12+と前記U13+とが直列接続され、前記V12-と前記V13-とが直列接続され、前記W22+と前記W23+とが直列接続され、前記U22-と前記U23-とが直列接続され、前記V22+と前記V23+とが直列接続され、前記W12-と前記W13-とが直列接続され、前記U11-と前記U14-とが直列接続され、前記V11+と前記V14+とが直列接続され、前記W21-と前記W24-とが直列接続され、前記U21+と前記U24+とが直列接続され、前記V21-と前記V24-とが直列接続され、前記W11+と前記W14+とが直列接続され、
     さらに、前記U12+および前記U13+と前記U11-および前記U14-とが並列接続され、前記V12-および前記V13-と前記V11+および前記V14+とが並列接続され、前記W22+および前記W23+と前記W21-および前記W24-とが並列接続され、前記U22-および前記U23-と前記U21+および前記U24+とが並列接続され、前記V22+および前記V23+と前記V21-および前記V24-とが並列接続され、前記W12-および前記W13-と前記W11+および前記W14+とが並列接続されていることを特徴とする請求項1または請求項2に記載の回転電機。
    The number P of the field poles and the number Q of the armature teeth are expressed by P = 5 × n, Q = 6 × n, or P = 7 × n, where n is an even number equal to or greater than 2. , Q = 6 × n, and each tooth is a rotating electrical machine in which a pair of windings are disposed,
    When the combination of the windings provided in the same tooth is represented by (/), the winding of each phase of the three-phase alternating current is represented by U, V, W, and the winding polarity is represented by +,- The windings are arranged in the following order or a repetition thereof in the direction in which the teeth are arranged,
    (U12 + / U13 +) (U14- / V11 +) (V12- / V13-) (V14 + / W21-) (W22 + / W23 +) (W24- / U21 +) (U22- / U23-) (U24 + / V21-) (V22 + / V23 +) (V24− / W11 +) (W12− / W13−) (W14 + / U11−),
    Further, the U12 + and the U13 + are connected in series, the V12− and the V13− are connected in series, the W22 + and the W23 + are connected in series, the U22− and the U23− are connected in series, The V22 + and the V23 + are connected in series, the W12− and the W13− are connected in series, the U11− and the U14− are connected in series, the V11 + and the V14 + are connected in series, and the W21 -And W24- are connected in series, U21 + and U24 + are connected in series, V21- and V24- are connected in series, W11 + and W14 + are connected in series,
    Further, the U12 +, the U13 +, the U11−, and the U14− are connected in parallel, the V12−, the V13−, the V11 +, and the V14 + are connected in parallel, the W22 +, the W23 +, the W21−, and W24− is connected in parallel, U22− and U23− are connected in parallel with U21 + and U24 +, V22 + and V23 + are connected in parallel with V21− and V24−, and W12− The rotating electrical machine according to claim 1 or 2, wherein the W13-, the W11 +, and the W14 + are connected in parallel.
  4.  前記U11-、前記U12+、前記U13+および前記U14-のそれぞれは、前記導線の連続巻によって構成され、かつ、前記導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、
     前記V11+、前記V12-、前記V13-および前記V14+のそれぞれは、前記導線の連続巻によって構成され、かつ、前記導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、
     前記W21-、前記W22+、前記W23+および前記W24-のそれぞれは、前記導線の連続巻によって構成され、かつ、前記導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、
     前記U21+、前記U22-、前記U23-および前記U24+のそれぞれは、前記導線の連続巻によって構成され、かつ、前記導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、
     前記V21-、前記V22+、前記V23+および前記V24-のそれぞれは、前記導線の連続巻によって構成され、かつ、前記導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、
     前記W11+、前記W12-、前記W13-および前記W14+のそれぞれは、前記導線の連続巻によって構成され、かつ、前記導線の巻き始めの部分と巻き終わりの部分とが導通するように接続され、
     前記U11-と前記U12+との間の前記導線の部分、前記U13+と前記U14-との間の前記導線の部分、前記V11+と前記V12-との間の前記導線の部分、前記V13-と前記V14+との間の前記導線の部分、前記W21-と前記W22+との間の前記導線の部分、前記W23+と前記W24-との間の前記導線の部分、前記U21+と前記U22-との間の前記導線の部分、前記U23-と前記U24+との間の前記導線の部分、前記V21-と前記V22+との間の前記導線の部分、前記V23+と前記V24-との間の前記導線の部分、前記W11+と前記W12-との間の前記導線の部分、および、前記W13-と前記W14+との間の前記導線の部分のそれぞれに設けられた接続線をさらに備えたことを特徴とする請求項3に記載の回転電機。
    Each of the U11−, the U12 +, the U13 +, and the U14− is constituted by a continuous winding of the conducting wire, and is connected so that a winding start portion and a winding end portion of the conducting wire are electrically connected,
    Each of the V11 +, the V12−, the V13−, and the V14 + is constituted by a continuous winding of the conducting wire, and is connected so that a winding start portion and a winding end portion of the conducting wire are electrically connected,
    Each of the W21−, the W22 +, the W23 +, and the W24− is configured by continuous winding of the conductive wire, and is connected so that a winding start portion and a winding end portion of the conductive wire are electrically connected,
    Each of the U21 +, the U22−, the U23−, and the U24 + is configured by a continuous winding of the conductive wire, and is connected so that a winding start portion and a winding end portion of the conductive wire are electrically connected,
    Each of the V21−, the V22 +, the V23 +, and the V24− is configured by continuous winding of the conductive wire, and is connected so that a winding start portion and a winding end portion of the conductive wire are electrically connected,
    Each of the W11 +, the W12−, the W13−, and the W14 + is configured by continuous winding of the conducting wire, and is connected so that a winding start portion and a winding end portion of the conducting wire are electrically connected,
    A portion of the conductive wire between the U11− and the U12 +, a portion of the conductive wire between the U13 + and the U14−, a portion of the conductive wire between the V11 + and the V12−, the V13− and the A portion of the conducting wire between V14 +, a portion of the conducting wire between W21− and W22 +, a portion of the conducting wire between W23 + and W24−, and between U21 + and U22−. A portion of the conducting wire, a portion of the conducting wire between the U23− and the U24 +, a portion of the conducting wire between the V21− and the V22 +, a portion of the conducting wire between the V23 + and the V24−, And further comprising a connecting wire provided in each of the portion of the conducting wire between W11 + and W12- and the portion of the conducting wire between W13- and W14 +. The rotating electrical machine according to claim 3.
  5.  同一の前記ティースに設けられた一対の前記巻線が同相の前記巻線である場合のそれぞれの前記巻線のターン数をTとすると、同一の前記ティースに設けられた一対の前記巻線が異相の前記巻線である場合のそれぞれの前記巻線のターン数が2×T/√3であることを特徴とする請求項3または請求項4に記載の回転電機。 When the number of turns of each of the windings when the pair of windings provided in the same tooth is the same-phase winding is T, the pair of windings provided in the same tooth 5. The rotating electrical machine according to claim 3, wherein the number of turns of each of the windings in the case of the different-phase windings is 2 × T / √3.
  6.  前記U12+および前記U13+と前記U11-および前記U14-との間の接続は、直列接続と並列接続とに切り替え可能であり、
     前記V12-および前記V13-と前記V11+および前記V14+との間の接続は、直列接続と並列接続とに切り替え可能であり、
     前記W22+および前記W23+と前記W21-および前記W24-との間の接続は、直列接続と並列接続とに切り替え可能であり、
     前記U22-および前記U23-と前記U21+および前記U24+との間の接続は、直列接続と並列接続とに切り替え可能であり、
     前記V22+および前記V23+と前記V21-および前記V24-との間の接続は、直列接続と並列接続とに切り替え可能であり、
     前記W12-および前記W13-と前記W11+および前記W14+との間の接続は、直列接続と並列接続とに切り替え可能であることを特徴とする請求項3ないし請求項5の何れか1項に記載の回転電機。
    The connection between the U12 + and the U13 + and the U11− and the U14− can be switched between a series connection and a parallel connection,
    The connection between the V12− and the V13− and the V11 + and the V14 + can be switched between a series connection and a parallel connection,
    The connection between the W22 + and the W23 + and the W21− and the W24− can be switched between a series connection and a parallel connection,
    The connection between the U22− and the U23− and the U21 + and the U24 + can be switched between a series connection and a parallel connection,
    The connection between the V22 + and the V23 + and the V21− and the V24− can be switched between a series connection and a parallel connection,
    6. The connection between the W12− and the W13− and the W11 + and the W14 + can be switched between a series connection and a parallel connection. Rotating electric machine.
  7.  直列接続された前記U11-、前記U12+、前記U13+および前記U14-と直列接続された前記U21+、前記U22-、前記U23-および前記U24+との間の接続は、直列接続と並列接続とに切り替え可能であり、
     直列接続された前記V11+、前記V12-、前記V13-および前記V14+と直列接続された前記V21-、前記V22+、前記V23+および前記V24-との間の接続は、直列接続と並列接続とに切り替え可能であり、
     直列接続された前記W21-、前記W22+、前記W23+および前記W24-と直列接続された前記W21-、前記W22+、前記W23+および前記W24-との間の接続は、直列接続と並列接続とに切り替え可能であることを特徴とする請求項6に記載の回転電機。
    The connection between the U11−, U12 +, U13 + and U14− connected in series with the U21 +, U22−, U23− and U24 + connected in series is switched between a serial connection and a parallel connection. Is possible,
    The connection between the V11 +, the V12−, the V13− and the V14 + connected in series with the V21−, the V22 +, the V23 + and the V24− connected in series is switched between a series connection and a parallel connection. Is possible,
    The connection between W21−, W22 +, W23 + and W24− connected in series with W21−, W22 +, W23 + and W24− connected in series is switched between series connection and parallel connection. The rotating electrical machine according to claim 6, which is possible.
  8.  同一の前記ティースに設けられた一対の前記巻線が同相の前記巻線である場合のそれぞれの前記巻線を構成する各前記導線の線径をφaとし、同一の前記ティースに設けられた一対の前記巻線が異相の前記巻線である場合のそれぞれの前記巻線を構成する各前記導線の線径をφbとした場合、φa>φbであることを特徴とする請求項3ないし請求項7の何れか1項に記載の回転電機。 When the pair of windings provided in the same tooth is the same-phase winding, the wire diameter of each of the conductive wires constituting each winding is φa, and the pair provided in the same tooth When the wire diameter of each said conducting wire which comprises each said coil | winding in case the said coil | winding of a different phase is said coil | winding is set to (phi) b, it is (phi) a> (phi) b. The rotating electrical machine according to any one of 7.
PCT/JP2010/069588 2010-05-28 2010-11-04 Rotating electric machine WO2011148527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-123269 2010-05-28
JP2010123269A JP2013165532A (en) 2010-05-28 2010-05-28 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2011148527A1 true WO2011148527A1 (en) 2011-12-01

