WO2011145895A2 - Reflective light absorbance measuring apparatus and integrated apparatus for measuring reflective light absorbance and for lateral flow assay comprising same - Google Patents

Reflective light absorbance measuring apparatus and integrated apparatus for measuring reflective light absorbance and for lateral flow assay comprising same Download PDF

Info

Publication number
WO2011145895A2
WO2011145895A2 PCT/KR2011/003703 KR2011003703W WO2011145895A2 WO 2011145895 A2 WO2011145895 A2 WO 2011145895A2 KR 2011003703 W KR2011003703 W KR 2011003703W WO 2011145895 A2 WO2011145895 A2 WO 2011145895A2
Authority
WO
WIPO (PCT)
Prior art keywords
lateral flow
sample
flow analysis
reflective
light
Prior art date
Application number
PCT/KR2011/003703
Other languages
French (fr)
Korean (ko)
Other versions
WO2011145895A3 (en
Inventor
김병철
이재민
정정혁
Original Assignee
바디텍메드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바디텍메드 주식회사 filed Critical 바디텍메드 주식회사
Publication of WO2011145895A2 publication Critical patent/WO2011145895A2/en
Publication of WO2011145895A3 publication Critical patent/WO2011145895A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells

Definitions

  • the present application relates to a reflective absorbance measuring device and an integrated device capable of performing both reflective absorbance measurement and lateral flow analysis.
  • immunodiagnostic methods including RIA and ELISA
  • one type of analyte can usually be quantified using expensive analyzers in laboratories in a complex multi-step process. Therefore, it is not easy to use in a small hospital, emergency room, home, etc. without such facilities or equipment.
  • Diagnostic products designed to compensate for this weak point is a simple diagnostic kit using immunochromatography method.
  • the immunochromatography method can be used as a diagnostic kit to apply whole blood, serum, and urine biopsies to the designed device so that the test results can be quickly confirmed.
  • One example of immunochromatography methods is the use of lateral flow analysis methods, which are widely used in various fields such as pregnancy diagnosis, cancer diagnosis, the presence of other specific proteins or genes, or microbial detection.
  • lateral flow assays are based on specific reactions between two substances, such as, for example, antigen-antibody responses, which are included in the blood to correct and / or secure them with these tests, or to obtain additional information.
  • concentration of other substances such as hemoglobin
  • a separate absorbance measuring device / apparatus generally transmits light to perform absorbance measurement, so that a light source, a light detector, and a measurement device containing a sample are not easily disposed.
  • the present invention was created to solve the problems as described above, the problem to be solved by the present application is to provide a reflective absorbance measuring device that can quickly and easily measure the absorbance while maintaining a certain accuracy.
  • Another problem to be solved by the present application is to provide a reflection absorbance measurement and lateral flow analysis integrated device that can be performed in a single device quickly and simply while maintaining the lateral flow analysis and absorbance measurement.
  • the present application is a base member formed with a sample receiving portion; A cover member covering an upper end of the base member; And a light transmitting member interposed between the base member and the cover member, wherein the cover member is provided with a sample inlet for feeding the sample into the sample receiving portion and a reflected light side window so as to be perpendicular to the sample receiving portion.
  • the member provides a reflective absorbance measuring device positioned to correspond to the reflected light measuring window.
  • the present application also provides a reflective absorbance measuring apparatus including a bottom portion for reflecting light incident through the light transmitting member.
  • the present application also provides a reflective absorbance measuring device, wherein the reflected light measuring window extends in one direction on the cover member, and the sample accommodating part extends in the one direction on the base member.
  • the present application also provides a reflectance absorbance measuring apparatus having two sample inlets, and the reflected light measuring window is formed between the two sample inlets.
  • the present invention also provides a reflective absorbance measuring device wherein the light transmitting member is formed at a position lower than the sample inlet.
  • the reflective absorbance measuring apparatus of the present application includes a light source disposed above the cover member, and an upper side of the cover member to measure an amount of light reflected from the light source after being irradiated to the sample receiving unit through the light transmitting member. It may further comprise a photo detector disposed in. The photo detector may be arranged to deviate on a vertical line in which the light source exists.
  • the present application also provides an apparatus for reflection absorbance and lateral flow analysis in which absorbance measurement and lateral flow assay of a sample can be performed all at once, the aforementioned reflection absorbance measuring device, and the reflection absorption measurement
  • a reflective absorbance and lateral flow analysis integrated device comprising a lateral flow analysis device disposed adjacent to the device.
  • the present invention also provides a reflective absorbance and lateral flow analysis integrated device which is formed in a straight line or side by side the reflective absorbance measuring device.
  • the present invention also provides a reflective absorbance and lateral flow analysis integrated device of two or more of the reflective absorbance measuring device and the lateral flow analysis device.
  • the present application also includes two reflective absorbance measuring devices and two lateral flow analysis devices, and one reflective absorbance measuring device and one lateral flow analysis device are arranged on a straight line, and the other reflective absorbance measuring device is provided. And one side flow analysis device is also arranged in a date, the two-day reflective absorbance measuring device and side flow analysis device provides a reflective absorbance and side flow analysis integrated device arranged side by side.
  • Apparatus of the present application is not only easy loading (loading) of the sample, but also by the absorbance measurement is made by reflection, absorbance measurement can be made more simply and easily while maintaining a certain accuracy.
  • the lateral flow analysis information and the absorbance measurement information can be measured together more quickly and easily while maintaining a predetermined accuracy.
  • FIG. 1 is an exploded perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 2 is an exploded perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application with a light transmitting member inserted into a reflected light measuring window.
  • FIG 3 is a perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 4 is a plan view of the cover member of the reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 5 is a plan view of the base member of the reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 3.
  • FIG. 7 is a cross-sectional view showing a schematic use example of the reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 8 is a front view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 9 is an exploded perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application.
  • FIG. 10 is an exploded perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application with the light transmitting member inserted into the reflected light measuring window.
  • FIG. 11 is a perspective view of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application.
  • FIG. 12 is a plan view of a cover member of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present disclosure.
  • FIG. 13 is a plan view of a base member of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present disclosure.
  • 15 is a front view of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application.
  • 16 is a perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application.
  • FIG. 17 shows the absorbance measured by the reflective absorbance measuring device of the reflective absorbance measuring device according to one embodiment of the present application or the reflective absorbance measuring and lateral flow analysis integrated device according to another embodiment of the present application, converted into Hb concentration.
  • the result is a graph comparing the result of the conventional Hb concentration measurement.
  • the reflective absorbance measuring apparatus 100 includes a base member 110 including a sample accommodating portion 111 on which a sample 300 is placed, and a base member.
  • the sample receiving portion 111 includes a reflection light measuring window 125 formed in a vertically corresponding portion, and a light transmitting member 127 inserted into the reflected light measuring window 125 It is characterized by.
  • the cover member 120 is covered with the base member 110 to be interlocked with each other at an interface 130 thereof, thereby substantially waterproof and aerosol proof. It becomes a seal.
  • FIG. 1 is an exploded perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application
  • Figure 2 is an exploded perspective view of the reflective absorbance measuring apparatus according to an embodiment of the present application with the light transmitting member inserted into the reflected light measuring window
  • 3 is a perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present disclosure.
  • FIG 4 is a plan view of the cover member of the reflective absorbance measuring apparatus according to an embodiment of the present application
  • Figure 5 is a plan view of the base member of the reflective absorbance measuring apparatus according to an embodiment of the present application.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 3
  • FIG. 7 is a cross-sectional view illustrating a schematic use example of a reflective absorbance measuring apparatus according to an exemplary embodiment of the present disclosure.
  • 8 is a front view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
  • the reflective absorbance measuring apparatus 100 covers a base member 110 having a sample accommodating portion 111 and an upper end of the base member 110.
  • Reflective light measuring window 125 is formed to be perpendicular to the sample inlet (121, 123) and the sample receiving portion for injecting, and the light transmitting member 127 is positioned so as to correspond to the reflected light measuring window, the reflective absorbance It is a measuring device.
  • the cover member 120 is covered with the base member 110 to be interlocked with each other at an interface 130 thereof, thereby substantially waterproof and aerosol proof. It becomes a seal.
  • the sample 300 refers to a material including an analyte that can be used in the device of the present application, and is a liquid or liquid-like fluid material, for example, various solid tissues / cells, blood, saliva, urine, sweat, Body hair or material extracted therefrom, or the like, or various materials such as materials collected from the environment (eg, atmosphere, soil, water, etc.).
  • a liquid or liquid-like fluid material for example, various solid tissues / cells, blood, saliva, urine, sweat, Body hair or material extracted therefrom, or the like, or various materials such as materials collected from the environment (eg, atmosphere, soil, water, etc.).
  • examples include, but are not limited to, blood, urine, saliva, and the like may include whole blood, plasma, serum, or blood, plasma, serum, etc. that have undergone a predetermined treatment (eg, anticoagulant).
  • Extracts of tissues or cells are for example selected from carbohydrates, lipids, nucleic acids, proteins and the like.
  • the analyte is not limited thereto, for example, but a marker associated with various diseases, such as C-Reactive Protein (CRP), Prostate Specific Antigen (PSA), alpha-Feto Protein (AFP), and CA-125 (Cancer).
  • CRP C-Reactive Protein
  • PSA Prostate Specific Antigen
  • AFP alpha-Feto Protein
  • CA-125 Cancer
  • Antigen 125 CA19-9, microalbumin, HbA1c (Hemoglobin A1c), cTn-I / T (Cardiac Troponin I and T) and the like.
  • the sample accommodating part 111 may reflect the light source 400 incident through the light transmitting member 127 to the bottom part 111a. It may be characterized in that it comprises a.
  • a material capable of reflecting the light source 400 incident through the light transmitting member 127 may be used for the bottom portion 111a of the present application.
  • the material may be appropriately selected according to the type of the light source 400.
  • any white polymer material may be used as the reflective material.
  • ABS Acrylonitrile, Butadiene, Styrene
  • PS Polystyrene
  • PE polyethylene
  • PP polypropylene
  • a smooth reflective surface having specular reflection characteristics such as metals such as aluminum, titanium, or chromium, may be used.
  • the above-described reflective material is provided as an example, and the material of the bottom 111a is not limited thereto.
  • light emitted from the light source 400 is incident on the sample 300 through the light transmitting member 127 at a position corresponding to the reflected light measuring window 125, and then the bottom portion ( It may be diffusely reflected at 111a and travel out again through the light transmitting member 127.
  • the sample 300 is introduced into the sample accommodating part 111 through the sample inlets 121 and 123. After the sample 300 is input, the sample is sampled as shown in FIG. It is accommodated in the receiving portion 111. At this time, it is preferable that the height of the received sample 300 is equal to or lower than the lower surface of the light transmitting member 127 as shown in FIG. Referring to FIG. 7, when the light irradiated from the light source 400 through the light transmitting member 127 passes through the sample 300 and reaches the bottom 111a of the sample accommodating portion 111, the light is reflected. This is because the absorbance with respect to the uniform thickness can be measured only when the sample 300 is formed to be equal to or higher than the lower surface of the light transmitting member 127.
  • the light transmitting member 127 may have a lower surface formed at a position lower than the sample inlets 121 and 123. That is, in order for the sample 300 to be unloaded higher than or lower than the lower surface of the light transmitting member 127, the lower surface of the light transmitting member 127 is preferably formed at a lower position than the sample inlets 121 and 123.
  • the height is adjusted as described above, it is not necessary to accurately measure the volume of the sample 300 to be unloaded using a pipette every time, as in the conventional case, to 1 ⁇ l unit, thereby reducing errors due to the absence of accurate quantification.
  • It can be convenient for the user. That is, when the sample 300 is filled to at least the lower surface of the light investment member 127, the volume of the sample 300 to be loaded onto the sample accommodating part 111 is determined, and thus the use is much easier. For example, the user may take a certain amount of sample 300 with a pipette and then unload the sample to a line filling the sample accommodating portion 111.
  • the volume of the sample to be loaded will depend on the specific size of the device, but if the device is made for use with i- Chroma (Bodytec Med, Korea) as a reader, the size of the device is not limited thereto. It is approximately 1.5 cm (width) x 4 cm (length) x 0.4 cm (height), wherein the volume of the sample to be loaded can range from about 50 ⁇ l to about 250 ⁇ l, in particular about 100 ⁇ l.
  • the size of the device refers to the size of the reflective absorbance measuring apparatus 100, the size of the reflective absorbance measurement and side flow analysis integrated device 200 to be described later is approximately 1.5cm (width) ⁇ 9.3cm (length) It may be, but not limited to, a height of 0.4 cm.
  • the size of the reflected light measurement window 125 may be set differently according to the specific size of the device, the conditions of the light source 400 and the light detector 500, the material of the light transmitting member 127, etc. Is manufactured for use in i- Chroma (Bodytec Med Co., Korea), the size of the reflected light measuring window 125 may be approximately 0.5cm (width) x 0.7cm (length).
  • the half-light measuring window serves as a light transmitting member, in which case the light transmitting member, the sample inlets 121 and 123 and the reflected light measurement Areas other than windows should be surface treated to prevent light transmission.
  • the height of the received sample 300 is not necessarily equal to or higher than the lower surface of the light transmitting member 127, and may be flexibly adjusted according to the type of the sample 300 to measure absorbance.
  • the height or thickness of the received sample 300 may be adjusted by adjusting the thickness of the light transmitting member 127. In one embodiment of the present application when the sample receiving portion 111 is filled through one of the sample inlet (121, 123) so that the height of the received sample 300 is equal to or higher than the lower surface of the light transmitting member 127 Is produced.
  • sample inlets 121 and 123 may be formed. If only one sample inlet is formed, air enters the sample accommodating part 111, and the sample 300 is not properly input to the sample accommodating part 111, or air that is not mixed with the injected sample 300 is mixed to measure incorrect absorbance. This can be done. Therefore, a plurality of sample inlets 121 and 123 may be formed in order to facilitate the input of the sample 300 and, if necessary, the discharge of the sample, and to perform accurate absorbance measurement. For example, if there are two, one may be used for the input of a sample, and the other may be formed in a structure through which air can pass to cause a capillary phenomenon.
  • the sample inlets 121 and 123 may include two sample inlets 121 and 123, and the reflection light measuring window 125 may be formed between the two sample inlets 121 and 123. You can do
  • the reflected light measuring window 125 may be formed at a portion vertically corresponding to the sample accommodating part 111 when the cover member 120 covers the upper end of the base member 110. Since the reflection light measuring window 125 is formed between the two sample inlets 121 and 123, the sample accommodating part 111 is also positioned between the two sample inlets 121 and 123. Therefore, for example, referring to FIG. 6A, after the sample 300 is injected into the sample inlet 121 on the right side, absorbance measurement is performed and the sample 300 is discharged into the sample inlet 123 on the left side. Can be.
  • the sample inlets 121 and 123 may have the same size or different sizes.
  • the large sample inlet 121 becomes the main inlet of the sample, and the small sample inlet 123 is disposed in the sample accommodating part 111 when the sample is unloaded. It can also play a secondary role, such as allowing air to settle out.
  • the reflective absorbance measuring apparatus 100 may include a light source 400 disposed above the cover member 120, and a sample accommodating part through the light transmitting member 127 from the light source 400.
  • the light detector 500 may further include a photo detector 500 disposed above the cover member 120 to measure an amount of light that is reflected after being irradiated to the 111.
  • one or more light sources 400 may be provided as necessary.
  • the light source for example, but not limited to, a light emitting diode (LED), ultra violet (UV), and a laser may be used.
  • a 540 nm wavelength LED can be used for hemoglobin measurements.
  • the measurement of nucleic acid proteins can be used UV light source of 255 ⁇ 380nm band.
  • the amount of reflected light measured by the photo detector 500 may be converted into a concentration of an object to be measured according to a known method.
  • the light detector 500 may be disposed to be deflected on a vertical line in which the light source 400 is present.
  • the light source 400 and the light detector 500 are preferably disposed away from the light detector 500 such that they are not on the same vertical line.
  • the arrangement so as to deviate means that the arrangement so as not to be on the same vertical line. Therefore, since they are arranged to be on the same horizontal line so as not to be on the same vertical line may be included in one embodiment of the present application.
  • the reflected light measuring window 125 may be formed to extend in one direction on the cover member 120, and the sample accommodating part 111 may be formed to extend in one direction on the base member 110.
  • the reflection light measuring window 125 and the sample accommodating part 111 may be formed to extend in one direction so as to freely arrange the light source 400 and the light detector 500 for minimizing the influence of the surface reflected light.
  • the light source 400 and the photo detector 500 may be disposed to minimize the influence of the surface reflected light along a direction parallel to one direction.
  • the light source 400 and the photo detector 500 are preferably not disposed on the same vertical line as described above.
  • the reflected light measuring window 125 and the sample accommodating part 111 are formed to extend in one direction so that the position of the given light source 400 can be accommodated more widely. That is, according to the position of the light source 400 at the time of absorbance measurement, the range in which the present apparatus can be set can be wider.
  • the reflective absorbance measuring apparatus 100 of the present disclosure may be manufactured in various shapes and sizes according to the type of the reader. For example, it can be manufactured in strip form and can be used in various absorbance measuring instruments (readers) that can accommodate such strip-shaped devices, and the size can be variously made accordingly.
  • Reflective absorbance measurement apparatus 100 of the present application can be widely used in the reader for measuring the absorbance in a reflective manner, for example, but not limited to i- Chroma (Bodytec Med Co., Korea), blood It may be applicable to coagulometer and the like.
  • the square shape 110a through the square hole 120a may serve as a standard reflector for generating a signal for background calibration.
  • the square hole 120a and the square shape 110a may also serve as a physical structural aid for the base member 110 and the cover member 120 to be engaged with each other.
  • the semi-circular protrusion (120b) may be a portion that makes it easy to hold the device when you want to discharge the sample.
  • Such matters may also be applied to the rectangular holes 120a, the square shapes 110a, and the semi-circular protrusions 120b shown in FIGS. 9 to 15 in the reflective absorbance measurement and lateral flow analysis integrated apparatus according to another embodiment of the present disclosure. The same may apply. 1 to 15 of the present application is illustrative, the shape of each part employed therein is also illustrative and it will be apparent to those skilled in the art that various shapes may be employed.
  • FIG. 9 is an exploded perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application
  • Figure 10 is a reflective absorbance according to another embodiment of the present application with the light transmitting member inserted into the reflected light measurement window
  • FIG. 11 is a perspective view of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present disclosure.
  • FIG. 12 is a plan view of a cover member of the reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application
  • FIG. 13 is a base of the reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application. It is a top view of the member.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV of FIG. 11, and FIG. 15 is a front view of the reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present disclosure.
  • the reflective absorbance measurement and lateral flow analysis integrated apparatus 200 may measure the absorbance of the sample 300 and the target analyte of the sample 300.
  • the integrated device means that the absorbance measuring device and the lateral flow analyzer are physically connected, and the lateral flow analysis disposed adjacent to the aforementioned reflective absorbance measuring device 210 and the reflective absorbance measuring device 210 is described.
  • Device 220 Adjacent arrangements can be made in various ways to suit the structure / shape of the reader used.
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220 are located in front and rear (or rear and front) in the longitudinal direction as shown in FIGS. 9 to 15.
  • the absorbance measuring device and the lateral flow analysis device may be formed in a form arranged side by side from side to side.
  • the arrangement means that the device is arranged along the long side direction of the device, that is, the longitudinal direction
  • the side-by-side arrangement may mean that the device is arranged along the short side of the device, that is, the transverse direction.
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220 may each be one or more.
  • two reflective absorbance measuring apparatuses 210 may be formed, and one lateral flow analyzing apparatus 220 may be formed.
  • the unitary device may include one lateral flow analysis device 220 and two reflective absorbance measurement devices 210. When they are arranged in a date, two reflective absorbance measuring apparatuses 210 may be arranged back and forth with one lateral flow analyzer 220 at the center.
  • two reflective absorbance measuring devices 210 may be disposed to the left and right, with one side flow analysis device 220 at the center, or the side flow analysis device 220 may be disposed at the front (or the rear) and two The reflective absorbance measuring device 210 may be arranged in a row behind (or in front of) the light absorbance measuring device 210.
  • one side flow analysis device 220 may be disposed on the left side (or right side), and the two reflective absorbance measuring apparatuses 210 may be arranged side by side on the right side (or the left side thereof).
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220, each provided with one or more may be variously arranged according to the structure / shape of the reader used.
  • 16 is a perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application.
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220 may be two or more, respectively.
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220 are two, respectively, one of the two reflective absorbance measuring devices 210 and one side flow.
  • the analysis device 220 is arranged in a date, and the other reflective absorbance measuring device 210 and one lateral flow analysis device 220 are also arranged in a date and two reflective absorbance measuring devices ( 210 and the lateral flow analysis device 220 may be arranged side by side.
  • the reflective absorbance measuring device 210 arranged side by side and the side flow analysis device 220 also arranged side by side may have a lined up order in front and rear (or reverse order).
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220 are integrally formed so that the lateral flow analysis and the absorbance measurement are performed in one device 200, thereby the lateral flow analysis information and the absorbance measurement information. Can be made more quickly and easily.
  • the reflective absorbance measuring device 210 includes a base member 110 including a sample accommodating portion 111 on which a sample 300 is placed, and an upper end of the base member 110. It includes a cover member 120 to cover the cover member 120, the sample inlet 121, 123 is formed so that the sample 300 can be injected into the sample receiving portion 111, the upper end of the base member 110 It is characterized in that it comprises a reflected light measuring window 125 formed in a portion corresponding to the sample receiving portion 111 and the vertical when the cover, and a light transmitting member 127 inserted into the reflected light measuring window 125.
  • the lateral flow analysis device 220 is a lateral flow assay (lateral flow assay) for quantitatively or qualitatively measuring the target analyte (analyte) of the sample 300 can be implemented through a known configuration and those skilled in the art You may choose the appropriate one.
  • the lateral flow analysis device 220 is disposed adjacent to the reflective absorbance measuring device 210 and has a separate sample inlet 221 and a measurement window formed in the cover member 120. (223) And a strip receiving portion 225 capable of receiving the strip 600 described below in the base member 110.
  • the measurement window 223 may be a window for measuring the binding of the antigen antibody in the lateral flow analysis.
  • Absorbance measurement apparatus of the present application and the one-piece device capable of lateral flow analysis including the same can be made of chemically stable synthetic resin and combinations thereof.
  • synthetic resin for example, but not limited to polyethylene, polypropylene, polystyrene, polyethylen terephthalate, polyamide, polyester, polyvinyl chloride, polyurethane, polycarbonate, polyvinylidene chloride, polytetrafluoromethylene, polyether
  • plastics of thermosetting and thermoplastic such as mead and combinations thereof can be prepared using known molding methods.
  • the present invention is not necessarily limited thereto, and any material may be used as long as the material is suitable for the purpose of the present apparatus.
  • the apparatus of the present application may be manufactured using injection, rotation, extrusion and / or calendering methods according to various kinds of known molding methods, such as, but not limited to, the type of material.
  • the device of the present invention is a cover member and the base member is ABS resin (Acrylonitrile, Butadiene, Styrene), the transparent window is injection molded acrylic Are manufactured.
  • ABS resin Acrylonitrile, Butadiene, Styrene
  • the transparent window is injection molded acrylic Are manufactured.
  • Those skilled in the art will be able to select materials and molding methods suitable for the purpose of the present application from various known materials and molding methods for manufacturing the device.
  • various additives for producing a device suitable for the purpose of the present application for example, fillers, plasticizers, stabilizers, colorants, antistatic agents and the like can be used as needed.
  • the lateral flow analysis herein is for example using immunochromatography analysis.
  • various known strips 600 may be used, but are not limited thereto, for example, those disclosed in Korean Patent Publication No. 2009-0006999 or 2005-0072015 may be used.
  • a sample pad to which a sample is applied, a release pad coated with a detection antibody, and a membrane for development in which a sample is moved and separated and an antibody antigen reaction occurs mainly Nitrocellulose
  • the detection antibody is immobilized on, for example, colloidal gold particles to label the detection. Latex beads or carbon particles may be used instead of gold particles.
  • Diagnostic kits for lateral flow analysis are usually designed to detect analytes in the form of sandwiches.
  • the analyte in the liquid sample is applied to the sample pad and begins to move, first developing in the form of an antigen-antibody conjugate by first reacting with a detection antibody that is unfixedly coated on the release pad. As it moves, it reacts with the capture antibody immobilized on the developing membrane once more to form a sandwich-like complex. Since the capture antibody is immobilized on the developing membrane, if antigen-antibody reactions continue to occur, accumulation of the complex takes place on the fixed side of the capture antibody. Since proteins are transparent to the naked eye, the formation and relative amounts of complexes are determined by the amount of gold or silver particles attached.
  • the integrated device 200 of the present disclosure may be manufactured in strip form and may be used in various absorbance measuring equipment (readers) capable of accommodating such strip form device, and the size may be variously manufactured accordingly.
  • Equipment in which the integrated device 200 of the present application can be used is not limited to, for example, i- Chroma (Bodytecmed Co., Korea) or Triage System (Biosite, Sweden), Triage System (Biosite), RAMP System (Response Biomedical, Canada), and may be applicable to all cases in which the measurement by the absorption method is added in all measurement methods using the lateral flow method.
  • the reflective absorbance measuring device 210 may be used for detecting and / or quantifying various biological materials using absorbance measurement. For example, but not limited to, absorbance measurements for detecting changes in color, generation / change of substances, etc. due to chemical reactions by addition of hemoglobin (Hb), microorganisms, proteins and DNA, and other enzymes / catalysts Water pollution (BOD, COD), GPT / GOT (Liver Function) test, enzyme activity test using NADH production (eg ADH alcohol dehydrogenase, antioxidant activity).
  • absorbance measurements for detecting changes in color, generation / change of substances, etc. due to chemical reactions by addition of hemoglobin (Hb), microorganisms, proteins and DNA, and other enzymes / catalysts Water pollution (BOD, COD), GPT / GOT (Liver Function) test, enzyme activity test using NADH production (eg ADH alcohol dehydrogenase, antioxidant activity).
  • Information that can be measured in the lateral flow analysis device 220 is not limited thereto, but high sensitivity C-reactive protein (hsCRP), MicroCRP, HbA1c (glycosylated hemoglobin), microalbumin, PSA (prostate specific antigen), and AFP (alpha- fetoprotein) and cTnI (Cardiac Troponin I).
  • a predetermined correction for example, Hb correction
  • Hb correction is performed on the measured value for the accuracy of the measured value.
  • this information can be obtained in one measurement.
  • the HbA1c test was performed separately from the Alc test using lateral flow and the hemoglobin test using absorbance.
  • such inspection can be performed at once to obtain comprehensive information.
  • the use of the integrated device of the present application in a reader for example I-Chroma, allows these two measurements to be performed at once.
  • the measurement of information such as HsCRP, A1c through the lateral flow analysis tool and the measurement of information such as Hb using a separate absorbance measurement tool was time delayed and cumbersome, but the application 200 is integrated Since both information can be measured, comprehensive information can be obtained much more quickly and easily.
  • the absorbance measurement is performed by the reflection type, the arrangement of the present application 200, the light source 400, and the photo detector 500 is much simpler than the transmission absorbance measurement.
  • the predetermined accuracy in the measurement is also secured.
  • the sample accommodating part 111 includes a bottom part 111a reflecting the light source 400 incident through the light transmitting member 127. You can do
  • the reflected light measuring window 125 may be formed to extend in one direction on the cover member 120, and the sample accommodating part 111 may be formed to extend in one direction on the base member 110.
  • the sample inlets 121 and 123 are composed of two sample inlets 121 and 123, and the reflection light measuring window 125 has two sample inlets 121 and 123. It may be characterized in that formed between.
  • the reflective absorbance measuring device 210 is irradiated from the light source 400 disposed above the cover member 120 to the sample accommodating part 111 through the light transmitting member 127 from the light source 400 and then reflected. It may further include a photo detector 500 for measuring the amount of light coming out. In addition, the light detector 500 may be disposed to be deflected on a vertical line in which the light source 400 is present.
  • the light source 400 is disposed away from the light detector 500 such that the light source 400 and the light detector 500 are not on the same vertical line as shown in FIG. 7. This is preferable.
  • the light source 400 and the light detector 500 are not necessarily disposed in the order or position as shown in FIG. 7, and may be disposed in a direction that minimizes the influence of the surface reflected light.
  • FIG. 17 shows the absorbance measured by the reflective absorbance measuring device of the reflective absorbance measuring device according to one embodiment of the present application or the reflective absorbance measuring and lateral flow analysis integrated device according to another embodiment of the present application, converted into Hb concentration.
  • the result is a graph comparing the result of the conventional Hb concentration measurement.
  • FIG. 17 compares the result calculated through the arrangement of the light source 400 and the photo detector 500 having the same shape as that of FIG. 7 with existing results.
  • the blood sample 300 processed through the sample inlet 121 is placed in the sample accommodating part 111, and then the sample 300 placed in the sample accommodating part 111 by the light source 400 (LED) having a wavelength of 520 nm. ) Was irradiated through the light transmitting member 127.
  • the reflected reflected light was measured by the photodetector 500 to obtain absorbance, and converted into Hb concentration.
  • the Y side is the Hb concentration obtained through the present application (100, 210)
  • the X-axis is the Hb concentration measured by the model of the existing Hemocue (Hemocue) Hb-301.
  • the absorbance and hemoglobin concentration measurement can be made more simply and easily while maintaining a certain accuracy.
  • the reflective absorbance measuring device 210 and the lateral flow analysis device 220 of the reflective absorbance measurement and lateral flow analysis integrated device 200 In order to perform the HbA1c concentration measurement test. In order to measure the HbA1c, the Hb concentration must first be measured by the reflective absorbance measuring device 210. Therefore, a part of the sample 300 prepared for measuring the HbA1c is introduced into the sample accommodating part 111 through the sample inlet 121. Absorbance and Hb concentration are measured. In addition, A1c is measured through the lateral flow analyzer 220. The HbA1c concentration was converted using the two measured values, respectively.
  • FIG. 18 compares the result of measuring the substance concentration of HbA1c, which is a diabetic marker, through the present application 200 with the result measured by the existing apparatus.
  • the existing apparatus used a standard measuring instrument which is controlled by the VARIANT II as a reference instrument.
  • the Y side is the HbA1c concentration obtained through the present application 200
  • the X axis is the HbA1c concentration measured by the existing apparatus.
  • the lateral flow analysis and the absorbance measurement are performed in one device 200, thereby combining the lateral flow analysis information and the absorbance measurement information more quickly and easily while maintaining a certain accuracy. Measurement of the information can be made.
  • Reflective absorbance measuring device 220 Reflective absorbance measuring device 220.
  • the device of the present invention can measure absorbance more quickly, simply and easily, while maintaining a certain accuracy.
  • the lateral flow analysis information and the absorbance measurement information can be measured at a time, so that the accuracy and convenience Economics are promoted.

Abstract

The present invention relates to a reflective light absorbance measuring apparatus, and to an integrated apparatus capable of simultaneously performing a lateral flow assay and reflective light absorbance measurement. The integrated apparatus for measuring reflective light absorbance and for lateral flow assay according to the present invention enables both the light absorbance measurement and lateral flow assay for a sample to be performed, and comprises a reflective light absorbance measuring apparatus and a lateral flow assay apparatus arranged in the vicinity of the reflective light absorbance measuring apparatus. The reflective light absorbance measuring apparatus of the present invention measures light absorbance in a quicker, more convenient and easier manner while maintaining a predetermined level of accuracy, and the integrated apparatus simultaneously obtains information on the lateral flow assay and information on the light absorbance measurement.

Description

반사식 흡광도 측정 장치 및 이를 포함하는 반사식 흡광도 및 측방유동 분석 일체형 장치Reflective Absorbance Measurement Apparatus and Reflective Absorbance and Lateral Flow Analysis-Integrated Apparatus
본원은 반사식 흡광도 측정 장치와, 반사식 흡광도 측정과 측방유동 분석이 모두 수행 가능한 일체형 장치에 관한 것이다.The present application relates to a reflective absorbance measuring device and an integrated device capable of performing both reflective absorbance measurement and lateral flow analysis.
혈액 또는 뇨와 같은 생검물에 함유된 미량의 물질을 정성 또는 정량함으로써 이루어지는 새로운 진단방법과 진단기구의 개발이 지난 30여년간 빠르게 진행되었고, 현재도 빠른 속도로 발전하고 있다. 1950년대 방사선 동위원소를 이용한 방사능면역분석법(RIA)이 처음으로 도입된 이래 효소면역분석법(ELISA)이 70년대와 80년대에 개발되고 발전되었다. 현재 ELISA 면역분석법은 가장 많이 사용되고 있는 방법 중의 하나이며 의학이나 생명과학의 연구에서 필수적인 도구가 되었다. 최근에는 변형된 ELISA 분석법이 개발되었는데, 96-웰 내부에 다수의 항체를 고정화하여 한꺼번에 많은 수의 시료를 분석하는 방법도 이들 중의 하나이다.The development of new diagnostic methods and diagnostic tools by qualitatively or quantifying trace substances in biopsies, such as blood or urine, has progressed rapidly over the past three decades and is still rapidly developing. Since the first introduction of radioimmunoassay (RIA) using radioisotopes in the 1950s, enzyme immunoassay (ELISA) was developed and developed in the 70s and 80s. ELISA immunoassay is now one of the most used methods and has become an essential tool in the research of medicine and life sciences. Recently, modified ELISA assays have been developed, one of which involves analyzing a large number of samples at once by immobilizing multiple antibodies in 96-wells.
RIA나 ELISA를 포함하는 전형적인 면역진단법에서는 대개 시료 당 한 종류의 분석물을 복잡한 다단계과정을 통해 실험실에서만 구비된 고가의 분석기기를 사용하여 정량화할 수 있다. 따라서 이러한 시설이나 설비가 갖추어 지지 않은 소규모의 병원, 응급실, 가정 등에서 사용하기는 용이하지 않다. 이러한 약점을 보완하기 위하여 고안된 진단제품이 면역크로마토그라피 방법을 이용한 간편용 진단 키트이다. 면역크로마토그라피 방법을 진단 키트로 전혈, 혈청, 뇨 등의 생검물을 고안된 기구에 적용하여 빠른 시간안에 검사결과를 확인할 수 있다. 면역크로마토그라피 방법의 한 예는 측방유동분석 방법을 사용하는 것인데, 임신진단, 암진단, 기타 특정 단백질 또는 유전자의 존재여부 또는 미생물탐지 등 다양한 분야에 널리 사용되고 있다. 하지만 측방유동 분석방법은 예를 들면 항원-항체 반응과 같은 두 물질간의 특이적 반응을 기본으로 하는 것으로, 이러한 검사와 함께 이를 보정 및/보안하거나, 추가의 정보를 얻기 위해 혈액에 포함된, 예를 들면 헤모글로빈과 같은 다른 물질의 농도는 시료를 따로 채취하여 별도의 흡광도 측정 기구/장치를 사용하여 측정해야 하는 불편함이 있었다. 또한 별도의 흡광도 측정 기구/장치는 빛을 투과시켜 흡광도 측정을 수행하는 것이 일반적이어서 광원, 광 검출기, 그리고 시료가 담긴 측정 장치의 배치가 용이하지 않은 문제점이 있었다. In typical immunodiagnostic methods, including RIA and ELISA, one type of analyte can usually be quantified using expensive analyzers in laboratories in a complex multi-step process. Therefore, it is not easy to use in a small hospital, emergency room, home, etc. without such facilities or equipment. Diagnostic products designed to compensate for this weak point is a simple diagnostic kit using immunochromatography method. The immunochromatography method can be used as a diagnostic kit to apply whole blood, serum, and urine biopsies to the designed device so that the test results can be quickly confirmed. One example of immunochromatography methods is the use of lateral flow analysis methods, which are widely used in various fields such as pregnancy diagnosis, cancer diagnosis, the presence of other specific proteins or genes, or microbial detection. However, lateral flow assays are based on specific reactions between two substances, such as, for example, antigen-antibody responses, which are included in the blood to correct and / or secure them with these tests, or to obtain additional information. For example, the concentration of other substances, such as hemoglobin, was inconvenient to be taken separately and measured using a separate absorbance measuring instrument / apparatus. In addition, a separate absorbance measuring device / apparatus generally transmits light to perform absorbance measurement, so that a light source, a light detector, and a measurement device containing a sample are not easily disposed.
본원은 전술한 바와 같은 문제점들을 해결하기 위해 창출된 것으로서, 본원이 해결하고자 하는 과제는 흡광도를 소정의 정확성을 유지하면서 신속하고 용이하게 측정 가능한 반사식 흡광도 측정 장치를 제공하는 것이다.The present invention was created to solve the problems as described above, the problem to be solved by the present application is to provide a reflective absorbance measuring device that can quickly and easily measure the absorbance while maintaining a certain accuracy.
또한 본원이 해결하고자 하는 다른 과제는 측방유동 분석과 흡광도 측정이 소정의 정확성을 유지하면서 신속하고 간편하게 하나의 장치에서 이루어질 수 있는 반사식 흡광도 측정 및 측방유동 분석 일체형 장치를 제공하는 것이다.In addition, another problem to be solved by the present application is to provide a reflection absorbance measurement and lateral flow analysis integrated device that can be performed in a single device quickly and simply while maintaining the lateral flow analysis and absorbance measurement.
본원은 시료 수용부가 형성된 베이스 부재; 상기 베이스 부재 상단을 덮는 커버 부재; 및 상기 베이스 부재와 커버 부재 사이에 개재되는 광 투과 부재를 포함하며, 상기 커버 부재에는 상기 시료 수용부로 시료를 투입하는 시료 투입구와 상기 시료 수용부에 연직하도록 반사광 측청창이 각각 형성되며, 상기 광 투과 부재는 상기 반사광 측정창에 대응되도록 위치하는, 반사식 흡광도 측정 장치를 제공한다. The present application is a base member formed with a sample receiving portion; A cover member covering an upper end of the base member; And a light transmitting member interposed between the base member and the cover member, wherein the cover member is provided with a sample inlet for feeding the sample into the sample receiving portion and a reflected light side window so as to be perpendicular to the sample receiving portion. The member provides a reflective absorbance measuring device positioned to correspond to the reflected light measuring window.
본원은 또한 상기 시료 수용부는 상기 광 투과 부재를 통해 입사되는 빛을 반사시키는 바닥부를 포함하는 반사식 흡광도 측정 장치를 제공한다. The present application also provides a reflective absorbance measuring apparatus including a bottom portion for reflecting light incident through the light transmitting member.
본원은 또한 상기 반사광 측정창은 상기 커버 부재 상에서 일 방향으로 연장되어 형성되고, 상기 시료 수용부는 상기 베이스 부재 상에서 상기 일 방향으로 연장되어 형성되는 반사식 흡광도 측정 장치를 제공한다. The present application also provides a reflective absorbance measuring device, wherein the reflected light measuring window extends in one direction on the cover member, and the sample accommodating part extends in the one direction on the base member.
본원은 또한 상기 시료 투입구는 두 개이고, 상기 반사광 측정창은 상기 두 개의 시료 투입구의 사이에 형성되는 반사식 흡광도 측정 장치를 제공한다. The present application also provides a reflectance absorbance measuring apparatus having two sample inlets, and the reflected light measuring window is formed between the two sample inlets.
본원은 또한 상기 광 투과 부재는 하면이 상기 시료 투입구보다 낮은 위치에 형성되는 반사식 흡광도 측정 장치를 제공한다. The present invention also provides a reflective absorbance measuring device wherein the light transmitting member is formed at a position lower than the sample inlet.
본원의 반사식 흡광도 측정 장치는 상기 커버 부재의 상측에 배치되는 광원, 그리고 상기 광원으로부터 상기 광 투과 부재를 통해 상기 시료 수용부에 조사된 후 반사되어 나오는 빛의 양을 계측하도록 상기 커버 부재의 상측에 배치되는 광 검출기를 더 포함할 수 있다. 상기 광 검출기는 상기 광원이 존재하는 연직선 상에서 비껴 있도록 배치될 수 있다.The reflective absorbance measuring apparatus of the present application includes a light source disposed above the cover member, and an upper side of the cover member to measure an amount of light reflected from the light source after being irradiated to the sample receiving unit through the light transmitting member. It may further comprise a photo detector disposed in. The photo detector may be arranged to deviate on a vertical line in which the light source exists.
본원은 또한 시료의 흡광도 측정과 측방유동 분석(lateral flow assay)이 한 번에 모두 가능한 반사식 흡광도 및 측방유동 분석용 장치를 제공하며, 상기 언급한 반사식 흡광도 측정 장치, 그리고 상기 반사식 흡광도 측정 장치와 이웃하여 배치되는 측방유동 분석 장치를 포함하는 반사식 흡광도 및 측방유동 분석 일체형 장치를 제공한다.The present application also provides an apparatus for reflection absorbance and lateral flow analysis in which absorbance measurement and lateral flow assay of a sample can be performed all at once, the aforementioned reflection absorbance measuring device, and the reflection absorption measurement A reflective absorbance and lateral flow analysis integrated device comprising a lateral flow analysis device disposed adjacent to the device.
본원은 또한 상기 반사식 흡광도 측정 장치와 상기 측방유동 분석 장치는 일자로 또는 나란히 형성되는 반사식 흡광도 및 측방유동 분석 일체형 장치를 제공한다. The present invention also provides a reflective absorbance and lateral flow analysis integrated device which is formed in a straight line or side by side the reflective absorbance measuring device.
본원은 또한 상기 반사식 흡광도 측정 장치 및 상기 측방유동 분석 장치는 각각 두 개 이상인 반사식 흡광도 및 측방유동 분석 일체형 장치를 제공한다.The present invention also provides a reflective absorbance and lateral flow analysis integrated device of two or more of the reflective absorbance measuring device and the lateral flow analysis device.
본원은 또한 상기 반사식 흡광도 측정 장치 및 상기 측방유동 분석 장치는 각각 두 개이며, 상기 한 개의 반사식 흡광도 측정 장치 및 한 개의 측방유동 분석 장치는 일자로 배치되고, 나머지 한 개의 반사식 흡광도 측정 장치 및 한 개의 측방유동 분석 장치도 일자로 배치되고, 상기 두 개의 일자로 배치된 반사식 흡광도 측정 장치 및 측방유동 분석 장치는 나란히 배치되는 반사식 흡광도 및 측방유동 분석 일체형 장치를 제공한다. The present application also includes two reflective absorbance measuring devices and two lateral flow analysis devices, and one reflective absorbance measuring device and one lateral flow analysis device are arranged on a straight line, and the other reflective absorbance measuring device is provided. And one side flow analysis device is also arranged in a date, the two-day reflective absorbance measuring device and side flow analysis device provides a reflective absorbance and side flow analysis integrated device arranged side by side.
본원의 장치는 시료의 하적(loading)이 용이할 뿐 아니라 반사식으로 흡광도 측정이 이루어짐으로써, 소정의 정확성을 유지하면서도 보다 간편하고 용이하게 흡광도 측정이 이루어질 수 있다. Apparatus of the present application is not only easy loading (loading) of the sample, but also by the absorbance measurement is made by reflection, absorbance measurement can be made more simply and easily while maintaining a certain accuracy.
또한 측방유동 분석과 흡광도 측정이 하나의 장치에서 모두 이루어지도록 함으로써, 소정의 정확성을 유지하면서도 보다 신속하고 용이하게 측방유동 분석 정보와 흡광도 측정 정보를 함께 측정할 수 있다. In addition, since the lateral flow analysis and the absorbance measurement are performed in one device, the lateral flow analysis information and the absorbance measurement information can be measured together more quickly and easily while maintaining a predetermined accuracy.
도 1은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 분해 사시도이다.1 is an exploded perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
도 2는 광 투과 부재가 반사광 측정창에 삽입된 상태의 본원의 한 실시예에 따른 반사식 흡광도 측정 장치에 대한 분해 사시도이다.2 is an exploded perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application with a light transmitting member inserted into a reflected light measuring window.
도 3은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 사시도이다.3 is a perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
도 4는 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 커버 부재의 평면도이다.4 is a plan view of the cover member of the reflective absorbance measuring apparatus according to an embodiment of the present application.
도 5는 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 베이스 부재의 평면도이다.5 is a plan view of the base member of the reflective absorbance measuring apparatus according to an embodiment of the present application.
도 6은 도 3의 VI-VI선을 따라 절개한 단면도이다.6 is a cross-sectional view taken along the line VI-VI of FIG. 3.
도 7은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 개략적인 사용예를 나타낸 단면도이다.7 is a cross-sectional view showing a schematic use example of the reflective absorbance measuring apparatus according to an embodiment of the present application.
도 8은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 정면도이다.8 is a front view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
도 9는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 분해 사시도이다.9 is an exploded perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application.
도 10은 광 투과 부재가 반사광 측정창에 삽입된 상태의 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치에 대한 분해 사시도이다.10 is an exploded perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application with the light transmitting member inserted into the reflected light measuring window.
도 11은 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 사시도이다.11 is a perspective view of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application.
도 12는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 커버 부재의 평면도이다.12 is a plan view of a cover member of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present disclosure.
도 13은 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 베이스 부재의 평면도이다.13 is a plan view of a base member of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present disclosure.
도 14는 도 11의 XIV-XIV선을 따라 절개한 단면도이다.14 is a cross-sectional view taken along the line XIV-XIV of FIG. 11.
도 15는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 정면도이다.15 is a front view of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application.
도 16은 본원의 또 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 사시도이다.16 is a perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application.
도 17은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치 또는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 반사식 흡광도 측정 장치를 통해 측정된 흡광도를 Hb 농도로 환산한 결과를 기존의 Hb 농도 측정 결과와 비교한 그래프이다.FIG. 17 shows the absorbance measured by the reflective absorbance measuring device of the reflective absorbance measuring device according to one embodiment of the present application or the reflective absorbance measuring and lateral flow analysis integrated device according to another embodiment of the present application, converted into Hb concentration. The result is a graph comparing the result of the conventional Hb concentration measurement.
도 18은 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치에 있어서 반사식 흡광도 측정 장치를 통해 Hb 농도를 구하고 측방유동 분석 장치를 통해 A1c를 측정하여 HbA1c 농도로 환산한 결과를 기존의 HbA1c 농도 측정 결과에 비교한 그래프이다.18 is a reflection absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application to obtain the Hb concentration through the reflection absorbance measuring device and to measure the A1c through the lateral flow analysis device converted to HbA1c concentration results It is a graph compared with the conventional HbA1c concentration measurement results.
도 1 내지 도 8에 나타난 바와 같이, 본원의 한 실시예에 따른 반사식 흡광도 측정 장치(100)는 시료(300)가 놓이는 시료 수용부(111)를 포함하는 베이스 부재(110), 그리고 베이스 부재(110)의 상단을 덮는 커버 부재(120)를 포함하고, 커버 부재(120)에는 시료 수용부(111)에 시료(300)가 투입될 수 있도록 형성되는 시료 투입구(121, 123), 베이스 부재(110)의 상단을 덮었을 때 시료 수용부(111)와 연직으로 대응되는 부분에 형성되는 반사광 측정창(125), 그리고 반사광 측정창(125)에 삽입되는 광 투과 부재(127)를 포함하는 것을 특징으로 한다. 도 6 및 도 7을 참고하면, 베이스 부재(110)에 커버 부재(120)를 덮으면 그 경계면(130)에서 서로 맞물려 닫히게 되어(interlocking), 실질적으로 워터프루프(waterproof), 에어로솔프루프(aerosol proof) 실(seal)이 된다.1 to 8, the reflective absorbance measuring apparatus 100 according to the exemplary embodiment of the present application includes a base member 110 including a sample accommodating portion 111 on which a sample 300 is placed, and a base member. A sample member (121, 123) and a base member including a cover member (120) covering the upper end of the (110), and the cover member (120) formed so that the sample (300) can be injected into the sample receiving portion (111). When the upper end of the cover 110, the sample receiving portion 111 includes a reflection light measuring window 125 formed in a vertically corresponding portion, and a light transmitting member 127 inserted into the reflected light measuring window 125 It is characterized by. Referring to FIGS. 6 and 7, the cover member 120 is covered with the base member 110 to be interlocked with each other at an interface 130 thereof, thereby substantially waterproof and aerosol proof. It becomes a seal.
이하에서 본원의 실시예를 첨부된 도면을 참조로 상세히 설명한다.Hereinafter will be described in detail with reference to the accompanying drawings an embodiment of the present application.
도 1은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 분해 사시도이고, 도 2는 광 투과 부재가 반사광 측정창에 삽입된 상태의 본원의 한 실시예에 따른 반사식 흡광도 측정 장치에 대한 분해 사시도이며, 도 3은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 사시도이다.1 is an exploded perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present application, Figure 2 is an exploded perspective view of the reflective absorbance measuring apparatus according to an embodiment of the present application with the light transmitting member inserted into the reflected light measuring window 3 is a perspective view of a reflective absorbance measuring apparatus according to an embodiment of the present disclosure.
또한 도 4는 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 커버 부재의 평면도이고, 도 5는 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 베이스 부재의 평면도이다.4 is a plan view of the cover member of the reflective absorbance measuring apparatus according to an embodiment of the present application, Figure 5 is a plan view of the base member of the reflective absorbance measuring apparatus according to an embodiment of the present application.
그리고 도 6은 도 3의 VI-VI선을 따라 절개한 단면도이며, 도 7은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 개략적인 사용예를 나타낸 단면도이다. 도 8은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치의 정면도이다.6 is a cross-sectional view taken along line VI-VI of FIG. 3, and FIG. 7 is a cross-sectional view illustrating a schematic use example of a reflective absorbance measuring apparatus according to an exemplary embodiment of the present disclosure. 8 is a front view of a reflective absorbance measuring apparatus according to an embodiment of the present application.
도 1 내지 도 8에 나타난 바와 같이, 본원의 한 실시예에 따른 반사식 흡광도 측정 장치(100)는 시료 수용부(111)가 형성된 베이스 부재 (110), 상기 베이스 부재(110)의 상단을 덮는 커버 부재(120) 및 상기 베이스 부재 (110)와 커버 부재 (120) 사이에 개재되는 광 투과 부재(127)를 포함하고, 상기 커버 부재(120)에는 상기 시료 수용(111)부로 시료(300)를 투입하는 시료 투입구(121, 123)와 상기 시료 수용부에 연직하도록 반사광 측청창(125)이 각각 형성되며, 상기 광 투과 부재(127)는 상기 반사광 측정창에 대응되도록 위치하는, 반사식 흡광도 측정 장치이다. 도 6 및 도 7을 참고하면, 베이스 부재(110)에 커버 부재(120)를 덮으면 그 경계면(130)에서 서로 맞물려 닫히게 되어(interlocking), 실질적으로 워터프루프(waterproof), 에어로솔프루프(aerosol proof) 실(seal)이 된다. As shown in FIG. 1 to FIG. 8, the reflective absorbance measuring apparatus 100 according to the exemplary embodiment of the present invention covers a base member 110 having a sample accommodating portion 111 and an upper end of the base member 110. The cover member 120 and a light transmitting member 127 interposed between the base member 110 and the cover member 120, the cover member 120 is a sample 300 to the sample receiving portion 111 Reflective light measuring window 125 is formed to be perpendicular to the sample inlet (121, 123) and the sample receiving portion for injecting, and the light transmitting member 127 is positioned so as to correspond to the reflected light measuring window, the reflective absorbance It is a measuring device. Referring to FIGS. 6 and 7, the cover member 120 is covered with the base member 110 to be interlocked with each other at an interface 130 thereof, thereby substantially waterproof and aerosol proof. It becomes a seal.
여기서, 시료(300)는 본원의 장치에 사용될 수 있는 분석대상물을 포함하는 물질을 가리키며, 액체상 또는 액체와 유사한 유동성 있는 물질, 예를 들면 각 종 고형 조직/세포, 혈액, 타액, 소변, 땀, 체모 또는 이로부터 추출된 물질 등을 포함하며, 또는 주위 환경(예로, 대기, 토양, 물 등)으로부터 수집된 물질 등 다양한 물질을 포함한다. 예로는 이로 제한하는 것은 아니나, 혈액, 뇨, 타액 등을 포함하며, 혈액은 전혈, 혈장, 혈청이나 소정의 처리(예를 들면 응고 방지)가 이루어진 혈액, 혈장, 혈청 등이 이에 해당될 수 있다. 조직 또는 세포의 추출물은 예를 들면 탄수화물, 지질, 핵산, 단백질 등으로부터 선택된다. 상기 분석대상물은 예를 들면 이로 제한하는 것은 아니나, 각종 질환과 연관된 마커, 예를 들면 CRP(C-Reactive Protein), PSA(Prostate Specific Antigen), AFP(alpha-Feto Protein), CA-125(Cancer Antigen 125), CA19-9, 미세알부민, HbA1c(Hemoglobin A1c), cTn-I/T(Cardiac Troponin I 및 T) 등을 포함한다.Here, the sample 300 refers to a material including an analyte that can be used in the device of the present application, and is a liquid or liquid-like fluid material, for example, various solid tissues / cells, blood, saliva, urine, sweat, Body hair or material extracted therefrom, or the like, or various materials such as materials collected from the environment (eg, atmosphere, soil, water, etc.). Examples include, but are not limited to, blood, urine, saliva, and the like may include whole blood, plasma, serum, or blood, plasma, serum, etc. that have undergone a predetermined treatment (eg, anticoagulant). . Extracts of tissues or cells are for example selected from carbohydrates, lipids, nucleic acids, proteins and the like. The analyte is not limited thereto, for example, but a marker associated with various diseases, such as C-Reactive Protein (CRP), Prostate Specific Antigen (PSA), alpha-Feto Protein (AFP), and CA-125 (Cancer). Antigen 125), CA19-9, microalbumin, HbA1c (Hemoglobin A1c), cTn-I / T (Cardiac Troponin I and T) and the like.
또한 도 1, 도 2, 도 5, 도 6, 그리고 도 7에 나타난 바와 같이, 시료 수용부(111)는 광 투과 부재(127)를 통해 입사되는 광원(400)을 반사시키는 바닥부(111a)를 포함하는 것을 특징으로 할 수 있다.1, 2, 5, 6, and 7, the sample accommodating part 111 may reflect the light source 400 incident through the light transmitting member 127 to the bottom part 111a. It may be characterized in that it comprises a.
본원의 바닥부(111a)에는 광 투과 부재(127)를 통해 입사되는 광원(400)을 반사시킬 수 있는 소재가 사용될 수 있다. 그 소재는 광원(400)의 종류에 따라 적절하게 선택될 수 있다. 예시적으로 광원(400)으로 LED나 레이저(laser)가 사용될 경우, 반사물질로는 임의의 백색 계열의 폴리머 재료가 사용될 수 있으며, 이를테면 ABS(Acrylonitrile, Butadiene, Styrene), PS(Polystyrene), PE(polyethylene), PP(Polypropylene) 등이 사용될 수 있다. 또는 정반사 특성을 가진 매끈한 반사면, 이를테면 알루미늄, 티타늄, 또는 크로늄 등의 금속류가 사용될 수 있다. 다만 상술한 반사물질은 예시적으로 제시된 것으로, 바닥부(111a)의 소재는 이에 한정되는 것은 아니다.A material capable of reflecting the light source 400 incident through the light transmitting member 127 may be used for the bottom portion 111a of the present application. The material may be appropriately selected according to the type of the light source 400. For example, when an LED or a laser is used as the light source 400, any white polymer material may be used as the reflective material. For example, ABS (Acrylonitrile, Butadiene, Styrene), PS (Polystyrene), PE (polyethylene), PP (polypropylene) and the like can be used. Alternatively, a smooth reflective surface having specular reflection characteristics, such as metals such as aluminum, titanium, or chromium, may be used. However, the above-described reflective material is provided as an example, and the material of the bottom 111a is not limited thereto.
예시적으로 도 7을 참고하면, 광원(400)으로부터 조사되는 빛은 반사광 측정창(125)에 해당하는 위치에 있는 광 투과 부재(127)를 통해 시료(300)에 입사된 뒤, 바닥부(111a)에서 난반사되어 다시 광 투과 부재(127)를 통해 밖으로 진행될 수 있다.For example, referring to FIG. 7, light emitted from the light source 400 is incident on the sample 300 through the light transmitting member 127 at a position corresponding to the reflected light measuring window 125, and then the bottom portion ( It may be diffusely reflected at 111a and travel out again through the light transmitting member 127.
또한 도 6을 참고하면, 시료(300)는 시료 투입구(121, 123)를 통하여 시료 수용부(111)로 투입되는데, 시료(300)가 투입되고 나면 도 6의 (b)와 같이 시료가 시료 수용부(111)에 수용되게 된다. 이때 수용된 시료(300)의 높이가 도 6의 (b)에 나타난 바와 같이 광 투과 부재(127)의 하면과 같거나, 그보다 높도록 함이 바람직하다. 도 7을 참고하면, 광원(400)으로부터 광 투과 부재(127)를 통하여 조사된 빛이 시료(300)를 통과하여 시료 수용부(111)의 바닥부(111a)에 도달하였다가 반사되어 나갈 때, 시료(300)가 광 투과 부재(127)의 하면보다 같거나 높게 형성되어 있어야 균일한 두께에 대한 흡광도를 측정할 수 있기 때문이다.In addition, referring to FIG. 6, the sample 300 is introduced into the sample accommodating part 111 through the sample inlets 121 and 123. After the sample 300 is input, the sample is sampled as shown in FIG. It is accommodated in the receiving portion 111. At this time, it is preferable that the height of the received sample 300 is equal to or lower than the lower surface of the light transmitting member 127 as shown in FIG. Referring to FIG. 7, when the light irradiated from the light source 400 through the light transmitting member 127 passes through the sample 300 and reaches the bottom 111a of the sample accommodating portion 111, the light is reflected. This is because the absorbance with respect to the uniform thickness can be measured only when the sample 300 is formed to be equal to or higher than the lower surface of the light transmitting member 127.
이에 따라 광 투과 부재(127)는 하면이 시료 투입구(121, 123)보다 낮은 위치에 형성되는 것을 특징으로 할 수 있다. 즉 광 투과 부재(127)의 하면보다 같거나 높게 시료(300)가 하적되도록 하기 위해서는 광 투과 부재(127)의 하면이 시료 투입구(121, 123)보다는 낮은 위치에 형성되어 있는 것이 바람직하다.Accordingly, the light transmitting member 127 may have a lower surface formed at a position lower than the sample inlets 121 and 123. That is, in order for the sample 300 to be unloaded higher than or lower than the lower surface of the light transmitting member 127, the lower surface of the light transmitting member 127 is preferably formed at a lower position than the sample inlets 121 and 123.
또한 상기와 같이 높이를 맞추는 한, 매번 측정할 때마다 파이펫을 이용하여 하적되는 시료(300)의 부피를 종래와 같이 1㎕ 단위까지 정확하게 계량할 필요가 없어 정확한 정량의 부재로 인한 오차를 줄일 수 있어 사용자에게도 편리한 장점이 있다. 즉 시료(300)를 최소한 광 투자 부재(127)의 하면까지만 채우면 시료 수용부(111)에 하적되는 시료(300)의 부피가 결정되므로 사용이 훨씬 편리해진다. 예를 들면 사용자가 파이펫으로 일정량의 시료(300)를 채취한 뒤 시료 수용부(111)를 채우는 선까지 시료를 하적을 할 수 있다. 하적되는 시료의 부피는 본원 장치의 구체적인 크기에 따라 달라지겠으나, 본원 장치가 판독기로서 i-Chroma (바디텍메드 주식회사, 한국)에 사용할 수 있도록 제작되는 경우, 장치의 크기는 이로 제한하는 것은 아니나 대략 1.5㎝(가로)×4㎝(세로)×0.4㎝(높이)이며, 이때의 하적되는 시료의 부피는 약 50㎕ 내지 약 250㎕의 범위일 수 있으며, 특히 약 100㎕이다.In addition, as long as the height is adjusted as described above, it is not necessary to accurately measure the volume of the sample 300 to be unloaded using a pipette every time, as in the conventional case, to 1 μl unit, thereby reducing errors due to the absence of accurate quantification. It can be convenient for the user. That is, when the sample 300 is filled to at least the lower surface of the light investment member 127, the volume of the sample 300 to be loaded onto the sample accommodating part 111 is determined, and thus the use is much easier. For example, the user may take a certain amount of sample 300 with a pipette and then unload the sample to a line filling the sample accommodating portion 111. The volume of the sample to be loaded will depend on the specific size of the device, but if the device is made for use with i- Chroma (Bodytec Med, Korea) as a reader, the size of the device is not limited thereto. It is approximately 1.5 cm (width) x 4 cm (length) x 0.4 cm (height), wherein the volume of the sample to be loaded can range from about 50 μl to about 250 μl, in particular about 100 μl.
이때 본원 장치의 크기는 반사식 흡광도 측정 장치(100)의 크기를 의미하며, 후술할 반사식 흡광도 측정 및 측방유동 분석 일체형 장치(200)의 크기는 대략 1.5㎝(가로)×9.3㎝(세로)×0.4㎝(높이)가 될 수 있으나 이로 제한하는 것은 아니다. At this time, the size of the device refers to the size of the reflective absorbance measuring apparatus 100, the size of the reflective absorbance measurement and side flow analysis integrated device 200 to be described later is approximately 1.5cm (width) × 9.3cm (length) It may be, but not limited to, a height of 0.4 cm.
또한 반사광 측정창(125)의 크기는 본원 장치의 구체적인 크기나 광원(400) 및 광 검출기(500)의 조건, 광 투과 부재(127)의 재질 등에 따라 다르게 설정될 수 있지만, 예시적으로 본원 장치가 i-Chroma (바디텍메드 주식회사, 한국)에 사용할 수 있도록 제작되는 경우, 반사광 측정창(125)의 크기는 대략 0.5㎝(가로)×0.7㎝(세로)가 될 수 있다. 또 다른 구현예에서 본원의 커버 부재와 광투과 부재가 동일한 재질로 제작되는 경우는 반상광 측정창은 광투과 부재로 역할을 하며, 이 경우 광투과 부재와 시료 투입구 (121, 123)와 반사광측정창 이외의 부위는 광투과가 일어나지 않도록 표면처리를 하여야 한다. In addition, the size of the reflected light measurement window 125 may be set differently according to the specific size of the device, the conditions of the light source 400 and the light detector 500, the material of the light transmitting member 127, etc. Is manufactured for use in i- Chroma (Bodytec Med Co., Korea), the size of the reflected light measuring window 125 may be approximately 0.5cm (width) x 0.7cm (length). In another embodiment, when the cover member and the light transmitting member of the present application are made of the same material, the half-light measuring window serves as a light transmitting member, in which case the light transmitting member, the sample inlets 121 and 123 and the reflected light measurement Areas other than windows should be surface treated to prevent light transmission.
다만, 반드시 수용된 시료(300)의 높이가 광 투과 부재(127)의 하면과 같거나 그보다 높도록 하여야 하는 것은 아니며, 흡광도를 측정하고자 하는 시료(300)의 종류에 따라 유동적으로 조정될 수 있다. 또한 이러한 수용된 시료(300)의 높이 또는 두께는 광 투과 부재(127)의 두께를 조절함으로써 조정될 수도 있다. 본원의 한 구현예에서는 시료 투입구(121, 123) 중 한 곳을 통해 시료 수용부(111)를 가득 채울 경우 수용된 시료(300)의 높이가 광 투과 부재(127)의 하면과 같거나 그보다 높도록 제작된다.However, the height of the received sample 300 is not necessarily equal to or higher than the lower surface of the light transmitting member 127, and may be flexibly adjusted according to the type of the sample 300 to measure absorbance. In addition, the height or thickness of the received sample 300 may be adjusted by adjusting the thickness of the light transmitting member 127. In one embodiment of the present application when the sample receiving portion 111 is filled through one of the sample inlet (121, 123) so that the height of the received sample 300 is equal to or higher than the lower surface of the light transmitting member 127 Is produced.
그리고 시료 투입구(121, 123)는 적어도 2개 이상 형성되도록 하는 것이 바람직하다. 시료 투입구가 하나만 형성되어 있으면 시료 수용부(111)에 공기가 들어차 시료(300)가 제대로 시료 수용부(111)에 투입되지 않거나, 투입된 시료(300)에 빠져 나가지 못한 공기가 섞여 부정확한 흡광도 측정이 수행될 수 있기 때문이다. 따라서 시료(300)의 투입 및 필요한 경우 시료의 배출이 용이해지도록 하고 정확한 흡광도 측정이 수행되도록 하기 위해 시료 투입구(121, 123)는 복수 개로 형성될 수 있다. 예를 들면 두 개가 있는 경우, 하나는 시료의 투입에 사용되고, 나머지는 모세관 현상을 일으킬 수 있도록 공기가 통할 수 있는 구조로 형성될 수 있다. In addition, at least two sample inlets 121 and 123 may be formed. If only one sample inlet is formed, air enters the sample accommodating part 111, and the sample 300 is not properly input to the sample accommodating part 111, or air that is not mixed with the injected sample 300 is mixed to measure incorrect absorbance. This can be done. Therefore, a plurality of sample inlets 121 and 123 may be formed in order to facilitate the input of the sample 300 and, if necessary, the discharge of the sample, and to perform accurate absorbance measurement. For example, if there are two, one may be used for the input of a sample, and the other may be formed in a structure through which air can pass to cause a capillary phenomenon.
예시적으로, 시료 투입구(121, 123)는 두 개의 시료 투입구(121, 123)로 구성될 수 있고, 반사광 측정창(125)은 두 개의 시료 투입구(121, 123)의 사이에 형성되는 것을 특징으로 할 수 있다.For example, the sample inlets 121 and 123 may include two sample inlets 121 and 123, and the reflection light measuring window 125 may be formed between the two sample inlets 121 and 123. You can do
도 1, 도 2, 그리고 도 6을 참고하면, 반사광 측정창(125)은 커버 부재(120)가 베이스 부재(110)의 상단을 덮었을 때 시료 수용부(111)와 연직으로 대응되는 부분에 형성되므로, 반사광 측정창(125)이 두 개의 시료 투입구(121, 123)의 사이에 형성되면 시료 수용부(111)도 두 개의 시료 투입구(121, 123)의 사이에 위치하게 된다. 따라서 예시적으로, 도 6의 (a)를 참고하면, 우측의 시료 투입구(121)로 시료(300)가 투입된 후 흡광도 측정이 수행되고 좌측의 시료 투입구(123)로 시료(300)가 배출될 수 있다. 시료 투입구(121, 123)의 크기는 동일 또는 상이할 수 있다. 시료 투입구(121, 123)의 크기가 상이한 경우, 크기가 큰 시료 투입구(121)가 시료의 주요 투입구가 되고, 크기가 작은 시료 투입구(123)는 시료가 하적될 때 시료 수용부(111)에 자리 잡은 공기가 배출되도록 하는 등의 보조적인 역할을 수행할 수 있다.1, 2, and 6, the reflected light measuring window 125 may be formed at a portion vertically corresponding to the sample accommodating part 111 when the cover member 120 covers the upper end of the base member 110. Since the reflection light measuring window 125 is formed between the two sample inlets 121 and 123, the sample accommodating part 111 is also positioned between the two sample inlets 121 and 123. Therefore, for example, referring to FIG. 6A, after the sample 300 is injected into the sample inlet 121 on the right side, absorbance measurement is performed and the sample 300 is discharged into the sample inlet 123 on the left side. Can be. The sample inlets 121 and 123 may have the same size or different sizes. When the sizes of the sample inlets 121 and 123 are different, the large sample inlet 121 becomes the main inlet of the sample, and the small sample inlet 123 is disposed in the sample accommodating part 111 when the sample is unloaded. It can also play a secondary role, such as allowing air to settle out.
또한 본원의 한 실시예에 따른 반사식 흡광도 측정 장치(100)는 커버 부재(120)의 상측에 배치되는 광원(400), 그리고 광원(400)으로부터 광 투과 부재(127)를 통해 시료 수용부(111)에 조사된 후 반사되어 나오는 빛의 양을 계측하도록 커버 부재(120)의 상측에 배치되는 광 검출기(500)를 더 포함할 수 있다. 이때 광원(400)은 하나 또는 필요에 따라 그 이상이 구비될 수 있다. 광원으로는 예를 들면 이로 제한하는 것은 아니나, LED (Light Emitting Diode), UV(Ultra Violet), 레이저가 사용될 수 있다. 예를 들어, 헤모글로빈 측정 시에는 540nm 파장의 LED가 사용될 수 있다. 그러나 측정 대상에 따라 다양한 파장의 사용이 가능하며, 이를테면 핵산 단백질의 측정에는 255~380nm 대역의 UV 광원이 사용될 수 있다. 광 검출기(500)에 의하여 계측된 반사광 량은 공지된 방법에 따라 측정하고자 하는 대상물의 농도로 환산될 수 있다.In addition, the reflective absorbance measuring apparatus 100 according to an exemplary embodiment of the present disclosure may include a light source 400 disposed above the cover member 120, and a sample accommodating part through the light transmitting member 127 from the light source 400. The light detector 500 may further include a photo detector 500 disposed above the cover member 120 to measure an amount of light that is reflected after being irradiated to the 111. In this case, one or more light sources 400 may be provided as necessary. As the light source, for example, but not limited to, a light emitting diode (LED), ultra violet (UV), and a laser may be used. For example, a 540 nm wavelength LED can be used for hemoglobin measurements. However, it is possible to use a variety of wavelengths depending on the measurement target, for example, the measurement of nucleic acid proteins can be used UV light source of 255 ~ 380nm band. The amount of reflected light measured by the photo detector 500 may be converted into a concentration of an object to be measured according to a known method.
그리고 광 검출기(500)는 광원(400)이 존재하는 연직선 상에서 비껴 있도록 배치되는 것을 특징으로 할 수 있다.In addition, the light detector 500 may be disposed to be deflected on a vertical line in which the light source 400 is present.
표면 반사광, 즉 광 투과 부재(127)의 상면이나 하면에서 반사되는 광의 영향을 최소화할수록 흡광도 측정의 정확성이 높아질 수 있다. 이를 위해서 도 7에 나타난 바와 같이 광원(400)과 광 검출기(500)는 동일한 연직선 상에 있지 않도록 광원(400)을 광 검출기(500)에 대하여 비껴 배치함이 바람직하다. 여기서, 비껴 있도록 배치한다고 함은 동일한 연직선상에 있지 않도록 배치한다는 것을 의미한다. 따라서 동일한 수평선상에 있도록 배치되는 것도 동일한 연직선 상에 있지 않도록 비껴 배치되는 것이므로 본원의 일 실시예에 포함될 수 있다.As the influence of the surface reflected light, that is, the light reflected from the upper or lower surface of the light transmitting member 127 is minimized, the accuracy of absorbance measurement may be increased. To this end, as shown in FIG. 7, the light source 400 and the light detector 500 are preferably disposed away from the light detector 500 such that they are not on the same vertical line. Here, the arrangement so as to deviate means that the arrangement so as not to be on the same vertical line. Therefore, since they are arranged to be on the same horizontal line so as not to be on the same vertical line may be included in one embodiment of the present application.
또한 반사광 측정창(125)은 커버 부재(120) 상에서 일 방향으로 연장되어 형성되고, 시료 수용부(111)는 베이스 부재(110) 상에서 일 방향으로 연장되어 형성되는 것을 특징으로 할 수 있다.In addition, the reflected light measuring window 125 may be formed to extend in one direction on the cover member 120, and the sample accommodating part 111 may be formed to extend in one direction on the base member 110.
즉 표면 반사광의 영향의 최소화를 위한 광원(400)과 광 검출기(500)의 배치를 보다 자유롭게 할 수 있도록 반사광 측정창(125)과 시료 수용부(111)가 일 방향으로 길게 연장되어 형성되도록 할 수 있다. 이에 따라 광원(400)과 광 검출기(500)는 일 방향과 나란한 방향을 따라 표면 반사광의 영향을 최소화할 수 있도록 배치될 수 있다. 이때 광원(400)과 광 검출기(500)는 서로 동일한 연직선 상에는 배치되지 않는 것이 바람직함은 상술한 바와 같다. 이와 같이 반사광 측정창(125)과 시료 수용부(111)가 일 방향으로 길게 연장되어 형성되도록 함으로써, 주어지는 광원(400)의 위치를 보다 광범위하게 수용할 수 있게 된다. 즉 흡광도 측정 시 광원(400)의 위치에 따라 본원 장치가 세팅될 수 있는 범위가 보다 넓어질 수 있다.That is, the reflection light measuring window 125 and the sample accommodating part 111 may be formed to extend in one direction so as to freely arrange the light source 400 and the light detector 500 for minimizing the influence of the surface reflected light. Can be. Accordingly, the light source 400 and the photo detector 500 may be disposed to minimize the influence of the surface reflected light along a direction parallel to one direction. In this case, the light source 400 and the photo detector 500 are preferably not disposed on the same vertical line as described above. As such, the reflected light measuring window 125 and the sample accommodating part 111 are formed to extend in one direction so that the position of the given light source 400 can be accommodated more widely. That is, according to the position of the light source 400 at the time of absorbance measurement, the range in which the present apparatus can be set can be wider.
본원의 반사식 흡광도 측정 장치(100)는 판독기의 종류에 맞추어 다양한 형태 및 크기로 제조될 수 있다. 예를 들면 스트립 형태로 제조될 수 있고 이러한 스트립 형태의 장치를 수용할 수 있는 다양한 흡광도 측정 장비(판독기)에서 사용될 수 있으며, 크기도 이에 맞추어 다양하게 제작될 수 있다. 본원의 반사식 흡광도 측정 장치(100)는 반사식으로 흡광도를 측정하는 판독기에 널리 사용될 수 있으며, 예를 들면 이로 제한하는 것은 아니나 i-Chroma (바디텍메드 주식회사, 한국)를 들 수 있으며, 혈액응고장비(coagulometer) 등에도 적용 가능할 수 있다.The reflective absorbance measuring apparatus 100 of the present disclosure may be manufactured in various shapes and sizes according to the type of the reader. For example, it can be manufactured in strip form and can be used in various absorbance measuring instruments (readers) that can accommodate such strip-shaped devices, and the size can be variously made accordingly. Reflective absorbance measurement apparatus 100 of the present application can be widely used in the reader for measuring the absorbance in a reflective manner, for example, but not limited to i- Chroma (Bodytec Med Co., Korea), blood It may be applicable to coagulometer and the like.
본원의 일 실시예에 따른 도 1 내지 도 8에 나타난 바와 같이, 사각 홀(120a)을 통한 사각 형상(110a)은 배경값 보정 (background calibration)을 위한 신호를 발생시키는 표준 반사판 역할을 할 수 있으며, 사각 홀(120a)과 사각 형상(110a)은 베이스 부재(110)와 커버 부재(120)가 맞물리도록 하는 물리적으로 구조적인 보조 역할도 할 수 있다. 또한 반원형 돌출부(120b)는 시료를 배출하고자 할 때 본원 장치를 잡기 편하게 하는 부분이 될 수 있다. 이러한 사항은 후술할 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치에 있어서 도 9 내지 도 15에 도시된 사각 홀(120a), 사각 형상(110a), 반원형 돌출부(120b)에도 동일하게 적용될 수 있다. 본원의 도 1 내지 도 15의 장치는 예시적인 것이면 이에 채용된 각 부분의 형상 또한 예시적인 것으로 다양한 형상이 채용될 수 있음은 당업자에게 자명한 것이다.1 to 8 according to an embodiment of the present application, the square shape 110a through the square hole 120a may serve as a standard reflector for generating a signal for background calibration. In addition, the square hole 120a and the square shape 110a may also serve as a physical structural aid for the base member 110 and the cover member 120 to be engaged with each other. In addition, the semi-circular protrusion (120b) may be a portion that makes it easy to hold the device when you want to discharge the sample. Such matters may also be applied to the rectangular holes 120a, the square shapes 110a, and the semi-circular protrusions 120b shown in FIGS. 9 to 15 in the reflective absorbance measurement and lateral flow analysis integrated apparatus according to another embodiment of the present disclosure. The same may apply. 1 to 15 of the present application is illustrative, the shape of each part employed therein is also illustrative and it will be apparent to those skilled in the art that various shapes may be employed.
이하에서는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치에 대하여 설명한다. 여기서, 본원의 실시 형태를 설명하기 위한 전체 도면에 있어서, 동일한 기능을 갖는 것은 동일한 부호를 붙이고, 그에 대한 상세한 설명은 생략하기로 한다. 또한 상술한 반사식 흡광도 측정 장치(100)가 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치(200)에 포함되는 경우에는, 도 9 내지 도 15의 표기에 따라 도면 부호 210을 부여하기로 한다.Hereinafter, a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application will be described. Here, in all the drawings for demonstrating embodiment of this application, the thing which has the same function is attached | subjected with the same code | symbol, and the detailed description is abbreviate | omitted. In addition, when the above-described reflective absorbance measuring apparatus 100 is included in the reflective absorbance measurement and lateral flow analysis integrated device 200 according to another embodiment of the present application, the reference numeral 210 according to the notation of FIGS. To be given.
도 9는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 분해 사시도이고, 도 10은 광 투과 부재가 반사광 측정창에 삽입된 상태의 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치에 대한 분해 사시도이며, 도 11은 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 사시도이다.9 is an exploded perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application, Figure 10 is a reflective absorbance according to another embodiment of the present application with the light transmitting member inserted into the reflected light measurement window An exploded perspective view of a measurement and lateral flow analysis integrated device, and FIG. 11 is a perspective view of a reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present disclosure.
또한 도 12는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 커버 부재의 평면도이고, 도 13은 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 베이스 부재의 평면도이다.12 is a plan view of a cover member of the reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application, and FIG. 13 is a base of the reflective absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application. It is a top view of the member.
그리고 도 14는 도 11의 XIV-XIV선을 따라 절개한 단면도이며, 도 15는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 정면도이다.FIG. 14 is a cross-sectional view taken along the line XIV-XIV of FIG. 11, and FIG. 15 is a front view of the reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present disclosure.
도 9 내지 도 15에 도시된 바와 같이, 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치(200)는 시료(300)의 흡광도 측정과 시료(300)의 목표 분석물(analyte)을 정량 또는 정성적으로 측정하는 측방유동 분석(lateral flow assay)이 모두 이루어지는 반사식 흡광도 측정 및 측방유동 분석 일체형 장치(200)이다. 일체형 장치는 흡광도 측정장치와 측방유동 분석장치가 물리적으로 연결되어 있음을 의미하는 것으로 앞서 언급한 반사식 흡광도 측정 장치(210), 그리고 반사식 흡광도 측정 장치(210)와 이웃하여 배치되는 측방유동 분석 장치(220)를 포함한다. 이웃하여 배치되는 형태는 사용되는 판독기의 구조/모양에 맞추어 다양하게 제작될 수 있다. 예를 들면 본원의 한 구현예에서는 반사식 흡광도 측정 장치(210)와 측방유동 분석 장치(220)가 도 9 내지 도 15에 나타난 바와 같이 길이 방향으로 앞과 뒤(또는 뒤와 앞)에 위치한 일자의 형태로 형성되거나, 도면에는 도시되지 않았으나 흡광도 측정 장치와 측방유동 분석 장치가 좌우로 나란히 배치된 형태로 형성될 수 있다.9 to 15, the reflective absorbance measurement and lateral flow analysis integrated apparatus 200 according to another embodiment of the present disclosure may measure the absorbance of the sample 300 and the target analyte of the sample 300. ) Is a reflection absorbance measurement and lateral flow analysis integrated device 200, which is a lateral flow assay (quantitative or qualitatively) to measure both quantitatively or qualitatively. The integrated device means that the absorbance measuring device and the lateral flow analyzer are physically connected, and the lateral flow analysis disposed adjacent to the aforementioned reflective absorbance measuring device 210 and the reflective absorbance measuring device 210 is described. Device 220. Adjacent arrangements can be made in various ways to suit the structure / shape of the reader used. For example, in one embodiment of the present application, the reflective absorbance measuring device 210 and the lateral flow analysis device 220 are located in front and rear (or rear and front) in the longitudinal direction as shown in FIGS. 9 to 15. Although not shown, the absorbance measuring device and the lateral flow analysis device may be formed in a form arranged side by side from side to side.
여기서 일자로 배치된다 함은 장치의 장변 방향, 즉 길이 방향을 따라 배치됨을 의미하고, 나란히 배치된다 함은 장치의 단변 방향, 즉 횡 방향을 따라 배치됨을 의미할 수 있다.Here, the arrangement means that the device is arranged along the long side direction of the device, that is, the longitudinal direction, and the side-by-side arrangement may mean that the device is arranged along the short side of the device, that is, the transverse direction.
또한 반사식 흡광도 측정 장치(210) 및 측방유동 분석 장치(220)는 각각 하나 이상일 수 있다. 이를테면 반사식 흡광도 측정 장치(210)는 둘이 형성되고 측방유동 분석 장치(220)는 하나가 형성될 수도 있다. 예시적으로, 본원의 한 구현예에서, 일체형 장치는 하나의 측방유동 분석 장치(220)와 두 개의 반사식 흡광도 측정 장치(210)를 포함할 수 있다. 이들이 일자로 배치되는 경우에는 하나의 측방유동 분석 장치(220)를 가운데에 두고 두 개의 반사식 흡광도 측정 장치(210)를 각각 앞뒤로 배치할 수 있다. 또는 하나의 측방유동 분석 장치(220)를 가운데 두고 두 개의 반사식 흡광도 측정 장치(210)를 각각 좌우로 배치하거나, 측방유동 분석 장치(220)를 맨 앞(또는 맨 뒤)에 배치하고 두 개의 반사식 흡광도 측정 장치(210)를 그 뒤(또는 그 앞)에 일렬로 배치할 수도 있다. 또는 하나의 측방유동 분석 장치(220)를 좌측(또는 우측)에 두고 두 개의 반사식 흡광도 측정 장치(210)를 그 우측(또는 그 좌측)에 나란한 형태로 배치할 수 있다. 이 밖에도 각각 하나 이상이 구비되는 반사식 흡광도 측정 장치(210) 및 측방유동 분석 장치(220)는 사용되는 판독기의 구조/모양에 맞추어 다양하게 배치될 수 있다.In addition, the reflective absorbance measuring device 210 and the lateral flow analysis device 220 may each be one or more. For example, two reflective absorbance measuring apparatuses 210 may be formed, and one lateral flow analyzing apparatus 220 may be formed. By way of example, in one embodiment of the present disclosure, the unitary device may include one lateral flow analysis device 220 and two reflective absorbance measurement devices 210. When they are arranged in a date, two reflective absorbance measuring apparatuses 210 may be arranged back and forth with one lateral flow analyzer 220 at the center. Alternatively, two reflective absorbance measuring devices 210 may be disposed to the left and right, with one side flow analysis device 220 at the center, or the side flow analysis device 220 may be disposed at the front (or the rear) and two The reflective absorbance measuring device 210 may be arranged in a row behind (or in front of) the light absorbance measuring device 210. Alternatively, one side flow analysis device 220 may be disposed on the left side (or right side), and the two reflective absorbance measuring apparatuses 210 may be arranged side by side on the right side (or the left side thereof). In addition, the reflective absorbance measuring device 210 and the lateral flow analysis device 220, each provided with one or more may be variously arranged according to the structure / shape of the reader used.
또한 도 16은 본원의 또 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 사시도이다.16 is a perspective view of a reflective absorbance measurement and side flow analysis integrated device according to another embodiment of the present application.
반사식 흡광도 측정 장치(210) 및 측방유동 분석 장치(220)는 각각 두 개 이상일 수 있다. 예시적으로 도 16에 나타난 바와 같이, 반사식 흡광도 측정 장치(210)와 측방유동 분석 장치(220)는 각각 두 개이며, 두 개 중 한 개의 반사식 흡광도 측정 장치(210) 및 한 개의 측방유동 분석 장치(220)는 일자로 배치되고, 나머지 한 개의 반사식 흡광도 측정 장치(210) 및 한 개의 측방유동 분석 장치(220)도 일자로 배치되며 상기 일자로 배치된 두 개의 반사식 흡광도 측정 장치(210) 및측방유동 분석 장치(220)는 나란히 배치될 수 있다. 달리 말하면, 좌우로 나란히 배치된 반사식 흡광도 측정 장치(210)와 역시 좌우로 나란히 배치된 측방유동 분석 장치(220)가 앞뒤 순(또는 앞뒤의 역순)으로 일자로 늘어선 배치를 가질 수 있다.The reflective absorbance measuring device 210 and the lateral flow analysis device 220 may be two or more, respectively. For example, as shown in FIG. 16, the reflective absorbance measuring device 210 and the lateral flow analysis device 220 are two, respectively, one of the two reflective absorbance measuring devices 210 and one side flow. The analysis device 220 is arranged in a date, and the other reflective absorbance measuring device 210 and one lateral flow analysis device 220 are also arranged in a date and two reflective absorbance measuring devices ( 210 and the lateral flow analysis device 220 may be arranged side by side. In other words, the reflective absorbance measuring device 210 arranged side by side and the side flow analysis device 220 also arranged side by side may have a lined up order in front and rear (or reverse order).
이와 같이 반사식 흡광도 측정 장치(210)와 측방유동 분석 장치(220)가 일체로 형성되어 측방유동 분석과 흡광도 측정이 하나의 장치(200)에서 모두 이루어지도록 함으로써, 측방유동 분석 정보와 흡광도 측정 정보의 측정이 보다 신속하고 용이하게 이루어질 수 있다.In this way, the reflective absorbance measuring device 210 and the lateral flow analysis device 220 are integrally formed so that the lateral flow analysis and the absorbance measurement are performed in one device 200, thereby the lateral flow analysis information and the absorbance measurement information. Can be made more quickly and easily.
또한 도 9 내지 도 15에 도시된 바와 같이, 반사식 흡광도 측정 장치(210)는 시료(300)가 놓이는 시료 수용부(111)를 포함하는 베이스 부재(110), 그리고 베이스 부재(110)의 상단을 덮는 커버 부재(120)를 포함하고, 커버 부재(120)는 시료 수용부(111)에 시료(300)가 투입될 수 있도록 형성되는 시료 투입구(121, 123), 베이스 부재(110)의 상단을 덮었을 때 시료 수용부(111)와 연직으로 대응되는 부분에 형성되는 반사광 측정창(125), 그리고 반사광 측정창(125)에 삽입되는 광 투과 부재(127)를 포함하는 것을 특징으로 한다.9 to 15, the reflective absorbance measuring device 210 includes a base member 110 including a sample accommodating portion 111 on which a sample 300 is placed, and an upper end of the base member 110. It includes a cover member 120 to cover the cover member 120, the sample inlet 121, 123 is formed so that the sample 300 can be injected into the sample receiving portion 111, the upper end of the base member 110 It is characterized in that it comprises a reflected light measuring window 125 formed in a portion corresponding to the sample receiving portion 111 and the vertical when the cover, and a light transmitting member 127 inserted into the reflected light measuring window 125.
한편, 시료(300)의 목표 분석물(analyte)을 정량 또는 정성적으로 측정하는 측방유동 분석(lateral flow assay)이 이루어지는 측방유동 분석 장치(220)는 공지의 구성을 통하여 구현이 가능하며 당업자라면 적절한 것을 선택할 수 있을 것이다.On the other hand, the lateral flow analysis device 220 is a lateral flow assay (lateral flow assay) for quantitatively or qualitatively measuring the target analyte (analyte) of the sample 300 can be implemented through a known configuration and those skilled in the art You may choose the appropriate one.
또한 도 14를 참고하면, 반사식 흡광도 측정 장치(210)와 측방유동 분석 장치(220) 전반에 걸쳐 형성되는 베이스 부재(110)에 커버 부재(120)를 덮으면 그 경계면(230)에서 서로 맞물려 닫히게 되어(interlocking), 실질적으로 워터프루프(waterproof), 에어로솔프루프(aerosol proof) 실(seal)이 된다.In addition, referring to FIG. 14, when the cover member 120 is covered with the base member 110 formed through the reflective absorbance measuring device 210 and the lateral flow analysis device 220, they are engaged with each other at the interface 230. Interlocking, substantially waterproof and aerosol proof seals.
도 9 내지 도 15를 참고하면, 기본적으로 측방유동 분석 장치(220)는 반사식 흡광도 측정 장치(210)와 이웃하여 배치되며, 커버 부재(120)에 형성된 별도의 시료 투입구(221) 및 측정창(223) 및 베이스 부재(110)에 하기에 기재된 스트립(600)을 수용할 수 있는 스트립 수용부(225)를 포함한다. 측정창(223)은 측방유동분석에서 항원항체 결합여부를 측정하는 창(window)일 수 있다. 9 to 15, basically, the lateral flow analysis device 220 is disposed adjacent to the reflective absorbance measuring device 210 and has a separate sample inlet 221 and a measurement window formed in the cover member 120. (223) And a strip receiving portion 225 capable of receiving the strip 600 described below in the base member 110. The measurement window 223 may be a window for measuring the binding of the antigen antibody in the lateral flow analysis.
본원의 흡광도 측정장치 및 이를 포함하는 측방유동 분석이 함께 가능한 일체형 장치는 화학적으로 안정한 합성수지 및 이들의 조합으로 만들어 질 수 있다. 예를 들면 이로 제한하는 것은 아니나 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리에틸린 테레프탈레이드, 폴리아미드, 폴리에스터, 폴리염화비닐, 폴리우레탄, 폴리카보네이트, 폴리염화비닐리덴, 폴리테트라플루오르메틸린, 폴리에테르이미드와 같은 열경화성 및 열가소성의 다양한 플라스틱 및 이들의 조합을 사용하여 공지된 성형방법을 이용하여 제조될 수 있다. 단 반드시 이로 제한되는 것은 아니고, 본원 장치의 목적에 적합한 재질이면 어느 것이나 가능하다. 또한 본원의 장치는 공지된 다양한 성형 방법 예를 들면 이로 제한하는 것은 아니나 재질의 종류에 따라 사출, 회전, 압출 및/또는 캘린더 방법을 이용해서 제조될 수 있다. 본원의 한 구현예에서 본원의 장치는 커버부재 및 베이스 부재는 ABS 수지(Acrylonitrile, Butadiene, Styrene), 투명창은 아크릴을 사출 성형하여 제조된다. 당업자라면 본원 장치를 제조하기 위해, 공지된 다양한 물질 및 성형방법으로부터 본원의 목적에 맞는 재료 및 성형방법을 선택할 수 있을 것이다. 또한 상기 합성수지이외에 본원의 목적에 맞는 장치를 제조하기 위한 다양한 첨가제, 예를 들면 충전제, 가소제, 안정제, 착색제, 정전기 방지제 등이 필요에 따라 사용될 수 있다.Absorbance measurement apparatus of the present application and the one-piece device capable of lateral flow analysis including the same can be made of chemically stable synthetic resin and combinations thereof. For example, but not limited to polyethylene, polypropylene, polystyrene, polyethylen terephthalate, polyamide, polyester, polyvinyl chloride, polyurethane, polycarbonate, polyvinylidene chloride, polytetrafluoromethylene, polyether Various plastics of thermosetting and thermoplastic such as mead and combinations thereof can be prepared using known molding methods. However, the present invention is not necessarily limited thereto, and any material may be used as long as the material is suitable for the purpose of the present apparatus. In addition, the apparatus of the present application may be manufactured using injection, rotation, extrusion and / or calendering methods according to various kinds of known molding methods, such as, but not limited to, the type of material. In one embodiment of the present invention the device of the present invention is a cover member and the base member is ABS resin (Acrylonitrile, Butadiene, Styrene), the transparent window is injection molded acrylic Are manufactured. Those skilled in the art will be able to select materials and molding methods suitable for the purpose of the present application from various known materials and molding methods for manufacturing the device. In addition to the synthetic resin, various additives for producing a device suitable for the purpose of the present application, for example, fillers, plasticizers, stabilizers, colorants, antistatic agents and the like can be used as needed.
본원의 측방유동 분석은 예를 들면 면역크로마토그라피 분석을 이용한 것이다. 본원의 측방유동 분석 장치(220)에는 공지된 다양한 스트립(600)(도 9 참고)이 사용될 수 있으며, 이로 제한하는 것은 아니나 예를 들면 한국 공개특허 2009-0006999 또는 2005-0072015에 기재된 것이 사용될 수 있다. 특허 측방유동 분석의 스트립 구조를 살펴보면 시료가 적용되는 샘플패드(sample pad), 탐지용 항체가 코팅되어 있는 방출패드(releasing pad), 시료가 이동하여 분리되고 항체 항원 반응이 일어나는 전개용 막(주로 니트로셀룰로스) 또는 스트립, 그리고 시료가 계속하여 이동하기 위한 흡수패드(absorption pad)로 되어 있다. 탐지용 항체는 탐지를 표지하기 위하여 예를 들면 콜로이드성 금 입자에 고정되어 있다. 금 입자 대신 라텍스 비드(latex bead) 또는 탄소입자를 사용하기도 한다. 측방유동분석용 진단 키트는 대개 샌드위치 형태로 분석물을 탐지하도록 고안되어 있다. 액체 시료 속에 들어 있는 분석물은 샘플패드에 적용되어 이동하기 시작하면서 먼저 방출패드에 비고정적으로 코팅되어 있는 탐지용 항체와 반응을 하여 항원-항체 결합체 형태로 계속하여 전개된다. 이동하면서 전개막에 고정되어 있는 포획 항체와 한 번 더 반응을 하여 샌드위치 형태의 복합체를 만든다. 포획 항체는 전개막에 고정되어 있기 때문에 항원-항체 반응이 계속하여 일어나면 복합체의 축적이 포획 항체의 고정면에서 이루어진다. 단백질은 육안으로는 투명하기 때문에 복합체의 생성 여부와 상대적인 양을 부착된 금 입자 또는 은 입자의 양으로 판단한다.The lateral flow analysis herein is for example using immunochromatography analysis. In the lateral flow analysis apparatus 220 of the present application, various known strips 600 (see FIG. 9) may be used, but are not limited thereto, for example, those disclosed in Korean Patent Publication No. 2009-0006999 or 2005-0072015 may be used. have. In the strip structure of the patent lateral flow analysis, a sample pad to which a sample is applied, a release pad coated with a detection antibody, and a membrane for development in which a sample is moved and separated and an antibody antigen reaction occurs (mainly Nitrocellulose) or strips, and an absorption pad for the sample to move continuously. The detection antibody is immobilized on, for example, colloidal gold particles to label the detection. Latex beads or carbon particles may be used instead of gold particles. Diagnostic kits for lateral flow analysis are usually designed to detect analytes in the form of sandwiches. The analyte in the liquid sample is applied to the sample pad and begins to move, first developing in the form of an antigen-antibody conjugate by first reacting with a detection antibody that is unfixedly coated on the release pad. As it moves, it reacts with the capture antibody immobilized on the developing membrane once more to form a sandwich-like complex. Since the capture antibody is immobilized on the developing membrane, if antigen-antibody reactions continue to occur, accumulation of the complex takes place on the fixed side of the capture antibody. Since proteins are transparent to the naked eye, the formation and relative amounts of complexes are determined by the amount of gold or silver particles attached.
본원의 일체형 장치(200)는 스트립 형태로 제조될 수 있고 이러한 스트립 형태의 장치를 수용할 수 있는 다양한 흡광도 측정 장비(판독기)에서 사용될 수 있으며, 크기도 이에 맞추어 다양하게 제작될 수 있다. 본원의 일체형 장치(200)가 사용될 수 있는 장비는 예를 들면 이로 제한하는 것은 아니나 i-Chroma (바디텍메드 주식회사, 한국)나 Triage System(Biosite사, 스웨덴), Triage 시스템 (Biosite사), RAMP 시스템(Response Biomedical사, 캐나다)을 들 수 있으며, 측방유동방법을 사용하는 모든 측정기법에서 흡광법으로 측정하는 대상을 추가하고자 하는 경우에 모두 적용 가능할 수 있다.The integrated device 200 of the present disclosure may be manufactured in strip form and may be used in various absorbance measuring equipment (readers) capable of accommodating such strip form device, and the size may be variously manufactured accordingly. Equipment in which the integrated device 200 of the present application can be used is not limited to, for example, i- Chroma (Bodytecmed Co., Korea) or Triage System (Biosite, Sweden), Triage System (Biosite), RAMP System (Response Biomedical, Canada), and may be applicable to all cases in which the measurement by the absorption method is added in all measurement methods using the lateral flow method.
반사식 흡광도 측정 장치(210)는 흡광도 측정을 이용한 다양한 생물학적 물질의 검출 및/또는 정량에 사용될 수 있다. 예를 들면 이로 제한하는 것은 아니나 헤모글로빈(Hb), 미생물, 단백질 및 DNA, 그 외 효소/촉매의 첨가에 의한 화학반응으로 인한 색의 변화, 물질의 생성/변화 등을 검출하는 흡광도 측정 예를 들면 수질오염도 (BOD, COD), GPT/GOT(간기능) 검사, NADH 생성을 이용한 효소 활성도 검사( 예: ADH alcohol dehydrogenase, 항산화 활성도) 등이 있다. 측방유동 분석 장치(220)에서 측정될 수 있는 정보는 이로 제한하는 것은 아니나 hsCRP(high sensitivity C-reactive protein), MicroCRP, HbA1c (당화혈색소), microalbumin, PSA(prostate specific antigen), AFP(Alpha-fetoprotein), cTnI (Cardiac Troponin I) 등이 있다. 측방유동 분석의 경우 측정값의 정확도를 위해 측정값에 대하여 소정의 보정 예를 들면 Hb 보정을 하게 되는데, 본원의 일체형 장치를 사용하면 이러한 정보를 한 번의 측정으로 얻을 수 있다. 예를 들면 종전에는 HbA1c 검사를 측방유동을 이용한 Alc 검사와 흡광도를 이용한 헤모글로빈 검사를 별개로 수행하였다. 하지만 본원의 일체형 장치를 사용할 경우, 이러한 검사를 한 번에 수행하여 종합적 정보를 수득할 수 있다. 예시적으로, 본원의 일체형 장치를 판독기 예를 들면 I-Chroma에 사용하면 이러한 두 가지 측정을 한꺼번에 수행할 수 있다.The reflective absorbance measuring device 210 may be used for detecting and / or quantifying various biological materials using absorbance measurement. For example, but not limited to, absorbance measurements for detecting changes in color, generation / change of substances, etc. due to chemical reactions by addition of hemoglobin (Hb), microorganisms, proteins and DNA, and other enzymes / catalysts Water pollution (BOD, COD), GPT / GOT (Liver Function) test, enzyme activity test using NADH production (eg ADH alcohol dehydrogenase, antioxidant activity). Information that can be measured in the lateral flow analysis device 220 is not limited thereto, but high sensitivity C-reactive protein (hsCRP), MicroCRP, HbA1c (glycosylated hemoglobin), microalbumin, PSA (prostate specific antigen), and AFP (alpha- fetoprotein) and cTnI (Cardiac Troponin I). In the case of lateral flow analysis, a predetermined correction, for example, Hb correction, is performed on the measured value for the accuracy of the measured value. When the integrated device of the present application is used, this information can be obtained in one measurement. For example, previously, the HbA1c test was performed separately from the Alc test using lateral flow and the hemoglobin test using absorbance. However, when using the integrated device of the present application, such inspection can be performed at once to obtain comprehensive information. By way of example, the use of the integrated device of the present application in a reader, for example I-Chroma, allows these two measurements to be performed at once.
즉 기존에는 측방유동 분석 툴을 통해 HsCRP, A1c 등의 정보를 측정하고 별도의 흡광도 측정 툴을 이용하여 Hb 등의 정보를 측정하여 시간이 지연되고 작업이 번거로웠으나, 본원(200)은 일체로 형성되어 두 가지 정보를 모두 측정 가능하므로 훨씬 신속하고 용이하게 종합 정보를 획득할 수 있게 된다. 나아가 흡광도 측정이 반사식으로 이루어짐으로써, 투과형 흡광도 측정에 비해 본원(200), 광원(400), 그리고 광 검출기(500)의 배치가 훨씬 간편해진다. 또한 후술되는 시험 결과(도 18 참고)를 통하여 살펴볼 수 있듯이, 이러한 신속성, 간편성 등이 확보되면서도 측정에 있어서의 소정의 정확성도 확보된다.That is, in the past, the measurement of information such as HsCRP, A1c through the lateral flow analysis tool and the measurement of information such as Hb using a separate absorbance measurement tool was time delayed and cumbersome, but the application 200 is integrated Since both information can be measured, comprehensive information can be obtained much more quickly and easily. In addition, since the absorbance measurement is performed by the reflection type, the arrangement of the present application 200, the light source 400, and the photo detector 500 is much simpler than the transmission absorbance measurement. In addition, as can be seen through the test results (see FIG. 18) to be described later, while the rapidity, simplicity and the like is secured, the predetermined accuracy in the measurement is also secured.
여기서, 도 9, 도 10, 그리고 도 14에 나타난 바와 같이, 시료 수용부(111)는 광 투과 부재(127)를 통해 입사되는 광원(400)을 반사시키는 바닥부(111a)를 포함하는 것을 특징으로 할 수 있다.9, 10, and 14, the sample accommodating part 111 includes a bottom part 111a reflecting the light source 400 incident through the light transmitting member 127. You can do
반사광 측정창(125)은 커버 부재(120) 상에서 일 방향으로 연장되어 형성되고, 시료 수용부(111)는 베이스 부재(110) 상에서 일 방향으로 연장되어 형성되는 것을 특징으로 할 수 있다.The reflected light measuring window 125 may be formed to extend in one direction on the cover member 120, and the sample accommodating part 111 may be formed to extend in one direction on the base member 110.
도 9 내지 도 12, 그리고 도 14에 나타난 바와 같이, 시료 투입구(121, 123)는 두 개의 시료 투입구(121, 123)로 구성되고, 반사광 측정창(125)은 두 개의 시료 투입구(121, 123)의 사이에 형성되는 것을 특징으로 할 수 있다.As shown in FIGS. 9 to 12 and 14, the sample inlets 121 and 123 are composed of two sample inlets 121 and 123, and the reflection light measuring window 125 has two sample inlets 121 and 123. It may be characterized in that formed between.
또한 반사식 흡광도 측정 장치(210)는 커버 부재(120)의 상측에 배치되는 광원(400), 그리고 광원(400)으로부터 광 투과 부재(127)를 통해 시료 수용부(111)에 조사된 후 반사되어 나오는 빛의 양을 계측하는 광 검출기(500)를 더 포함할 수 있다. 그리고 광 검출기(500)는 광원(400)이 존재하는 연직선 상에서 비껴 있도록 배치되는 것을 특징으로 할 수 있다.In addition, the reflective absorbance measuring device 210 is irradiated from the light source 400 disposed above the cover member 120 to the sample accommodating part 111 through the light transmitting member 127 from the light source 400 and then reflected. It may further include a photo detector 500 for measuring the amount of light coming out. In addition, the light detector 500 may be disposed to be deflected on a vertical line in which the light source 400 is present.
본원의 한 실시예에 따른 반사식 흡광도 측정 장치(100) 또는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치(200)의 반사식 흡광도 측정 장치(210)의 성능을 검증하기 위하여 흡광도 측정을 통한 Hb 농도 환산 시험을 실시하였다. 상술한 바와 같이 표면 반사광의 영향을 제거하기 위해 도 7에 나타난 바와 같이 광원(400)과 광 검출기(500)가 동일한 연직선 상에 있지 않도록 광원(400)을 광 검출기(500)에 대하여 비껴 배치함이 바람직하다. 다만 반드시 도 7과 같은 순서나 위치에 광원(400)과 광 검출기(500)를 배치하여야 하는 것은 아니며, 표면 반사광의 영향을 최소화하는 방향으로 배치하면 된다.To verify the performance of the reflective absorbance measuring apparatus 100 of the reflective absorbance measuring apparatus 100 according to an embodiment of the present application or the reflective absorbance measuring and lateral flow analysis integrated apparatus 200 according to another embodiment of the present application In order to perform the Hb concentration conversion test by measuring the absorbance. As described above, in order to remove the influence of the surface reflected light, the light source 400 is disposed away from the light detector 500 such that the light source 400 and the light detector 500 are not on the same vertical line as shown in FIG. 7. This is preferable. However, the light source 400 and the light detector 500 are not necessarily disposed in the order or position as shown in FIG. 7, and may be disposed in a direction that minimizes the influence of the surface reflected light.
도 17은 본원의 한 실시예에 따른 반사식 흡광도 측정 장치 또는 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치의 반사식 흡광도 측정 장치를 통해 측정된 흡광도를 Hb 농도로 환산한 결과를 기존의 Hb 농도 측정 결과와 비교한 그래프이다.FIG. 17 shows the absorbance measured by the reflective absorbance measuring device of the reflective absorbance measuring device according to one embodiment of the present application or the reflective absorbance measuring and lateral flow analysis integrated device according to another embodiment of the present application, converted into Hb concentration. The result is a graph comparing the result of the conventional Hb concentration measurement.
도 17은 도 7과 같은 형태의 광원(400)과 광 검출기(500)의 배치를 통하여 산출된 결과를 기존의 결과와 비교한 것이다. 도 7과 같이 시료 투입구(121)를 통해 처리된 혈액 시료(300)를 시료 수용부(111)에 넣은 후 520nm 파장의 광원(400)(LED)으로 시료 수용부(111)에 놓인 시료(300)를 광 투과 부재(127)를 통하여 조사하였다. 반사된 반사광을 광 검출기(500)로 측정하여 흡광도를 구하고 Hb 농도로 환산하였다.FIG. 17 compares the result calculated through the arrangement of the light source 400 and the photo detector 500 having the same shape as that of FIG. 7 with existing results. As shown in FIG. 7, the blood sample 300 processed through the sample inlet 121 is placed in the sample accommodating part 111, and then the sample 300 placed in the sample accommodating part 111 by the light source 400 (LED) having a wavelength of 520 nm. ) Was irradiated through the light transmitting member 127. The reflected reflected light was measured by the photodetector 500 to obtain absorbance, and converted into Hb concentration.
도 17에서, Y측은 본원(100, 210)을 통해 구해진 Hb 농도이며, X축은 기존의 헤모큐(Hemocue) 사의 Hb-301이라는 기종으로 측정한 Hb 농도이다. 도 17에 나타난 바와 같이, 본원(100, 210)을 통한 복수의 Hb 농도 데이터(Y축)와 이에 대응되는 기존 장치를 통한 복수의 Hb 농도 데이터(X축)는 Y=1.0187X-3.8905 (R2=0.9855)으로 선형 회귀되므로, 서로 거의 동일한 값(Y=X에 가까운 값)이 측정되고 있음을 알 수 있다.In Figure 17, the Y side is the Hb concentration obtained through the present application (100, 210), the X-axis is the Hb concentration measured by the model of the existing Hemocue (Hemocue) Hb-301. As shown in FIG. 17, the plurality of Hb concentration data (Y-axis) through the present application 100 and 210 and the plurality of Hb concentration data (X-axis) through the existing apparatus corresponding thereto are Y = 1.0187X-3.8905 (R 2 = 0.9855), it can be seen that the values almost equal to each other (values close to Y = X) are measured.
시험 결과에서 알 수 있듯이, 반사식으로 흡광도 측정이 이루어짐으로써, 소정의 정확성을 유지하면서도 보다 간편하고 용이하게 흡광도 및 헤모글로빈 농도 측정이 이루어질 수 있다.As can be seen from the test results, by measuring the absorbance by the reflection, the absorbance and hemoglobin concentration measurement can be made more simply and easily while maintaining a certain accuracy.
다음으로, 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치(200)의 반사식 흡광도 측정 장치(210)와 측방유동 분석 장치(220)의 조합을 통한 종합 정보 측정 성능을 검증하기 위해 HbA1c 농도 측정 시험을 실시하였다. HbA1c의 측정을 위해서는 우선 반사식 흡광도 측정 장치(210)를 통해 Hb 농도를 측정해야 하므로, HbA1c 측정용으로 준비된 시료(300)의 일부를 시료 투입구(121)를 통해 시료 수용부(111)에 투입하여 흡광도 및 Hb 농도를 측정한다. 또한 측방유동 분석 장치(220)를 통하여 A1c를 측정한다. 각각 측정된 두 값을 이용하여 HbA1c 농도를 환산하였다.Next, verify the comprehensive information measurement performance through the combination of the reflective absorbance measuring device 210 and the lateral flow analysis device 220 of the reflective absorbance measurement and lateral flow analysis integrated device 200 according to another embodiment of the present application In order to perform the HbA1c concentration measurement test. In order to measure the HbA1c, the Hb concentration must first be measured by the reflective absorbance measuring device 210. Therefore, a part of the sample 300 prepared for measuring the HbA1c is introduced into the sample accommodating part 111 through the sample inlet 121. Absorbance and Hb concentration are measured. In addition, A1c is measured through the lateral flow analyzer 220. The HbA1c concentration was converted using the two measured values, respectively.
도 18은 본원의 다른 실시예에 따른 반사식 흡광도 측정 및 측방유동 분석 일체형 장치에 있어서 반사식 흡광도 측정 장치를 통해 Hb 농도를 구하고 측방유동 분석 장치를 통해 A1c를 측정하여 HbA1c 농도로 환산한 결과를 기존의 HbA1c 농도 측정 결과에 비교한 그래프이다.18 is a reflection absorbance measurement and lateral flow analysis integrated device according to another embodiment of the present application to obtain the Hb concentration through the reflection absorbance measuring device and to measure the A1c through the lateral flow analysis device converted to HbA1c concentration results It is a graph compared with the conventional HbA1c concentration measurement results.
즉 도 18은 당뇨병 마커인 HbA1c라는 물질 농도를 본원(200)을 통해 측정한 결과와 기존의 장치를 통해 측정한 결과를 비교한 것이다. 여기서 기존의 장치는 기준 기기인 VARIANT II로 정도관리를 받는 표준 측정기기를 사용하였다.That is, FIG. 18 compares the result of measuring the substance concentration of HbA1c, which is a diabetic marker, through the present application 200 with the result measured by the existing apparatus. Here, the existing apparatus used a standard measuring instrument which is controlled by the VARIANT II as a reference instrument.
도 18에서, Y측은 본원(200)을 통해 구해진 HbA1c 농도이며, X축은 기존 장치로 측정된 HbA1c 농도이다. 도 18에 나타난 바와 같이, 본원(200)을 통한 복수의 HbA1c 농도 데이터(Y축)와 이에 대응되는 기존 장치를 통한 복수의 HbA1c 농도 데이터(X축)는 Y=1.0024X+0.2327 (R2=0.976)으로 선형 회귀되므로, 서로 거의 동일한 값(Y=X에 가까운 값)이 측정되고 있음을 알 수 있다.In FIG. 18, the Y side is the HbA1c concentration obtained through the present application 200, and the X axis is the HbA1c concentration measured by the existing apparatus. As shown in FIG. 18, the plurality of HbA1c concentration data (Y-axis) through the present application 200 and the plurality of HbA1c concentration data (X-axis) through the existing apparatus corresponding thereto are Y = 1.0024X + 0.2327 (R 2 = 0.976), it can be seen that almost the same values (values close to Y = X) are measured.
시험 결과에서 알 수 있듯이, 측방유동 분석과 흡광도 측정이 하나의 장치(200)에서 모두 이루어지도록 함으로써, 소정의 정확성을 유지하면서도 보다 신속하고 용이하게 측방유동 분석 정보와 흡광도 측정 정보의 조합을 통한 종합 정보의 측정이 이루어질 수 있다.As can be seen from the test results, the lateral flow analysis and the absorbance measurement are performed in one device 200, thereby combining the lateral flow analysis information and the absorbance measurement information more quickly and easily while maintaining a certain accuracy. Measurement of the information can be made.
이상에서 본원의 실시예를 설명하였으나, 본원의 권리범위는 이에 한정되지 아니하며 본원의 실시예로부터 본원이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 용이하게 변경되어 균등한 것으로 인정되는 범위의 모든 변경 및 수정을 포함한다.Although the embodiments of the present application have been described above, the scope of the present application is not limited thereto, and all of the ranges that are easily changed by the person skilled in the art to which the present application pertains from the embodiments of the present application are recognized as equivalent. Includes changes and modifications.
본원에 사용된 부호는 다음과 같다. As used herein, the symbols are as follows.
100. 반사식 흡광도 측정 장치 110. 베이스 부재100. Reflective absorbance measuring device 110. Base member
110a. 사각 형상 111. 시료 수용부110a. Square shape 111. Sample compartment
111a. 바닥부 120. 커버 부재111a. Bottom 120. Cover member
120a. 사각 홀 120b. 반원형 돌출부120a. Square hole 120b. Semicircular protrusion
121. 시료 투입구 123. 시료 투입구121. Sample inlet 123. Sample inlet
125. 반사광 측정창 127. 광 투과 부재125. Reflected light measuring window 127. Light transmitting member
130. 경계면130. Boundaries
200. 반사식 흡광도 측정 및 측방유동 분석 일체형 장치200. Reflective absorbance measurement and side flow analysis integrated unit
210. 반사식 흡광도 측정 장치 220. 측방유동 분석 장치210. Reflective absorbance measuring device 220. Lateral flow analysis device
221. 시료 투입구 223. 측정창 221.Sample inlet 223. Measuring window
225. 스트립 수용부 230. 경계면225. Strip receptacle 230. Interface
300. 시료 400. 광원300. Sample 400. Light source
500. 광 검출기 600. 스트립500. Light Detector 600. Strip
본원의 장치는 소정의 정확성을 유지하면서도 보다 신속, 간편하고 용이하게 흡광도를 측정할 수 있으며, 일체형 장치의 경우, 측방유동 분석 정보와 흡광도 측정 정보를 한 번에 측정할 수 있어 정확성은 물론 편리성과 경제성이 도모된다. The device of the present invention can measure absorbance more quickly, simply and easily, while maintaining a certain accuracy.In the case of an integrated device, the lateral flow analysis information and the absorbance measurement information can be measured at a time, so that the accuracy and convenience Economics are promoted.

Claims (11)

  1. 시료 수용부가 형성된 베이스 부재;A base member having a sample receiving portion;
    상기 베이스 부재 상단을 덮는 커버 부재; 및A cover member covering an upper end of the base member; And
    상기 베이스 부재와 커버 부재 사이에 개재되는 광 투과 부재를 포함하며, A light transmitting member interposed between the base member and the cover member,
    상기 커버 부재에는 상기 시료 수용부로 시료를 투입하는 시료 투입구와 상기 시료 수용부에 연직하도록 반사광 측청창이 각각 형성되며, The cover member includes a sample inlet for feeding a sample into the sample accommodating part and a reflection light side window to be perpendicular to the sample accommodating part,
    상기 광 투과 부재는 상기 반사광 측정창에 대응되도록 위치하는, 반사식 흡광도 측정 장치. And the light transmitting member is positioned to correspond to the reflected light measuring window.
  2. 제1항에서,In claim 1,
    상기 시료 수용부는 상기 광 투과 부재를 통해 입사되는 빛을 반사시키는 바닥부를 더 포함하는 반사식 흡광도 측정 장치.The sample accommodating part further comprises a bottom portion for reflecting light incident through the light transmitting member.
  3. 제1항에서,In claim 1,
    상기 반사광 측정창은 상기 커버 부재 상에서 일 방향으로 연장되어 형성되고, The reflected light measuring window is formed extending in one direction on the cover member,
    상기 시료 수용부는 상기 베이스 부재 상에서 일 방향으로 연장되어 형성되는 반사식 흡광도 측정 장치. The sample accommodating part is a reflective absorbance measuring device is formed extending in one direction on the base member.
  4. 제1항 내지 제3항 중 어느 한 항에서,The method according to any one of claims 1 to 3,
    상기 시료 투입구는 두 개이고,The sample inlet is two,
    상기 반사광 측정창은 상기 두 개의 시료 투입구의 사이에 형성되는 반사식 흡광도 측정 장치. The reflected light measuring window is a reflection type absorbance measuring device formed between the two sample inlet.
  5. 제4항에서,In claim 4,
    상기 광 투과 부재는 하면이 상기 시료 투입구보다 낮은 위치에 형성되는 반사식 흡광도 측정 장치. And a light absorbing member having a lower surface formed at a lower position than the sample inlet.
  6. 제1항 내지 제5항 중 어느 한 항에서,The method according to any one of claims 1 to 5,
    상기 커버 부재의 상측에 배치되는 광원, 그리고A light source disposed above the cover member, and
    상기 광원으로부터 상기 광 투과 부재를 통해 상기 시료 수용부에 조사된 후 반사되어 나오는 빛의 양을 계측하도록 상기 커버 부재의 상측에 배치되는 광 검출기를 더 포함하는 반사식 흡광도 측정 장치.And a light detector disposed above the cover member to measure an amount of light reflected from the light source through the light transmitting member and then reflected from the sample accommodating portion.
  7. 제6항에서,In claim 6,
    상기 광 검출기는 상기 광원이 존재하는 연직선 상에서 비껴 있도록 배치되는 반사식 흡광도 측정 장치.And the photo detector is disposed so as to deviate on a vertical line in which the light source exists.
  8. 시료의 흡광도 측정과 측방유동 분석(lateral flow assay)이 모두 가능한 반사식 흡광도 및 측방유동 분석용 일체형 장치로서,It is an integrated device for reflection absorbance and lateral flow analysis that can measure both absorbance of samples and lateral flow assay.
    제1항 내지 제7항 중 어느 한 항에 따른 하나 이상의 반사식 흡광도 측정 장치, 그리고 상기 반사식 흡광도 측정 장치와 이웃하여 배치되는 하나 이상의 방유동 분석 장치를 포함하는 반사식 흡광도 및 측방유동 분석 일체형 장치.  Integrated reflective absorptive and lateral flow analysis comprising at least one reflective absorbance measuring device according to any one of claims 1 to 7, and at least one discharge flow analyzing device disposed adjacent to the reflective absorbance measuring device. Device.
  9. 제8항에서,In claim 8,
    상기 반사식 흡광도 측정 장치 및 상기 측방유동 분석 장치는 일자로 또는 나란히 배치되는 반사식 흡광도 및 측방유동 분석 일체형 장치. And said reflective absorbance measuring device and said lateral flow analysis device are arranged in a line or side by side.
  10. 제8항에서, In claim 8,
    상기 반사식 흡광도 측정 장치 및 상기 측방유동 분석 장치는 각각 두 개 이상인 반사식 흡광도 및 측방유동 분석 일체형 장치.  And said reflective absorbance measuring device and said lateral flow analysis device are two or more reflection absorbance and lateral flow analysis integrated devices, respectively.
  11. 제10항에서, In claim 10,
    상기 반사식 흡광도 측정 장치 및 상기 측방유동 분석 장치는 각각 두 개이며,The reflective absorbance measuring device and the lateral flow analysis device are each two,
    상기 한 개의 반사식 흡광도 측정 장치 및 한 개의 측방유동 분석 장치는 일자로 배치되고, 나머지 한 개의 반사식 흡광도 측정 장치 및 한 개의 측방유동 분석 장치도 일자로 배치되고,The one reflective absorbance measuring device and one lateral flow analysis device is arranged in a date, the other reflective absorbance measuring device and one lateral flow analysis device is also arranged in a date,
    상기 두 개의 일자로 배치된 반사식 흡광도 측정 장치 및 측방유동 분석 장치는 나란히 배치되는 반사식 흡광도 및 측방유동 분석 일체형 장치. The two-day reflective absorbance measuring device and the lateral flow analysis device is a side-by-side reflective absorbance and lateral flow analysis integrated device.
PCT/KR2011/003703 2010-05-19 2011-05-19 Reflective light absorbance measuring apparatus and integrated apparatus for measuring reflective light absorbance and for lateral flow assay comprising same WO2011145895A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0046833 2010-05-19
KR20100046833A KR101190190B1 (en) 2010-05-19 2010-05-19 Device for measuring reflective absorbance and combined device for reflective absorbance and lateral flow analysis

Publications (2)

Publication Number Publication Date
WO2011145895A2 true WO2011145895A2 (en) 2011-11-24
WO2011145895A3 WO2011145895A3 (en) 2012-04-19

Family

ID=44992227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003703 WO2011145895A2 (en) 2010-05-19 2011-05-19 Reflective light absorbance measuring apparatus and integrated apparatus for measuring reflective light absorbance and for lateral flow assay comprising same

Country Status (2)

Country Link
KR (1) KR101190190B1 (en)
WO (1) WO2011145895A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149357B1 (en) * 2011-11-14 2012-05-30 바디텍메드 주식회사 Device for measuring reflective absorbance and integrated device for measuring reflective absorbance and lateral flow analysis
EP3070156B1 (en) 2013-11-12 2018-12-26 Boditech Med Inc. Multi-well cuvette provided with integrated reaction and detection means
WO2015072718A1 (en) 2013-11-12 2015-05-21 바디텍메드 주식회사 Multi-well cuvette provided with integrated reaction and detection means
US10871474B2 (en) 2015-05-14 2020-12-22 Boditech Med Inc. System and method for analyzing biological fluid in multiple cuvettes
KR101811786B1 (en) 2015-05-14 2017-12-22 바디텍메드(주) Station for test device with integrated reaction and detection means
KR102573111B1 (en) 2021-10-08 2023-08-31 한국과학기술원 Solution Injecting Device for Lateral Flow Assay using Elastic Press Button

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164278A (en) * 1997-08-25 1999-03-05 Shimadzu Corp Electrophoresis member and electrophoresis apparatus using the same
KR20010071593A (en) * 1998-06-25 2001-07-28 존 펑크하우저 Methods for Performing Fibrinogen Assays Using Dry Chemical Reagents Containing Ecarin and Magnetic Particles
KR200299628Y1 (en) * 2002-10-12 2003-01-03 주식회사 비엘에스 a apparatus for diagnosis medicine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200357469Y1 (en) * 2004-02-03 2004-07-30 주식회사 녹십자상아 Diagnosis Kit for Analyzing Immuno-Chromatography
KR100910982B1 (en) * 2007-07-13 2009-08-05 바디텍메드 주식회사 System for the quantitative measurement of glycohemoglobin and a method for measuring the content of glycohemoglobin using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164278A (en) * 1997-08-25 1999-03-05 Shimadzu Corp Electrophoresis member and electrophoresis apparatus using the same
KR20010071593A (en) * 1998-06-25 2001-07-28 존 펑크하우저 Methods for Performing Fibrinogen Assays Using Dry Chemical Reagents Containing Ecarin and Magnetic Particles
KR200299628Y1 (en) * 2002-10-12 2003-01-03 주식회사 비엘에스 a apparatus for diagnosis medicine

Also Published As

Publication number Publication date
KR20110127386A (en) 2011-11-25
WO2011145895A3 (en) 2012-04-19
KR101190190B1 (en) 2012-10-15

Similar Documents

Publication Publication Date Title
KR101149357B1 (en) Device for measuring reflective absorbance and integrated device for measuring reflective absorbance and lateral flow analysis
US7323139B2 (en) Accessible assay and method of use
WO2011145895A2 (en) Reflective light absorbance measuring apparatus and integrated apparatus for measuring reflective light absorbance and for lateral flow assay comprising same
JP4683806B2 (en) System and method for performing magnetic chromatography measurements
JP5837262B2 (en) Biochemical analysis cartridge with improved operability
JP4997222B2 (en) Multifunctional and configurable assay
WO2011071256A2 (en) Centrifugal micro-fluidic structure for measuring glycated hemoglobin, centrifugal micro-fluidic device for measuring glycated hemoglobin, and method for measuring glycated hemoglobin
JP5036867B2 (en) Biosensor
US20050186681A1 (en) Apparatus and method for process monitoring
EP1909103A1 (en) Analyzer and analyzing method
US20150224499A1 (en) Automated Microfluidic Sample Analyzer Platforms for Point of Care
CN105510577A (en) Method for rapidly and quantitatively detecting multiple analytes in blood by adopting multi-point calibration
WO2014137152A1 (en) Cartridge for analyzing specimen by means of local surface plasmon resonance and method using same
JP3298836B2 (en) Sample analysis tool
US20150160206A1 (en) Microfluidic device and apparatus for testing the same
US3859050A (en) Device for biochemical and enzymatic analysis
Pugia Technology behind diagnostic reagent strips
WO2020138764A1 (en) Reference cassette for fluorescence immunoassay diagnostic device
KR102606867B1 (en) Kit for COVID diagnosis
WO2021137387A1 (en) Immunoassay test strip using capacitive sensor
US20220371014A1 (en) Multi-layered biosensor chip and biomarker measuring apparatus using the same
US20150260709A1 (en) Diagnostic device and diagnostic system having the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783777

Country of ref document: EP

Kind code of ref document: A2