WO2011125375A1 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
WO2011125375A1
WO2011125375A1 PCT/JP2011/053632 JP2011053632W WO2011125375A1 WO 2011125375 A1 WO2011125375 A1 WO 2011125375A1 JP 2011053632 W JP2011053632 W JP 2011053632W WO 2011125375 A1 WO2011125375 A1 WO 2011125375A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
diamond
sliding member
base material
Prior art date
Application number
PCT/JP2011/053632
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 晋哉
昌一 中島
岡本 和孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011125375A1 publication Critical patent/WO2011125375A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/06Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • F16D2200/003Light metals, e.g. aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0038Surface treatment
    • F16D2250/0046Coating

Definitions

  • the present invention relates to a sliding member.
  • a diamond-like carbon film generally has a high hardness, a smooth surface, excellent friction resistance, and excellent low friction performance with a low coefficient of friction due to its solid lubricity.
  • the friction coefficient of the normal smooth steel surface is 0.5 or more, and the surface friction of conventional surface treatment materials such as Ni-P plating, Cr plating, TiN coating and CrN coating The coefficient is about 0.4.
  • the friction coefficient of the DLC film is about 0.1.
  • a light metal alloy such as an Al alloy is also effective for sliding parts for automobiles.
  • Patent Document 1 a lubricating oil composition containing an additive having an OH group is mixed in a rubber-like elastic body, and the content of hydrogen atoms on the surface of the inner member or outer member in sliding contact with the rubber-like elastic body is 0. 0.
  • a rubber bush is disclosed in which a hard carbon coating of 5 at% or less is coated, and the inner member or outer member has a surface roughness Rz of 5 ⁇ m or less.
  • Patent Document 2 discloses a hard material in which a nitrogen-containing chromium film and a carbon-containing chromium film are sequentially formed on the surface of a base material made of a non-ferrous material such as aluminum or an aluminum alloy, and a DLC film is formed as a hard film on the carbon-containing chromium film.
  • a film covering member is disclosed.
  • An object of the present invention is to improve wear resistance and corrosion resistance of a sliding member that comes into contact with an elastic resin member such as rubber among parts of industrial equipment such as automobiles that are required to be reduced in weight for environmental considerations. It is to reduce the coefficient of friction with the elastic resin member in contact.
  • a material in which a conductive layer, a buffer layer, and a diamond-like carbon layer are formed in this order from the substrate side on the surface of a substrate that is an aluminum alloy covered with an aluminum oxide layer is used as a sliding member.
  • the surface roughness Ra of the diamond-like carbon layer is 0.15 to 0.5 ⁇ m.
  • the wear resistance and corrosion resistance of the sliding member can be improved, the coefficient of friction with the elastic resin member in contact can be reduced, and the elastic resin member can be made hard to wear.
  • the hard carbon coating can be applied to a sliding member formed of an aluminum alloy (Al alloy) such as a machine part used in a lubrication environment with rubber.
  • Al alloy aluminum alloy
  • Improvement of the performance of sliding parts made of light metal alloys such as Al alloys is an important issue. For example, if a DLC film that is excellent in wear resistance and corrosion resistance, hardly wears off the rubber seal, and can control the friction coefficient with the rubber seal can be formed on the surface of the brake piston made of light metal alloy, the efficiency is high and the reliability is high. High cars can be provided.
  • the present inventor has developed a hard carbon coating that is excellent in wear resistance and corrosion resistance and that can control (reduce) the friction coefficient so as to make the elastic resin member such as rubber difficult to wear.
  • the sliding member is formed by sequentially laminating a conductive layer, a buffer layer, and a diamond-like carbon layer on the surface of a base material.
  • the base material includes an aluminum alloy and an aluminum oxide layer covering the aluminum alloy.
  • the buffer layer is a layer that improves adhesion to the substrate and supplements the hardness of the substrate.
  • the surface roughness Ra of the diamond-like carbon layer calculated in accordance with JIS B 0601 is 0.15 to 0.5 ⁇ m.
  • an inclined layer is provided between the buffer layer and the diamond-like carbon layer.
  • the graded layer is a mixture of carbon and metal or a metal carbide, and the metal content contained in the graded layer decreases from the substrate side toward the outside, and the carbon content contained in the graded layer is:
  • the metal increases from the substrate side toward the outside, and the metal is at least one selected from the group consisting of aluminum, chromium and titanium.
  • the surface hardness of the diamond-like carbon layer is 10 to 30 GPa.
  • the manufacturing method of the sliding member includes a step of forming a conductive layer by sputtering or ion plating on the surface of an aluminum alloy covered with an aluminum oxide layer and applying a bias voltage to the substrate.
  • a buffer layer to supplement the hardness of the substrate
  • a gradient layer on the surface of the buffer layer
  • the bias voltage refers to a voltage applied to the substrate on which the film is formed. Specifically, the voltage is applied to the base material to attract the sputtered particles generated by sputtering of the target to the base material. The hardness and density of the coating changes depending on the level of the bias voltage.
  • the target input power is the power input to the target when sputtering the target.
  • the film formation rate changes depending on the magnitude of this electric power.
  • FIG. 1 is a partial cross-sectional view showing an example of the structure of a sliding member.
  • the sliding member 10 shown in this figure has a coating 1 (hard carbon coating) formed on the surface of the substrate 2 by using unbalanced magnetron sputtering (UBMS method).
  • UBMS method unbalanced magnetron sputtering
  • the UBMS method intentionally breaks the balance of the magnetic poles arranged on the back side of the target at the center and the peripheral part of the target and makes it non-equilibrium.
  • This is a film forming method in which a part of the plasma extends to the substrate and the plasma that has converged in the vicinity of the target easily diffuses to the vicinity of the substrate along the lines of magnetic force. Therefore, it is possible to increase the amount of ions irradiated on the base material 2 during the formation of the coating film 1 shown in the figure, and as a result, the dense coating film 1 can be formed on the upper surface side of the base material 2.
  • the buffer layer 5 which improves the adhesiveness with the base material 2 in order from the base material 2 side to the base material 2 which formed the oxide film 3 (aluminum oxide layer) on the surface of the aluminum alloy 101 in order.
  • a diamond-like carbon layer 7 that supplements the hardness of the substrate 2 is formed. It is preferable to provide an inclined layer 6 between the buffer layer 5 and the diamond-like carbon layer 7 as shown in the figure.
  • the conductive layer 4 preferably contains one element selected from aluminum (Al), chromium (Cr), and titanium (Ti).
  • the buffer layer 5 preferably contains one kind of nitride selected from chromium nitride and titanium nitride.
  • An inclined layer 6 may be provided between the buffer layer 5 and the diamond-like carbon layer 7.
  • the inclined layer 6 is a mixture of carbon and metal or a metal carbide.
  • the content of the metal contained in the inclined layer 6 is configured to decrease from the substrate 2 side toward the outside.
  • the carbon content contained in the inclined layer 6 is configured to increase from the substrate 2 side toward the outside.
  • the metal is preferably one element selected from aluminum, chromium and titanium.
  • the diamond-like carbon layer 7 of the coating 1 preferably contains a mixture of sp 2 bonded carbon and sp 3 bonded carbon.
  • Hardness evaluation by the nanoindentation method was performed by pressing a Belkovic triangular pyramid indenter with a counter-edge angle of 115 degrees into the surface of the coating for 10 seconds to a maximum load of 3 mN, holding the maximum load for 1 second, and then for 10 seconds. It was performed under the condition of unloading.
  • the surface hardness of the coating 1 is preferably 10 GPa or more in order to suppress wear of the diamond-like carbon layer in sliding with the rubber, and preferably 30 GPa or less in order to suppress wear of the rubber.
  • FIG. 2 shows a reciprocating sliding tester (friction test device) for measuring the friction coefficient.
  • the friction test apparatus shown in this figure includes a movable work table 12 and a shaft 14 having a holder 18.
  • a vise 17 is installed on the upper surface of the work table 12, and the test piece 11 can be sandwiched and fixed by the vice 17.
  • a ball 13 is installed below the holder 18, and the ball 13 and the test piece 11 installed on the work table 12 are arranged to contact each other.
  • the ball 13 is a metal ball (made of high carbon chromium bearing steel, JIS SUJ2 ball) having a diameter of 1/2 inch wound with rubber.
  • Brake oil is applied as a lubricating oil 202 between the test piece 11 and the ball 13.
  • the ball 13 is fixed by a holder 18 so that it does not rotate or come off.
  • Weights 15 and 16 are installed on the shaft 14 so that the load applied from the ball 13 to the test piece 11 can be adjusted.
  • the metal used for the metal ball is steel used for the bearing, and the rubber is ethylene propylene diene rubber, but the material is not limited to these.
  • the friction test was performed in a lubricating state using a lubricating oil 202 in a normal temperature and humidity environment (room temperature: about 25 ° C., humidity: about 60% RH).
  • room temperature about 25 ° C.
  • humidity about 60% RH
  • the work table 12 was driven with respect to the ball 13 at a maximum sliding speed of 1 mm / sec and a stroke of 10 mm. Under the present circumstances, the frictional force which generate
  • the brake oil was used as the lubricating oil 202, it is not limited to this.
  • the sliding member is preferably used for a brake piston for automobiles as an example.
  • FIG. 1 is a partial cross-sectional view of a sliding member.
  • the sliding member 10 has a conductive layer 4, a buffer layer 5, an inclined layer 6, and a substrate 2 with the surface of an aluminum alloy 101 covered with an oxide film 3, outward from the substrate 2 side.
  • a coating 1 formed of a diamond-like carbon layer 7 is provided.
  • the aluminum alloy 101 is an Al—Mg—Si based alloy A6061-T6 material. Further, the surface roughness Ra of the substrate 2 is finished to be 0.15 ⁇ m.
  • the coating 1 is formed using the UBMS method.
  • the surface roughness Ra is an arithmetic average roughness, which is calculated in accordance with JIS B 0601.
  • the film 1 was formed under the conditions shown in FIG. 3A.
  • the horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
  • the conductive layer 4 containing chromium (Cr) as a main component is formed without applying a bias voltage while introducing an inert gas.
  • the chromium target input power is 1.5 kW
  • the carbon target input power is 0 kW.
  • an inert gas and a hydrocarbon gas are introduced until 70 minutes have elapsed from the start of film formation, and the gradient layer 6 is formed while applying a bias voltage of 50V.
  • a chromium carbide layer (chromium carbide layer) is formed, and thereafter, control is performed such that the power input to the chromium target gradually decreases and the power input to the carbon target gradually increases.
  • the chromium carbide constituting the chromium carbide layer there are types such as Cr 3 C 2, Cr 7 C 3, Cr 23 C 6, but is not limited thereto.
  • the diamond-like carbon layer 7 is formed while applying a bias voltage.
  • the bias voltage is set to the same value (50 V) as the bias voltage in the step of forming the previous inclined layer until 72 minutes have elapsed since the start of film formation. Thereafter, the bias voltage is gradually increased, and after 88 minutes from the start of film formation, the bias voltage is maintained at a constant value (100 V).
  • the chromium target input power is 0 kW
  • the carbon target input power is 3.0 kW.
  • a dense diamond-like carbon layer 7 is formed, and a surface layer of the coating film 1 having a high hardness can be formed.
  • the surface roughness Ra of the coating 1 is almost determined by the surface roughness of the substrate 2 before film formation when the coating 1 is thin, but when the coating 1 is thick, the coating 1 has a film thickness Ra. It increases in proportion to. Therefore, the surface roughness Ra of the coating 1 is controlled by the surface roughness of the substrate 2 before film formation and the film thickness of the coating 1.
  • the hardness of the diamond-like carbon layer 7 is controlled by adjusting the magnitude of the bias voltage.
  • the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
  • the hard carbon coating (coating 1) has higher adhesion as the base such as the substrate 2 has a higher hardness.
  • the film 1 is a laminated film including the conductive layer 4, the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7.
  • the buffer layer 5 improves the adhesion between the diamond-like carbon layer 7 and the base material 2 when the coating 1 is formed on the surface of the base material 2 formed of the soft aluminum alloy 101 as in this embodiment. And has a function of supplementing the hardness of the substrate 2.
  • the buffer layer 5 is preferably harder than the base material 2. In this embodiment, since the hardness of the substrate 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 is improved.
  • the adhesion of the diamond-like carbon layer 7 can be further improved.
  • ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
  • the thickness of the coating 1 was 1.7 ⁇ m
  • the surface roughness Ra was 0.19 ⁇ m
  • the hardness was 23 GPa.
  • the friction coefficient computed by the friction test was 0.28. This value of the friction coefficient is appropriate as the amount of slip between the coating 1 and the ball 13. Moreover, no abrasion was observed on the surface of the coating 1 after the friction test. Although the surface of the ball 13 was worn, the amount of wear was very small.
  • the sliding member of this example is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the mating member, and can control the friction coefficient. Further, when the sliding member of this embodiment is applied to an automobile, since the aluminum alloy 101 is used as the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. . Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .
  • the conductive layer 4 is Cr
  • the buffer layer 5 is CrN
  • the gradient layer 6 is Cr carbide.
  • the present invention is not limited to these. The same effect can be obtained when the conductive layer 4 is Ti or Al, the buffer layer 5 is TiN, and the inclined layer 6 is titanium carbide.
  • the buffer layer 5 may be formed of titanium carbide or Cr carbide (Cr 3 C 2 , Cr 7 C 3 , Cr 23 C 6, etc.).
  • sp 2 bonded carbon which is a carbon bond typified by graphite
  • sp 3 bonded carbon which is a carbon bond typified by diamond
  • the diamond-like carbon layer 7 is a film formed of amorphous carbon or hydrogenated carbon, and is also called amorphous carbon or hydrogenated amorphous carbon (aC: H).
  • the DLC film can be formed by plasma-depositing a hydrocarbon gas by plasma decomposition, a gas-phase synthesis method such as ion beam evaporation using carbon / hydrocarbon ions, or evaporating graphite by arc discharge.
  • An ion plating method for forming a film, a sputtering method for forming a film by sputtering a target in an inert gas atmosphere, or the like is used.
  • the coating film 1 formed in this embodiment imparts wear resistance and corrosion resistance to the sliding member, makes it difficult to wear the rubber of the mating member, and enables control of the friction coefficient. As a result, an appropriate amount of rubber slips in the presence of brake oil, and neither the coating nor the rubber wears, so that a highly reliable sliding member can be provided.
  • A6061-T6 material is used as the base material 2, but since the age hardening temperature is about 160 to 180 ° C., the temperature during the formation of the coating film 1 is set to be equal to or lower than the age hardening temperature. It is necessary to set the temperature condition so as to suppress the softening.
  • the buffer layer 5 containing CrN and the oxide film 3 on the surface of the substrate 2 are formed.
  • the inclined layer 6 is formed between the buffer layer 5 and the diamond-like carbon layer 7, first, a Cr carbide layer is formed, and then from the buffer layer 5 side toward the diamond-like carbon layer 7 side.
  • a Cr carbide layer is formed, and then from the buffer layer 5 side toward the diamond-like carbon layer 7 side.
  • a Cr carbide is a material constituting the gradient layer 6, expressed in Cr x C y, by varying the ratio of x and y gradually, diamond-like carbon layer composition from the side of the buffer layer 5 7 It is preferable to change gradually toward the side.
  • the coating 1 having high adhesion can be formed by designing the structure from the base material 2 to the diamond-like carbon layer 7 as described above.
  • the coating 1 is preferably formed by sputtering or ion plating which allows easy setting of conditions for designing the film as described above.
  • the configuration of the sliding member 10 is the same as that of the first embodiment, as shown in FIG.
  • the substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof.
  • the aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy.
  • the coating 1 is formed on the surface of the oxide film 3 using the UBMS method.
  • the coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside.
  • the surface roughness Ra of the coating 1 is finished to be 0.25 ⁇ m.
  • the coating 1 was formed under the conditions shown in FIG.
  • the horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
  • the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage.
  • a buffer layer 5 mainly composed of CrN is formed while a bias voltage is applied.
  • an inclined gas 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage.
  • the inclined layer 6 first, a Cr carbide layer (chromium carbide layer) is formed, and thereafter, the Cr target input power is gradually decreased and the carbon target input power is gradually increased.
  • a Cr carbide layer chromium carbide layer
  • the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
  • the buffer layer 5 is preferably harder than the substrate 2.
  • the hardness of the substrate 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 is improved.
  • the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved.
  • the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
  • ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
  • the film 1 had a thickness of 1.7 ⁇ m, a surface roughness Ra of 0.29 ⁇ m, and a hardness of 23 GPa.
  • the friction coefficient computed by the friction test was 0.21. This value of the friction coefficient is appropriate as the amount of slip between the coating 1 and the ball 13. Moreover, no abrasion was observed on the surface of the coating 1 after the friction test. Although wear was observed on the surface of the ball 13, the amount of wear was slight.
  • the sliding member of this example is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the mating member, and can control the friction coefficient. Further, when the sliding member of this embodiment is applied to an automobile, since the aluminum alloy 101 is used as the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. . Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .
  • the conductive layer 4 is Cr and the buffer layer 5 is CrN.
  • the present invention is not limited to these, and the same effect can be obtained when the conductive layer 4 is Al or Ti and the buffer layer 5 is TiN. .
  • the configuration of the sliding member 10 is the same as that of the first embodiment, as shown in FIG.
  • the substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof.
  • the aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy.
  • the coating 1 is formed on the surface of the oxide film 3 using the UBMS method.
  • the coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside.
  • the surface roughness Ra of the coating 1 is finished to be 0.15 ⁇ m.
  • the film 1 was formed under the conditions shown in FIG. 3B.
  • the horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
  • the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage while introducing an inert gas.
  • the chromium target input power is 1.5 kW
  • the carbon target input power is 0 kW.
  • the chromium target input power is 1.5 kW
  • the carbon target input power is 0 kW.
  • an inert gas and a hydrocarbon gas are introduced until 172 minutes have elapsed from the start of film formation, and the gradient layer 6 is formed while applying a bias voltage of 50V.
  • the inclined layer 6 first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases.
  • the bias voltage is set to the same value (50 V) as the bias voltage in the step of forming the previous inclined layer until 180 minutes have elapsed since the start of film formation. Thereafter, the bias voltage is gradually increased, and after 500 minutes have elapsed from the start of film formation, the bias voltage is maintained at a constant value (250 V). In this step, the chromium target input power is 0 kW, and the carbon target input power is 3.0 kW.
  • the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
  • the buffer layer 5 is preferably harder than the substrate 2.
  • the hardness of the substrate 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 is improved.
  • the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved.
  • the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
  • ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
  • the thickness of the coating 1 was 8.1 ⁇ m
  • the surface roughness Ra was 0.50 ⁇ m
  • the hardness was 30 GPa.
  • the friction coefficient computed by the friction test was 0.18. This value of the friction coefficient is appropriate as the amount of slip between the coating 1 and the ball 13. Moreover, no abrasion was observed on the surface of the coating 1 after the friction test. Although wear was observed on the surface of the ball 13, the amount of wear was slight.
  • the sliding member of this example is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the mating member, and can control the friction coefficient. Moreover, when the sliding member of an Example is applied to a motor vehicle, since the aluminum alloy 101 is used for the base material 2, it can reduce in weight as the whole motor vehicle, As a result, a low fuel consumption motor vehicle can be provided. Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .
  • the conductive layer 4 is Cr and the buffer layer 5 is CrN.
  • the present invention is not limited to these, and the same effect can be obtained when the conductive layer 4 is Al or Ti and the buffer layer 5 is TiN. .
  • FIG. 4 is a cross-sectional view showing an automobile brake piston according to an embodiment.
  • the brake piston in this figure is for a motorcycle, and the brake is operated by sandwiching the disc rotor 22 rotating coaxially with the wheels from the left and right with the inner brake pad 26 of the two stages of brake pads 24, 26.
  • This figure is a longitudinal sectional view seen from a direction parallel to the rotation direction of the wheel and the disk rotor 22, and the rotation direction of the disk rotor 22 is a direction perpendicular to the paper surface.
  • a piston 23, brake pads 24 and 26, and a seal 25 are accommodated in the cylinder bore 21.
  • the seal 25 is installed between the cylinder bore 21 and the piston 23 so as to prevent the brake oil 203 enclosed in the cylinder bore 21 from leaking out.
  • the substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof.
  • the aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy.
  • the coating 1 is formed on the surface of the oxide film 3 using the UBMS method.
  • the coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside.
  • the surface roughness Ra of the coating 1 is finished to 0.02 ⁇ m.
  • the coating 1 was formed under the conditions shown in FIG.
  • the horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
  • the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage.
  • a buffer layer 5 mainly composed of CrN is formed while a bias voltage is applied.
  • an inclined gas 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage.
  • the inclined layer 6 first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases.
  • the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
  • the buffer layer 5 is preferably harder than the substrate 2.
  • the hardness of the base material 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 is improved.
  • the adhesion of the diamond-like carbon layer 7 can be further improved.
  • the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
  • ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
  • the thickness of the coating 1 was 1.7 ⁇ m
  • the surface roughness Ra was 0.10 ⁇ m
  • the hardness was 23 GPa.
  • the friction coefficient calculated by the friction test was as high as 0.39. No abrasion was observed on the surface of the coating 1 after the friction test. On the other hand, large wear marks were observed on the surface of the ball 13.
  • the sliding member of this comparative example is excellent in wear resistance and corrosion resistance, but wears the rubber of the mating member, and does not reduce the friction coefficient.
  • the sliding member of this comparative example is applied to an automobile, since the aluminum alloy 101 is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided.
  • the amount of rollback at the time of braking increases, so that it is not possible to provide a brake with a good feeling at the time of braking.
  • the substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof.
  • the aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy.
  • the coating 1 is formed on the surface of the base material 2 covered with the oxide film 3 by using the UBMS method.
  • the coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside.
  • the surface roughness Ra of the coating 1 is finished to be 0.15 ⁇ m.
  • the film 1 was formed under the conditions shown in FIG. 3C.
  • the horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
  • the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage while introducing an inert gas.
  • the chromium target input power is 1.5 kW
  • the carbon target input power is 0 kW.
  • the chromium target input power is 1.5 kW
  • the carbon target input power is 0 kW.
  • an inert gas and a hydrocarbon gas are introduced until 70 minutes have elapsed from the start of film formation, and the gradient layer 6 is formed while applying a bias voltage of 50V.
  • the inclined layer 6 first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases.
  • an inert gas and a hydrocarbon gas are introduced until 130 minutes have elapsed from the start of film formation, and the diamond-like carbon layer 7 is formed while applying a bias voltage of 50V.
  • the chrome target input power is 0 kW and the carbon target input power is 3.0 kW.
  • the conductive layer 4 can be formed on the surface of the base material 2 having electrical insulation for the oxide film 3, so that the buffer layer 5, the gradient layer 6 and the diamond-like carbon layer 7 can be formed. It becomes possible.
  • the buffer layer 5 is preferably harder than the substrate 2.
  • the hardness of the base material 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 is improved.
  • the adhesion of the diamond-like carbon layer 7 can be further improved.
  • the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
  • ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
  • the film 1 had a thickness of 1.8 ⁇ m, a surface roughness Ra of 0.24 ⁇ m, and a hardness of 9 GPa. And the friction coefficient computed by the friction test was 0.24. Although wear was observed on the surface of the ball 13, the amount of wear was slight. On the other hand, wear was observed on the surface of the coating 1 after the friction test.
  • the sliding member of this comparative example is excellent in corrosion resistance and hardly wears the rubber of the mating member and can control the coefficient of friction, but has poor wear resistance.
  • the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided.
  • the coating 1 on the surface of the piston is worn away by long-term use, so that the base material 2 is exposed and the seal 25 and the piston 23 are easily slipped.
  • the amount of rollback during braking is reduced, the piston does not return to the initial position when braking is released, and the disc rotor 22 and the brake pad 24 are dragged, thereby providing a reliable brake. Can not.
  • ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
  • the friction coefficient was as low as 0.13.
  • the sliding amount between the sliding member and the ball 13 becomes excessive.
  • abrasion scratches were observed on the surface of the substrate 2 after the friction test. Although wear was observed on the surface of the ball 13, the amount of wear was slight.
  • the transfer of the abrasion powder of the base material 2 was observed on the surface of the ball 13.
  • the sliding member of this comparative example hardly wears the rubber of the mating member, but is inferior in wear resistance and corrosion resistance and cannot reduce the friction coefficient.
  • the sliding member of this comparative example is applied to an automobile, since the aluminum alloy 101 is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided.
  • the brake piston wears, and further, the amount of rollback at the time of braking decreases, and the piston does not return to the initial position when the brake is released. Causes dragging. For this reason, a reliable brake cannot be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Braking Arrangements (AREA)

Abstract

Among parts for industrial machines, such as automobiles, which are required to reduce in weight to be more environmentally friendly, there are sliding members which are brought into contact with resilient plastic members such as of rubber. Disclosed is a sliding member which has improved wear resistance and corrosion resistance as well as a reduced friction coefficient against the resilient plastic member in contact therewith. The sliding member includes a base (2) of an aluminum alloy (101) with a surface covered with an oxide film (3). On top of the surface, there is formed a coat (1) which is made up of a conductive layer (4), a buffer layer (5), a graded layer (6), and a diamond-like carbon layer (7) in that order outwardly from the base (2). The diamond-like carbon layer (7) has a surface roughness (Ra) of 0.15 to 0.5μm which is determined by calculation in conformity with JIS B 0601.

Description

摺動部材Sliding member
 本発明は、摺動部材に関する。 The present invention relates to a sliding member.
 ダイヤモンドライクカーボン膜(DLC膜)は、一般に、高硬度で表面が平滑であり、耐摩擦性に優れ、その固体潤滑性から低摩擦係数で優れた低摩擦性能を有している。そして、無潤滑環境下において、通常の平滑な鋼材表面の摩擦係数が0.5以上であり、従来の表面処理材であるNi-PめっきやCrめっき、TiNコーティングやCrNコーティング等の表面の摩擦係数が約0.4である。これに対して、DLC膜の摩擦係数は約0.1である。 A diamond-like carbon film (DLC film) generally has a high hardness, a smooth surface, excellent friction resistance, and excellent low friction performance with a low coefficient of friction due to its solid lubricity. In a non-lubricated environment, the friction coefficient of the normal smooth steel surface is 0.5 or more, and the surface friction of conventional surface treatment materials such as Ni-P plating, Cr plating, TiN coating and CrN coating The coefficient is about 0.4. On the other hand, the friction coefficient of the DLC film is about 0.1.
 これらの優れた特性を活かして、ドリル刃をはじめとする切削工具、研削工具等の加工治具や塑性加工用金型、バルブコックやキャプスタンローラのような無潤滑環境下で使用される摺動部材等への応用が図られている。一方、エネルギー消費や環境の面から可能な限りの機械的損失の低減が望まれている内燃機関などの機械部品においては、現在、潤滑油存在下での摺動が主流となっている。 Taking advantage of these excellent properties, machining tools such as drill blades, grinding tools, etc., metal molds for plastic working, slides used in non-lubricated environments such as valve cocks and capstan rollers. Application to moving members and the like is attempted. On the other hand, in mechanical parts such as an internal combustion engine in which reduction of mechanical loss as much as possible is desired from the viewpoint of energy consumption and environment, sliding in the presence of lubricating oil is currently the mainstream.
 また、自動車においては、環境への配慮から高効率化が求められている。そのため、構成部品の軽量化が必要となる。自動車用摺動部品にも、例えばAl合金等の軽金属合金が有効である。 In addition, automobiles are required to be highly efficient due to environmental considerations. Therefore, it is necessary to reduce the weight of the component parts. For example, a light metal alloy such as an Al alloy is also effective for sliding parts for automobiles.
 特許文献1には、ゴム状弾性体中にOH基を有する添加剤を含有する潤滑油組成物が混合され、ゴム状弾性体と摺接するインナ部材又はアウタ部材の表面に含有水素原子量が0.5at%以下の硬質炭素被膜が被覆され、インナ部材又はアウタ部材の表面粗さがRzで5μm以下であることを特徴とするゴムブッシュが開示されている。 In Patent Document 1, a lubricating oil composition containing an additive having an OH group is mixed in a rubber-like elastic body, and the content of hydrogen atoms on the surface of the inner member or outer member in sliding contact with the rubber-like elastic body is 0. 0. A rubber bush is disclosed in which a hard carbon coating of 5 at% or less is coated, and the inner member or outer member has a surface roughness Rz of 5 μm or less.
 特許文献2には、アルミニウム又はアルミニウム合金などの非鉄材料からなる母材の表面に窒素含有クロム被膜および炭素含有クロム被膜を順次形成し、炭素含有クロム被膜上に硬質被膜としてDLC被膜を形成する硬質皮膜被覆部材が開示されている。 Patent Document 2 discloses a hard material in which a nitrogen-containing chromium film and a carbon-containing chromium film are sequentially formed on the surface of a base material made of a non-ferrous material such as aluminum or an aluminum alloy, and a DLC film is formed as a hard film on the carbon-containing chromium film. A film covering member is disclosed.
特開2007-016830号公報JP 2007-016830 A 特開2009-161813号公報JP 2009-161813 A
 従来、表面が酸化膜で覆われたAl合金製の自動車用ブレーキピストンを用いた場合、ブレーキオイル存在下でもゴムシールとの滑りが悪いため、ロールバック(ブレーキの液圧解除時にピストンがゴムの弾性変形分により戻される現象)の量が大きくなり、制動時のフィーリングが悪いという課題があった。また、表面が平滑な硬質炭素被膜で覆われた自動車用ブレーキピストンを用いた場合、ブレーキオイル存在下でもゴムシールがピストンに吸着して滑りが悪くなるため、ロールバックの量が大きくなり、制動時のフィーリングが悪いという課題があった。 Conventionally, when an automotive brake piston made of an Al alloy whose surface is covered with an oxide film is used, slipping with the rubber seal is poor even in the presence of brake oil. There is a problem that the amount of the phenomenon (returned by the deformation) is increased and the feeling during braking is poor. In addition, when an automobile brake piston covered with a hard carbon coating with a smooth surface is used, the rubber seal is attracted to the piston even in the presence of brake oil, causing slippage. There was a problem that the feeling was bad.
 また、自動車用ブレーキピストンに鉄鋼材を用いた場合、ピストンに硬質炭素被膜を形成することによりゴムシールとの滑り量を適切なものとしロールバックの量を適切に制御できたとしても、重量が大きくなるため、自動車全体として高効率化が困難であるという課題があった。また、表面が酸化膜で覆われたAl合金基材に鉄鋼基材用硬質炭素被膜を形成(酸化膜の表面に、直接、ボンド層、傾斜層及びダイヤモンドライクカーボン層を形成)した場合、酸化膜が電気絶縁層であるため、硬質炭素被膜の形成にあたってバイアス電圧を印加することができない。そのため、硬質炭素被膜の基材との密着性が得られなかった。その結果、ブレーキオイル存在下でもゴムシールとの滑りが悪くなり、ロールバックの量が大きくなるため、制動時のフィーリングが悪いという課題があった。 Also, when steel materials are used for automobile brake pistons, even if the amount of sliding with the rubber seal can be made appropriate by forming a hard carbon coating on the piston and the amount of rollback can be controlled appropriately, the weight is large. Therefore, there is a problem that it is difficult to improve the efficiency of the entire automobile. In addition, when a hard carbon coating for a steel substrate is formed on an Al alloy substrate whose surface is covered with an oxide film (a bond layer, a gradient layer, and a diamond-like carbon layer are formed directly on the surface of the oxide film) Since the film is an electrically insulating layer, a bias voltage cannot be applied in forming the hard carbon film. For this reason, the adhesion of the hard carbon coating to the substrate was not obtained. As a result, slippage with the rubber seal is deteriorated even in the presence of brake oil, and the amount of rollback is increased.
 本発明の目的は、環境への配慮のために軽量化が求められる自動車等産業機器の部品のうち、ゴム等の弾性樹脂部材に接触する摺動部材について、耐摩耗性及び耐食性を向上するとともに、接触する弾性樹脂部材との摩擦係数を低減することにある。 An object of the present invention is to improve wear resistance and corrosion resistance of a sliding member that comes into contact with an elastic resin member such as rubber among parts of industrial equipment such as automobiles that are required to be reduced in weight for environmental considerations. It is to reduce the coefficient of friction with the elastic resin member in contact.
 本発明においては、酸化アルミニウム層で覆われたアルミニウム合金である基材の表面に導電層、バッファー層及びダイヤモンドライクカーボン層を基材の側から順に形成したものを摺動部材として用いる。ダイヤモンドライクカーボン層の表面粗度Raは、0.15~0.5μmである。 In the present invention, a material in which a conductive layer, a buffer layer, and a diamond-like carbon layer are formed in this order from the substrate side on the surface of a substrate that is an aluminum alloy covered with an aluminum oxide layer is used as a sliding member. The surface roughness Ra of the diamond-like carbon layer is 0.15 to 0.5 μm.
 本発明によれば、摺動部材の耐摩耗性及び耐食性を向上し、接触する弾性樹脂部材との摩擦係数を低減し、弾性樹脂部材を摩耗しにくくすることができる。 According to the present invention, the wear resistance and corrosion resistance of the sliding member can be improved, the coefficient of friction with the elastic resin member in contact can be reduced, and the elastic resin member can be made hard to wear.
実施例の摺動部材の構造を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the sliding member of an Example. 実施例の摺動部材の摩擦評価に使用した摩擦試験装置の要部断面図である。It is principal part sectional drawing of the friction test apparatus used for the friction evaluation of the sliding member of an Example. 実施例1及び2並びに比較例1における成膜条件を示すグラフである。5 is a graph showing film forming conditions in Examples 1 and 2 and Comparative Example 1. 実施例3における成膜条件を示すグラフである。6 is a graph showing film forming conditions in Example 3. 比較例2における成膜条件を示すグラフである。10 is a graph showing film forming conditions in Comparative Example 2. 実施例の自動車用ブレーキピストンを示す断面図である。It is sectional drawing which shows the brake piston for motor vehicles of an Example.
 硬質炭素被膜は、ゴムとの潤滑環境下で使用される機械部品等のアルミニウム合金(Al合金)で形成された摺動部材に適用可能である。 The hard carbon coating can be applied to a sliding member formed of an aluminum alloy (Al alloy) such as a machine part used in a lubrication environment with rubber.
 Al合金等の軽金属合金製の摺動部品の性能向上は重要な課題である。例えば、軽金属合金製のブレーキピストンの表面に、耐摩耗性及び耐食性に優れ、ゴムシールを摩耗させにくく、ゴムシールとの摩擦係数を制御できるDLC膜を形成することができれば、効率が高く、信頼性の高い自動車を提供することができる。 Improvement of the performance of sliding parts made of light metal alloys such as Al alloys is an important issue. For example, if a DLC film that is excellent in wear resistance and corrosion resistance, hardly wears off the rubber seal, and can control the friction coefficient with the rubber seal can be formed on the surface of the brake piston made of light metal alloy, the efficiency is high and the reliability is high. High cars can be provided.
 本発明者は、鋭意検討の結果、耐摩耗性及び耐食性に優れ、ゴム等の弾性樹脂部材を摩耗しにくくするように摩擦係数を制御(低減)することができる硬質炭素被膜を、軽量な基材であるアルミニウム合金等に形成する技術を開発した。 As a result of intensive studies, the present inventor has developed a hard carbon coating that is excellent in wear resistance and corrosion resistance and that can control (reduce) the friction coefficient so as to make the elastic resin member such as rubber difficult to wear. Developed technology for forming aluminum alloy and other materials.
 以下、本発明の一実施形態である摺動部材及びこれを用いた自動車用ブレーキピストン並びに摺動部材の製造方法について説明する。 Hereinafter, a sliding member which is an embodiment of the present invention, an automobile brake piston using the sliding member, and a manufacturing method of the sliding member will be described.
 前記摺動部材は、基材の表面に導電層、バッファー層及びダイヤモンドライクカーボン層を順に積層したものである。基材は、アルミニウム合金と、このアルミニウム合金を覆う酸化アルミニウム層とを含む。バッファー層は、基材との密着性を向上するとともに、基材の硬度を補う層である。JIS B 0601に準拠して算出したダイヤモンドライクカーボン層の表面粗度Raは、0.15~0.5μmである。 The sliding member is formed by sequentially laminating a conductive layer, a buffer layer, and a diamond-like carbon layer on the surface of a base material. The base material includes an aluminum alloy and an aluminum oxide layer covering the aluminum alloy. The buffer layer is a layer that improves adhesion to the substrate and supplements the hardness of the substrate. The surface roughness Ra of the diamond-like carbon layer calculated in accordance with JIS B 0601 is 0.15 to 0.5 μm.
 前記摺動部材においては、バッファー層とダイヤモンドライクカーボン層との間に傾斜層を設けてある。 In the sliding member, an inclined layer is provided between the buffer layer and the diamond-like carbon layer.
 傾斜層は、炭素及び金属の混合物又は金属の炭化物であり、傾斜層に含まれる金属の含有量は、基材の側から外側に向かって減少し、傾斜層に含まれる炭素の含有量は、基材の側から外側に向かって増加し、上記の金属は、アルミニウム、クロム及びチタンからなる群から選ばれる少なくとも1種である。 The graded layer is a mixture of carbon and metal or a metal carbide, and the metal content contained in the graded layer decreases from the substrate side toward the outside, and the carbon content contained in the graded layer is: The metal increases from the substrate side toward the outside, and the metal is at least one selected from the group consisting of aluminum, chromium and titanium.
 前記摺動部材においては、ダイヤモンドライクカーボン層の表面の硬度が10~30GPaである。 In the sliding member, the surface hardness of the diamond-like carbon layer is 10 to 30 GPa.
 前記摺動部材の製造方法は、酸化アルミニウム層で覆われたアルミニウム合金を基材とし、この基材の表面にスパッタリング或いはイオンプレーティングにより導電層を形成する工程と、基材にバイアス電圧を印加した状態で導電層の表面に基材との密着性を向上するとともに、基材の硬度を補うためのバッファー層を形成する工程と、このバッファー層の表面に傾斜層を形成する工程と、この傾斜層の表面にJIS B 0601に準拠して算出した表面粗度Raが0.15~0.5μmであるダイヤモンドライクカーボン層を形成する工程とを含む。 The manufacturing method of the sliding member includes a step of forming a conductive layer by sputtering or ion plating on the surface of an aluminum alloy covered with an aluminum oxide layer and applying a bias voltage to the substrate. In this state, while improving the adhesion with the substrate on the surface of the conductive layer, forming a buffer layer to supplement the hardness of the substrate, forming a gradient layer on the surface of the buffer layer, Forming a diamond-like carbon layer having a surface roughness Ra of 0.15 to 0.5 μm calculated on the surface of the inclined layer in accordance with JIS B 0601.
 ここで、バイアス電圧とは、成膜する基材に印加する電圧をいう。詳しくは、ターゲットのスパッタリングによって発生したスパッタ粒子を基材に引き付けるために基材に印加する電圧である。バイアス電圧の高低により、被膜の硬度や密度が変化する。 Here, the bias voltage refers to a voltage applied to the substrate on which the film is formed. Specifically, the voltage is applied to the base material to attract the sputtered particles generated by sputtering of the target to the base material. The hardness and density of the coating changes depending on the level of the bias voltage.
 また、ターゲット投入電力とは、ターゲットをスパッタする際にターゲットに入力する電力をいう。この電力の大小により、成膜レート(膜厚)が変化する。 Also, the target input power is the power input to the target when sputtering the target. The film formation rate (film thickness) changes depending on the magnitude of this electric power.
 以下、図面を参照して実施形態の概略を説明する。 Hereinafter, an outline of the embodiment will be described with reference to the drawings.
 図1は、摺動部材の構造の例を示す部分断面図である。 FIG. 1 is a partial cross-sectional view showing an example of the structure of a sliding member.
 本図に示す摺動部材10は、アンバランスト・マグネトロン・スパッタリング(UBMS法)を用いることにより基材2の表面に被膜1(硬質炭素被膜)を形成したものである。 The sliding member 10 shown in this figure has a coating 1 (hard carbon coating) formed on the surface of the substrate 2 by using unbalanced magnetron sputtering (UBMS method).
 ここで、UBMS法は、ターゲットの背面側に配置される磁極のバランスをターゲットの中心部と周縁部とで意図的に崩し、非平衡とすることにより、ターゲットの周縁部の磁極からの磁力線の一部を基材まで伸ばし、ターゲットの近傍に収束していたプラズマが磁力線に沿って基材の近傍まで拡散し易くする成膜方法である。したがって、本図に示す被膜1の形成中に基材2に照射されるイオン量を増やすことができ、結果として、基材2の上面側に緻密な被膜1を形成することができる。 Here, the UBMS method intentionally breaks the balance of the magnetic poles arranged on the back side of the target at the center and the peripheral part of the target and makes it non-equilibrium. This is a film forming method in which a part of the plasma extends to the substrate and the plasma that has converged in the vicinity of the target easily diffuses to the vicinity of the substrate along the lines of magnetic force. Therefore, it is possible to increase the amount of ions irradiated on the base material 2 during the formation of the coating film 1 shown in the figure, and as a result, the dense coating film 1 can be formed on the upper surface side of the base material 2.
 本図においては、アルミニウム合金101の表面に酸化膜3(酸化アルミニウム層)を形成した基材2に基材2の側から順に導電層4、基材2との密着性を向上するバッファー層5、及び基材2の硬度を補うダイヤモンドライクカーボン層7を形成してある。バッファー層5とダイヤモンドライクカーボン層7との間には、本図に示すように、傾斜層6を設けることが好ましい。 In this figure, the buffer layer 5 which improves the adhesiveness with the base material 2 in order from the base material 2 side to the base material 2 which formed the oxide film 3 (aluminum oxide layer) on the surface of the aluminum alloy 101 in order. And a diamond-like carbon layer 7 that supplements the hardness of the substrate 2 is formed. It is preferable to provide an inclined layer 6 between the buffer layer 5 and the diamond-like carbon layer 7 as shown in the figure.
 導電層4は、アルミニウム(Al)、クロム(Cr)及びチタン(Ti)から選ばれる1種類の元素を含むことが好ましい。 The conductive layer 4 preferably contains one element selected from aluminum (Al), chromium (Cr), and titanium (Ti).
 バッファー層5は、クロム窒化物及びチタン窒化物から選ばれる1種類の窒化物を含むことが好ましい。バッファー層5とダイヤモンドライクカーボン層7との間には、傾斜層6を設けるとよい。 The buffer layer 5 preferably contains one kind of nitride selected from chromium nitride and titanium nitride. An inclined layer 6 may be provided between the buffer layer 5 and the diamond-like carbon layer 7.
 傾斜層6を設ける場合、傾斜層6は、炭素及び金属の混合物又は金属の炭化物である。ここで、傾斜層6に含まれる金属の含有量は、基材2の側から外側に向かって減少するように構成する。これに対して、傾斜層6に含まれる炭素の含有量は、基材2側から外側に向かって増加するように構成する。金属は、アルミニウム、クロム及びチタンから選ばれる1種類の元素であることが好ましい。 When the inclined layer 6 is provided, the inclined layer 6 is a mixture of carbon and metal or a metal carbide. Here, the content of the metal contained in the inclined layer 6 is configured to decrease from the substrate 2 side toward the outside. On the other hand, the carbon content contained in the inclined layer 6 is configured to increase from the substrate 2 side toward the outside. The metal is preferably one element selected from aluminum, chromium and titanium.
 また、被膜1のダイヤモンドライクカーボン層7には、sp結合炭素とsp結合炭素とが混在していることが好ましい。 The diamond-like carbon layer 7 of the coating 1 preferably contains a mixture of sp 2 bonded carbon and sp 3 bonded carbon.
 被膜1を形成した後、被膜1の表面のナノインデンテーション法(ISO14577)による硬度評価および摩擦評価を行った。 After the coating 1 was formed, hardness evaluation and friction evaluation of the surface of the coating 1 were performed by a nanoindentation method (ISO14577).
 ナノインデンテーション法(ISO14577)による硬度評価は、対稜角115度のベルコビッチ三角錐圧子を被膜の表面に10秒間かけて最大荷重3mNまで押し込み、最大荷重で1秒間保持し、その後、10秒間かけて除荷する条件で行った。 Hardness evaluation by the nanoindentation method (ISO14577) was performed by pressing a Belkovic triangular pyramid indenter with a counter-edge angle of 115 degrees into the surface of the coating for 10 seconds to a maximum load of 3 mN, holding the maximum load for 1 second, and then for 10 seconds. It was performed under the condition of unloading.
 被膜1の表面の硬度は、ゴムとの摺動においてダイヤモンドライクカーボン層の摩耗を抑制するため、10GPa以上が好ましく、ゴムの摩耗を抑制するため、30GPa以下が好ましい。 The surface hardness of the coating 1 is preferably 10 GPa or more in order to suppress wear of the diamond-like carbon layer in sliding with the rubber, and preferably 30 GPa or less in order to suppress wear of the rubber.
 図2は、摩擦係数を計測するための往復摺動試験機(摩擦試験装置)を示したものである。 FIG. 2 shows a reciprocating sliding tester (friction test device) for measuring the friction coefficient.
 本図に示す摩擦試験装置は、可動式のワークテーブル12と、ホルダ18を有する軸14とを含む。ワークテーブル12の上面には、バイス17が設置してあり、このバイス17で試験片11を挟んで固定できるようになっている。ホルダ18の下部には、ボール13が設置してあり、このボール13とワークテーブル12に設置した試験片11とが接するように配置されている。ボール13は、直径1/2インチの金属ボール(高炭素クロム軸受鋼製、JIS SUJ2ボール)にゴムを巻いたものである。試験片11とボール13との間には、潤滑油202としてブレーキオイルが塗布してある。ボール13は、回転したり外れたりすることがないようにホルダ18で固定されている。軸14には、おもり15、16が設置してあり、ボール13から試験片11に加わる荷重を調節できるようになっている。なお、金属ボールに用いた金属は、軸受に用いる鋼であり、ゴムは、エチレンプロピレンジエンゴムであるが、材質はこれらに限定されるものではない。 The friction test apparatus shown in this figure includes a movable work table 12 and a shaft 14 having a holder 18. A vise 17 is installed on the upper surface of the work table 12, and the test piece 11 can be sandwiched and fixed by the vice 17. A ball 13 is installed below the holder 18, and the ball 13 and the test piece 11 installed on the work table 12 are arranged to contact each other. The ball 13 is a metal ball (made of high carbon chromium bearing steel, JIS SUJ2 ball) having a diameter of 1/2 inch wound with rubber. Brake oil is applied as a lubricating oil 202 between the test piece 11 and the ball 13. The ball 13 is fixed by a holder 18 so that it does not rotate or come off. Weights 15 and 16 are installed on the shaft 14 so that the load applied from the ball 13 to the test piece 11 can be adjusted. The metal used for the metal ball is steel used for the bearing, and the rubber is ethylene propylene diene rubber, but the material is not limited to these.
 摩擦試験は、潤滑油202を用いて常温常湿環境下(室温:約25℃、湿度:約60%RH)の潤滑状態で行った。軸14に設置されたおもり15、16を移動することにより、ゴムボール13から試験片11に加わる荷重が29.4Nとなるように調節した。 The friction test was performed in a lubricating state using a lubricating oil 202 in a normal temperature and humidity environment (room temperature: about 25 ° C., humidity: about 60% RH). By moving the weights 15 and 16 installed on the shaft 14, the load applied to the test piece 11 from the rubber ball 13 was adjusted to 29.4 N.
 ワークテーブル12は、ボール13に対して最大滑り速度1mm/sec、ストローク10mmで駆動した。この際、ボール13と試験片11との間で発生する摩擦力をロードセルを用いて計測し、摩擦係数を算出した。なお、潤滑油202としては、ブレーキオイルを用いたが、これに限定されるものではない。 The work table 12 was driven with respect to the ball 13 at a maximum sliding speed of 1 mm / sec and a stroke of 10 mm. Under the present circumstances, the frictional force which generate | occur | produces between the ball | bowl 13 and the test piece 11 was measured using the load cell, and the friction coefficient was computed. In addition, although the brake oil was used as the lubricating oil 202, it is not limited to this.
 上記の摺動部材は、一例として、自動車用ブレーキピストンに用いられることが好ましい。 The sliding member is preferably used for a brake piston for automobiles as an example.
 以下、実施例について説明する。 Hereinafter, examples will be described.
 図1は、摺動部材の部分断面図である。 FIG. 1 is a partial cross-sectional view of a sliding member.
 本図において、摺動部材10は、アルミニウム合金101の表面を酸化膜3で覆った基材2に、基材2の側より外側に向かって、導電層4、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7で形成された被膜1を具備したものである。 In this figure, the sliding member 10 has a conductive layer 4, a buffer layer 5, an inclined layer 6, and a substrate 2 with the surface of an aluminum alloy 101 covered with an oxide film 3, outward from the substrate 2 side. A coating 1 formed of a diamond-like carbon layer 7 is provided.
 ここで、アルミニウム合金101は、Al-Mg-Si系合金A6061-T6材である。また、基材2の表面粗度Raは、0.15μmとなるように仕上げたものである。被膜1は、UBMS法を用いて形成されている。ここで、表面粗度Raは、算術平均粗さであり、JIS B 0601に準拠して算出したものである。 Here, the aluminum alloy 101 is an Al—Mg—Si based alloy A6061-T6 material. Further, the surface roughness Ra of the substrate 2 is finished to be 0.15 μm. The coating 1 is formed using the UBMS method. Here, the surface roughness Ra is an arithmetic average roughness, which is calculated in accordance with JIS B 0601.
 具体的には、図3Aに示す条件で被膜1を形成した。横軸に成膜時間をとり、縦軸にターゲット投入電力及びバイアス電圧をとっている。 Specifically, the film 1 was formed under the conditions shown in FIG. 3A. The horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
 本図において、まず、成膜開始後4分間は、不活性ガスを導入しながら、バイアス電圧を印加せずにクロム(Cr)を主成分とする導電層4を形成する。この工程において、クロムターゲット投入電力は1.5kWであり、カーボンターゲット投入電力は0kWである。 In this figure, first, for 4 minutes after the start of film formation, the conductive layer 4 containing chromium (Cr) as a main component is formed without applying a bias voltage while introducing an inert gas. In this step, the chromium target input power is 1.5 kW, and the carbon target input power is 0 kW.
 その後、成膜開始から44分経過するまで、不活性ガス及び窒素ガスを導入し、バイアス電圧150Vを印加しながら窒化クロム(CrN)を主成分とするバッファー層5を形成する。この工程においても、クロムターゲット投入電力は1.5kWであり、カーボンターゲット投入電力は0kWである。 Thereafter, until 44 minutes have elapsed from the start of film formation, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of chromium nitride (CrN) is formed while applying a bias voltage of 150V. Also in this step, the chromium target input power is 1.5 kW, and the carbon target input power is 0 kW.
 さらに、成膜開始から70分経過するまで、不活性ガスと炭化水素ガスとを導入し、バイアス電圧50Vを印加しながら傾斜層6を形成する。 Further, an inert gas and a hydrocarbon gas are introduced until 70 minutes have elapsed from the start of film formation, and the gradient layer 6 is formed while applying a bias voltage of 50V.
 傾斜層6の形成においては、まず、クロム炭化物層(炭化クロム層)を形成し、その後、クロムターゲット投入電力が徐々に減少し、かつカーボンターゲット投入電力が徐々に増加するように制御する。ここで、クロム炭化物層を構成する炭化クロムには、Cr、Cr、Cr23などの種類があるが、これらに限定されるものではない。 In the formation of the inclined layer 6, first, a chromium carbide layer (chromium carbide layer) is formed, and thereafter, control is performed such that the power input to the chromium target gradually decreases and the power input to the carbon target gradually increases. Here, the chromium carbide constituting the chromium carbide layer, there are types such as Cr 3 C 2, Cr 7 C 3, Cr 23 C 6, but is not limited thereto.
 最後に、成膜開始から130分経過するまで、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。このダイヤモンドライクカーボン層7を形成する工程においては、成膜開始から72分経過するまでは、バイアス電圧を、その前の傾斜層を形成する工程におけるバイアス電圧と同じ値(50V)としている。その後、徐々にバイアス電圧を高くし、成膜開始から88分経過した後は、バイアス電圧を一定値(100V)に保っている。この工程において、クロムターゲット投入電力は0kWであり、カーボンターゲット投入電力は3.0kWである。 Finally, an inert gas and a hydrocarbon gas are introduced until 130 minutes have elapsed from the start of film formation, and the diamond-like carbon layer 7 is formed while applying a bias voltage. In the step of forming the diamond-like carbon layer 7, the bias voltage is set to the same value (50 V) as the bias voltage in the step of forming the previous inclined layer until 72 minutes have elapsed since the start of film formation. Thereafter, the bias voltage is gradually increased, and after 88 minutes from the start of film formation, the bias voltage is maintained at a constant value (100 V). In this step, the chromium target input power is 0 kW, and the carbon target input power is 3.0 kW.
 これにより、緻密なダイヤモンドライクカーボン層7が形成され、硬度が高い被膜1の表面層を形成することができる。 Thereby, a dense diamond-like carbon layer 7 is formed, and a surface layer of the coating film 1 having a high hardness can be formed.
 被膜1の表面粗度Raは、被膜1の膜厚が薄い場合、成膜前の基材2の表面粗度によってほぼ決定されるが、被膜1の膜厚が厚い場合、被膜1の膜厚に比例して増加する。そこで、被膜1の表面粗度Raは、成膜前の基材2の表面粗度及び被膜1の膜厚で制御する。 The surface roughness Ra of the coating 1 is almost determined by the surface roughness of the substrate 2 before film formation when the coating 1 is thin, but when the coating 1 is thick, the coating 1 has a film thickness Ra. It increases in proportion to. Therefore, the surface roughness Ra of the coating 1 is controlled by the surface roughness of the substrate 2 before film formation and the film thickness of the coating 1.
 また、ダイヤモンドライクカーボン層7の硬度は、バイアス電圧の大きさを調整することにより制御する。 In addition, the hardness of the diamond-like carbon layer 7 is controlled by adjusting the magnitude of the bias voltage.
 UBMS法を用いることにより、酸化膜3のために電気絶縁性を有する基材2の表面に導電層4を形成することができるため、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。 By using the UBMS method, the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
 硬質炭素被膜(被膜1)は、一般に、基材2等の下地が高硬度であるほど密着性が高くなる。ここで、被膜1は、導電層4、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7を含む積層被膜である。 In general, the hard carbon coating (coating 1) has higher adhesion as the base such as the substrate 2 has a higher hardness. Here, the film 1 is a laminated film including the conductive layer 4, the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7.
 また、バッファー層5は、本実施例のような軟質のアルミニウム合金101で形成された基材2の表面に被膜1を形成する際、ダイヤモンドライクカーボン層7と基材2との密着性を向上し、基材2の硬度を補う機能を有する。バッファー層5は、基材2よりも高硬度であることが好ましい。本実施例においては、CrNを含むバッファー層5により軟質のアルミニウム合金101で構成された基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が向上する。 In addition, the buffer layer 5 improves the adhesion between the diamond-like carbon layer 7 and the base material 2 when the coating 1 is formed on the surface of the base material 2 formed of the soft aluminum alloy 101 as in this embodiment. And has a function of supplementing the hardness of the substrate 2. The buffer layer 5 is preferably harder than the base material 2. In this embodiment, since the hardness of the substrate 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 is improved.
 また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性を更に向上することができる。 In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved.
 さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。 Furthermore, since pinholes in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
 摩擦試験においては、相手材のボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。 In the friction test, ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
 本実施例においては、被膜1の膜厚が1.7μm、表面粗度Raが0.19μm、硬度が23GPaであった。そして、摩擦試験により算出した摩擦係数は0.28であった。この摩擦係数の値は、被膜1とボール13との滑り量として適切なものである。また、摩擦試験の後、被膜1の表面には摩耗が見られなかった。ボール13の表面には摩耗が見られたが、その摩耗量はごく僅かであった。 In this example, the thickness of the coating 1 was 1.7 μm, the surface roughness Ra was 0.19 μm, and the hardness was 23 GPa. And the friction coefficient computed by the friction test was 0.28. This value of the friction coefficient is appropriate as the amount of slip between the coating 1 and the ball 13. Moreover, no abrasion was observed on the surface of the coating 1 after the friction test. Although the surface of the ball 13 was worn, the amount of wear was very small.
 上記のように、本実施例の摺動部材は、耐摩耗性及び耐食性に優れ、相手材のゴムを摩耗させにくいものであり、摩擦係数を制御できるものである。また、本実施例の摺動部材を自動車に適用した場合、基材2にアルミニウム合金101を用いているため、自動車全体として軽量化でき、その結果として、低燃費の自動車を提供することができる。さらに、本実施例の摺動部材を自動車のブレーキピストンに適用した場合、制動時のロールバックの量を適切に制御することができるため、制動時のフィーリングのよいブレーキを提供することができる。 As described above, the sliding member of this example is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the mating member, and can control the friction coefficient. Further, when the sliding member of this embodiment is applied to an automobile, since the aluminum alloy 101 is used as the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. . Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .
 なお、本実施例においては、導電層4をCr、バッファー層5をCrN、傾斜層6をCr炭化物としたが、これらに限定されるものではない。導電層4をTi又はAl、バッファー層5をTiN、傾斜層6をチタン炭化物としても同様の効果が得られる。さらに、バッファー層5をチタン炭化物又はCr炭化物(Cr、Cr、Cr23等)で形成してもよい。 In this embodiment, the conductive layer 4 is Cr, the buffer layer 5 is CrN, and the gradient layer 6 is Cr carbide. However, the present invention is not limited to these. The same effect can be obtained when the conductive layer 4 is Ti or Al, the buffer layer 5 is TiN, and the inclined layer 6 is titanium carbide. Further, the buffer layer 5 may be formed of titanium carbide or Cr carbide (Cr 3 C 2 , Cr 7 C 3 , Cr 23 C 6, etc.).
 本実施例におけるダイヤモンドライクカーボン層7には、グラファイトに代表される炭素結合であるsp結合炭素とダイヤモンドに代表される炭素結合であるsp結合炭素とが混在している。これにより、耐摩耗性及び耐食性を兼備した被膜1を提供することができる。 In the diamond-like carbon layer 7 in this embodiment, sp 2 bonded carbon, which is a carbon bond typified by graphite, and sp 3 bonded carbon, which is a carbon bond typified by diamond, are mixed. Thereby, the coating film 1 having both wear resistance and corrosion resistance can be provided.
 一般に、ダイヤモンドライクカーボン層7(DLC膜)は、アモルファス状の炭素又は水素化炭素で形成された膜であり、アモルファスカーボン又は水素化アモルファスカーボン(a-C:H)などとも呼ばれる。DLC膜の形成には、炭化水素ガスをプラズマ分解して成膜するプラズマCVD法、炭素・炭化水素イオンを用いるイオンビーム蒸着法等の気相合成法、グラファイト等をアーク放電により蒸発させて成膜するイオンプレーティング法、不活性ガス雰囲気下でターゲットをスパッタリングすることによって成膜するスパッタリング法などが用いられる。 Generally, the diamond-like carbon layer 7 (DLC film) is a film formed of amorphous carbon or hydrogenated carbon, and is also called amorphous carbon or hydrogenated amorphous carbon (aC: H). The DLC film can be formed by plasma-depositing a hydrocarbon gas by plasma decomposition, a gas-phase synthesis method such as ion beam evaporation using carbon / hydrocarbon ions, or evaporating graphite by arc discharge. An ion plating method for forming a film, a sputtering method for forming a film by sputtering a target in an inert gas atmosphere, or the like is used.
 本実施例において形成した被膜1は、摺動部材に耐摩耗性及び耐食性を付与し、相手材のゴムを摩耗させにくいものであり、摩擦係数の制御を可能にする。結果として、ブレーキオイル存在下で相手材のゴムが適切量滑り、さらに、被膜もゴムも摩耗しないため、信頼性の高い摺動部材を提供することができる。 The coating film 1 formed in this embodiment imparts wear resistance and corrosion resistance to the sliding member, makes it difficult to wear the rubber of the mating member, and enables control of the friction coefficient. As a result, an appropriate amount of rubber slips in the presence of brake oil, and neither the coating nor the rubber wears, so that a highly reliable sliding member can be provided.
 本実施例においては、基材2としてA6061-T6材を用いているが、時効硬化温度は約160~180℃であるため、被膜1の形成中の温度を時効硬化温度以下とし、基材2の軟化を抑制するように温度条件を設定する必要がある。 In this example, A6061-T6 material is used as the base material 2, but since the age hardening temperature is about 160 to 180 ° C., the temperature during the formation of the coating film 1 is set to be equal to or lower than the age hardening temperature. It is necessary to set the temperature condition so as to suppress the softening.
 本実施例の被膜1の形成においては、CrNを含むバッファー層5及び基材2の表面の酸化膜3が形成されている。基材2とバッファー層5との密着性を高めるために、基材2(酸化膜3)とバッファー層5との間に導電層4を形成することが好ましい。 In the formation of the coating film 1 of the present embodiment, the buffer layer 5 containing CrN and the oxide film 3 on the surface of the substrate 2 are formed. In order to improve the adhesion between the substrate 2 and the buffer layer 5, it is preferable to form the conductive layer 4 between the substrate 2 (oxide film 3) and the buffer layer 5.
 また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6を形成する際は、まず、Cr炭化物層を形成し、その後、バッファー層5の側からダイヤモンドライクカーボン層7の側へ向かってCr濃度が連続的に減少し、かつ、C濃度が連続的に増加するように成膜することが好ましい。また、傾斜層6を構成する物質であるCr炭化物をCrで表した場合、xとyとの比率を少しずつ変化させることにより、組成をバッファー層5の側からダイヤモンドライクカーボン層7の側に向かって少しずつ変化させることが好ましい。 When the inclined layer 6 is formed between the buffer layer 5 and the diamond-like carbon layer 7, first, a Cr carbide layer is formed, and then from the buffer layer 5 side toward the diamond-like carbon layer 7 side. Thus, it is preferable to form the film so that the Cr concentration decreases continuously and the C concentration increases continuously. Further, when a Cr carbide is a material constituting the gradient layer 6, expressed in Cr x C y, by varying the ratio of x and y gradually, diamond-like carbon layer composition from the side of the buffer layer 5 7 It is preferable to change gradually toward the side.
 以上のように、基材2からダイヤモンドライクカーボン層7までの構造を上記のように設計することにより、密着性の高い被膜1を形成することができる。また、被膜1は、上記のような膜設計を行う上で条件を設定しやすいスパッタリング又はイオンプレーティングにより形成されることが好ましい。 As described above, the coating 1 having high adhesion can be formed by designing the structure from the base material 2 to the diamond-like carbon layer 7 as described above. In addition, the coating 1 is preferably formed by sputtering or ion plating which allows easy setting of conditions for designing the film as described above.
 摺動部材10の構成は、実施例1と同様であり、図1に示す通りである。 The configuration of the sliding member 10 is the same as that of the first embodiment, as shown in FIG.
 基材2は、アルミニウム合金101とその表面を覆う酸化膜3で構成されている。アルミニウム合金101は、Al-Mg-Si系合金のA6061-T6材で形成されている。被膜1は、酸化膜3の表面にUBMS法を用いて形成したものである。被膜1は、基材2の側より外側に向かって、導電層4、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7で形成されている。被膜1の表面粗度Raは、0.25μmとなるように仕上げてある。 The substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof. The aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy. The coating 1 is formed on the surface of the oxide film 3 using the UBMS method. The coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside. The surface roughness Ra of the coating 1 is finished to be 0.25 μm.
 具体的には、実施例1と同様の条件である図3Aに示す条件で被膜1を形成した。横軸に成膜時間をとり、縦軸にターゲット投入電力及びバイアス電圧をとっている。 Specifically, the coating 1 was formed under the conditions shown in FIG. The horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
 まず、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。 First, while introducing an inert gas, the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage.
 その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながらCrNを主成分とするバッファー層5を形成する。 Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while a bias voltage is applied.
 さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。 Further, an inclined gas 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage.
 傾斜層6の形成においては、まず、Cr炭化物層(クロム炭化物層)を形成し、その後、Crターゲット投入電力が徐々に減少し、かつ、カーボンターゲット投入電力が徐々に増加するように制御する。 In the formation of the inclined layer 6, first, a Cr carbide layer (chromium carbide layer) is formed, and thereafter, the Cr target input power is gradually decreased and the carbon target input power is gradually increased.
 最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。 Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.
 UBMS法を用いることにより、酸化膜3のために電気絶縁性を有する基材2の表面に導電層4を形成することができるため、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。 By using the UBMS method, the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
 バッファー層5は、基材2よりも高硬度であることが好ましい。本実施例においては、CrNを含むバッファー層5により軟質のアルミニウム合金101で構成された基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が向上する。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性を更に向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。 The buffer layer 5 is preferably harder than the substrate 2. In this embodiment, since the hardness of the substrate 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 is improved. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
 摩擦試験においては、相手材のボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。 In the friction test, ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
 本実施例においては、被膜1の膜厚が1.7μm、表面粗度Raが0.29μm、硬度が23GPaであった。そして、摩擦試験により算出した摩擦係数は0.21であった。この摩擦係数の値は、被膜1とボール13との滑り量として適切なものである。また、摩擦試験の後、被膜1の表面には摩耗が見られなかった。ボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。 In this example, the film 1 had a thickness of 1.7 μm, a surface roughness Ra of 0.29 μm, and a hardness of 23 GPa. And the friction coefficient computed by the friction test was 0.21. This value of the friction coefficient is appropriate as the amount of slip between the coating 1 and the ball 13. Moreover, no abrasion was observed on the surface of the coating 1 after the friction test. Although wear was observed on the surface of the ball 13, the amount of wear was slight.
 上記のように、本実施例の摺動部材は、耐摩耗性及び耐食性に優れ、相手材のゴムを摩耗させにくいものであり、摩擦係数を制御できるものである。また、本実施例の摺動部材を自動車に適用した場合、基材2にアルミニウム合金101を用いているため、自動車全体として軽量化でき、その結果として、低燃費の自動車を提供することができる。さらに、本実施例の摺動部材を自動車のブレーキピストンに適用した場合、制動時のロールバックの量を適切に制御することができるため、制動時のフィーリングのよいブレーキを提供することができる。 As described above, the sliding member of this example is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the mating member, and can control the friction coefficient. Further, when the sliding member of this embodiment is applied to an automobile, since the aluminum alloy 101 is used as the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. . Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .
 なお、本実施例においては、導電層4をCr、バッファー層5をCrNとしたが、これらに限定されず、導電層4をAl又はTi、バッファー層5をTiNとしても同様の効果が得られる。 In this embodiment, the conductive layer 4 is Cr and the buffer layer 5 is CrN. However, the present invention is not limited to these, and the same effect can be obtained when the conductive layer 4 is Al or Ti and the buffer layer 5 is TiN. .
 摺動部材10の構成は、実施例1と同様であり、図1に示す通りである。 The configuration of the sliding member 10 is the same as that of the first embodiment, as shown in FIG.
 基材2は、アルミニウム合金101とその表面を覆う酸化膜3で構成されている。アルミニウム合金101は、Al-Mg-Si系合金のA6061-T6材で形成されている。被膜1は、酸化膜3の表面にUBMS法を用いて形成したものである。被膜1は、基材2の側より外側に向かって、導電層4、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7で形成されている。被膜1の表面粗度Raは、0.15μmとなるように仕上げてある。 The substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof. The aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy. The coating 1 is formed on the surface of the oxide film 3 using the UBMS method. The coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside. The surface roughness Ra of the coating 1 is finished to be 0.15 μm.
 具体的には、図3Bに示す条件で被膜1を形成した。横軸に成膜時間をとり、縦軸にターゲット投入電力及びバイアス電圧をとっている。 Specifically, the film 1 was formed under the conditions shown in FIG. 3B. The horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
 本図において、まず、成膜開始後4分間は、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。この工程において、クロムターゲット投入電力は1.5kWであり、カーボンターゲット投入電力は0kWである。 In this drawing, first, for 4 minutes after the start of film formation, the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage while introducing an inert gas. In this step, the chromium target input power is 1.5 kW, and the carbon target input power is 0 kW.
 その後、成膜開始から44分経過するまで、不活性ガス及び窒素ガスを導入し、バイアス電圧150Vを印加しながらCrNを主成分とするバッファー層5を形成する。この工程においても、クロムターゲット投入電力は1.5kWであり、カーボンターゲット投入電力は0kWである。 Thereafter, until 44 minutes have elapsed from the start of film formation, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while a bias voltage of 150 V is applied. Also in this step, the chromium target input power is 1.5 kW, and the carbon target input power is 0 kW.
 さらに、成膜開始から172分経過するまで、不活性ガスと炭化水素ガスとを導入し、バイアス電圧50Vを印加しながら傾斜層6を形成する。 Further, an inert gas and a hydrocarbon gas are introduced until 172 minutes have elapsed from the start of film formation, and the gradient layer 6 is formed while applying a bias voltage of 50V.
 傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつ、カーボンターゲット投入電力が徐々に増加するように制御する。 In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases.
 最後に、成膜開始から1400分経過するまで、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。このダイヤモンドライクカーボン層7を形成する工程においては、成膜開始から180分経過するまでは、バイアス電圧を、その前の傾斜層を形成する工程におけるバイアス電圧と同じ値(50V)としている。その後、徐々にバイアス電圧を高くし、成膜開始から500分経過した後は、バイアス電圧を一定値(250V)に保っている。この工程において、クロムターゲット投入電力は0kWであり、カーボンターゲット投入電力は3.0kWである。 Finally, an inert gas and a hydrocarbon gas are introduced and a diamond-like carbon layer 7 is formed while applying a bias voltage until 1400 minutes have elapsed since the start of film formation. In the step of forming the diamond-like carbon layer 7, the bias voltage is set to the same value (50 V) as the bias voltage in the step of forming the previous inclined layer until 180 minutes have elapsed since the start of film formation. Thereafter, the bias voltage is gradually increased, and after 500 minutes have elapsed from the start of film formation, the bias voltage is maintained at a constant value (250 V). In this step, the chromium target input power is 0 kW, and the carbon target input power is 3.0 kW.
 UBMS法を用いることにより、酸化膜3のために電気絶縁性を有する基材2の表面に導電層4を形成することができるため、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。 By using the UBMS method, the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
 バッファー層5は、基材2よりも高硬度であることが好ましい。本実施例においては、CrNを含むバッファー層5により軟質のアルミニウム合金101で構成された基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が向上する。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性を更に向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。 The buffer layer 5 is preferably harder than the substrate 2. In this embodiment, since the hardness of the substrate 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, the adhesion of the diamond-like carbon layer 7 is improved. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
 摩擦試験においては、相手材のボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。 In the friction test, ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
 本実施例においては、被膜1の膜厚が8.1μm、表面粗度Raが0.50μm、硬度が30GPaであった。そして、摩擦試験により算出した摩擦係数は0.18であった。この摩擦係数の値は、被膜1とボール13との滑り量として適切なものである。また、摩擦試験の後、被膜1の表面には摩耗が見られなかった。ボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。 In this example, the thickness of the coating 1 was 8.1 μm, the surface roughness Ra was 0.50 μm, and the hardness was 30 GPa. And the friction coefficient computed by the friction test was 0.18. This value of the friction coefficient is appropriate as the amount of slip between the coating 1 and the ball 13. Moreover, no abrasion was observed on the surface of the coating 1 after the friction test. Although wear was observed on the surface of the ball 13, the amount of wear was slight.
 上記のように、本実施例の摺動部材は、耐摩耗性及び耐食性に優れ、相手材のゴムを摩耗させにくいものであり、摩擦係数を制御できるものである。また、実施例の摺動部材を自動車に適用した場合、基材2にアルミニウム合金101を用いているため、自動車全体として軽量化でき、その結果として、低燃費の自動車を提供することができる。さらに、本実施例の摺動部材を自動車のブレーキピストンに適用した場合、制動時のロールバックの量を適切に制御することができるため、制動時のフィーリングのよいブレーキを提供することができる。 As described above, the sliding member of this example is excellent in wear resistance and corrosion resistance, hardly wears the rubber of the mating member, and can control the friction coefficient. Moreover, when the sliding member of an Example is applied to a motor vehicle, since the aluminum alloy 101 is used for the base material 2, it can reduce in weight as the whole motor vehicle, As a result, a low fuel consumption motor vehicle can be provided. Furthermore, when the sliding member of the present embodiment is applied to a brake piston of an automobile, the amount of rollback at the time of braking can be appropriately controlled, so that a brake having a good feeling at the time of braking can be provided. .
 なお、本実施例においては、導電層4をCr、バッファー層5をCrNとしたが、これらに限定されず、導電層4をAl又はTi、バッファー層5をTiNとしても同様の効果が得られる。 In this embodiment, the conductive layer 4 is Cr and the buffer layer 5 is CrN. However, the present invention is not limited to these, and the same effect can be obtained when the conductive layer 4 is Al or Ti and the buffer layer 5 is TiN. .
 図4は、実施例の自動車用ブレーキピストンを示す断面図である。 FIG. 4 is a cross-sectional view showing an automobile brake piston according to an embodiment.
 本図におけるブレーキピストンは、二輪車用のものであり、車輪と同軸で回転するディスクロータ22を2段のブレーキパッド24、26のうち内側のブレーキパッド26で左右から挟むことによりブレーキが作動し、車輪の回転が止まるものである。本図は、車輪及びディスクロータ22の回転方向に平行な方向から見た縦断面図であり、ディスクロータ22の回転方向は紙面に対して垂直な方向である。 The brake piston in this figure is for a motorcycle, and the brake is operated by sandwiching the disc rotor 22 rotating coaxially with the wheels from the left and right with the inner brake pad 26 of the two stages of brake pads 24, 26. The wheel stops rotating. This figure is a longitudinal sectional view seen from a direction parallel to the rotation direction of the wheel and the disk rotor 22, and the rotation direction of the disk rotor 22 is a direction perpendicular to the paper surface.
 本図において、シリンダボア21の内部には、ピストン23、ブレーキパッド24、26及びシール25が収納されている。シール25は、シリンダボア21とピストン23との間に設置され、シリンダボア21の内部に封入されたブレーキオイル203が漏れ出さないようにするものである。左右のピストン23にブレーキオイル203の圧力を伝達することにより、左右のピストン23が内側に移動し、ブレーキパッド26とディスクロータ22とが接触するようになっている。 In this figure, a piston 23, brake pads 24 and 26, and a seal 25 are accommodated in the cylinder bore 21. The seal 25 is installed between the cylinder bore 21 and the piston 23 so as to prevent the brake oil 203 enclosed in the cylinder bore 21 from leaking out. By transmitting the pressure of the brake oil 203 to the left and right pistons 23, the left and right pistons 23 are moved inward so that the brake pads 26 and the disc rotor 22 come into contact with each other.
 〔比較例1〕
 摺動部材10の基本的な構成は、実施例1と同様であり、図1に示す通りである。
[Comparative Example 1]
The basic configuration of the sliding member 10 is the same as that of the first embodiment, as shown in FIG.
 基材2は、アルミニウム合金101とその表面を覆う酸化膜3で構成されている。アルミニウム合金101は、Al-Mg-Si系合金のA6061-T6材で形成されている。被膜1は、酸化膜3の表面にUBMS法を用いて形成したものである。被膜1は、基材2の側より外側に向かって、導電層4、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7で形成されている。被膜1の表面粗度Raは、0.02μmとなるように仕上げてある。 The substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof. The aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy. The coating 1 is formed on the surface of the oxide film 3 using the UBMS method. The coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside. The surface roughness Ra of the coating 1 is finished to 0.02 μm.
 具体的には、実施例1と同様の条件である図3Aに示す条件で被膜1を形成した。横軸に成膜時間をとり、縦軸にターゲット投入電力及びバイアス電圧をとっている。 Specifically, the coating 1 was formed under the conditions shown in FIG. The horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
 まず、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。 First, while introducing an inert gas, the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage.
 その後、不活性ガス及び窒素ガスを導入し、バイアス電圧を印加しながらCrNを主成分とするバッファー層5を形成する。 Thereafter, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while a bias voltage is applied.
 さらに、不活性ガスと炭化水素ガスとを導入し、バイアス電圧を印加しながら傾斜層6を形成する。 Further, an inclined gas 6 is formed while introducing an inert gas and a hydrocarbon gas and applying a bias voltage.
 傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつ、カーボンターゲット投入電力が徐々に増加するように制御する。 In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases.
 最後に、不活性ガス及び炭化水素ガスを導入し、バイアス電圧を印加しながらダイヤモンドライクカーボン層7を形成する。 Finally, an inert gas and a hydrocarbon gas are introduced, and the diamond-like carbon layer 7 is formed while applying a bias voltage.
 UBMS法を用いることにより、酸化膜3のために電気絶縁性を有する基材2の表面に導電層4を形成することができるため、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。 By using the UBMS method, the conductive layer 4 can be formed on the surface of the insulating base material 2 for the oxide film 3, so that the buffer layer 5, the inclined layer 6, and the diamond-like carbon layer 7 are formed. Is possible.
 バッファー層5は、基材2よりも高硬度であることが好ましい。本比較例においては、CrNを含むバッファー層5により軟質のアルミニウム合金101で構成された基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が向上する。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性を更に向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。 The buffer layer 5 is preferably harder than the substrate 2. In this comparative example, the hardness of the base material 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 is improved. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
 摩擦試験においては、相手材のボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。 In the friction test, ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
 本比較例においては、被膜1の膜厚が1.7μm、表面粗度Raが0.10μm、硬度が23GPaであった。そして、摩擦試験により算出した摩擦係数は0.39と高くなった。摩擦試験の後、被膜1の表面には摩耗が見られなかった。一方、ボール13の表面には大きな摩耗痕が見られた。 In this comparative example, the thickness of the coating 1 was 1.7 μm, the surface roughness Ra was 0.10 μm, and the hardness was 23 GPa. The friction coefficient calculated by the friction test was as high as 0.39. No abrasion was observed on the surface of the coating 1 after the friction test. On the other hand, large wear marks were observed on the surface of the ball 13.
 上記のように、本比較例の摺動部材は、耐摩耗性及び耐食性に優れるが、相手材のゴムを摩耗させるものであり、摩擦係数を低減するものではない。本比較例の摺動部材を自動車に適用した場合、基材2にアルミニウム合金101を用いているため、自動車全体として軽量化でき、その結果として、低燃費の自動車を提供することができる。しかしながら、自動車のブレーキピストンに適用した場合、制動時のロールバックの量が大きくなるため、制動時のフィーリングのよいブレーキを提供することができない。 As described above, the sliding member of this comparative example is excellent in wear resistance and corrosion resistance, but wears the rubber of the mating member, and does not reduce the friction coefficient. When the sliding member of this comparative example is applied to an automobile, since the aluminum alloy 101 is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. However, when applied to a brake piston of an automobile, the amount of rollback at the time of braking increases, so that it is not possible to provide a brake with a good feeling at the time of braking.
 〔比較例2〕
 摺動部材10の基本的な構成は、実施例1と同様であり、図1に示す通りである。
[Comparative Example 2]
The basic configuration of the sliding member 10 is the same as that of the first embodiment, as shown in FIG.
 基材2は、アルミニウム合金101とその表面を覆う酸化膜3で構成されている。アルミニウム合金101は、Al-Mg-Si系合金のA6061-T6材で形成されている。被膜1は、酸化膜3で覆われた基材2の表面にUBMS法を用いて形成したものである。被膜1は、基材2の側より外側に向かって、導電層4、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7で形成されている。被膜1の表面粗度Raは、0.15μmとなるように仕上げてある。 The substrate 2 is composed of an aluminum alloy 101 and an oxide film 3 covering the surface thereof. The aluminum alloy 101 is made of an A6061-T6 material of an Al—Mg—Si alloy. The coating 1 is formed on the surface of the base material 2 covered with the oxide film 3 by using the UBMS method. The coating 1 is formed of a conductive layer 4, a buffer layer 5, an inclined layer 6, and a diamond-like carbon layer 7 from the substrate 2 side toward the outside. The surface roughness Ra of the coating 1 is finished to be 0.15 μm.
 具体的には、図3Cに示す条件で被膜1を形成した。横軸に成膜時間をとり、縦軸にターゲット投入電力及びバイアス電圧をとっている。 Specifically, the film 1 was formed under the conditions shown in FIG. 3C. The horizontal axis represents the film formation time, and the vertical axis represents the target input power and bias voltage.
 本図において、まず、成膜開始後4分間は、不活性ガスを導入しながら、バイアス電圧を印加せずにCrを主成分とする導電層4を形成する。この工程において、クロムターゲット投入電力は1.5kWであり、カーボンターゲット投入電力は0kWである。 In this drawing, first, for 4 minutes after the start of film formation, the conductive layer 4 containing Cr as a main component is formed without applying a bias voltage while introducing an inert gas. In this step, the chromium target input power is 1.5 kW, and the carbon target input power is 0 kW.
 その後、成膜開始から44分経過するまで、不活性ガス及び窒素ガスを導入し、バイアス電圧150Vを印加しながらCrNを主成分とするバッファー層5を形成する。この工程においても、クロムターゲット投入電力は1.5kWであり、カーボンターゲット投入電力は0kWである。 Thereafter, until 44 minutes have elapsed from the start of film formation, an inert gas and a nitrogen gas are introduced, and a buffer layer 5 mainly composed of CrN is formed while applying a bias voltage of 150V. Also in this step, the chromium target input power is 1.5 kW, and the carbon target input power is 0 kW.
 さらに、成膜開始から70分経過するまで、不活性ガスと炭化水素ガスとを導入し、バイアス電圧50Vを印加しながら傾斜層6を形成する。 Further, an inert gas and a hydrocarbon gas are introduced until 70 minutes have elapsed from the start of film formation, and the gradient layer 6 is formed while applying a bias voltage of 50V.
 傾斜層6の形成においては、まず、Cr炭化物層を形成し、その後、Crターゲット投入電力が徐々に減少し、かつ、カーボンターゲット投入電力が徐々に増加するように制御する。 In the formation of the inclined layer 6, first, a Cr carbide layer is formed, and thereafter, control is performed so that the Cr target input power gradually decreases and the carbon target input power gradually increases.
 最後に、成膜開始から130分経過するまで、不活性ガス及び炭化水素ガスを導入し、バイアス電圧50Vを印加しながらダイヤモンドライクカーボン層7を形成する。この工程において、クロムターゲット投入電力は0kWであり、カーボンターゲット投入電力は3.0kWである。 Finally, an inert gas and a hydrocarbon gas are introduced until 130 minutes have elapsed from the start of film formation, and the diamond-like carbon layer 7 is formed while applying a bias voltage of 50V. In this step, the chrome target input power is 0 kW and the carbon target input power is 3.0 kW.
 UBMS法を用いることにより、酸化膜3のために電気絶縁性を有する基材2の表面に導電層4を形成することできるため、バッファー層5、傾斜層6及びダイヤモンドライクカーボン層7の形成が可能となる。 By using the UBMS method, the conductive layer 4 can be formed on the surface of the base material 2 having electrical insulation for the oxide film 3, so that the buffer layer 5, the gradient layer 6 and the diamond-like carbon layer 7 can be formed. It becomes possible.
 バッファー層5は、基材2よりも高硬度であることが好ましい。本比較例においては、CrNを含むバッファー層5により軟質のアルミニウム合金101で構成された基材2の硬度を補うことができるため、ダイヤモンドライクカーボン層7の密着性が向上する。また、バッファー層5とダイヤモンドライクカーボン層7との間に傾斜層6が存在するため、ダイヤモンドライクカーボン層7の密着性を更に向上することができる。さらに、基材2の表面の酸化膜3におけるピンホールを被膜1で塞ぐことができるため、基材2が剥き出しの場合に比べて耐食性が向上する。 The buffer layer 5 is preferably harder than the substrate 2. In this comparative example, the hardness of the base material 2 made of the soft aluminum alloy 101 can be supplemented by the buffer layer 5 containing CrN, so that the adhesion of the diamond-like carbon layer 7 is improved. In addition, since the inclined layer 6 exists between the buffer layer 5 and the diamond-like carbon layer 7, the adhesion of the diamond-like carbon layer 7 can be further improved. Furthermore, since the pinhole in the oxide film 3 on the surface of the substrate 2 can be closed with the coating 1, the corrosion resistance is improved as compared with the case where the substrate 2 is exposed.
 摩擦試験においては、相手材のボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。 In the friction test, ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
 本比較例においては、被膜1の膜厚が1.8μm、表面粗度Raが0.24μm、硬度が9GPaあった。そして、摩擦試験により算出した摩擦係数は0.24であった。ボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。一方、摩擦試験後の被膜1の表面に摩耗が見られた。 In this comparative example, the film 1 had a thickness of 1.8 μm, a surface roughness Ra of 0.24 μm, and a hardness of 9 GPa. And the friction coefficient computed by the friction test was 0.24. Although wear was observed on the surface of the ball 13, the amount of wear was slight. On the other hand, wear was observed on the surface of the coating 1 after the friction test.
 上記のように、本比較例の摺動部材は、耐食性に優れ、相手材のゴムを摩耗させにくいものであり、摩擦係数を制御することができるが、耐摩耗性に乏しいものである。本比較例の摺動部材を自動車に適用した場合、基材2にアルミニウム合金101を用いているため、自動車全体として軽量化でき、その結果として、低燃費の自動車を提供することができる。しかしながら、自動車のブレーキピストンに適用した場合、長期の使用によりピストンの表面の被膜1が摩滅するため、基材2が剥き出しとなり、シール25とピストン23とが滑り易くなる。その結果、制動時のロールバックの量が小さくなり、制動解除時にピストンが初期の位置に戻らず、ディスクロータ22とブレーキパッド24とが引き摺りを起こすため、信頼性のあるブレーキを提供することができない。 As described above, the sliding member of this comparative example is excellent in corrosion resistance and hardly wears the rubber of the mating member and can control the coefficient of friction, but has poor wear resistance. When the sliding member of this comparative example is applied to an automobile, since the aluminum alloy 101 is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. However, when applied to a brake piston of an automobile, the coating 1 on the surface of the piston is worn away by long-term use, so that the base material 2 is exposed and the seal 25 and the piston 23 are easily slipped. As a result, the amount of rollback during braking is reduced, the piston does not return to the initial position when braking is released, and the disc rotor 22 and the brake pad 24 are dragged, thereby providing a reliable brake. Can not.
 〔比較例3〕
 上記の実施例1~3及び比較例1~2とは異なり、Al-Mg-Si系合金のA6061-T6材で形成されたアルミニウム合金101の表面が酸化膜3で覆われた基材2の表面に被膜1を形成しなかった。また、基材2の表面粗度Raは、0.02μmとなるように仕上げてある。
[Comparative Example 3]
Unlike the above-described Examples 1 to 3 and Comparative Examples 1 and 2, the surface of the aluminum alloy 101 formed of an Al—Mg—Si based alloy A6061-T6 material is covered with the oxide film 3. Coating 1 was not formed on the surface. The surface roughness Ra of the substrate 2 is finished to 0.02 μm.
 このため、基材2の表面の酸化膜3におけるピンホールを塞ぐ被膜が存在せず、耐食性が低い。 For this reason, there is no coating for blocking pinholes in the oxide film 3 on the surface of the substrate 2, and the corrosion resistance is low.
 摩擦試験においては、相手材のボール13にエチレンプロピレンジエンゴム、潤滑油202にブレーキオイルを使用した。 In the friction test, ethylene propylene diene rubber was used for the ball 13 of the counterpart material, and brake oil was used for the lubricating oil 202.
 本比較例においては、摩擦係数が0.13と低くなった。摩擦係数の値は、摺動部材とボール13との滑り量が過大となる。また、摩擦試験後の基材2の表面には摩耗傷が見られた。ボール13の表面には摩耗が見られたが、その摩耗量は僅かであった。また、ボール13の表面には基材2の摩耗粉の移着が見られた。 In this comparative example, the friction coefficient was as low as 0.13. As for the value of the friction coefficient, the sliding amount between the sliding member and the ball 13 becomes excessive. In addition, abrasion scratches were observed on the surface of the substrate 2 after the friction test. Although wear was observed on the surface of the ball 13, the amount of wear was slight. Moreover, the transfer of the abrasion powder of the base material 2 was observed on the surface of the ball 13.
 上記のように、本比較例の摺動部材は、相手材のゴムを摩耗させにくいが、耐摩耗性及び耐食性に劣り、摩擦係数を低減することもできない。本比較例の摺動部材を自動車に適用した場合、基材2にアルミニウム合金101を用いているため、自動車全体として軽量化でき、その結果として、低燃費の自動車を提供することができる。しかしながら、自動車のブレーキピストンに適用した場合、ブレーキピストンが摩耗し、さらに、制動時のロールバックの量が小さくなって制動解除時にピストンが初期の位置に戻らず、ディスクロータ22とブレーキパッド24とが引き摺りを起こす。このため、信頼性のあるブレーキを提供することができない。 As described above, the sliding member of this comparative example hardly wears the rubber of the mating member, but is inferior in wear resistance and corrosion resistance and cannot reduce the friction coefficient. When the sliding member of this comparative example is applied to an automobile, since the aluminum alloy 101 is used for the base material 2, the entire automobile can be reduced in weight, and as a result, a fuel-efficient automobile can be provided. However, when applied to a brake piston of an automobile, the brake piston wears, and further, the amount of rollback at the time of braking decreases, and the piston does not return to the initial position when the brake is released. Causes dragging. For this reason, a reliable brake cannot be provided.
1 硬質炭素被膜、2 基材、3 酸化膜、4 導電層、5 バッファー層、6 傾斜層、7 ダイヤモンドライクカーボン層、10 摺動部材、11 試験片、12 ワークテーブル、13 ボール、14 軸、15、16 おもり、17 バイス、18 ホルダ、21 シリンダボア、22 ディスクロータ、23 ピストン、24 ブレーキパッド、25 シール、26 ブレーキパッド、101 アルミニウム合金、202 潤滑油、203 ブレーキオイル 1 hard carbon coating, 2 base material, 3 oxide film, 4 conductive layer, 5 buffer layer, 6 inclined layer, 7 diamond-like carbon layer, 10 sliding member, 11 test piece, 12 worktable, 13 balls, 14 shafts, 15, 16 Weight, 17 Vise, 18 Holder, 21 Cylinder Bore, 22 Disc Rotor, 23 Piston, 24 Brake Pad, 25 Seal, 26 Brake Pad, 101 Aluminum Alloy, 202 Lubricating Oil, 203 Brake Oil

Claims (10)

  1.  基材の表面に導電層、バッファー層及びダイヤモンドライクカーボン層を順に積層した摺動部材であって、前記基材は、アルミニウム合金と、このアルミニウム合金を覆う酸化アルミニウム層とを含み、前記バッファー層は、前記基材との密着性を向上するとともに、前記基材の硬度を補う層であり、JIS B 0601に準拠して算出した前記ダイヤモンドライクカーボン層の表面粗度Raは、0.15~0.5μmであることを特徴とする摺動部材。 A sliding member in which a conductive layer, a buffer layer, and a diamond-like carbon layer are sequentially laminated on a surface of a base material, wherein the base material includes an aluminum alloy and an aluminum oxide layer covering the aluminum alloy, and the buffer layer Is a layer that improves adhesion to the base material and supplements the hardness of the base material, and the surface roughness Ra of the diamond-like carbon layer calculated according to JIS B 0601 is 0.15 to A sliding member characterized by being 0.5 μm.
  2.  前記導電層は、アルミニウム、クロム及びチタンからなる群から選ばれる少なくとも1種を含むことを特徴とする請求項1記載の摺動部材。 The sliding member according to claim 1, wherein the conductive layer contains at least one selected from the group consisting of aluminum, chromium, and titanium.
  3.  前記バッファー層は、クロム窒化物及びチタン窒化物からなる群から選ばれる少なくとも1種を含むことを特徴とする請求項1又は2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the buffer layer contains at least one selected from the group consisting of chromium nitride and titanium nitride.
  4.  前記バッファー層は、クロム炭化物及びチタン炭化物からなる群から選ばれる少なくとも1種を含むことを特徴とする請求項1~3のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the buffer layer includes at least one selected from the group consisting of chromium carbide and titanium carbide.
  5.  前記バッファー層と前記ダイヤモンドライクカーボン層との間に傾斜層を設けたことを特徴とする請求項1~4のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 4, wherein an inclined layer is provided between the buffer layer and the diamond-like carbon layer.
  6.  前記傾斜層は、炭素及び金属の混合物又は金属の炭化物であり、前記傾斜層に含まれる前記金属の含有量は、前記基材の側から外側に向かって減少し、前記傾斜層に含まれる前記炭素の含有量は、前記基材の側から外側に向かって増加し、前記金属は、アルミニウム、クロム及びチタンからなる群から選ばれる少なくとも1種であることを特徴とする請求項5記載の摺動部材。 The graded layer is a mixture of carbon and metal or a metal carbide, and the content of the metal contained in the graded layer decreases from the base side toward the outside, and the graded layer contains the metal. 6. The slide according to claim 5, wherein the carbon content increases from the base material side toward the outside, and the metal is at least one selected from the group consisting of aluminum, chromium, and titanium. A moving member.
  7.  前記ダイヤモンドライクカーボン層の表面の硬度が10~30GPaであることを特徴とする請求項1~6記載のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 6, wherein the diamond-like carbon layer has a surface hardness of 10 to 30 GPa.
  8.  前記ダイヤモンドライクカーボン層には、sp結合炭素とsp結合炭素とが混在していることを特徴とする請求項1~7のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 7, wherein the diamond-like carbon layer contains sp 2 bonded carbon and sp 3 bonded carbon.
  9.  請求項1~8のいずれか一項に記載の摺動部材を用いたことを特徴とする自動車用ブレーキピストン。 A brake piston for an automobile, wherein the sliding member according to any one of claims 1 to 8 is used.
  10.  酸化アルミニウム層で覆われたアルミニウム合金を基材とし、この基材の表面にスパッタリング或いはイオンプレーティングにより導電層を形成する工程と、前記基材にバイアス電圧を印加した状態で前記導電層の表面に前記基材との密着性を向上するとともに、前記基材の硬度を補うためのバッファー層を形成する工程と、このバッファー層の表面に傾斜層を形成する工程と、この傾斜層の表面にJIS B 0601に準拠して算出した表面粗度Raが0.15~0.5μmであるダイヤモンドライクカーボン層を形成する工程とを含むことを特徴とする摺動部材の製造方法。 Forming a conductive layer by sputtering or ion plating on a surface of the aluminum alloy covered with an aluminum oxide layer, and applying a bias voltage to the surface of the conductive layer; Improving the adhesion to the base material and forming a buffer layer for compensating the hardness of the base material, forming a gradient layer on the surface of the buffer layer, and on the surface of the gradient layer Forming a diamond-like carbon layer having a surface roughness Ra calculated in accordance with JIS B 0601 of 0.15 to 0.5 μm.
PCT/JP2011/053632 2010-04-01 2011-02-21 Sliding member WO2011125375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010084776A JP2013151707A (en) 2010-04-01 2010-04-01 Sliding member
JP2010-084776 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011125375A1 true WO2011125375A1 (en) 2011-10-13

Family

ID=44762341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053632 WO2011125375A1 (en) 2010-04-01 2011-02-21 Sliding member

Country Status (2)

Country Link
JP (1) JP2013151707A (en)
WO (1) WO2011125375A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057442B2 (en) 2012-06-19 2015-06-16 C.T.I. Traffic Industries Co., Ltd. Structure of piston ring
CN111621744A (en) * 2020-03-20 2020-09-04 北京师范大学 Cutter coating and deposition method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532279B (en) * 2015-04-23 2020-10-30 日立金属株式会社 Covering die and manufacturing method thereof
CN111378927A (en) * 2020-04-20 2020-07-07 海南大学 Hard film structure laid on elastic substrate and preparation method
TWI745031B (en) * 2020-08-17 2021-11-01 翔名科技股份有限公司 Protective film having high hardness and low friction coefficient

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232087A (en) * 2002-11-22 2004-08-19 Showa Denko Kk Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method
JP2008069372A (en) * 2006-09-12 2008-03-27 Hitachi Ltd Member with hard carbon film
JP2009161813A (en) * 2008-01-07 2009-07-23 Matsuyama Giken Kk Member coated with hard film and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232087A (en) * 2002-11-22 2004-08-19 Showa Denko Kk Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method
JP2008069372A (en) * 2006-09-12 2008-03-27 Hitachi Ltd Member with hard carbon film
JP2009161813A (en) * 2008-01-07 2009-07-23 Matsuyama Giken Kk Member coated with hard film and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN'YA OKAMOTO ET AL.: "UBMS-ho ni yori Keisei shita DLC Maku no Katasa to Masatsu Tokusei", THE SURFACE FINISHING SOCIETY OF JAPAN KOEN TAIKAI YOSHISHU, 22 February 2007 (2007-02-22) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057442B2 (en) 2012-06-19 2015-06-16 C.T.I. Traffic Industries Co., Ltd. Structure of piston ring
TWI513902B (en) * 2012-06-19 2015-12-21 Tai Mao Ind Corp Structure of piston ring
CN111621744A (en) * 2020-03-20 2020-09-04 北京师范大学 Cutter coating and deposition method thereof

Also Published As

Publication number Publication date
JP2013151707A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5227782B2 (en) Sliding member
US7273655B2 (en) Slidably movable member and method of producing same
WO2011125375A1 (en) Sliding member
Svahn et al. The influence of surface roughness on friction and wear of machine element coatings
JP2008081522A (en) Slide member
JP5452734B2 (en) Process for manufacturing slide elements with a coating, in particular piston rings, and slide elements
Luo et al. Study on rotational fretting wear of bonded MoS2 solid lubricant coating prepared on medium carbon steel
WO2011122662A1 (en) Anti-friction bearing
JP4876464B2 (en) Low friction sliding member
JPH01279119A (en) Mechanical member
Johnston et al. Effect of DLC coatings on wear in automotive applications
Mo et al. Tribological investigation of WC/C coating under dry sliding conditions
JP2022107481A (en) Rolling bearing and wheel support device
Konca et al. Dry sliding behaviour of non-hydrogenated DLC coatings against Al, Cu and Ti in ambient air and argon
CA2702899C (en) A spacer member for reducing fretting wear and fastened structures using the spacer member
JP2009133408A (en) Rolling slide member, and rolling device and pulley device using this member
JP2006008853A (en) Hard carbon film sliding member and method for producing the same
JP5150861B2 (en) Hard carbon film and method for forming the same
EP1837418B1 (en) Slide member having a high-hardness carbon coating
Araujo et al. DLC as a low friction coating for engine components
Alanou et al. Effect of different surface treatments and coatings on the scuffing performance of hardened steel discs at very high sliding speeds
JP2009052081A (en) Hard carbon film
JP2017025396A (en) Slide member, and method of manufacturing the same
Konca et al. Sliding wear of non-hydrogenated diamond-like carbon coatings against magnesium
CA2479032A1 (en) Multifunctional composite coating and process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP