WO2011125839A1 - Composition for forming resist underlayer film and pattern forming method - Google Patents

Composition for forming resist underlayer film and pattern forming method Download PDF

Info

Publication number
WO2011125839A1
WO2011125839A1 PCT/JP2011/058221 JP2011058221W WO2011125839A1 WO 2011125839 A1 WO2011125839 A1 WO 2011125839A1 JP 2011058221 W JP2011058221 W JP 2011058221W WO 2011125839 A1 WO2011125839 A1 WO 2011125839A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
resist
underlayer film
resist underlayer
Prior art date
Application number
PCT/JP2011/058221
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 中藤
信也 峯岸
和彦 香村
孝徳 中野
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012509572A priority Critical patent/JP5794228B2/en
Publication of WO2011125839A1 publication Critical patent/WO2011125839A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • G03F7/0955Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer one of the photosensitive systems comprising a non-macromolecular photopolymerisable compound having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a resist underlayer film forming composition and a pattern forming method. More specifically, the present invention relates to a resist underlayer film forming composition and a pattern forming method capable of forming a resist underlayer film having high elastic modulus and high etching resistance while maintaining a standing wave preventing effect.
  • a liquid resist underlayer film forming composition is first applied on a substrate to form a resist underlayer film (hereinafter sometimes simply referred to as “underlayer film”), and then a liquid is formed on the underlayer film.
  • the photoresist composition is further applied to form a photoresist film (resist film).
  • the photoresist film is exposed using a reduction projection exposure apparatus (stepper) and then developed to obtain a photoresist pattern. Thereafter, the photoresist pattern is transferred to the resist underlayer film by dry etching.
  • a substrate on which a desired pattern is formed can be obtained.
  • the case where one kind of resist underlayer film is used is called a two-layer resist process, and the case where two kinds of resist underlayer films are used is sometimes called a three-layer resist process.
  • the resist underlayer film generally has a function as an antireflection film that absorbs radiation reflected from the substrate.
  • the resist underlayer film formed immediately above the substrate is often formed of a material having a high carbon content (composition for forming a resist underlayer film). This is because if the carbon content is high, the etching resistance during substrate processing is improved, and more accurate pattern transfer is possible.
  • a composition for forming a resist underlayer film having a high carbon content those containing a thermosetting phenol novolak and those containing a polymer having an acenaphthylene skeleton are known (see, for example, Patent Documents 1 and 2). ).
  • compositions for forming a resist underlayer film a composition containing a photopolymerizable compound is known instead of a composition containing a resin such as thermosetting phenol novolak (see, for example, Patent Document 3).
  • the resist underlayer film forming compositions described in Patent Documents 1 and 2 have problems such as bending of the underlayer film pattern when the pattern is transferred from the resist underlayer film to the substrate by etching, and the pattern is satisfactorily applied to the substrate. There was a problem that it was impossible to transfer. Particularly, since the miniaturization of integrated circuit elements has recently been advanced, problems such as bending of a lower layer film pattern caused by heat have become a problem. Here, the cause of the bending of the lower layer film pattern is considered to be that the elastic modulus of the resist lower layer film is insufficient because the resins are not sufficiently crosslinked.
  • the resist underlayer film forming composition described in Patent Document 3 contains a photopolymerizable compound, but is intended to obtain a material having low etching resistance. What is the resist underlayer film of the present invention? Disclose materials for different applications.
  • the present invention has been made to solve the above-described problems of the prior art, and is capable of forming a resist underlayer film having a high elastic modulus and high etching resistance while maintaining a standing wave prevention effect. It aims at providing the composition for lower layer film formation, and the pattern formation method.
  • the present invention provides the following resist underlayer film forming composition and pattern forming method.
  • B a resist underlayer film forming composition containing a solvent.
  • R 11 to R 13 are each independently a monovalent group derived from an aromatic compound, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 3 to 20 carbon atoms.
  • cycloalkyl group, a nitro group, a cyano group, -COR 2 shows a -COOR 2 or -CON (R 2) 2 (where, -COR 2, -COOR 2, and -CON (R 2) in 2, R 2
  • R 2 Each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, and having a substituent.
  • any one of R 11 to R 13 is a monovalent group derived from an aromatic compound, a nitro group, a cyano group, —COR 2 , —COOR 2 or —CON (R 2 ) is a 2 .
  • R 3 may have a substituent, .n1 showing the n1 valent organic radical derived from aromatic compounds is an integer of 2-4.
  • R 4 is independently of each other a monovalent organic group derived from an aromatic compound, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms.
  • R 7 are mutually And independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, and may have a substituent.
  • R 5 represents a monovalent organic group derived from an aromatic compound which may have a substituent
  • R 6 represents an n2-valent organic group
  • X represents —COO—. * or -CONH- * the show ( "*" represents a bond that binds to R 6). 2 is an integer of 2-10.
  • the photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-1), and the photopolymerizable compound represented by the general formula (2) is The composition for forming a resist underlayer film according to the above [1], which is a compound represented by the following general formula (2-1).
  • R 1 independently represents a hydrogen atom or a cyano group.
  • R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups, or monovalent organic groups derived from aromatic compounds, which may have a substituent, R 3 may have a substituent, an aromatic group An n1-valent organic group derived from a compound, where n1 is an integer of 2 to 4.
  • R 41 independently represents a hydrogen atom or a cyano group
  • R 6 represents an n2 valent hydrocarbon group
  • n2 represents an integer of 2 to 10.
  • R P is .n p indicating a substituent is an integer of 0-5.
  • R 1 independently represents a hydrogen atom or a cyano group.
  • R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups or monovalent organic groups derived from aromatic compounds, which may have a substituent, n1 represents an integer of 2 to 4.
  • R 1 independently represents a hydrogen atom or a cyano group.
  • R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups or a monovalent organic group derived from an aromatic compound, which may have a substituent
  • the resist underlayer film forming composition of the present invention is at least one selected from the group consisting of a photopolymerizable compound represented by the general formula (1) and a photopolymerizable compound represented by the general formula (2). Since it contains a photopolymerizable compound, when irradiated with light, the cross-linking structure formed by the polymerization reaction of these compounds becomes strong, and the elastic modulus is maintained while maintaining the standing wave prevention effect. In addition, a resist underlayer film having high etching resistance can be formed.
  • a resist underlayer film forming composition is applied on a substrate to be processed to form a coating film, and the formed coating film is irradiated with radiation to be applied.
  • the “substituent” is not particularly limited.
  • R S1 independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 30 carbon atoms, and one of hydrogen atoms contained in these groups. Part or all may be substituted with a fluorine atom.
  • R S2 is independently of each other a single bond, an alkanediyl group having 1 to 10 carbon atoms, a cycloalkanediyl group having 3 to 20 carbon atoms, an arylene group having 6 to 30 carbon atoms, or hydrogen contained in these groups A group in which some or all of the atoms are substituted with fluorine atoms.
  • “having a substituent” means having one or more of the above substituents alone, or having one or more of each of the above substituents.
  • composition for forming a resist underlayer film is selected from the group consisting of (A) a photopolymerizable compound represented by the general formula (1) and a photopolymerizable compound represented by the general formula (2). Containing at least one photopolymerizable compound and (B) a solvent. Since this resist underlayer film forming composition contains the photopolymerizable compound (A), when the compound is irradiated with light, the cross-linked structure formed by the polymerization reaction of these compounds is strong. Thus, the elastic modulus and etching resistance are high while maintaining the standing wave preventing effect. Therefore, according to such a composition for forming a resist underlayer film, it is possible to form a resist underlayer film that hardly causes pattern bending.
  • (A) Photopolymerizable compound In the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2), the carbon-carbon double bond is converted to another carbon- by irradiation with light. It is a compound that undergoes recombination of carbon double bond and bond to form a cyclobutane ring. That is, by containing the (A) photopolymerizable compound, in the resist underlayer film (in the coating film formed by the resist underlayer film forming composition of the present invention), (A) two photopolymerizable compounds are contained. It is strongly cross-linked by a carbon-carbon bond to form a cross-linked structure.
  • a hard resist underlayer film can be formed by using such a compound ((A) photopolymerizable compound).
  • the conventional resist underlayer forming composition forms a crosslinked structure in the resist underlayer film by using a crosslinking agent or the like, but since this crosslinked structure is due to a single bond, the strength of the bond is low. Not enough (bonding strength was not enough). Therefore, the pattern may be bent during etching (so-called pattern bending may occur).
  • the cross-linked structure formed by the photopolymerizable compound (A) has a stronger bonding force than that of a single bond, it is considered that a hard resist underlayer film is obtained and the pattern does not bend during etching.
  • the monovalent group derived from an aromatic compound represented by R 11 to R 13 is a group obtained by removing one hydrogen atom from an aromatic hydrocarbon having 6 to 10 carbon atoms.
  • the aromatic hydrocarbon include aromatic hydrocarbons such as benzene and naphthalene; nitrogen-containing aromatic hydrocarbons such as pyrrole, pyridine, pyrazine, pyrimidine, pyridazine, triazine and indole; and oxygen-containing aromatic carbons such as furan.
  • Hydrogen Sulfur-containing aromatic hydrocarbons such as thiophene.
  • a group derived from benzene, naphthalene, and pyridine is preferable because of high etching resistance.
  • the monovalent group derived from the aromatic compound may have a substituent.
  • the alkyl group having 1 to 10 carbon atoms represented by R 11 to R 13 is methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n- Linear alkyl groups such as hexyl group, n-octyl group, n-dodecyl group, n-tetradecyl group and n-octadecyl group, branching such as isopropyl group, isobutyl group, t-butyl group, neopentyl group and 2-ethylhexyl group
  • An alkyl group can be mentioned. Among these, a methyl group, an ethyl group, an i-propyl group, and an i-butyl group are preferable.
  • the alkyl group may have a substituent.
  • the cycloalkyl group having 3 to 20 carbon atoms represented by R 11 to R 13 is a monocyclic cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, or a cyclooctyl group.
  • An alkyl group; and a polycyclic cycloalkyl group such as a tricyclodecanyl group, a tetracyclododecyl group, a norbornyl group, and an adamantyl group.
  • the cycloalkyl group may have a substituent.
  • R 2 is preferably in the -COOR 2, -CON (R 2) 2, as described above, independently of one another, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, cycloalkyl of 3 to 20 carbon atoms An alkyl group or a monovalent organic group derived from an aromatic compound.
  • a hydrogen atom, a methyl group, an ethyl group, an i-propyl group, an i-butyl group, a phenyl group, and a pyridyl group are preferable.
  • examples of the group represented by “—CR 11 ⁇ CR 12 R 13 ” include groups represented by the following general formulas (a) to (n).
  • R 21 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms.
  • R 14 represents a monovalent group derived from an aromatic compound which may have a substituent.
  • R 2 is each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound.
  • a wavy line indicates that the direction of coupling is unspecified.
  • R 14 is a monovalent group derived from an aromatic compound similar to the monovalent group represented by R 11 to R 13 derived from an aromatic compound.
  • the monovalent group derived from this aromatic compound may have a substituent.
  • groups derived from benzene, naphthalene, and pyridine are preferable because a resist underlayer film having high etching resistance can be formed.
  • Examples thereof are the same as 10 alkyl groups or cycloalkyl groups having 3 to 20 carbon atoms.
  • a group represented by the following general formula (a-1) is preferable from the viewpoint of easy availability of raw materials.
  • R 1 represents a hydrogen atom or a cyano group.
  • R 2 independently of each other represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cyclohexane having 3 to 20 carbon atoms. (It is a monovalent organic group derived from an alkyl group or an aromatic compound.)
  • the n1-valent organic group derived from the aromatic compound represented by R 3 includes a group obtained by removing (n1) hydrogen atoms from an aromatic hydrocarbon having 6 to 10 carbon atoms.
  • the aromatic hydrocarbon include aromatic hydrocarbons such as benzene and naphthalene; nitrogen-containing aromatic hydrocarbons such as pyrrole, pyridine, pyrazine, pyrimidine, pyridazine, triazine and indole; and oxygen-containing aromatic carbons such as furan.
  • Hydrogen Sulfur-containing aromatic hydrocarbons such as thiophene.
  • R 3 may have a substituent.
  • n1 is preferably 2 or 3, and more preferably 2.
  • the compound represented by the general formula (1-11) is a compound in the case where R 3 is a benzene-derived divalent group in the general formula (1-1).
  • the compound represented by the general formula (1-111) is a compound in the case where n1 is 2 in the general formula (1-11).
  • photopolymerizable compound represented by the general formula (1) include the following compounds.
  • photopolymerizable compound represented by the general formula (1-111) include the following compounds.
  • the following compounds are preferred because crosslinking proceeds easily (a crosslinked structure is formed) and the crosslinking density is increased by light irradiation.
  • the photopolymerizable compound represented by the general formula (1) can be obtained, for example, by condensing an aromatic ring having a plurality of formyl groups and cyanoacetic acid esters in the presence of a base.
  • the monovalent organic group derived from the aromatic compound represented by R 5 includes a monovalent group represented by R 11 to R 13 and derived from the aromatic compound.
  • a monovalent group derived from the same aromatic compound can be exemplified, and the monovalent group derived from this aromatic compound may have a substituent.
  • a group derived from benzene and pyridine is preferable because of high etching resistance.
  • a monovalent organic group derived from an aromatic compound represented by R 4 , an alkyl group having 1 to 10 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms are A monovalent group derived from an aromatic compound represented by R 11 to R 13 in the general formula (1), an alkyl group having 1 to 10 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms; The same thing can be illustrated.
  • examples of the group represented by “—X—CR 4 ⁇ CR 4 R 5 ” include groups represented by the following general formulas (o) to (z). .
  • R 21 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms.
  • R 5 represents a monovalent organic group derived from an aromatic compound which may have a substituent.
  • R 8 independently of one another represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, You may have.
  • a wavy line indicates that the direction of coupling is unspecified.
  • a group represented by the following general formula (o-1) is preferable from the viewpoint of easy availability of raw materials.
  • R 41 represents a hydrogen atom or a cyano group.
  • R p represents a substituent.
  • N p represents an integer of 0 to 5.
  • examples of the n2-valent organic group represented by R 6 include n2-valent hydrocarbon groups.
  • examples of such hydrocarbon groups include methane, ethane, n-propyl group, n-butane, n-pentane, n-hexane, n-octane, n-dodecane, n-tetradecane, and n-octadecane.
  • Chain alkanes Chain hydrocarbons such as branched alkanes such as isopropane, isobutane, t-butane, neopentane, 2-ethylhexane, etc., monocyclic cyclohexane such as cyclopropane, cyclobutane, cyclopentane, cyclohexyl group, cyclooctane, etc.
  • An alkane; a group in which n2 hydrogen atoms are removed from a cyclic hydrocarbon such as polycyclocycloalkane such as tricyclodecane, tetracyclododecane, norbornene, adamantane and the like.
  • N2 in the general formula (2) is preferably 2 to 8, and particularly preferably 2 to 6.
  • photopolymerizable compound represented by the general formula (2) include compounds represented by the following formulas (B-1) to (B-5). Among these, a compound represented by the formula (B-5) is preferable because a resist underlayer film having high etching resistance can be formed.
  • the photopolymerizable compound represented by the general formula (2) can be obtained, for example, by reacting cinnamic acid with a carbon source (for example, dimethylformamide or alkyl bromide) in the presence of a base.
  • a carbon source for example, dimethylformamide or alkyl bromide
  • the composition for resist underlayer film formation of this invention is the photopolymerizable compound represented by the said General formula (1), and the photopolymerizable compound represented by the said General formula (2), respectively. It may contain, may contain both the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2), It is preferable that the photopolymerizable compound represented by the general formula (1) is contained alone. This is because the photopolymerizable compound represented by the general formula (1) can form a resist underlayer film having high etching resistance because the photocrosslinkable sites are connected by an aromatic ring.
  • solvent will not be specifically limited if it can dissolve the (A) photopolymerizable compound contained.
  • Specific examples of the solvent (B) include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, n-butyl acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate having high coatability, -Heptanone, ⁇ -butyrolactone, cyclohexanone and the like.
  • the content of the solvent is 5 to 80 parts by mass with respect to 100 parts by mass of the total amount of the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2).
  • the amount is 5 to 40 parts by weight, more preferably 8 to 30 parts by weight.
  • the composition for forming a resist underlayer film of the present invention may further contain an additive in addition to (A) the photopolymerizable compound and (B) the solvent.
  • the additive include a binder resin, a radiation absorber, a surfactant, a storage stabilizer, an antifoaming agent, and an adhesion assistant.
  • thermoplastic resin is a component which has the effect
  • the thermosetting resin is a component that is cured by heating and becomes insoluble in a solvent, and has a function of preventing intermixing between the resulting resist underlayer film and the resist film formed thereon. It can be preferably used as a resin.
  • thermosetting resins such as urea resins, melamine resins, and aromatic hydrocarbon resins are preferable.
  • these binder resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the blending amount of the binder resin is (A) 100 parts by mass of the photopolymerizable compound (the total amount of the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2) is 100 parts by mass. ) Is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less. When the blending amount is more than 20 parts by mass, the binder resin may inhibit the polymerization of the (A) photopolymerizable compound. Therefore, a resist underlayer film having a high elastic modulus may not be obtained.
  • the radiation absorber examples include oil-soluble dyes, disperse dyes, basic dyes, methine dyes, pyrazole dyes, imidazole dyes, hydroxyazo dyes, and the like; bixin derivatives, norbixine, stilbene, Fluorescent brighteners such as 4,4′-diaminostilbene derivatives, coumarin derivatives, pyrazoline derivatives; hydroxyazo dyes, tinuvin 234 (trade name, manufactured by Ciba Geigy), tinuvin 1130 (trade name, manufactured by Ciba Geigy), etc.
  • Ultraviolet absorbers aromatic compounds such as anthracene derivatives and anthraquinone derivatives. These radiation absorbers can be used alone or in admixture of two or more.
  • the compounding amount of the radiation absorber is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, with respect to 100 parts by mass of the (A) photopolymerizable compound. When the amount is more than 100 parts by mass, the radiation absorber may inhibit the photoreaction of the (A) photopolymerizable compound.
  • Surfactant is a component having an effect of improving coatability, striation, wettability, developability and the like.
  • the compounding amount of the surfactant is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of the (A) photopolymerizable compound. If the amount is more than 15 parts by mass, the surfactant may affect the performance of the resist underlayer film (decrease the performance of the resist underlayer film).
  • the pattern forming method of the present invention is a coating film forming step (hereinafter referred to as “step (1)”) in which the resist underlayer film forming composition of the present invention described above is applied onto a substrate to be processed to form a coating film. And a lower layer film forming step (hereinafter referred to as “step (2)”) that forms a resist lower layer film on the substrate to be processed by irradiating the formed coating film with radiation and curing the coating film.
  • step (3) a resist film forming step in which a resist composition is applied on the formed resist underlayer film and dried to form a resist film
  • step (4) An exposure step of exposing the resist coating by selectively irradiating the formed resist coating with radiation (hereinafter sometimes referred to as “step (4)”), and developing the exposed resist coating A resist pattern with A pattern forming step to be formed (hereinafter may be referred to as “step (5)”), and etching the resist underlayer film and the substrate to be processed by using the resist pattern as a mask, thereby forming the same pattern as the predetermined pattern on the substrate to be processed And an etching step (hereinafter, may be referred to as “step (6)”).
  • the step (1) and the step (2) are provided, the elastic modulus of the resist underlayer film to be formed is high, and defects such as pattern bending are effectively prevented. Therefore, a good pattern can be formed on the substrate to be processed.
  • Step (1) is a step of coating the resist underlayer film forming composition of the present invention on a substrate to be processed to form a coating film.
  • the substrate to be processed for example, a silicon wafer, a wafer coated with aluminum, or the like can be used.
  • the method for applying the resist underlayer film forming composition to the substrate to be processed is not particularly limited, and for example, it can be carried out by an appropriate method such as spin coating, cast coating, roll coating or the like.
  • step (2) is a step of forming a resist underlayer film on the substrate to be processed by irradiating the formed coating film with radiation and curing the coating film.
  • the radiation to be irradiated can be appropriately selected from, for example, visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, ⁇ -ray, molecular beam, ion beam and the like.
  • the film thickness of the resist underlayer film is usually 0.1 to 5 ⁇ m.
  • a step (1a) for forming an intermediate layer (intermediate coating) on the resist underlayer film may be further provided as necessary.
  • This intermediate layer is a layer provided with these functions in order to further supplement the functions of the resist underlayer film and / or the resist film in the formation of the resist pattern, or to obtain functions that they do not have.
  • the antireflection film is formed as an intermediate layer, the antireflection function of the resist underlayer film can be further supplemented.
  • This intermediate layer can be formed of an organic compound or an inorganic oxide.
  • organic compounds include materials marketed under the trade names such as “DUV-42”, “DUV-44”, “ARC-28”, and “ARC-29” manufactured by Brewer Science, and Rohm and Haas. Materials commercially available under trade names such as “AR-3” and “AR-19” manufactured by the company can be used.
  • the inorganic oxide for example, a coating type spin-on glass material manufactured by JSR, polysiloxane formed by a CVD method, titanium oxide, alumina oxide, tungsten oxide, or the like can be used.
  • the method for forming the intermediate layer is not particularly limited, and for example, a coating method, a CVD method, or the like can be used. Among these, a coating method is preferable. When the coating method is used, the intermediate layer can be formed continuously after forming the resist underlayer film.
  • the film thickness of the intermediate layer is not particularly limited, and is appropriately selected according to the function required for the intermediate layer, but is preferably in the range of 10 to 3000 nm, more preferably 20 to 300 nm.
  • step (3) is a step of forming a resist film by coating a resist composition on the formed resist underlayer film and drying it. Specifically, after a resist composition is applied so that the resulting resist film has a predetermined thickness, the solvent in the film is volatilized by pre-baking to form a resist film.
  • the resist composition examples include a positive or negative chemically amplified resist composition containing a photoacid generator, a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble resin and a crosslink And negative resist compositions composed of an agent.
  • the resist composition used when forming the resist film on the resist underlayer film has a solid content concentration of usually about 5 to 50% by mass, and is generally filtered through, for example, a filter having a pore diameter of about 0.2 ⁇ m. Then, it is used for formation of a resist film. In this step (step (3)), a commercially available resist composition can be used as it is.
  • the coating method of the resist composition is not particularly limited, and can be performed by, for example, a spin coating method.
  • the pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, but is usually about 30 to 200 ° C., preferably 50 to 150 ° C.
  • step (4) is a step of exposing the resist film by selectively irradiating the formed resist film with radiation.
  • the radiation used for the exposure is appropriate from visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, ⁇ rays, molecular beams, ion beams, etc., depending on the type of photoacid generator used in the resist composition.
  • far ultraviolet rays are preferable, and in particular, KrF excimer laser (248 nm), ArF excimer laser (193 nm), F 2 excimer laser (wavelength 157 nm), Kr 2 excimer laser (wavelength 147 nm), ArKr excimer laser (Wavelength 134 nm), extreme ultraviolet light (wavelength 13 nm, etc.) and the like are preferable.
  • step (5) is a step of developing the exposed resist film to form a resist pattern having a predetermined pattern.
  • the developer used in this step is appropriately selected depending on the type of resist composition used. Specifically, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol Amine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3. 0] -5-nonene and the like.
  • water-soluble organic solvents for example, alcohols such as methanol and ethanol, and surfactants can be added to these alkaline aqueous solutions in appropriate amounts.
  • the resist pattern is formed by washing and drying.
  • post-baking can be performed after the exposure before development in order to improve resolution, pattern profile, developability, and the like.
  • the post-baking temperature is appropriately adjusted according to the type of resist composition used, but is usually about 50 to 200 ° C., preferably 70 to 150 ° C.
  • step (6) is a step of forming the same pattern as the predetermined pattern on the substrate to be processed by etching the resist underlayer film and the substrate to be processed using the resist pattern as a mask.
  • dry etching include gas plasma such as oxygen plasma.
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) was determined by using Tosoh's GPC columns (G2000HXL: 2, G3000HXL: 1), flow rate: 1.0 ml / min, elution solvent: tetrahydrofuran, column temperature: 40 ° C. , And measured by a gel permeation chromatograph (detector: differential refractometer) using monodisperse polystyrene as a standard.
  • Example 1 A separable flask equipped with a thermometer was charged with 100 parts of isophthalaldehyde, 200 parts of isobutyl cyanoacetate, 1 part of piperidine, and 4000 parts of 4-methyl-2-pentanol under a nitrogen atmosphere and stirred at 60 ° C. And reacted for 1 hour to obtain a reaction solution. Thereafter, the reaction solution was allowed to stand for 1 day, and the precipitated solid was filtered and then washed with 4-methyl-2-pentanol to obtain a white solid. This white solid was a compound represented by the following formula (3).
  • a resist underlayer film forming composition (1) was applied on a silicon wafer having a diameter of 8 inches by spin coating to form a coating film.
  • the coating film on the wafer is cured by irradiating the coating film on the wafer with 300 mJ of light having an intensity of 20 mW / cm 2 by a small high-precision exposure apparatus for R & D manufactured by TOPCON, and an underlayer film having a film thickness of 0.3 ⁇ m is formed. Obtained.
  • an intermediate layer composition solution (trade name “NFC SOG080”, manufactured by JSR Corporation) for a three-layer resist process was spin-coated on this lower layer film. Then, it heated at 200 degreeC for 60 second on the hotplate.
  • the film was further heated at 300 ° C. for 60 seconds to form an intermediate layer film having a thickness of 0.05 ⁇ m on the lower layer film.
  • a resist composition was spin-coated on this intermediate layer coating, and pre-baked at 130 ° C. for 90 seconds on a hot plate to form a resist coating having a thickness of 0.2 ⁇ m.
  • resist composition one prepared as follows was used.
  • the obtained resin for a resist composition has each repeating unit derived from each of the monomers (a), (b) and (c), and the molar ratio of each of these repeating units is 64: 18:18. Moreover, the weight average molecular weight (Mw) was 27,000.
  • a mixed solvent mass ratio 7: 3 of propylene glycol monomethyl ether acetate and cyclohexanone was used.
  • the resist film was exposed through the mask pattern only for the optimal exposure time.
  • the exposed resist film was developed at 25 ° C. for 1 minute using a 2.38 mass% aqueous tetramethylammonium hydroxide solution. . Thereafter, it was washed with water and dried to obtain a resist film (resist film (resist pattern) on which a positive resist pattern was formed) formed to form a line-and-space pattern (1L / 1S) having a line width of 70 nm. .
  • Elastic modulus A resist underlayer film forming composition (1) was spin-coated on a silicon wafer having a diameter of 8 inches to form a coating film. Next, the coating film on the wafer is cured by irradiating the coating film on the wafer at 300 mJ with light having an intensity of 20 mW / cm 2 using a small high-precision exposure apparatus for R & D manufactured by TOPCON, and a resist having a film thickness of 0.3 ⁇ m. A lower layer film was obtained. Thereafter, the elastic modulus (GPa) of the lower layer film was measured by a nanoindenter method and evaluated. Evaluation criteria set the thing whose elasticity modulus was 10 GPa or more as the pass "G", and made the thing less than 10 GPa the rejection "N".
  • a resist underlayer film forming composition (1) was spin-coated on a silicon wafer having a diameter of 8 inches to form a coating film.
  • the coating film on the wafer is cured by irradiating the coating film on the wafer at 300 mJ with light having an intensity of 20 mW / cm 2 using a small high-precision exposure apparatus for R & D manufactured by TOPCON, and a resist having a film thickness of 0.3 ⁇ m.
  • a lower layer film was obtained.
  • the evaluation of the standing wave prevention effect is “A”
  • the evaluation result of the elastic modulus is “G”
  • the evaluation result of the etching resistance is “A”.
  • Example 2 A separable flask equipped with a thermometer was charged with 100 parts of cinnamic acid, 200 parts of sodium bicarbonate, 1 part of tetra-n-butylammonium chloride, and 4000 parts of N, N-dimethylformaldehyde under a nitrogen atmosphere and stirred.
  • the reaction solution was obtained by reacting at 110 ° C. for 40 hours. Thereafter, methanol was added to the obtained reaction solution to obtain a precipitate. The resulting precipitate was filtered to obtain a white solid.
  • This white solid was a compound represented by the following formula (4).
  • Example 2 The composition for forming a resist underlayer film of Example 2 was the same as Example 1 except that the compound represented by Formula (4) was used instead of the compound represented by Formula (3). 2) was obtained. About the obtained resist underlayer film forming composition (2), each said evaluation was performed like Example 1. FIG. The evaluation results are shown in Table 1.
  • Example 3 A composition for forming a resist underlayer film of Example 3 in the same manner as in Example 1 except that the compound represented by the following formula (5) was used instead of the compound represented by the above formula (3). (3) was obtained. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (3). The evaluation results are shown in Table 1.
  • Example 4 The composition for forming a resist underlayer film of Example 4 is the same as Example 1 except that the compound represented by the following formula (6) is used instead of the compound represented by the above formula (3). (4) was obtained. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (4). The evaluation results are shown in Table 1.
  • Example 5 The composition for forming a resist underlayer film of Example 5 is the same as Example 1 except that the compound represented by the following formula (7) is used instead of the compound represented by the above formula (3). (5) was obtained. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (5). The evaluation results are shown in Table 1.
  • a resist underlayer film forming composition (6) of Comparative Example 1 was obtained in the same manner as in Example 1 except that 10 parts of the polymer was used instead of the compound represented by the formula (3). It was.
  • Each evaluation was performed in the same manner as in Example 1 using the obtained resist underlayer film forming composition (6).
  • the evaluation results are shown in Table 1.
  • the resist underlayer film (thickness: 0.3 ⁇ m) is formed by forming a coating film on the substrate (silicon wafer having a diameter of 8 inches) with the resist underlayer film forming composition (6), and then applying this coating.
  • the substrate on which the film was formed was placed on a hot plate and heated at 300 ° C. for 120 seconds to form the substrate.
  • Comparative Example 2 instead of the compound represented by the formula (3), 10 parts of bis (4-glycidyloxyphenyl) methane (a compound represented by the following formula (8)) and 1 part of triphenylsulfonium trifluoromethanesulfonate were used. Except for this, a composition for forming a resist underlayer film (7) of Comparative Example 2 was obtained in the same manner as Example 1. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (7). The evaluation results are shown in Table 1.
  • the resist underlayer film forming compositions of Examples 1 to 5 had the same standing wave prevention effect as the resist underlayer film forming compositions of Comparative Examples 1 and 2, It was confirmed that a resist underlayer film having a high elastic modulus and etching resistance can be formed.
  • composition for forming a resist underlayer film of the present invention can be suitably used as a material for a resist underlayer film formed by a multilayer resist process in an integrated circuit element manufacturing method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A composition for forming a resist underlayer film, from which a resist underlayer film having excellent etching resistance and so on can be formed, comprising at least one member selected from the group consisting of photopolymerizable compounds represented by general formula (1) and general formula (2) together with a solvent. In general formulae (1) and (2), R11, R12 and R13 represent a hydrogen atom, etc.; R3 represents an n1-valent group derived from an aromatic compound; R4 represents a hydrogen atom, etc.; R5 represents a monovalent organic group derived from an aromatic compound; R6 represents an n2-valent organic group; X represents -COO-* [wherein * represents a bond binding to R6], etc.; n1 represents an integer of 2 to 4; and n2 represents an integer of 2 to 10.

Description

レジスト下層膜形成用組成物及びパターン形成方法Resist underlayer film forming composition and pattern forming method
 本発明は、レジスト下層膜形成用組成物及びパターン形成方法に関する。更に詳しくは、定在波防止効果を維持しつつ、弾性率、及びエッチング耐性が高いレジスト下層膜を形成することができるレジスト下層膜形成用組成物及びパターン形成方法に関する。 The present invention relates to a resist underlayer film forming composition and a pattern forming method. More specifically, the present invention relates to a resist underlayer film forming composition and a pattern forming method capable of forming a resist underlayer film having high elastic modulus and high etching resistance while maintaining a standing wave preventing effect.
 集積回路素子の製造方法においては、より高い集積度を得るために、多層レジストプロセスを用いる加工サイズの微細化が進んでいる。このプロセスにおいては、まず液状のレジスト下層膜形成用組成物を基板上に塗布してレジスト下層膜(以下、単に「下層膜」と記す場合がある)を形成した後、この下層膜上に液状のフォトレジスト組成物(レジスト組成物)を更に塗布してフォトレジスト膜(レジスト被膜)を形成する。次に、縮小投影露光装置(ステッパー)を用いてフォトレジスト膜を露光した後、現像することによってフォトレジストパターンを得る。その後、ドライエッチングによりフォトレジストパターンをレジスト下層膜に転写する。次に、フォトレジストパターンが転写されたレジスト下層膜のパターンを、ドライエッチングにより基板に転写することで所望のパターンが形成された基板を得ることができる。そして、レジスト下層膜を1種類用いる場合を2層レジストプロセスと呼び、2種類用いる場合を3層レジストプロセスと呼ぶことがある。 In an integrated circuit element manufacturing method, in order to obtain a higher degree of integration, the processing size using a multi-layer resist process is miniaturized. In this process, a liquid resist underlayer film forming composition is first applied on a substrate to form a resist underlayer film (hereinafter sometimes simply referred to as “underlayer film”), and then a liquid is formed on the underlayer film. The photoresist composition (resist composition) is further applied to form a photoresist film (resist film). Next, the photoresist film is exposed using a reduction projection exposure apparatus (stepper) and then developed to obtain a photoresist pattern. Thereafter, the photoresist pattern is transferred to the resist underlayer film by dry etching. Next, by transferring the pattern of the resist underlayer film to which the photoresist pattern has been transferred to the substrate by dry etching, a substrate on which a desired pattern is formed can be obtained. The case where one kind of resist underlayer film is used is called a two-layer resist process, and the case where two kinds of resist underlayer films are used is sometimes called a three-layer resist process.
 レジスト下層膜は、一般に、基板から反射した放射線を吸収する反射防止膜としての機能を有する。また、基板直上に形成されるレジスト下層膜は、炭素含有量の多い材料(レジスト下層膜形成用組成物)によって形成されることが多い。炭素含有量が多いと、基板加工時のエッチング耐性が向上し、より正確なパターン転写が可能となるためである。炭素含有量の多いレジスト下層膜形成用組成物としては、特に熱硬化フェノールノボラックを含有するものや、アセナフチレン骨格を有する重合体を含有するものが知られている(例えば、特許文献1及び2参照)。 The resist underlayer film generally has a function as an antireflection film that absorbs radiation reflected from the substrate. In addition, the resist underlayer film formed immediately above the substrate is often formed of a material having a high carbon content (composition for forming a resist underlayer film). This is because if the carbon content is high, the etching resistance during substrate processing is improved, and more accurate pattern transfer is possible. As a composition for forming a resist underlayer film having a high carbon content, those containing a thermosetting phenol novolak and those containing a polymer having an acenaphthylene skeleton are known (see, for example, Patent Documents 1 and 2). ).
 また、レジスト下層膜形成用組成物としては、熱硬化フェノールノボラックなどの樹脂を含有するものに代えて、光重合性の化合物を含有するものが知られている(例えば、特許文献3参照)。 Further, as a composition for forming a resist underlayer film, a composition containing a photopolymerizable compound is known instead of a composition containing a resin such as thermosetting phenol novolak (see, for example, Patent Document 3).
特開2000-143937号公報JP 2000-143937 A 特開2001-40293号公報JP 2001-40293 A 国際公開第2006/115044号パンフレットInternational Publication No. 2006/115044 Pamphlet
 しかしながら、特許文献1及び2に記載のレジスト下層膜形成用組成物は、レジスト下層膜から基板へエッチングによりパターンを転写する際に下層膜パターンが曲がるなどの不具合が生じ、パターンを基板に良好に転写することできなくなるという問題があった。特に、最近では集積回路素子の微細化が進んでいるため、熱に起因する下層膜パターンの曲がりなどにより不具合が問題になっている。ここで、下層膜パターンが曲がることの原因としては、樹脂同士の架橋が十分でないため、レジスト下層膜の弾性率が不足していることが考えられる。 However, the resist underlayer film forming compositions described in Patent Documents 1 and 2 have problems such as bending of the underlayer film pattern when the pattern is transferred from the resist underlayer film to the substrate by etching, and the pattern is satisfactorily applied to the substrate. There was a problem that it was impossible to transfer. Particularly, since the miniaturization of integrated circuit elements has recently been advanced, problems such as bending of a lower layer film pattern caused by heat have become a problem. Here, the cause of the bending of the lower layer film pattern is considered to be that the elastic modulus of the resist lower layer film is insufficient because the resins are not sufficiently crosslinked.
 また、特許文献3に記載のレジスト下層膜形成用組成物は、光重合性の化合物を含有しているが、エッチング耐性の低い材料を得ることを目的としており、本発明のレジスト下層膜とは異なる用途の材料を開示している。 The resist underlayer film forming composition described in Patent Document 3 contains a photopolymerizable compound, but is intended to obtain a material having low etching resistance. What is the resist underlayer film of the present invention? Disclose materials for different applications.
 本発明は、上述のような従来技術の課題を解決するためになされたものであり、定在波防止効果を維持しつつ、弾性率及びエッチング耐性が高いレジスト下層膜を形成することができるレジスト下層膜形成用組成物及びパターン形成方法を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and is capable of forming a resist underlayer film having a high elastic modulus and high etching resistance while maintaining a standing wave prevention effect. It aims at providing the composition for lower layer film formation, and the pattern formation method.
 本発明者らは前記課題を達成すべく鋭意検討した結果、特定の構造を有する化合物を光重合させて架橋構造を形成させることによって、前記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be achieved by photopolymerizing a compound having a specific structure to form a crosslinked structure. The invention has been completed.
 本発明により、以下のレジスト下層膜形成用組成物及びパターン形成方法が提供される。 The present invention provides the following resist underlayer film forming composition and pattern forming method.
[1](A)下記一般式(1)で表される光重合性化合物及び下記一般式(2)で表される光重合性化合物からなる群より選択される少なくとも1種の光重合性化合物と、(B)溶剤と、を含有するレジスト下層膜形成用組成物。 [1] (A) At least one photopolymerizable compound selected from the group consisting of a photopolymerizable compound represented by the following general formula (1) and a photopolymerizable compound represented by the following general formula (2) And (B) a resist underlayer film forming composition containing a solvent.
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、R11~R13は、相互に独立に、芳香族化合物から誘導される1価の基、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、ニトロ基、シアノ基、-COR、-COORまたは-CON(Rを示す(但し、-COR、-COOR、及び-CON(R中、Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい)。但し、R11~R13のいずれか一つは芳香族化合物から誘導される1価の基、ニトロ基、シアノ基、-COR、-COORまたは-CON(Rである。Rは、置換基を有していてもよい、芳香族化合物から誘導されるn1価の有機基を示す。n1は2~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000007
(In the general formula (1), R 11 to R 13 are each independently a monovalent group derived from an aromatic compound, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 3 to 20 carbon atoms. cycloalkyl group, a nitro group, a cyano group, -COR 2, shows a -COOR 2 or -CON (R 2) 2 (where, -COR 2, -COOR 2, and -CON (R 2) in 2, R 2 Each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, and having a substituent. Provided that any one of R 11 to R 13 is a monovalent group derived from an aromatic compound, a nitro group, a cyano group, —COR 2 , —COOR 2 or —CON (R 2 ) is a 2 .R 3 may have a substituent, .n1 showing the n1 valent organic radical derived from aromatic compounds is an integer of 2-4.)
Figure JPOXMLDOC01-appb-C000008
(一般式(2)中、Rは、相互に独立に、芳香族化合物から誘導される1価の有機基、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、ニトロ基、シアノ基、-COR、-COORまたは-CON(Rを示す(但し、-COR、-COORまたは-CON(R中、Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい)。Rは、置換基を有していてもよい、芳香族化合物から誘導される1価の有機基を示す。Rは、n2価の有機基を示す。Xは、-COO-*または-CONH-*を示す(「*」はRに結合する結合手を示す)。n2は2~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (2), R 4 is independently of each other a monovalent organic group derived from an aromatic compound, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms. group, a nitro group, a cyano group, -COR 7, showing a -COOR 7 or -CON (R 7) 2 (where, -COR 7, in -COOR 7 or -CON (R 7) 2, R 7 are mutually And independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, and may have a substituent. R 5 represents a monovalent organic group derived from an aromatic compound which may have a substituent, R 6 represents an n2-valent organic group, and X represents —COO—. * or -CONH- * the show ( "*" represents a bond that binds to R 6). 2 is an integer of 2-10.)
[2]前記一般式(1)で表される光重合性化合物が、下記一般式(1-1)で表される化合物であり、前記一般式(2)で表される光重合性化合物が、下記一般式(2-1)で表される化合物である前記[1]に記載のレジスト下層膜形成用組成物。 [2] The photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-1), and the photopolymerizable compound represented by the general formula (2) is The composition for forming a resist underlayer film according to the above [1], which is a compound represented by the following general formula (2-1).
Figure JPOXMLDOC01-appb-C000009
(一般式(1-1)中、Rは、相互に独立に、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。Rは、置換基を有していてもよい、芳香族化合物から誘導されるn1価の有機基を示す。n1は2~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000009
(In general formula (1-1), R 1 independently represents a hydrogen atom or a cyano group. R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups, or monovalent organic groups derived from aromatic compounds, which may have a substituent, R 3 may have a substituent, an aromatic group An n1-valent organic group derived from a compound, where n1 is an integer of 2 to 4.)
Figure JPOXMLDOC01-appb-C000010
(一般式(2-1)中、R41は、相互に独立に、水素原子またはシアノ基を示す。Rは、n2価の炭化水素基を示す。n2は2~10の整数を示す。Rは置換基を示す。nは0~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (2-1), R 41 independently represents a hydrogen atom or a cyano group, R 6 represents an n2 valent hydrocarbon group, and n2 represents an integer of 2 to 10. R P is .n p indicating a substituent is an integer of 0-5.)
[3]前記一般式(1)で表される光重合性化合物が、下記一般式(1-11)で表される化合物である前記[1]または[2]に記載のレジスト下層膜形成用組成物。 [3] For forming a resist underlayer film according to [1] or [2], wherein the photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-11): Composition.
Figure JPOXMLDOC01-appb-C000011
(一般式(1-11)中、Rは、相互に独立に、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。n1は2~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000011
(In General Formula (1-11), R 1 independently represents a hydrogen atom or a cyano group. R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups or monovalent organic groups derived from aromatic compounds, which may have a substituent, n1 represents an integer of 2 to 4.
[4]前記一般式(1)で表される光重合性化合物が、下記一般式(1-111)で表される化合物である前記[1]~[3]のいずれかに記載のレジスト下層膜形成用組成物。 [4] The resist underlayer according to any one of [1] to [3], wherein the photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-111): Film forming composition.
Figure JPOXMLDOC01-appb-C000012
(一般式(1-111)中、Rは、相互に独立に、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。)
Figure JPOXMLDOC01-appb-C000012
(In General Formula (1-111), R 1 independently represents a hydrogen atom or a cyano group. R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups or a monovalent organic group derived from an aromatic compound, which may have a substituent)
[5]前記[1]~[4]のいずれかに記載のレジスト下層膜形成用組成物を被加工基板上に塗工して塗膜を形成する塗膜形成工程と、形成された前記塗膜に放射線を照射し、前記塗膜を硬化させることによって前記被加工基板上にレジスト下層膜を形成する下層膜形成工程と、前記レジスト下層膜上にレジスト組成物を塗工し乾燥させてレジスト被膜を形成するレジスト被膜形成工程と、前記レジスト被膜に、放射線を選択的に照射して前記レジスト被膜を露光する露光工程と、露光された前記レジスト被膜を現像して所定のパターンを有するレジストパターンを形成するパターン形成工程と、前記レジストパターンをマスクとして前記レジスト下層膜及び前記被加工基板をエッチングすることによって前記被加工基板に前記所定のパターンと同じパターンを形成するエッチング工程と、を備えるパターン形成方法。 [5] A coating film forming step of coating the composition for forming a resist underlayer film according to any one of [1] to [4] on a substrate to be processed to form a coating film, and the formed coating film An underlayer film forming step of forming a resist underlayer film on the substrate to be processed by irradiating the film with radiation and curing the coating film; and applying a resist composition on the resist underlayer film and drying the resist composition A resist film forming process for forming a film; an exposure process for selectively irradiating the resist film with radiation to expose the resist film; and a resist pattern having a predetermined pattern by developing the exposed resist film Forming a predetermined pattern on the substrate to be processed by etching the resist underlayer film and the substrate to be processed using the resist pattern as a mask. Pattern forming method and a etching process for forming the same pattern as.
 本発明のレジスト下層膜形成用組成物は、一般式(1)で表される光重合性化合物及び一般式(2)で表される光重合性化合物からなる群より選択される少なくとも1種の光重合性化合物を含有するため、光が照射されたときに、これらの化合物が重合反応を起こして形成される架橋構造が強固なものになり、定在波防止効果を維持しつつ、弾性率、及びエッチング耐性が高いレジスト下層膜を形成することができる。 The resist underlayer film forming composition of the present invention is at least one selected from the group consisting of a photopolymerizable compound represented by the general formula (1) and a photopolymerizable compound represented by the general formula (2). Since it contains a photopolymerizable compound, when irradiated with light, the cross-linking structure formed by the polymerization reaction of these compounds becomes strong, and the elastic modulus is maintained while maintaining the standing wave prevention effect. In addition, a resist underlayer film having high etching resistance can be formed.
 本発明のパターン形成方法によれば、レジスト下層膜形成用組成物を被加工基板上に塗工して塗膜を形成する塗膜形成工程と、形成された塗膜に放射線を照射し、塗膜を硬化させることによって被加工基板上にレジスト下層膜を形成する下層膜形成工程とを備えるため、形成されるレジスト下層膜の弾性率が高く、パターン曲がりなどの欠陥が効果的に防止される。そのため、被加工基板に良好なパターンを形成することができる。 According to the pattern forming method of the present invention, a resist underlayer film forming composition is applied on a substrate to be processed to form a coating film, and the formed coating film is irradiated with radiation to be applied. And a lower layer film forming step of forming a resist lower layer film on a substrate to be processed by curing the film, so that the resist lower layer film to be formed has a high elastic modulus and effectively prevents defects such as pattern bending. . Therefore, a good pattern can be formed on the substrate to be processed.
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。 Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to the following embodiment. That is, it is understood that modifications and improvements as appropriate to the following embodiments are also within the scope of the present invention based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.
 本明細書において「置換基」とは、特に限定されるものではないが、例えば、-RS1、-RS2-O-RS1、-RS2-CO-RS1、-RS2-CO-ORS1、-RS2-O-CO-RS1、-RS2-OH、-RS2-COOH、-RS2-CN、-RS2-NH、-RS2-NRS1 などを挙げることができる。但し、RS1は、相互に独立に、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基または炭素数6~30のアリール基を示し、これらの基の有する水素原子の一部または全部がフッ素原子で置換されていてもよい。RS2は、相互に独立に、単結合、炭素数1~10のアルカンジイル基、炭素数3~20のシクロアルカンジイル基、炭素数6~30のアリーレン基、または、これらの基の有する水素原子の一部または全部がフッ素原子で置換された基を示す。また、「置換基を有する」とは、前記置換基を1種単独で1つ以上有すること、または、前記置換基のうち複数種を各1つ以上有することを示す。 In the present specification, the “substituent” is not particularly limited. For example, —R S1 , —R S2 —O—R S1 , —R S2 —CO—R S1 , —R S2 —CO— OR S1 , —R S2 —O—CO—R S1 , —R S2 —OH, —R S2 —COOH, —R S2 —CN, —R S2 —NH 2 , —R S2 —NR S1 2 etc. Can do. R S1 independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 30 carbon atoms, and one of hydrogen atoms contained in these groups. Part or all may be substituted with a fluorine atom. R S2 is independently of each other a single bond, an alkanediyl group having 1 to 10 carbon atoms, a cycloalkanediyl group having 3 to 20 carbon atoms, an arylene group having 6 to 30 carbon atoms, or hydrogen contained in these groups A group in which some or all of the atoms are substituted with fluorine atoms. Further, “having a substituent” means having one or more of the above substituents alone, or having one or more of each of the above substituents.
[1]レジスト下層膜形成用組成物:
 本発明のレジスト下層膜形成用組成物は、(A)前記一般式(1)で表される光重合性化合物及び前記一般式(2)で表される光重合性化合物からなる群より選択される少なくとも1種の光重合性化合物と、(B)溶剤と、を含有するものである。このレジスト下層膜形成用組成物は、前記(A)光重合性化合物を含有するため、光が照射されたときに、これらの化合物が重合反応を起こして形成される架橋構造が強固なものになり、定在波防止効果を維持しつつ、弾性率、及びエッチング耐性が高い。従って、このようなレジスト下層膜形成用組成物によれば、パターン曲がりが生じ難いレジスト下層膜を形成することができる。
[1] Composition for forming a resist underlayer film:
The resist underlayer film forming composition of the present invention is selected from the group consisting of (A) a photopolymerizable compound represented by the general formula (1) and a photopolymerizable compound represented by the general formula (2). Containing at least one photopolymerizable compound and (B) a solvent. Since this resist underlayer film forming composition contains the photopolymerizable compound (A), when the compound is irradiated with light, the cross-linked structure formed by the polymerization reaction of these compounds is strong. Thus, the elastic modulus and etching resistance are high while maintaining the standing wave preventing effect. Therefore, according to such a composition for forming a resist underlayer film, it is possible to form a resist underlayer film that hardly causes pattern bending.
[1-1](A)光重合性化合物:
 前記一般式(1)で表される光重合性化合物と一般式(2)で表される光重合性化合物は、それぞれ、光が照射されることにより炭素-炭素二重結合が他の炭素-炭素二重結合と結合の組み換えを起こしてシクロブタン環を形成する化合物である。即ち、前記(A)光重合性化合物を含有することにより、レジスト下層膜(本発明のレジスト下層膜形成用組成物により形成された塗膜中)において、(A)光重合性化合物が二つの炭素-炭素結合で強固に架橋されて架橋構造を形成することになる。従って、このような化合物((A)光重合性化合物)を用いることによって、硬いレジスト下層膜を形成することが可能になる。ここで、従来のレジスト下層形成用組成物は、架橋剤などを用いることによりレジスト下層膜中に架橋構造を形成したいたが、この架橋構造は単結合によるものであるため、結合の強さが十分でなかった(結合力が十分ではなかった)。そのため、エッチング時にパターンが曲がってしまうこと(いわゆるパターン曲がりが生じること)があった。一方、前記(A)光重合性化合物によって形成された架橋構造は、単結合によるものに比べて結合力が強いために、硬いレジスト下層膜が得られ、エッチング時にパターンが曲がらないと考えられる。
[1-1] (A) Photopolymerizable compound:
In the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2), the carbon-carbon double bond is converted to another carbon- by irradiation with light. It is a compound that undergoes recombination of carbon double bond and bond to form a cyclobutane ring. That is, by containing the (A) photopolymerizable compound, in the resist underlayer film (in the coating film formed by the resist underlayer film forming composition of the present invention), (A) two photopolymerizable compounds are contained. It is strongly cross-linked by a carbon-carbon bond to form a cross-linked structure. Therefore, a hard resist underlayer film can be formed by using such a compound ((A) photopolymerizable compound). Here, the conventional resist underlayer forming composition forms a crosslinked structure in the resist underlayer film by using a crosslinking agent or the like, but since this crosslinked structure is due to a single bond, the strength of the bond is low. Not enough (bonding strength was not enough). Therefore, the pattern may be bent during etching (so-called pattern bending may occur). On the other hand, since the cross-linked structure formed by the photopolymerizable compound (A) has a stronger bonding force than that of a single bond, it is considered that a hard resist underlayer film is obtained and the pattern does not bend during etching.
 一般式(1)中、R11~R13として表される、芳香族化合物から誘導される1価の基としては、炭素数6~10の芳香族炭化水素から水素原子を1つ除いた基を挙げることができる。前記芳香族炭化水素としては、例えば、ベンゼン、ナフタレン等の芳香族炭化水素;ピロール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドール等の含窒素芳香族炭化水素;フラン等の含酸素芳香族炭化水素;チオフェン等の含硫黄芳香族炭化水素が挙げられる。これらの中でも、エッチング耐性が高いため、ベンゼン、ナフタレン、ピリジン由来の基が好ましい。また、前記芳香族化合物から誘導される1価の基は置換基を有していてもよい。 In the general formula (1), the monovalent group derived from an aromatic compound represented by R 11 to R 13 is a group obtained by removing one hydrogen atom from an aromatic hydrocarbon having 6 to 10 carbon atoms. Can be mentioned. Examples of the aromatic hydrocarbon include aromatic hydrocarbons such as benzene and naphthalene; nitrogen-containing aromatic hydrocarbons such as pyrrole, pyridine, pyrazine, pyrimidine, pyridazine, triazine and indole; and oxygen-containing aromatic carbons such as furan. Hydrogen: Sulfur-containing aromatic hydrocarbons such as thiophene. Among these, a group derived from benzene, naphthalene, and pyridine is preferable because of high etching resistance. The monovalent group derived from the aromatic compound may have a substituent.
 一般式(1)中、R11~R13として表される炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基などの直鎖アルキル基、イソプロピル基、イソブチル基、t-ブチル基、ネオペンチル基、2-エチルヘキシル基などの分岐アルキル基を挙げることができる。これらの中でも、メチル基、エチル基、i-プロピル基、i-ブチル基が好ましい。また、前記アルキル基は置換基を有していてもよい。 In the general formula (1), the alkyl group having 1 to 10 carbon atoms represented by R 11 to R 13 is methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n- Linear alkyl groups such as hexyl group, n-octyl group, n-dodecyl group, n-tetradecyl group and n-octadecyl group, branching such as isopropyl group, isobutyl group, t-butyl group, neopentyl group and 2-ethylhexyl group An alkyl group can be mentioned. Among these, a methyl group, an ethyl group, an i-propyl group, and an i-butyl group are preferable. The alkyl group may have a substituent.
 一般式(1)中、R11~R13として表される炭素数3~20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の単環のシクロアルキル基;トリシクロデカニル基、テトラシクロドデシル基、ノルボルニル基、アダマンチル基等の多環のシクロアルキル基を挙げることができる。前記シクロアルキル基は、置換基を有していてもよい。 In the general formula (1), the cycloalkyl group having 3 to 20 carbon atoms represented by R 11 to R 13 is a monocyclic cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, or a cyclooctyl group. An alkyl group; and a polycyclic cycloalkyl group such as a tricyclodecanyl group, a tetracyclododecyl group, a norbornyl group, and an adamantyl group. The cycloalkyl group may have a substituent.
 -COR、-COOR、-CON(RにおけるRとしては、上述したように、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基である。これらの中でも、水素原子、メチル基、エチル基、i-プロピル基、i-ブチル基、フェニル基、ピリジル基が好ましい。 -COR 2, R 2 is preferably in the -COOR 2, -CON (R 2) 2, as described above, independently of one another, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, cycloalkyl of 3 to 20 carbon atoms An alkyl group or a monovalent organic group derived from an aromatic compound. Among these, a hydrogen atom, a methyl group, an ethyl group, an i-propyl group, an i-butyl group, a phenyl group, and a pyridyl group are preferable.
 一般式(1)中、「-CR11=CR1213」で表される基としては、例えば、下記一般式(a)~(n)で表される基などを挙げることができる。なお、下記一般式(a)~(n)中、R21は、相互に独立に、水素原子、炭素数1~10のアルキル基または炭素数3~20のシクロアルキル基を示す。R14は、置換基を有していてもよい、芳香族化合物から誘導される1価の基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基である。また、波線は、結合の向きが不特定であることを示す。 In the general formula (1), examples of the group represented by “—CR 11 ═CR 12 R 13 ” include groups represented by the following general formulas (a) to (n). In the following general formulas (a) to (n), R 21 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms. R 14 represents a monovalent group derived from an aromatic compound which may have a substituent. R 2 is each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound. A wavy line indicates that the direction of coupling is unspecified.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 前記一般式(a)~(n)中、R14としては、R11~R13として表される、芳香族化合物から誘導される1価の基と同様の芳香族化合物から誘導される1価の基を例示することができ、この芳香族化合物から誘導される1価の基は置換基を有していてもよい。これらの芳香族化合物から誘導される1価の基の中でも、エッチング耐性が高いレジスト下層膜を形成することが可能であるため、ベンゼン、ナフタレン、ピリジン由来の基が好ましい。 In the general formulas (a) to (n), R 14 is a monovalent group derived from an aromatic compound similar to the monovalent group represented by R 11 to R 13 derived from an aromatic compound. The monovalent group derived from this aromatic compound may have a substituent. Among monovalent groups derived from these aromatic compounds, groups derived from benzene, naphthalene, and pyridine are preferable because a resist underlayer film having high etching resistance can be formed.
 前記一般式(a)~(n)中、R21として表される炭素数1~10のアルキル基または炭素数3~20のシクロアルキル基としては、前記Rとして表される炭素数1~10のアルキル基または炭素数3~20のシクロアルキル基と同様のものを例示することができる。これらの中でも、原料の入手が容易である等の観点から、下記一般式(a-1)で表される基が好ましい。 In the general formula (a) ~ (n), the cycloalkyl group of the alkyl group or 3 to 20 carbon atoms having 1 to 10 carbon atoms represented as R 21, 1 carbon atoms represented as the R 2 ~ Examples thereof are the same as 10 alkyl groups or cycloalkyl groups having 3 to 20 carbon atoms. Among these, a group represented by the following general formula (a-1) is preferable from the viewpoint of easy availability of raw materials.
Figure JPOXMLDOC01-appb-C000014
(一般式(a-1)中、Rは、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基である。)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (a-1), R 1 represents a hydrogen atom or a cyano group. R 2 independently of each other represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cyclohexane having 3 to 20 carbon atoms. (It is a monovalent organic group derived from an alkyl group or an aromatic compound.)
 一般式(1)中、Rで表される芳香族化合物由来のn1価の有機基としては、炭素数6~10の芳香族炭化水素から(n1)個の水素原子を除いた基などを挙げることができる。前記芳香族炭化水素としては、例えば、ベンゼン、ナフタレン等の芳香族炭化水素;ピロール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドール等の含窒素芳香族炭化水素;フラン等の含酸素芳香族炭化水素;チオフェン等の含硫黄芳香族炭化水素が挙げられる。これらの中でも、エッチング耐性が高いレジスト下層膜を形成することができるため、ベンゼン、ナフタレン、ピリジン由来の基が好ましい。また、Rは、置換基を有していてもよい。 In the general formula (1), the n1-valent organic group derived from the aromatic compound represented by R 3 includes a group obtained by removing (n1) hydrogen atoms from an aromatic hydrocarbon having 6 to 10 carbon atoms. Can be mentioned. Examples of the aromatic hydrocarbon include aromatic hydrocarbons such as benzene and naphthalene; nitrogen-containing aromatic hydrocarbons such as pyrrole, pyridine, pyrazine, pyrimidine, pyridazine, triazine and indole; and oxygen-containing aromatic carbons such as furan. Hydrogen: Sulfur-containing aromatic hydrocarbons such as thiophene. Among these, since a resist underlayer film having high etching resistance can be formed, a group derived from benzene, naphthalene, and pyridine is preferable. R 3 may have a substituent.
 一般式(1)においてn1は、2または3であることが好ましく、2であることが更に好ましい。 In the general formula (1), n1 is preferably 2 or 3, and more preferably 2.
 なお、一般式(1-1)で表わされる化合物は、前記一般式(1)中の「-CR11=CR1213」で表される基が前記一般式(a-1)で表される基であるものである。また、一般式(1-11)で表わされる化合物は、一般式(1-1)においてRがベンゼン由来の2価の基である場合の化合物である。更に、一般式(1-111)で表される化合物は、一般式(1-11)においてn1が2である場合の化合物である。 In the compound represented by the general formula (1-1), the group represented by “—CR 11 = CR 12 R 13 ” in the general formula (1) is represented by the general formula (a-1). It is a group. Further, the compound represented by the general formula (1-11) is a compound in the case where R 3 is a benzene-derived divalent group in the general formula (1-1). Further, the compound represented by the general formula (1-111) is a compound in the case where n1 is 2 in the general formula (1-11).
 一般式(1)で表される光重合性化合物としては、具体的には、以下に示す化合物などを挙げることができる。 Specific examples of the photopolymerizable compound represented by the general formula (1) include the following compounds.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(1-111)で表される光重合性化合物としては、具体的には、以下に示す化合物などを挙げることができる。 Specific examples of the photopolymerizable compound represented by the general formula (1-111) include the following compounds.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 前記化合物の中でも、光照射することによって容易に架橋が進み(架橋構造が形成され)、架橋密度が高くなるため、下記化合物が好ましい。 Among the above compounds, the following compounds are preferred because crosslinking proceeds easily (a crosslinked structure is formed) and the crosslinking density is increased by light irradiation.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(1)で表される光重合性化合物は、例えば、ホルミル基を複数有する芳香環とシアノ酢酸エステル類を塩基存在下で縮合することによって得ることができる。 The photopolymerizable compound represented by the general formula (1) can be obtained, for example, by condensing an aromatic ring having a plurality of formyl groups and cyanoacetic acid esters in the presence of a base.
 一般式(2)中、Rで表される芳香族化合物に誘導される1価の有機基としては、R11~R13として表される、芳香族化合物から誘導される1価の基と同様の芳香族化合物から誘導される1価の基を例示することができ、この芳香族化合物から誘導される1価の基は置換基を有していてもよい。これらの中でも、エッチング耐性が高くなることから、ベンゼン、ピリジンに由来の基であることが好ましい。 In the general formula (2), the monovalent organic group derived from the aromatic compound represented by R 5 includes a monovalent group represented by R 11 to R 13 and derived from the aromatic compound. A monovalent group derived from the same aromatic compound can be exemplified, and the monovalent group derived from this aromatic compound may have a substituent. Among these, a group derived from benzene and pyridine is preferable because of high etching resistance.
 一般式(2)中、Rで表される、芳香族化合物から誘導される1価の有機基、炭素数1~10のアルキル基、及び、炭素数3~20のシクロアルキル基としては、一般式(1)中のR11~R13として表される、芳香族化合物から誘導される1価の基、炭素数1~10のアルキル基、及び、炭素数3~20のシクロアルキル基と同様のものを例示することができる。 In the general formula (2), a monovalent organic group derived from an aromatic compound represented by R 4 , an alkyl group having 1 to 10 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms are A monovalent group derived from an aromatic compound represented by R 11 to R 13 in the general formula (1), an alkyl group having 1 to 10 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms; The same thing can be illustrated.
 一般式(2)中、「-X-CR=CR」で表される基としては、例えば、下記一般式(o)~(z)で表される基などを挙げることができる。なお、下記一般式(o)~(z)中、R21は、相互に独立に、水素原子、炭素数1~10のアルキル基または炭素数3~20のシクロアルキル基を示す。Rは、置換基を有していてもよい、芳香族化合物から誘導される1価の有機基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。また、波線は、結合の向きが不特定であることを示す。 In the general formula (2), examples of the group represented by “—X—CR 4 ═CR 4 R 5 ” include groups represented by the following general formulas (o) to (z). . In the following general formulas (o) to (z), R 21 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms. R 5 represents a monovalent organic group derived from an aromatic compound which may have a substituent. R 8 independently of one another represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, You may have. A wavy line indicates that the direction of coupling is unspecified.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記化合物の中でも、原料の入手が容易である等の観点から下記一般式(o-1)で表される基が好ましい。 Among the above compounds, a group represented by the following general formula (o-1) is preferable from the viewpoint of easy availability of raw materials.
Figure JPOXMLDOC01-appb-C000027
(一般式(o-1)中、R41は、水素原子またはシアノ基を示す。Rは置換基を示す。nは0~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000027
(In the general formula (o-1), R 41 represents a hydrogen atom or a cyano group. R p represents a substituent. N p represents an integer of 0 to 5.)
 一般式(2)中、Rで表されるn2価の有機基としては、n2価の炭化水素基を挙げることができる。このような炭化水素基としては、例えば、メタン、エタン、n-プロピル基、n-ブタン、n-ペンタン、n-ヘキサン、n-オクタン、n-ドデカン、n-テトラデカン、n-オクタデカンなどの直鎖状アルカン;イソプロパン、イソブタン、t-ブタン、ネオペンタン、2-エチルヘキサンなどの分岐状アルカン等の鎖状炭化水素、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキシル基、シクロオクタン等の単環のシクロアルカン;トリシクロデカン、テトラシクロドデカン、ノルボルネン、アダマンタン等の多環のシクロアルカン等の環状炭化水素からn2個の水素原子を除いた基を挙げることができる。 In the general formula (2), examples of the n2-valent organic group represented by R 6 include n2-valent hydrocarbon groups. Examples of such hydrocarbon groups include methane, ethane, n-propyl group, n-butane, n-pentane, n-hexane, n-octane, n-dodecane, n-tetradecane, and n-octadecane. Chain alkanes: Chain hydrocarbons such as branched alkanes such as isopropane, isobutane, t-butane, neopentane, 2-ethylhexane, etc., monocyclic cyclohexane such as cyclopropane, cyclobutane, cyclopentane, cyclohexyl group, cyclooctane, etc. An alkane; a group in which n2 hydrogen atoms are removed from a cyclic hydrocarbon such as polycyclocycloalkane such as tricyclodecane, tetracyclododecane, norbornene, adamantane and the like.
 一般式(2)中のn2は、2~8であることが好ましく、2~6であることが特に好ましい。 N2 in the general formula (2) is preferably 2 to 8, and particularly preferably 2 to 6.
 なお、一般式(2-1)で表わされる化合物は、前記一般式(2)中の「-X-CR=CR」で表される基が前記一般式(o-1)で表される基である場合である。 In the compound represented by the general formula (2-1), the group represented by “—X—CR 4 ═CR 4 R 5 ” in the general formula (2) is represented by the general formula (o-1). This is the case when the group is represented.
 一般式(2)で表される光重合性化合物としては、具体的には、以下に示す式(B-1)~(B-5)で表される化合物などを挙げることができる。これらの中でも、エッチング耐性が高いレジスト下層膜を形成することができるため、式(B-5)で表される化合物が好ましい。 Specific examples of the photopolymerizable compound represented by the general formula (2) include compounds represented by the following formulas (B-1) to (B-5). Among these, a compound represented by the formula (B-5) is preferable because a resist underlayer film having high etching resistance can be formed.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 一般式(2)で表される光重合性化合物は、例えば、塩基存在下、ケイ皮酸と炭素源(例えば、ジメチルホルムアミドや臭化アルキル)を反応させることによって得ることができる。 The photopolymerizable compound represented by the general formula (2) can be obtained, for example, by reacting cinnamic acid with a carbon source (for example, dimethylformamide or alkyl bromide) in the presence of a base.
 なお、本発明のレジスト下層膜形成用組成物は、前記一般式(1)で表される光重合性化合物、及び、前記一般式(2)で表される光重合性化合物を、それぞれ単独で含有していてもよいし、前記一般式(1)で表される光重合性化合物、及び、前記一般式(2)で表される光重合性化合物の両方を含有していてもよいが、前記一般式(1)で表される光重合性化合物を単独で含有していることが好ましい。一般式(1)で表される光重合性化合物は、その光架橋性部位が芳香環で連結されているのでエッチング耐性が高いレジスト下層膜を形成することができるためである。 In addition, the composition for resist underlayer film formation of this invention is the photopolymerizable compound represented by the said General formula (1), and the photopolymerizable compound represented by the said General formula (2), respectively. It may contain, may contain both the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2), It is preferable that the photopolymerizable compound represented by the general formula (1) is contained alone. This is because the photopolymerizable compound represented by the general formula (1) can form a resist underlayer film having high etching resistance because the photocrosslinkable sites are connected by an aromatic ring.
[1-2](B)溶剤:
 (B)溶剤は、含有される(A)光重合性化合物を溶解し得るものであれば特に限定されるものでない。(B)溶剤としては、具体的には、塗布性の高いプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、酢酸n-ブチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、γ-ブチロラクトン、シクロヘキサノンなどを挙げることができる。
[1-2] (B) Solvent:
(B) A solvent will not be specifically limited if it can dissolve the (A) photopolymerizable compound contained. Specific examples of the solvent (B) include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, n-butyl acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate having high coatability, -Heptanone, γ-butyrolactone, cyclohexanone and the like.
 (B)溶剤の含有量は、一般式(1)で表される光重合性化合物及び一般式(2)で表される光重合性化合物の総量100質量部に対して、5~80質量部であることが好ましく、5~40質量部であることが更に好ましく、8~30質量部であることが特に好ましい。前記含有量が前記範囲内であると、(A)光重合性化合物を良好に溶解することができ、また、形成されるレジスト下層膜の膜厚が薄すぎることに起因してストリエーションが起こるおそれも少ない点で好ましい。 (B) The content of the solvent is 5 to 80 parts by mass with respect to 100 parts by mass of the total amount of the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2). Preferably, the amount is 5 to 40 parts by weight, more preferably 8 to 30 parts by weight. When the content is within the above range, (A) the photopolymerizable compound can be dissolved satisfactorily, and striation occurs due to the film thickness of the resist underlayer film formed being too thin. It is preferable in that there is little fear.
[1-3]添加剤:
 本発明のレジスト下層膜形成用組成物は、(A)光重合性化合物及び(B)溶剤以外に、添加剤を更に含有していてもよい。添加剤としては、例えば、バインダー樹脂、放射線吸収剤、界面活性剤、保存安定剤、消泡剤、接着助剤等が挙げられる。
[1-3] Additive:
The composition for forming a resist underlayer film of the present invention may further contain an additive in addition to (A) the photopolymerizable compound and (B) the solvent. Examples of the additive include a binder resin, a radiation absorber, a surfactant, a storage stabilizer, an antifoaming agent, and an adhesion assistant.
 バインダー樹脂としては、種々の熱可塑性樹脂や熱硬化性樹脂を挙げることができる。熱可塑性樹脂は、添加した熱可塑性樹脂の流動性や機械的特性等を下層膜に付与する作用を有する成分である。また、熱硬化性樹脂は、加熱により硬化して溶剤に不溶となり、得られるレジスト下層膜と、その上に形成されるレジスト被膜との間のインターミキシングを防止する作用を有する成分であり、バインダー樹脂として好ましく使用することができる。これらの中でも、尿素樹脂類、メラミン樹脂類、芳香族炭化水素樹脂類等の熱硬化性樹脂が好ましい。なお、これらのバインダー樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the binder resin include various thermoplastic resins and thermosetting resins. A thermoplastic resin is a component which has the effect | action which provides the fluidity | liquidity, mechanical characteristic, etc. of the added thermoplastic resin to a lower layer film | membrane. The thermosetting resin is a component that is cured by heating and becomes insoluble in a solvent, and has a function of preventing intermixing between the resulting resist underlayer film and the resist film formed thereon. It can be preferably used as a resin. Among these, thermosetting resins such as urea resins, melamine resins, and aromatic hydrocarbon resins are preferable. In addition, these binder resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 バインダー樹脂の配合量は、(A)光重合性化合物100質量部(一般式(1)で表される光重合性化合物及び一般式(2)で表される光重合性化合物の総量100質量部)に対して、20質量部以下であることが好ましく、10質量部以下であることが更に好ましい。前記配合量が20質量部超であると、バインダー樹脂が(A)光重合性化合物の重合を阻害するおそれがある。そのため、高弾性率のレジスト下層膜が得られないおそれがある。 The blending amount of the binder resin is (A) 100 parts by mass of the photopolymerizable compound (the total amount of the photopolymerizable compound represented by the general formula (1) and the photopolymerizable compound represented by the general formula (2) is 100 parts by mass. ) Is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less. When the blending amount is more than 20 parts by mass, the binder resin may inhibit the polymerization of the (A) photopolymerizable compound. Therefore, a resist underlayer film having a high elastic modulus may not be obtained.
 放射線吸収剤としては、具体的には、油溶性染料、分散染料、塩基性染料、メチン系染料、ピラゾール系染料、イミダゾール系染料、ヒドロキシアゾ系染料等の染料類;ビクシン誘導体、ノルビクシン、スチルベン、4,4’-ジアミノスチルベン誘導体、クマリン誘導体、ピラゾリン誘導体等の蛍光増白剤類;ヒドロキシアゾ系染料、チヌビン234(商品名、チバガイギー社製)、チヌビン1130(商品名、チバガイギー社製)等の紫外線吸収剤類;アントラセン誘導体、アントラキノン誘導体等の芳香族化合物等を挙げることができる。これらの放射線吸収剤は、単独でまたは2種以上を混合して使用することができる。 Specific examples of the radiation absorber include oil-soluble dyes, disperse dyes, basic dyes, methine dyes, pyrazole dyes, imidazole dyes, hydroxyazo dyes, and the like; bixin derivatives, norbixine, stilbene, Fluorescent brighteners such as 4,4′-diaminostilbene derivatives, coumarin derivatives, pyrazoline derivatives; hydroxyazo dyes, tinuvin 234 (trade name, manufactured by Ciba Geigy), tinuvin 1130 (trade name, manufactured by Ciba Geigy), etc. Ultraviolet absorbers; aromatic compounds such as anthracene derivatives and anthraquinone derivatives. These radiation absorbers can be used alone or in admixture of two or more.
 放射線吸収剤の配合量は、(A)光重合性化合物100質量部に対して、100質量部以下であることが好ましく、50質量部以下であることが更に好ましい。前記配合量が100質量部超であると、放射線吸収剤が(A)光重合性化合物の光反応を阻害するおそれがある。 The compounding amount of the radiation absorber is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, with respect to 100 parts by mass of the (A) photopolymerizable compound. When the amount is more than 100 parts by mass, the radiation absorber may inhibit the photoreaction of the (A) photopolymerizable compound.
 界面活性剤は、塗布性、ストリエーション、ぬれ性、現像性等を改良する作用を有する成分である。具体的には、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン-n-オクチルフェニルエーテル、ポリオキシエチレン-n-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤や、以下商品名で、KP341(信越化学工業社製)、ポリフローNo.75、同No.95(以上、共栄社油脂化学工業社製)、エフトップEF101、同EF204、同EF303、同EF352(以上、トーケムプロダクツ社製)、メガファックF171、同F172、同F173(以上、大日本インキ化学工業社製)、フロラードFC430、同FC431、同FC135、同FC93(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(以上、旭硝子社製)等を挙げることができる。これらの界面活性剤は、単独でまたは2種以上を混合して使用することができる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Surfactant is a component having an effect of improving coatability, striation, wettability, developability and the like. Specifically, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene-n-octylphenyl ether, polyoxyethylene-n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diester Nonionic surfactants such as stearate, and KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (above, manufactured by Kyoeisha Yushi Chemical Co., Ltd.), F Top EF101, EF204, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F172, F173 (above, Dainippon Ink and Chemicals, Inc.) (Manufactured by Kogyo Co., Ltd.), FLORARD FC430, FC431, FC135, FC135, FC93 (above, manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S382, SC101, SC102, SC103, SC104, SC105, SC106 ( As mentioned above, Asahi Glass Co., Ltd.) can be mentioned. These surfactants can be used alone or in admixture of two or more. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
 界面活性剤の配合量は、(A)光重合性化合物100質量部に対して、15質量部以下であることが好ましく、10質量部以下であることが更に好ましい。前記配合量が15質量部超であると、界面活性剤がレジスト下層膜の性能に影響を及ぼす(レジスト下層膜の性能を低下させる)おそれがある。 The compounding amount of the surfactant is preferably 15 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of the (A) photopolymerizable compound. If the amount is more than 15 parts by mass, the surfactant may affect the performance of the resist underlayer film (decrease the performance of the resist underlayer film).
[2]パターン形成方法:
 本発明のパターン形成方法は、上述した本発明のレジスト下層膜形成用組成物を被加工基板上に塗工して塗膜を形成する塗膜形成工程(以下、「工程(1)」と記す場合がある)と、形成された塗膜に放射線を照射し、この塗膜を硬化させることによって被加工基板上にレジスト下層膜を形成する下層膜形成工程(以下、「工程(2)」と記す場合がある)と、形成されたレジスト下層膜上にレジスト組成物を塗工し乾燥させてレジスト被膜を形成するレジスト被膜形成工程(以下、「工程(3)」と記す場合がある)と、形成されたレジスト被膜に、放射線を選択的に照射してレジスト被膜を露光する露光工程(以下、「工程(4)」と記す場合がある)と、露光されたレジスト被膜を現像して所定のパターンを有するレジストパターンを形成するパターン形成工程(以下、「工程(5)」と記す場合がある)と、レジストパターンをマスクとしてレジスト下層膜及び被加工基板をエッチングすることによって前記被加工基板に所定のパターンと同じパターンを形成するエッチング工程(以下、「工程(6)」と記す場合がある)と、を備える方法である。
[2] Pattern formation method:
The pattern forming method of the present invention is a coating film forming step (hereinafter referred to as “step (1)”) in which the resist underlayer film forming composition of the present invention described above is applied onto a substrate to be processed to form a coating film. And a lower layer film forming step (hereinafter referred to as “step (2)”) that forms a resist lower layer film on the substrate to be processed by irradiating the formed coating film with radiation and curing the coating film. And a resist film forming step in which a resist composition is applied on the formed resist underlayer film and dried to form a resist film (hereinafter sometimes referred to as “step (3)”) , An exposure step of exposing the resist coating by selectively irradiating the formed resist coating with radiation (hereinafter sometimes referred to as “step (4)”), and developing the exposed resist coating A resist pattern with A pattern forming step to be formed (hereinafter may be referred to as “step (5)”), and etching the resist underlayer film and the substrate to be processed by using the resist pattern as a mask, thereby forming the same pattern as the predetermined pattern on the substrate to be processed And an etching step (hereinafter, may be referred to as “step (6)”).
 このようなパターン形成方法によれば、工程(1)及び工程(2)を備えているため、形成されるレジスト下層膜の弾性率が高く、パターン曲がりなどの欠陥が効果的に防止される。そのため、被加工基板に良好なパターンを形成することができる。 According to such a pattern forming method, since the step (1) and the step (2) are provided, the elastic modulus of the resist underlayer film to be formed is high, and defects such as pattern bending are effectively prevented. Therefore, a good pattern can be formed on the substrate to be processed.
 工程(1)は、本発明のレジスト下層膜形成用組成物を被加工基板上に塗工して塗膜を形成する工程である。 Step (1) is a step of coating the resist underlayer film forming composition of the present invention on a substrate to be processed to form a coating film.
 被加工基板としては、例えば、シリコンウエハ、アルミニウムで被覆したウエハ等を使用することができる。 As the substrate to be processed, for example, a silicon wafer, a wafer coated with aluminum, or the like can be used.
 また、被加工基板へのレジスト下層膜形成用組成物の塗布方法は特に限定されず、例えば、回転塗布、流延塗布、ロール塗布等の適宜の方法で実施することができる。 Further, the method for applying the resist underlayer film forming composition to the substrate to be processed is not particularly limited, and for example, it can be carried out by an appropriate method such as spin coating, cast coating, roll coating or the like.
 次に、工程(2)は、形成された塗膜に放射線を照射し、この塗膜を硬化させることによって被加工基板上にレジスト下層膜を形成する工程である。 Next, step (2) is a step of forming a resist underlayer film on the substrate to be processed by irradiating the formed coating film with radiation and curing the coating film.
 照射する放射線は、例えば、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択することができる。 The radiation to be irradiated can be appropriately selected from, for example, visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, γ-ray, molecular beam, ion beam and the like.
 レジスト下層膜の膜厚は、通常、0.1~5μmである。 The film thickness of the resist underlayer film is usually 0.1 to 5 μm.
 なお、工程(2)を行う前(即ち、工程(1)の後)に、必要に応じて、レジスト下層膜上に中間層(中間被膜)を形成する工程(1a)を更に備えていてもよい。この中間層は、レジストパターン形成において、レジスト下層膜及び/またはレジスト被膜が有する機能を更に補ったり、これらが有していない機能を得るために、これらの機能が付与された層のことである。例えば、反射防止膜を中間層として形成した場合、レジスト下層膜の反射防止機能を更に補うことができる。 In addition, before performing step (2) (that is, after step (1)), a step (1a) for forming an intermediate layer (intermediate coating) on the resist underlayer film may be further provided as necessary. Good. This intermediate layer is a layer provided with these functions in order to further supplement the functions of the resist underlayer film and / or the resist film in the formation of the resist pattern, or to obtain functions that they do not have. . For example, when the antireflection film is formed as an intermediate layer, the antireflection function of the resist underlayer film can be further supplemented.
 この中間層は、有機化合物や無機酸化物により形成することができる。有機化合物としては、例えば、Brewer Science社製の「DUV-42」、「DUV-44」、「ARC-28」、「ARC-29」等の商品名で市販されている材料や、ローム アンド ハース社製の「AR-3」、「AR-19」等の商品名で市販されている材料等を用いることができる。また、無機酸化物としては、例えば、JSR社製の塗布型スピンオングラス材料やCVD法により形成されるポリシロキサン、酸化チタン、酸化アルミナ、酸化タングステン等を用いることができる。 This intermediate layer can be formed of an organic compound or an inorganic oxide. Examples of organic compounds include materials marketed under the trade names such as “DUV-42”, “DUV-44”, “ARC-28”, and “ARC-29” manufactured by Brewer Science, and Rohm and Haas. Materials commercially available under trade names such as “AR-3” and “AR-19” manufactured by the company can be used. Further, as the inorganic oxide, for example, a coating type spin-on glass material manufactured by JSR, polysiloxane formed by a CVD method, titanium oxide, alumina oxide, tungsten oxide, or the like can be used.
 中間層を形成するための方法は特に限定されないが、例えば、塗布法やCVD法等を用いることができる。これらの中でも、塗布法が好ましい。塗布法を用いた場合、レジスト下層膜を形成後、中間層を連続して形成することができる。 The method for forming the intermediate layer is not particularly limited, and for example, a coating method, a CVD method, or the like can be used. Among these, a coating method is preferable. When the coating method is used, the intermediate layer can be formed continuously after forming the resist underlayer film.
 また、中間層の膜厚は特に限定されず、中間層に求められる機能に応じて適宜選択されるが、10~3000nmの範囲が好ましく、更に好ましくは20~300nmである。 The film thickness of the intermediate layer is not particularly limited, and is appropriately selected according to the function required for the intermediate layer, but is preferably in the range of 10 to 3000 nm, more preferably 20 to 300 nm.
 次に、工程(3)は、形成されたレジスト下層膜上にレジスト組成物を塗工し乾燥させてレジスト被膜を形成する工程である。具体的には、得られるレジスト被膜が所定の膜厚となるようにレジスト組成物を塗布した後、プレベークすることによって塗膜中の溶剤を揮発させ、レジスト被膜が形成される。 Next, step (3) is a step of forming a resist film by coating a resist composition on the formed resist underlayer film and drying it. Specifically, after a resist composition is applied so that the resulting resist film has a predetermined thickness, the solvent in the film is volatilized by pre-baking to form a resist film.
 レジスト組成物としては、例えば、光酸発生剤を含有するポジ型またはネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とからなるネガ型レジスト組成物等が挙げられる。レジスト被膜をレジスト下層膜上に形成させる際に使用されるレジスト組成物は、固形分濃度が、通常、5~50質量%程度であり、一般に、例えば、孔径0.2μm程度のフィルターでろ過した後、レジスト被膜の形成に供される。なお、この工程(工程(3))では、市販のレジスト組成物をそのまま使用することもできる。 Examples of the resist composition include a positive or negative chemically amplified resist composition containing a photoacid generator, a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble resin and a crosslink And negative resist compositions composed of an agent. The resist composition used when forming the resist film on the resist underlayer film has a solid content concentration of usually about 5 to 50% by mass, and is generally filtered through, for example, a filter having a pore diameter of about 0.2 μm. Then, it is used for formation of a resist film. In this step (step (3)), a commercially available resist composition can be used as it is.
 レジスト組成物の塗布方法は特に限定されず、例えば、スピンコート法等により実施することができる。 The coating method of the resist composition is not particularly limited, and can be performed by, for example, a spin coating method.
 また、プレベークの温度は、使用されるレジスト組成物の種類等に応じて適宜調整されるが、通常、30~200℃程度、好ましくは50~150℃である。 The pre-baking temperature is appropriately adjusted according to the type of resist composition to be used, but is usually about 30 to 200 ° C., preferably 50 to 150 ° C.
 次に、工程(4)は、形成されたレジスト被膜に、放射線を選択的に照射してレジスト被膜を露光する工程である。 Next, step (4) is a step of exposing the resist film by selectively irradiating the formed resist film with radiation.
 露光に用いられる放射線としては、レジスト組成物に使用される光酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択されるが、遠紫外線であることが好ましく、特にKrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(波長157nm)、Krエキシマレーザー(波長147nm)、ArKrエキシマレーザー(波長134nm)、極紫外線(波長13nm等)等が好ましい。 The radiation used for the exposure is appropriate from visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, γ rays, molecular beams, ion beams, etc., depending on the type of photoacid generator used in the resist composition. In particular, far ultraviolet rays are preferable, and in particular, KrF excimer laser (248 nm), ArF excimer laser (193 nm), F 2 excimer laser (wavelength 157 nm), Kr 2 excimer laser (wavelength 147 nm), ArKr excimer laser (Wavelength 134 nm), extreme ultraviolet light (wavelength 13 nm, etc.) and the like are preferable.
 次に、工程(5)は、露光されたレジスト被膜を現像して所定のパターンを有するレジストパターンを形成する工程である。 Next, step (5) is a step of developing the exposed resist film to form a resist pattern having a predetermined pattern.
 本工程で用いられる現像液は、使用されるレジスト組成物の種類に応じて適宜選択される。具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性水溶液が挙げられる。 The developer used in this step is appropriately selected depending on the type of resist composition used. Specifically, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol Amine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3. 0] -5-nonene and the like.
 なお、これらのアルカリ性水溶液には、水溶性有機溶剤、例えば、メタノール、エタノール等のアルコール類や、界面活性剤を適量添加することもできる。 In addition, water-soluble organic solvents, for example, alcohols such as methanol and ethanol, and surfactants can be added to these alkaline aqueous solutions in appropriate amounts.
 また、前記現像液での現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。 Further, after development with the developer, the resist pattern is formed by washing and drying.
 本工程では、解像度、パターンプロファイル、現像性等を向上させるため、現像前の前記露光後に、ポストベークを行うことができる。このポストベークの温度は、使用されるレジスト組成物の種類等に応じて適宜調整されるが、通常、50~200℃程度、好ましくは70~150℃である。 In this step, post-baking can be performed after the exposure before development in order to improve resolution, pattern profile, developability, and the like. The post-baking temperature is appropriately adjusted according to the type of resist composition used, but is usually about 50 to 200 ° C., preferably 70 to 150 ° C.
 次に、工程(6)は、レジストパターンをマスクとしてレジスト下層膜及び被加工基板をエッチングすることによって前記被加工基板に所定のパターンと同じパターンを形成する工程である。ドライエッチングとしては、例えば、酸素プラズマ等のガスプラズマを挙げることができる。 Next, step (6) is a step of forming the same pattern as the predetermined pattern on the substrate to be processed by etching the resist underlayer film and the substrate to be processed using the resist pattern as a mask. Examples of dry etching include gas plasma such as oxygen plasma.
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。なお、単に「部」及び「%」と記載した場合は、特記しない限り質量基準である。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples. In addition, when only described as “parts” and “%”, it is based on mass unless otherwise specified.
[重量平均分子量(Mw)]:
 重量平均分子量(Mw)は、東ソー社製のGPCカラム(G2000HXL:2本、G3000HXL:1本)を用い、流量:1.0ml/分、溶出溶剤:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフ(検出器:示差屈折計)により測定した。
[Weight average molecular weight (Mw)]:
The weight average molecular weight (Mw) was determined by using Tosoh's GPC columns (G2000HXL: 2, G3000HXL: 1), flow rate: 1.0 ml / min, elution solvent: tetrahydrofuran, column temperature: 40 ° C. , And measured by a gel permeation chromatograph (detector: differential refractometer) using monodisperse polystyrene as a standard.
(実施例1)
 温度計を備えたセパラブルフラスコに、窒素雰囲気下で、イソフタルアルデヒド100部、シアノ酢酸イソブチル200部、ピペリジン1部、及び、4-メチル-2-ペンタノール4000部を仕込み、攪拌しつつ60℃で1時間反応させて反応溶液を得た。その後、反応溶液を1日静置し、析出した固体をろ過後、4-メチル-2-ペンタノールで洗浄し、白色固体を得た。この白色固体は、下記式(3)で表される化合物であった。
Example 1
A separable flask equipped with a thermometer was charged with 100 parts of isophthalaldehyde, 200 parts of isobutyl cyanoacetate, 1 part of piperidine, and 4000 parts of 4-methyl-2-pentanol under a nitrogen atmosphere and stirred at 60 ° C. And reacted for 1 hour to obtain a reaction solution. Thereafter, the reaction solution was allowed to stand for 1 day, and the precipitated solid was filtered and then washed with 4-methyl-2-pentanol to obtain a white solid. This white solid was a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 前記式(3)で表される化合物10部をプロピレングリコールモノメチルエーテル100部に溶解して混合溶液を得た。その後、この混合溶液を孔径0.1μmのメンブランフィルターでろ過することによりレジスト下層膜形成用組成物(1)を得た。そして、このレジスト下層膜形成用組成物(1)について以下の各種評価を行った。 10 parts of the compound represented by the formula (3) were dissolved in 100 parts of propylene glycol monomethyl ether to obtain a mixed solution. Thereafter, this mixed solution was filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist underlayer film forming composition (1). And the following various evaluation was performed about this resist underlayer film forming composition (1).
(1)ArF用ポジ型レジストパターンの形成:
 まず、直径8インチのシリコンウエハ上に、レジスト下層膜形成用組成物(1)をスピンコート法により塗布して塗膜を形成した。次に、TOPCON社製の小型高精度R&D用露光装置により強度20mW/cmの光を300mJ前記ウエハ上の塗膜に照射することによって塗膜を硬化させ、膜厚0.3μmの下層膜を得た。次に、この下層膜上に3層レジストプロセス用の中間層組成物溶液(商品名「NFC SOG080」、JSR社製)をスピンコートした。その後、ホットプレート上にて、200℃で60秒間加熱した。その後更に300℃で60秒間加熱して、前記下層膜上に膜厚0.05μmの中間層被膜を形成した。次に、この中間層被膜上に、レジスト組成物をスピンコートし、ホットプレート上にて130℃で90秒間プレベークして、膜厚0.2μmのレジスト被膜を形成した。
(1) Formation of ArF positive resist pattern:
First, a resist underlayer film forming composition (1) was applied on a silicon wafer having a diameter of 8 inches by spin coating to form a coating film. Next, the coating film on the wafer is cured by irradiating the coating film on the wafer with 300 mJ of light having an intensity of 20 mW / cm 2 by a small high-precision exposure apparatus for R & D manufactured by TOPCON, and an underlayer film having a film thickness of 0.3 μm is formed. Obtained. Next, an intermediate layer composition solution (trade name “NFC SOG080”, manufactured by JSR Corporation) for a three-layer resist process was spin-coated on this lower layer film. Then, it heated at 200 degreeC for 60 second on the hotplate. Thereafter, the film was further heated at 300 ° C. for 60 seconds to form an intermediate layer film having a thickness of 0.05 μm on the lower layer film. Next, a resist composition was spin-coated on this intermediate layer coating, and pre-baked at 130 ° C. for 90 seconds on a hot plate to form a resist coating having a thickness of 0.2 μm.
 なお、レジスト組成物としては、以下のようにして調製したものを用いた。 In addition, as the resist composition, one prepared as follows was used.
 まず、還流管を装着したセパラブルフラスコに、窒素気流下で、8-メチル-8-t-ブトキシカルボニルメトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(「単量体(a)」という)29部、8-メチル-8-ヒドロキシテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(「単量体(b)」という)10部、無水マレイン酸(「単量体(c)」という)18部、2,5-ジメチル-2,5-ヘキサンジオールジアクリレート4部、t-ドデシルメルカプタン1部、アゾビスイソブチロニトリル4部、及び1,2-ジエトキシエタン60部を仕込み、攪拌しつつ70℃で6時間重合させた。その後、反応溶液を大量のn-ヘキサン/i-プロピルアルコール(質量比=1/1)混合溶媒中に注いで凝固体を得た。得られた凝固体を前記混合溶媒で数回洗浄した後、真空乾燥させてレジスト組成物用樹脂を得た(収率60%)。その後、得られたレジスト組成物用樹脂とレジスト組成物用溶剤とを混合してレジスト組成物を調製した。 First, in a separable flask equipped with a reflux tube, 8-methyl-8-t-butoxycarbonylmethoxycarbonyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (referred to as “monomer (a)”) 29 parts, 8-methyl-8-hydroxytetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (referred to as “monomer (b)”) 10 parts, maleic anhydride (referred to as “monomer (c)”) 18 parts, 2,5-dimethyl-2,5 4 parts of hexanediol diacrylate, 1 part of t-dodecyl mercaptan, 4 parts of azobisisobutyronitrile and 60 parts of 1,2-diethoxyethane were charged and polymerized at 70 ° C. for 6 hours with stirring. Thereafter, the reaction solution was poured into a large amount of a mixed solvent of n-hexane / i-propyl alcohol (mass ratio = 1/1) to obtain a coagulated product. The obtained solidified body was washed several times with the above mixed solvent and then vacuum-dried to obtain a resin for a resist composition (yield 60%). Thereafter, the obtained resist composition resin and the resist composition solvent were mixed to prepare a resist composition.
 なお、得られたレジスト組成物用樹脂は、前記単量体(a)、(b)及び(c)のそれぞれに由来する各繰り返し単位を有し、これらの各繰り返し単位のモル比が64:18:18であった。また、重量平均分子量(Mw)は27,000であった。なお、レジスト組成物用溶剤としては、プロピレングリコールモノメチルエーテルアセテートとシクロヘキサノンとの混合溶剤(質量比7:3)を用いた。 The obtained resin for a resist composition has each repeating unit derived from each of the monomers (a), (b) and (c), and the molar ratio of each of these repeating units is 64: 18:18. Moreover, the weight average molecular weight (Mw) was 27,000. In addition, as a solvent for resist compositions, a mixed solvent (mass ratio 7: 3) of propylene glycol monomethyl ether acetate and cyclohexanone was used.
 次に、NIKON社製のArFエキシマレーザー露光装置(レンズ開口数0.78、露光波長193nm)を用い、マスクパターンを介して、最適露光時間の間だけ前記レジスト被膜を露光した。次に、ホットプレート上にて130℃で90秒間ポストベークした後、2.38質量%濃度のテトラメチルアンモニウムヒドロキシド水溶液を用いて、露光したレジスト被膜を25℃で1分間の条件で現像した。その後、水洗し、乾燥して、線幅70nmのラインアンドスペースパターン(1L/1S)をなすように形成されたレジスト被膜(ポジ型レジストパターンが形成されたレジスト被膜(レジストパターン))を得た。 Next, using a ArF excimer laser exposure apparatus (lens numerical aperture of 0.78, exposure wavelength of 193 nm) manufactured by NIKON, the resist film was exposed through the mask pattern only for the optimal exposure time. Next, after post-baking at 130 ° C. for 90 seconds on a hot plate, the exposed resist film was developed at 25 ° C. for 1 minute using a 2.38 mass% aqueous tetramethylammonium hydroxide solution. . Thereafter, it was washed with water and dried to obtain a resist film (resist film (resist pattern) on which a positive resist pattern was formed) formed to form a line-and-space pattern (1L / 1S) having a line width of 70 nm. .
(2)定在波防止効果:
 前記(1)ArF用ポジ型レジストパターンの形成の評価で得られたポジ型レジストパターンが形成されたレジスト被膜への定在波の影響の有無を、走査型電子顕微鏡により観察して以下の基準で評価した。レジストパターンの側面に下層膜からの反射による定在波の影響が観察されなかった場合を良好(表1中、「A」と記す)とし、定在波の影響が観察された場合を不良(表1中、「C」と記す)とし、定在波の影響がやや観察された場合を可(表1中、「B」と記す)とした。
(2) Standing wave prevention effect:
(1) The following criteria are obtained by observing with a scanning electron microscope whether a standing wave has an influence on the resist film on which the positive resist pattern formed by the evaluation of the ArF positive resist pattern is formed. It was evaluated with. The case where the influence of the standing wave due to the reflection from the lower layer film was not observed on the side surface of the resist pattern was good (denoted as “A” in Table 1), and the case where the influence of the standing wave was observed was poor ( In Table 1, “C” is indicated), and the case where the influence of the standing wave is slightly observed is indicated (indicated by “B” in Table 1).
(3)弾性率:
 直径8インチのシリコンウエハ上に、レジスト下層膜形成用組成物(1)をスピンコートして塗膜を形成した。次に、TOPCON社製の小型高精度R&D用露光装置を用いて強度20mW/cmの光を300mJで前記ウエハ上の塗膜に照射して塗膜を硬化させ、膜厚0.3μmのレジスト下層膜を得た。その後、この下層膜の弾性率(GPa)をナノインデンター法で測定して評価を行った。評価基準は、弾性率が10GPa以上のものを合格「G」とし、10GPa未満のものを不合格「N」とした。
(3) Elastic modulus:
A resist underlayer film forming composition (1) was spin-coated on a silicon wafer having a diameter of 8 inches to form a coating film. Next, the coating film on the wafer is cured by irradiating the coating film on the wafer at 300 mJ with light having an intensity of 20 mW / cm 2 using a small high-precision exposure apparatus for R & D manufactured by TOPCON, and a resist having a film thickness of 0.3 μm. A lower layer film was obtained. Thereafter, the elastic modulus (GPa) of the lower layer film was measured by a nanoindenter method and evaluated. Evaluation criteria set the thing whose elasticity modulus was 10 GPa or more as the pass "G", and made the thing less than 10 GPa the rejection "N".
(4)エッチング耐性:
 直径8インチのシリコンウエハ上に、レジスト下層膜形成用組成物(1)をスピンコートして塗膜を形成した。次に、TOPCON社製の小型高精度R&D用露光装置を用いて強度20mW/cmの光を300mJで前記ウエハ上の塗膜に照射して塗膜を硬化させ、膜厚0.3μmのレジスト下層膜を得た。その後、この下層膜を、エッチング処理(エッチング条件は、圧力:0.03Torr、高周波電力:3000W、Ar/CF4=40/100sccm、基板温度:20℃とした)し、エッチング処理後の下層膜の膜厚を測定した。そして、膜厚の減少量と処理時間との関係からエッチングレート(nm/分)を算出した。算出された値が小さい程、レジスト下層膜のエッチング耐性が高いため好ましく、算出された値について以下の評価基準で評価を行った。0.9nm/分未満の場合を「A」とし、0.9nm/分以上で1.2nm/分以下の場合を「B」とし、1.2nm/分を超える場合を「C」とした。なお、表1中、本評価結果を「エッチングレート」の欄に記す。
(4) Etching resistance:
A resist underlayer film forming composition (1) was spin-coated on a silicon wafer having a diameter of 8 inches to form a coating film. Next, the coating film on the wafer is cured by irradiating the coating film on the wafer at 300 mJ with light having an intensity of 20 mW / cm 2 using a small high-precision exposure apparatus for R & D manufactured by TOPCON, and a resist having a film thickness of 0.3 μm. A lower layer film was obtained. Thereafter, this lower layer film is subjected to etching treatment (etching conditions are pressure: 0.03 Torr, high frequency power: 3000 W, Ar / CF4 = 40/100 sccm, substrate temperature: 20 ° C.), and the lower layer film after the etching treatment The film thickness was measured. Then, the etching rate (nm / min) was calculated from the relationship between the reduction amount of the film thickness and the processing time. The smaller the calculated value, the higher the etching resistance of the resist underlayer film, which is preferable. The calculated value was evaluated according to the following evaluation criteria. A case of less than 0.9 nm / min was designated as “A”, a case of 0.9 nm / min to 1.2 nm / min was designated as “B”, and a case of exceeding 1.2 nm / min was designated as “C”. In Table 1, this evaluation result is shown in the column of “Etching rate”.
 本実施例のレジスト下層膜形成用組成物(1)は、定在波防止効果の評価が「A」であり、弾性率の評価結果が「G」であり、エッチング耐性の評価結果が「A」であった。 In the resist underlayer film forming composition (1) of this example, the evaluation of the standing wave prevention effect is “A”, the evaluation result of the elastic modulus is “G”, and the evaluation result of the etching resistance is “A”. "Met.
(実施例2)
 温度計を備えたセパラブルフラスコに、窒素雰囲気下で、ケイ皮酸100部、炭酸水素ナトリウム200部、テトラn-ブチルアンモニウムクロリド1部、及び、N,N-ジメチルホルムアルデヒド4000部を仕込み、攪拌しつつ110℃で40時間反応させて反応溶液を得た。その後、得られた反応溶液にメタノールを加えて析出物を得た。得られた析出物をろ過して白色固体を得た。この白色固体は、下記式(4)で表される化合物であった。
(Example 2)
A separable flask equipped with a thermometer was charged with 100 parts of cinnamic acid, 200 parts of sodium bicarbonate, 1 part of tetra-n-butylammonium chloride, and 4000 parts of N, N-dimethylformaldehyde under a nitrogen atmosphere and stirred. The reaction solution was obtained by reacting at 110 ° C. for 40 hours. Thereafter, methanol was added to the obtained reaction solution to obtain a precipitate. The resulting precipitate was filtered to obtain a white solid. This white solid was a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 前記式(3)で表される化合物に代えて、式(4)で表される化合物を用いたこと以外は、実施例1と同様にして、実施例2のレジスト下層膜形成用組成物(2)を得た。得られたレジスト下層膜形成用組成物(2)について、実施例1と同様にして前記各評価を行った。評価結果を表1に示す。 The composition for forming a resist underlayer film of Example 2 was the same as Example 1 except that the compound represented by Formula (4) was used instead of the compound represented by Formula (3). 2) was obtained. About the obtained resist underlayer film forming composition (2), each said evaluation was performed like Example 1. FIG. The evaluation results are shown in Table 1.
(実施例3)
 前記式(3)で表される化合物に代えて、下記式(5)で表される化合物を用いたこと以外は、実施例1と同様にして、実施例3のレジスト下層膜形成用組成物(3)を得た。得られたレジスト下層膜形成用組成物(3)について、実施例1と同様にして前記各評価を行った。評価結果を表1に示す。
(Example 3)
A composition for forming a resist underlayer film of Example 3 in the same manner as in Example 1 except that the compound represented by the following formula (5) was used instead of the compound represented by the above formula (3). (3) was obtained. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (3). The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(実施例4)
 前記式(3)で表される化合物に代えて、下記式(6)で表される化合物を用いたこと以外は、実施例1と同様にして、実施例4のレジスト下層膜形成用組成物(4)を得た。得られたレジスト下層膜形成用組成物(4)について、実施例1と同様にして前記各評価を行った。評価結果を表1に示す。
Example 4
The composition for forming a resist underlayer film of Example 4 is the same as Example 1 except that the compound represented by the following formula (6) is used instead of the compound represented by the above formula (3). (4) was obtained. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (4). The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(実施例5)
 前記式(3)で表される化合物に代えて、下記式(7)で表される化合物を用いたこと以外は、実施例1と同様にして、実施例5のレジスト下層膜形成用組成物(5)を得た。得られたレジスト下層膜形成用組成物(5)について、実施例1と同様にして前記各評価を行った。評価結果を表1に示す。
(Example 5)
The composition for forming a resist underlayer film of Example 5 is the same as Example 1 except that the compound represented by the following formula (7) is used instead of the compound represented by the above formula (3). (5) was obtained. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (5). The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(比較例1)
 温度計を備えたセパラブルフラスコに、窒素雰囲気下で、2,7-ジヒドロキシナフタレン100部、ホルマリン30部、p-トルエンスルホン酸1部、及び、プロピレングリコールモノメチルエーテル150部を仕込み、攪拌しつつ80℃で6時間重合させて反応溶液を得た。その後、反応溶液を酢酸n-ブチル100部で希釈し、水/メタノール(質量比:1/2)混合溶媒を多量に使用して有機層を洗浄した。その後、前記混合溶媒を留去して重合体を得た。得られた重合体の重量平均分子量(Mw)は1800であった。
(Comparative Example 1)
A separable flask equipped with a thermometer was charged with 100 parts of 2,7-dihydroxynaphthalene, 30 parts of formalin, 1 part of p-toluenesulfonic acid and 150 parts of propylene glycol monomethyl ether in a nitrogen atmosphere while stirring. Polymerization was performed at 80 ° C. for 6 hours to obtain a reaction solution. Thereafter, the reaction solution was diluted with 100 parts of n-butyl acetate, and the organic layer was washed with a large amount of water / methanol (mass ratio: 1/2) mixed solvent. Thereafter, the mixed solvent was distilled off to obtain a polymer. The weight average molecular weight (Mw) of the obtained polymer was 1800.
 前記式(3)で表される化合物に代えて、前記重合体10部を用いたこと以外は、実施例1と同様にして、比較例1のレジスト下層膜形成用組成物(6)を得た。得られたレジスト下層膜形成用組成物(6)を用いて、実施例1と同様にして前記各評価を行った。評価結果を表1に示す。なお、本比較例において、レジスト下層膜(膜厚0.3μm)は、基板(直径8インチのシリコンウエハ)上にレジスト下層膜形成用組成物(6)により塗膜を形成した後、この塗膜を形成した基板をホットプレート上に置いて300℃で120秒間加熱することにより前記基板上に形成した。 A resist underlayer film forming composition (6) of Comparative Example 1 was obtained in the same manner as in Example 1 except that 10 parts of the polymer was used instead of the compound represented by the formula (3). It was. Each evaluation was performed in the same manner as in Example 1 using the obtained resist underlayer film forming composition (6). The evaluation results are shown in Table 1. In this comparative example, the resist underlayer film (thickness: 0.3 μm) is formed by forming a coating film on the substrate (silicon wafer having a diameter of 8 inches) with the resist underlayer film forming composition (6), and then applying this coating. The substrate on which the film was formed was placed on a hot plate and heated at 300 ° C. for 120 seconds to form the substrate.
(比較例2)
 前記式(3)で表される化合物に代えて、ビス(4-グリシジルオキシフェニル)メタン(下記式(8)で表される化合物)10部及びトリフェニルスルホニウムトリフルオロメタンスルホナート1部を用いたこと以外は、実施例1と同様にして、比較例2のレジスト下層膜形成用組成物(7)を得た。得られたレジスト下層膜形成用組成物(7)について、実施例1と同様にして前記各評価を行った。評価結果を表1に示す。
(Comparative Example 2)
Instead of the compound represented by the formula (3), 10 parts of bis (4-glycidyloxyphenyl) methane (a compound represented by the following formula (8)) and 1 part of triphenylsulfonium trifluoromethanesulfonate were used. Except for this, a composition for forming a resist underlayer film (7) of Comparative Example 2 was obtained in the same manner as Example 1. Each evaluation was performed like Example 1 about the obtained composition for resist underlayer film formation (7). The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表1から明らかなように、実施例1~5のレジスト下層膜形成用組成物は、比較例1,2のレジスト下層膜形成用組成物と同程度の定在波防止効果を有しながら、弾性率及びエッチング耐性が高いレジスト下層膜を形成することが可能であることが確認できた。 As is apparent from Table 1, the resist underlayer film forming compositions of Examples 1 to 5 had the same standing wave prevention effect as the resist underlayer film forming compositions of Comparative Examples 1 and 2, It was confirmed that a resist underlayer film having a high elastic modulus and etching resistance can be formed.
 本発明のレジスト下層膜形成用組成物は、集積回路素子の製造方法における多層レジストプロセスで形成されるレジスト下層膜の材料として好適に用いることができる。 The composition for forming a resist underlayer film of the present invention can be suitably used as a material for a resist underlayer film formed by a multilayer resist process in an integrated circuit element manufacturing method.

Claims (5)

  1.  (A)下記一般式(1)で表される光重合性化合物及び下記一般式(2)で表される光重合性化合物からなる群より選択される少なくとも一種の光重合性化合物と、
     (B)溶剤と、を含有するレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R11~R13は、相互に独立に、芳香族化合物から誘導される1価の基、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、ニトロ基、シアノ基、-COR、-COORまたは-CON(Rを示す(但し、-COR、-COOR、及び-CON(R中、Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい)。但し、R11~R13のいずれか一つは芳香族化合物から誘導される1価の基、ニトロ基、シアノ基、-COR、-COORまたは-CON(Rである。Rは、置換基を有していてもよい、芳香族化合物から誘導されるn1価の有機基を示す。n1は2~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、Rは、相互に独立に、芳香族化合物から誘導される1価の有機基、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、ニトロ基、シアノ基、-COR、-COORまたは-CON(Rを示す(但し、-COR、-COORまたは-CON(R中、Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい)。Rは、置換基を有していてもよい、芳香族化合物から誘導される1価の有機基を示す。Rは、n2価の有機基を示す。Xは、-COO-*または-CONH-*を示す(「*」はRに結合する結合手を示す)。n2は2~10の整数を示す。)
    (A) at least one photopolymerizable compound selected from the group consisting of a photopolymerizable compound represented by the following general formula (1) and a photopolymerizable compound represented by the following general formula (2);
    (B) A resist underlayer film forming composition containing a solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 11 to R 13 are each independently a monovalent group derived from an aromatic compound, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 3 to 20 carbon atoms. cycloalkyl group, a nitro group, a cyano group, -COR 2, shows a -COOR 2 or -CON (R 2) 2 (where, -COR 2, -COOR 2, and -CON (R 2) in 2, R 2 Each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, and having a substituent. Provided that any one of R 11 to R 13 is a monovalent group derived from an aromatic compound, a nitro group, a cyano group, —COR 2 , —COOR 2 or —CON (R 2 ) is a 2 .R 3 may have a substituent, .n1 showing the n1 valent organic radical derived from aromatic compounds is an integer of 2-4.)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 4 is independently of each other a monovalent organic group derived from an aromatic compound, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl having 3 to 20 carbon atoms. group, a nitro group, a cyano group, -COR 7, showing a -COOR 7 or -CON (R 7) 2 (where, -COR 7, in -COOR 7 or -CON (R 7) 2, R 7 are mutually And independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group derived from an aromatic compound, and may have a substituent. R 5 represents a monovalent organic group derived from an aromatic compound which may have a substituent, R 6 represents an n2-valent organic group, and X represents —COO—. * or -CONH- * the show ( "*" represents a bond that binds to R 6). 2 is an integer of 2-10.)
  2.  前記一般式(1)で表される光重合性化合物が、下記一般式(1-1)で表される化合物であり、前記一般式(2)で表される光重合性化合物が、下記一般式(2-1)で表される化合物である請求項1に記載のレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1-1)中、Rは、相互に独立に、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。Rは、置換基を有していてもよい、芳香族化合物から誘導されるn1価の有機基を示す。n1は2~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(2-1)中、R41は、相互に独立に、水素原子またはシアノ基を示す。Rは、n2価の炭化水素基を示す。n2は2~10の整数を示す。Rは置換基を示す。nは0~5の整数を示す。)
    The photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-1), and the photopolymerizable compound represented by the general formula (2) is 2. The resist underlayer film forming composition according to claim 1, which is a compound represented by the formula (2-1).
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (1-1), R 1 independently represents a hydrogen atom or a cyano group. R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups, or monovalent organic groups derived from aromatic compounds, which may have a substituent, R 3 may have a substituent, an aromatic group An n1-valent organic group derived from a compound, where n1 is an integer of 2 to 4.)
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (2-1), R 41 independently represents a hydrogen atom or a cyano group, R 6 represents an n2 valent hydrocarbon group, and n2 represents an integer of 2 to 10. R P is .n p indicating a substituent is an integer of 0-5.)
  3.  前記一般式(1)で表される光重合性化合物が、下記一般式(1-11)で表される化合物である請求項1または2に記載のレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1-11)中、Rは、相互に独立に、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。n1は2~4の整数を示す。)
    3. The resist underlayer film forming composition according to claim 1, wherein the photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-11).
    Figure JPOXMLDOC01-appb-C000005
    (In General Formula (1-11), R 1 independently represents a hydrogen atom or a cyano group. R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups or monovalent organic groups derived from aromatic compounds, which may have a substituent, n1 represents an integer of 2 to 4.
  4.  前記一般式(1)で表される光重合性化合物が、下記一般式(1-111)で表される化合物である請求項1~3のいずれか一項に記載のレジスト下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(1-111)中、Rは、相互に独立に、水素原子またはシアノ基を示す。Rは、相互に独立に、水素原子、炭素数1~10のアルキル基、炭素数3~20のシクロアルキル基、または芳香族化合物から誘導される1価の有機基を示し、置換基を有していてもよい。)
    The composition for forming a resist underlayer film according to any one of claims 1 to 3, wherein the photopolymerizable compound represented by the general formula (1) is a compound represented by the following general formula (1-111): object.
    Figure JPOXMLDOC01-appb-C000006
    (In General Formula (1-111), R 1 independently represents a hydrogen atom or a cyano group. R 2 independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, 3 to 20 cycloalkyl groups or a monovalent organic group derived from an aromatic compound, which may have a substituent)
  5.  請求項1~4のいずれか一項に記載のレジスト下層膜形成用組成物を被加工基板上に塗工して塗膜を形成する塗膜形成工程と、
     形成された前記塗膜に放射線を照射し、前記塗膜を硬化させることによって前記被加工基板上にレジスト下層膜を形成する下層膜形成工程と、
     前記レジスト下層膜上にレジスト組成物を塗工し乾燥させてレジスト被膜を形成するレジスト被膜形成工程と、
     前記レジスト被膜に、放射線を選択的に照射して前記レジスト被膜を露光する露光工程と、
     露光された前記レジスト被膜を現像して所定のパターンを有するレジストパターンを形成するパターン形成工程と、
     前記レジストパターンをマスクとして前記レジスト下層膜及び前記被加工基板をエッチングすることによって前記被加工基板に前記所定のパターンと同じパターンを形成するエッチング工程と、を備えるパターン形成方法。
    A coating film forming step of coating the resist underlayer film forming composition according to any one of claims 1 to 4 on a substrate to be processed to form a coating film;
    An underlayer film forming step of forming a resist underlayer film on the substrate to be processed by irradiating the formed coating film with radiation and curing the coating film;
    A resist film forming step of applying a resist composition on the resist underlayer film and drying to form a resist film; and
    An exposure step of selectively irradiating the resist film with radiation to expose the resist film;
    A pattern forming step of developing the exposed resist film to form a resist pattern having a predetermined pattern;
    An etching process for forming the same pattern as the predetermined pattern on the substrate to be processed by etching the resist underlayer film and the substrate to be processed using the resist pattern as a mask.
PCT/JP2011/058221 2010-03-31 2011-03-31 Composition for forming resist underlayer film and pattern forming method WO2011125839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509572A JP5794228B2 (en) 2010-03-31 2011-03-31 Composition for forming a resist underlayer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-081352 2010-03-31
JP2010081352 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125839A1 true WO2011125839A1 (en) 2011-10-13

Family

ID=44762777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058221 WO2011125839A1 (en) 2010-03-31 2011-03-31 Composition for forming resist underlayer film and pattern forming method

Country Status (3)

Country Link
JP (1) JP5794228B2 (en)
TW (1) TW201202856A (en)
WO (1) WO2011125839A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013768A (en) * 2016-07-07 2018-01-25 信越化学工業株式会社 Resist underlay film material, pattern forming method, resist underlay film forming method, and compound for resist underlay film material
WO2019059202A1 (en) * 2017-09-19 2019-03-28 三菱瓦斯化学株式会社 Semiconductor lithography film forming composition, and resist pattern forming method and device
EP3623867A1 (en) 2018-09-13 2020-03-18 Shin-Etsu Chemical Co., Ltd. Patterning process
KR20220024080A (en) * 2019-06-17 2022-03-03 닛산 가가쿠 가부시키가이샤 Wet-etchable resist underlayer film forming composition containing dicyanostyryl group
WO2022186231A1 (en) * 2021-03-03 2022-09-09 日産化学株式会社 Resist underlayer film-forming composition having benzylidene cyanoacetic acid ester group

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086545A (en) 2017-11-01 2019-06-06 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Allyloxy derivative, resist underlayer forming composition using the same, and method of manufacturing resist underlayer and semiconductor device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118656A (en) * 1992-10-05 1994-04-28 Japan Synthetic Rubber Co Ltd Reflection preventing film and resist pattern forming method
JP2006502448A (en) * 2002-10-08 2006-01-19 ブルーワー サイエンス アイ エヌ シー. Anti-reflective coating on the bottom of photoresist obtained from molecules with many epoxy residues and small central part
JP2006508377A (en) * 2002-06-25 2006-03-09 ブルーワー サイエンス アイ エヌ シー. Wet developable anti-reflective composition
WO2006115044A1 (en) * 2005-04-19 2006-11-02 Nissan Chemical Industries, Ltd. Composition for resist underlayer film formation for forming photocrosslinking cured resist underlayer film
WO2008109198A1 (en) * 2007-03-07 2008-09-12 Brewer Science Inc. Anti-reflective coatings using vinyl ether crosslinkers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612452B2 (en) * 1982-09-30 1994-02-16 ブリュ−ワ−・サイエンス・インコ−ポレイテッド Method of manufacturing integrated circuit device
CN1300383A (en) * 1998-04-29 2001-06-20 部鲁尔科学公司 Fast-etching, thermosetting anti-reflective coatings derived from cellulosic binders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118656A (en) * 1992-10-05 1994-04-28 Japan Synthetic Rubber Co Ltd Reflection preventing film and resist pattern forming method
JP2006508377A (en) * 2002-06-25 2006-03-09 ブルーワー サイエンス アイ エヌ シー. Wet developable anti-reflective composition
JP2006502448A (en) * 2002-10-08 2006-01-19 ブルーワー サイエンス アイ エヌ シー. Anti-reflective coating on the bottom of photoresist obtained from molecules with many epoxy residues and small central part
WO2006115044A1 (en) * 2005-04-19 2006-11-02 Nissan Chemical Industries, Ltd. Composition for resist underlayer film formation for forming photocrosslinking cured resist underlayer film
WO2008109198A1 (en) * 2007-03-07 2008-09-12 Brewer Science Inc. Anti-reflective coatings using vinyl ether crosslinkers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013768A (en) * 2016-07-07 2018-01-25 信越化学工業株式会社 Resist underlay film material, pattern forming method, resist underlay film forming method, and compound for resist underlay film material
WO2019059202A1 (en) * 2017-09-19 2019-03-28 三菱瓦斯化学株式会社 Semiconductor lithography film forming composition, and resist pattern forming method and device
JPWO2019059202A1 (en) * 2017-09-19 2020-09-03 三菱瓦斯化学株式会社 Semiconductor lithography film forming composition, resist pattern forming method and device
EP3623867A1 (en) 2018-09-13 2020-03-18 Shin-Etsu Chemical Co., Ltd. Patterning process
KR20220024080A (en) * 2019-06-17 2022-03-03 닛산 가가쿠 가부시키가이샤 Wet-etchable resist underlayer film forming composition containing dicyanostyryl group
KR102592573B1 (en) 2019-06-17 2023-10-23 닛산 가가쿠 가부시키가이샤 Wet-etchable resist underlayer film-forming composition containing a dicyanostyryl group
WO2022186231A1 (en) * 2021-03-03 2022-09-09 日産化学株式会社 Resist underlayer film-forming composition having benzylidene cyanoacetic acid ester group

Also Published As

Publication number Publication date
JPWO2011125839A1 (en) 2013-07-11
TW201202856A (en) 2012-01-16
JP5794228B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5051133B2 (en) Resist underlayer film forming method, resist underlayer film composition used therefor, and pattern forming method
JP5136407B2 (en) Resist underlayer film forming composition and pattern forming method
JP5195478B2 (en) Resist underlayer film forming composition, resist underlayer film, resist underlayer film forming method, and pattern forming method
JP5257009B2 (en) Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
JP5782797B2 (en) Near infrared light absorbing dye compound, near infrared light absorbing film forming material, and near infrared light absorbing film formed thereby
JP5794228B2 (en) Composition for forming a resist underlayer film
JP4292910B2 (en) Acenaphthylene derivative, polymer and antireflection film-forming composition
WO2009119201A1 (en) Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation
WO2013054702A1 (en) Composition for forming resist underlayer film, method for manufacturing same, pattern forming method, and resist underlayer film
WO2012117948A1 (en) Composition for formation of resist underlayer film, method of forming pattern and resist underlayer film
JP5229044B2 (en) Resist underlayer film forming composition, resist underlayer film, resist underlayer film forming method, and pattern forming method
TWI361956B (en) Anti-reflective coating-forming composition containing sulfur atom for lithography
WO2007142209A1 (en) Method for pattern formation and high-carbon-containing resin composition
JP4639915B2 (en) Composition for resist underlayer film
JP5737526B2 (en) Resist underlayer film forming composition and resist pattern forming method using the same
JP4729803B2 (en) Underlayer film forming composition for multilayer resist process
JPWO2017141612A1 (en) Composition for forming resist underlayer film, resist underlayer film and patterned substrate manufacturing method
JP5251433B2 (en) Resist underlayer film forming composition and pattern forming method
JP2008152203A (en) Underlying resist composition, novel compound useful for the composition and pattern forming method using the composition
WO2005093516A1 (en) Resist composition
WO2007046453A1 (en) Polymers of vinylnaphthalene derivatives, compositions for forming antireflection coatings, and antireflection coatings
KR101808893B1 (en) Composition for forming resist underlayer film and pattern formation method
JP4120599B2 (en) Antireflection film forming composition and antireflection film
JP5573230B2 (en) Resist underlayer film forming composition and pattern forming method
KR101811064B1 (en) Process for forming pattern, process for forming resist lower layer film, composition for forming resist lower layer film and resist lower layer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509572

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765739

Country of ref document: EP

Kind code of ref document: A1