WO2011132350A1 - Illumination device and display device - Google Patents

Illumination device and display device Download PDF

Info

Publication number
WO2011132350A1
WO2011132350A1 PCT/JP2011/000403 JP2011000403W WO2011132350A1 WO 2011132350 A1 WO2011132350 A1 WO 2011132350A1 JP 2011000403 W JP2011000403 W JP 2011000403W WO 2011132350 A1 WO2011132350 A1 WO 2011132350A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting element
semiconductor light
guide plate
Prior art date
Application number
PCT/JP2011/000403
Other languages
French (fr)
Japanese (ja)
Inventor
山中 一彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011132350A1 publication Critical patent/WO2011132350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • G02B6/008Side-by-side arrangements, e.g. for large area displays of the partially overlapping type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to an illuminating device used as a backlight of a liquid crystal display device built in a liquid crystal television or a liquid crystal monitor, and a display device including the illuminating device.
  • the liquid crystal display device includes a liquid crystal panel and an illumination device (backlight unit) that is a light source of the liquid crystal panel.
  • An illuminating device used in a liquid crystal display device is a planar illuminating device that emits light in a planar shape, and includes a light emitting element called a backlight such as a cold cathode tube (CCFL), a diffusion plate, and the like.
  • the liquid crystal panel transmits and shields light from the illumination device by applying a predetermined voltage to each liquid crystal held in a minute area called a pixel.
  • a white LED in which a phosphor is integrated in a blue LED (Light Emitting Diode), which is a semiconductor light emitting element that emits blue light, as a backlight of a liquid crystal display device.
  • a white LED as a backlight is effective for realizing thinning, energy saving, or mercury-free liquid crystal display devices, and its development is actively performed.
  • a conventional illumination device 500 is a planar illumination device that is a backlight of a liquid crystal display device, and includes a light guide plate 510, light emitting elements 520a to 520d that are four LEDs, And light guides 530b to 530d.
  • reflection sheets 540a to 540d are provided below the lower surfaces 512a to 215d of the light guide plate 510.
  • the conventional lighting device 500 configured as described above is an edge-type lighting device
  • the lower surfaces 512a to 512d of the light guide plate 510 are adjusted by adjusting the luminous intensity of the light emitted from the light emitting elements 520a to 520d.
  • the dimming control can be performed for each region corresponding to. That is, local dimming driving can be performed.
  • the conventional illumination device 500 has a plurality of light emitting elements arranged in the thickness direction of the light guide plate on the side surface of the light guide plate 510 in order to enable local dimming driving.
  • the present invention has been made to solve the above problem, and an illumination device capable of efficiently dissipating heat generated by a semiconductor light-emitting element while enabling local dimming driving without increasing the thickness of the entire device.
  • An object is to provide a display device including the above.
  • an aspect of the illumination device includes a semiconductor light emitting element, a first reflecting surface for reflecting light emitted from the semiconductor light emitting element, and the first reflecting surface.
  • a plurality of illumination elements having a second reflection surface for reflecting the incident light and reflecting the incident light, and a light guide plate for guiding the light reflected by the second reflection surface
  • the semiconductor light emitting element emits light having a vertical divergence angle larger than a horizontal divergence angle of the semiconductor light emitting element, and the first reflecting surface reflects the light emitted from the semiconductor light emitting element. It is a convex reflecting surface that is curved.
  • one aspect of the lighting device according to the present invention includes a heat sink, and the semiconductor light emitting element is disposed on the heat sink.
  • the semiconductor light emitting element and the first reflecting surface can be arranged with high positional accuracy. Therefore, light from the semiconductor light emitting element can be efficiently guided to the light guide plate, and excessive heat generation in the semiconductor light emitting element can be reduced.
  • the semiconductor light emitting element is preferably a semiconductor laser.
  • the light emitted from the semiconductor light emitting element can be extracted efficiently. Therefore, excessive heat generation from the semiconductor light emitting element can be reduced.
  • the first reflecting surface is disposed on an optical axis of the semiconductor light emitting element.
  • the in-plane distribution of the luminous intensity of the light traveling to the light guide plate can be made uniform.
  • the plurality of semiconductor light emitting elements include a semiconductor light emitting element that emits red light, a semiconductor light emitting element that emits green light, and a semiconductor that emits blue light. It preferably includes a light emitting element.
  • FIG. 8A is a diagram illustrating a positional relationship between the light emitting element and the light guide plate in the illumination device.
  • FIG. 8B is a diagram showing alignment characteristics of light emitted from the light emitting elements A and B.
  • FIG. 8C is a diagram showing a light guide plate coupling loss of the light emitting elements A and B shown in FIG. 8B.
  • FIG. 9A is a diagram showing a step of disposing the light emitting device on the heat sink in the method for manufacturing the lighting device according to Embodiment 1 of the present invention.
  • FIG. 9B is a diagram showing a step of arranging the light guide plate in the method for manufacturing the lighting device according to Embodiment 1 of the present invention.
  • FIG. 9C is a diagram showing a state in which a plurality of light guide plates are arranged in the method for manufacturing the lighting device according to Embodiment 1 of the present invention.
  • FIG. 10A is a cross-sectional view of the lighting apparatus according to Embodiment 2 of the present invention.
  • FIG. 10B is a cross-sectional view of the display device according to Embodiment 2 of the present invention.
  • FIG. 11 is a perspective view (FIG. 11 (a)) which shows an example of the heat sink used for the illuminating device which concerns on Embodiment 2 of this invention, and a perspective view which shows the other example of the same heat sink (FIG. 11 (b) )).
  • FIG. 11 (a) shows an example of the heat sink used for the illuminating device which concerns on Embodiment 2 of this invention
  • FIG. 11 (b) shows the other example of the same heat sink
  • FIG. 12 is a partially cutaway plan view schematically showing a state when the display device 200A according to Embodiment 2 of the present invention is viewed from the back.
  • FIG. 13A is an essential part enlarged cross-sectional view of the lighting apparatus according to Embodiment 3 of the present invention.
  • FIG. 13B is an enlarged cross-sectional view of the periphery of the end portion of the light guide plate in the lighting apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 is an external perspective view of a main part of a lighting apparatus according to Embodiment 4 of the present invention.
  • FIG. 15 is a cross-sectional view of a conventional lighting device.
  • the light guide plate 11 is a rectangular thin transparent plate, and is two-dimensionally arranged in a matrix in conjunction with the two-dimensional arrangement of the lighting elements 10.
  • a plurality of light emitting devices 12 that emit light for entering the light guide plate 11 are disposed on the side portions of the respective light guide plates 11.
  • three light emitting devices 12 are arranged at equal intervals in the Y-axis direction with respect to each light guide plate 11.
  • a display device 100A according to Embodiment 1 of the present invention includes an illumination device 100 according to the present embodiment indicated by a broken line in the drawing, a first optical sheet 40, and a second optical sheet 50. And a liquid crystal panel 101. Further, the display device 100 ⁇ / b> A includes a housing 60 and a cover 102.
  • liquid crystal panel 101 is disposed on the second optical sheet 50.
  • the semiconductor light emitting device 12a is a semiconductor laser in which a waveguide 12a3 is formed in the semiconductor layer 12a2 on the substrate 12a1 by etching or the like will be described.
  • One end face of the semiconductor light emitting element 12a is a reflection end face 12a4, and the other end face is an emission end face 12a5.
  • the light generated by the semiconductor light emitting element 12a is adjusted in the emission direction by the waveguide 12a3, and is emitted as the emitted light L from the emission end face 12a5.
  • the first reflected light R1 reflected by the convex reflecting surface 12d is reflected by the inclined surface 11a (second reflecting surface) to become the second reflected light R2.
  • the second reflected light R2 travels toward the inside of the light guide plate.
  • the first reflected light R1 is changed by the inclined surface 11a so that the traveling direction is directed toward the lower surface of the light guide plate.
  • the traveling direction of the first reflected light R1 is changed by 45 degrees.
  • the distribution of light reaching the inclined surface 11a includes the semiconductor light emitting element 12a, the convex reflecting surface 12d (first reflecting surface), the inclined surface 11a (second reflecting surface), and the like. It can be adjusted according to the positional relationship. In particular, by adjusting the distance between the semiconductor light emitting elements 12a in the adjacent illumination elements 10, the in-plane distribution of the luminous intensity of the illumination apparatus can be adjusted uniformly.
  • FIG. 6A is a diagram illustrating a state in which light propagates in the lighting device according to Embodiment 1 of the present invention
  • FIG. 6B illustrates a lighting device at a predetermined position above the light guide plate in the lighting device according to this embodiment. It is a figure which shows the luminous intensity.
  • FIG. 7A is a diagram illustrating a state in which light propagates in the illumination device according to the comparative example when an LED having a large divergence angle is used
  • FIG. 7B is an upper view of the light guide plate in the illumination device according to the comparative example.
  • the illuminating device 100 according to the present embodiment can irradiate the inclined surface 11a with most of the emitted light from the semiconductor light emitting element 12a. Therefore, as shown in FIG. 6B, in the illumination device 100 according to this embodiment, light can be uniformly and efficiently distributed inside the light guide plate 11.
  • the illuminating device 100 which concerns on this embodiment uses the light emitting element which has a waveguide, the horizontal divergence angle (theta) HL of the emitted light L radiate
  • the diverging angle ⁇ VR2 in the vertical direction of the two reflected light R2 can also be made sufficiently small.
  • the light guide plate coupling loss A of the light emitting element A (light that is not reflected by the inclined surface 11a and incident on the adjacent light guide plate) is 3 to 9%.
  • the light guide plate coupling losses A and B are both 0% in any pattern, and it can be seen that the light utilization efficiency is very high. Therefore, in the illuminating device 100 of the present invention related to the light emitting element B, it is possible to obtain excellent light utilization efficiency and uniform light emission distribution.
  • the illuminating device which concerns on Embodiment 1 of this invention, since it has multiple illumination elements which have a semiconductor light-emitting device and a light-guide plate, multiple semiconductor light-emitting devices are arrange
  • local dimming driving can be performed.
  • the semiconductor light emitting elements are not concentrated on one place of the light guide plate, and the semiconductor light emitting elements can be evenly arranged on the entire surface of the heat radiating plate, so that the heat generated by the semiconductor light emitting elements can be radiated efficiently. be able to.
  • the in-plane distribution of the luminous intensity of the light traveling to the light guide plate can be made uniform.
  • the phosphor contained in the optical element 12e is a YAGCe 3+ phosphor, but is not limited thereto.
  • the combined light emitted from the semiconductor light emitting element and the phosphor by the light having a wavelength in the range of blue light to red light may be white light.
  • a sialon phosphor or a phosphor using quantum dots such as ZnS / CdS may be used.
  • three primary colors of blue light, green light, and red light are necessary.
  • the illumination device 200 according to Embodiment 2 of the present invention is provided with heat radiation fins 70 via the heat radiation plate 20 below the light emitting device 12.
  • the radiating fin 70 has a structure having wings in the vertical direction. Can dissipate heat.
  • the illuminating device 200 which concerns on Embodiment 2 of this invention, since the radiation fin 70 is provided, the heat which generate
  • the opening 80 disposed to face the radiating fin 70 is provided, so that the heat transferred to the radiating fin 70 is radiated from the opening 80 to the outside of the housing 60. Is done. Thereby, in a lighting device or a liquid crystal display device provided with the lighting device, an increase in temperature can be suppressed.
  • a recess 11c is formed at the tip portion on the side where the inclined surface 11a of the light guide plate 11 is formed.
  • the recess 11 c is formed in accordance with the package shape of the light emitting device 12 in order to accommodate the light emitting device 12.
  • the side wall portion on the light guide plate 11 side of the light emitting device 12 and the side wall portion on the light emitting device 12 side of the recess 11c are configured to contact each other.
  • FIG. 14 is an external perspective view of a main part of a lighting apparatus according to Embodiment 4 of the present invention.
  • the same components as those in the lighting apparatus according to Embodiment 1 of the present invention shown in FIGS. 1A and 1B are denoted by the same reference numerals, and description thereof is simplified or omitted.
  • the illumination device 400 is a semiconductor light emitting device that emits red light, for example, a light emitting layer is made of an AlInGaP (aluminum, indium, gallium, phosphorus) -based material.
  • a blue light emitting device 12B including a semiconductor light emitting element.
  • the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B in the present embodiment correspond to the three light emitting devices 12 in one illumination element 10 of the light emitting device of the first embodiment shown in FIGS. 1A and 1B. . That is, a light emitting device that emits light of three colors, a red light emitting device 12R, a green light emitting device 12G, and a blue light emitting device 12B, is arranged for the illumination element 10, that is, one light guide plate 11.
  • the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B shown in the present embodiment have the same optical element 12e according to the first embodiment shown in FIG. It is good also as a glass plate which is transparent with respect to the light of the range. With this configuration, it is possible to prevent the semiconductor light emitting element of each light emitting device from coming into contact with outside air, and thus it is possible to prevent the semiconductor light emitting element from being deteriorated due to foreign matter or the like. Further, as other configurations of the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B, for example, as illustrated in FIG. 2B, a configuration in which an optical element is removed from the light emitting device in FIG. 2A may be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed are an illumination device which is capable of local dimming drive and of efficiently dispersing heat generated by a semiconductor light-emitting diode, and a display device equipped with same. The illumination device comprises a semiconductor light-emitting diode (12a), a convex reflective surface (12d) which functions as a first reflective surface to reflect the light emitted by the semiconductor light-emitting diode (12a), and an inclined surface (11a) which functions as a second reflective surface to reflect the light reflected from the convex reflective surface (12d), and is equipped with a plurality of light-emitting diodes (10) provided with light-guiding plates (11) which guide the light reflected by the inclined surface (11a) to the interior. The semiconductor light-emitting diode (12a) emits light which has a greater vertical spread angle than horizontal spread angle. The convex surface (12d) is curved with respect to the light emitted by the semiconductor light-emitting diode (12a).

Description

照明装置及び表示装置Lighting device and display device
 本発明は、液晶テレビ又は液晶モニタ等に内蔵される液晶表示装置のバックライト等として用いられる照明装置及び当該照明装置を備える表示装置に関する。 The present invention relates to an illuminating device used as a backlight of a liquid crystal display device built in a liquid crystal television or a liquid crystal monitor, and a display device including the illuminating device.
 近年、薄型テレビ等に用いられる液晶表示装置の開発が盛んに行われている。液晶表示装置は、液晶パネルと、液晶パネルの光源である照明装置(バックライトユニット)とを備える。液晶表示装置に用いられる照明装置は、面状に光を放出する面状照明装置であって、冷陰極管(CCFL)等のバックライトと呼ばれる発光素子及び拡散板等で構成されている。液晶パネルは、画素と呼ばれる微小領域に保持されている個々の液晶に所定の電圧が印加されることにより照明装置からの光を透過及び遮蔽する。 In recent years, liquid crystal display devices used for flat-screen televisions and the like have been actively developed. The liquid crystal display device includes a liquid crystal panel and an illumination device (backlight unit) that is a light source of the liquid crystal panel. An illuminating device used in a liquid crystal display device is a planar illuminating device that emits light in a planar shape, and includes a light emitting element called a backlight such as a cold cathode tube (CCFL), a diffusion plate, and the like. The liquid crystal panel transmits and shields light from the illumination device by applying a predetermined voltage to each liquid crystal held in a minute area called a pixel.
 このような液晶表示装置において、特に大型の液晶テレビ等に用いられる液晶表示装置では、デザイン性や環境性能をより向上させることが求められている。このような要望に対して、青色光を発光する半導体発光素子である青色LED(Light Emitting Diode)に蛍光体を集積した白色LEDを液晶表示装置のバックライトとして用いることが提案されている。バックライトとして白色LEDを用いることは、液晶表示装置の薄型化や省エネ化、又は水銀レス化を実現するために有効であり、その開発が盛んに行われている。 In such a liquid crystal display device, particularly in a liquid crystal display device used for a large-sized liquid crystal television or the like, it is required to further improve design and environmental performance. In response to such a demand, it has been proposed to use a white LED in which a phosphor is integrated in a blue LED (Light Emitting Diode), which is a semiconductor light emitting element that emits blue light, as a backlight of a liquid crystal display device. The use of a white LED as a backlight is effective for realizing thinning, energy saving, or mercury-free liquid crystal display devices, and its development is actively performed.
 白色LEDを用いた液晶表示装置用の照明装置は、大別すると2種類あり、液晶パネルの側面位置に複数の白色LEDを一次元的に配置するエッジ型と、液晶パネルの後方に白色LEDを二次元的に配置する直下型とに分けられる。これら2種類の照明装置にはそれぞれ長所と短所があり、エッジ型の照明装置は、薄型化が実現できるという長所があるが、その一方で、白色LEDが液晶パネルの側面に集中していることから放熱が難しく、また、省エネ駆動が可能なローカルディミング(領域毎調光・調色)駆動が難しいという短所がある。他方、直下型の照明装置は、比較的容易に放熱が可能であり、また、2次元のローカルディミング駆動が可能であるという長所がある一方、薄型化が難しいという短所がある。 There are roughly two types of illumination devices for liquid crystal display devices using white LEDs. An edge type in which a plurality of white LEDs are arranged one-dimensionally on the side surface of the liquid crystal panel, and a white LED behind the liquid crystal panel. It can be divided into two-dimensionally arranged direct type. Each of these two types of lighting devices has advantages and disadvantages, and edge-type lighting devices have the advantage that they can be made thinner, while white LEDs are concentrated on the side of the liquid crystal panel. Therefore, it is difficult to dissipate heat, and it is difficult to drive locally dimming (dimming and toning) for each energy-saving drive. On the other hand, the direct-type illumination device has the advantages that it can dissipate heat relatively easily and that two-dimensional local dimming driving is possible, but it is difficult to reduce the thickness.
 このような中、エッジ型でありながらローカルディミング駆動を可能とする照明装置が特許文献1に開示されている。以下、特許文献1に開示される従来の照明装置について、図15を用いて説明する。図15は、従来の照明装置の断面図である。 In such a situation, Patent Document 1 discloses an illumination device that is capable of local dimming drive while being an edge type. Hereinafter, a conventional lighting device disclosed in Patent Document 1 will be described with reference to FIG. FIG. 15 is a cross-sectional view of a conventional lighting device.
 図15に示すように、従来の照明装置500は、液晶表示装置のバックライトである面状照明装置であって、導光板510と、4個のLEDである発光素子520a~520dと、3つのライトガイド530b~530dとを有する。 As shown in FIG. 15, a conventional illumination device 500 is a planar illumination device that is a backlight of a liquid crystal display device, and includes a light guide plate 510, light emitting elements 520a to 520d that are four LEDs, And light guides 530b to 530d.
 導光板510は、薄い透明平板であって、その上面部は平坦である。一方、導光板510の下面部は、厚さが段階的に薄くなるように、段差部511b~511dが形成されている。また、導光板510の下面部は、段差部511b~511dの段差形状にしたがって、異なる高さに位置する下面512a~512dによって構成されている。なお、導光板510の各下面512a~512dには、酸化チタン等によって反射処理が施されている。 The light guide plate 510 is a thin transparent flat plate, and its upper surface is flat. On the other hand, step portions 511b to 511d are formed on the lower surface portion of the light guide plate 510 so that the thickness gradually decreases. Further, the lower surface portion of the light guide plate 510 is configured by lower surfaces 512a to 512d located at different heights in accordance with the step shapes of the step portions 511b to 511d. Note that each of the lower surfaces 512a to 512d of the light guide plate 510 is subjected to reflection treatment with titanium oxide or the like.
 導光板510の厚みが薄い方の側面には、基板に固定された4個の発光素子520a~520dが配置されている。各発光素子は、導光板510の厚み方向に並ぶようにして配置されて、上の発光素子520aは、導光板510の側面に対向するように配置され、また、下の3つの発光素子520b~520dは、それぞれ導光板510の各段差部511b~511dに対向するようにして配置されている。 Four light emitting elements 520a to 520d fixed to the substrate are disposed on the side surface of the light guide plate 510 where the thickness is smaller. Each light emitting element is arranged so as to be aligned in the thickness direction of the light guide plate 510, the upper light emitting element 520a is arranged so as to face the side surface of the light guide plate 510, and the lower three light emitting elements 520b to 520b. 520d is disposed so as to face the step portions 511b to 511d of the light guide plate 510, respectively.
 段差部511b~511dの各段差部と発光素子520b~520dの各発光素子との間には、透明平板であるライトガイド530b~530dが配置されている。 Light guides 530b to 530d, which are transparent flat plates, are arranged between the step portions of the step portions 511b to 511d and the light emitting elements of the light emitting elements 520b to 520d.
 なお、導光板510の下面512a~215dの下方には、反射シート540a~540dが設けられている。 In addition, below the lower surfaces 512a to 215d of the light guide plate 510, reflection sheets 540a to 540d are provided.
 従来の照明装置500によれば、発光素子520aから出射した光は、導光板510の側面から入射して、導光板510内を反射しながら進行し、反射処理が施された導光板510の下面512aにおいて屈折及び散乱する。これにより、導光板510に入射した光は、導光板510の下面512aの反対側の上面から放射される。 According to the conventional lighting device 500, the light emitted from the light emitting element 520a is incident from the side surface of the light guide plate 510, travels while reflecting inside the light guide plate 510, and is subjected to a reflection process. Refraction and scattering at 512a. Thus, the light incident on the light guide plate 510 is radiated from the upper surface of the light guide plate 510 opposite to the lower surface 512a.
 また、発光素子520b~520dから出射した光は、各ライトガイド530b~530dの端部から入射して、反射シート540b~540dによって反射しながらライトガイドの他方の端部に導かれ、導光板510の段差部511b~511dに入射する。段差部511b~511dに入射した光は、反射処理が施された導光板510の下面512b~512dにおいて屈折及び散乱する。これにより、段差部511b~511dに入射した光は、それぞれ下面512b~512dに対応する導光板510の上面から放射される。 Further, light emitted from the light emitting elements 520b to 520d enters from the end portions of the light guides 530b to 530d, and is guided to the other end portion of the light guide while being reflected by the reflection sheets 540b to 540d. Are incident on the step portions 511b to 511d. The light incident on the step portions 511b to 511d is refracted and scattered on the lower surfaces 512b to 512d of the light guide plate 510 that has been subjected to the reflection treatment. As a result, light incident on the step portions 511b to 511d is emitted from the upper surface of the light guide plate 510 corresponding to the lower surfaces 512b to 512d, respectively.
 このように構成された従来の照明装置500は、エッジ型の照明装置でありながらも、各発光素子520a~520dから出射される光の光度を調節することによって、導光板510の下面512a~512dに対応する領域毎に調光の制御を行うことができる。すなわち、ローカルディミング駆動を行うことができる。 Although the conventional lighting device 500 configured as described above is an edge-type lighting device, the lower surfaces 512a to 512d of the light guide plate 510 are adjusted by adjusting the luminous intensity of the light emitted from the light emitting elements 520a to 520d. The dimming control can be performed for each region corresponding to. That is, local dimming driving can be performed.
特開2009-193892号公報JP 2009-193892 A
 しかしながら、従来の照明装置500は、ローカルディミング駆動を可能とするために、導光板510の側面において発光素子を導光板の厚み方向に複数個配置している。 However, the conventional illumination device 500 has a plurality of light emitting elements arranged in the thickness direction of the light guide plate on the side surface of the light guide plate 510 in order to enable local dimming driving.
 このため、複数の発光素子を配置するために厚み方向のスペースが必要となり、本来であれば薄型であるエッジ型の照明装置の長所をいかしきれず、当該照明装置が組み込まれた液晶表示装置全体として薄くできないとい問題がある。また、従来の照明装置500が組み込まれた液晶表示装置において、画面サイズを大きくし、しかも下面512b~512dに対応する領域毎の調光さらには調色をより細かく制御しようとすると、発光素子の数を増やす必要があり液晶表示装置全体がさらに厚くなって薄型化ができなくなる。 For this reason, a space in the thickness direction is required to arrange a plurality of light emitting elements, and the advantages of the thin-type edge-type illumination device cannot be fully utilized, and the entire liquid crystal display device in which the illumination device is incorporated There is a problem that it cannot be thinned. Further, in a liquid crystal display device in which the conventional lighting device 500 is incorporated, if the screen size is increased and the dimming and the toning of each region corresponding to the lower surfaces 512b to 512d are controlled more finely, It is necessary to increase the number, and the entire liquid crystal display device becomes thicker and cannot be thinned.
 さらに、従来の照明装置500は、導光板510の一方の側面に発光素子を集中させて配置しているので、発光素子において発生する熱を効率よく放熱することができないという問題もある。 Furthermore, since the conventional lighting device 500 has the light emitting elements concentrated on one side surface of the light guide plate 510, there is a problem that heat generated in the light emitting elements cannot be efficiently radiated.
 本発明は、上記問題を解決するためになされたものであり、装置全体を厚くすることなくローカルディミング駆動を可能としつつ、半導体発光素子が発生する熱も効率よく放熱することができる照明装置及びこれを備えた表示装置を提供することを目的とする。 The present invention has been made to solve the above problem, and an illumination device capable of efficiently dissipating heat generated by a semiconductor light-emitting element while enabling local dimming driving without increasing the thickness of the entire device. An object is to provide a display device including the above.
 上記問題を解決するために、本発明に係る照明装置の一態様は、半導体発光素子と、前記半導体発光素子から出射される光を反射させるための第1反射面と、前記第1反射面で反射した光が入射し、入射した当該光を反射させるための第2反射面を有し、当該第2反射面で反射した光を導光するための導光板と、を有する照明素子を複数個備え、前記半導体発光素子は、当該半導体発光素子の垂直方向の拡がり角が水平方向の拡がり角よりも大きい光を出射し、前記第1反射面は、前記半導体発光素子から出射される前記光に対して湾曲した凸反射面である。 In order to solve the above problem, an aspect of the illumination device according to the present invention includes a semiconductor light emitting element, a first reflecting surface for reflecting light emitted from the semiconductor light emitting element, and the first reflecting surface. A plurality of illumination elements having a second reflection surface for reflecting the incident light and reflecting the incident light, and a light guide plate for guiding the light reflected by the second reflection surface The semiconductor light emitting element emits light having a vertical divergence angle larger than a horizontal divergence angle of the semiconductor light emitting element, and the first reflecting surface reflects the light emitted from the semiconductor light emitting element. It is a convex reflecting surface that is curved.
 このように、半導体発光素子と導光板とを有する照明素子を複数備えることにより、装置全体を厚くすることなくローカルディミング駆動を可能とし、さらに、半導体発光素子が発生する熱も効率よく放熱することができる。 As described above, by providing a plurality of illumination elements each having a semiconductor light emitting element and a light guide plate, local dimming driving can be performed without increasing the thickness of the entire apparatus, and heat generated by the semiconductor light emitting element can be efficiently radiated. Can do.
 さらに、本発明に係る照明装置の一態様において、前記第2反射面は、前記導光板の矩形端面によって構成され、前記導光板の下面に対する前記矩形端面の傾斜角が略45度であり、前記半導体発光素子の光軸が前記矩形端面の長手方向と略平行であることが好ましい。 Furthermore, in one aspect of the illumination device according to the present invention, the second reflecting surface is configured by a rectangular end surface of the light guide plate, and an inclination angle of the rectangular end surface with respect to a lower surface of the light guide plate is approximately 45 degrees, It is preferable that the optical axis of the semiconductor light emitting element is substantially parallel to the longitudinal direction of the rectangular end face.
 これにより、導光板に進行する光の光度の面内分布を均一にすることができる。 This makes it possible to make the in-plane distribution of the intensity of light traveling to the light guide plate uniform.
 さらに、本発明に係る照明装置の一態様において、前記照明素子は、前記半導体発光素子を複数個有することが好ましい。 Furthermore, in one aspect of the illumination device according to the present invention, the illumination element preferably includes a plurality of the semiconductor light emitting elements.
 これにより、導光板に進行する光の光度の面内分布を均一にすることができる。さらに、導光板内に入射する光を増加させることもでき、光度を大きくすることもできる。 This makes it possible to make the in-plane distribution of the intensity of light traveling to the light guide plate uniform. Furthermore, the light incident on the light guide plate can be increased, and the luminous intensity can be increased.
 さらに、本発明に係る照明装置の一態様は、放熱板を備え、前記半導体発光素子が、前記放熱板上に配置されることが好ましい。 Furthermore, it is preferable that one aspect of the lighting device according to the present invention includes a heat sink, and the semiconductor light emitting element is disposed on the heat sink.
 これにより、半導体発光素子において発生する熱を効率良く放熱させることができる。 Thereby, the heat generated in the semiconductor light emitting element can be efficiently dissipated.
 さらに、本発明に係る照明装置の一態様において、前記半導体発光素子は、前記第1反射面を有するパッケージに配置されることが好ましい。 Furthermore, in one aspect of the illumination device according to the present invention, it is preferable that the semiconductor light emitting element is disposed in a package having the first reflecting surface.
 これにより、半導体発光素子と第1反射面とを高い位置精度で配置することができる。従って、半導体発光素子からの光を効率よく導光板に導くことができ、半導体発光素子における余分な発熱を低減させることができる。 Thereby, the semiconductor light emitting element and the first reflecting surface can be arranged with high positional accuracy. Therefore, light from the semiconductor light emitting element can be efficiently guided to the light guide plate, and excessive heat generation in the semiconductor light emitting element can be reduced.
 さらに、本発明に係る照明装置の一態様において、前記半導体発光素子が、半導体レーザであることが好ましい。 Furthermore, in one aspect of the illumination device according to the present invention, the semiconductor light emitting element is preferably a semiconductor laser.
 これにより、半導体発光素子から出射される光を効率良く取り出すことができる。従って、半導体発光素子からの余分な発熱を低減させることができる。 Thereby, the light emitted from the semiconductor light emitting element can be extracted efficiently. Therefore, excessive heat generation from the semiconductor light emitting element can be reduced.
 また、本発明に係る照明装置の一態様において、前記半導体発光素子が、スーパールミネッセントダイオードであっても構わない。 Further, in one aspect of the lighting device according to the present invention, the semiconductor light emitting element may be a super luminescent diode.
 これにより、半導体発光素子から出射される光を効率良く取り出すことができる。従って、半導体発光素子からの余分な発熱を低減させることができる。 Thereby, the light emitted from the semiconductor light emitting element can be extracted efficiently. Therefore, excessive heat generation from the semiconductor light emitting element can be reduced.
 さらに、本発明に係る照明装置の一態様において、前記半導体発光素子の光軸上に前記第1反射面が配置されることが好ましい。 Furthermore, in one aspect of the illumination device according to the present invention, it is preferable that the first reflecting surface is disposed on an optical axis of the semiconductor light emitting element.
 これにより、半導体発光素子からの光を効率よく導光板内に拡げることができるので、導光板に進行する光の光度の面内分布を均一にすることができる。 Thereby, since the light from the semiconductor light emitting element can be efficiently spread in the light guide plate, the in-plane distribution of the luminous intensity of the light traveling to the light guide plate can be made uniform.
 さらに、本発明に係る照明装置の一態様において、前記放熱板の前記半導体発光素子が配置された面とは反対側の面に配置された放熱フィンを備えることが好ましい。 Furthermore, in one aspect of the lighting device according to the present invention, it is preferable that a heat dissipating fin disposed on a surface opposite to the surface on which the semiconductor light emitting element of the heat radiating plate is disposed.
 これにより、半導体発光素子等で発生した熱を、放熱フィンを介して開口部から筐体外部に容易に放熱することができる。従って、照明装置の温度上昇を抑えることができる。 Thereby, the heat generated in the semiconductor light emitting element or the like can be easily radiated from the opening to the outside of the housing through the radiation fin. Therefore, the temperature rise of the lighting device can be suppressed.
 さらに、本発明に係る照明装置の一態様において、前記導光板の端部に凹部が設けられており、前記パッケージの一部が前記凹部の一部に当接して配置されることが好ましい。 Furthermore, in one aspect of the lighting device according to the present invention, it is preferable that a recess is provided at an end of the light guide plate, and a part of the package is disposed in contact with a part of the recess.
 これにより、パッケージを導光板の凹部に嵌めるようにして位置決めをすることができるので、半導体発光素子と導光板の傾斜角との位置精度を向上させることができる。 Thus, since the package can be positioned so as to fit into the recess of the light guide plate, the positional accuracy between the semiconductor light emitting element and the inclination angle of the light guide plate can be improved.
 さらに、本発明に係る照明装置の一態様において、複数の前記半導体発光素子は、赤色の光を発光する半導体発光素子と、緑色の光を発光する半導体発光素子と、青色の光を発光する半導体発光素子とを含むことが好ましい。 Further, in one embodiment of the lighting device according to the present invention, the plurality of semiconductor light emitting elements include a semiconductor light emitting element that emits red light, a semiconductor light emitting element that emits green light, and a semiconductor that emits blue light. It preferably includes a light emitting element.
 これにより、容易に白色光を放出させることができる。 This makes it possible to easily emit white light.
 さらに、本発明に係る照明装置の一態様において、前記赤色の光を発光する半導体発光素子と、前記緑色の光を発光する半導体発光素子と、前記青色の光を発光する半導体発光素子とが前記放熱板上に配置され、前記放熱板上に、前記赤色の光を発光する半導体発光素子と、前記緑色の光を発光する半導体発光素子と、前記青色の光を発光する半導体発光素子とに独立に電力を供給する配線が形成されることが好ましい。 Furthermore, in one aspect of the illumination device according to the present invention, the semiconductor light emitting element that emits red light, the semiconductor light emitting element that emits green light, and the semiconductor light emitting element that emits blue light are A semiconductor light emitting device that emits red light, a semiconductor light emitting device that emits green light, and a semiconductor light emitting device that emits blue light are disposed on the heat sink. It is preferable that a wiring for supplying power is formed.
 これにより、領域毎に白色光の調光、調色を容易にすることができる。 This makes it possible to easily adjust the white light for each region.
 また、本発明に係る表示装置の一態様は、上記本発明に係る照明装置を備えるものである。 Further, one aspect of the display device according to the present invention includes the lighting device according to the present invention.
 これにより、ローカルディミング駆動を可能とする薄型の表示装置を実現することができる。 Thereby, a thin display device capable of local dimming drive can be realized.
 本発明に係る照明装置によれば、半導体発光素子と導光板とを有する照明素子を複数備えているので、複数の光放出領域を構成することができ、装置全体を厚くすることなく、液晶表示装置においてローカルディミング駆動を可能とすることができる。さらに、半導体発光素子を導光板の片側のみに集中配置させる必要がないので、半導体発光素子の熱を効率よく放熱することができる。 According to the illumination device of the present invention, since a plurality of illumination elements each having a semiconductor light emitting element and a light guide plate are provided, a plurality of light emission regions can be formed, and the liquid crystal display can be achieved without increasing the thickness of the entire device. Local dimming driving can be enabled in the apparatus. Furthermore, since it is not necessary to concentrate the semiconductor light emitting elements on only one side of the light guide plate, the heat of the semiconductor light emitting elements can be efficiently radiated.
図1Aは、本発明の実施の形態1に係る照明装置の平面図である。FIG. 1A is a plan view of the lighting apparatus according to Embodiment 1 of the present invention. 図1Bは、本発明の実施の形態1に係る照明装置の断面図(図1AのA-A線に沿って切断した断面図)である。1B is a cross-sectional view (a cross-sectional view taken along the line AA in FIG. 1A) of the lighting apparatus according to Embodiment 1 of the present invention. 図1Cは、本発明の実施の形態1に係る表示装置の断面図である。FIG. 1C is a cross-sectional view of the display device according to Embodiment 1 of the present invention. 図2Aは、本発明の実施の形態1に係る照明装置における発光装置の外観斜視図である。FIG. 2A is an external perspective view of the light emitting device in the illumination device according to Embodiment 1 of the present invention. 図2Bは、本発明の実施の形態1に係る照明装置において光学素子を除いたときの外観斜視図である。FIG. 2B is an external perspective view when the optical element is removed from the illumination device according to Embodiment 1 of the present invention. 図2Cは、本発明の実施の形態1に係る照明装置における発光装置の断面図(図2AのA-A線に沿って切断したYZ平面における断面図)である。FIG. 2C is a cross-sectional view of the light-emitting device in the illumination apparatus according to Embodiment 1 of the present invention (cross-sectional view taken along the line AA in FIG. 2A). 図3は、本発明の実施の形態1に係る照明装置において、光源から出射した光の進行を示す図である。FIG. 3 is a diagram showing the progress of light emitted from the light source in the illumination device according to Embodiment 1 of the present invention. 図4Aは、本発明の実施の形態1に係る照明装置における半導体発光素子の外観斜視図である。FIG. 4A is an external perspective view of the semiconductor light emitting element in the lighting apparatus according to Embodiment 1 of the present invention. 図4Bは、本発明の実施の形態1に係る照明装置における第1反射面によって光が反射する様子を示す図である。FIG. 4B is a diagram showing a state in which light is reflected by the first reflecting surface in the lighting apparatus according to Embodiment 1 of the present invention. 図4Cは、本発明の実施の形態1に係る照明装置における第2反射面によって光が反射する様子を示す図である。FIG. 4C is a diagram showing a state in which light is reflected by the second reflecting surface in the lighting apparatus according to Embodiment 1 of the present invention. 図5Aは、本発明の実施の形態1に係る照明装置において、Y軸に垂直な平面における光の進行と光分布を示す図である。FIG. 5A is a diagram showing light progress and light distribution in a plane perpendicular to the Y-axis in the illumination device according to Embodiment 1 of the present invention. 図5Bは、本発明の実施の形態1に係る照明装置において、X軸に垂直な平面における光の進行と光分布を示す図である。FIG. 5B is a diagram showing light progress and light distribution in a plane perpendicular to the X axis in the illumination device according to Embodiment 1 of the present invention. 図5Cは、本発明の実施の形態1に係る照明装置において、Z軸に垂直な平面における光の進行と光分布を示す図である。FIG. 5C is a diagram showing light progress and light distribution in a plane perpendicular to the Z-axis in the lighting apparatus according to Embodiment 1 of the present invention. 図6Aは、本発明の実施の形態1に係る照明装置において光が伝搬する様子を示す図である。FIG. 6A is a diagram showing a state in which light propagates in the lighting apparatus according to Embodiment 1 of the present invention. 図6Bは、本発明の実施の形態1に係る照明装置において、導光板上方の所定の位置における照明装置の光度を示す図である。FIG. 6B is a diagram showing the luminous intensity of the illumination device at a predetermined position above the light guide plate in the illumination device according to Embodiment 1 of the present invention. 図7Aは、拡がり角が大きいLEDを用いた場合の比較例に係る照明装置において光が伝搬する様子を示す図である。FIG. 7A is a diagram illustrating a state in which light propagates in an illumination device according to a comparative example in which an LED having a large divergence angle is used. 図7Bは、図7Aの比較例に係る照明装置において、導光板上方の所定の位置における照明装置の光度を示す図である。FIG. 7B is a diagram illustrating the luminous intensity of the illumination device at a predetermined position above the light guide plate in the illumination device according to the comparative example of FIG. 7A. 図8Aは、照明装置における発光素子と導光板との位置関係を示す図である。FIG. 8A is a diagram illustrating a positional relationship between the light emitting element and the light guide plate in the illumination device. 図8Bは、発光素子A及び発光素子Bから出射される光の配向特性を示す図である。FIG. 8B is a diagram showing alignment characteristics of light emitted from the light emitting elements A and B. FIG. 図8Cは、図8Bに示す発光素子Aと発光素子Bの導光板結合ロスを示した図である。8C is a diagram showing a light guide plate coupling loss of the light emitting elements A and B shown in FIG. 8B. 図9Aは、本発明の実施の形態1に係る照明装置の製造方法において、発光装置を放熱板上に配置する工程を示す図である。FIG. 9A is a diagram showing a step of disposing the light emitting device on the heat sink in the method for manufacturing the lighting device according to Embodiment 1 of the present invention. 図9Bは、本発明の実施の形態1に係る照明装置の製造方法において、導光板を配置する工程を示す図である。FIG. 9B is a diagram showing a step of arranging the light guide plate in the method for manufacturing the lighting device according to Embodiment 1 of the present invention. 図9Cは、本発明の実施の形態1に係る照明装置の製造方法において、複数の導光板を配置する様子を示す図である。FIG. 9C is a diagram showing a state in which a plurality of light guide plates are arranged in the method for manufacturing the lighting device according to Embodiment 1 of the present invention. 図10Aは、本発明の実施の形態2に係る照明装置の断面図である。FIG. 10A is a cross-sectional view of the lighting apparatus according to Embodiment 2 of the present invention. 図10Bは、本発明の実施の形態2に係る表示装置の断面図である。FIG. 10B is a cross-sectional view of the display device according to Embodiment 2 of the present invention. 図11は、本発明の実施の形態2に係る照明装置に用いられる放熱板の一例を示す斜視図(図11(a))及び同放熱板の他の例を示す斜視図(図11(b))である。FIG. 11: is a perspective view (FIG. 11 (a)) which shows an example of the heat sink used for the illuminating device which concerns on Embodiment 2 of this invention, and a perspective view which shows the other example of the same heat sink (FIG. 11 (b) )). 図12は、本発明の実施の形態2に係る表示装置200Aを背面から見たときの状態を模式的に示した一部切り欠き平面図である。FIG. 12 is a partially cutaway plan view schematically showing a state when the display device 200A according to Embodiment 2 of the present invention is viewed from the back. 図13Aは、本発明の実施の形態3に係る照明装置の要部拡大断面図である。FIG. 13A is an essential part enlarged cross-sectional view of the lighting apparatus according to Embodiment 3 of the present invention. 図13Bは、本発明の実施の形態3に係る照明装置における導光板端部周辺の拡大断面図である。FIG. 13B is an enlarged cross-sectional view of the periphery of the end portion of the light guide plate in the lighting apparatus according to Embodiment 3 of the present invention. 図14は、本発明の実施の形態4に係る照明装置の要部外観斜視図である。FIG. 14 is an external perspective view of a main part of a lighting apparatus according to Embodiment 4 of the present invention. 図15は、従来の照明装置の断面図である。FIG. 15 is a cross-sectional view of a conventional lighting device.
 以下、本発明の実施形態に係る照明装置及び表示装置について、図面を参照しながら説明する。 Hereinafter, an illumination device and a display device according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 まず、本発明の実施の形態1に係る照明装置について、図1A及び図1Bを用いて説明する。図1Aは、本発明の実施の形態1に係る照明装置の平面図である。また、図1Bは、図1AのA-A線に沿って切断した断面図であって、本発明の実施の形態1に係る照明装置の断面図である。なお、図1Bは、本実施形態に係る照明装置(実線部分)を筐体に組み込んで表示装置を構成した場合を示しており、照明装置以外の構成要素については破線で示している。
(Embodiment 1)
First, the lighting apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1A and 1B. FIG. 1A is a plan view of the lighting apparatus according to Embodiment 1 of the present invention. 1B is a cross-sectional view taken along the line AA in FIG. 1A, and is a cross-sectional view of the lighting apparatus according to Embodiment 1 of the present invention. FIG. 1B shows a case where the display device is configured by incorporating the illumination device (solid line portion) according to the present embodiment into a housing, and constituent elements other than the illumination device are indicated by broken lines.
 図1Aに示すように、本発明の実施の形態1に係る照明装置100は、面状に光を放射する面状照明装置であって、面状型の複数の照明素子10によって構成される。各照明素子10は、一枚の導光板11と複数の発光装置12とを備える。 As shown in FIG. 1A, the illumination device 100 according to Embodiment 1 of the present invention is a planar illumination device that emits light in a planar shape, and includes a plurality of planar illumination elements 10. Each lighting element 10 includes one light guide plate 11 and a plurality of light emitting devices 12.
 照明素子10は、図1Aに示すように、マトリクス状に二次元的に配置されている。本実施形態では、X軸方向及びY軸方向にそれぞれ4枚配置している。 The illumination elements 10 are two-dimensionally arranged in a matrix as shown in FIG. 1A. In the present embodiment, four sheets are arranged in each of the X-axis direction and the Y-axis direction.
 導光板11は、矩形状の薄い透明平板であり、照明素子10の二次元配置と連動して、マトリクス状に二次元的に配列されている。 The light guide plate 11 is a rectangular thin transparent plate, and is two-dimensionally arranged in a matrix in conjunction with the two-dimensional arrangement of the lighting elements 10.
 各導光板11の側部には、導光板11に入射させるための光を出射する発光装置12が複数配置されている。本実施形態では、各導光板11に対して3個の発光装置12がY軸方向に等間隔で配列されている。 A plurality of light emitting devices 12 that emit light for entering the light guide plate 11 are disposed on the side portions of the respective light guide plates 11. In the present embodiment, three light emitting devices 12 are arranged at equal intervals in the Y-axis direction with respect to each light guide plate 11.
 さらに、本実施形態に係る照明装置100は、図1Bに示すように、放熱板20及び反射シート30を備える。 Furthermore, the illuminating device 100 which concerns on this embodiment is provided with the heat sink 20 and the reflective sheet 30, as shown to FIG. 1B.
 放熱板20は、例えば、アルミニウム等の金属からなる金属板上に絶縁膜を介して配線パターン(不図示)が形成された基板である。放熱板20の端部には、他の放熱板20や外部回路に電気的に接続可能なように外部端子(不図示)が形成されている。また、放熱板20上には、複数の発光装置12がX軸方向に周期的に実装されている。 The heat sink 20 is a substrate in which a wiring pattern (not shown) is formed on a metal plate made of a metal such as aluminum via an insulating film. External terminals (not shown) are formed at the ends of the heat sink 20 so as to be electrically connected to other heat sinks 20 and external circuits. A plurality of light emitting devices 12 are periodically mounted on the heat sink 20 in the X-axis direction.
 反射シート30は、複数の導光板11のそれぞれに対向するようにして、放熱板20上に配置される。また、反射シート30は、隣り合う照明素子10における発光装置12の間に配置されている。 The reflection sheet 30 is disposed on the heat sink 20 so as to face each of the plurality of light guide plates 11. Further, the reflection sheet 30 is disposed between the light emitting devices 12 in the adjacent illumination elements 10.
 また、導光板11は、発光装置12の対向する端部が傾斜面11aを有するように構成されている。傾斜面11aは、矩形状の平面であり、後述する発光装置12の第1反射面で反射した光を反射する第2反射面であり、導光板11の下面に対して所定の傾斜角を有する。本実施形態において、傾斜面11aの傾斜角は45度となるように構成されている。また、導光板11の下面には、導光板内の光を導光板外に放射させるために、複数の反射ドット11bが形成されている。 Further, the light guide plate 11 is configured such that the opposite end portions of the light emitting device 12 have inclined surfaces 11a. The inclined surface 11 a is a rectangular flat surface, is a second reflecting surface that reflects light reflected by a first reflecting surface of the light emitting device 12 described later, and has a predetermined inclination angle with respect to the lower surface of the light guide plate 11. . In the present embodiment, the inclination angle of the inclined surface 11a is configured to be 45 degrees. In addition, a plurality of reflective dots 11 b are formed on the lower surface of the light guide plate 11 in order to radiate the light in the light guide plate to the outside of the light guide plate.
 なお、放熱板20及び反射シート30は、筐体60内に配置される。また、放熱板20の裏面には、発光装置12の半導体発光素子や液晶パネル101を駆動させるための駆動IC103が設けられている。 In addition, the heat sink 20 and the reflection sheet 30 are disposed in the housing 60. A driving IC 103 for driving the semiconductor light emitting element of the light emitting device 12 and the liquid crystal panel 101 is provided on the back surface of the heat sink 20.
 図1Cは、本発明の実施の形態1に係る表示装置100Aの断面図である。 FIG. 1C is a cross-sectional view of display device 100A according to Embodiment 1 of the present invention.
 図1Cに示すように、本発明の実施の形態1に係る表示装置100Aは、同図中に破線で示す本実施形態に係る照明装置100と、第1光学シート40と、第2光学シート50と、液晶パネル101とを備える。さらに、表示装置100Aは、筐体60とカバー102とを備える。 As shown in FIG. 1C, a display device 100A according to Embodiment 1 of the present invention includes an illumination device 100 according to the present embodiment indicated by a broken line in the drawing, a first optical sheet 40, and a second optical sheet 50. And a liquid crystal panel 101. Further, the display device 100 </ b> A includes a housing 60 and a cover 102.
 第1光学シート40は、例えば、光を拡散させるための拡散板であって、複数の導光板11全体を覆うようにして配置される。 The first optical sheet 40 is, for example, a diffusion plate for diffusing light, and is arranged so as to cover the entire plurality of light guide plates 11.
 第2光学シート50は、光の偏光方向を一方向に揃える機能を有する光学シートであって、例えば、3M社製のDBEF(Dual Brightness Enhancement Film)であり、第1光学シート40の上方に配置される。 The second optical sheet 50 is an optical sheet having a function of aligning the polarization direction of light in one direction. For example, the second optical sheet 50 is a DBEF (Dual Brightness Enhancement Film) manufactured by 3M, and is disposed above the first optical sheet 40. Is done.
 なお、本実施形態において、第1光学シート40及び第2光学シート50は、一枚ずつとしたが、これに限るものではない。光拡散特性や偏光特性を向上させるために、複数枚の第1光学シート40及び第2光学シート50を用いても構わない。 In the present embodiment, the first optical sheet 40 and the second optical sheet 50 are one by one. However, the present invention is not limited to this. In order to improve the light diffusion characteristics and the polarization characteristics, a plurality of first optical sheets 40 and second optical sheets 50 may be used.
 また、第2光学シート50の上には、液晶パネル101が配置される。 Further, the liquid crystal panel 101 is disposed on the second optical sheet 50.
 第1光学シート40、第2光学シート50及び液晶パネル101は、筐体60内に配置される。筐体60は、上面に開口を有する箱形状であり、側内面には照明装置100と液晶パネル101とを保持するために少なくとも2つの段差が形成されている。また、液晶パネル101を保持するために、液晶パネル101の端部を覆うようにして筐体60の側面にカバー102が取り付けられている。 The first optical sheet 40, the second optical sheet 50, and the liquid crystal panel 101 are disposed in the housing 60. The housing 60 has a box shape having an opening on the upper surface, and at least two steps are formed on the side inner surface to hold the lighting device 100 and the liquid crystal panel 101. Further, in order to hold the liquid crystal panel 101, a cover 102 is attached to the side surface of the housing 60 so as to cover the end of the liquid crystal panel 101.
 次に、発光装置12の詳細構造について、図2A~図2Cを用いて説明する。図2Aは、本発明の実施の形態1に係る照明装置における発光装置の外観斜視図である。図2Bは、図2Aに示す発光装置において光学素子を除いたときの外観斜視図である。図2Cは、図2Aに示すA-A線に沿って切断したYZ平面おける断面図であって、図2Aに示す発光装置の断面図である。 Next, the detailed structure of the light emitting device 12 will be described with reference to FIGS. 2A to 2C. FIG. 2A is an external perspective view of the light emitting device in the illumination device according to Embodiment 1 of the present invention. 2B is an external perspective view of the light emitting device shown in FIG. 2A when the optical element is removed. 2C is a cross-sectional view taken along the line AA shown in FIG. 2A along the YZ plane, and is a cross-sectional view of the light-emitting device shown in FIG. 2A.
 図2Aに示すように、発光装置12は、パッケージ12b上に光学素子12eを備える。また、図2B及び図2Cに示すように、発光装置12は、半導体発光素子12aを備える。半導体発光素子12aは、パッケージ12bに形成された凹部12c内に配置されており、本実施形態では、パッケージ12bの底部に形成された凸部に配置されている。半導体発光素子12aは、導波路を有する端面出射型の発光素子であり、例えば、波長430~480nmの青色光を発光する発光層がInGaN(インジウム・ガリウム・窒素)系材料で構成される半導体レーザ又はスーパールミネッセントダイオードである。 As shown in FIG. 2A, the light emitting device 12 includes an optical element 12e on a package 12b. 2B and 2C, the light emitting device 12 includes a semiconductor light emitting element 12a. The semiconductor light emitting element 12a is disposed in a recess 12c formed in the package 12b. In the present embodiment, the semiconductor light emitting element 12a is disposed in a protrusion formed at the bottom of the package 12b. The semiconductor light emitting device 12a is an edge emitting light emitting device having a waveguide. For example, a semiconductor laser in which a light emitting layer that emits blue light having a wavelength of 430 to 480 nm is made of an InGaN (indium gallium nitrogen) based material. Or a super luminescent diode.
 また、発光装置12は、半導体発光素子12aから出射される光を反射させるための第1反射面である凸反射面12dを有する。凸反射面12dは、半導体発光素子12aから出射される光に対して湾曲したY軸方向に凸状の反射面であり、凹部12cの内面形状によって構成されている。凸反射面12dは、入射した光の進行方向を90度変えるように構成されており、半導体発光素子12aに向かって膨出した反射面である。 The light emitting device 12 has a convex reflecting surface 12d that is a first reflecting surface for reflecting light emitted from the semiconductor light emitting element 12a. The convex reflecting surface 12d is a reflecting surface convex in the Y-axis direction that is curved with respect to the light emitted from the semiconductor light emitting element 12a, and is configured by the inner shape of the concave portion 12c. The convex reflection surface 12d is configured to change the traveling direction of incident light by 90 degrees, and is a reflection surface that bulges toward the semiconductor light emitting element 12a.
 また、図2A及び図2Cに示される光学素子12eは、例えば、イットリウムアルミニウムガーネット(YAl12:YAG)にCe3+をドープしたYAG蛍光体(YAG:Ce3+)などの蛍光体を含有したガラス板、もしくは、ガラス上にYAG蛍光体(YAG:Ce3+)を含んだシリコーン樹脂を塗布した光学素子である。光学素子12eは、半導体発光素子12aの出射光を吸収して、一部の光を、波長580nmをピークとする黄色光に変換する。これにより、半導体発光素子12aから出射された青色光は、光学素子12eを透過する際に、半導体発光素子12aの青色光と、当該青色光が蛍光体により変換された黄色光とが混ざった白色光となり、当該白色光が発光装置12から放射される。 2A and 2C includes, for example, a phosphor such as a YAG phosphor (YAG: Ce 3+ ) in which Ce 3+ is doped in yttrium aluminum garnet (Y 3 Al 5 O 12 : YAG). It is an optical element obtained by applying a silicone resin containing a YAG phosphor (YAG: Ce 3+ ) on a glass plate or glass. The optical element 12e absorbs light emitted from the semiconductor light emitting element 12a and converts part of the light into yellow light having a peak at a wavelength of 580 nm. Thereby, when the blue light emitted from the semiconductor light emitting element 12a passes through the optical element 12e, the blue light of the semiconductor light emitting element 12a and the white light in which the blue light is converted by the phosphor are mixed. The light is emitted and the white light is emitted from the light emitting device 12.
 次に、本発明の実施の形態1に係る照明装置において、光源から出射した光の進行について、図3を用いて説明する。図3は、本発明の実施の形態1に係る照明装置において、光源から出射した光の進行を示す図である。 Next, in the lighting device according to Embodiment 1 of the present invention, the progress of light emitted from the light source will be described with reference to FIG. FIG. 3 is a diagram showing the progress of light emitted from the light source in the illumination device according to Embodiment 1 of the present invention.
 図3に示すように、発光装置12から出射した光は、Z軸方向に進行して導光板11に入射し、傾斜面11a(第2反射面)によって反射する。傾斜面11aで反射した光は導光板11の内部に伝達する。その後、導光板11内に伝達する光は、反射ドット11bによって散乱し、導光板11の上面から放射して照明装置から放射される。そして、導光板11から放射する光は、第1光学シート40及び第2光学シート50によって所定の出射角度及び偏光特性を有した光となる。 As shown in FIG. 3, the light emitted from the light emitting device 12 travels in the Z-axis direction, enters the light guide plate 11, and is reflected by the inclined surface 11a (second reflecting surface). The light reflected by the inclined surface 11 a is transmitted to the inside of the light guide plate 11. Thereafter, the light transmitted into the light guide plate 11 is scattered by the reflective dots 11b, emitted from the upper surface of the light guide plate 11, and emitted from the illumination device. And the light radiated | emitted from the light-guide plate 11 turns into light with a predetermined | prescribed output angle and a polarization characteristic with the 1st optical sheet 40 and the 2nd optical sheet 50. FIG.
 次に、図2Bの発光装置12に示される半導体発光素子12a及び凸反射面12dと、図3に示される傾斜面11aとにおいて、光が進行する様子をそれぞれ図4A、図4B及び図4Cを用いて説明する。図4Aは、本発明の実施の形態1に係る照明装置における半導体発光素子の外観斜視図である。また、図4Bは、本実施形態の照明装置における凸反射面(第1反射面)によって光が反射する様子を示す図である。図4Cは、本実施形態の照明装置における傾斜面(第2反射面)によって光が反射する様子を示す図である。 Next, FIG. 4A, FIG. 4B, and FIG. 4C show how light travels on the semiconductor light emitting element 12a and the convex reflecting surface 12d shown in the light emitting device 12 of FIG. 2B and the inclined surface 11a shown in FIG. It explains using. FIG. 4A is an external perspective view of the semiconductor light emitting element in the lighting apparatus according to Embodiment 1 of the present invention. Moreover, FIG. 4B is a figure which shows a mode that light reflects with the convex reflective surface (1st reflective surface) in the illuminating device of this embodiment. FIG. 4C is a diagram illustrating a state in which light is reflected by the inclined surface (second reflection surface) in the illumination device of the present embodiment.
 ここで、図4Aに示すように、本実施形態に係る半導体発光素子12aが、基板12a1上の半導体層12a2にエッチング等によって導波路12a3が形成された半導体レーザである場合について説明する。半導体発光素子12aの一方の端面は反射端面12a4であり、他方の端面は出射端面12a5である。半導体発光素子12aによって生成された光は、導波路12a3によって出射方向が調整され、出射光Lとなって出射端面12a5から出射する。出射端面12a5から出射された出射光Lは指向性を有した光であり、その指向特性は水平方向(レーザ光の短軸方向)の拡がり角θHLと垂直方向(長軸方向)の拡がり角θVLによって表される。 Here, as shown in FIG. 4A, the case where the semiconductor light emitting device 12a according to the present embodiment is a semiconductor laser in which a waveguide 12a3 is formed in the semiconductor layer 12a2 on the substrate 12a1 by etching or the like will be described. One end face of the semiconductor light emitting element 12a is a reflection end face 12a4, and the other end face is an emission end face 12a5. The light generated by the semiconductor light emitting element 12a is adjusted in the emission direction by the waveguide 12a3, and is emitted as the emitted light L from the emission end face 12a5. Outgoing light L emitted from the emission end surface 12a5 is light having a directivity, divergence angle of the directional characteristic is horizontal divergence angle of the (short axis direction of the laser beam) theta HL and the vertical direction (major axis direction) represented by theta VL.
 半導体発光素子12aの出射光Lにおける水平方向の拡がり角θHL及び垂直方向の拡がり角θVLは、導波路12a3の幅Lw及び厚みLtを変化させることによって調整することができる。本実施形態では、図4Aに示すように、垂直方向の拡がり角θVLが水平方向の拡がり角θHLよりも大きくなるように調整されており、縦長楕円形状のレーザ光となるように調整されている。 The horizontal divergence angle θ HL and the vertical divergence angle θ VL in the emitted light L of the semiconductor light emitting element 12a can be adjusted by changing the width Lw and the thickness Lt of the waveguide 12a3. In the present embodiment, as shown in FIG. 4A, the vertical divergence angle θ VL is adjusted to be larger than the horizontal divergence angle θ HL , and the laser beam is adjusted to be a vertically long elliptical laser beam. ing.
 また、図4Bに示すように、半導体発光素子12aから出射した出射光Lは、Y軸方向に進行し、発光装置12の凸反射面12d(第1反射面)によって反射して第1反射光R1となる。このとき、半導体発光素子12aから出射した出射光Lは、凸反射面12dによって進行方向が90度変えられる。すなわち、半導体発光素子12aから出射した出射光Lの光軸と、凸反射面12dで反射した第1反射光R1の光軸とは直交している。第1反射光R1は、Y軸方向を長軸とし、X軸方向を短軸とする横長楕円形状のレーザ光となる。 4B, the emitted light L emitted from the semiconductor light emitting element 12a travels in the Y-axis direction, is reflected by the convex reflecting surface 12d (first reflecting surface) of the light emitting device 12, and is reflected by the first reflected light. R1. At this time, the traveling direction of the outgoing light L emitted from the semiconductor light emitting element 12a is changed by 90 degrees by the convex reflecting surface 12d. That is, the optical axis of the outgoing light L emitted from the semiconductor light emitting element 12a is orthogonal to the optical axis of the first reflected light R1 reflected by the convex reflecting surface 12d. The first reflected light R1 is a horizontally long elliptical laser beam having the major axis in the Y-axis direction and the minor axis in the X-axis direction.
 なお、第1反射光R1の指向特性は、第1反射光R1の光進行方向において、水平方向(Y軸方向)の拡がり角θHR1と垂直方向(X軸方向)の拡がり角θVR1によって表すことができる。本実施形態では、第1反射光R1は、凸反射面12dによって、垂直方向の拡がり角θVR1が水平方向の拡がり角θHR1よりも小さくなるように変化する。 Note that the directivity characteristic of the first reflected light R1 is expressed by the horizontal (Y-axis direction) spread angle θHR1 and the vertical (X-axis direction) spread angle θVR1 in the light traveling direction of the first reflected light R1. be able to. In the present embodiment, the first reflected light R1 is the convex reflecting surface 12d, divergence angle theta VR1 in the vertical direction changes to be smaller than the horizontal divergence angle theta HR1.
 さらに、図4Cに示すように、凸反射面12dによって反射した第1反射光R1は、傾斜面11a(第2反射面)によって反射して第2反射光R2となる。第2反射光R2は、導光板内部に向かうようにして進行する。このとき、第1反射光R1は、傾斜面11aによって進行方向が導光板の下面に向かうように変えられる。本実施形態では、傾斜面11aの傾斜角が45度であるので、第1反射光R1の進行方向は45度変えられる。 Further, as shown in FIG. 4C, the first reflected light R1 reflected by the convex reflecting surface 12d is reflected by the inclined surface 11a (second reflecting surface) to become the second reflected light R2. The second reflected light R2 travels toward the inside of the light guide plate. At this time, the first reflected light R1 is changed by the inclined surface 11a so that the traveling direction is directed toward the lower surface of the light guide plate. In the present embodiment, since the inclination angle of the inclined surface 11a is 45 degrees, the traveling direction of the first reflected light R1 is changed by 45 degrees.
 なお、第2反射光R2の指向特性は、水平方向の拡がり角θHR2と垂直方向の拡がり角θVR2によって表すことができる。本実施形態では、第2反射光R2は、垂直方向の拡がり角θVR2が水平方向の拡がり角θHR2よりも小さい。 The directivity characteristic of the second reflected light R2 can be expressed by a horizontal spread angle θHR2 and a vertical spread angle θVR2 . In this embodiment, the second reflected light R2 is spread angle theta VR2 in the vertical direction is smaller than the horizontal divergence angle theta HR2.
 次に、図5A~図5Cを用いて、半導体発光素子から出射した出射光について、光が進行する様子とそのときの光分布について説明する。図5A~図5Cは、本発明の実施の形態1に係る照明装置において、それぞれ、Y軸に垂直な平面、X軸に垂直な平面及びZ軸に垂直な平面における光の進行と光分布を示す図である。 Next, with reference to FIG. 5A to FIG. 5C, how the light travels and the light distribution at that time will be described for the emitted light emitted from the semiconductor light emitting element. 5A to 5C show the light progress and light distribution in the plane perpendicular to the Y axis, the plane perpendicular to the X axis, and the plane perpendicular to the Z axis, respectively, in the lighting apparatus according to Embodiment 1 of the present invention. FIG.
 図5A~図5Cに示すように、半導体発光素子12aから出射した出射光Lは、凸反射面12d(第1反射面)で反射して第1反射光R1となる。第1反射光R1は、光学素子12eを透過し白色光となって、導光板11の傾斜面11a(第2反射面)で反射して第2反射光R2となる。その後、第2反射光R2は、導光板11内を進行する。 As shown in FIGS. 5A to 5C, the emitted light L emitted from the semiconductor light emitting element 12a is reflected by the convex reflecting surface 12d (first reflecting surface) to become the first reflected light R1. The first reflected light R1 passes through the optical element 12e and becomes white light, and is reflected by the inclined surface 11a (second reflecting surface) of the light guide plate 11 to become the second reflected light R2. Thereafter, the second reflected light R <b> 2 travels through the light guide plate 11.
 このとき、Z軸方向に進行する第1反射光R1については、図5A及び図5Bに示すように、垂直方向(X軸方向)の拡がり角θVR1は小さく、水平方向(Y軸方向)の拡がり角θHR1は非常に大きくなっている。このため、第1反射光R1の大部分を傾斜面11a(第2反射面)に入射させることができる。 At this time, for the first reflected light R1 traveling in the Z-axis direction, as shown in FIGS. 5A and 5B, the vertical (X-axis direction) divergence angle θVR1 is small and the horizontal direction (Y-axis direction) The spread angle θ HR1 is very large. For this reason, most of the first reflected light R1 can be incident on the inclined surface 11a (second reflective surface).
 また、導光板の下面に向かう第2反射光R2については、図5A及び図5Bに示すように、垂直方向の拡がり角θVR2は小さく、水平方向の拡がり角θHR2は非常に大きくなっている。このため、第2反射光R2は、導光板内部を効率良く伝搬させることができる。さらに、図5Cに示すように、第2反射光R2は、導光板の面内に対して広い範囲で広がって伝搬するので、導光板の上部から放射する光の光度分布を非常に均一なものとすることができる。 As for the second reflected light R2 toward the lower surface of the light guide plate, as shown in FIGS. 5A and 5B, the vertical spread angle θVR2 is small and the horizontal spread angle θHR2 is very large. . For this reason, the 2nd reflected light R2 can be efficiently propagated in the inside of a light-guide plate. Furthermore, as shown in FIG. 5C, since the second reflected light R2 propagates in a wide range with respect to the surface of the light guide plate, the light intensity distribution of the light emitted from the upper part of the light guide plate is very uniform. It can be.
 また、本実施形態において、傾斜面11a(第2反射面)に到達する光の分布は、半導体発光素子12aと凸反射面12d(第1反射面)と傾斜面11a(第2反射面)との位置関係によって調整することができる。特に、隣り合う照明素子10における半導体発光素子12aの間隔を調整することにより、照明装置の光光度の面内分布を均一に調整することができる。 In the present embodiment, the distribution of light reaching the inclined surface 11a (second reflecting surface) includes the semiconductor light emitting element 12a, the convex reflecting surface 12d (first reflecting surface), the inclined surface 11a (second reflecting surface), and the like. It can be adjusted according to the positional relationship. In particular, by adjusting the distance between the semiconductor light emitting elements 12a in the adjacent illumination elements 10, the in-plane distribution of the luminous intensity of the illumination apparatus can be adjusted uniformly.
 この効果について、図6A、図6B、図7A及び図7Bを用いて説明する。図6Aは、本発明の実施の形態1に係る照明装置において光が伝搬する様子を示す図であり、図6Bは、本実施形態に係る照明装置において、導光板上方の所定の位置における照明装置の光度を示す図である。また、図7Aは、拡がり角が大きいLEDを用いた場合の比較例に係る照明装置において光が伝搬する様子を示す図であり、図7Bは、同比較例に係る照明装置において、導光板上方の所定の位置における照明装置の光度を示す図である。また、光度は、所定の基準位置laからX軸方向における距離dの位置に配置された検出器によって測定した。なお、図6Aと図7Aとは、光源以外の構成は同じである。 This effect will be described with reference to FIGS. 6A, 6B, 7A, and 7B. FIG. 6A is a diagram illustrating a state in which light propagates in the lighting device according to Embodiment 1 of the present invention, and FIG. 6B illustrates a lighting device at a predetermined position above the light guide plate in the lighting device according to this embodiment. It is a figure which shows the luminous intensity. FIG. 7A is a diagram illustrating a state in which light propagates in the illumination device according to the comparative example when an LED having a large divergence angle is used, and FIG. 7B is an upper view of the light guide plate in the illumination device according to the comparative example. It is a figure which shows the luminous intensity of the illuminating device in a predetermined position. The luminous intensity was measured by a detector disposed at a distance d in the X-axis direction from a predetermined reference position la. 6A and 7A are the same except for the light source.
 図6Aに示すように、本実施形態に係る照明装置100は、半導体発光素子12aからの出射光の大部分を傾斜面11aに照射させることができる。従って、図6Bに示すように、本実施形態に係る照明装置100においては、導光板11内部に光を均一に効率よく分布させることができる。 As shown in FIG. 6A, the illuminating device 100 according to the present embodiment can irradiate the inclined surface 11a with most of the emitted light from the semiconductor light emitting element 12a. Therefore, as shown in FIG. 6B, in the illumination device 100 according to this embodiment, light can be uniformly and efficiently distributed inside the light guide plate 11.
 一方、図7Aに示すように、比較例に係る照明装置600は、LEDからの出射光の拡がり角が大きいので、出射光の一部は傾斜面11aに照射されず傾斜面11aの外部に進むことになる。この結果、傾斜面11aに照射されなかった光は、導光板11を通過してそのまま導光板11の外部へと放射されることになる。従って、図7Bに示すように、光度分布にピークが発生し、面内分布の均一性を低下させてしまうことになる。この場合、光度のピークを解消させるために導光板11の厚みを厚くしなければならなくなり、光取り出し効率が低下する。 On the other hand, as shown in FIG. 7A, since the illumination device 600 according to the comparative example has a large divergence angle of the emitted light from the LED, a part of the emitted light proceeds outside the inclined surface 11a without being irradiated on the inclined surface 11a. It will be. As a result, the light that has not been irradiated onto the inclined surface 11 a passes through the light guide plate 11 and is directly emitted to the outside of the light guide plate 11. Therefore, as shown in FIG. 7B, a peak occurs in the luminous intensity distribution, and the uniformity of the in-plane distribution is lowered. In this case, the thickness of the light guide plate 11 must be increased in order to eliminate the luminous intensity peak, and the light extraction efficiency is reduced.
 このように、本実施形態に係る照明装置100は、導波路を有する発光素子を用いているので、発光素子から出射する出射光Lの水平方向の拡がり角θHLを小さくすることができる。従って、凸反射面12d(第1反射面)で反射した第1反射光R1の垂直方向の拡がり角θVR1を十分小さくすることができるとともに、傾斜面11a(第2反射面)で反射した第2反射光R2の垂直方向の拡がり角θVR2も十分小さくすることができる。これにより、半導体発光素子12aから出射した光のほとんど全ての光を導光板11の傾斜面11aで反射させることができるので、導光板11内に効率よく光を広げることができる。従って、図6Bに示すように、照明装置における光度分布の面内分布の均一性を向上させることができる。 Thus, since the illuminating device 100 which concerns on this embodiment uses the light emitting element which has a waveguide, the horizontal divergence angle (theta) HL of the emitted light L radiate | emitted from a light emitting element can be made small. Therefore, the vertical spread angle θVR1 of the first reflected light R1 reflected by the convex reflecting surface 12d (first reflecting surface) can be sufficiently reduced, and the first reflected light reflected by the inclined surface 11a (second reflecting surface) can be reduced. The diverging angle θVR2 in the vertical direction of the two reflected light R2 can also be made sufficiently small. Thereby, almost all of the light emitted from the semiconductor light emitting element 12 a can be reflected by the inclined surface 11 a of the light guide plate 11, so that the light can be efficiently spread in the light guide plate 11. Therefore, as shown in FIG. 6B, the uniformity of the in-plane distribution of the luminous intensity distribution in the lighting device can be improved.
 次に、光度の面内分布の均一性のシミュレーション結果について、図8A~図8Cを用いて詳述する。図8Aは、照明装置における発光素子と導光板との位置関係を示す図である。 Next, the simulation result of the uniformity of the in-plane distribution of luminous intensity will be described in detail with reference to FIGS. 8A to 8C. FIG. 8A is a diagram illustrating a positional relationship between the light emitting element and the light guide plate in the illumination device.
 図8Aにおいて、傾斜面11aの傾斜角θは45度と固定し、同図に示す発光素子の発光点から光が出射するものとする。また、発光点から導光板11までの距離をdとし、導光板11の厚みをtとする。さらに、発光点から光は傾斜面11aの中央部分に到達するものとし、計算を簡単にするために、導光板11の屈折率は1とする。なお、図中の角度θc1及びθc2は、発光点からの光が傾斜面11aの範囲に到達するための臨界角を表している。 8A, the inclination angle θ of the inclined surface 11a is fixed at 45 degrees, and light is emitted from the light emitting point of the light emitting element shown in FIG. In addition, the distance from the light emitting point to the light guide plate 11 is d, and the thickness of the light guide plate 11 is t. Furthermore, the light from the light emitting point reaches the central portion of the inclined surface 11a, and the refractive index of the light guide plate 11 is set to 1 in order to simplify the calculation. Note that the angles θc1 and θc2 in the figure represent critical angles for the light from the light emitting point to reach the range of the inclined surface 11a.
 図8Bは、発光素子A及び発光素子Bから出射される光の配向特性を示す図である。発光素子Aは、発光素子の光軸からの角度θを用いてcosθで表される光分布を有する発光素子であり、発光素子Bは、当該発光素子Bから出射する出射光の半値幅が10度であるガウス分布の広がり角を有する発光素子である。発光素子Bが、本実施形態に係る照明装置に用いられる発光素子に相当する。 FIG. 8B is a diagram showing alignment characteristics of light emitted from the light emitting elements A and B. FIG. Emitting element A is a light emitting element having a light distribution represented by cos [theta] L with the angle theta L from the optical axis of the light-emitting element B, the half-value width of the emitted light emitted from the light-emitting element B Is a light emitting element having a divergence angle of Gaussian distribution of 10 degrees. The light emitting element B corresponds to a light emitting element used in the lighting device according to the present embodiment.
 また、図8Bにおいて、発光点からの光の角度が臨界角θc1以下の場合は、導光板結合ロスAとなり、発光点からの光の角度が臨界角θc2以上の場合は、導光板結合ロスBとなる。 In FIG. 8B, when the angle of light from the light emitting point is equal to or smaller than the critical angle θc1, the light guide plate coupling loss A is obtained. When the angle of light from the light emitting point is equal to or larger than the critical angle θc2, the light guide plate coupling loss B is obtained. It becomes.
 図8Cは、図8Aに示す上記のパラメータd、t、θc1、θc2に具体的な数値を入れて、図8Bに示す発光素子Aと発光素子Bに関して、導光板結合ロスA、Bを示した図である。 FIG. 8C shows light guide plate coupling losses A and B with respect to the light emitting element A and the light emitting element B shown in FIG. 8B by putting specific numerical values into the parameters d, t, θc1 and θc2 shown in FIG. 8A. FIG.
 図8Cに示すように、3つのパターンの条件で発光素子Aと発光素子Bの導光板結合ロス(発光素子からの光のうち傾斜面11aで反射されない光量)を計算すると、発光素子Aの場合は、導光板結合ロスB(傾斜面11aに反射されない光で導光板を通過する光)がいずれも30%以上のロスが生じていることが分かる。この導光板結合ロスBにおいて傾斜面11aで反射されない光は、図7Bに示すような光度分布のピークとなり照明装置の発光分布を悪化させる。また、発光素子Aの導光板結合ロスA(傾斜面11aに反射されない光で隣の導光板に入射する光)は、3~9%生じていることが分かる。一方、発光素子Bの場合は、いずれのパターンにおいても導光板結合ロスA、Bはともに0%であり、光利用効率が非常に高いことが分かる。従って、発光素子Bに係る本発明の照明装置100では、優れた光利用効率と均一な発光分布を得ることができる。 As shown in FIG. 8C, when the light guide plate coupling loss (the amount of light from the light emitting element that is not reflected by the inclined surface 11a) of the light emitting element A and the light emitting element B is calculated under the conditions of three patterns, the case of the light emitting element A It can be seen that the loss of light guide plate coupling loss B (light that is not reflected by the inclined surface 11a and passes through the light guide plate) is 30% or more. The light that is not reflected by the inclined surface 11a in the light guide plate coupling loss B becomes the peak of the luminous intensity distribution as shown in FIG. 7B, and deteriorates the light emission distribution of the illumination device. In addition, it can be seen that the light guide plate coupling loss A of the light emitting element A (light that is not reflected by the inclined surface 11a and incident on the adjacent light guide plate) is 3 to 9%. On the other hand, in the case of the light emitting element B, the light guide plate coupling losses A and B are both 0% in any pattern, and it can be seen that the light utilization efficiency is very high. Therefore, in the illuminating device 100 of the present invention related to the light emitting element B, it is possible to obtain excellent light utilization efficiency and uniform light emission distribution.
 次に、本発明の実施の形態1に係る照明装置の製造方法について、図9A~図9Cを用いて説明する。なお、図9A及び図9Bにおいては、1つの照明素子10のみを抽出して説明する。 Next, a method for manufacturing the lighting apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 9A to 9C. 9A and 9B, only one illumination element 10 is extracted and described.
 まず、図9Aに示すように、アルミニウム合金からなる絶縁性の放熱板20上に、等間隔で3個の発光装置12を配置する。本実施形態では、半導体発光素子12aと凸反射面12dとを取り扱いやすくし、かつ堅牢なものとするために、図2に示すようにパッケージ12bの内部に半導体発光素子12aと凸反射面12dとを集積化した発光装置12を用いた。なお、放熱板20には、その表面又は裏面のいずれか一方もしくは両方に、半導体発光素子12aに給電するための配線パターンが形成されている(不図示)。本実施形態では、ライン状に配置された複数の発光装置12の下に配線パターンが位置するように形成されている。 First, as shown in FIG. 9A, three light emitting devices 12 are arranged at equal intervals on an insulating heat sink 20 made of an aluminum alloy. In this embodiment, in order to make the semiconductor light emitting element 12a and the convex reflection surface 12d easy to handle and robust, as shown in FIG. 2, the semiconductor light emitting element 12a and the convex reflection surface 12d are provided inside the package 12b. Was used. Note that a wiring pattern for supplying power to the semiconductor light emitting element 12a is formed on one or both of the front surface and the back surface of the heat sink 20 (not shown). In the present embodiment, the wiring pattern is formed so as to be positioned under the plurality of light emitting devices 12 arranged in a line.
 その後、図示しないが、放熱板20上の発光装置12が配置される部分のみが切り取られた反射シートを放熱板20上に配置する。 Thereafter, although not shown in the drawing, a reflective sheet from which only a portion where the light emitting device 12 on the heat sink 20 is disposed is cut out on the heat sink 20.
 次に、図9Bに示すように、発光装置12と反射シート(不図示)とを覆うように導光板11を配置する。このとき、導光板11の傾斜面11aが発光装置12と対向するように位置決めされる。なお、図9Cに示すように、放熱板20上には複数枚の導光板11が配置固定される。また、導光板11は図9C中の手前側の導光板11から順に配置される。 Next, as shown in FIG. 9B, the light guide plate 11 is disposed so as to cover the light emitting device 12 and the reflection sheet (not shown). At this time, the light guide plate 11 is positioned so that the inclined surface 11 a faces the light emitting device 12. As shown in FIG. 9C, a plurality of light guide plates 11 are arranged and fixed on the heat radiating plate 20. Further, the light guide plate 11 is disposed in order from the front light guide plate 11 in FIG. 9C.
 この後、導光板11上に第1光学シート40及び第2光学シート50を順次配置する。これにより、照明装置100を完成させることができる。 Thereafter, the first optical sheet 40 and the second optical sheet 50 are sequentially arranged on the light guide plate 11. Thereby, the illuminating device 100 can be completed.
 以上、本発明の実施の形態1に係る照明装置によれば、半導体発光素子と導光板とを有する照明素子を複数備えているので、半導体発光素子を導光板の厚み方向に複数個配置することなく、ローカルディミング駆動を可能とすることができる。さらに、半導体発光素子を導光板の一箇所に集中させることがなく、また、半導体発光素子を放熱板の全面において均等に配置することができるので、半導体発光素子が発生する熱も効率よく放熱することができる。しかも、導光板に進行する光の光度の面内分布を均一にすることもできる。 As mentioned above, according to the illuminating device which concerns on Embodiment 1 of this invention, since it has multiple illumination elements which have a semiconductor light-emitting device and a light-guide plate, multiple semiconductor light-emitting devices are arrange | positioned in the thickness direction of a light-guide plate. In addition, local dimming driving can be performed. Furthermore, the semiconductor light emitting elements are not concentrated on one place of the light guide plate, and the semiconductor light emitting elements can be evenly arranged on the entire surface of the heat radiating plate, so that the heat generated by the semiconductor light emitting elements can be radiated efficiently. be able to. In addition, the in-plane distribution of the luminous intensity of the light traveling to the light guide plate can be made uniform.
 なお、上記において半導体発光素子12aを半導体レーザとしたが、半導体発光素子12aを出射光の干渉性の低いスーパールミネッセントダイオードを用いた場合でも同様の効果が得られる。特に、スーパールミネッセントダイオードを用いることで、干渉性の低い青色光を高い指向性で放射させることができるため、半導体発光素子からの余分な発熱を低減させるとともに、照明装置からの発光光のスペックルノイズを低減することができる。 In the above description, the semiconductor light emitting element 12a is a semiconductor laser, but the same effect can be obtained even when a superluminescent diode having low coherence of emitted light is used as the semiconductor light emitting element 12a. In particular, by using a super luminescent diode, low coherence blue light can be emitted with high directivity, so that excessive heat generation from the semiconductor light emitting element can be reduced and light emitted from the illumination device can be reduced. Speckle noise can be reduced.
 なお、本実施形態に係る発光装置12では、光学素子12eに含有される蛍光体をYAGCe3+蛍光体としたが、これに限定されない。青色光~赤色光の範囲の波長の光によって半導体発光素子及び蛍光体から出射される合成光が白色光となればよい。例えば、サイアロン系の蛍光体やZnS/CdSなどの量子ドットを用いた蛍光体などを用いてもよい。また、特に液晶表示装置のバックライト用の光源としては、青色光、緑色光、赤色光の3原色が必要であることから、光学素子12eとしては、例えば、緑色蛍光体(ZnS:Cu,Al)、赤色蛍光体(YS:Eu)などの2種類の蛍光体を含んだ構成としてもよい。さらには、半導体発光素子として、波長350nm~410nmの紫外領域の光を放射する光源を用いて、前述の赤色蛍光体や緑色蛍光体、及び、(Ba,Mg)Al1017:Eu等の青色蛍光体の3種類の蛍光体を含んだ光学素子を用いるような構成としてもよい。 In the light emitting device 12 according to the present embodiment, the phosphor contained in the optical element 12e is a YAGCe 3+ phosphor, but is not limited thereto. The combined light emitted from the semiconductor light emitting element and the phosphor by the light having a wavelength in the range of blue light to red light may be white light. For example, a sialon phosphor or a phosphor using quantum dots such as ZnS / CdS may be used. In particular, as a light source for a backlight of a liquid crystal display device, three primary colors of blue light, green light, and red light are necessary. Therefore, as the optical element 12e, for example, a green phosphor (ZnS: Cu, Al ) And two types of phosphors such as a red phosphor (Y 2 O 2 S: Eu). Further, as a semiconductor light emitting element, a light source that emits light in the ultraviolet region with a wavelength of 350 nm to 410 nm is used, and the above-described red phosphor, green phosphor, (Ba, Mg) Al 10 O 17 : Eu, or the like. A configuration in which an optical element including three types of phosphors of blue phosphors is used may be used.
 さらに、蛍光体に関しては、発光装置12の半導体発光素子12a上に配置する構成としたが、この限りではない。例えば、導光板と反射シートの間、又は導光板と第2の光学シートの間に、シート状の蛍光体含有樹脂を配置する構成としてもよい。さらには、第1光学シートもしくは第2光学シートの表面や内部に、又は、反射シートの表面や内部に、蛍光体を含有させる構成としてもよい。 Furthermore, the phosphor is arranged on the semiconductor light emitting element 12a of the light emitting device 12, but this is not restrictive. For example, a sheet-like phosphor-containing resin may be disposed between the light guide plate and the reflection sheet, or between the light guide plate and the second optical sheet. Furthermore, it is good also as a structure which contains fluorescent substance in the surface and the inside of a 1st optical sheet or a 2nd optical sheet, or the surface and the inside of a reflective sheet.
 (実施の形態2)
 次に、本発明の実施の形態2に係る照明装置及び表示装置について、図10A及び図10Bを用いて説明する。図10Aは、本発明の実施の形態2に係る照明装置の断面図である。また、図10Bは、本発明の実施の形態2に係る表示装置の断面図である。なお、図10A及び図10Bにおいて、図1B及び図1Cに示す本発明の実施の形態1に係る照明装置及び表示装置と同じ構成については同じ符号を付しており、その説明は簡略化又は省略する。なお、図1Bと同様に図10Aは、本実施形態に係る照明装置(実線部分)を筐体に組み込んで表示装置を構成した場合を示しており、照明装置以外の構成要素については破線で示している。
(Embodiment 2)
Next, an illumination device and a display device according to Embodiment 2 of the present invention will be described with reference to FIGS. 10A and 10B. FIG. 10A is a cross-sectional view of the lighting apparatus according to Embodiment 2 of the present invention. FIG. 10B is a cross-sectional view of the display device according to Embodiment 2 of the present invention. 10A and 10B, the same components as those of the lighting device and the display device according to Embodiment 1 of the present invention shown in FIGS. 1B and 1C are denoted by the same reference numerals, and the description thereof is simplified or omitted. To do. As in FIG. 1B, FIG. 10A shows a case where the display device is configured by incorporating the lighting device (solid line portion) according to the present embodiment into a housing, and constituent elements other than the lighting device are indicated by broken lines. ing.
 図10Aに示すように、本発明の実施の形態2に係る照明装置200は、発光装置12の下方に、放熱板20を介して放熱フィン70が設けられている。放熱フィン70は、例えば、図11(a)又は図11(b)に示すように、垂直方向にウィングを有する構造を有しており、これにより、放熱板20の熱を効果的に空気中に放熱させることができる。 As shown in FIG. 10A, the illumination device 200 according to Embodiment 2 of the present invention is provided with heat radiation fins 70 via the heat radiation plate 20 below the light emitting device 12. For example, as shown in FIG. 11A or 11B, the radiating fin 70 has a structure having wings in the vertical direction. Can dissipate heat.
 また、図10Bに示すように、本発明の実施の形態2に係る表示装置200Aは、筐体60の下面に、開口部80が形成されたものである。開口部80は、放熱フィン70に対向する位置に形成される複数の孔群で構成されており、これにより、照明装置200の放熱性を高めることができる。 As shown in FIG. 10B, the display device 200A according to Embodiment 2 of the present invention has an opening 80 formed on the lower surface of the housing 60. The opening 80 is composed of a plurality of hole groups formed at positions facing the heat dissipating fins 70, thereby improving the heat dissipation of the lighting device 200.
 図12は、本発明の実施の形態2に係る表示装置200Aを背面から見たときの状態を模式的に示した一部切り欠き平面図である。なお、図12において、切り欠き線を境界線として、同図の上側部分は、表示装置200Aを背面から見たときの状態を示しており、同図の下側部分は、筐体60を取り除いた場合に表示装置200Aを背面から見たときの状態を示している。 FIG. 12 is a partially cutaway plan view schematically showing a state when the display device 200A according to Embodiment 2 of the present invention is viewed from the back side. In FIG. 12, the upper part of FIG. 12 shows a state when the display device 200A is viewed from the back, with the notch line as a boundary line, and the lower part of FIG. When the display device 200A is viewed from the back, the state is shown.
 図12に示すように、開口部80は、筐体60の背面に、複数のライン状の孔によって構成されている。これにより、空気の循環を効率よく行うことができるとともに、ごみなどが筐体60の内部に侵入することを防止することができる。また、放熱フィン70は、発光装置12が配置された放熱板20の丁度真後ろに位置するようにして設置される。これにより、発光装置12から発生した熱を、放熱フィン70を介して効率よく空気中に放熱することができる。 As shown in FIG. 12, the opening 80 is constituted by a plurality of line-shaped holes on the back surface of the housing 60. Thereby, air can be circulated efficiently and dust and the like can be prevented from entering the housing 60. Further, the heat radiating fins 70 are installed so as to be located just behind the heat radiating plate 20 on which the light emitting device 12 is disposed. Thereby, the heat generated from the light emitting device 12 can be efficiently radiated into the air via the radiation fins 70.
 以上、本発明の実施の形態2に係る照明装置200によれば、放熱フィン70が設けられているので、発光装置12及び駆動IC103で発生した熱は、放熱板20を通って容易に放熱フィン70に伝達されて放熱される。また、本実施形態に係る表示装置200Aによれば、放熱フィン70に対向配置された開口部80を備えるので、放熱フィン70に伝達された熱は、開口部80から筐体60の外部に放熱される。これにより、照明装置又は当該照明装置を備えた液晶表示装置において、温度上昇を抑制することができる。 As mentioned above, according to the illuminating device 200 which concerns on Embodiment 2 of this invention, since the radiation fin 70 is provided, the heat which generate | occur | produced in the light-emitting device 12 and drive IC103 passes the radiation plate 20 easily. It is transmitted to 70 and radiated. Further, according to the display device 200 </ b> A according to the present embodiment, the opening 80 disposed to face the radiating fin 70 is provided, so that the heat transferred to the radiating fin 70 is radiated from the opening 80 to the outside of the housing 60. Is done. Thereby, in a lighting device or a liquid crystal display device provided with the lighting device, an increase in temperature can be suppressed.
 (実施の形態3)
 次に、本発明の実施の形態3に係る照明装置について、図13A及び図13Bを用いて説明する。図13Aは、本発明の実施の形態3に係る照明装置の要部拡大断面図であり、図13Bは、本実施形態に係る照明装置における導光板端部周辺の拡大断面図である。なお、図13A及び図13Bにおいて、図1Bに示す本発明の実施の形態1に係る照明装置と同じ構成については同じ符号を付しており、その説明は簡略化又は省略する。
(Embodiment 3)
Next, an illumination device according to Embodiment 3 of the present invention will be described with reference to FIGS. 13A and 13B. FIG. 13A is an enlarged cross-sectional view of a main part of the lighting device according to Embodiment 3 of the present invention, and FIG. 13B is an enlarged cross-sectional view of the periphery of the end portion of the light guide plate in the lighting device according to this embodiment. 13A and 13B, the same components as those in the lighting apparatus according to Embodiment 1 of the present invention shown in FIG. 1B are denoted by the same reference numerals, and description thereof is simplified or omitted.
 図13A及び図13Bに示すように、本発明の実施の形態3に係る照明装置300は、導光板11の傾斜面11aが形成される側の先端部分に凹部11cが形成されている。凹部11cは、発光装置12を収納するために、発光装置12のパッケージ形状に合わせて形成されている。また、図13Bの拡大断面図に示すように、発光装置12の導光板11側の側壁部分と凹部11cの発光装置12側の側壁部分とは接触するように構成されている。 As shown in FIG. 13A and FIG. 13B, in the illumination device 300 according to Embodiment 3 of the present invention, a recess 11c is formed at the tip portion on the side where the inclined surface 11a of the light guide plate 11 is formed. The recess 11 c is formed in accordance with the package shape of the light emitting device 12 in order to accommodate the light emitting device 12. Moreover, as shown in the enlarged sectional view of FIG. 13B, the side wall portion on the light guide plate 11 side of the light emitting device 12 and the side wall portion on the light emitting device 12 side of the recess 11c are configured to contact each other.
 本発明の実施の形態3に係る照明装置300によれば、当該照明装置300を組み立てる際に、導光板11の凹部11cの側壁部分を、放熱板20に配置された発光装置12の側壁部分に当接するようにして配置することができる。この結果、発光装置12を導光板11の凹部11cに嵌めるようにして位置決めをすることができるので、発光装置12と導光板11の傾斜面11aとの位置精度を向上させることができる。 According to the lighting device 300 according to Embodiment 3 of the present invention, when the lighting device 300 is assembled, the side wall portion of the recess 11c of the light guide plate 11 is replaced with the side wall portion of the light emitting device 12 disposed on the heat sink 20. It can arrange | position so that it may contact | abut. As a result, since the light emitting device 12 can be positioned so as to fit into the recess 11c of the light guide plate 11, the positional accuracy between the light emitting device 12 and the inclined surface 11a of the light guide plate 11 can be improved.
 (実施の形態4)
 次に、本発明の実施の形態4に係る照明装置について、図14を用いて説明する。図14は、本発明の実施の形態4に係る照明装置の要部外観斜視図である。なお、図14において、図1A及び図1Bに示す本発明の実施の形態1に係る照明装置と同じ構成については同じ符号を付しており、その説明は簡略化又は省略する。
(Embodiment 4)
Next, an illumination device according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 14 is an external perspective view of a main part of a lighting apparatus according to Embodiment 4 of the present invention. In FIG. 14, the same components as those in the lighting apparatus according to Embodiment 1 of the present invention shown in FIGS. 1A and 1B are denoted by the same reference numerals, and description thereof is simplified or omitted.
 図14に示すように、本発明の実施の形態4に係る照明装置400は、赤色の光を発光する例えば発光層がAlInGaP(アルミニウム・インジウム・ガリウム・リン)系材料で構成される半導体発光素子を備えた赤色発光装置12Rと、緑色の光を発光する例えば発光層がInの組成比が高いInGaN系材料で構成される半導体発光素子を備えた緑色発光装置12Gと、青色の光を発光する半導体発光素子を備えた青色発光装置12Bとを備える。 As shown in FIG. 14, the illumination device 400 according to the fourth embodiment of the present invention is a semiconductor light emitting device that emits red light, for example, a light emitting layer is made of an AlInGaP (aluminum, indium, gallium, phosphorus) -based material. A red light emitting device 12R including a green light emitting device, a green light emitting device 12G including a semiconductor light emitting element including a light emitting layer made of an InGaN-based material with a high In composition ratio, for example, and emitting blue light. And a blue light emitting device 12B including a semiconductor light emitting element.
 本実施形態における赤色発光装置12Rと緑色発光装置12Gと青色発光装置12Bとは、図1A及び図1Bに示す実施の形態1の発光装置の一つの照明素子10における3つの発光装置12に対応する。すなわち、照明素子10、すなわち、1つの導光板11に対して、赤色発光装置12R、緑色発光装置12G及び青色発光装置12Bの3色の光を発光する発光装置が配置されている。 The red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B in the present embodiment correspond to the three light emitting devices 12 in one illumination element 10 of the light emitting device of the first embodiment shown in FIGS. 1A and 1B. . That is, a light emitting device that emits light of three colors, a red light emitting device 12R, a green light emitting device 12G, and a blue light emitting device 12B, is arranged for the illumination element 10, that is, one light guide plate 11.
 さらに、本実施例において放熱板20には、赤色発光装置12R、緑色発光装置12G、青色発光装置12Bに対して独立に電力を供給することができる配線(不図示)が形成される。 Furthermore, in the present embodiment, the heat radiating plate 20 is formed with wiring (not shown) that can supply power independently to the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B.
 本発明の実施の形態4に係る照明装置400によれば、赤色、緑色及び青色の3色の光を発光する発光装置が備えられているので、1つの導光板11において白色の光を伝達させることができる。従って、白色の光を放出する照明装置100を得ることができる。特に、ディスプレイの3原色である赤色、緑色、青色に関して、色純度が高い光をそれぞれ供給することができるため、照明装置の出射光の演色性を向上させることができる。 According to the illumination device 400 according to the fourth embodiment of the present invention, since the light emitting device that emits light of three colors of red, green, and blue is provided, white light is transmitted in one light guide plate 11. be able to. Therefore, the lighting device 100 that emits white light can be obtained. In particular, since light with high color purity can be supplied for each of the three primary colors of the display, red, green, and blue, the color rendering properties of the emitted light of the illumination device can be improved.
 さらに本実施形態においては、赤色発光装置12R、緑色発光装置12G、青色発光装置12Bに対して独立に電力を供給することにより、赤色、緑色、青色に関して、個々に出射光強度を設定できる。これにより、この照明装置を用いた表示装置において、表示画像に合わせて、領域毎に調光・調色することができるため、表示装置の消費電力を大幅に低減させることができる。 Furthermore, in the present embodiment, by separately supplying power to the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B, the emitted light intensity can be individually set for red, green, and blue. Thereby, in the display apparatus using this illuminating device, since it can light-control and color-adjust for every area | region according to a display image, the power consumption of a display apparatus can be reduced significantly.
 なお、本実施形態に示す赤色発光装置12R、緑色発光装置12G、青色発光装置12Bの構成としては、図2Aに示す実施の形態1に係る光学素子12eを、例えばBK7のような波長400~800nmまでの範囲の光に対して透明であるガラス板としてもよい。この構成により、各発光装置の半導体発光素子が外気に触れることを防止することができるので、異物等による半導体発光素子の劣化を防止することができる。また、赤色発光装置12R、緑色発光装置12G、青色発光装置12Bのその他の構成としては、例えば、図2Bに示すように、図2Aの発光装置から光学素子を除いたような構成としてもよい。 Note that the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B shown in the present embodiment have the same optical element 12e according to the first embodiment shown in FIG. It is good also as a glass plate which is transparent with respect to the light of the range. With this configuration, it is possible to prevent the semiconductor light emitting element of each light emitting device from coming into contact with outside air, and thus it is possible to prevent the semiconductor light emitting element from being deteriorated due to foreign matter or the like. Further, as other configurations of the red light emitting device 12R, the green light emitting device 12G, and the blue light emitting device 12B, for example, as illustrated in FIG. 2B, a configuration in which an optical element is removed from the light emitting device in FIG. 2A may be employed.
 以上、本発明に係る照明装置及び表示装置について実施の形態に基づいて説明したが、本発明に係る照明装置及び表示装置は、上記の各実施の形態に限定されるものではない。 As mentioned above, although the illuminating device and display device which concern on this invention were demonstrated based on embodiment, the illuminating device and display device which concern on this invention are not limited to said each embodiment.
 例えば、各実施形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 For example, a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art, and a form realized by arbitrarily combining components and functions in each embodiment without departing from the gist of the present invention. It is included in the present invention.
 本発明に係る発光装置は、液晶テレビ又は液晶モニタに備えられる液晶パネルのバックライトモジュールのバックライト等として有用である。また、その他、照明用途としても有用である。 The light emitting device according to the present invention is useful as a backlight of a backlight module of a liquid crystal panel provided in a liquid crystal television or a liquid crystal monitor. In addition, it is also useful as a lighting application.
 10 照明素子
 11、510 導光板
 11a 傾斜面(第2反射面)
 11b 反射ドット
 11c 凹部
 12 発光装置
 12R 赤色発光装置
 12G 緑色発光装置
 12B 青色発光装置
 12a 半導体発光素子
 12b パッケージ
 12c 凹部
 12d 凸反射面(第1反射面)
 12e 光学素子
 12a1 基板
 12a2 半導体層
 12a3 導波路
 12a4 反射端面
 12a5 出射端面
 20 放熱板
 30、540a、540b、540c、540d 反射シート
 40 第1光学シート
 50 第2光学シート
 60 筐体
 70 放熱フィン
 80 開口部
 100、200、300、400、500、600 照明装置
 100A、200A 表示装置
 101 液晶パネル
 102 カバー
 103 駆動IC
 511b、512c、512d 段差部
 512a、512b、512c、512d 下面
 520a、520b、520c、520d 発光素子
 530b、530c、530d ライトガイド
DESCRIPTION OF SYMBOLS 10 Illuminating element 11, 510 Light guide plate 11a Inclined surface (2nd reflective surface)
11b Reflective dot 11c Concave portion 12 Light emitting device 12R Red light emitting device 12G Green light emitting device 12B Blue light emitting device 12a Semiconductor light emitting element 12b Package 12c Concave portion 12d Convex reflective surface (first reflective surface)
12e Optical element 12a1 Substrate 12a2 Semiconductor layer 12a3 Waveguide 12a4 Reflective end face 12a5 Outgoing end face 20 Radiating plate 30, 540a, 540b, 540c, 540d Reflective sheet 40 First optical sheet 50 Second optical sheet 60 Housing 70 Radiating fin 80 Opening 100, 200, 300, 400, 500, 600 Illumination device 100A, 200A Display device 101 Liquid crystal panel 102 Cover 103 Drive IC
511b, 512c, 512d Stepped portion 512a, 512b, 512c, 512d Lower surface 520a, 520b, 520c, 520d Light emitting element 530b, 530c, 530d Light guide

Claims (13)

  1.  半導体発光素子と、
     前記半導体発光素子から出射される光を反射させるための第1反射面と、
     前記第1反射面で反射した光が入射し、入射した当該光を反射させるための第2反射面を有し、当該第2反射面で反射した光を導光するための導光板と、
     を有する照明素子を複数個備え、
     前記半導体発光素子は、当該半導体発光素子の垂直方向の拡がり角が水平方向の拡がり角よりも大きい光を出射し、
     前記第1反射面は、前記半導体発光素子から出射される前記光に対して湾曲した凸反射面である
     照明装置。
    A semiconductor light emitting device;
    A first reflecting surface for reflecting light emitted from the semiconductor light emitting element;
    A light guide plate for guiding the light reflected by the second reflecting surface, having a second reflecting surface for reflecting the light reflected by the first reflecting surface, and reflecting the incident light;
    A plurality of lighting elements having
    The semiconductor light emitting element emits light in which the vertical divergence angle of the semiconductor light emitting element is larger than the horizontal divergence angle,
    The first reflection surface is a convex reflection surface curved with respect to the light emitted from the semiconductor light emitting element.
  2.  前記第2反射面は、前記導光板の矩形端面によって構成され、
     前記導光板の下面に対する前記矩形端面の傾斜角が略45度であり、
     前記半導体発光素子の光軸が前記矩形端面の長手方向と略平行である
     請求項1に記載の照明装置。
    The second reflecting surface is constituted by a rectangular end surface of the light guide plate,
    The inclination angle of the rectangular end surface with respect to the lower surface of the light guide plate is approximately 45 degrees,
    The lighting device according to claim 1, wherein an optical axis of the semiconductor light emitting element is substantially parallel to a longitudinal direction of the rectangular end surface.
  3.  前記照明素子は、前記半導体発光素子を複数個有する
     請求項1又は請求項2に記載の照明装置。
    The illumination device according to claim 1, wherein the illumination element includes a plurality of the semiconductor light emitting elements.
  4.  さらに、放熱板を備え、
     前記半導体発光素子が、前記放熱板上に配置される
     請求項1~3のいずれか1項に記載の照明装置。
    In addition, with a heat sink,
    The lighting device according to any one of claims 1 to 3, wherein the semiconductor light emitting element is disposed on the heat sink.
  5.  前記半導体発光素子は、前記第1反射面を有するパッケージに配置される
     請求項1~4のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 4, wherein the semiconductor light emitting element is disposed in a package having the first reflecting surface.
  6.  前記半導体発光素子が、半導体レーザである
     請求項1~5のいずれか1項に記載の照明装置。
    The illumination device according to any one of claims 1 to 5, wherein the semiconductor light emitting element is a semiconductor laser.
  7.  前記半導体発光素子が、スーパールミネッセントダイオードである
     請求項1~5のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 5, wherein the semiconductor light emitting element is a super luminescent diode.
  8.  前記半導体発光素子の光軸上に前記第1反射面が配置される
     請求項1~7のいずれか1項に記載の照明装置。
    The lighting device according to any one of claims 1 to 7, wherein the first reflecting surface is disposed on an optical axis of the semiconductor light emitting element.
  9.  さらに、前記放熱板の前記半導体発光素子が配置された面とは反対側の面に配置された放熱フィンを備える
     請求項4に記載の照明装置。
    Furthermore, the illuminating device of Claim 4 provided with the radiation fin arrange | positioned at the surface on the opposite side to the surface where the said semiconductor light emitting element is arrange | positioned of the said heat sink.
  10.  前記導光板の端部に凹部が設けられており、
     前記パッケージの一部が前記凹部の一部に当接して配置される
     請求項5に記載の照明装置。
    A recess is provided at an end of the light guide plate,
    The lighting device according to claim 5, wherein a part of the package is disposed in contact with a part of the recess.
  11.  複数の前記半導体発光素子は、赤色の光を発光する半導体発光素子と、緑色の光を発光する半導体発光素子と、青色の光を発光する半導体発光素子とを含む
     請求項3に記載の照明装置。
    The lighting device according to claim 3, wherein the plurality of semiconductor light emitting elements include a semiconductor light emitting element that emits red light, a semiconductor light emitting element that emits green light, and a semiconductor light emitting element that emits blue light. .
  12.  前記赤色の光を発光する半導体発光素子と、前記緑色の光を発光する半導体発光素子と、前記青色の光を発光する半導体発光素子とが前記放熱板上に配置され、前記放熱板上に、前記赤色の光を発光する半導体発光素子と、前記緑色の光を発光する半導体発光素子と、前記青色の光を発光する半導体発光素子とに独立に電力を供給する配線が形成される
     請求項11に記載の照明装置。
    The semiconductor light emitting element that emits the red light, the semiconductor light emitting element that emits the green light, and the semiconductor light emitting element that emits the blue light are disposed on the heat sink, and on the heat sink, The semiconductor light emitting element that emits red light, the semiconductor light emitting element that emits green light, and a wiring that supplies power independently to the semiconductor light emitting element that emits blue light are formed. The lighting device described in 1.
  13.  請求項1~12のいずれか1項に記載の照明装置を備える
     表示装置。
     
    A display device comprising the illumination device according to any one of claims 1 to 12.
PCT/JP2011/000403 2010-04-20 2011-01-26 Illumination device and display device WO2011132350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-097270 2010-04-20
JP2010097270A JP2011228137A (en) 2010-04-20 2010-04-20 Lighting system and display device

Publications (1)

Publication Number Publication Date
WO2011132350A1 true WO2011132350A1 (en) 2011-10-27

Family

ID=44833896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000403 WO2011132350A1 (en) 2010-04-20 2011-01-26 Illumination device and display device

Country Status (2)

Country Link
JP (1) JP2011228137A (en)
WO (1) WO2011132350A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007093A (en) * 2012-06-26 2014-01-16 Sharp Corp Light source device and light projector including the same
WO2021039907A1 (en) * 2019-08-29 2021-03-04 京セラ株式会社 Optical element mounting package, electronic device, and electronic module
JPWO2021200071A1 (en) * 2020-03-30 2021-10-07

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190115718A1 (en) * 2016-03-31 2019-04-18 Sharp Kabushiki Kaisha Eye-safe light source and method for manufacturing same
DE102016107715A1 (en) * 2016-04-26 2017-10-26 Osram Opto Semiconductors Gmbh Laser module with an optical component
WO2017203809A1 (en) 2016-05-24 2017-11-30 大日本印刷株式会社 Lighting control device
JP2018201987A (en) * 2017-06-07 2018-12-27 株式会社ユニバーサルエンターテインメント Game machine
JP2018201993A (en) * 2017-06-07 2018-12-27 株式会社ユニバーサルエンターテインメント Game machine
WO2019221304A1 (en) * 2018-05-18 2019-11-21 富士フイルム株式会社 Planar illumination device and liquid crystal display device
JP7122392B2 (en) * 2018-11-08 2022-08-19 京セラ株式会社 Substrate for housing light-emitting element and light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306953A (en) * 1995-05-01 1996-11-22 Nippondenso Co Ltd Superluminescent diode
JP2004111189A (en) * 2002-09-18 2004-04-08 Asahi Matsushita Electric Works Ltd Light guide plate device
JP2005135815A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Planar light source device and display device using the same
JP2007067076A (en) * 2005-08-30 2007-03-15 Mitsubishi Rayon Co Ltd Light source apparatus
JP2008251483A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Light emitting device, linear light emitting device, planar light emitting device, liquid crystal display device, and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306953A (en) * 1995-05-01 1996-11-22 Nippondenso Co Ltd Superluminescent diode
JP2004111189A (en) * 2002-09-18 2004-04-08 Asahi Matsushita Electric Works Ltd Light guide plate device
JP2005135815A (en) * 2003-10-31 2005-05-26 Mitsubishi Electric Corp Planar light source device and display device using the same
JP2007067076A (en) * 2005-08-30 2007-03-15 Mitsubishi Rayon Co Ltd Light source apparatus
JP2008251483A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Light emitting device, linear light emitting device, planar light emitting device, liquid crystal display device, and electronic apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007093A (en) * 2012-06-26 2014-01-16 Sharp Corp Light source device and light projector including the same
WO2021039907A1 (en) * 2019-08-29 2021-03-04 京セラ株式会社 Optical element mounting package, electronic device, and electronic module
JPWO2021039907A1 (en) * 2019-08-29 2021-03-04
CN114270642A (en) * 2019-08-29 2022-04-01 京瓷株式会社 Package for mounting optical element, electronic device, and electronic module
EP4024628A4 (en) * 2019-08-29 2023-10-25 Kyocera Corporation Optical element mounting package, electronic device, and electronic module
JP7379504B2 (en) 2019-08-29 2023-11-14 京セラ株式会社 Packages for mounting optical elements, electronic devices, and electronic modules
US11955769B2 (en) 2019-08-29 2024-04-09 Kyocera Corporation Optical element mounting package, electronic device, and electronic module
JPWO2021200071A1 (en) * 2020-03-30 2021-10-07
WO2021200071A1 (en) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 Illumination device
JP7304533B2 (en) 2020-03-30 2023-07-07 パナソニックIpマネジメント株式会社 lighting equipment

Also Published As

Publication number Publication date
JP2011228137A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011132350A1 (en) Illumination device and display device
US7478930B2 (en) Backlight unit with an oxide compound-laminated optical layer
JP4430585B2 (en) Surface light source device
WO2009093583A1 (en) Display device and light emitting device
JP2010282911A (en) Backlight device and image display device
JP2006286639A (en) Light emitting device having a plurality of overlapping panels forming recess for emitting light
WO2011043140A1 (en) Illumination device, display device, and television receiver
KR20110087579A (en) Led light module and backlight unit having led module
JP2006286638A (en) Light emitting device having a plurality of light guide plates adjoining each other and overlapping
JP2007286467A (en) Back-light device and liquid crystal display device
KR20100134494A (en) Light emitting diode package, and back-light unit and liquid crystal display device using the same
JP3187636U (en) Direct mounting type edge light type backlight module
US8944643B2 (en) Light emitting diode package, method for manufacturing the same and light source unit having the LED package
JP2011040664A (en) Surface light source and liquid crystal display device
WO2012026164A1 (en) Illumination device and display device
JP2005353650A (en) Led optical source and liquid crystal display device
EP3699488B1 (en) Display device
WO2016121530A1 (en) Lighting device and display device
JP2010177085A (en) Backlight unit and image display device using the same
US20120014131A1 (en) Light emitting device assembly, backlight unit and display device having the same
KR20130022980A (en) Light emitting diode source and backlight unit having the same
KR20110134029A (en) Backlight unit and display device including the same
KR100742125B1 (en) Back light unit
JP4474373B2 (en) Ultra-thin LCD backlight using highly uniform light
US20130279199A1 (en) Light source module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771695

Country of ref document: EP

Kind code of ref document: A1