Family

ID=45003531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069588 WO2011148527A1 (en) 2010-05-28 2010-11-04 Rotating electric machine

Country Status (3)

Country Link
JP (1) JP2013165532A (en)
TW (1) TW201143259A (en)
WO (1) WO2011148527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165566A (en) * 2012-02-10 2013-08-22 Mitsubishi Electric Corp Rotary electric machine and method of manufacturing stator used therefor
JP2014168369A (en) * 2013-01-29 2014-09-11 Okuma Corp Three-phase AC motor
CN111416457A (en) * 2019-01-08 2020-07-14 现代摩比斯株式会社 Electrical machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6591268B2 (en) * 2015-11-27 2019-10-16 株式会社東芝 Permanent magnet rotating electric machine and permanent magnet rotating electric machine stator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287109A (en) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp Stator of rotary electric machine
JP2007221961A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Electric machine
JP2010088271A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Permanent magnet type synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287109A (en) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp Stator of rotary electric machine
JP2007221961A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Electric machine
JP2010088271A (en) * 2008-10-02 2010-04-15 Nissan Motor Co Ltd Permanent magnet type synchronous motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165566A (en) * 2012-02-10 2013-08-22 Mitsubishi Electric Corp Rotary electric machine and method of manufacturing stator used therefor
JP2014168369A (en) * 2013-01-29 2014-09-11 Okuma Corp Three-phase AC motor
CN111416457A (en) * 2019-01-08 2020-07-14 现代摩比斯株式会社 Electrical machine
CN111416457B (en) * 2019-01-08 2023-02-03 现代摩比斯株式会社 Electrical machine

Also Published As

Publication number Publication date
JP2013165532A (en) 2013-08-22
TW201143259A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US8471428B2 (en) Rotating electrical machine
US9130431B2 (en) Stator for rotary electrical machine
JP6623961B2 (en) Rotating machine stator
US9444296B2 (en) Stator winding of electrical rotating machine
TW201521330A (en) Concentrated type motor
KR102230326B1 (en) Rotating electric machines and direct-acting motors
US20140021815A1 (en) Electricity collection and distribution ring and electric motor
US9240707B2 (en) Rotary electric machine
WO2014034712A1 (en) Dynamo-electric machine
US7638917B2 (en) Electrical rotating machine
JP4567133B2 (en) Rotating electric machine and manufacturing method thereof
WO2011148527A1 (en) Rotating electric machine
CN111555505A (en) Motor stator and motor
US20230369921A1 (en) Stator and motor
JP2012124984A (en) Rotary electric machine
JP5072502B2 (en) Rotating motor
CN112583168A (en) Motor stator winding, stator and motor
JP6498775B2 (en) Stator and rotating electric machine
JP6582973B2 (en) Rotating electric machine and manufacturing method thereof
JP5611094B2 (en) Rotating electric machine
CN212033862U (en) Motor stator and motor
CN212033861U (en) Motor stator and motor
CN214124962U (en) Motor stator and motor
TW201330456A (en) Variable frequency speed regulation motor device
WO2022264588A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP