WO2011114882A1 - Organic electroluminescent panel and production method for organic electroluminescent panel - Google Patents

Organic electroluminescent panel and production method for organic electroluminescent panel Download PDF

Info

Publication number
WO2011114882A1
WO2011114882A1 PCT/JP2011/054726 JP2011054726W WO2011114882A1 WO 2011114882 A1 WO2011114882 A1 WO 2011114882A1 JP 2011054726 W JP2011054726 W JP 2011054726W WO 2011114882 A1 WO2011114882 A1 WO 2011114882A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substrate
sealing
panel
layer
Prior art date
Application number
PCT/JP2011/054726
Other languages
French (fr)
Japanese (ja)
Inventor
正数 遠西
真人 奥山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012505598A priority Critical patent/JPWO2011114882A1/en
Publication of WO2011114882A1 publication Critical patent/WO2011114882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements

Definitions

  • the present invention relates to an organic electroluminescence panel and a manufacturing method thereof, and more particularly to an organic electroluminescence panel to which a solid sealing method using a sheet-like sealing material is applied and a manufacturing method thereof.
  • organic electroluminescence devices using organic substances are promising for use as solid light-emitting, inexpensive large-area full-color display devices and writing light source arrays, and are actively researched. Development is in progress.
  • the organic EL device includes a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer portion or multilayer portion) containing an organic light emitting material laminated thereon, that is, a light emitting layer, It is a thin film type element having a second electrode (cathode or anode) laminated on the light emitting layer.
  • the organic EL element is a thin film type element, when an organic EL element in which one or a plurality of organic EL elements are formed on a substrate is used as a surface light source such as a backlight, a surface light source. It is possible to easily make the device provided with Further, when an organic electroluminescence display device is configured using an organic electroluminescence panel (hereinafter also referred to as an organic EL panel) in which a predetermined number of organic EL elements as pixels are formed on a substrate, the visibility is improved. There is an advantage that cannot be obtained by a liquid crystal display device, such as being high and having no viewing angle dependency.
  • organic substances such as organic light emitting materials used in organic EL elements are easily affected by moisture, oxygen, etc., and their performance deteriorates when stored in such an environment. In the atmosphere, the characteristics deteriorate rapidly, and a spot-like non-light emitting portion (hereinafter referred to as a dark spot) is generated on the organic EL element.
  • an organic EL element is generally used by providing a sealing layer as the uppermost layer.
  • a metal container-type sealing material is used as a method for preventing the occurrence of these dark spots.
  • a method of covering and sealing an organic EL element through an adhesive layer in a dry nitrogen atmosphere is described.
  • the effect depends mainly on the thickness of the container-type sealing material, and is required in the market. It is not suitable for manufacturing thin organic EL elements. For this reason, the manufacturing method of the thin organic EL element which has the same dark spot prevention effect as a container type sealing material has been examined until now.
  • Patent Document 1 proposes an organic electroluminescence panel using a sealing film that can form a thin organic EL element and has a barrier property.
  • a sealing film instead of a sealing can, a flexible film having a barrier property (hereinafter also referred to as a sealing film) is used as a sealing member, and the organic EL element substrate and an adhesive are bonded together in a vacuum.
  • Patent Document 2 discloses a method for removing organic substances and modifying the surface by performing a dry cleaning process in addition to the dehydrating process of the sealing member. Are listed.
  • Patent Documents 1 and 2 are relatively easy to mass-produce and can produce a thin organic EL element having a high sealing effect. Initial damage to the light emitting element due to (surface adhesion on the organic electroluminescence element) occurs, and the countermeasure is insufficient.
  • an object of the present invention is to provide an organic electroluminescence panel manufacturing method and an organic electroluminescence panel which have excellent initial dark spot resistance and element lifetime of an organic EL element and have a high rectification ratio.
  • the sealing material is a thermosetting resin or an ultraviolet curable resin
  • the organic electroluminescent panel is formed by bonding a sealing substrate on the substrate via the sealing material.
  • the substrate is formed by bonding a sealing substrate on the substrate on which the organic electroluminescence element is formed via the sealing material and bonding the surface to each other, and then performing a process of cooling to 5 ° C. or less within 12 hours.
  • the method for producing an organic electroluminescence panel according to any one of 1 to 4 above.
  • an organic electroluminescence panel having an excellent initial dark spot resistance and device lifetime of an organic EL device and having a high rectification ratio is obtained by using a close-contact type sealing method in which a sealing material is fixed through an adhesive.
  • a method and an organic electroluminescence panel could be provided.
  • the inventor of the present invention on a substrate on which an organic electroluminescence element having at least a first electrode, an organic compound layer including a light emitting layer, and a second electrode is formed via a sealing material.
  • the sealing material is a thermosetting resin or an ultraviolet curable resin
  • the organic electroluminescence panel is After the sealing substrate is bonded onto the substrate via a sealing material and bonded to the surface, the sealing material is subjected to a step of cooling to 5 ° C. or lower, and then the sealing material is cured by applying heat or ultraviolet rays.
  • the organic EL panel manufacturing method is characterized by excellent initial dark spot resistance and device life of organic EL devices, and has a high rectification ratio.
  • Method of producing an organic electroluminescent panel capable of manufacturing an organic electroluminescent panel found that it is possible to realize a completed the invention.
  • a substrate (hereinafter also referred to as a support substrate, a substrate, a base material, or a support) that can be used in the organic EL device according to the present invention, there is no particular limitation on the type, such as glass, plastic, metal, ceramic, etc. It may be transparent or opaque. In the case where light is extracted from the substrate side, the substrate is preferably transparent, and examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film.
  • a particularly preferable substrate is a resin film that can impart flexibility (also referred to as flexibility) to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, Cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate (TAC), cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone ( ES), polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR
  • an inorganic film, an organic film, or a hybrid film of both may be formed, and the water vapor transmission rate (temperature: measured by a method according to JIS K 7129-1992). 25 ⁇ 0.5 ° C., relative humidity: 90 ⁇ 2% RH) is preferably a barrier film of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and further according to JIS K 7126-1987.
  • Oxygen permeability measured by a compliant method is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less, water vapor permeability (temperature: 25 ⁇ 0.5 ° C., relative humidity: 90 ⁇ 2% RH)
  • a high barrier film of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less is preferable.
  • the constituent material of the barrier film formed on the surface of the resin film may be any material that has a function of preventing the ingress of oxygen and moisture that induces deterioration of the organic EL panel.
  • An inorganic film such as silicon oxide, silicon dioxide, or silicon nitride can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but a formation method using an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable. preferable.
  • an organic compound layer in this invention has the structure by which the functional layer which consists of various organic compounds, such as a positive hole injection / transport layer / light emitting layer / electron injection / transport layer, was laminated
  • the simplest configuration is a structure consisting only of a light emitting layer.
  • Examples of organic compound materials used for the hole injection / transport layer include phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like.
  • a polymer material such as a representative conductive polymer is used.
  • Examples of the organic compound material used for the light emitting layer include carbazole-based light emitting materials such as 4,4′-dicarbazolylbiphenyl and 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3 , 5-tripyrenylbenzene and the like, low molecular light emitting materials typified by pyrene light emitting materials, polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles and the like polymer light emitting materials. Of these, a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material.
  • the light-emitting material applied to the light-emitting layer may preferably contain about 0.1 to 20% by mass of a dopant.
  • the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, and phosphorescence.
  • Orthometalation represented by dyes such as tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc.
  • There are complex compounds such as iridium complexes.
  • Electrode injection / transport layer As a constituent material of the electron injecting / transporting layer, there are metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinato) zinc, and nitrogen-containing five-membered ring derivatives listed below. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred.
  • each functional layer As the organic compound material used for these light emitting layers and each functional layer, a material having a polymerization reactive group such as a vinyl group in the molecule is used, and a cross-linked / polymerized film is formed after film formation to form each functional layer. May be.
  • an injection layer may be formed between the electrode and the organic layer in order to reduce the drive voltage and improve the light emission luminance as necessary.
  • the injection layer includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • a phthalocyanine buffer layer typified by copper phthalocyanine
  • an oxide buffer layer typified by vanadium oxide
  • an amorphous carbon buffer layer a conductive polymer such as polyaniline (emeraldine) or polythiophene
  • Examples of the cathode buffer layer include a metal buffer layer typified by strontium, aluminum, calcium, and magnesium, an alkali metal compound buffer layer typified by lithium fluoride, and an alkali typified by magnesium fluoride. Examples thereof include an earth metal compound buffer layer and an oxide buffer layer typified by aluminum oxide.
  • Each of the buffer layers is desirably a very thin film, and although depending on the material, the film thickness is preferably in the range of 0.1 to 100 nm.
  • the injection layer may be a single layer or a plurality of layers.
  • each functional layer described above may be formed by a vacuum process, a dry process such as a sputtering process, or a wet process such as a coating or printing process. Also good.
  • First electrode, second electrode In the organic EL device according to the present invention, in order to transmit emitted light, at least one of the first electrode and the second electrode constituting the organic EL device needs to be transparent or translucent. Furthermore, an organic EL element in which both the anode and the cathode are transparent can be obtained by using the first electrode as a transparent electrode and further producing a transparent or translucent second electrode.
  • the cathode and the anode are not particularly limited and can be selected depending on the configuration of the organic EL element.
  • the first electrode is an anode using a transparent electrode.
  • a transparent electrode For example, when used as an anode, it is preferably an electrode that transmits light from 380 nm to 800 nm.
  • a material having a work function larger (deep) than 4 eV is suitable as a material, for example, a transparent conductive metal oxide such as indium tin oxide (ITO), SnO 2 , or ZnO, or a metal such as gold, silver, or platinum.
  • ITO indium tin oxide
  • SnO 2 SnO 2
  • ZnO zinc oxide
  • Thin films, metal nanowires, carbon nanotubes, and the like can be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not so required (100 ⁇ m).
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%
  • the sheet resistance as the first electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material used, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • a cathode and an anode are not specifically limited, It can select according to an organic EL element structure.
  • a cathode it is preferable to use a metal, an alloy, an electrically conductive compound having a work function of 4 eV or less (shallow), and a mixture thereof as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • these metals and the second metal which is a stable metal having a larger (deep) work function value than this
  • Mixtures such as magnesium / silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum alone and the like are suitable.
  • the second electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • organic photovoltaic element organic photovoltaic element, solar cell
  • the effect of increasing the optical path length is obtained by reflecting the light that has passed through the photoelectric conversion layer and returning it to the photoelectric conversion layer again, and in any case, an improvement in external quantum efficiency can be expected.
  • nanoparticle, nanowire, or nanostructure made of metal (eg, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.) or carbon.
  • metal eg, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.
  • carbon e.g., carbon
  • This highly dispersible paste is preferable because a transparent and highly conductive counter electrode can be formed by a coating method or a printing method.
  • a sealing material used to form an adhesion sealing structure by laminating a substrate of an organic EL element and a sealing substrate and bonding the surfaces.
  • a sealing material also referred to as a sealing adhesive
  • thermosetting resin and the ultraviolet curable resin applicable to the present invention are not particularly limited, but thermosetting resins such as epoxy resins, acrylic resins, and silicone resins are preferable, and moisture resistance and water resistance are more preferable. It is an epoxy thermosetting resin that has excellent properties and has little shrinkage when cured.
  • a coating method such as roll coating, spin coating, screen printing, or spray coating can be used depending on a material to be applied.
  • a desiccant such as barium oxide or calcium oxide may be mixed.
  • the water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and particularly preferably 0.01 to 100 ppm.
  • the moisture content may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, GC / MS, IR, DSC (Differential scanning calorimeter), TDS (Temperature desorption analysis), and other measuring methods. Further, using a precision moisture meter AVM-3000 (manufactured by Omnitech) or the like, the moisture content can be measured from the pressure increase caused by the evaporation of moisture.
  • the water content of the sealing material is, for example, set in a nitrogen atmosphere having a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, and can be changed by changing the time. Can be adjusted to the conditions. Moreover, it can adjust also by placing in a vacuum state of 100 Pa or less and changing the time to dry. Moreover, although the adhesive agent for sealing can dry only an adhesive agent, it can also be dried after previously arrange
  • sealing substrate examples include metals such as stainless steel, aluminum, and magnesium alloys, resin films such as polyethylene terephthalate, polycarbonate, polystyrene, nylon, and polyvinyl chloride, and composite materials thereof, glass, and the like. Can be used as needed.
  • resin films such as polyethylene terephthalate, polycarbonate, polystyrene, nylon, and polyvinyl chloride, and composite materials thereof, glass, and the like.
  • a material obtained by laminating a gas barrier layer composed of aluminum, aluminum oxide, silicon oxide, silicon nitride, or the like can be used as in the case of a resin substrate.
  • the sealing substrate is preferably a metal foil from the viewpoint of flexibility and barrier properties.
  • the metal foil used as the sealing substrate is not particularly limited in the type of metal.
  • copper (Cu) foil aluminum (Al) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, copper alloy foil, stainless steel foil, tin (Sn) foil, high nickel alloy foil, and the like.
  • a particularly preferred metal foil is an Al foil.
  • the metal foil mainly refers to a metal foil or film formed by rolling metal, etc., but a metal thin film formed by sputtering or vapor deposition on a polymer film, or a flow of conductive paste, etc. It may be a conductive film formed from a conductive electrode material.
  • polyethylene resin polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon Resin, vinylidene chloride resin and the like.
  • Each resin such as polypropylene resin, polyethylene terephthalate resin, and nylon resin may be stretched and further coated with a vinylidene chloride resin.
  • a polyethylene resin having a low density or a high density can be used.
  • a generally used laminating machine can be used as a method of laminating a polymer film on one side of a metal foil.
  • the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the metal foil when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be produced by a method of forming a metal foil on a polymer film as a base material. Good.
  • the metal foil used as the sealing substrate preferably has a thickness of 9 to 500 ⁇ m, and a polymer film is laminated thereon, and the thickness of the polymer film is 10 to 100% of the metal foil. Preferably there is.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the organic EL panel of the present invention.
  • an organic EL element including a first electrode 2, an organic EL layer (organic compound layer) 3 including a light emitting layer, and a second electrode 4 is formed on a resin substrate 1.
  • a sealed organic electroluminescence (EL) panel P having a configuration in which a sealing substrate 5 is sealed at its end by an adhesive layer 6 is shown.
  • the sealing substrate for example, a polyethylene terephthalate film with a thickness of 50 ⁇ m and an aluminum foil laminated with a thickness of 30 ⁇ m, for example, can be used.
  • a sealing adhesive uniformly applied to the aluminum surface using a dispenser is placed in advance, the resin substrate 1 and the sealing substrate 5 are aligned, and then both are crimped together. After bonding (0.1 to 3 MPa), heat curing is performed at a temperature in the range of 80 to 160 ° C., and close sealing (solid sealing) is performed.
  • the pressure-bonding time is appropriately set depending on the type of sealing adhesive, the applied amount, the applied area, etc., but the pressure is temporarily bonded within a range of about 0.1 to 3 MPa. At this time, a heated crimping roll can be used to eliminate voids remaining inside.
  • the solid sealing is a form in which there is no space between the sealing member and the organic EL element substrate and the resin is cured with a cured resin.
  • the heating temperature necessary for curing the adhesive layer can be set as appropriate, but is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher, It is the range of 160 degrees C or less. Further, by heating for 1 minute or more and 1 hour or less, the curing (crosslinking reaction) proceeds and adheres in the case of a thermosetting resin. Also in the case of a photo-curing adhesive, the curing (adhesion) speed can be increased by heating after light irradiation.
  • the sealing material is a thermosetting resin or It is an ultraviolet curable resin.
  • the adhesive component penetrates into the minute gaps of the second electrode. Therefore, although it is easy to cause micro-peeling at the interface between the second electrode and the organic compound layer by heat curing, penetration of the adhesive component is suppressed by passing through a cooling step before heat curing, and cooling stays. Thus, it is presumed that only the curing in the minute voids progressed, and the minute peeling at the interface between the second electrode and the organic compound layer was suppressed even when heat curing was performed later.
  • the reason for the hardening of the adhesive in the minute gap due to the cooling stay is unknown, but it is possible that the minute defect of the second electrode has a catalytic action for promoting the hardening of the thermosetting adhesive.
  • the time until the process of cooling to 5 ° C. or less according to the present invention is preferably as short as possible, but is preferably within 12 hours, more preferably 10 seconds or more. Further, it is more preferably within 6 hours, particularly preferably within 1 minute and within 4 hours.
  • the residence time of the organic EL panel in the step of cooling to 5 ° C. or less according to the present invention is preferably 1 hour or more, more preferably 2 hours or more and 8 days or less, still more preferably 1 day or more and 8 days or less. is there.
  • the temperature in the cooling step according to the present invention is 5 ° C. or less, preferably 0 ° C. or less, more preferably ⁇ 20 ° C. or more and 0 ° C. or less.
  • Light extraction material In the present invention, it is preferable to have a light extraction member between the flexible substrate and the second electrode or at any location on the light emission side from the flexible substrate.
  • examples of the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface or any medium that causes total reflection can be used.
  • an organic electroluminescence element that emits light from a substrate
  • a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of loss of light.
  • prismatic or lens-like processing is applied to the surface of the substrate, or prism sheets, lens sheets, and diffusion sheets are affixed to the surface of the substrate, thereby suppressing total reflection and light extraction efficiency. To improve.
  • a gas barrier layer having a structure in which an adhesion layer / ceramic layer / adhesion layer / ceramic layer were laminated in this order was formed on one surface of the flexible base material under the atmospheric pressure plasma treatment conditions shown below.
  • Each film thickness is 200 nm for the adhesion layer and 25 nm for the ceramic layer.
  • the holding temperature of the flexible substrate during film formation was 140 ° C.
  • a light emitting layer coating solution having the following composition is further prepared to 1 ml, and spin-coated in a glove box having a moisture concentration of 1 ppm or less, an oxygen concentration of 10 ppm or less, and a temperature of 26 ° C.
  • a light emitting layer having a thickness of about 25 nm was formed.
  • the flexible base material on which the electron transport layer was formed was transferred to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and 10 nm of lithium fluoride and a cathode as a cathode buffer layer on the electron transport layer.
  • an organic EL element 1 was fabricated by sequentially depositing aluminum 110 nm layers.
  • a 30 ⁇ m thick aluminum foil manufactured by Toyo Aluminum Co., Ltd.
  • a 25 ⁇ m thick polyethylene terephthalate (PET) film is used on this mat surface with an adhesive for dry lamination (two-component reaction type urethane adhesive).
  • the surface roughness Ra of the cut surface (mat surface) of this aluminum foil was 470 nm, and the Ra of the polished surface was 1 nm or less.
  • thermosetting adhesive composed of agent a, agent b and agent c was applied to produce a sealing substrate with a sealing material.
  • thermosetting adhesive composition Epoxy adhesive> Agent a) Bisphenol A diglycidyl ether (DGEBA) b) Dicyandiamide (DICY) c agent) Epoxy adduct type curing accelerator
  • DGEBA diglycidyl ether
  • DIY Dicyandiamide
  • c agent Epoxy adduct type curing accelerator
  • the thermosetting adhesive is uniformly applied along the adhesive surface (shiny surface) of aluminum foil laminated with polyethylene terephthalate using a dispenser, and has a moisture concentration of 1 ppm or less, oxygen
  • the sample was left in a glove box having a concentration of 10 ppm or less and a temperature of 26 ° C. for 12 hours.
  • the thickness of the adhesive layer was 20 ⁇ m, and the water content measured by the Karl Fischer method was 50 ppm or less.
  • the organic EL element 1 is formed so that the extraction electrode is exposed from the thus prepared sealing substrate with adhesive in a glove box having a moisture concentration of 1 ppm or less, an oxygen concentration of 10 ppm or less, and a temperature of 26 ° C.
  • the adhesive surface was placed in close contact with the PET substrate so as to cover it, and the sealing substrate was pressure-bonded (pressure 0.15 MPa, time 30 seconds) to be temporarily bonded.
  • the organic EL panel is immediately moved onto a hot plate, heated (temperature 120 ° C., 30 minutes) to thermally cure the thermosetting adhesive, and the organic EL panel 101 was made.
  • organic EL panels 102 and 103 were produced in the same manner except that the storage time at 26 ° C. after temporary bonding was changed to 24 hours and 120 hours, respectively.
  • A No occurrence of dark spots is observed.
  • O The number of dark spots is 1 or more and less than 5.
  • The number of dark spots is 5 or more and less than 20.
  • Dark The number of spots generated is 20 or more.
  • Ratio of non-light emitting area is less than 0.1%
  • B Ratio of non-light emitting area is 0.1% or more and less than 1.0%
  • Ratio of non-light emitting area is 1.0 %more than. Less than 2.0%
  • the ratio of the non-light emitting area is 2.0% or more. Table 1 shows the results obtained as described above.
  • the production method according to the present invention is performed in the cooling step of 5 ° C. or less specified in the present invention. It can be seen that the organic EL panel has a higher rectification ratio than the comparative example, and is excellent in initial dark spot resistance and panel life.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a production method for an organic EL panel having an excellent lifespan and resistance against initial dark spots in the organic EL elements, as well as a high rectification ratio. Also disclosed is an organic EL panel. The organic EL panel production method, in which a contact sealing structure is formed by affixing a sealing substrate upon a substrate having an organic EL element formed thereon that is provided with a first electrode, an organic compound layer comprising a light-emitting layer, and a second electrode, and adhering the surfaces thereof together via a sealing material, is characterized in that said sealing material is a thermosetting resin or an ultraviolet-curing resin, and in that, once the sealing substrate has been affixed upon the substrate via the sealing material and the surfaces thereof have been adhered together, a step for cooling the substrates to 5˚C or lower is completed and said sealing material is subsequently hardened by applying heat or ultraviolet rays thereto, thereby producing the organic EL panel.

Description

有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
 本発明は、有機エレクトロルミネッセンスパネルとその製造方法に関し、更に詳しくは、シート状のシール材を用いた固体封止方法を適用した有機エレクトロルミネッセンスパネルとその製造方法に関するものである。 The present invention relates to an organic electroluminescence panel and a manufacturing method thereof, and more particularly to an organic electroluminescence panel to which a solid sealing method using a sheet-like sealing material is applied and a manufacturing method thereof.
 近年、有機物質を使用した有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)は、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視されており、活発な研究開発がなされている。有機EL素子は、基板上に形成された第1電極(陽極または陰極)と、その上に積層された有機発光物質を含有する有機化合物層(単層部または多層部)すなわち発光層と、この発光層上に積層された第2電極(陰極または陽極)とを有する薄膜型の素子である。この様な構成からなる有機EL素子に電圧を印加すると、有機化合物層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られている。 In recent years, organic electroluminescence devices using organic substances (hereinafter also referred to as organic EL devices) are promising for use as solid light-emitting, inexpensive large-area full-color display devices and writing light source arrays, and are actively researched. Development is in progress. The organic EL device includes a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer portion or multilayer portion) containing an organic light emitting material laminated thereon, that is, a light emitting layer, It is a thin film type element having a second electrode (cathode or anode) laminated on the light emitting layer. When a voltage is applied to the organic EL element having such a configuration, electrons are injected into the organic compound layer from the cathode and holes are injected from the anode. It is known that light is obtained by releasing energy as light when the electrons and holes recombine in the light emitting layer and the energy level returns from the conduction band to the valence band.
 この様に、有機EL素子は薄膜型の素子であるため、1個または複数個の有機EL素子を基板上に形成した有機EL素子をバックライト等の面光源として利用した場合には、面光源を備えた装置を容易に薄型にすることができる。また、画素としての有機EL素子を基板上に所定個数形成した有機エレクトロルミネッセンスパネル(以下、有機ELパネルともいう)をディスプレイパネルとして用いて、有機エレクトロルミネッセンス表示装置を構成した場合には、視認性が高く、視野角依存性がないなど、液晶表示装置では得られない利点がある。 As described above, since the organic EL element is a thin film type element, when an organic EL element in which one or a plurality of organic EL elements are formed on a substrate is used as a surface light source such as a backlight, a surface light source. It is possible to easily make the device provided with Further, when an organic electroluminescence display device is configured using an organic electroluminescence panel (hereinafter also referred to as an organic EL panel) in which a predetermined number of organic EL elements as pixels are formed on a substrate, the visibility is improved. There is an advantage that cannot be obtained by a liquid crystal display device, such as being high and having no viewing angle dependency.
 ところが、有機EL素子に用いられる有機発光材料等の有機物は、水分や酸素等による影響を受けやすく、その様な環境下で保管された際には性能が劣化し、また、電極も、酸化により大気中では特性が急激に劣化し、有機EL素子上に斑点状の非発光部(以下、ダークスポットと称す)が発生し、更にはそれが拡大してしまう欠点があるため、これらの劣化を防止するためには、最上層に封止層を設けて有機EL素子を封止して使用しているのが一般的である。 However, organic substances such as organic light emitting materials used in organic EL elements are easily affected by moisture, oxygen, etc., and their performance deteriorates when stored in such an environment. In the atmosphere, the characteristics deteriorate rapidly, and a spot-like non-light emitting portion (hereinafter referred to as a dark spot) is generated on the organic EL element. In order to prevent this, an organic EL element is generally used by providing a sealing layer as the uppermost layer.
 これらダークスポットの発生を防止する方法としては、例えば、特開平5-182759号公報、同5-36475号公報、特開2002-43055号公報には、金属製の容器型封止材料を用いて、乾燥窒素雰囲気下で有機EL素子を、接着剤層を介して被覆封止する方法が記載されている。しかし、ダークスポット対策に優れたこれら金属製の容器型封止材料を使用する方法では、その効果は、主には容器型封止材料の厚さに依存することになり、市場で求められている薄型の有機EL素子の製造には不向きとなっている。このため、容器型封止材料と同じダークスポット防止効果を有する薄型の有機EL素子の製造方法が、これまで検討されてきた。例えば、特許文献1には、薄い有機EL素子を形成させることが可能で、バリア性を有する封止フィルムを用いた有機エレクトロルミネッセンスパネルが提案されている。特許文献1では、封止缶に代わり、バリア性を有する可撓性フィルム(以下、封止用フィルムともいう)を封止部材として、有機EL素子基板と接着剤を介し真空中で貼り合わせる方法が開示されている。また、有機EL素子の耐久性を更に向上させる観点から、特許文献2では、封止部材の脱水処理に加えて、乾式の洗浄処理を施すことにより、有機物の除去及び表面改質をする方法が記載されている。 As a method for preventing the occurrence of these dark spots, for example, in Japanese Patent Laid-Open Nos. 5-182759, 5-36475, and 2002-43055, a metal container-type sealing material is used. A method of covering and sealing an organic EL element through an adhesive layer in a dry nitrogen atmosphere is described. However, in the method using these metal container-type sealing materials that are excellent in measures against dark spots, the effect depends mainly on the thickness of the container-type sealing material, and is required in the market. It is not suitable for manufacturing thin organic EL elements. For this reason, the manufacturing method of the thin organic EL element which has the same dark spot prevention effect as a container type sealing material has been examined until now. For example, Patent Document 1 proposes an organic electroluminescence panel using a sealing film that can form a thin organic EL element and has a barrier property. In Patent Document 1, instead of a sealing can, a flexible film having a barrier property (hereinafter also referred to as a sealing film) is used as a sealing member, and the organic EL element substrate and an adhesive are bonded together in a vacuum. Is disclosed. In addition, from the viewpoint of further improving the durability of the organic EL element, Patent Document 2 discloses a method for removing organic substances and modifying the surface by performing a dry cleaning process in addition to the dehydrating process of the sealing member. Are listed.
特開2003-045652号公報JP 2003-045652 A 特開2007-087852号公報JP 2007-078552 A
 しかしながら、特許文献1、2に記載の密着タイプの封止方法は、大量生産が比較的容易で、高い封止効果を有した薄型の有機EL素子の製造は可能であるが、未だ密着封止(有機エレクトロルミネッセンス素子上への面接着)に起因する発光素子への初期ダメージが発生し、その対応が不十分となっている。 However, the close-contact type sealing methods described in Patent Documents 1 and 2 are relatively easy to mass-produce and can produce a thin organic EL element having a high sealing effect. Initial damage to the light emitting element due to (surface adhesion on the organic electroluminescence element) occurs, and the countermeasure is insufficient.
 この様な状況から、封止材を、接着剤を介して固着する密着タイプの封止方法で有機EL素子を封止した有機ELパネルを製造する時、有機EL素子の性能劣化を生じさせないで、生産効率の低下が少ない有機ELパネルの製造方法及び有機ELパネルの開発が望まれている。 From such a situation, when manufacturing an organic EL panel in which an organic EL element is sealed by an adhesion type sealing method in which a sealing material is fixed through an adhesive, the performance of the organic EL element is not deteriorated. Therefore, it is desired to develop an organic EL panel manufacturing method and an organic EL panel with little reduction in production efficiency.
 従って、本発明の目的は、有機EL素子の初期ダークスポット耐性並びに素子寿命に優れ、高い整流比を有する有機エレクトロルミネッセンスパネルの製造方法及び有機エレクトロルミネッセンスパネルを提供することにある。 Therefore, an object of the present invention is to provide an organic electroluminescence panel manufacturing method and an organic electroluminescence panel which have excellent initial dark spot resistance and element lifetime of an organic EL element and have a high rectification ratio.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.少なくとも第1電極、発光層を含む有機化合物層及び第2電極を有する有機エレクトロルミネッセンス素子を形成した基板上に、シール材を介して封止基板を貼合、面接着させて密着封止構造を形成する有機エレクトロルミネッセンスパネルの製造方法において、該シール材が熱硬化型樹脂または紫外線硬化型樹脂であり、該有機エレクトロルミネッセンスパネルは、基板上にシール材を介して封止基板を貼合して面接着させた後、5℃以下に冷却する工程を経た後、該シール材に熱または紫外線を付与して硬化させて製造することを特徴とする有機エレクトロルミネッセンスパネルの製造方法。 1. At least a first electrode, an organic compound layer including a light emitting layer, and a substrate on which an organic electroluminescence element having a second electrode is formed. In the manufacturing method of the organic electroluminescent panel to be formed, the sealing material is a thermosetting resin or an ultraviolet curable resin, and the organic electroluminescent panel is formed by bonding a sealing substrate on the substrate via the sealing material. A method for producing an organic electroluminescence panel, which is produced by subjecting a surface to adhesion, followed by a step of cooling to 5 ° C. or lower, and then applying heat or ultraviolet light to the sealing material to cure.
 2.前記基板及び前記封止基板が、いずれも可撓性基板であることを特徴とする前記1に記載の有機エレクトロルミネッセンスパネルの製造方法。 2. 2. The method of manufacturing an organic electroluminescence panel according to 1 above, wherein the substrate and the sealing substrate are both flexible substrates.
 3.前記封止基板が、金属箔を有する防湿フィルムであることを特徴とする前記1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。 3. 3. The method for producing an organic electroluminescence panel according to 1 or 2, wherein the sealing substrate is a moisture-proof film having a metal foil.
 4.前記シール材が、エポキシ系の熱硬化型樹脂であることを特徴とする前記1から3のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 4. 4. The method for producing an organic electroluminescence panel according to any one of 1 to 3, wherein the sealing material is an epoxy thermosetting resin.
 5.前記有機エレクトロルミネッセンス素子を形成した基板上に、前記シール材を介して封止基板を貼合して面接着させた後、12時間以内に前記5℃以下に冷却する工程で処理することを特徴とする前記1から4のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 5. The substrate is formed by bonding a sealing substrate on the substrate on which the organic electroluminescence element is formed via the sealing material and bonding the surface to each other, and then performing a process of cooling to 5 ° C. or less within 12 hours. The method for producing an organic electroluminescence panel according to any one of 1 to 4 above.
 6.前記5℃以下に冷却する工程における処理時間が、2時間以上であることを特徴とする前記1から5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 6. 6. The method for producing an organic electroluminescence panel according to any one of 1 to 5, wherein a treatment time in the step of cooling to 5 ° C. or lower is 2 hours or longer.
 7.前記5℃以下に冷却する工程における処理温度が、0℃以下であることを特徴とする前記1から6のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 7. 7. The method for producing an organic electroluminescence panel according to any one of 1 to 6, wherein a treatment temperature in the step of cooling to 5 ° C. or lower is 0 ° C. or lower.
 8.前記1から7のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法を用いて製造されたことを特徴とする有機エレクトロルミネッセンスパネル。 8. 8. An organic electroluminescence panel manufactured using the method for manufacturing an organic electroluminescence panel according to any one of 1 to 7 above.
 本発明により、封止材を、接着剤を介して固着する密着タイプの封止方法を用い、有機EL素子の初期ダークスポット耐性並びに素子寿命に優れ、高い整流比を有する有機エレクトロルミネッセンスパネルの製造方法及び有機エレクトロルミネッセンスパネルを提供することができた。 According to the present invention, an organic electroluminescence panel having an excellent initial dark spot resistance and device lifetime of an organic EL device and having a high rectification ratio is obtained by using a close-contact type sealing method in which a sealing material is fixed through an adhesive. A method and an organic electroluminescence panel could be provided.
本発明の有機ELパネルの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the organic electroluminescent panel of this invention.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、少なくとも第1電極、発光層を含む有機化合物層及び第2電極を有する有機エレクトロルミネッセンス素子を形成した基板上に、シール材を介して封止基板を貼合、面接着させて密着封止構造を形成する有機エレクトロルミネッセンスパネルの製造方法において、該シール材が熱硬化型樹脂または紫外線硬化型樹脂であり、該有機エレクトロルミネッセンスパネルは、基板上にシール材を介して封止基板を貼合して面接着させた後、5℃以下に冷却する工程を経た後、該シール材に熱または紫外線を付与して硬化させて製造することを特徴とする有機エレクトロルミネッセンスパネルの製造方法により、有機EL素子の初期ダークスポット耐性並びに素子寿命に優れ、高い整流比を有する有機エレクトロルミネッセンスパネルを製造することができる有機エレクトロルミネッセンスパネルの製造方法を実現することができることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the inventor of the present invention, on a substrate on which an organic electroluminescence element having at least a first electrode, an organic compound layer including a light emitting layer, and a second electrode is formed via a sealing material. In the manufacturing method of an organic electroluminescence panel in which a sealing substrate is bonded and bonded to each other to form a tightly sealed structure, the sealing material is a thermosetting resin or an ultraviolet curable resin, and the organic electroluminescence panel is After the sealing substrate is bonded onto the substrate via a sealing material and bonded to the surface, the sealing material is subjected to a step of cooling to 5 ° C. or lower, and then the sealing material is cured by applying heat or ultraviolet rays. The organic EL panel manufacturing method is characterized by excellent initial dark spot resistance and device life of organic EL devices, and has a high rectification ratio. Method of producing an organic electroluminescent panel capable of manufacturing an organic electroluminescent panel found that it is possible to realize a completed the invention.
 以下、本発明の有機エレクトロルミネッセンスパネル及びその製造方法の詳細について説明する。 Hereinafter, the details of the organic electroluminescence panel of the present invention and the manufacturing method thereof will be described.
 〔基板〕
 本発明に係る有機EL素子に用いることのできる基板(以下、支持基板、基体、基材、支持体ともいう)としては、ガラス、プラスチック、金属、セラミック等、種類には特に限定はなく用いることができ、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましく、好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性(可撓性ともいう)を与えることが可能な樹脂フィルムである。
〔substrate〕
As a substrate (hereinafter also referred to as a support substrate, a substrate, a base material, or a support) that can be used in the organic EL device according to the present invention, there is no particular limitation on the type, such as glass, plastic, metal, ceramic, etc. It may be transparent or opaque. In the case where light is extracted from the substrate side, the substrate is preferably transparent, and examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film that can impart flexibility (also referred to as flexibility) to the organic EL element.
 本発明に係る有機EL素子の基板として適用可能な樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名、JSR社製)あるいはアペル(商品名、三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film applicable as the substrate of the organic EL device according to the present invention include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, Cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate phthalate (TAC), cellulose esters such as cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone ( ES), polyphenylene sulfide, polysulfones, polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Apel (trade name, Cycloolefin-based resins such as Mitsui Chemicals).
 基材として適用する樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(温度:25±0.5℃、相対湿度:90±2%RH)が、1×10-3g/(m・24h)以下のバリア性フィルムであることが好ましく、更にはJIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度(温度:25±0.5℃、相対湿度:90±2%RH)が、1×10-3g/(m・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film to be applied as the substrate, an inorganic film, an organic film, or a hybrid film of both may be formed, and the water vapor transmission rate (temperature: measured by a method according to JIS K 7129-1992). 25 ± 0.5 ° C., relative humidity: 90 ± 2% RH) is preferably a barrier film of 1 × 10 −3 g / (m 2 · 24 h) or less, and further according to JIS K 7126-1987. Oxygen permeability measured by a compliant method is 1 × 10 −3 ml / m 2 · 24 h · atm or less, water vapor permeability (temperature: 25 ± 0.5 ° C., relative humidity: 90 ± 2% RH) A high barrier film of 1 × 10 −3 g / (m 2 · 24 h) or less is preferable.
 高バリア性フィルムとするため、樹脂フィルム表面に形成されるバリア膜の構成材料としては、有機ELパネルの劣化を誘発する酸素や水分の浸入を防止する機能を備えた材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などの無機膜を用いることができる。更に、無機膜の脆弱性を改良するために、これら無機膜と有機材料からなる膜の積層構造とすることがより好ましい。無機膜と有機膜の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 In order to make a high barrier film, the constituent material of the barrier film formed on the surface of the resin film may be any material that has a function of preventing the ingress of oxygen and moisture that induces deterioration of the organic EL panel. An inorganic film such as silicon oxide, silicon dioxide, or silicon nitride can be used. Furthermore, in order to improve the fragility of the inorganic film, it is more preferable to have a laminated structure of these inorganic film and a film made of an organic material. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic film and an organic film, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法を用いた形成方法が特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but a formation method using an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable. preferable.
 〔機能層(有機化合物層)〕
 本発明における有機化合物層としては、例えば、正孔注入・輸送層/発光層/電子注入・輸送層等、各種の有機化合物からなる機能層が必要に応じ積層された構成を有する。最も単純な構成は、発光層のみからなる構造である。
[Functional layer (organic compound layer)]
As an organic compound layer in this invention, it has the structure by which the functional layer which consists of various organic compounds, such as a positive hole injection / transport layer / light emitting layer / electron injection / transport layer, was laminated | stacked as needed, for example. The simplest configuration is a structure consisting only of a light emitting layer.
 (正孔注入・輸送層)
 正孔注入・輸送層に用いられる有機化合物材料としては、例えば、フタロシアニン誘導体、ヘテロ環アゾール類、芳香族三級アミン類、ポリビニルカルバゾール、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT:PSS)などに代表される導電性高分子等の高分子材料が用いられる。
(Hole injection / transport layer)
Examples of organic compound materials used for the hole injection / transport layer include phthalocyanine derivatives, heterocyclic azoles, aromatic tertiary amines, polyvinyl carbazole, polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT: PSS), and the like. A polymer material such as a representative conductive polymer is used.
 (発光層)
 発光層に用いられる有機化合物材料としては、例えば、4,4′-ジカルバゾリルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系発光材料、(ジ)アザカルバゾール類、1,3,5-トリピレニルベンゼンなどのピレン系発光材料に代表される低分子発光材料、ポリフェニレンビニレン類、ポリフルオレン類、ポリビニルカルバゾール類などに代表される高分子発光材料などが挙げられる。これらのうちで、発光材料としては分子量10000以下の低分子系発光材料が好ましく用いられる。
(Light emitting layer)
Examples of the organic compound material used for the light emitting layer include carbazole-based light emitting materials such as 4,4′-dicarbazolylbiphenyl and 1,3-dicarbazolylbenzene, (di) azacarbazoles, 1,3 , 5-tripyrenylbenzene and the like, low molecular light emitting materials typified by pyrene light emitting materials, polyphenylene vinylenes, polyfluorenes, polyvinyl carbazoles and the like polymer light emitting materials. Of these, a low molecular weight light emitting material having a molecular weight of 10,000 or less is preferably used as the light emitting material.
 また、発光層に適用する発光材料には、好ましくは0.1~20質量%程度のドーパントが含まれてもよく、ドーパントとしては、ペリレン誘導体、ピレン誘導体等公知の蛍光色素、また、りん光色素、例えば、トリス(2-フェニルピリジン)イリジウム、ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム、ビス(2,4-ジフルオロフェニルピリジン)(ピコリナート)イリジウム、などに代表されるオルトメタル化イリジウム錯体等の錯体化合物がある。 The light-emitting material applied to the light-emitting layer may preferably contain about 0.1 to 20% by mass of a dopant. Examples of the dopant include known fluorescent dyes such as perylene derivatives and pyrene derivatives, and phosphorescence. Orthometalation represented by dyes such as tris (2-phenylpyridine) iridium, bis (2-phenylpyridine) (acetylacetonato) iridium, bis (2,4-difluorophenylpyridine) (picolinato) iridium, etc. There are complex compounds such as iridium complexes.
 (電子注入・輸送層)
 電子注入・輸送層の構成材料としては、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛等の金属錯体化合物もしくは以下に挙げられる含窒素五員環誘導体がある。即ち、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5-フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4′-tert-ブチルフェニル)-5-(4″-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。
(Electron injection / transport layer)
As a constituent material of the electron injecting / transporting layer, there are metal complex compounds such as 8-hydroxyquinolinate lithium and bis (8-hydroxyquinolinato) zinc, and nitrogen-containing five-membered ring derivatives listed below. That is, oxazole, thiazole, oxadiazole, thiadiazole or triazole derivatives are preferred. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1 -Phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) 1,3,4-oxadiazole, 2,5-bis ( 1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1 , 3,4-thiadiazole, 1,4-bis [2- (5-phenyl) Asiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1,3,4 -Triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like.
 これら発光層、また各機能層に用いられる有機化合物材料として、分子中にビニル基等の重合反応性基を有する材料を用い、製膜後に架橋・重合膜を形成させて各機能層を形成してもよい。 As the organic compound material used for these light emitting layers and each functional layer, a material having a polymerization reactive group such as a vinyl group in the molecule is used, and a cross-linked / polymerized film is formed after film formation to form each functional layer. May be.
 (注入層)
 また、必要に応じて駆動電圧低下や発光輝度向上のために電極と有機層間に注入層を形成してもよい。
(Injection layer)
In addition, an injection layer may be formed between the electrode and the organic layer in order to reduce the drive voltage and improve the light emission luminance as necessary.
 注入層としては、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)がある。 The injection layer includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 〈正孔注入層〉
 陽極バッファー層(正孔注入層)として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
<Hole injection layer>
As an anode buffer layer (hole injection layer), a phthalocyanine buffer layer typified by copper phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, a conductive polymer such as polyaniline (emeraldine) or polythiophene And a polymer buffer layer using
 〈電子注入層〉
 陰極バッファー層(電子注入層)には、例えば、ストロンチウムやアルミニウムやカルシウムやマグネシウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
<Electron injection layer>
Examples of the cathode buffer layer (electron injection layer) include a metal buffer layer typified by strontium, aluminum, calcium, and magnesium, an alkali metal compound buffer layer typified by lithium fluoride, and an alkali typified by magnesium fluoride. Examples thereof include an earth metal compound buffer layer and an oxide buffer layer typified by aluminum oxide.
 上記各バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1~100nmの範囲が好ましい。注入層は1層でも複数層でも良い。 Each of the buffer layers (injection layers) is desirably a very thin film, and although depending on the material, the film thickness is preferably in the range of 0.1 to 100 nm. The injection layer may be a single layer or a plurality of layers.
 本発明に係る有機EL素子においては、上記説明した各機能層は、真空蒸着法、またスパッタ法等の乾式法により形成されてもよく、また塗布、印刷法等の湿式法で成膜されてもよい。 In the organic EL device according to the present invention, each functional layer described above may be formed by a vacuum process, a dry process such as a sputtering process, or a wet process such as a coating or printing process. Also good.
 〔第1電極、第2電極〕
 本発明に係る有機EL素子においては、発光した光を透過させるため、有機EL素子を構成する第1電極または第2電極の少なくとも一方は、必ず透明または半透明である必要がある。更に、第1電極を透明電極とし、更に透明または半透明の第2電極を作製することにより、陽極と陰極の両方が透過性を有する有機EL素子とすることができる。
[First electrode, second electrode]
In the organic EL device according to the present invention, in order to transmit emitted light, at least one of the first electrode and the second electrode constituting the organic EL device needs to be transparent or translucent. Furthermore, an organic EL element in which both the anode and the cathode are transparent can be obtained by using the first electrode as a transparent electrode and further producing a transparent or translucent second electrode.
 本発明に係る第1電極としては、陰極、陽極は特に限定せず、有機EL素子構成により選択することができるが、好ましくは、第1電極としては、透明電極を用い陽極とすることである。例えば、陽極として用いる場合、好ましくは380nmから800nmの光を透過する電極である。材料としては、4eVより大きな(深い)仕事関数を持つものが適しており、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤー、カーボンナノチューブ等を用いることができる。 As the first electrode according to the present invention, the cathode and the anode are not particularly limited and can be selected depending on the configuration of the organic EL element. Preferably, the first electrode is an anode using a transparent electrode. . For example, when used as an anode, it is preferably an electrode that transmits light from 380 nm to 800 nm. A material having a work function larger (deep) than 4 eV is suitable as a material, for example, a transparent conductive metal oxide such as indium tin oxide (ITO), SnO 2 , or ZnO, or a metal such as gold, silver, or platinum. Thin films, metal nanowires, carbon nanotubes, and the like can be used.
 第1電極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)には、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。また、有機導電性化合物のように塗布可能な化合物を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることもできる。 For the first electrode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not so required (100 μm). As above, a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Moreover, when using the compound which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used.
 この第1電極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また第1電極としてのシート抵抗は数百Ω/□以下であることが好ましい。更に、膜厚は使用する材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 When light emission is extracted from the first electrode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the first electrode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material used, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
 本発明に係る第2電極としては、陰極、陽極は特に限定せず、有機EL素子構成により選択することができる。例えば、陰極として用いる場合、好ましくは仕事関数が4eV以下(浅い)の金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。この様な電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、有機機能層との電気的な接合、及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく(深く)安定な金属である第2の金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム単独等が好適である。 As a 2nd electrode which concerns on this invention, a cathode and an anode are not specifically limited, It can select according to an organic EL element structure. For example, when used as a cathode, it is preferable to use a metal, an alloy, an electrically conductive compound having a work function of 4 eV or less (shallow), and a mixture thereof as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the viewpoint of electrical bonding with the organic functional layer and durability against oxidation and the like, these metals and the second metal, which is a stable metal having a larger (deep) work function value than this, Mixtures such as magnesium / silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum alone and the like are suitable.
 第2電極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nmから5μm、好ましくは50nmから200nmの範囲で選ばれる。 The second electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
 第2電極として反射率の高い金属材料を用いれば、有機EL素子において、発光した光の一部を反射して外部に取り出すことができ、また、有機光発電素子(有機Photo Voltaic素子、太陽電池)においては、光電変換層を通過した光を反射し、再度、光電変換層に戻すことで光路長を稼ぐ効果が得られ、何れにおいても外部量子効率の向上が期待できる。 If a highly reflective metal material is used as the second electrode, in the organic EL element, a part of the emitted light can be reflected and taken out to the outside. Also, an organic photovoltaic element (organic photovoltaic element, solar cell) ), The effect of increasing the optical path length is obtained by reflecting the light that has passed through the photoelectric conversion layer and returning it to the photoelectric conversion layer again, and in any case, an improvement in external quantum efficiency can be expected.
 更に、金属(例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、または炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノ粒子やナノワイヤーの高分散性ペーストであれば、透明で導電性の高い対電極を塗布法や印刷法により形成でき好ましい。 Furthermore, it may be a nanoparticle, nanowire, or nanostructure made of metal (eg, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.) or carbon. This highly dispersible paste is preferable because a transparent and highly conductive counter electrode can be formed by a coating method or a printing method.
 〔封止用接着剤〕
 本発明の有機ELパネルの製造方法において、有機EL素子の基板と、封止基板とを貼合、面接着させて密着封止構造を形成するのに用いるシール材(封止用接着剤ともいう)としては、熱硬化型樹脂または紫外線硬化型樹脂であることを特徴の一つとする。
[Sealant for sealing]
In the method for producing an organic EL panel of the present invention, a sealing material (also referred to as a sealing adhesive) used to form an adhesion sealing structure by laminating a substrate of an organic EL element and a sealing substrate and bonding the surfaces. ) Is a thermosetting resin or an ultraviolet curable resin.
 本発明に適用可能な熱硬化型樹脂、紫外線硬化型樹脂としては、特に制限はないが、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂などの熱硬化型樹脂が好ましく、より好ましくは耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系の熱硬化型樹脂である。また、接着層の形成方法としては、適用する材料に応じて、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法を用いることができる。また、接着層内部の含有水分を除去するため、酸化バリウムや酸化カルシウムなどの乾燥剤を混入してもよい。本発明に係る封止用接着剤の含水率は300ppm以下であることが好ましく、0.01~200ppmであることがより好ましく、0.01~100ppmであることが特に好ましい。 The thermosetting resin and the ultraviolet curable resin applicable to the present invention are not particularly limited, but thermosetting resins such as epoxy resins, acrylic resins, and silicone resins are preferable, and moisture resistance and water resistance are more preferable. It is an epoxy thermosetting resin that has excellent properties and has little shrinkage when cured. In addition, as a method for forming the adhesive layer, a coating method such as roll coating, spin coating, screen printing, or spray coating can be used depending on a material to be applied. Moreover, in order to remove moisture contained in the adhesive layer, a desiccant such as barium oxide or calcium oxide may be mixed. The water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and particularly preferably 0.01 to 100 ppm.
 上記含水率は、いかなる方法により測定しても良いが、例えば、容量法水分計(カールフィッシャー)、赤外水分計、マイクロ波透過型水分計、加熱乾燥重量法、GC/MS、IR、DSC(示差走査熱量計)、TDS(昇温脱離分析)等の測定方法が挙げられる。また、精密水分計AVM-3000型(オムニテック社製)等を用い、水分の蒸発によって生じる圧力上昇から含水率を測定することができる。 The moisture content may be measured by any method. For example, a volumetric moisture meter (Karl Fischer), an infrared moisture meter, a microwave transmission moisture meter, a heat-dry weight method, GC / MS, IR, DSC (Differential scanning calorimeter), TDS (Temperature desorption analysis), and other measuring methods. Further, using a precision moisture meter AVM-3000 (manufactured by Omnitech) or the like, the moisture content can be measured from the pressure increase caused by the evaporation of moisture.
 本発明において、シール材(封止用接着剤)の含水量は、例えば、露点温度が-80℃以下で、酸素濃度が0.8ppmの窒素雰囲気下に置き、時間を変化させることで、所望の条件に調整することができる。また、100Pa以下の真空状態で置き、時間を変化させて乾燥させることによっても調整することができる。また、封止用接着剤は、接着剤のみを乾燥させることもできるが、封止部材へ予め配置した後、乾燥させることもできる。 In the present invention, the water content of the sealing material (sealing adhesive) is, for example, set in a nitrogen atmosphere having a dew point temperature of −80 ° C. or lower and an oxygen concentration of 0.8 ppm, and can be changed by changing the time. Can be adjusted to the conditions. Moreover, it can adjust also by placing in a vacuum state of 100 Pa or less and changing the time to dry. Moreover, although the adhesive agent for sealing can dry only an adhesive agent, it can also be dried after previously arrange | positioning to a sealing member.
 〔封止基板〕
 本発明に係る封止基板としては、例えば、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等の樹脂フィルム、およびこれらの複合材料、ガラス等が挙げられ、必要に応じて用いることができる。特に、樹脂フィルムの場合には、樹脂基板と同様に、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等から構成されるガスバリア層を積層した材料を用いることができる。本発明において、封止基板として好ましくはフレキシブル性、バリア性の観点より金属箔である。封止基板として用いられる金属箔としては、金属の種類に特に限定はなく、例えば、銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中でも、特に好ましい金属箔としては、Al箔が挙げられる。
[Sealing substrate]
Examples of the sealing substrate according to the present invention include metals such as stainless steel, aluminum, and magnesium alloys, resin films such as polyethylene terephthalate, polycarbonate, polystyrene, nylon, and polyvinyl chloride, and composite materials thereof, glass, and the like. Can be used as needed. In particular, in the case of a resin film, a material obtained by laminating a gas barrier layer composed of aluminum, aluminum oxide, silicon oxide, silicon nitride, or the like can be used as in the case of a resin substrate. In the present invention, the sealing substrate is preferably a metal foil from the viewpoint of flexibility and barrier properties. The metal foil used as the sealing substrate is not particularly limited in the type of metal. For example, copper (Cu) foil, aluminum (Al) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, copper alloy foil, stainless steel foil, tin (Sn) foil, high nickel alloy foil, and the like. Among these various metal foils, a particularly preferred metal foil is an Al foil.
 金属箔としては、主に、金属の圧延等により形成された金属の箔またはフィルム状のものを指すが、ポリマーフィルム上にスパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜であってもよい。 The metal foil mainly refers to a metal foil or film formed by rolling metal, etc., but a metal thin film formed by sputtering or vapor deposition on a polymer film, or a flow of conductive paste, etc. It may be a conductive film formed from a conductive electrode material.
 また、金属箔単体では機械的強度に劣るため、ピンホールの発生を防止するために、ポリマーフィルムと積層する構造をとることが好ましい。積層に用いられるポリマーフィルムの材料としては、「機能性包装材料の新展開(株式会社東レリサーチセンター)」に記載の各種ポリマー材料を使用することが可能である。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン-ビニルアルコール共重合体系樹脂、エチレン-酢酸ビニル共重合体系樹脂、アクリロニトリル-ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。 Also, since the metal foil itself is inferior in mechanical strength, it is preferable to take a structure laminated with a polymer film in order to prevent the occurrence of pinholes. Various polymer materials described in “New development of functional packaging materials (Toray Research Center, Inc.)” can be used as the material of the polymer film used for lamination. For example, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon Resin, vinylidene chloride resin and the like.
 ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ナイロン系樹脂等の各樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。 Each resin such as polypropylene resin, polyethylene terephthalate resin, and nylon resin may be stretched and further coated with a vinylidene chloride resin. In addition, a polyethylene resin having a low density or a high density can be used.
 金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるが、ドライラミネート方式が好ましい。 A generally used laminating machine can be used as a method of laminating a polymer film on one side of a metal foil. As the adhesive, polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
 また、金属箔をスパッタや蒸着等で形成し、導電性ペースト等の流動性電極材料から形成する場合は、逆にポリマーフィルムを基材としてこれに金属箔を成膜する方法で作製してもよい。 In addition, when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be produced by a method of forming a metal foil on a polymer film as a base material. Good.
 本発明において、封止基板として用いられる金属箔は、厚みが9~500μmであることが好ましく、これにポリマーフィルムが積層され、ポリマーフィルムの厚みが金属箔に対し、10~100%の厚みであることが好ましい。 In the present invention, the metal foil used as the sealing substrate preferably has a thickness of 9 to 500 μm, and a polymer film is laminated thereon, and the thickness of the polymer film is 10 to 100% of the metal foil. Preferably there is.
 〔有機ELパネルの構成、封止方法〕
 図1は、本発明の有機ELパネルの構成の一例を示す断面図である。
[Configuration of organic EL panel, sealing method]
FIG. 1 is a cross-sectional view showing an example of the configuration of the organic EL panel of the present invention.
 図1には、樹脂基板1上に、第1電極2、発光層を含む有機EL層(有機化合物層)3、及び第2電極4から構成されている有機EL素子が形成され、この上に封止基板5を接着層6によりその端部で封止した構成を有する封止された有機エレクトロルミネッセンス(EL)パネルPを示している。 In FIG. 1, an organic EL element including a first electrode 2, an organic EL layer (organic compound layer) 3 including a light emitting layer, and a second electrode 4 is formed on a resin substrate 1. A sealed organic electroluminescence (EL) panel P having a configuration in which a sealing substrate 5 is sealed at its end by an adhesive layer 6 is shown.
 密着封止(固体封止)の方法においては、封止基板として、例えば、50μm厚のポリエチレンテレフタレートフィルムに、アルミ箔を、例えば、30μm厚でラミネートしたものを用いることができる。これを封止基板として、アルミニウム面にディスペンサを使用して均一に塗布した封止用接着剤を予め配置しておき、樹脂基板1と封止基板5を位置合わせした後、両者を圧着して(0.1~3MPa)貼合した後、温度として80~160℃の範囲で加熱硬化させて、密着封止(固体封止)する。封止用接着剤の種類、付与量、あるいは付与面積等によって圧着時間は適宜設定されるが、圧力としては概ね0.1~3MPaの範囲で仮接着する。この際に、内部に残留した空隙を排除するため、加熱した圧着ロールを用いることができる。固体封止は、以上のように封止部材と有機EL素子基板との間に空間がなく硬化した樹脂で覆う形態である。 In the method of close sealing (solid sealing), as the sealing substrate, for example, a polyethylene terephthalate film with a thickness of 50 μm and an aluminum foil laminated with a thickness of 30 μm, for example, can be used. Using this as a sealing substrate, a sealing adhesive uniformly applied to the aluminum surface using a dispenser is placed in advance, the resin substrate 1 and the sealing substrate 5 are aligned, and then both are crimped together. After bonding (0.1 to 3 MPa), heat curing is performed at a temperature in the range of 80 to 160 ° C., and close sealing (solid sealing) is performed. The pressure-bonding time is appropriately set depending on the type of sealing adhesive, the applied amount, the applied area, etc., but the pressure is temporarily bonded within a range of about 0.1 to 3 MPa. At this time, a heated crimping roll can be used to eliminate voids remaining inside. As described above, the solid sealing is a form in which there is no space between the sealing member and the organic EL element substrate and the resin is cured with a cured resin.
 封止用接着剤の種類や付与量によって、接着剤層の硬化に必要な加熱温度は適宜設定することができるが、好ましくは50℃以上、200℃以下であり、さらに好ましくは80℃以上、160℃以下の範囲である。また、加熱時間は、1分以上、1時間以下で加熱することにより、熱硬化型樹脂の場合には硬化(架橋反応)が進み接着する。また、光硬化型接着剤の場合にも、光照射後に加熱を実施することにより、硬化(接着)速度を上げることができる。 Depending on the type and amount of the sealing adhesive, the heating temperature necessary for curing the adhesive layer can be set as appropriate, but is preferably 50 ° C. or higher and 200 ° C. or lower, more preferably 80 ° C. or higher, It is the range of 160 degrees C or less. Further, by heating for 1 minute or more and 1 hour or less, the curing (crosslinking reaction) proceeds and adheres in the case of a thermosetting resin. Also in the case of a photo-curing adhesive, the curing (adhesion) speed can be increased by heating after light irradiation.
 〔5℃以下に冷却する工程〕
 本発明においては、接着剤を介して封止基板を有機EL素子基板と貼合して面接着させて密着封止構造を形成する有機ELパネルの製造方法において、シール材が熱硬化型樹脂または紫外線硬化型樹脂であり、基板上にシール材を介して封止基板を貼合して面接着させた後に、一旦5℃以下に冷却する工程を経た後に、シール材に熱または紫外線を付与して硬化させて製造することを特徴とする。
[Step of cooling to below 5 ° C]
In the present invention, in the method of manufacturing an organic EL panel in which a sealing substrate is bonded to an organic EL element substrate through an adhesive and bonded to a surface to form a tightly sealed structure, the sealing material is a thermosetting resin or It is an ultraviolet curable resin. After a sealing substrate is pasted on the substrate through a sealing material and bonded to the surface, after passing through a process of cooling to 5 ° C. or less, heat or ultraviolet light is applied to the sealing material. It is characterized by being manufactured by curing.
 面接着させた後、そのままシール材を加熱硬化させる従来の方法では、有機EL素子への初期ダメージが生じるが、本発明の特徴である加熱硬化前に5℃以下に冷却する工程を経て製造することにより、驚くべきことに、有機EL素子への初期ダメージが低減されることを見出した。 In the conventional method in which the sealing material is heat-cured as it is after the surface adhesion, initial damage to the organic EL element occurs, but it is manufactured through a process of cooling to 5 ° C. or lower before heat-curing, which is a feature of the present invention. As a result, it was surprisingly found that the initial damage to the organic EL element was reduced.
 本発明で規定する製造プロセスにより、上記効果が発現する機構に関しては明確ではないが、第2電極は完全に緻密な膜ではないため、微小な第2電極の空隙に接着剤成分が浸透してしまい、加熱硬化することによって第2電極と有機化合物層界面の微小剥離を引き起こしやすくなる状況にあるが、熱硬化前に冷却工程を経ることにより接着剤成分の浸透が抑制され、かつ冷却滞留することにより、微小空隙内での硬化のみが進み、後に加熱硬化しても第2電極と有機化合物層界面の微小剥離が抑制されたためと推定している。 Although the mechanism by which the above effects are manifested is not clear by the manufacturing process defined in the present invention, since the second electrode is not a completely dense film, the adhesive component penetrates into the minute gaps of the second electrode. Therefore, although it is easy to cause micro-peeling at the interface between the second electrode and the organic compound layer by heat curing, penetration of the adhesive component is suppressed by passing through a cooling step before heat curing, and cooling stays. Thus, it is presumed that only the curing in the minute voids progressed, and the minute peeling at the interface between the second electrode and the organic compound layer was suppressed even when heat curing was performed later.
 冷却滞留によって微小空隙内の接着剤の硬化が進む理由は不明だが、第2電極の微小欠陥には、熱硬化型接着剤の硬化促進の触媒作用を有している可能性が考えられる。 The reason for the hardening of the adhesive in the minute gap due to the cooling stay is unknown, but it is possible that the minute defect of the second electrode has a catalytic action for promoting the hardening of the thermosetting adhesive.
 封止基板を貼合して面接着させた後に、本発明に係る5℃以下に冷却する工程に移行するまでの時間は短いほど好ましいが、12時間以内であることがより好ましく、10秒以上、6時間以内であることが更に好ましく、特に好ましくは1分以上、4時間以内である。 After the sealing substrate is bonded and surface-adhered, the time until the process of cooling to 5 ° C. or less according to the present invention is preferably as short as possible, but is preferably within 12 hours, more preferably 10 seconds or more. Further, it is more preferably within 6 hours, particularly preferably within 1 minute and within 4 hours.
 また、本発明に係る5℃以下に冷却する工程における有機ELパネルの滞留時間は、1時間以上が好ましく、2時間以上、8日以内がより好ましく、更に好ましくは1日以上、8日以内である。 Further, the residence time of the organic EL panel in the step of cooling to 5 ° C. or less according to the present invention is preferably 1 hour or more, more preferably 2 hours or more and 8 days or less, still more preferably 1 day or more and 8 days or less. is there.
 本発明に係る冷却する工程における温度は、5℃以下であることを特徴とするが、好ましくは0℃以下であり、更に好ましくは-20℃以上、0℃以下である。 The temperature in the cooling step according to the present invention is 5 ° C. or less, preferably 0 ° C. or less, more preferably −20 ° C. or more and 0 ° C. or less.
 〔光取りだし部材〕
 本発明において、可撓性の基板から第2電極との間、あるいは可撓性の基板から光出射側の何れかの場所に光取出し部材を有することが好ましい。
[Light extraction material]
In the present invention, it is preferable to have a light extraction member between the flexible substrate and the second electrode or at any location on the light emission side from the flexible substrate.
 本発明において、光取出し部材としては、プリズムシート、レンズシート及び拡散シートが挙げられる。また、全反射を起こす界面もしくはいずれかの媒質中に導入される回折格子や拡散構造等が挙げられる。 In the present invention, examples of the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface or any medium that causes total reflection can be used.
 通常、基板から光を放射するような有機エレクトロルミネッセンス素子においては、発光層から放射された光の一部が基板と空気との界面において全反射を起こし、光を損失するという問題が発生する。この問題を解決するために、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシートおよび拡散シートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。 Usually, in an organic electroluminescence element that emits light from a substrate, a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of loss of light. In order to solve this problem, prismatic or lens-like processing is applied to the surface of the substrate, or prism sheets, lens sheets, and diffusion sheets are affixed to the surface of the substrate, thereby suppressing total reflection and light extraction efficiency. To improve.
 また、光取り出し効率を高めるためには、全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法や拡散構造を導入する方法が知られている。 Also, in order to increase the light extraction efficiency, a method of introducing a diffraction grating or a method of introducing a diffusion structure in an interface or any medium that causes total reflection is known.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《有機ELパネルの作製》
 〔有機ELパネル101の作製〕
 (可撓性基材上にガスバリア層を形成する工程)
 予め、露点温度-65℃、不活性ガス雰囲気下、圧力80Paで保管し、脱水処理・脱酸素処理を施した厚さ125μmのポリエチレンテレフタレートフィルム(帝人・デュポン社製フィルム、以下、PETと略記する)の両面に、常法に従って膜厚5μmのアクリル系クリアハードコート層を設けた可撓性基材の片面に、特開2007-83644号公報の実施例に記載された方法に従って、大気圧プラズマ処理法によりガスバリア層を形成した。即ち、同公報に記載の図3に示すロール電極型大気圧プラズマ放電処理装置を用いた。
<< Production of organic EL panel >>
[Production of Organic EL Panel 101]
(Process of forming a gas barrier layer on a flexible substrate)
A 125 μm thick polyethylene terephthalate film (Teijin-DuPont film, hereinafter abbreviated as PET), stored in advance at a dew point of −65 ° C. and in an inert gas atmosphere at a pressure of 80 Pa and subjected to dehydration and deoxygenation ) On one side of a flexible substrate provided with an acrylic clear hard coat layer having a film thickness of 5 μm on both sides according to a conventional method, according to the method described in the examples of JP-A-2007-83644. A gas barrier layer was formed by a treatment method. That is, the roll electrode type atmospheric pressure plasma discharge treatment apparatus shown in FIG.
 具体的には、上記可撓性基材の片面上に、以下に示す大気圧プラズマ処理条件で、密着層/セラミック層/密着層/セラミック層の順に積層した構成からなるガスバリア層を形成した。各膜厚は、密着層が200nm、セラミック層が25nmである。また、製膜時の可撓性基材の保持温度は140℃とした。 Specifically, a gas barrier layer having a structure in which an adhesion layer / ceramic layer / adhesion layer / ceramic layer were laminated in this order was formed on one surface of the flexible base material under the atmospheric pressure plasma treatment conditions shown below. Each film thickness is 200 nm for the adhesion layer and 25 nm for the ceramic layer. The holding temperature of the flexible substrate during film formation was 140 ° C.
 〈セラミック層の形成条件〉
 放電ガス:Nガス
 反応ガス1:酸素ガスを全ガスに対し5%
 反応ガス2:TEOS(テトラエトキシシラン)を全ガスに対し0.1%
 低周波側電源:周波数=80kHz、出力密度=10W/cm
 高周波側電源:周波数=13.56MHz、出力密度=10W/cm
 〈密着層の形成条件〉
 放電ガス:Nガス
 反応ガス1:水素ガスを全ガスに対し1%
 反応ガス2:TEOS(テトラエトキシシラン)を全ガスに対し0.5%
 低周波側電源:周波数=80kHz、出力密度=10W/cm
 高周波側電源:周波数=13.56MHz、出力密度=5W/cm
 (可撓性基材上に電極層を形成する工程)
 次いで、ガスバリア層を形成したPETフィルムを100mm×100mmに切り出し、ターゲット材料としてインジウム錫酸化物(ITO)を用いて、真空槽中で、スパッタガスとして酸素を5体積%含むアルゴンを用いてガス圧力を0.5Paとし、電極層として、ITO膜をスパッタによりガスバリア層上に厚さが110nmとなる条件でパターニング形成した。これを、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を更に5分間行った。
<Ceramic layer formation conditions>
Discharge gas: N 2 gas Reaction gas 1: Oxygen gas 5% of the total gas
Reaction gas 2: TEOS (tetraethoxysilane) is 0.1% of the total gas
Low frequency side power supply: frequency = 80 kHz, power density = 10 W / cm 2
High frequency side power supply: frequency = 13.56 MHz, output density = 10 W / cm 2
<Formation condition of adhesion layer>
Discharge gas: N 2 gas Reaction gas 1: 1% of hydrogen gas with respect to the total gas
Reaction gas 2: 0.5% TEOS (tetraethoxysilane) with respect to the total gas
Low frequency side power supply: frequency = 80 kHz, power density = 10 W / cm 2
High frequency side power supply: frequency = 13.56 MHz, output density = 5 W / cm 2
(Process of forming an electrode layer on a flexible substrate)
Next, the PET film on which the gas barrier layer is formed is cut out to 100 mm × 100 mm, indium tin oxide (ITO) is used as a target material, and gas pressure is used using argon containing 5% by volume of oxygen as a sputtering gas in a vacuum chamber. Was set to 0.5 Pa, and an ITO film was patterned as an electrode layer on the gas barrier layer by sputtering under the condition that the thickness was 110 nm. This was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was further performed for 5 minutes.
 (有機化合物層を形成する工程)
 このガスバリア層及び電極層を形成した可撓性基材上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT/PSS Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を、3000rpm、30秒でスピンコート法により成膜した後、150℃で1時間乾燥して、膜厚30nmの正孔輸送層を形成した。
(Process of forming organic compound layer)
On the flexible base material on which the gas barrier layer and the electrode layer are formed, poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid (manufactured by PEDOT / PSS Bayer, Baytron P Al 4083) is added with pure water. A solution diluted to% was formed into a film by spin coating at 3000 rpm for 30 seconds, and then dried at 150 ° C. for 1 hour to form a 30 nm-thick hole transport layer.
 正孔輸送層を乾燥した後、更に下記組成の発光層用塗布液を1mlとなるように調製し、水分濃度1ppm以下、酸素濃度10ppm以下、温度26℃のグローブボックスにて、スピンコートして、膜厚約25nmの発光層を形成した。 After drying the hole transport layer, a light emitting layer coating solution having the following composition is further prepared to 1 ml, and spin-coated in a glove box having a moisture concentration of 1 ppm or less, an oxygen concentration of 10 ppm or less, and a temperature of 26 ° C. A light emitting layer having a thickness of about 25 nm was formed.
 〈発光層用塗布液〉
 溶媒:トルエン                    100質量%
 ホスト材料:H-A                    1質量%
 青色材料:Ir-A                 0.10質量%
 緑色材料:Ir(ppy)            0.004質量%
 赤色材料:Ir(piq)            0.005質量%
 次いで、下記電子輸送層用塗布液を調製し、スピンコーターにて、1500rpm、30秒の条件で塗布し、電子輸送層を設けた。この電子輸送層用塗布液を用いて、別途用意した基板に同条件で塗布を行い、膜厚を測定した結果、20nmであった。
<Coating solution for light emitting layer>
Solvent: 100% by mass of toluene
Host material: HA 1% by mass
Blue material: Ir-A 0.10% by mass
Green material: Ir (ppy) 3 0.004 mass%
Red material: Ir (piq) 3 0.005 mass%
Next, the following electron transport layer coating solution was prepared, and applied with a spin coater under conditions of 1500 rpm and 30 seconds to provide an electron transport layer. Using this electron transport layer coating solution, coating was performed on a separately prepared substrate under the same conditions, and the film thickness was measured. As a result, it was 20 nm.
 〈電子輸送層用塗布液〉
 2,2,3,3-テトラフルオロ-1-プロパノール    100ml
 ET-A                        0.50g
<Coating liquid for electron transport layer>
2,2,3,3-tetrafluoro-1-propanol 100ml
ET-A 0.50g
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 更に電子輸送層が形成された上記可撓性基材を真空蒸着装置に移し、真空槽を4×10-4Paまで減圧し、上記電子輸送層上に陰極バッファー層としてフッ化リチウム10nm及び陰極としてアルミニウム110nmの層を順次蒸着成膜して、有機EL素子1を作製した。 Further, the flexible base material on which the electron transport layer was formed was transferred to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 × 10 −4 Pa, and 10 nm of lithium fluoride and a cathode as a cathode buffer layer on the electron transport layer. As a result, an organic EL element 1 was fabricated by sequentially depositing aluminum 110 nm layers.
 (封止基板)
 次いで封止基板として、ポリエステルシートでラミネートされたアルミ箔を作製した。
(Sealing substrate)
Next, an aluminum foil laminated with a polyester sheet was produced as a sealing substrate.
 厚み30μmのアルミ箔(東洋アルミニウム株式会社製)を用い、このマット面に、厚みが25μmのポリエチレンテレフタレート(PET)フィルムをドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)。なお、このアルミ箔のけし面(マット面)の表面粗さRaは470nm、つや面のRaは1nm以下であった。 Using a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a 25 μm thick polyethylene terephthalate (PET) film is used on this mat surface with an adhesive for dry lamination (two-component reaction type urethane adhesive). Laminated (adhesive layer thickness 1.5 μm). The surface roughness Ra of the cut surface (mat surface) of this aluminum foil was 470 nm, and the Ra of the polished surface was 1 nm or less.
 (有機ELパネルの作製)
 次いで、上記作製したポリエチレンテレフタレートでラミネートしたアルミ箔を、有機EL素子1を形成したPET基板と略同じサイズ(100mm×100mm)に断裁し、そのつや面(PETラミネート面の反対側)に、下記のa剤、b剤、c剤から構成される熱硬化性接着剤を塗布し、シール材付の封止基板を作製した。
(Production of organic EL panel)
Next, the aluminum foil laminated with the polyethylene terephthalate prepared above was cut into approximately the same size (100 mm × 100 mm) as the PET substrate on which the organic EL element 1 was formed, and on the glossy surface (opposite side of the PET laminate surface), A thermosetting adhesive composed of agent a, agent b and agent c was applied to produce a sealing substrate with a sealing material.
 〈熱硬化接着剤組成:エポキシ接着剤〉
 a剤)ビスフェノールAジグリシジルエーテル(DGEBA)
 b剤)ジシアンジアミド(DICY)
 c剤)エポキシアダクト系硬化促進剤
 上記熱硬化接着剤を、ディスペンサを使用してポリエチレンテレフタレートでラミネートしたアルミ箔の接着面(つや面)に沿って均一に塗布し、水分濃度が1ppm以下、酸素濃度が10ppm以下、温度が26℃のグローブボックスにて12時間放置した。接着剤層の厚みは20μmで、カールフィッシャー法で測定した含水率は50ppm以下であった。
<Thermosetting adhesive composition: Epoxy adhesive>
Agent a) Bisphenol A diglycidyl ether (DGEBA)
b) Dicyandiamide (DICY)
c agent) Epoxy adduct type curing accelerator The thermosetting adhesive is uniformly applied along the adhesive surface (shiny surface) of aluminum foil laminated with polyethylene terephthalate using a dispenser, and has a moisture concentration of 1 ppm or less, oxygen The sample was left in a glove box having a concentration of 10 ppm or less and a temperature of 26 ° C. for 12 hours. The thickness of the adhesive layer was 20 μm, and the water content measured by the Karl Fischer method was 50 ppm or less.
 このようにして作製した接着剤付の封止基板を、水分濃度が1ppm以下、酸素濃度が10ppm以下、温度が26℃のグローブボックスにて、取り出し電極が露出するよう、有機EL素子1を形成したPET基板上に、これを覆うようにして接着面を密着、配置し、封止基板を圧着(圧力0.15MPa、時間30秒)して仮接着した。次いで、26℃の環境下で1時間保管した後、直ちに有機ELパネルをホットプレート上に移動し、加熱(温度120℃、30分)して熱硬化接着剤を熱硬化させ、有機ELパネル101を作製した。 The organic EL element 1 is formed so that the extraction electrode is exposed from the thus prepared sealing substrate with adhesive in a glove box having a moisture concentration of 1 ppm or less, an oxygen concentration of 10 ppm or less, and a temperature of 26 ° C. The adhesive surface was placed in close contact with the PET substrate so as to cover it, and the sealing substrate was pressure-bonded (pressure 0.15 MPa, time 30 seconds) to be temporarily bonded. Next, after storing in an environment of 26 ° C. for 1 hour, the organic EL panel is immediately moved onto a hot plate, heated (temperature 120 ° C., 30 minutes) to thermally cure the thermosetting adhesive, and the organic EL panel 101 Was made.
 〔有機ELパネル102、103の作製〕
 上記有機ELパネル101の作製において、仮接着した後の26℃における保管時間を、それぞれ24時間、120時間に変更した以外は同様にして、有機ELパネル102、103を作製した。
[Production of organic EL panels 102 and 103]
In the production of the organic EL panel 101, organic EL panels 102 and 103 were produced in the same manner except that the storage time at 26 ° C. after temporary bonding was changed to 24 hours and 120 hours, respectively.
 〔有機ELパネル104の作製〕
 上記有機ELパネル101の作製において、仮接着した後、26℃の環境下で1時間保管し、ついで、10℃で、120時間の冷却工程で処理を施した後、熱硬化処理を行った以外は同様にして、有機ELパネル104を作製した。
[Production of organic EL panel 104]
In the production of the organic EL panel 101, after temporary bonding, it was stored in an environment of 26 ° C. for 1 hour, and then subjected to a cooling process at 10 ° C. for 120 hours, followed by thermosetting treatment. Similarly, an organic EL panel 104 was produced.
 〔有機ELパネル105~113の作製〕
 上記有機ELパネル104の作製において、仮接着後、冷却処理を行うまでの26℃における保管時間と、冷却工程での冷却温度、冷却時間を、表1に記載の条件に変更した以外は同様にして、有機ELパネル105~113を作製した。
[Production of organic EL panels 105 to 113]
In the production of the organic EL panel 104, the storage time at 26 ° C. until the cooling process is performed after temporary bonding, the cooling temperature in the cooling step, and the cooling time are the same except that the conditions shown in Table 1 are changed. Thus, organic EL panels 105 to 113 were produced.
 《有機ELパネルの評価》
 上記作製した有機ELパネル101~113について、下記の方法に従って各評価を行った。
<< Evaluation of organic EL panel >>
Each of the produced organic EL panels 101 to 113 was evaluated according to the following method.
 〔整流比の評価〕
 上記作製した各有機ELパネルの取り出し電極から、低電圧電源(株式会社エーディーシー製、直流電圧・電流源R6243)にて+5V(正方向)、-5V(逆方向)を印加し、その時の電流値を測定し、正逆電流値の比(整流比=正方向電流値/逆方向電流値)を求め、下記のランクに従って判定した。
[Evaluation of rectification ratio]
+ 5V (forward direction) and -5V (reverse direction) are applied from the take-out electrode of each organic EL panel produced above with a low-voltage power supply (DC Co., Ltd., DC voltage / current source R6243), and the current at that time The value was measured, the ratio of the forward / reverse current value (rectification ratio = forward current value / reverse current value) was determined and judged according to the following rank.
 ◎:整流比が、1000以上である
 ○:整流比が100以上、1000未満である
 △:整流比が10以上、100未満である
 ×:整流比が10未満である
 〔初期ダークスポット耐性の評価〕
 定電圧電源を用いて、各有機ELパネルに直流5Vを印加し、ダークスポットの有無を、ルーペ(倍率8倍)を用いて目視観察し、発光全領域におけるスポット状の非発光部の発生数を測定し、下記の基準に従って初期ダークスポット耐性を評価した。
A: The rectification ratio is 1000 or more. O: The rectification ratio is 100 or more and less than 1000. Δ: The rectification ratio is 10 or more and less than 100. X: The rectification ratio is less than 10. [Evaluation of Initial Dark Spot Resistance] ]
Using a constant voltage power supply, DC 5V is applied to each organic EL panel, and the presence or absence of dark spots is visually observed with a loupe (magnification 8 times), and the number of spots of non-light emitting parts in the entire light emission region The initial dark spot resistance was evaluated according to the following criteria.
 ◎:ダークスポットの発生が全く認められない
 ○:ダークスポットの発生数が、1個以上、5個未満である
 △:ダークスポットの発生数が、5個以上、20個未満である
 ×:ダークスポットの発生数が、20個以上である
 〔パネル寿命の評価〕
 上記作製した各有機ELパネルの封止した側を外側にして、60°の角度で曲げたまま60℃、90%RHの環境下で1000時間放置した後、定電圧電源を用いて、各有機ELパネルに直流5Vを印加し、マイクロスコープ(モリテックス社製MS-804、レンズMP-ZE25-200)で発光面積を測定し、Win Roof(三谷商事製)を用いて画像解析を行い、初期発光面積に対する非発光面積(ダークスポット面積)の割合を測定し、下記の基準に従ってパネル寿命を評価した。
A: No occurrence of dark spots is observed. O: The number of dark spots is 1 or more and less than 5. Δ: The number of dark spots is 5 or more and less than 20. ×: Dark The number of spots generated is 20 or more. [Evaluation of panel life]
After leaving the sealed side of each of the organic EL panels produced above outside and bending it at an angle of 60 ° for 1000 hours in an environment of 60 ° C. and 90% RH, Apply 5V DC to the EL panel, measure the light emission area with a microscope (MS-804 manufactured by Moritex Corp., lens MP-ZE25-200), perform image analysis using Win Roof (manufactured by Mitani Corporation), and perform initial light emission The ratio of the non-light emitting area (dark spot area) to the area was measured, and the panel life was evaluated according to the following criteria.
 ◎:非発光面積の割合が、0.1%未満である
 ○:非発光面積の割合が、0.1%以上、1.0%未満である
 △:非発光面積の割合が、1.0%以上.2.0%未満である
 ×:非発光面積の割合が、2.0%以上である
 以上により得られた結果を、表1に示す。
A: Ratio of non-light emitting area is less than 0.1% B: Ratio of non-light emitting area is 0.1% or more and less than 1.0% Δ: Ratio of non-light emitting area is 1.0 %more than. Less than 2.0% ×: The ratio of the non-light emitting area is 2.0% or more. Table 1 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に記載の結果より明らかな様に、仮接着を行った後、熱硬化を行うまでの間に、本発明で規定する5℃以下の冷却工程で処理を施す本発明の製造方法で作製した有機ELパネルは、比較例に対し、整流比が高く、初期ダークスポット耐性及びパネル寿命に優れていることが分かる。 As is apparent from the results shown in Table 1, after the temporary adhesion, until the heat curing, the production method according to the present invention is performed in the cooling step of 5 ° C. or less specified in the present invention. It can be seen that the organic EL panel has a higher rectification ratio than the comparative example, and is excellent in initial dark spot resistance and panel life.
 1 樹脂基板
 2 第1電極
 3 有機EL層
 4 第2電極
 5 封止基板
 6 接着層
 P 有機ELパネル
DESCRIPTION OF SYMBOLS 1 Resin substrate 2 1st electrode 3 Organic EL layer 4 2nd electrode 5 Sealing substrate 6 Adhesive layer P Organic EL panel

Claims (8)

  1.  少なくとも第1電極、発光層を含む有機化合物層及び第2電極を有する有機エレクトロルミネッセンス素子を形成した基板上に、シール材を介して封止基板を貼合、面接着させて密着封止構造を形成する有機エレクトロルミネッセンスパネルの製造方法において、該シール材が熱硬化型樹脂または紫外線硬化型樹脂であり、該有機エレクトロルミネッセンスパネルは、基板上にシール材を介して封止基板を貼合して面接着させた後、5℃以下に冷却する工程を経た後、該シール材に熱または紫外線を付与して硬化させて製造することを特徴とする有機エレクトロルミネッセンスパネルの製造方法。 At least a first electrode, an organic compound layer including a light emitting layer, and a substrate on which an organic electroluminescence element having a second electrode is formed. In the manufacturing method of the organic electroluminescent panel to be formed, the sealing material is a thermosetting resin or an ultraviolet curable resin, and the organic electroluminescent panel is formed by bonding a sealing substrate on the substrate via the sealing material. A method for producing an organic electroluminescence panel, which is produced by subjecting a surface to adhesion, followed by a step of cooling to 5 ° C. or lower, and then applying heat or ultraviolet light to the sealing material to cure.
  2.  前記基板及び前記封止基板が、いずれも可撓性基板であることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for manufacturing an organic electroluminescence panel according to claim 1, wherein the substrate and the sealing substrate are both flexible substrates.
  3.  前記封止基板が、金属箔を有する防湿フィルムであることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for producing an organic electroluminescence panel according to claim 1, wherein the sealing substrate is a moisture-proof film having a metal foil.
  4.  前記シール材が、エポキシ系の熱硬化型樹脂であることを特徴とする請求項1から3のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for manufacturing an organic electroluminescence panel according to any one of claims 1 to 3, wherein the sealing material is an epoxy thermosetting resin.
  5.  前記有機エレクトロルミネッセンス素子を形成した基板上に、前記シール材を介して封止基板を貼合して面接着させた後、12時間以内に前記5℃以下に冷却する工程で処理することを特徴とする請求項1から4のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The substrate is formed by bonding a sealing substrate on the substrate on which the organic electroluminescence element is formed via the sealing material and bonding the surface to each other, and then performing a process of cooling to 5 ° C. or less within 12 hours. The manufacturing method of the organic electroluminescent panel of any one of Claim 1 to 4 characterized by the above-mentioned.
  6.  前記5℃以下に冷却する工程における処理時間が、2時間以上であることを特徴とする請求項1から5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for producing an organic electroluminescence panel according to any one of claims 1 to 5, wherein a treatment time in the step of cooling to 5 ° C or lower is 2 hours or more.
  7.  前記5℃以下に冷却する工程における処理温度が、0℃以下であることを特徴とする請求項1から6のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for producing an organic electroluminescence panel according to any one of claims 1 to 6, wherein a treatment temperature in the step of cooling to 5 ° C or lower is 0 ° C or lower.
  8.  請求項1から7のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法を用いて製造されたことを特徴とする有機エレクトロルミネッセンスパネル。 An organic electroluminescence panel manufactured using the method for manufacturing an organic electroluminescence panel according to any one of claims 1 to 7.
PCT/JP2011/054726 2010-03-17 2011-03-02 Organic electroluminescent panel and production method for organic electroluminescent panel WO2011114882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505598A JPWO2011114882A1 (en) 2010-03-17 2011-03-02 Organic electroluminescence panel and method for manufacturing organic electroluminescence panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-060551 2010-03-17
JP2010060551 2010-03-17

Publications (1)

Publication Number Publication Date
WO2011114882A1 true WO2011114882A1 (en) 2011-09-22

Family

ID=44648985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054726 WO2011114882A1 (en) 2010-03-17 2011-03-02 Organic electroluminescent panel and production method for organic electroluminescent panel

Country Status (2)

Country Link
JP (1) JPWO2011114882A1 (en)
WO (1) WO2011114882A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490013A (en) * 2013-09-30 2014-01-01 上海大学 Organic light-emitting diode packaging method and system
KR101377525B1 (en) 2013-10-08 2014-03-25 남호진 Encapsulation for organic light-emitting diode display board and its manufacturing method
EP2750209A2 (en) * 2012-12-26 2014-07-02 Nitto Denko Corporation Encapsulating sheet
JP2014123492A (en) * 2012-12-21 2014-07-03 Konica Minolta Inc Organic electroluminescent panel, and manufacturing method and apparatus thereof
WO2015012239A1 (en) * 2013-07-24 2015-01-29 コニカミノルタ株式会社 Organic electroluminescent element production method and production device
JP2015032552A (en) * 2013-08-06 2015-02-16 常陽工学株式会社 Sealing device, sealing method and functional material device
KR101505772B1 (en) * 2012-05-31 2015-03-26 주식회사 엘지화학 The method for preparing organic electronic device
WO2016067771A1 (en) * 2014-10-29 2016-05-06 ソニー株式会社 Electronic device assembly and protection member
JP2016514895A (en) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2017204488A (en) * 2017-08-23 2017-11-16 株式会社カネカ Organic EL device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121170A (en) * 1997-10-15 1999-04-30 Tdk Corp Organic el element and its manufacture
JP2006106036A (en) * 2004-09-30 2006-04-20 Tdk Corp Method for manufacturing panel
JP2007005107A (en) * 2005-06-23 2007-01-11 Tohoku Pioneer Corp Light-emitting panel and method for manufacturing the same
JP2008288376A (en) * 2007-05-17 2008-11-27 Toshiba Matsushita Display Technology Co Ltd Display unit and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121170A (en) * 1997-10-15 1999-04-30 Tdk Corp Organic el element and its manufacture
JP2006106036A (en) * 2004-09-30 2006-04-20 Tdk Corp Method for manufacturing panel
JP2007005107A (en) * 2005-06-23 2007-01-11 Tohoku Pioneer Corp Light-emitting panel and method for manufacturing the same
JP2008288376A (en) * 2007-05-17 2008-11-27 Toshiba Matsushita Display Technology Co Ltd Display unit and manufacturing method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505772B1 (en) * 2012-05-31 2015-03-26 주식회사 엘지화학 The method for preparing organic electronic device
JP2014123492A (en) * 2012-12-21 2014-07-03 Konica Minolta Inc Organic electroluminescent panel, and manufacturing method and apparatus thereof
EP2750209A2 (en) * 2012-12-26 2014-07-02 Nitto Denko Corporation Encapsulating sheet
WO2015012239A1 (en) * 2013-07-24 2015-01-29 コニカミノルタ株式会社 Organic electroluminescent element production method and production device
JPWO2015012239A1 (en) * 2013-07-24 2017-03-02 コニカミノルタ株式会社 Manufacturing method and manufacturing apparatus of organic electroluminescence element
JP2015032552A (en) * 2013-08-06 2015-02-16 常陽工学株式会社 Sealing device, sealing method and functional material device
JP2016514895A (en) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US9876190B2 (en) 2013-08-21 2018-01-23 Lg Display Co., Ltd. Organic light-emitting diode and method for manufacturing same
CN103490013A (en) * 2013-09-30 2014-01-01 上海大学 Organic light-emitting diode packaging method and system
KR101377525B1 (en) 2013-10-08 2014-03-25 남호진 Encapsulation for organic light-emitting diode display board and its manufacturing method
WO2016067771A1 (en) * 2014-10-29 2016-05-06 ソニー株式会社 Electronic device assembly and protection member
JP2016091595A (en) * 2014-10-29 2016-05-23 ソニー株式会社 Electronic device assembly and protection member
US10014482B2 (en) 2014-10-29 2018-07-03 Sony Corporation Electronic device assembly and protection member
JP2017204488A (en) * 2017-08-23 2017-11-16 株式会社カネカ Organic EL device

Also Published As

Publication number Publication date
JPWO2011114882A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2011114882A1 (en) Organic electroluminescent panel and production method for organic electroluminescent panel
TWI462358B (en) Protected polymeric film
JP6001595B2 (en) Organic electroluminescence device
JP4856313B2 (en) Environmental barrier material for organic light emitting device and method of manufacturing the same
US8445899B2 (en) Organic electronic panel and method for manufacturing organic electronic panel
JP5312949B2 (en) Laminated electrode for electroactive device and method for producing the same
WO2005119808A2 (en) Protected organic electronic devices and methods for making the same
WO2011070951A1 (en) Organic electronics panel and method of manufacturing same
JP2009123690A (en) Organic electronics element winding to past drying agent film after forming coated layer or after forming coupled electrode layer and its manufacturing method
US10333100B2 (en) Organic electroluminescent device
US8030845B2 (en) Organic electroluminescence device and method for manufacturing the same
US8022437B2 (en) Organic electroluminescence element and method for manufacturing thereof
JP4325249B2 (en) Method for manufacturing organic electroluminescence element
JP6648752B2 (en) Sealed structure
JP5772819B2 (en) Manufacturing method of organic electroluminescence panel and organic electroluminescence panel manufactured by the manufacturing method
JPWO2008023626A1 (en) Organic electroluminescence device and method for producing the same
JP4325248B2 (en) Method for manufacturing organic electroluminescence element
US8129903B2 (en) Organic electroluminescent display device
JP5960047B2 (en) Organic electroluminescence device and method for manufacturing the same
US20140103309A1 (en) Organic light emitting display device and manufacturing method thereof
JP2015080855A (en) Sealing film, method for producing the same and functional element sealed with sealing film
JP6303835B2 (en) Electronic devices
WO2011099362A1 (en) Process for production of organic electroluminescent panel
JP2005212230A (en) Transparent gas barrier film and electroluminescence element
WO2011096308A1 (en) Method for producing organic electroluminescence panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505598

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756071

Country of ref document: EP

Kind code of ref document: A1