WO2011125521A1 - Display device with touch sensor - Google Patents

Display device with touch sensor Download PDF

Info

Publication number
WO2011125521A1
WO2011125521A1 PCT/JP2011/057218 JP2011057218W WO2011125521A1 WO 2011125521 A1 WO2011125521 A1 WO 2011125521A1 JP 2011057218 W JP2011057218 W JP 2011057218W WO 2011125521 A1 WO2011125521 A1 WO 2011125521A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
touch sensor
circuit
polarity
output
Prior art date
Application number
PCT/JP2011/057218
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 西村
仁 宮澤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/636,722 priority Critical patent/US8823671B2/en
Publication of WO2011125521A1 publication Critical patent/WO2011125521A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Definitions

  • the present invention relates to a display device including a touch sensor that can detect a position where a finger or the like is in contact.
  • touch sensor also referred to as a “touch panel”
  • the touch sensor is an input device that enables an operation instruction and data input by detecting the position of a part touched by a finger, a pen, or the like.
  • a position detection method a capacitive coupling method, a resistive film method, an infrared method, an ultrasonic method, an electromagnetic induction / coupling method, and the like are known.
  • the touch sensor When the touch sensor is used integrally with the display device, the touch sensor receives noise from the display device, and the position detection accuracy of the touch sensor is lowered.
  • the display device uses a liquid crystal panel
  • an induced voltage is generated in the position detection conductive film of the touch sensor due to a common voltage applied to the counter electrode of the liquid crystal panel. This induced voltage causes noise.
  • the display device with a touch sensor disclosed in the patent document includes a strobe signal generation circuit and a noise cut current signal generation circuit.
  • the strobe signal generation circuit generates a strobe signal synchronized with the polarity inversion period of the common voltage supplied to the counter electrode.
  • the noise cut current signal generation circuit generates a noise cut current signal obtained by removing a predetermined portion from a current flowing from a terminal connected to the touch sensor unit based on the strobe signal.
  • the above-described conventional configuration requires a dedicated circuit for noise removal, which is a strobe signal generation circuit and a noise cut current signal generation circuit, and thus the structure becomes complicated.
  • An object of the present invention is to provide a display device with a touch sensor that can avoid the influence of noise caused by polarity inversion of the common voltage of the display device without using a strobe signal generation circuit or a noise cut current signal generation circuit. is there.
  • a display device with a touch sensor disclosed herein includes an active matrix substrate including a plurality of pixel electrodes, a display medium layer, and a counter substrate including a counter electrode facing the pixel electrodes.
  • a display panel that supplies a display signal voltage to the plurality of pixel electrodes and supplies a common voltage with periodic inversion of polarity to the counter electrode, and a counter substrate of the display panel
  • a touch sensor unit having a plurality of sensor electrodes that are arranged on the surface on the side and whose electrical characteristics change when touched by a contact body, and the sensor electrodes are sequentially connected to the sensor electrodes according to the electrical characteristics of the connected sensor electrodes.
  • a sensor output readout circuit for outputting a signal voltage, a sensor control circuit for supplying a control signal to the sensor output readout circuit, and the sensor output readout circuit
  • a coordinate calculation circuit that detects a position touched by the contact body in the touch sensor unit based on the output signal voltage, and the sensor control circuit outputs the sensor output to all of the sensor electrodes of the touch sensor unit.
  • a scanning operation for sequentially connecting readout circuits to output the signal voltage is started after the common voltage is switched from the first polarity to the second polarity, and is finished before the common voltage is returned to the first polarity.
  • the display apparatus with a touch sensor which can avoid the influence of the noise resulting from the polarity inversion of the common voltage of a display apparatus, without using special circuits, such as a strobe signal generation circuit and a noise cut current signal generation circuit Can be provided.
  • FIG. 1 is a schematic diagram showing a configuration of a display device with a touch sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing, in particular, a connection relationship with a drive circuit and the like in the configuration of the display device with a touch sensor according to the first embodiment of the present invention.
  • FIG. 3 is a timing chart showing the relationship between the common voltage (COM voltage) applied to the counter electrode of the display panel, the horizontal synchronization signal, and the scan operation in the touch sensor circuit.
  • FIG. 4A is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the X direction is extracted from the transparent conductive film of the touch sensor unit.
  • FIG. 1 is a schematic diagram showing a configuration of a display device with a touch sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing, in particular, a connection relationship with a drive circuit and the like in the configuration of the display device with a touch sensor according to the first
  • FIG. 4B is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the Y direction is extracted from the transparent conductive film of the touch sensor unit.
  • FIG. 4C is a schematic diagram illustrating the entire configuration of the transparent conductive film of the touch sensor unit.
  • FIG. 5 is a circuit diagram showing an internal configuration of the touch sensor circuit.
  • FIG. 6 is a flowchart illustrating an example of the operation of the touch sensor circuit.
  • FIG. 7 is a timing chart showing the relationship between the common voltage (COM voltage) applied to the counter electrode of the display panel, the horizontal synchronization signal, and the scan operation in the touch sensor circuit.
  • COM voltage common voltage
  • a display device with a touch sensor includes a display panel having an active matrix substrate including a plurality of pixel electrodes, a display medium layer, and a counter substrate including a counter electrode facing the plurality of pixel electrodes. And a display panel driving circuit for supplying a display signal voltage to the plurality of pixel electrodes and supplying a common voltage with periodic inversion of polarity to the counter electrode, and a display panel driving circuit disposed on the counter substrate side surface of the display panel And a touch sensor unit having a plurality of sensor electrodes whose electrical characteristics change when touched by a contact body, and a signal voltage corresponding to the electrical characteristics of the connected sensor electrodes are sequentially connected to each of the sensor electrodes and output.
  • a sensor output readout circuit, a sensor control circuit for supplying a control signal to the sensor output readout circuit, and a signal output from the sensor output readout circuit A coordinate calculation circuit that detects a position touched by the contact body in the touch sensor unit based on pressure, and the sensor control circuit sequentially outputs the sensor output readout circuit to all the sensor electrodes of the touch sensor unit.
  • the scan operation of connecting and outputting the signal voltage is started after the common voltage is switched from the first polarity to the second polarity, and is ended before the common voltage is returned to the first polarity.
  • the common voltage is switched from the first polarity to the second polarity in the scan operation in which the sensor output readout circuit is sequentially connected to all the sensor electrodes of the touch sensor unit to output the signal voltage.
  • the scanning operation and the polarity reversal of the common voltage do not occur at the same time by starting after the scanning and ending before the common voltage returns to the first polarity.
  • a display device with a sensor can be provided.
  • the display device with a touch sensor may be configured such that the polarity of the common voltage is inverted every horizontal period, or the configuration where the polarity of the common voltage is inverted every two horizontal periods. There may be.
  • the sensor electrode includes a first sensor electrode group in which a plurality of sensor electrodes are arranged in the first axis direction of the coordinate in the touch sensor unit, and a first coordinate of the coordinate in the touch sensor unit.
  • FIG 1 and 2 are schematic views showing the configuration of the display device 20 with a touch sensor according to the first embodiment of the present invention.
  • a display device 20 with a touch sensor includes an active matrix type (for example, TFT type) display panel 10, a touch sensor unit 7, and a drive circuit 14 that supplies various signals to the display panel 10. And a touch sensor circuit 16.
  • the drive circuit 14 is connected to a source driver 12a and a gate driver 12b via an FPC (flexible circuit board) 13.
  • the source driver 12a and the gate driver 12b may be mounted as a chip on the active matrix substrate 8 of the display panel 10, or may be formed monolithically on the active matrix substrate 8.
  • a video signal, a horizontal synchronization signal H SYNC , a vertical synchronization signal V SYNC , a clock signal CLK (pixel clock), and the like are input to the drive circuit 14 via an external interface (I / F).
  • the clock signal CLK may be generated by a PLL circuit inside the drive circuit 14, for example.
  • the touch sensor circuit 16 is supplied with a vertical synchronization signal V SYNC , a horizontal synchronization signal H SYNC , and, if necessary, a clock signal CLK via the drive circuit 14 or directly from the outside.
  • the display panel 10 has at least an active matrix substrate 8, a counter substrate 6, and a display medium layer 4 disposed between these substrates.
  • the active matrix substrate 8 has a TFT array layer 3 including switching elements such as TFTs and wirings on the glass substrate 2.
  • the active matrix substrate 8 has a plurality of pixel electrodes arranged in a matrix.
  • the display medium layer 4 is, for example, a liquid crystal layer.
  • the counter substrate 6 has a color filter (not shown) and a counter electrode 5 formed on the entire surface of the substrate.
  • a polarizing plate is provided on at least one surface of the display panel 10.
  • the first polarizing plate 1 (polarizer) is provided on the back side (the side opposite to the observer) of the active matrix substrate 8.
  • a second polarizing plate (not shown) as an analyzer may be provided on the counter substrate 6 side.
  • the display panel 10 is provided with the color filter and the second polarizing plate.
  • the color filter and the second polarizing plate may be arranged on the viewer side of the touch sensor unit 7.
  • the display panel 10 is provided with various optical members such as a phase difference plate and a lens sheet as necessary.
  • the touch sensor unit 7 is disposed on the front surface (observer side) of the display panel 10.
  • the touch sensor unit 7 includes, for example, a touch sensor substrate made of glass or transparent plastic, and a transparent conductive film provided on the surface of the touch sensor substrate.
  • the transparent conductive film is formed in a predetermined pattern by a well-known thin film forming technique such as sputtering.
  • the material of the transparent conductive film is, for example, indium / tin oxide (ITO), indium / zinc oxide (IZO), tin oxide (NESA), or zinc oxide.
  • ITO indium / tin oxide
  • IZO indium / zinc oxide
  • NESA tin oxide
  • zinc oxide zinc oxide.
  • the material of the transparent conductive film and the film formation method are not particularly limited to the examples described here, and various materials and film formation methods can be used.
  • the touch sensor unit 7 may be adhered to the surface of the display panel 10 with an adhesive or the like without a gap, or may be mounted with a gap (air layer). At this time, the transparent conductive film of the touch sensor unit 7 may be disposed on the display panel 10 side, and conversely, the touch sensor substrate may be disposed on the display panel 10 side.
  • the touch sensor unit 7 may have a configuration without the touch sensor substrate.
  • the touch sensor unit 7 in this case can be realized by directly forming a transparent conductive film on the outer surface of the display panel 10 on the viewer side. According to this configuration, there is an advantage that the thickness of the entire display device with a touch sensor can be reduced.
  • the touch sensor unit 7 it is preferable to form a protective layer on the outermost surface on the viewer side regardless of whether or not the touch sensor substrate is provided.
  • a protective layer for example, an inorganic thin film such as SiO 2 or SiNO X , a transparent resin coating, or a transparent resin film such as PET or TAC can be used.
  • the touch sensor unit 7 may be further subjected to antireflection processing and / or antifouling processing as necessary.
  • an active matrix type (for example, TFT type) liquid crystal display panel is used as the display panel 10.
  • the polarity of the common voltage supplied to the counter electrode 5 of the counter substrate 6 is inverted every certain period (for example, one horizontal synchronization period). This is to prevent a DC voltage from being applied to the liquid crystal layer as the display medium layer 4 and to reduce the breakdown voltage required for the gate driver and the source driver.
  • FIG. 3 is a diagram illustrating an example of a time change of the common voltage (COM voltage) applied to the counter electrode 5 of the display panel 10.
  • the example of FIG. 3 is so-called line inversion driving in which the polarity (positive and negative) of the common voltage is inverted every horizontal synchronization period.
  • the present invention is not limited to this, and can be applied to so-called two-line inversion driving or the like in which the polarity of the common voltage is inverted every two horizontal synchronization periods.
  • FIG. 3 illustrates a common voltage waveform in which the absolute value of the positive voltage and the absolute value of the negative voltage are the same.
  • the absolute value of the positive voltage of the common voltage is not necessarily equal to the absolute value of the negative voltage.
  • the polarity of the common voltage is inverted from positive to negative or from negative to positive in synchronization with the fall of the horizontal synchronization signal (H SYNC ) (switch from high level to low level). To do.
  • H SYNC horizontal synchronization signal
  • the scan operation of the electrode pattern (sensor electrode) in the touch sensor unit 7 inverts the polarity of the common voltage. To avoid timing, it starts after the fall of one horizontal sync signal and ends before the rise of the next horizontal sync signal. This scanning operation will be described in detail later.
  • FIG. 4A is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the X direction is extracted from the transparent conductive film of the touch sensor unit 7.
  • FIG. 4B is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the Y direction is extracted from the transparent conductive film of the touch sensor unit 7.
  • FIG. 4C is a schematic diagram illustrating the entire configuration of the transparent conductive film of the touch sensor unit 7.
  • the transparent conductive film for detecting the touch position in the Y direction is illustrated with a sand pattern for convenience in order to easily distinguish it from the transparent conductive film in the X direction. did. That is, the actual transparent electrode film does not have such a pattern.
  • the touch sensor unit 7 includes m electrode patterns 7X1, 7X2,... 7Xm (first sensor electrode group) in the X direction and n electrode patterns in the Y direction. 7Y1, 7Y2,... 7Yn (second sensor electrode group).
  • FIG. 4A and the like the illustration is simplified for easy understanding, but the number (m, n) of electrode patterns actually provided in the touch sensor unit 7 is necessary for the touch sensor unit 7. It is determined according to the sensor resolution.
  • the touch sensor unit 7 of the present embodiment determines the X coordinate of the touch position by the electrode patterns 7X1, 7X2,... 7Xm, and determines the Y coordinate of the touch position by the electrode patterns 7Y1, 7Y2,.
  • the X-direction electrode patterns 7X1, 7X2,... 7Xm and at least one of the Y-direction electrode patterns 7Y1, 7Y2, are arranged at such a density that the contact object simultaneously touches the book.
  • each of the electrode patterns 7X1 to 7Xm and the electrode patterns 7Y1 to 7Yn has a conductive wiring patterned in a plurality of rectangular shapes, and conductive wiring is arranged so that the vertices of the rectangles face each other. Through a pattern connected in series.
  • the conductive wiring may be formed of the same material as the conductive film or may be formed of another conductive material.
  • the conductive wiring is led out of the touch sensor unit 7 and connected to a sensor output readout circuit described later.
  • the X-direction electrode patterns 7X1, 7X2,... 7Xm and the Y-direction electrode patterns 7Y1, 7Y2,. Has been placed.
  • An insulating film is interposed between these wirings so as not to be electrically connected to the wirings.
  • the configuration of the conductive film of the touch sensor unit 7 is not limited to the example shown in FIG. 4C.
  • the electrode pattern in the X direction and the electrode pattern in the Y direction may be configured to overlap each other.
  • the electrode pattern in the X direction and the electrode pattern in the Y direction may be formed in different layers with the insulating film layer interposed therebetween.
  • an insulating film may be interposed at least between the X-direction electrode pattern and the Y-direction electrode pattern where these patterns overlap.
  • FIG. 5 is a circuit diagram showing an internal configuration of the touch sensor circuit 16.
  • the touch sensor circuit 16 includes a sensor output reading circuit 21, a coordinate calculation device 22, and a switch control device 23 (sensor control circuit).
  • the sensor output readout circuit 21 outputs signals representing the capacitances of the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,. Based on the output signal value from the sensor output readout circuit 21, the coordinate calculation device 22 is in a position where the contact body is in contact with the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,. Find the coordinates of.
  • the switch control device 23 controls the operation of the sensor output reading circuit 21 by supplying control signals to various switches of the sensor output reading circuit 21.
  • the sensor output readout circuit 21 includes a multiplexer 211, a compensation circuit 212, a charging circuit 213, and a current-voltage conversion circuit 214.
  • the multiplexer 211 selectively connects the outputs from the electrode patterns 7X1, 7X2,... 7Xm of the touch sensor unit 7 and the electrode patterns 7Y1, 7Y2,. That is, the multiplexer 211 divides one sensor cycle into (m + n) periods and selects one electrode pattern in one period. Selection of the electrode pattern in the multiplexer 211 is controlled by a selection signal Smp supplied from the switch control device 23.
  • the charging circuit 213 includes switching elements SW1 and SW2.
  • the switching element SW1 switches connection and disconnection between the terminal T1 of the charging circuit 213 and the current-voltage conversion circuit 214.
  • the switching element SW2 switches connection and disconnection between the terminal T1 and the ground voltage. Switching of the switching elements SW1 and SW2 is controlled by control signals Sa and Sb supplied from the switch control device 23.
  • the compensation circuit 212 includes a capacitor Cc and switching elements SW6 and SW7.
  • the switching element SW6 switches between connection and non-connection between one terminal of the capacitor Cc and a power supply terminal to which a voltage (V 0 + V REF ⁇ 2) is applied.
  • Switching element SW7 switches connection and disconnection between one terminal of capacitor Cc and switching element SW1 of charging circuit 213.
  • the other terminal of the capacitor Cc is held at the ground potential.
  • the capacitance of the capacitor Cc is set to the same capacitance as the parasitic capacitance Ca formed between the electrode pattern of the touch sensor unit 7 and the terminal T1 of the charging circuit 213.
  • the compensation circuit 212 supplies the same current i3 to the touch sensor unit 7 via the switching element SW1 in order to compensate the current i3 flowing through the parasitic capacitance Ca.
  • the current-voltage conversion circuit 214 includes a capacitor C1, a differential amplifier OP1, and switching elements SW3, SW4, SW5.
  • the capacitor C1 functions as a charge storage unit for storing charges.
  • One terminal of the capacitor C1 is connected to one of the two input terminals of the differential amplifier OP1.
  • the other input terminal of the differential amplifier OP1 is connected to a power supply terminal VS1 to which a voltage VREF is applied.
  • the other terminal of the capacitor C1 is connected to the output terminal of the differential amplifier OP1.
  • the switching element SW3 switches between connection and non-connection between the terminal of the capacitor C1 on the side connected to the input terminal of the differential amplifier OP1 and the power supply terminal VS1 to which the voltage VREF is applied.
  • the switching element SW4 switches between connection and non-connection between both terminals of the capacitor C1. Switching of the switching elements SW3 and SW4 is controlled by a control signal Sc supplied from the switch control device 23.
  • the switching element SW5 switches between connection and non-connection between the output terminal of the differential amplifier OP1 and the coordinate calculation device 22. Switching of the switching element SW5 is controlled by a control signal Sd supplied from the switch control device 23.
  • the coordinate calculation device 22 includes a contact position detection circuit 222.
  • the contact position detection circuit 222 calculates the coordinates of the position touched by the pen, finger, etc. based on the output signal from the terminal T3 of the current-voltage conversion circuit 214.
  • the switch control device 23 turns on the switching elements SW2, SW3, SW4, and SW6 and turns off the switching elements SW1, SW5, and SW7.
  • the voltage at the terminal T1 is set to V 0 (ground voltage)
  • the potential difference between both terminals of the capacitor Cc is set to V 0 + 2V REF .
  • both terminals of the capacitor C1 are set to the same voltage VREF .
  • the potential difference between both terminals of the capacitor C1 is 0V.
  • the switch control device 23 turns on the switching elements SW1, SW5 and SW7 and turns off the switching elements SW2, SW3, SW4 and SW6.
  • the capacitor C1 and the electrode pattern selected by the multiplexer 211 among the electrode patterns of the touch sensor unit 7 are connected.
  • a contact body such as a finger or a pen is in contact with the electrode pattern
  • a current flows through the contact body, and the amount of charge accumulated in the capacitor C1 changes.
  • the current i3 flowing through the parasitic capacitance Ca is compensated by the same current i3 flowing from the capacitor Cc.
  • the differential amplifier OP1 outputs a voltage signal corresponding to the amount of charge accumulated in the capacitor C1.
  • the terminal T3 of the current-voltage conversion circuit 214 has different voltages depending on whether or not the contact body is in contact with the electrode pattern of the touch sensor unit 7 and the difference in the dielectric constant of the contact body. A signal is output.
  • the coordinate calculation device 22 can detect whether or not the contact body is in contact with the electrode pattern of the touch sensor unit 7 in accordance with the output signal from the terminal T3 of the current-voltage conversion circuit 214. For example, the value of the output signal from the terminal T3 of the current-voltage conversion circuit 214 when nothing is in contact with the electrode pattern of the touch sensor unit 7 is measured and stored in advance, and the value and the value of the output signal are stored. The presence or absence of contact can be detected.
  • the coordinate calculation device 22 includes a memory (not shown) that stores the value of the output signal from the terminal T3 of the current-voltage conversion circuit 214.
  • the multiplexer 211 includes the X-direction electrode patterns 7X1, 7X2, ... 7Xm and the Y-direction electrode patterns 7Y1, 7Y2, ... 7Yn in one sensor cycle (one scan).
  • a total of (m + n) electrode patterns are sequentially selected.
  • (m + n) signal values are obtained as output signals from the terminal T3 of the current-voltage conversion circuit 214 in one sensor cycle.
  • the coordinate calculation device 22 detects the contact position by the contact body based on these (m + n) signal values.
  • the electrode pattern 7X1 is in contact with the electrode patterns 7X1, 7X2,... 7Xm in the X direction and the electrode pattern 7Y1 in the Y direction is also in contact
  • a finger, a pen, or the like is in contact with the vicinity of the intersection of the electrode pattern 7X1 and the electrode pattern 7Y1 in the Y direction.
  • the number of contact points detected in one sensor cycle is not limited to one.
  • FIG. 6 is a flowchart showing an example of the operation of the touch sensor circuit 16.
  • step S1 As shown in FIG. 6, when the power is turned on, the operation of the touch sensor circuit 16 starts. First, various initial values are set (step S1).
  • the multiplexer 211 sequentially selects the X-direction electrode patterns 7X1, 7X2,... 7Xm in accordance with the control signal Smp from the switch control device 23. Thereby, these electrode patterns are sequentially connected to the charging circuit 213, whereby m output signal values corresponding to the capacitance of each electrode pattern are obtained (step S2).
  • the m output signal values obtained in step S2 are stored in a memory (not shown) inside or outside the coordinate calculation device 22.
  • the multiplexer 211 sequentially selects the electrode patterns 7Y1, 7Y2,... 7Yn in the Y direction according to the control signal Smp from the switch control device 23. Accordingly, these electrode patterns are sequentially connected to the charging circuit 213, whereby n output signal values corresponding to the capacitance of each electrode pattern are obtained (step S3).
  • the n output signal values obtained in step S3 are stored in a memory (not shown) inside or outside the coordinate calculation device 22.
  • the contact position detection circuit 222 compares each of the (m + n) output signal values obtained as described above with a predetermined threshold value, thereby touching the contact body.
  • the coordinates of the position are obtained (step S4).
  • the predetermined threshold value is obtained by adding a margin as necessary to the output signal value of the sensor output readout circuit 21 when nothing is in contact with the electrode pattern, for example.
  • the polarity of the common voltage (COM voltage) supplied to the counter electrode 5 is not switched between the processes of steps S2 and S3.
  • one scan cycle is performed in the COM cycle.
  • the number (m + n) of electrode patterns and the resolution of output data of the sensor output readout circuit 21 are set so as to be completed within the voltage inversion cycle. More precisely, for example, the multiplexer 211 starts selecting the first electrode pattern 7X1 among the above (m + n) electrode patterns after the pulse 51 of the horizontal synchronization signal shown in FIG. 3 falls. The selection of the last electrode pattern 7Yn is completed before the next pulse 52 of the pulse 51 falls.
  • the time required to read out signals from all of the (m + n) electrode patterns depends on the number (m + n) of these electrode patterns and the resolution of the output data from the sensor output readout circuit 21. For example, when the output data of the sensor output readout circuit 21 is 12 bits (4096 gradations), it takes longer to read the signal from the electrode pattern than when the output data is 8 bits (256 gradations). Become.
  • the touch sensor circuit 16 avoids the moment when the polarity of the common voltage (COM voltage) supplied to the counter electrode 5 is switched, and the electrode patterns 7X1, 7X2,... 7Xm, 7Y1, 7Y2,. ⁇ Acquire the output signal value from 7Yn. As a result, the signal value output from the touch sensor circuit 16 does not include noise caused by the polarity inversion of the COM voltage.
  • the example in which the polarity of the COM voltage is inverted every horizontal synchronization period has been described.
  • the polarity of the COM voltage is determined every two horizontal synchronization periods.
  • Implementation as a configuration such as inversion driving is also possible.
  • selection of the first electrode pattern 7X1 among the above (m + n) electrode patterns is started.
  • the selection of the last electrode pattern 7Yn may be completed before the second pulse 54 falls.
  • the configuration in which the contact position is detected by utilizing the change in the capacitance of the electrode pattern when a finger, a pen, or the like comes into contact is illustrated.
  • the configuration of the touch sensor unit is not limited to such a capacitive coupling method, and any other method can be applied.
  • the present invention is not limited to a contact type sensor, and the present invention can be applied to a sensor that electrically or optically detects that a finger, a pen, or the like is in proximity.
  • the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,... 7Yn are sequentially selected in one sensor cycle using one multiplexer. . That is, in the above description, a configuration in which one sensor output readout circuit 21 is provided in the touch sensor circuit 16 is illustrated. However, one sensor output readout circuit 21 may be provided for each of the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,. According to this configuration, it is possible to scan the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,.
  • the present invention can be used industrially as a display device with a touch sensor.

Abstract

Disclosed is a display device that has a touch sensor and that, without using a special circuit, can avoid the effect of noise caused by polarity inversion of a common voltage of the display device. The display device with a touch sensor is provided with: a sensor output read circuit (21) that is sequentially connected to a plurality of sensor electrodes of a touch sensor unit (7) and that outputs a signal voltage in accordance with the electrical properties of each electrode; a sensor control circuit (23) that supplies a control signal to the sensor output read circuit (21); and a coordinate computation circuit (22) that detects a touch position on the basis of the aforementioned signal voltages. The sensor control circuit (23) starts a scan operation—which sequentially connects the sensor output read circuit (21) to all of the sensor electrodes of the touch sensor unit (7) and causes the output of the aforementioned signal voltages—after the common voltage has switched from a first polarity to a second polarity, and ends said operation before the common voltage reverts to the first polarity.

Description

タッチセンサ付き表示装置Display device with touch sensor
 本発明は、指等が接触した位置を検出することができるタッチセンサを備えた表示装置に関する。 The present invention relates to a display device including a touch sensor that can detect a position where a finger or the like is in contact.
 従来、ディスプレイの前面(観察者側)にタッチセンサ(「タッチパネル」ともいう。)が設けられたタッチセンサ付き表示装置が、様々な用途に用いられている。タッチセンサは、指やペン等が接触した箇所の位置を検出することにより、操作指示やデータ入力を可能とする入力装置である。位置検出の方式としては、静電容量結合方式、抵抗膜方式、赤外線方式、超音波方式および電磁誘導/結合方式などが知られている。 Conventionally, display devices with a touch sensor in which a touch sensor (also referred to as a “touch panel”) is provided on the front surface (observer side) of a display are used for various purposes. The touch sensor is an input device that enables an operation instruction and data input by detecting the position of a part touched by a finger, a pen, or the like. As a position detection method, a capacitive coupling method, a resistive film method, an infrared method, an ultrasonic method, an electromagnetic induction / coupling method, and the like are known.
 タッチセンサを表示装置と一体的に使用する場合、タッチセンサが表示装置からのノイズを受け、タッチセンサの位置検出精度が低下することが問題になっている。例えば、表示装置が液晶パネルを利用したものである場合、液晶パネルの対向電極に印加される共通電圧に起因して、タッチセンサの位置検出用導電膜に誘起電圧が発生する。この誘起電圧が、ノイズの原因となる。 When the touch sensor is used integrally with the display device, the touch sensor receives noise from the display device, and the position detection accuracy of the touch sensor is lowered. For example, when the display device uses a liquid crystal panel, an induced voltage is generated in the position detection conductive film of the touch sensor due to a common voltage applied to the counter electrode of the liquid crystal panel. This induced voltage causes noise.
 このようなノイズを除去するための構成が、例えば特開2006-146895号公報に開示されている。前記特許文献に開示されたタッチセンサ付き表示装置は、ストローブ信号生成回路と、ノイズカット電流信号生成回路とを備えている。ストローブ信号生成回路は、対向電極に供給される共通電圧の極性反転の周期に同期したストローブ信号を生成する。ノイズカット電流信号生成回路は、ストローブ信号に基づいて、タッチセンサ部に接続された端子から流れる電流から所定の部分を除いたノイズカット電流信号を生成する。 A configuration for removing such noise is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-146895. The display device with a touch sensor disclosed in the patent document includes a strobe signal generation circuit and a noise cut current signal generation circuit. The strobe signal generation circuit generates a strobe signal synchronized with the polarity inversion period of the common voltage supplied to the counter electrode. The noise cut current signal generation circuit generates a noise cut current signal obtained by removing a predetermined portion from a current flowing from a terminal connected to the touch sensor unit based on the strobe signal.
 この従来の構成によれば、共通電圧の周期的な極性反転に起因して位置検出用導電膜の出力電流に生じるノイズが、ストローブ信号を用いて除去される。これにより、タッチセンサ出力のSN比が改善され、位置検出精度が向上する。 According to this conventional configuration, noise generated in the output current of the position detection conductive film due to the periodic polarity inversion of the common voltage is removed using the strobe signal. Thereby, the SN ratio of the touch sensor output is improved, and the position detection accuracy is improved.
 しかしながら、上記従来の構成は、ストローブ信号生成回路とノイズカット電流信号生成回路という、ノイズ除去用の専用回路を必要とするので、構造が複雑になる。 However, the above-described conventional configuration requires a dedicated circuit for noise removal, which is a strobe signal generation circuit and a noise cut current signal generation circuit, and thus the structure becomes complicated.
 本発明の目的は、ストローブ信号生成回路やノイズカット電流信号生成回路を用いずに、表示装置の共通電圧の極性反転に起因するノイズの影響を回避できる、タッチセンサ付き表示装置を提供することである。 An object of the present invention is to provide a display device with a touch sensor that can avoid the influence of noise caused by polarity inversion of the common voltage of the display device without using a strobe signal generation circuit or a noise cut current signal generation circuit. is there.
 上記の目的を達成するために、ここに開示するタッチセンサ付き表示装置は、複数の画素電極を備えるアクティブマトリクス基板と、表示媒体層と、前記複数の画素電極に対向する対向電極を備える対向基板とを有する表示パネルと、前記複数の画素電極に表示信号電圧を供給するとともに、前記対向電極に極性の周期的な反転を伴う共通電圧を供給する表示パネル駆動回路と、前記表示パネルの対向基板側の表面に配置され、接触体が触れたときに電気特性が変化するセンサ電極を複数備えたタッチセンサ部と、前記センサ電極のそれぞれに順次接続され、接続されたセンサ電極の電気特性に応じた信号電圧を出力するセンサ出力読出回路と、前記センサ出力読出回路へ制御信号を供給するセンサ制御回路と、前記センサ出力読出回路から出力される信号電圧に基づいて、前記タッチセンサ部において前記接触体が触れた位置を検出する座標演算回路とを備え、前記センサ制御回路が、前記タッチセンサ部のセンサ電極の全てへ前記センサ出力読出回路を順次接続して前記信号電圧を出力させるスキャン動作を、前記共通電圧が第1の極性から第2の極性へ切り替わった後に開始させ、前記共通電圧が第1の極性へ戻る前に終了させる。 In order to achieve the above object, a display device with a touch sensor disclosed herein includes an active matrix substrate including a plurality of pixel electrodes, a display medium layer, and a counter substrate including a counter electrode facing the pixel electrodes. A display panel that supplies a display signal voltage to the plurality of pixel electrodes and supplies a common voltage with periodic inversion of polarity to the counter electrode, and a counter substrate of the display panel A touch sensor unit having a plurality of sensor electrodes that are arranged on the surface on the side and whose electrical characteristics change when touched by a contact body, and the sensor electrodes are sequentially connected to the sensor electrodes according to the electrical characteristics of the connected sensor electrodes. A sensor output readout circuit for outputting a signal voltage, a sensor control circuit for supplying a control signal to the sensor output readout circuit, and the sensor output readout circuit A coordinate calculation circuit that detects a position touched by the contact body in the touch sensor unit based on the output signal voltage, and the sensor control circuit outputs the sensor output to all of the sensor electrodes of the touch sensor unit. A scanning operation for sequentially connecting readout circuits to output the signal voltage is started after the common voltage is switched from the first polarity to the second polarity, and is finished before the common voltage is returned to the first polarity. Let
 本発明によれば、ストローブ信号生成回路やノイズカット電流信号生成回路等の特別な回路を用いずに、表示装置の共通電圧の極性反転に起因するノイズの影響を回避できる、タッチセンサ付き表示装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the display apparatus with a touch sensor which can avoid the influence of the noise resulting from the polarity inversion of the common voltage of a display apparatus, without using special circuits, such as a strobe signal generation circuit and a noise cut current signal generation circuit Can be provided.
図1は、本発明の一実施形態にかかるタッチセンサ付き表示装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a display device with a touch sensor according to an embodiment of the present invention. 図2は、本発明の第1の実施形態にかかるタッチセンサ付き表示装置の構成において、特に、駆動回路等との接続関係を示す模式図である。FIG. 2 is a schematic diagram showing, in particular, a connection relationship with a drive circuit and the like in the configuration of the display device with a touch sensor according to the first embodiment of the present invention. 図3は、表示パネルの対向電極に印加される共通電圧(COM電圧)と、水平同期信号と、タッチセンサ用回路におけるスキャン動作との関係を示すタイミング図である。FIG. 3 is a timing chart showing the relationship between the common voltage (COM voltage) applied to the counter electrode of the display panel, the horizontal synchronization signal, and the scan operation in the touch sensor circuit. 図4Aは、タッチセンサ部の透明導電膜において、X方向におけるタッチ位置を検出するための透明導電膜のみを抽出し、その構成例を示す模式図である。FIG. 4A is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the X direction is extracted from the transparent conductive film of the touch sensor unit. 図4Bは、タッチセンサ部の透明導電膜において、Y方向におけるタッチ位置を検出するための透明導電膜のみを抽出し、その構成例を示す模式図である。FIG. 4B is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the Y direction is extracted from the transparent conductive film of the touch sensor unit. 図4Cは、タッチセンサ部の透明導電膜の全体構成を示す模式図である。FIG. 4C is a schematic diagram illustrating the entire configuration of the transparent conductive film of the touch sensor unit. 図5は、タッチセンサ用回路の内部構成を示す回路図である。FIG. 5 is a circuit diagram showing an internal configuration of the touch sensor circuit. 図6は、タッチセンサ用回路の動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of the operation of the touch sensor circuit. 図7は、表示パネルの対向電極に印加される共通電圧(COM電圧)と、水平同期信号と、タッチセンサ用回路におけるスキャン動作との関係を示すタイミング図である。FIG. 7 is a timing chart showing the relationship between the common voltage (COM voltage) applied to the counter electrode of the display panel, the horizontal synchronization signal, and the scan operation in the touch sensor circuit.
 本発明の一実施形態にかかるタッチセンサ付き表示装置は、複数の画素電極を備えるアクティブマトリクス基板と、表示媒体層と、前記複数の画素電極に対向する対向電極を備える対向基板とを有する表示パネルと、前記複数の画素電極に表示信号電圧を供給するとともに、前記対向電極に極性の周期的な反転を伴う共通電圧を供給する表示パネル駆動回路と、前記表示パネルの対向基板側の表面に配置され、接触体が触れたときに電気特性が変化するセンサ電極を複数備えたタッチセンサ部と、前記センサ電極のそれぞれに順次接続され、接続されたセンサ電極の電気特性に応じた信号電圧を出力するセンサ出力読出回路と、前記センサ出力読出回路へ制御信号を供給するセンサ制御回路と、前記センサ出力読出回路から出力される信号電圧に基づいて、前記タッチセンサ部において前記接触体が触れた位置を検出する座標演算回路とを備え、前記センサ制御回路が、前記タッチセンサ部のセンサ電極の全てへ前記センサ出力読出回路を順次接続して前記信号電圧を出力させるスキャン動作を、前記共通電圧が第1の極性から第2の極性へ切り替わった後に開始させ、前記共通電圧が第1の極性へ戻る前に終了させる。 A display device with a touch sensor according to an embodiment of the present invention includes a display panel having an active matrix substrate including a plurality of pixel electrodes, a display medium layer, and a counter substrate including a counter electrode facing the plurality of pixel electrodes. And a display panel driving circuit for supplying a display signal voltage to the plurality of pixel electrodes and supplying a common voltage with periodic inversion of polarity to the counter electrode, and a display panel driving circuit disposed on the counter substrate side surface of the display panel And a touch sensor unit having a plurality of sensor electrodes whose electrical characteristics change when touched by a contact body, and a signal voltage corresponding to the electrical characteristics of the connected sensor electrodes are sequentially connected to each of the sensor electrodes and output. A sensor output readout circuit, a sensor control circuit for supplying a control signal to the sensor output readout circuit, and a signal output from the sensor output readout circuit A coordinate calculation circuit that detects a position touched by the contact body in the touch sensor unit based on pressure, and the sensor control circuit sequentially outputs the sensor output readout circuit to all the sensor electrodes of the touch sensor unit. The scan operation of connecting and outputting the signal voltage is started after the common voltage is switched from the first polarity to the second polarity, and is ended before the common voltage is returned to the first polarity.
 この構成によれば、タッチセンサ部のセンサ電極の全てへ前記センサ出力読出回路を順次接続して前記信号電圧を出力させるスキャン動作を、前記共通電圧が第1の極性から第2の極性へ切り替わった後に開始させ、前記共通電圧が第1の極性へ戻る前に終了させることにより、スキャン動作と共通電圧の極性反転とが同時に起こらない。これにより、ノイズ除去用の専用回路を用いることなく、共通電圧の極性反転に伴うノイズを除去することが可能となる。 According to this configuration, the common voltage is switched from the first polarity to the second polarity in the scan operation in which the sensor output readout circuit is sequentially connected to all the sensor electrodes of the touch sensor unit to output the signal voltage. The scanning operation and the polarity reversal of the common voltage do not occur at the same time by starting after the scanning and ending before the common voltage returns to the first polarity. As a result, it is possible to remove noise associated with polarity inversion of the common voltage without using a dedicated circuit for noise removal.
 以上より、上記の構成によれば、ストローブ信号生成回路やノイズカット電流信号生成回路等の特別な回路を用いずに、表示装置の共通電圧の極性反転に起因するノイズの影響を回避できる、タッチセンサ付き表示装置を提供することができる。 As described above, according to the above configuration, it is possible to avoid the influence of noise caused by the polarity inversion of the common voltage of the display device without using a special circuit such as a strobe signal generation circuit or a noise cut current signal generation circuit. A display device with a sensor can be provided.
 また、本実施形態にかかるタッチセンサ付き表示装置は、前記共通電圧の極性が1水平期間毎に反転する構成であっても良いし、前記共通電圧の極性が2水平期間毎に反転する構成であっても良い。 The display device with a touch sensor according to the present embodiment may be configured such that the polarity of the common voltage is inverted every horizontal period, or the configuration where the polarity of the common voltage is inverted every two horizontal periods. There may be.
 また、本実施形態にかかるタッチセンサ付き表示装置において、前記センサ電極が、前記タッチセンサ部において座標の第1軸方向に複数並んだ第1のセンサ電極群と、前記タッチセンサ部において座標の第2軸方向に複数並んだ第2のセンサ電極群とを含み、前記座標演算回路が、前記センサ出力読出回路が前記第1のセンサ電極群に属するセンサ電極に接続された際に出力した信号電圧に基づいて、前記接触体が触れた位置の第1軸方向の座標を決定し、前記センサ出力読出回路が前記第2のセンサ電極群に属するセンサ電極に接続された際に出力した信号電圧に基づいて、前記接触体が触れた位置の第2軸方向の座標を決定する構成とすることが好ましい。
 [実施の形態]
In the display device with a touch sensor according to the present embodiment, the sensor electrode includes a first sensor electrode group in which a plurality of sensor electrodes are arranged in the first axis direction of the coordinate in the touch sensor unit, and a first coordinate of the coordinate in the touch sensor unit. A signal voltage output when the coordinate calculation circuit is connected to the sensor electrode belonging to the first sensor electrode group. To determine the coordinates in the first axis direction of the position touched by the contact body, and to the signal voltage output when the sensor output readout circuit is connected to the sensor electrodes belonging to the second sensor electrode group Based on this, it is preferable that the coordinates in the second axis direction of the position touched by the contact body be determined.
[Embodiment]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1および図2は、本発明の第1の実施形態にかかるタッチセンサ付き表示装置20の構成を示す模式図である。 1 and 2 are schematic views showing the configuration of the display device 20 with a touch sensor according to the first embodiment of the present invention.
 図1および図2に示すように、タッチセンサ付き表示装置20は、アクティブマトリクス型(例えばTFT型)の表示パネル10と、タッチセンサ部7と、表示パネル10に各種信号を供給する駆動回路14と、タッチセンサ用回路16とを備えている。 As shown in FIGS. 1 and 2, a display device 20 with a touch sensor includes an active matrix type (for example, TFT type) display panel 10, a touch sensor unit 7, and a drive circuit 14 that supplies various signals to the display panel 10. And a touch sensor circuit 16.
 駆動回路14は、FPC(フレキシブル回路基板)13を介して、ソースドライバ12aおよびゲートドライバ12bに接続されている。ソースドライバ12aおよびゲートドライバ12bは、表示パネル10のアクティブマトリクス基板8上にチップとして実装されていても良いし、アクティブマトリクス基板8上にモノリシックに形成されていても良い。 The drive circuit 14 is connected to a source driver 12a and a gate driver 12b via an FPC (flexible circuit board) 13. The source driver 12a and the gate driver 12b may be mounted as a chip on the active matrix substrate 8 of the display panel 10, or may be formed monolithically on the active matrix substrate 8.
 駆動回路14には、外部インターフェース(I/F)を介して、映像信号、水平同期信号HSYNC、垂直同期信号VSYNC、およびクロック信号CLK(画素クロック)等が入力される。なお、映像信号がアナログの場合には、クロック信号CLKを、例えば駆動回路14の内部でPLL回路によって生成してもよい。タッチセンサ用回路16には、駆動回路14を介して、あるいは外部から直接に、垂直同期信号VSYNC、水平同期信号HSYNC、および必要に応じてクロック信号CLKが供給される。 A video signal, a horizontal synchronization signal H SYNC , a vertical synchronization signal V SYNC , a clock signal CLK (pixel clock), and the like are input to the drive circuit 14 via an external interface (I / F). When the video signal is analog, the clock signal CLK may be generated by a PLL circuit inside the drive circuit 14, for example. The touch sensor circuit 16 is supplied with a vertical synchronization signal V SYNC , a horizontal synchronization signal H SYNC , and, if necessary, a clock signal CLK via the drive circuit 14 or directly from the outside.
 表示パネル10は、少なくとも、アクティブマトリクス基板8と、対向基板6と、これらの基板間に配置された表示媒体層4とを有している。 The display panel 10 has at least an active matrix substrate 8, a counter substrate 6, and a display medium layer 4 disposed between these substrates.
 アクティブマトリクス基板8は、ガラス基板2上に、TFT等のスイッチング素子や配線等を含むTFTアレイ層3を有している。また、アクティブマトリクス基板8は、マトリクス状に配置された複数の画素電極を有している。表示媒体層4は、例えば液晶層である。対向基板6は、カラーフィルタ(図示せず)と、基板全面に形成された対向電極5とを有している。なお、表示パネル10が、表示媒体層4として例えば液晶を用い、偏光を利用して表示を制御する表示パネルである場合は、表示パネル10の少なくとも一方の表面に偏光板が設けられる。図1の構成例では、アクティブマトリクス基板8の背面側(観察者とは反対側)に、第1偏光板1(偏光子)が設けられている。なお、偏光の種類によっては、検光子としての第2偏光板(図示せず)を対向基板6側に設けても良い。 The active matrix substrate 8 has a TFT array layer 3 including switching elements such as TFTs and wirings on the glass substrate 2. The active matrix substrate 8 has a plurality of pixel electrodes arranged in a matrix. The display medium layer 4 is, for example, a liquid crystal layer. The counter substrate 6 has a color filter (not shown) and a counter electrode 5 formed on the entire surface of the substrate. When the display panel 10 is a display panel that uses, for example, liquid crystal as the display medium layer 4 and controls display using polarized light, a polarizing plate is provided on at least one surface of the display panel 10. In the configuration example of FIG. 1, the first polarizing plate 1 (polarizer) is provided on the back side (the side opposite to the observer) of the active matrix substrate 8. Depending on the type of polarized light, a second polarizing plate (not shown) as an analyzer may be provided on the counter substrate 6 side.
 なお、上記の説明では、表示パネル10にカラーフィルタや第2偏光板を設けるものとしたが、カラーフィルタや第2偏光板をタッチセンサ部7の観察者側に配置した構成としても良い。また、この他に、表示パネル10には、位相差板やレンズシート等の各種の光学部材が、必要に応じて設けられる。 In the above description, the display panel 10 is provided with the color filter and the second polarizing plate. However, the color filter and the second polarizing plate may be arranged on the viewer side of the touch sensor unit 7. In addition to this, the display panel 10 is provided with various optical members such as a phase difference plate and a lens sheet as necessary.
 タッチセンサ部7は、表示パネル10の前面(観察者側)に配置されている。タッチセンサ部7は、例えばガラスまたは透明プラスチックからなるタッチセンサ基板と、このタッチセンサ基板の表面に設けられた透明導電膜とを有している。透明導電膜は、後に詳しく説明するが、スパッタ法などの周知の薄膜形成技術にて、所定のパターンに形成されている。透明導電膜の材料は、例えば、インジウム・錫酸化物(ITO)、インジウム・亜鉛酸化物(IZO)、酸化錫(NESA)、または、酸化亜鉛等である。耐熱性および耐久性の良好な透明導電膜を得るためには、Mgを含有するターゲットを用いて、スパッタ法にて成膜することが好ましい。しかし、透明導電膜の材料および成膜方法は、特にここに記載された例に限定されず、種々の材料および成膜方法を用いることができる。 The touch sensor unit 7 is disposed on the front surface (observer side) of the display panel 10. The touch sensor unit 7 includes, for example, a touch sensor substrate made of glass or transparent plastic, and a transparent conductive film provided on the surface of the touch sensor substrate. As will be described in detail later, the transparent conductive film is formed in a predetermined pattern by a well-known thin film forming technique such as sputtering. The material of the transparent conductive film is, for example, indium / tin oxide (ITO), indium / zinc oxide (IZO), tin oxide (NESA), or zinc oxide. In order to obtain a transparent conductive film having good heat resistance and durability, it is preferable to form a film by sputtering using a target containing Mg. However, the material of the transparent conductive film and the film formation method are not particularly limited to the examples described here, and various materials and film formation methods can be used.
 タッチセンサ部7は、表示パネル10の表面に、接着剤などを用いて間隙無く接着されても良いし、間隙(空気層)を設けて装着されても良い。このとき、タッチセンサ部7の透明導電膜を表示パネル10側に配置しても良いし、逆に、タッチセンサ基板を表示パネル10側に配置しても良い。 The touch sensor unit 7 may be adhered to the surface of the display panel 10 with an adhesive or the like without a gap, or may be mounted with a gap (air layer). At this time, the transparent conductive film of the touch sensor unit 7 may be disposed on the display panel 10 side, and conversely, the touch sensor substrate may be disposed on the display panel 10 side.
 なお、タッチセンサ部7は、前記のタッチセンサ基板を持たない構成としても良い。この場合のタッチセンサ部7は、表示パネル10の観察者側の外面に、透明導電膜を直接形成することによって実現できる。この構成によれば、タッチセンサ付き表示装置全体の厚さを薄くできるという利点がある。 Note that the touch sensor unit 7 may have a configuration without the touch sensor substrate. The touch sensor unit 7 in this case can be realized by directly forming a transparent conductive film on the outer surface of the display panel 10 on the viewer side. According to this configuration, there is an advantage that the thickness of the entire display device with a touch sensor can be reduced.
 タッチセンサ部7において、タッチセンサ基板を備える場合および備えない場合のいずれにおいても、観察者側の最表面に保護層を形成することが好ましい。保護層としては、例えば、SiOやSiNO等の無機薄膜、透明樹脂の塗膜、あるいは、PETやTAC等の透明樹脂フィルム等を用いることができる。タッチセンサ部7には、さらに、必要に応じて、反射防止処理および/または防汚処理を施してもよい。 In the touch sensor unit 7, it is preferable to form a protective layer on the outermost surface on the viewer side regardless of whether or not the touch sensor substrate is provided. As the protective layer, for example, an inorganic thin film such as SiO 2 or SiNO X , a transparent resin coating, or a transparent resin film such as PET or TAC can be used. The touch sensor unit 7 may be further subjected to antireflection processing and / or antifouling processing as necessary.
 本実施形態においては、表示パネル10として、アクティブマトリクス型(例えばTFT型)液晶表示パネルを用いる。表示パネル10においては、対向基板6の対向電極5に供給する共通電圧の極性が、一定周期(例えば1水平同期期間)毎に反転される。これは、表示媒体層4としての液晶層に直流電圧が印加されるのを防止するため、および、ゲートドライバやソースドライバに要求される耐圧を低減させるためである。 In the present embodiment, an active matrix type (for example, TFT type) liquid crystal display panel is used as the display panel 10. In the display panel 10, the polarity of the common voltage supplied to the counter electrode 5 of the counter substrate 6 is inverted every certain period (for example, one horizontal synchronization period). This is to prevent a DC voltage from being applied to the liquid crystal layer as the display medium layer 4 and to reduce the breakdown voltage required for the gate driver and the source driver.
 図3は、表示パネル10の対向電極5に印加される共通電圧(COM電圧)の時間変化の一例を示す図である。図3の例は、1水平同期期間毎に、共通電圧の極性(正および負)が反転する、いわゆるライン反転駆動である。ただし、本発明はこれに限定されず、2水平同期期間毎に共通電圧の極性が反転する、いわゆる2ライン反転駆動等にも適用できる。なお、図3には、共通電圧の正極性の電圧の絶対値と負極性の電圧の絶対値とが互いに等しい共通電圧波形を例示した。しかし、例えばTFT型液晶パネルの場合は、共通電圧の正極性の電圧の絶対値は、負極性の電圧の絶対値と必ずしも等しくない。 FIG. 3 is a diagram illustrating an example of a time change of the common voltage (COM voltage) applied to the counter electrode 5 of the display panel 10. The example of FIG. 3 is so-called line inversion driving in which the polarity (positive and negative) of the common voltage is inverted every horizontal synchronization period. However, the present invention is not limited to this, and can be applied to so-called two-line inversion driving or the like in which the polarity of the common voltage is inverted every two horizontal synchronization periods. FIG. 3 illustrates a common voltage waveform in which the absolute value of the positive voltage and the absolute value of the negative voltage are the same. However, in the case of a TFT liquid crystal panel, for example, the absolute value of the positive voltage of the common voltage is not necessarily equal to the absolute value of the negative voltage.
 図3に示すように、共通電圧の極性は、水平同期信号(HSYNC)の立ち下がり(ハイレベルからローレベルへの切り替わり)に同期して、正から負へ、または負から正へ、反転する。なお、このように対向電極5へ供給される共通電圧の極性が正から負へ、または負から正へ切り替わるときに、タッチセンサ部7に誘起電圧が生じ、タッチセンサ出力のノイズ成分となる。 As shown in FIG. 3, the polarity of the common voltage is inverted from positive to negative or from negative to positive in synchronization with the fall of the horizontal synchronization signal (H SYNC ) (switch from high level to low level). To do. When the polarity of the common voltage supplied to the counter electrode 5 switches from positive to negative or from negative to positive in this way, an induced voltage is generated in the touch sensor unit 7 and becomes a noise component of the touch sensor output.
 本実施形態においては、共通電圧の極性反転からの影響を回避するために、図3に示すように、タッチセンサ部7における電極パターン(センサ電極)のスキャン動作は、共通電圧の極性が反転するタイミングを避けるように、1つの水平同期信号の立ち下がり後に開始され、次の水平同期信号の立ち上がり時点の前に終了する。このスキャン動作については、後に詳しく説明する。 In this embodiment, in order to avoid the influence from the polarity inversion of the common voltage, as shown in FIG. 3, the scan operation of the electrode pattern (sensor electrode) in the touch sensor unit 7 inverts the polarity of the common voltage. To avoid timing, it starts after the fall of one horizontal sync signal and ends before the rise of the next horizontal sync signal. This scanning operation will be described in detail later.
 次に、本実施形態にかかるタッチセンサ部7の構成とその駆動動作について、さらに詳しく説明する。以下の説明では、タッチセンサ部7の長辺方向をX方向とし、それに直交する方向をY方向とする。図4Aは、タッチセンサ部7の透明導電膜において、X方向におけるタッチ位置を検出するための透明導電膜のみを抽出し、その構成例を示す模式図である。図4Bは、タッチセンサ部7の透明導電膜において、Y方向におけるタッチ位置を検出するための透明導電膜のみを抽出し、その構成例を示す模式図である。図4Cは、タッチセンサ部7の透明導電膜の全体構成を示す模式図である。なお、図4Bおよび図4Cにおいて、Y方向におけるタッチ位置を検出するための透明導電膜に対して、X方向の透明導電膜と区別しやすくするために、便宜的に砂地模様を付して図示した。すなわち、実際の透明電極膜にこのような模様があるわけではない。 Next, the configuration of the touch sensor unit 7 according to this embodiment and the driving operation thereof will be described in more detail. In the following description, the long side direction of the touch sensor unit 7 is the X direction, and the direction perpendicular to the X direction is the Y direction. FIG. 4A is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the X direction is extracted from the transparent conductive film of the touch sensor unit 7. FIG. 4B is a schematic diagram illustrating a configuration example in which only the transparent conductive film for detecting the touch position in the Y direction is extracted from the transparent conductive film of the touch sensor unit 7. FIG. 4C is a schematic diagram illustrating the entire configuration of the transparent conductive film of the touch sensor unit 7. 4B and 4C, the transparent conductive film for detecting the touch position in the Y direction is illustrated with a sand pattern for convenience in order to easily distinguish it from the transparent conductive film in the X direction. did. That is, the actual transparent electrode film does not have such a pattern.
 図4Aおよび図4Bに示すように、タッチセンサ部7は、X方向にm本の電極パターン7X1,7X2,・・・7Xm(第1のセンサ電極群)と、Y方向にn本の電極パターン7Y1,7Y2,・・・7Yn(第2のセンサ電極群)とを有している。なお、図4A等においては、説明を分かりやすくするために図示を簡略化しているが、実際にタッチセンサ部7に設けられる電極パターンの本数(m,n)は、タッチセンサ部7に必要とされるセンサ解像度に応じて決定される。本実施形態のタッチセンサ部7は、タッチ位置のX座標を電極パターン7X1,7X2,・・・7Xmによって決定し、タッチ位置のY座標を電極パターン7Y1,7Y2,・・・7Ynによって決定する。したがって、指やペン等の接触物が触れた場合に、X方向の電極パターン7X1,7X2,・・・7Xmの少なくとも一本と、Y方向の電極パターン7Y1,7Y2,・・・7Ynの少なくとも一本とに当該接触物が同時に触れる程度の密度で、これらの電極パターンが配置されていることが好ましい。 4A and 4B, the touch sensor unit 7 includes m electrode patterns 7X1, 7X2,... 7Xm (first sensor electrode group) in the X direction and n electrode patterns in the Y direction. 7Y1, 7Y2,... 7Yn (second sensor electrode group). In FIG. 4A and the like, the illustration is simplified for easy understanding, but the number (m, n) of electrode patterns actually provided in the touch sensor unit 7 is necessary for the touch sensor unit 7. It is determined according to the sensor resolution. The touch sensor unit 7 of the present embodiment determines the X coordinate of the touch position by the electrode patterns 7X1, 7X2,... 7Xm, and determines the Y coordinate of the touch position by the electrode patterns 7Y1, 7Y2,. Therefore, when a contact object such as a finger or a pen touches, at least one of the X-direction electrode patterns 7X1, 7X2,... 7Xm and at least one of the Y-direction electrode patterns 7Y1, 7Y2,. It is preferable that these electrode patterns are arranged at such a density that the contact object simultaneously touches the book.
 図4Aおよび図4Bに示すように、電極パターン7X1~7Xmおよび電極パターン7Y1~7Ynのそれぞれは、複数の矩形状にパターニングされた導電膜が、矩形の頂点同士が対向するように導電性配線を介して直列に接続されたパターンを有している。なお、この導電性配線は、導電膜と同じ材料で形成されていても良いし、他の導電材料で形成されていても良い。前記導電性配線は、図4Cに示すように、タッチセンサ部7の外部へ引き出され、後に説明するセンサ出力読出回路に接続される。 As shown in FIGS. 4A and 4B, each of the electrode patterns 7X1 to 7Xm and the electrode patterns 7Y1 to 7Yn has a conductive wiring patterned in a plurality of rectangular shapes, and conductive wiring is arranged so that the vertices of the rectangles face each other. Through a pattern connected in series. Note that the conductive wiring may be formed of the same material as the conductive film or may be formed of another conductive material. As shown in FIG. 4C, the conductive wiring is led out of the touch sensor unit 7 and connected to a sensor output readout circuit described later.
 図4Cに示す例では、X方向の電極パターン7X1,7X2,・・・7Xmの矩形部と、Y方向の電極パターン7Y1,7Y2,・・・7Ynの矩形部とが、互いに重なり合わないように配置されている。なお、電極パターン7X1,7X2,・・・7Xmの導電性配線と、電極パターン7Y1,7Y2,・・・7Ynの導電性配線との交差部では、X方向の導電性配線とY方向の導電性配線とが電気的に接続しないよう、これらの配線間に絶縁膜を介在させている。 In the example shown in FIG. 4C, the X-direction electrode patterns 7X1, 7X2,... 7Xm and the Y-direction electrode patterns 7Y1, 7Y2,. Has been placed. In addition, at the intersection of the conductive wiring of the electrode patterns 7X1, 7X2,... 7Xm and the conductive wiring of the electrode patterns 7Y1, 7Y2,. An insulating film is interposed between these wirings so as not to be electrically connected to the wirings.
 ただし、タッチセンサ部7の導電膜の構成は、図4Cに示した例に限定されない。例えば、X方向の電極パターンとY方向の電極パターンが、互いに重なりを持つ構成としても良い。この場合は、X方向の電極パターンとY方向の電極パターンとを、絶縁膜層を介して、異なる層に形成すれば良い。あるいは、X方向の電極パターンとY方向の電極パターンとの間において、少なくともこれらのパターンが重なる箇所に、絶縁膜を介在させても良い。 However, the configuration of the conductive film of the touch sensor unit 7 is not limited to the example shown in FIG. 4C. For example, the electrode pattern in the X direction and the electrode pattern in the Y direction may be configured to overlap each other. In this case, the electrode pattern in the X direction and the electrode pattern in the Y direction may be formed in different layers with the insulating film layer interposed therebetween. Alternatively, an insulating film may be interposed at least between the X-direction electrode pattern and the Y-direction electrode pattern where these patterns overlap.
 次に、タッチセンサ用回路16の構成について説明する。図5は、タッチセンサ用回路16の内部構成を示す回路図である。図5に示すように、タッチセンサ用回路16は、センサ出力読出回路21、座標演算装置22、およびスイッチ制御装置23(センサ制御回路)を備えている。 Next, the configuration of the touch sensor circuit 16 will be described. FIG. 5 is a circuit diagram showing an internal configuration of the touch sensor circuit 16. As shown in FIG. 5, the touch sensor circuit 16 includes a sensor output reading circuit 21, a coordinate calculation device 22, and a switch control device 23 (sensor control circuit).
 センサ出力読出回路21は、タッチセンサ部7の電極パターン7X1,7X2,・・・7Xmおよび電極パターン7Y1,7Y2,・・・7Ynの容量を表す信号を出力する。座標演算装置22は、センサ出力読出回路21からの出力信号値に基づいて、電極パターン7X1,7X2,・・・7Xmおよび電極パターン7Y1,7Y2,・・・7Ynに接触体が接触している位置の座標を求める。スイッチ制御装置23は、センサ出力読出回路21の各種スイッチ等へ制御信号を供給することにより、センサ出力読出回路21の動作を制御する。 The sensor output readout circuit 21 outputs signals representing the capacitances of the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,. Based on the output signal value from the sensor output readout circuit 21, the coordinate calculation device 22 is in a position where the contact body is in contact with the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,. Find the coordinates of. The switch control device 23 controls the operation of the sensor output reading circuit 21 by supplying control signals to various switches of the sensor output reading circuit 21.
 センサ出力読出回路21は、マルチプレクサ211、補償回路212、充電回路213、および電流-電圧変換回路214を備えている。 The sensor output readout circuit 21 includes a multiplexer 211, a compensation circuit 212, a charging circuit 213, and a current-voltage conversion circuit 214.
 マルチプレクサ211は、タッチセンサ部7の電極パターン7X1,7X2,・・・7Xmおよび電極パターン7Y1,7Y2,・・・7Ynからの出力を、充電回路213へ順次一つずつ選択的に接続する。すなわち、マルチプレクサ211は、1センササイクルを(m+n)個の期間に分割し、1期間に1つの電極パターンを選択する。マルチプレクサ211における電極パターンの選択は、スイッチ制御装置23から供給される選択信号Smpによって制御される。 The multiplexer 211 selectively connects the outputs from the electrode patterns 7X1, 7X2,... 7Xm of the touch sensor unit 7 and the electrode patterns 7Y1, 7Y2,. That is, the multiplexer 211 divides one sensor cycle into (m + n) periods and selects one electrode pattern in one period. Selection of the electrode pattern in the multiplexer 211 is controlled by a selection signal Smp supplied from the switch control device 23.
 充電回路213は、スイッチング素子SW1,SW2を備える。スイッチング素子SW1は、充電回路213の端子T1と電流-電圧変換回路214との間の接続と非接続とを切り替える。スイッチング素子SW2は、端子T1と接地電圧との間の接続と非接続とを切り替える。スイッチング素子SW1,SW2の切り替えは、スイッチ制御装置23から供給される制御信号Sa,Sbによって制御される。 The charging circuit 213 includes switching elements SW1 and SW2. The switching element SW1 switches connection and disconnection between the terminal T1 of the charging circuit 213 and the current-voltage conversion circuit 214. The switching element SW2 switches connection and disconnection between the terminal T1 and the ground voltage. Switching of the switching elements SW1 and SW2 is controlled by control signals Sa and Sb supplied from the switch control device 23.
 補償回路212は、キャパシタCcと、スイッチング素子SW6,SW7とを備える。スイッチング素子SW6は、キャパシタCcの一端子と、電圧(V+VREF×2)が印加された電源端子との間の接続と非接続とを切り替える。スイッチング素子SW7は、キャパシタCcの一端子と、充電回路213のスイッチング素子SW1との間の接続と非接続とを切り替える。キャパシタCcの他方の端子は、接地電位に保持されている。キャパシタCcの容量は、タッチセンサ部7の電極パターンと充電回路213の端子T1との間に形成される寄生容量Caと同じ容量に設定されている。補償回路212は、寄生容量Caに流れる電流i3を補償するために、同じ大きさの電流i3を、スイッチング素子SW1を介してタッチセンサ部7側へ供給する。 The compensation circuit 212 includes a capacitor Cc and switching elements SW6 and SW7. The switching element SW6 switches between connection and non-connection between one terminal of the capacitor Cc and a power supply terminal to which a voltage (V 0 + V REF × 2) is applied. Switching element SW7 switches connection and disconnection between one terminal of capacitor Cc and switching element SW1 of charging circuit 213. The other terminal of the capacitor Cc is held at the ground potential. The capacitance of the capacitor Cc is set to the same capacitance as the parasitic capacitance Ca formed between the electrode pattern of the touch sensor unit 7 and the terminal T1 of the charging circuit 213. The compensation circuit 212 supplies the same current i3 to the touch sensor unit 7 via the switching element SW1 in order to compensate the current i3 flowing through the parasitic capacitance Ca.
 電流-電圧変換回路214は、キャパシタC1と、差動増幅器OP1と、スイッチング素子SW3,SW4,SW5とを備えている。キャパシタC1は、電荷を蓄積するための電荷蓄積部として機能する。キャパシタC1の一端子は、差動増幅器OP1の2つの入力端のうちの一方に接続されている。差動増幅器OP1の他方の入力端は、電圧VREFが印加された電源端子VS1に接続されている。キャパシタC1の他方の端子は、差動増幅器OP1の出力端に接続されている。 The current-voltage conversion circuit 214 includes a capacitor C1, a differential amplifier OP1, and switching elements SW3, SW4, SW5. The capacitor C1 functions as a charge storage unit for storing charges. One terminal of the capacitor C1 is connected to one of the two input terminals of the differential amplifier OP1. The other input terminal of the differential amplifier OP1 is connected to a power supply terminal VS1 to which a voltage VREF is applied. The other terminal of the capacitor C1 is connected to the output terminal of the differential amplifier OP1.
 スイッチング素子SW3は、差動増幅器OP1の入力端に接続された側のキャパシタC1の端子と、電圧VREFが印加された電源端子VS1との間の接続と非接続とを切り替える。スイッチング素子SW4は、キャパシタC1の両端子間の接続と非接続とを切り替える。スイッチング素子SW3,SW4の切り替えは、スイッチ制御装置23から供給される制御信号Scによって制御される。 The switching element SW3 switches between connection and non-connection between the terminal of the capacitor C1 on the side connected to the input terminal of the differential amplifier OP1 and the power supply terminal VS1 to which the voltage VREF is applied. The switching element SW4 switches between connection and non-connection between both terminals of the capacitor C1. Switching of the switching elements SW3 and SW4 is controlled by a control signal Sc supplied from the switch control device 23.
 スイッチング素子SW5は、差動増幅器OP1の出力端と座標演算装置22との間の接続と非接続とを切り替える。スイッチング素子SW5の切り替えは、スイッチ制御装置23から供給される制御信号Sdによって制御される。 The switching element SW5 switches between connection and non-connection between the output terminal of the differential amplifier OP1 and the coordinate calculation device 22. Switching of the switching element SW5 is controlled by a control signal Sd supplied from the switch control device 23.
 座標演算装置22は、接触位置検出回路222を備える。接触位置検出回路222は、電流-電圧変換回路214の端子T3からの出力信号に基づいて、ペンや指等が触れた位置の座標を算出する。 The coordinate calculation device 22 includes a contact position detection circuit 222. The contact position detection circuit 222 calculates the coordinates of the position touched by the pen, finger, etc. based on the output signal from the terminal T3 of the current-voltage conversion circuit 214.
 以下、タッチセンサ用回路16による座標位置検出動作について説明する。 Hereinafter, the coordinate position detection operation by the touch sensor circuit 16 will be described.
 まず、スイッチ制御装置23は、スイッチング素子SW2、SW3、SW4およびSW6をON状態にするとともに、スイッチング素子SW1、SW5およびSW7をOFF状態にする。この状態では、端子T1の電圧はV(接地電圧)に設定され、キャパシタCcの両端子間の電位差はV+2VREFに設定される。また、キャパシタC1の両端子は同じ電圧VREFに設定される。このとき、キャパシタC1の両端子間の電位差は0Vになる。 First, the switch control device 23 turns on the switching elements SW2, SW3, SW4, and SW6 and turns off the switching elements SW1, SW5, and SW7. In this state, the voltage at the terminal T1 is set to V 0 (ground voltage), and the potential difference between both terminals of the capacitor Cc is set to V 0 + 2V REF . Further, both terminals of the capacitor C1 are set to the same voltage VREF . At this time, the potential difference between both terminals of the capacitor C1 is 0V.
 次に、スイッチ制御装置23は、スイッチング素子SW1、SW5およびSW7をON状態にするとともに、スイッチング素子SW2、SW3、SW4およびSW6をOFF状態にする。この状態では、キャパシタC1と、タッチセンサ部7の電極パターンのうち、マルチプレクサ211で選択された電極パターンとが接続される。このとき、電極パターンに指やペン等の接触体が接触していると、その接触体に電流が流れ、キャパシタC1に蓄積された電荷量が変化する。このとき、寄生容量Caに流れる電流i3は、キャパシタCcから流れる同じ大きさの電流i3により補償される。差動増幅器OP1は、キャパシタC1に蓄積されている電荷量に応じた電圧信号を出力する。これにより、電流-電圧変換回路214の端子T3からは、タッチセンサ部7の電極パターンに接触体が接触しているか否か、および接触体の誘電率等の違いに応じて、互いに異なる電圧の信号が出力されることとなる。 Next, the switch control device 23 turns on the switching elements SW1, SW5 and SW7 and turns off the switching elements SW2, SW3, SW4 and SW6. In this state, the capacitor C1 and the electrode pattern selected by the multiplexer 211 among the electrode patterns of the touch sensor unit 7 are connected. At this time, if a contact body such as a finger or a pen is in contact with the electrode pattern, a current flows through the contact body, and the amount of charge accumulated in the capacitor C1 changes. At this time, the current i3 flowing through the parasitic capacitance Ca is compensated by the same current i3 flowing from the capacitor Cc. The differential amplifier OP1 outputs a voltage signal corresponding to the amount of charge accumulated in the capacitor C1. Thereby, the terminal T3 of the current-voltage conversion circuit 214 has different voltages depending on whether or not the contact body is in contact with the electrode pattern of the touch sensor unit 7 and the difference in the dielectric constant of the contact body. A signal is output.
 したがって、座標演算装置22は、電流-電圧変換回路214の端子T3からの出力信号にしたがって、タッチセンサ部7の電極パターンに接触体が接触しているか否かを検知することができる。例えば、タッチセンサ部7の電極パターンに何も接触していない場合の電流-電圧変換回路214の端子T3からの出力信号の値を予め計測して記憶させておき、その値と出力信号の値とを比較することによって、接触の有無を検知することができる。 Therefore, the coordinate calculation device 22 can detect whether or not the contact body is in contact with the electrode pattern of the touch sensor unit 7 in accordance with the output signal from the terminal T3 of the current-voltage conversion circuit 214. For example, the value of the output signal from the terminal T3 of the current-voltage conversion circuit 214 when nothing is in contact with the electrode pattern of the touch sensor unit 7 is measured and stored in advance, and the value and the value of the output signal are stored. The presence or absence of contact can be detected.
 座標演算装置22は、電流-電圧変換回路214の端子T3からの出力信号の値を格納するメモリ(図示せず)を備えている。前述のように、マルチプレクサ211は、1センササイクル(1回のスキャン)において、X方向の電極パターン7X1,7X2,・・・7Xmと、Y方向の電極パターン7Y1,7Y2,・・・7Ynとの合計(m+n)本の電極パターンを順次選択する。これにより、1センササイクルにおいて、電流-電圧変換回路214の端子T3からの出力信号として、(m+n)個の信号値が得られる。座標演算装置22は、これら(m+n)個の信号値に基づいて、接触体による接触位置を検知する。例えば、X方向の電極パターン7X1,7X2,・・・7Xmのうち電極パターン7X1に接触があると判断され、かつ、Y方向の電極パターン7Y1にも接触があると判断された場合は、X方向の電極パターン7X1とY方向の電極パターン7Y1との交差点の近傍に、指やペン等が接触しているものと判断することができる。なお、1回のセンササイクルにおいて検出される接触点の数は1個に限定されない。 The coordinate calculation device 22 includes a memory (not shown) that stores the value of the output signal from the terminal T3 of the current-voltage conversion circuit 214. As described above, the multiplexer 211 includes the X-direction electrode patterns 7X1, 7X2, ... 7Xm and the Y-direction electrode patterns 7Y1, 7Y2, ... 7Yn in one sensor cycle (one scan). A total of (m + n) electrode patterns are sequentially selected. Thereby, (m + n) signal values are obtained as output signals from the terminal T3 of the current-voltage conversion circuit 214 in one sensor cycle. The coordinate calculation device 22 detects the contact position by the contact body based on these (m + n) signal values. For example, if it is determined that the electrode pattern 7X1 is in contact with the electrode patterns 7X1, 7X2,... 7Xm in the X direction and the electrode pattern 7Y1 in the Y direction is also in contact, It can be determined that a finger, a pen, or the like is in contact with the vicinity of the intersection of the electrode pattern 7X1 and the electrode pattern 7Y1 in the Y direction. Note that the number of contact points detected in one sensor cycle is not limited to one.
 次に、本実施形態にかかるタッチセンサ付き表示装置20における、表示パネル10の駆動動作とタッチセンサ部7の駆動動作とについて説明する。図6は、タッチセンサ用回路16の動作の一例を示すフローチャートである。 Next, the driving operation of the display panel 10 and the driving operation of the touch sensor unit 7 in the display device 20 with a touch sensor according to the present embodiment will be described. FIG. 6 is a flowchart showing an example of the operation of the touch sensor circuit 16.
 図6に示すように、電源がONされることにより、タッチセンサ用回路16の動作がスタートする。最初に、各種の初期値が設定される(ステップS1)。 As shown in FIG. 6, when the power is turned on, the operation of the touch sensor circuit 16 starts. First, various initial values are set (step S1).
 次に、センサ出力読出回路21において、スイッチ制御装置23からの制御信号Smpにしたがって、マルチプレクサ211が、X方向の電極パターン7X1,7X2,・・・7Xmを順次選択する。これにより、これらの電極パターンが充電回路213へ順次接続されることにより、各電極パターンの容量に応じた、m個の出力信号値が得られる(ステップS2)。ステップS2で得られたm個の出力信号値は、座標演算装置22の内部または外部のメモリ(図示せず)に格納される。 Next, in the sensor output readout circuit 21, the multiplexer 211 sequentially selects the X-direction electrode patterns 7X1, 7X2,... 7Xm in accordance with the control signal Smp from the switch control device 23. Thereby, these electrode patterns are sequentially connected to the charging circuit 213, whereby m output signal values corresponding to the capacitance of each electrode pattern are obtained (step S2). The m output signal values obtained in step S2 are stored in a memory (not shown) inside or outside the coordinate calculation device 22.
 引き続き、マルチプレクサ211は、スイッチ制御装置23からの制御信号Smpにより、Y方向の電極パターン7Y1,7Y2,・・・7Ynを順次選択する。これにより、これらの電極パターンが充電回路213へ順次接続されることにより、各電極パターンの容量に応じた、n個の出力信号値が得られる(ステップS3)。ステップS3で得られたn個の出力信号値は、座標演算装置22の内部または外部のメモリ(図示せず)に格納される。 Subsequently, the multiplexer 211 sequentially selects the electrode patterns 7Y1, 7Y2,... 7Yn in the Y direction according to the control signal Smp from the switch control device 23. Accordingly, these electrode patterns are sequentially connected to the charging circuit 213, whereby n output signal values corresponding to the capacitance of each electrode pattern are obtained (step S3). The n output signal values obtained in step S3 are stored in a memory (not shown) inside or outside the coordinate calculation device 22.
 以上のステップS2およびS3の処理により、前記メモリには、(m+n)個の出力信号値が格納されていることとなる。 (M + n) output signal values are stored in the memory by the processes of steps S2 and S3.
 次に、座標演算装置22において、接触位置検出回路222が、上述のように求められた(m+n)個の出力信号値のそれぞれと所定の閾値とを比較することにより、接触体が触れている位置の座標を求める(ステップS4)。ここで、前記所定の閾値とは、例えば、電極パターンに何も接触していない場合のセンサ出力読出回路21の出力信号値に、必要に応じてマージンを付加したものである。 Next, in the coordinate calculation device 22, the contact position detection circuit 222 compares each of the (m + n) output signal values obtained as described above with a predetermined threshold value, thereby touching the contact body. The coordinates of the position are obtained (step S4). Here, the predetermined threshold value is obtained by adding a margin as necessary to the output signal value of the sensor output readout circuit 21 when nothing is in contact with the electrode pattern, for example.
 以降、ステップS2~S4の処理を繰り返す。 Thereafter, steps S2 to S4 are repeated.
 なお、本実施形態では、ステップS2およびS3の処理の間に、対向電極5に供給される共通電圧(COM電圧)の極性の切り替わりが生じないように、言い換えると、1回のスキャンサイクルがCOM電圧の反転周期内に完了するように、電極パターンの本数(m+n)と、センサ出力読出回路21の出力データの解像度とが設定されている。より厳密には、マルチプレクサ211は、例えば、図3に示す水平同期信号のパルス51が立ち下がった後に、上述の(m+n)本の電極パターンのうちの、最初の電極パターン7X1の選択を開始し、このパルス51の次のパルス52が立ち下がる前に、最後の電極パターン7Ynの選択を終了する。 In the present embodiment, the polarity of the common voltage (COM voltage) supplied to the counter electrode 5 is not switched between the processes of steps S2 and S3. In other words, one scan cycle is performed in the COM cycle. The number (m + n) of electrode patterns and the resolution of output data of the sensor output readout circuit 21 are set so as to be completed within the voltage inversion cycle. More precisely, for example, the multiplexer 211 starts selecting the first electrode pattern 7X1 among the above (m + n) electrode patterns after the pulse 51 of the horizontal synchronization signal shown in FIG. 3 falls. The selection of the last electrode pattern 7Yn is completed before the next pulse 52 of the pulse 51 falls.
 なお、(m+n)本の電極パターンの全てから信号を読み出すために要する時間は、これらの電極パターンの本数(m+n)と、センサ出力読出回路21からの出力データの解像度とに依存する。例えば、センサ出力読出回路21の出力データが12ビット(4096階調)である場合は、出力データが8ビット(256階調)である場合よりも、電極パターンからの信号読み出しにかかる時間が長くなる。 Note that the time required to read out signals from all of the (m + n) electrode patterns depends on the number (m + n) of these electrode patterns and the resolution of the output data from the sensor output readout circuit 21. For example, when the output data of the sensor output readout circuit 21 is 12 bits (4096 gradations), it takes longer to read the signal from the electrode pattern than when the output data is 8 bits (256 gradations). Become.
 このように、タッチセンサ用回路16は、対向電極5に供給される共通電圧(COM電圧)の極性が切り替わる瞬間を避けて、電極パターン7X1,7X2,・・・7Xm,7Y1,7Y2,・・・7Ynからの出力信号値の取得を行う。これにより、タッチセンサ用回路16から出力される信号値は、COM電圧の極性反転に起因するノイズを含むことがない。 Thus, the touch sensor circuit 16 avoids the moment when the polarity of the common voltage (COM voltage) supplied to the counter electrode 5 is switched, and the electrode patterns 7X1, 7X2,... 7Xm, 7Y1, 7Y2,.・ Acquire the output signal value from 7Yn. As a result, the signal value output from the touch sensor circuit 16 does not include noise caused by the polarity inversion of the COM voltage.
 以上のとおり、本実施形態によれば、COM電圧の極性反転に起因するノイズを含まない、S/N比の高いタッチセンサ出力を得ることができる。 As described above, according to the present embodiment, it is possible to obtain a touch sensor output with a high S / N ratio that does not include noise due to polarity inversion of the COM voltage.
 なお、本実施形態においては、1水平同期期間毎にCOM電圧の極性が反転する例を示したが、例えば前述したように、2水平同期期間毎にCOM電圧の極性が判定する、いわゆる2ライン反転駆動等の構成としての実施も可能である。この場合は、図7に示すように、水平同期信号のパルス53が立ち下がった後に、上述の(m+n)本の電極パターンのうちの、最初の電極パターン7X1の選択を開始し、パルス53から2つ目のパルス54が立ち下がる前に、最後の電極パターン7Ynの選択を終了するようにすれば良い。 In the present embodiment, the example in which the polarity of the COM voltage is inverted every horizontal synchronization period has been described. For example, as described above, the polarity of the COM voltage is determined every two horizontal synchronization periods. Implementation as a configuration such as inversion driving is also possible. In this case, as shown in FIG. 7, after the pulse 53 of the horizontal synchronization signal falls, selection of the first electrode pattern 7X1 among the above (m + n) electrode patterns is started. The selection of the last electrode pattern 7Yn may be completed before the second pulse 54 falls.
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で、上述した各種の実施形態を適宜変形して実施することが可能である。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and various embodiments described above can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、上述の説明では、指やペン等が接触した際に電極パターンの容量が変化することを利用して、接触位置を検出する構成を例示した。しかし、タッチセンサ部の構成は、このような静電容量結合方式に限定されず、他の任意の方式を適用できる。また、接触式のセンサに限定されず、指やペン等が近接したことを電気的または光学的に検出するセンサにも、本発明を適用することができる。 For example, in the above description, the configuration in which the contact position is detected by utilizing the change in the capacitance of the electrode pattern when a finger, a pen, or the like comes into contact is illustrated. However, the configuration of the touch sensor unit is not limited to such a capacitive coupling method, and any other method can be applied. Further, the present invention is not limited to a contact type sensor, and the present invention can be applied to a sensor that electrically or optically detects that a finger, a pen, or the like is in proximity.
 また、上述の説明では、電極パターン7X1,7X2,・・・7Xmと、電極パターン7Y1,7Y2,・・・7Ynとを、1つのマルチプレクサを用いて、1センササイクルにおいて順次選択する構成を例示した。すなわち、上述の説明では、タッチセンサ用回路16に1つのセンサ出力読出回路21を備えた構成を例示した。しかし、電極パターン7X1,7X2,・・・7Xmと、電極パターン7Y1,7Y2,・・・7Ynとのそれぞれに対して、センサ出力読出回路21を1つずつ設けた構成としても良い。この構成によれば、電極パターン7X1,7X2,・・・7Xmと、電極パターン7Y1,7Y2,・・・7Ynとを同時並行的にスキャンすることが可能となる。 In the above description, the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,... 7Yn are sequentially selected in one sensor cycle using one multiplexer. . That is, in the above description, a configuration in which one sensor output readout circuit 21 is provided in the touch sensor circuit 16 is illustrated. However, one sensor output readout circuit 21 may be provided for each of the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,. According to this configuration, it is possible to scan the electrode patterns 7X1, 7X2,... 7Xm and the electrode patterns 7Y1, 7Y2,.
 本発明は、タッチセンサ付き表示装置として、産業上の利用が可能である。 The present invention can be used industrially as a display device with a touch sensor.

Claims (4)

  1.  複数の画素電極を備えるアクティブマトリクス基板と、表示媒体層と、前記複数の画素電極に対向する対向電極を備える対向基板とを有する表示パネルと、
     前記複数の画素電極に表示信号電圧を供給するとともに、前記対向電極に極性の周期的な反転を伴う共通電圧を供給する表示パネル駆動回路と、
     前記表示パネルの対向基板側の表面に配置され、接触体が触れたときに電気特性が変化するセンサ電極を複数備えたタッチセンサ部と、
     前記センサ電極のそれぞれに順次接続され、接続されたセンサ電極の電気特性に応じた信号電圧を出力するセンサ出力読出回路と、
     前記センサ出力読出回路へ制御信号を供給するセンサ制御回路と、
     前記センサ出力読出回路から出力される信号電圧に基づいて、前記タッチセンサ部において前記接触体が触れた位置を検出する座標演算回路とを備え、
     前記センサ制御回路が、前記タッチセンサ部のセンサ電極の全てへ前記センサ出力読出回路を順次接続して前記信号電圧を出力させるスキャン動作を、前記共通電圧が第1の極性から第2の極性へ切り替わった後に開始させ、前記共通電圧が第1の極性へ戻る前に終了させる、タッチセンサ付き表示装置。
    A display panel having an active matrix substrate including a plurality of pixel electrodes, a display medium layer, and a counter substrate including a counter electrode facing the plurality of pixel electrodes;
    A display panel drive circuit for supplying a display signal voltage to the plurality of pixel electrodes and supplying a common voltage with periodic inversion of polarity to the counter electrode;
    A touch sensor unit that includes a plurality of sensor electrodes that are arranged on the surface of the display panel on the counter substrate side and change electrical characteristics when touched by a contact;
    A sensor output readout circuit that is sequentially connected to each of the sensor electrodes and outputs a signal voltage corresponding to the electrical characteristics of the connected sensor electrodes;
    A sensor control circuit for supplying a control signal to the sensor output readout circuit;
    A coordinate calculation circuit that detects a position touched by the contact body in the touch sensor unit based on a signal voltage output from the sensor output readout circuit;
    In the scan operation in which the sensor control circuit sequentially connects the sensor output readout circuit to all the sensor electrodes of the touch sensor unit to output the signal voltage, the common voltage is changed from the first polarity to the second polarity. A display device with a touch sensor, which is started after switching and is ended before the common voltage returns to the first polarity.
  2.  前記共通電圧の極性が1水平期間毎に反転する、請求項1に記載のタッチセンサ付き表示装置。 The display device with a touch sensor according to claim 1, wherein the polarity of the common voltage is inverted every horizontal period.
  3.  前記共通電圧の極性が2水平期間毎に反転する、請求項1に記載のタッチセンサ付き表示装置。 The display device with a touch sensor according to claim 1, wherein the polarity of the common voltage is inverted every two horizontal periods.
  4.  前記センサ電極が、前記タッチセンサ部において座標の第1軸方向に複数並んだ第1のセンサ電極群と、前記タッチセンサ部において座標の第2軸方向に複数並んだ第2のセンサ電極群とを含み、
     前記座標演算回路が、前記センサ出力読出回路が前記第1のセンサ電極群に属するセンサ電極に接続された際に出力した信号電圧に基づいて、前記接触体が触れた位置の第1軸方向の座標を決定し、前記センサ出力読出回路が前記第2のセンサ電極群に属するセンサ電極に接続された際に出力した信号電圧に基づいて、前記接触体が触れた位置の第2軸方向の座標を決定する、請求項1~3のいずれか一項に記載のタッチセンサ付き表示装置。
    A first sensor electrode group in which a plurality of sensor electrodes are arranged in the first axis direction of coordinates in the touch sensor unit; and a second sensor electrode group in which a plurality of sensor electrodes are arranged in the second axis direction of coordinates in the touch sensor unit; Including
    Based on the signal voltage output by the coordinate calculation circuit when the sensor output readout circuit is connected to the sensor electrodes belonging to the first sensor electrode group, the position in the first axis direction of the position touched by the contact body is determined. Coordinates are determined, and based on the signal voltage output when the sensor output readout circuit is connected to the sensor electrodes belonging to the second sensor electrode group, the coordinates in the second axis direction of the position touched by the contact body The display device with a touch sensor according to any one of claims 1 to 3, wherein:
PCT/JP2011/057218 2010-04-01 2011-03-24 Display device with touch sensor WO2011125521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/636,722 US8823671B2 (en) 2010-04-01 2011-03-24 Display device with touch sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-085481 2010-04-01
JP2010085481 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125521A1 true WO2011125521A1 (en) 2011-10-13

Family

ID=44762475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057218 WO2011125521A1 (en) 2010-04-01 2011-03-24 Display device with touch sensor

Country Status (2)

Country Link
US (1) US8823671B2 (en)
WO (1) WO2011125521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130285979A1 (en) * 2012-04-27 2013-10-31 Hung-Ta LIU Touch device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356757B2 (en) * 2007-03-13 2009-11-04 セイコーエプソン株式会社 Liquid crystal device, electronic device and position specifying method
JP5726606B2 (en) * 2011-04-13 2015-06-03 株式会社ジャパンディスプレイ Display panel with touch detection function, driving method thereof, driving circuit, and electronic device
TWI456467B (en) * 2011-05-20 2014-10-11 Au Optronics Corp Operating method of capacitive touch panel and touch control barrier-type 3d display device
JP6004563B2 (en) 2012-04-19 2016-10-12 株式会社ジャパンディスプレイ Display device
KR20140106775A (en) * 2013-02-25 2014-09-04 삼성전자주식회사 Apparatus and method for touch sensing
CN104461201B (en) * 2014-12-11 2018-04-06 上海天马微电子有限公司 The driving method of touch control display apparatus and the touch control display apparatus
CN107491232B (en) * 2017-09-07 2020-07-31 京东方科技集团股份有限公司 Driving method and driving device of touch panel
US10684726B2 (en) * 2017-10-11 2020-06-16 Raydium Semiconductor Corporation Capacitive touch sensing circuit and charge compensation method thereof
CN115202513B (en) * 2022-07-28 2023-06-23 惠科股份有限公司 Compensation circuit, touch display screen and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139817A (en) * 2005-11-14 2007-06-07 Sharp Corp Display apparatus with touch panel, and apparatus and method for driving display apparatus
JP2009116489A (en) * 2007-11-05 2009-05-28 Epson Imaging Devices Corp Display device and electronic appliance
JP2009294903A (en) * 2008-06-05 2009-12-17 Casio Comput Co Ltd Display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146895A (en) 2004-10-22 2006-06-08 Sharp Corp Display device with touch sensor, and drive method for the same
WO2006043660A1 (en) 2004-10-22 2006-04-27 Sharp Kabushiki Kaisha Display device with touch sensor, and drive method for the device
WO2007026764A1 (en) * 2005-09-01 2007-03-08 Sharp Kabushiki Kaisha Display device
JP2007271781A (en) 2006-03-30 2007-10-18 Toshiba Matsushita Display Technology Co Ltd Display device with image capturing function
US8619054B2 (en) * 2006-05-31 2013-12-31 Atmel Corporation Two dimensional position sensor
JP4978453B2 (en) 2007-12-14 2012-07-18 セイコーエプソン株式会社 Sensing device, display device, and electronic device
JP5081020B2 (en) 2008-03-05 2012-11-21 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display with built-in optical sensor
US8314779B2 (en) * 2009-02-23 2012-11-20 Solomon Systech Limited Method and apparatus for operating a touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139817A (en) * 2005-11-14 2007-06-07 Sharp Corp Display apparatus with touch panel, and apparatus and method for driving display apparatus
JP2009116489A (en) * 2007-11-05 2009-05-28 Epson Imaging Devices Corp Display device and electronic appliance
JP2009294903A (en) * 2008-06-05 2009-12-17 Casio Comput Co Ltd Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130285979A1 (en) * 2012-04-27 2013-10-31 Hung-Ta LIU Touch device
US9367183B2 (en) * 2012-04-27 2016-06-14 Hung-Ta LIU Dual-mode touch device

Also Published As

Publication number Publication date
US20130021283A1 (en) 2013-01-24
US8823671B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
WO2011125522A1 (en) Display device with touch sensor
WO2011125521A1 (en) Display device with touch sensor
WO2011114900A1 (en) Touch sensor-equipped display device
US9977527B2 (en) Touch sensing device and method for driving the same
US10282018B2 (en) Display device
CN107451517B (en) Display device including sensor screen and driving method thereof
KR101398238B1 (en) Display device having touch screen panel
US9507460B2 (en) Touch sensing device, touch sensing circuit, data driving circuit, and display device driving method
US9058072B2 (en) Touch sensing apparatus and driving method thereof
KR101322015B1 (en) Liquid Crystal Display Device
WO2011114901A1 (en) Touch sensor-equipped display device
KR101321996B1 (en) Liquid Crystal Display Device And Method For Driving Thereof
CN107450766B (en) Mirror display and mirror display panel
US20130088444A1 (en) Method of driving touch display panel and touch display apparatus for performing the same
KR20150030539A (en) In cell touch liquid crystal display device
KR101493565B1 (en) Display having a touch sensor and driving method thereof
KR101678209B1 (en) Touch sensing deving and driving method thereof
KR20140023520A (en) Display device having touch sensor and method for driving the same
JP2019035842A (en) Display device
JP2014149770A (en) Driving method of sensor module and driving method of electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP