WO2011105551A1 - Method for detection of cancer stem cell, and therapeutic agent or recurrence-preventing agent for cancer - Google Patents

Method for detection of cancer stem cell, and therapeutic agent or recurrence-preventing agent for cancer Download PDF

Info

Publication number
WO2011105551A1
WO2011105551A1 PCT/JP2011/054287 JP2011054287W WO2011105551A1 WO 2011105551 A1 WO2011105551 A1 WO 2011105551A1 JP 2011054287 W JP2011054287 W JP 2011054287W WO 2011105551 A1 WO2011105551 A1 WO 2011105551A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cells
agent
recurrence
measuring
Prior art date
Application number
PCT/JP2011/054287
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 森
直紹 原口
秀始 石井
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2011105551A1 publication Critical patent/WO2011105551A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/351Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine

Definitions

  • the present invention relates to a method for detecting cancer stem cells and a drug for treating or preventing cancer recurrence.
  • Cancer cells have the property of being capable of self-proliferation and being able to wet to surrounding tissues or metastasize to distant tissues. However, not all of the cancer cells forming the cancer tissue have these characteristics, and there are very few cancer cells that develop cancer or advance cancer. It is known to be a cancer stem cell. Cancer stem cells exhibit undifferentiated surface characteristics like normal stem cells, have self-renewal ability and differentiation ability, and have the property of producing all cancer cells in various differentiation stages constituting cancer tissue. That is, cancer stem cells are thought to be responsible for generating the majority of cancer cells by differentiation while maintaining the same cells as themselves by self-replication in cancer tissues.
  • Cancer stem / progenitor cells are highly enriched in CD133 (+) CD44 (+) population in hepatocellular carcinoma.
  • Yang ZF et al. Significance of CD90 + cancer stem cells in human liver cancer. Cancer Cell. 2008; 13 (2): 153-166.
  • Yang ZF et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology.2008; 47 (3): 919-928. Haraguchi N, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006; 24 (3): 506-513. Naka K, Muraguchi T, Hoshii T, Hirao A.
  • An object of the present invention is to provide a technique for accurately detecting cancer stem cells by newly identifying functional molecules involved in the control of cancer stem cells.
  • Another object of the present invention is to provide a technique for leading to DNA fragmentation and apoptosis for cancer stem cells and curing the cancer, that is, a radical therapeutic agent for cancer (cancer radical treatment) and a treatment method (cancer radical treatment method).
  • a further object of the present invention is to provide a technique for preventing recurrence of cancer by leading to DNA fragmentation and apoptosis of cancer stem cells and curing the cancer, that is, a cancer recurrence preventive agent and a recurrence preventive method. .
  • CD13 is involved in the control of the reactive oxgen species (ROS) removal pathway in cancer stem cells and maintains cancer stem cells. It was found that cancer stem cells are CD13-positive cells (CD13 + cells), and that cancer stem cells can be accurately detected by using CD13 as an index. Furthermore, by combining conventional cancer treatments such as chemotherapy and ionizing radiation with treatment with a compound having an action of inhibiting CD13 (hereinafter referred to as “CD13 inhibitor”), the ROS concentration is low and the cell cycle is reduced.
  • CD13 inhibitor a compound having an action of inhibiting CD13
  • cancer stem cells that have the characteristic of being in the dormant or late state and exhibit extremely high treatment resistance, and as a result, the therapeutic effect of cancer can be significantly improved In particular, it was found to be effective in the cure of cancer and prevention of recurrence.
  • a combination of a CD13 inhibitor and an anticancer agent or ionizing radiation treatment can fundamentally treat cancer and prevent cancer recurrence, in other words, a CD13 inhibitor and cancer therapy ( It means that combined use with anticancer drug administration or ionizing radiation treatment is effective as a cancer radical treatment method or a cancer recurrence prevention therapy.
  • CD13 + cells are suppressed in DNA double-strand damage or have activated double-strand damage repair ability (see FIG. 14), so a CD13 inhibitor and, for example, 5-fluorouracil, etc.
  • a CD13 inhibitor and, for example, 5-fluorouracil, etc. it is considered that a higher cancer curative effect or cancer recurrence preventing effect can be obtained by using in combination with an anticancer agent having a DNA synthesis inhibitory action.
  • an anthracycline anticancer agent doxorubicin having a very high ROS increase effect is used in combination to enhance the ROS excretion effect of the CD13 inhibitor, thereby increasing the ROS by the CD13 inhibitor. It is possible to damage cancer stem cells in the induced state with very high efficiency, and to lead to the cure of cancer.
  • the present invention has been completed by further studies based on such knowledge.
  • Cancer stem cell detection method (I-1). A method for detecting cancer stem cells, comprising measuring a cell expressing CD13 for a test cell derived from a cancer tissue or a tissue after cancer treatment. (I-2). The detection method according to (I-1), wherein the measurement of cells expressing CD13 is performed using an antibody capable of specifically binding to CD13. (I-3). The detection method according to (I-2), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme. (I-4). The detection method according to any one of (I-1) to (I-3), which comprises a step of measuring cells expressing CD90 together with CD13. (I-5).
  • (II) Method of measuring the degree or risk of cancer symptoms (II-1).
  • a method of measuring the degree of cancer symptoms (cancer severity) or cancer risk of a subject (A) a step of measuring a cell expressing CD13 for a test cell derived from a cancer tissue of a subject or a tissue after cancer treatment, and (B) a CD13-expressing cell measured in the step (A) Determining the cancer severity or cancer risk according to the number of The above-mentioned measuring method characterized by including. (II-2).
  • step (B) when the number of CD13-expressing cells measured in the step (A) is large, the cancer severity and cancer risk are high, and when the number of CD13-expressing cells is small, the cancer severity and
  • (II-3) The measurement method according to (II-1) or (II-2), wherein the measurement of CD13-expressing cells is performed using an antibody capable of specifically binding to CD13.
  • II-4 The measurement method according to (II-3), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
  • (II-8) The measurement method according to any one of (II-1) to (II-7), wherein measurement of cells expressing CD13 or CD90 is performed by a flow cytometry method. (II-9). The measurement method according to any one of (II-1) to (II-8), wherein the cancer severity or cancer risk is the probability that the cancer will recur.
  • (III) Method for measuring the therapeutic effect of cancer (III-1).
  • a method for measuring the therapeutic effect of cancer on a cancer patient (A) a step of measuring a cell expressing CD13 in a test cell derived from a tissue after cancer treatment of a cancer patient, and (b) the presence or absence of a CD13-expressing cell measured in the step (a) Depending on the step of determining the therapeutic effect of the cancer, The above-mentioned measuring method characterized by including. (III-2).
  • the step (b) is a step of determining that the cancer treatment effect is poor when CD13-expressing cells are detected in the step (a) and that the cancer treatment effect is good when CD13-expressing cells are not detected.
  • III-4 The measurement method according to (III-3), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
  • III-5 The measuring method according to any one of (III-1) to (III-4), wherein the step is a step of measuring cells expressing CD90 together with CD13.
  • III-6 The measurement method according to (III-5), wherein the measurement of cells expressing CD90 is performed using an antibody capable of specifically binding to CD90.
  • III-7 The measurement method according to (III-6), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
  • III-8 The measurement method according to any one of (III-1) to (III-7), wherein measurement of cells expressing CD13 or CD90 is performed by a flow cytometry method.
  • (IV) Method of measuring the risk of cancer recurrence (IV-1).
  • a method for measuring the risk of cancer recurrence after cancer treatment for a cancer patient (A ′) a step of measuring a cell expressing CD13 in a test cell derived from a tissue after cancer treatment of a cancer patient, and (b ′) CD13 expression measured in the step (a ′) Determining the cancer recurrence risk of the cancer patient according to the presence or absence of cells,
  • the above-mentioned measuring method characterized by including. (IV-2).
  • step (b ′) when CD13-expressing cells are detected in the step (a ′), the cancer patient is determined to have a high risk of cancer recurrence, and when CD13-expressing cells are not detected,
  • IV-3 The measurement method according to (IV-1) or (IV-2), wherein measurement of CD13-expressing cells is performed using an antibody capable of specifically binding to CD13.
  • IV-4 The measurement method according to (IV-3), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
  • V Cancer stem cell detection reagent and detection kit
  • a cancer stem cell detection reagent comprising a substance that specifically binds to CD13 (hereinafter referred to as “CD13-binding substance”) as an active ingredient.
  • V-2 At least one selected from the group consisting of an antibody (hereinafter referred to as “anti-CD13 antibody”), a microRNA, an RNA aptamer, and a dominant negative mutant, wherein the CD13 binding substance can specifically bind to CD13.
  • V-3 A cancer stem cell detection kit comprising a CD13 binding substance as a cancer stem cell detection reagent.
  • V-4 A cancer stem cell detection kit comprising a CD13 binding substance as a cancer stem cell detection reagent.
  • CD90-binding substance a substance that specifically binds to CD90
  • a cancer therapeutic agent comprising a CD13 inhibitor and an anticancer agent.
  • the cancer therapeutic agent according to (VI-2) wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
  • Any of (VI-1) to (VI-6), wherein the cancer to be treated is a solid cancer expressing CD13, preferably liver cancer, lung cancer and gastrointestinal cancer, more preferably liver cancer and colon cancer
  • the anticancer agent as described in. (VI-8).
  • a pharmaceutical kit for treating cancer comprising a first agent containing a CD13 inhibitor and a second agent containing an anticancer agent in separate packaging forms. (VI-9).
  • Any of (VI-7) to (VI-11), wherein the cancer to be treated is a solid cancer expressing CD13, preferably liver cancer, lung cancer and gastrointestinal cancer, more preferably liver cancer and colon cancer
  • the kit according to 1. (VI-13).
  • a step of administering a CD13 inhibitor and an anticancer agent preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action
  • a CD13 inhibitor administration treatment and an ionizing radiation treatment to a cancer patient
  • a radical cure for cancer preferably a radical cure for cancer.
  • the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
  • the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
  • a combination of a CD13 inhibitor and an anticancer agent preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-elevating action
  • a combination of a CD13 inhibitor and an anticancer agent preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, which is used for radically treating cancer.
  • VI-18 A combination of a CD13 inhibitor and an anticancer agent, preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, which is used for radically treating cancer.
  • a combination preparation comprising a combination of a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action).
  • a combination according to (VI-17) which is a pharmaceutical kit containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action) in a separate packaging form.
  • a cancer recurrence preventive agent comprising a CD13 inhibitor and an anticancer agent.
  • a cancer recurrence preventive agent comprising a CD13 inhibitor and an anticancer agent.
  • the cancer recurrence preventive agent according to (VII-2) wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
  • VI-4 Cancer recurrence preventive agent, cancer recurrence prevention pharmaceutical kit and cancer recurrence prevention method.
  • the target cancer is a solid cancer expressing CD13, preferably liver cancer, lung cancer or gastrointestinal cancer, more preferably liver cancer or colon cancer, any of (VII-1) to (VII-5) For preventing cancer recurrence. (VII-7).
  • a pharmaceutical kit for preventing cancer recurrence comprising a first agent containing a CD13 inhibitor and a second agent containing an anticancer agent.
  • an anticancer agent preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action
  • the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
  • the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
  • a combination of a CD13 inhibitor and an anticancer agent preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action
  • a combination of a CD13 inhibitor and an anticancer agent preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, used for preventing cancer recurrence.
  • VII-16 A combination of a CD13 inhibitor and an anticancer agent, preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, used for preventing cancer recurrence.
  • a combination preparation comprising a combination of a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action).
  • a combination described in (VII-15) which is a pharmaceutical kit containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action) in a separate packaging form.
  • cancer stem cells can be accurately detected. Therefore, the present invention can contribute to the improvement of cancer treatment technology, and is an innovative that is extremely useful for predicting the degree of cancer symptoms such as cancer occurrence, progression, metastasis, and recurrence or the risk of cancer. Can be technology.
  • cancer therapeutic agent or cancer treatment pharmaceutical kit of the present invention by using a CD13 inhibitor in combination with an anticancer agent, preferably a DNA synthesis inhibitor, not only cancer cells but also cancer stem cells are eliminated, Since cancer can be suppressed, it is also possible to provide a cancer root treatment method and a cancer root treatment method that exhibit an unprecedented excellent therapeutic effect. Further, according to the cancer recurrence preventive agent or the cancer recurrence prevention pharmaceutical kit of the present invention, cancer recurrence is prevented by eradicating cancer cells or cancer stem cells survived by conventional cancer therapy, and thus the survival rate of cancer patients. Can be significantly improved.
  • A It is a flowchart which shows the operation procedure which performed "1. Confirmation that CD13 is a marker candidate of a cancer stem cell” in an Example.
  • B It is a figure which shows the expression intensity
  • C and D shows the results of analyzing the expression of CD13, CD133, and CD90 in hepatitis infection negative cell line (HuH7) and hepatitis infection positive cell line (PLC / PRF / 5: described as “PLC” in the figure)
  • FIG. It is a figure which shows the result of the term of "1. Confirmation that CD13 is a cancer stem cell marker candidate" in an Example.
  • A The results of examining the expression status of CD13 and CD31 in HuH7, Hep3B, and PLC / PRF / 5 are shown.
  • B shows the relationship between CD13 and Hu fraction in HuH7. It can be seen that CD31 + cells are mainly present in the G2 / M / SP fraction. It is a figure which shows the result of the term of "2. Confirmation that CD13 is a marker of the hepatocellular carcinoma (HCC) cell in a dormant stage" in an Example.
  • A The result of examining the relationship between the expression of CD13 of HuH7 and PLC (PLC / PRF / 5) and the cell cycle of HuH7 and PLC (PLC / PRF / 5).
  • FIG. 4 is a view showing the results in the section “3. Confirmation that CD13 is specifically expressed in moderately to poorly differentiated colorectal cancer cells” in Examples.
  • CD13 + CD90 ⁇ cells Dormant Cancer stem Cells: Dormant CSCs
  • Activated CSCs Activated CSCs
  • CD13 ⁇ CD90 + cells Progesitors of Cancer Cells
  • CD90 + cells are also associated with a decrease in intracellular ROS due to an increase in antioxidant capacity. Therefore, conventional cancer treatments (genotoxic chemotherapy and radiation It shows resistance to radiation therapy. It is a figure which shows the result of the section of "5.
  • CD13 + cell shows resistance to cancer chemotherapy and radiotherapy" in an Example.
  • a and B shows that CD13 + cells are resistant to an anticancer drug (an anticancer drug having a ROS-raising action: doxorubicin hydrochloride (DXR)).
  • C Indicates that CD13 + cells are resistant to irradiation.
  • “RT 4G 24h” means 24 hours after irradiation (4 Gray)
  • “RT 4G 48h” means 48 hours after irradiation (4 Gray). It is a figure which shows the result of the term of "6. Confirmation that CD13 is selectively expressing in the cell which shows treatment tolerance" in an Example.
  • A In order to identify the expression of CD13 in clinically obtained HCC cells, the results of digesting an HCC sample and analyzing the hematopoietic CD45 (Lin / CD45) negative fraction by multicolor flow cytometry are shown.
  • B shows the result of confirming the expression of CD13 in a fresh cryosurgical specimen.
  • “After TAE” means a sample subjected to hepatic artery embolization therapy
  • “Non-TAE” and “Not treatment” mean samples not subjected to hepatic artery embolization therapy.
  • FIG. 8B in the left end and middle column images, CD13 is stained red and DAPI is blue. It is a figure which shows the result of the term of "7.
  • CD13 Ab means a CD13 neutralizing antibody.
  • Ube means Ubenimex. It is a figure which shows the result of the term of "7. Confirmation that CD13 inhibition leads to a cell apoptosis” in an Example.
  • DOX is synonymous with DXR. It is a figure which shows the result of the term of "8. Confirmation that CD13 inhibition induces tumor regression" in an Example.
  • Ube means Ubenimex. In the image of A in FIG.
  • RT 4Gy means a group irradiated with radiation
  • R4Gy with Tempol means a group irradiated after tempol treatment.
  • the red numbers in the figure are the percentage of ⁇ -H2AX in CD13 + cells (PLC / PRF / 5: CD13 + CD90 ⁇ cells, HuH7: CD13 + CD133 + cells), and the blue numbers are CD13 ⁇ cells
  • the ratio (%) of ⁇ -H2AX in (PLC / PRF / 5: CD13 ⁇ CD90 + cells, HuH7: CD13 ⁇ CD133 + cells) is shown.
  • the method for detecting a cancer stem cell of the present invention is characterized by measuring a cell expressing CD13 in a test cell derived from a cancer tissue of a cancer patient or a tissue after cancer treatment. .
  • the detection method of the present invention will be described in detail.
  • cancer stem cell means a cell that has self-replicating ability and maintains an undifferentiated state and can produce cancer cells by differentiation.
  • the “test cell” is a cell that is a target of determination of whether or not it expresses CD13, that is, whether or not it is a cancer stem cell.
  • the test cell may be a single cell isolated from cancer tissue of a cancer patient or tissue after cancer treatment, or may be a group of cells isolated from cancer tissue or tissue after cancer treatment. .
  • the cancer tissue from which the test cell is derived is not particularly limited, and examples thereof include liver cancer, colorectal cancer, esophageal cancer, gastric cancer, bile duct cancer (bile duct includes intrahepatic bile duct and extrahepatic bile duct), Gallbladder cancer (the left two or three are collectively called the biliary tract), pancreatic cancer (the pancreas is divided into duct and secretory gland tissue, the latter includes endocrine and exocrine systems), duodenal cancer, colon cancer (colon Includes ascending, transverse, descending, sigmoid colon, rectum), breast cancer, and solid tumor tissues such as brain tumors; and hematopoietic tumors (blood cancers) such as leukemia, malignant lymphoma, and multiple myeloma Hematopoietic tissue involved is exemplified. Since the present invention is suitable for detection of cancer stem cells contained in liver cancer, among these cancer tissues, examples of preferable cancer
  • the tissue after cancer treatment from which the test cells are derived is a tissue after the above cancer treatment, and the cancer treatment treatment is performed by at least one selected from surgical therapy, chemotherapy, and radiation therapy. Any organization after being applied may be used.
  • a cancer tissue is excised by surgical therapy, a tissue near the excision site can be targeted.
  • test cells to be detected in the detection method of the present invention may be those extracted from the cancer tissue of the cancer patient, or the tissue after cancer treatment of the cancer patient, or the cancer tissue of the cancer patient. Or the thing of the state which exists in the tissue after cancer treatment of a cancer patient may be sufficient. In the latter case, the target tissue may be in the body of the cancer patient, but is preferably in a state of being removed from the body of the cancer patient.
  • cancer patients targeted by the present invention are mammals including humans. Humans are preferred, but rodents such as mice, rats, and guinea pigs; and laboratory animals such as rabbits, cats, dogs, and monkeys can also be used.
  • CD13 is a molecule present on the surface of cancer stem cells and is involved in the control of the ROS elimination pathway, reducing ROS-induced DNA damage that occurs after genotoxic chemoradiation stress, and apoptosis.
  • Non-patent document 10 Haraguchi ⁇ N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H , Barnard GF, Doki Y, Mori M.
  • CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010; 120 (9): 3326-3339.).
  • CD13-binding substance a substance that specifically binds to CD13
  • a test cell a substance that specifically binds to CD13
  • the presence or absence of binding of the substance to the test cell is measured.
  • cells expressing CD13 can be measured. That is, for the test cell, a cell expressing CD13 can be detected using the binding of the CD13 binding substance as an index.
  • the CD13 binding substance is not particularly limited as long as it can specifically bind to CD13.
  • an antibody capable of specifically binding to CD13 hereinafter referred to as “anti-CD13 antibody”.
  • an anti-CD13 antibody is exemplified as a preferable one.
  • the CD13 binding substance is labeled with a fluorescent substance such as FITC or a labeling substance such as an enzyme from the viewpoint of easy detection.
  • Measurement of a test cell bound with a CD13 binding substance can be performed by a method known in the art. For example, if the CD13 binding substance is labeled with a fluorescent substance, the cells to which the substance is bound can be measured qualitatively and quantitatively by using flow cytometry.
  • test cells expressing CD90 can also be performed by contacting a test cell with a substance that specifically binds to CD90 (hereinafter referred to as “CD90-binding substance”), as in the case of CD13. it can.
  • CD90-binding substance a substance that specifically binds to CD90
  • the CD90-binding substance is not particularly limited as long as it can specifically bind to CD90.
  • an antibody that can specifically bind to CD90 hereinafter referred to as “anti-CD90 antibody”
  • examples include microRNA, RNA aptamer, and dominant negative mutant.
  • An anti-CD90 antibody is preferred.
  • the CD90 binding substance is desirably labeled with a fluorescent substance such as FITC or a labeling substance such as an enzyme, as in the case of the measurement of CD13.
  • a fluorescent substance such as FITC
  • a labeling substance such as an enzyme
  • the method for measuring a test cell bound with a CD90-binding substance can also be performed by a method known in the art, such as flow cytometry, as in the case of CD13.
  • test cells expressing CD13 or the test cells expressing CD13 and CD90 thus measured are detected and identified as cancer stem cells.
  • the cancer stem cells detected by the method of the present invention can be isolated, if necessary, and used for screening for a therapeutic drug for cancer or for evaluating the efficacy of a therapeutic drug for cancer.
  • cancer stem cells detected by the method of the present invention are used to advance drug discovery specifically for clones in the cell cycle stationary phase or drug-resistant clones, thereby acting only on resistant cancer cells against cancer treatment. Therefore, it is possible to develop a cancer therapeutic agent that has no side effects.
  • the development of drugs that prevent cancer recurrence or cancer recurrence, and the development of drugs whose drug efficacy spectrum is specialized for cancer stem cells Is also expected.
  • the presence of cancer stem cells in cancer tissue is used to determine the degree of cancer symptoms (cancer severity) and the risk of cancer progression, recurrence or metastasis
  • the detection method of the present invention can be used as a method for measuring cancer severity or cancer risk.
  • the present invention also provides a method for measuring cancer seriousness or cancer risk using the above-mentioned “cancer stem cell detection method”.
  • the method includes the following steps (A) and (B): (A) a step of measuring cells expressing CD13 (CD13-expressing cells) for test cells derived from cancer tissues of cancer patients or tissues after cancer treatment; (B) A step of determining the cancer severity or cancer risk of the cancer patient according to the number of CD13-expressing cells detected in the step (A).
  • step (A) means both qualitative analysis for measuring the presence or absence of CD13-expressing cells in a test cell and quantitative analysis for measuring the abundance thereof.
  • the CD13-expressing cells measured in step (A) correspond to cancer stem cells.
  • the step (B) corresponds to a step of predicting cancer severity or cancer risk using the number of cancer stem cells as an index.
  • the CD13 binding property may be labeled with a labeling substance such as a fluorescent substance or an enzyme. It can be carried out by bringing a substance into contact with a test cell and measuring the presence or absence of binding of the substance to the test cell.
  • a labeling substance such as a fluorescent substance or an enzyme. It can be carried out by bringing a substance into contact with a test cell and measuring the presence or absence of binding of the substance to the test cell.
  • CD13-expressing cells that is, cancer stem cells
  • Detection of CD13-expressing cells using the binding of the CD13-binding substance as an index can be performed by a method known in the art as described above.
  • CD13-binding substance when labeled with a fluorescent substance is labeled with a fluorescent substance can be performed by using flow cytometry.
  • the number (amount) of CD13-expressing cells (cancer stem cells) can be measured simultaneously based on the level of fluorescence intensity, so CD13-expressing cells (cancer stem cells) can be qualitatively and quantitatively determined. Can be measured.
  • the more CD13-expressing cells (cancer stem cells) measured in the step (A) using the detection method of the present invention the more severe the cancer symptoms, It is determined that the cancer risk is high.
  • the smaller the CD13-expressing cells (cancer stem cells) measured in step (A) using the detection method of the present invention the lighter the cancer symptoms and the lower the risk of cancer.
  • CD90 expression in addition, it is preferable to measure the expression of CD90 in addition to the expression of CD13. In this way, the accuracy of detection of cancer stem cells can be further increased, and the cancer severity or cancer risk can be increased. It can be determined more accurately.
  • CD90 expression can be measured in the same manner as CD13 expression.
  • Method for Measuring Cancer Treatment Effect or Risk of Cancer Recurrence Furthermore, the presence of cancer stem cells in tissues after cancer treatment can be used as an evaluation standard for cancer treatment effect and can be used to predict cancer recurrence. it can. Therefore, the “1. Method for detecting cancer stem cells” of the present invention can also be used as a method for measuring the therapeutic effect of cancer and a method for measuring the risk of cancer recurrence.
  • the present invention also provides a method for measuring the effect of cancer treatment or the risk of cancer recurrence using the above-described “method for detecting cancer stem cells”.
  • the method includes the following steps (a) and (b): (A) measuring CD13-expressing cells (CD13-expressing cells) for test cells derived from tissues after cancer treatment of cancer patients; (B) A step of determining a cancer therapeutic effect or cancer recurrence risk for the cancer patient according to the presence or absence of the CD13-expressing cells measured in the step (a).
  • measuring CD13-expressing cells means both qualitative analysis for measuring the presence or absence of CD13-expressing cells in a test cell and quantitative analysis for measuring the abundance thereof.
  • the CD13-expressing cells measured in step (a) are cancer stem cells as described above, and step (b) determines the cancer therapeutic effect or cancer recurrence risk for cancer patients using the presence or absence of the cancer stem cells as an index. It corresponds to the process to do.
  • the step (a) is a CD13 binding substance which may be labeled with a fluorescent substance or a labeling substance such as an enzyme, as described in the section of “1.
  • Detection method of cancer stem cells can be carried out by contacting the test cells with the test cells and measuring the presence or absence of binding of the substance to the test cells.
  • CD13-expressing cells that is, cancer stem cells
  • Detection of CD13-expressing cells using the binding of the CD13-binding substance as an index can be performed by a method known in the art as described above.
  • CD13-binding substance when labeled with a fluorescent substance is labeled with a fluorescent substance can be performed by using flow cytometry.
  • the number of CD13-expressing cells can also be measured simultaneously by the level of fluorescence intensity, so CD13-expressing cells (cancer stem cells) can be measured qualitatively and quantitatively. it can.
  • step (b) CD13-expressing cells (cancer stem cells) were detected from the tissue after cancer treatment in step (a) using the “method for detecting cancer stem cells” of the present invention.
  • cancer stem cells high risk of cancer recurrence.
  • cancer treatment effect is good and the possibility of cancer recurrence is low (the risk of cancer recurrence is low).
  • CD90 expression can be measured in the same manner as CD13 expression.
  • Cancer Stem Cell Detection Reagent and Detection Kit The present invention is intended to perform the “cancer stem cell detection method” described in 1 above, and to qualitatively or alternatively detect CD13 expressing cells (cancer stem cells) in the measurement methods described in 2 and 3 above.
  • a reagent for detecting cancer stem cells, which is used for quantitative measurement, is also provided.
  • the detection reagent of the present invention includes a substance that specifically binds to CD13 (CD13-binding substance).
  • the present invention is for performing the “cancer stem cell detection method” described in 1 above, and for qualitatively or quantitatively measuring CD13-expressing cells (cancer stem cells) in the measurement methods described in 2 and 3 above.
  • a kit for detecting cancer stem cells used in the above is characterized by containing a CD13 binding substance as a detection reagent for cancer stem cells.
  • the detection kit of the present invention may further contain a substance that specifically binds to CD90 (CD90-binding substance) as a detection reagent for cancer stem cells.
  • the detection kit of the present invention further includes “reagent for detecting cancer stem cells” described in 1 above, or other reagents and instruments required for performing the measurement methods described in 2 and 3 above.
  • the detection kit of the present invention may include a procedure manual for performing the above detection method.
  • CD13 binding substance and the CD90 binding substance used in the cancer stem cell detection reagent and detection kit of the present invention are as described in “1. Detection method of cancer stem cells” above.
  • the “cancer stem cell detection method” is a method for measuring the degree of cancer symptoms (cancer severity) or cancer risk, or a method for measuring cancer therapeutic effect or cancer recurrence risk. Therefore, the detection reagent and detection kit of the present invention can be used as a diagnostic agent and a diagnostic kit for measuring the degree of cancer symptoms (cancer severity) or cancer risk, and further the therapeutic effect of cancer or cancer. It can also be used as a diagnostic agent and a diagnostic kit for measuring the risk of recurrence.
  • the present invention further provides a therapeutic agent for cancer and a preventive agent for cancer recurrence , which further comprises a CD13 inhibitor and an anticancer agent.
  • a therapeutic agent for cancer and a preventive agent for cancer recurrence which further comprises a CD13 inhibitor and an anticancer agent.
  • the cancer therapeutic agent and cancer recurrence preventing agent of the present invention will be described in detail.
  • the cancer therapeutic agent of the present invention can be used for the purpose of curing cancer, and in this sense, it can also be referred to as a cancer curative.
  • the cancer therapeutic agent of this invention can prevent the recurrence of cancer as a result of curing cancer.
  • the CD13 inhibitor used in the cancer therapeutic agent and cancer recurrence preventive agent of the present invention is pharmaceutically acceptable and can inhibit the function of CD13, that is, can inhibit the control function of the ROS removal pathway.
  • CD13 inhibitors include CD13 neutralizing antibody, ubenimex (bestatin), aminopeptidase N (APN / CD13) inhibitor 24F (Novel aminopeptidase N (APN / CD13) inhibitor 24F can suppress invasion of hepatocellular carcinoma cells as . Biosci Trends. 2010 2010 Apr; 4 (2): 56-60).
  • CD13 inhibitors may be used alone or in combination of two or more.
  • These CD13 inhibitors are commercially available (for example, as for the CD13 neutralizing antibody, “mouse monoclonal anti-human CD13 antibody (clone WM15)” is available from Gene Tex, and Ubenimex is available from Nippon Kayaku). For this reason, although a commercial item may be used for a CD13 inhibitor, it may be manufactured and used by a known method.
  • anticancer agents used in the cancer therapeutic agent and cancer recurrence preventive agent of the present invention include conventionally known alkylating agents (mustard drugs, nitroureas), antimetabolites (folic acid antimetabolites, pyrimidine antimetabolites, Purine antimetabolite, hydroxycarbamide), antitumor antibiotics (anthracycline drugs, others, mitomycin C, etc.), platinum preparations, topoisomerase inhibitors (topoisomerase I inhibitors, topoisomerase II inhibitors), etc. it can.
  • alkylating agents muscle drugs, nitroureas
  • antimetabolites folic acid antimetabolites, pyrimidine antimetabolites, Purine antimetabolite, hydroxycarbamide
  • antitumor antibiotics anthracycline drugs, others, mitomycin C, etc.
  • platinum preparations platinum preparations
  • topoisomerase inhibitors topoisomerase I inhibitors, topoisomerase II inhibitors
  • anticancer agents having an activity of inhibiting DNA synthesis in the present invention, such anticancer agents are collectively referred to as “DNA synthesis inhibitors”) and anticancer agents having an activity of increasing ROS.
  • DNA synthesis inhibitors collectively referred to as “DNA synthesis inhibitors”
  • anticancer agents having an activity of increasing ROS may be used individually by 1 type, and may be used in combination of 2 or more type.
  • DNA synthesis inhibitors include alkylating agents such as ifosfamide, melphalan, nimustine hydrochloride, ranimustine, and procarbazine hydrochloride; 5-fluorouracil (5-FU), 5-FU prodrugs (eg, doxyfluridine, tegafur, carmofur) , 5'-doxyfluridine prodrugs (eg capecitabine), cytarabine, cytarabine prodrugs (eg cytarabine ocphosphate phosphate hydrate), pyrimidine antagonists such as enocitabine, gemcitabine hydrochloride; mercaptopurine hydrate, fludarabine phosphate Purine antimetabolites such as esters and cladribine, and other antimetabolites such as levofolinate calcium and hydroxycarbamide; doxorubicin hydrochloride, daunorubicin hydrochloride, pirarubicin, and mitoxantron
  • the above pyrimidine antagonists such as 5-fluorouracil (5-FU) and prodrugs thereof are preferable, and 5-fluorouracil is more preferable.
  • These DNA synthesis inhibitors may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an anticancer agent having a ROS-raising action is an anthracycline anticancer agent belonging to an antitumor antibiotic.
  • anthracycline anticancer agent include doxorubicin, daunorubicin, pirarubicin, epirubicin, idarubicin, aclarubicin, amrubicin, mitoxantrone, or a pharmaceutically acceptable salt thereof.
  • These anticancer agents may be used alone or in combination of two or more. Moreover, you may use together with the said DNA synthesis inhibitor.
  • the content of the CD13 inhibitor and the anticancer agent depends on the type of cancer to be treated, the degree of symptoms, A therapeutically effective amount according to the age, sex, etc. of the cancer patient is sufficient. Although it cannot be defined uniformly, for example, it is desirable that the content satisfy the following range as a dose per adult.
  • Dose of CD13 inhibitor per adult Usually 10 to 600 mg, preferably 15 to 90 mg, more preferably 30 to 60 mg ⁇
  • Dose of adult anticancer drug (preferably DNA synthesis inhibitor) per adult Usually 100 to 3000 mg, preferably 200 to 1000 mg, more preferably 250 to 750 mg.
  • the ratio of the CD13 inhibitor to the anticancer agent is appropriately determined within the range satisfying the therapeutically effective amount.
  • the ratio of the anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) to 1 part by weight of the CD13 inhibitor is usually 1 to 100 parts by weight, preferably 2 to 50 parts by weight, more preferably Examples are 4 to 30 parts by weight.
  • the cancer therapeutic agent and cancer recurrence preventive agent of the present invention include pharmaceutically acceptable carriers and additives in addition to a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action). May be.
  • examples of such carriers and bases include excipients, extenders, binders, disintegrants, surfactants, lubricants, solubilizers, plasticizers, pH adjusters, buffers, chelating agents, Preservatives, antioxidants, solvents, disintegrants and the like can be mentioned.
  • the dosage forms of the cancer therapeutic agent and cancer recurrence preventing agent of the present invention are not particularly limited, and may be appropriately set according to the administration form.
  • Specific examples of the dosage form of the cancer therapeutic agent and cancer recurrence preventing agent of the present invention include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules and the like.
  • the dosage form of the cancer therapeutic agent and cancer recurrence preventing agent of the present invention may be appropriately set according to the type of cancer to be treated, and may be oral administration such as buccal administration, sublingual administration, In addition, parenteral administration such as intravenous administration, intramuscular administration, subcutaneous administration, pulmonary administration, and rectal administration may be used.
  • the cancer to be treated by the cancer therapeutic agent and the cancer recurrence preventing agent of the present invention is not particularly limited as long as it is a cancer tissue expressing CD13.
  • cancer include gastrointestinal cancers such as esophageal cancer, gastric cancer, duodenal cancer, colorectal cancer, and colon cancer (the large intestine includes the ascending, transverse, descending, sigmoid colon, and rectum); liver cancer; lung cancer Breast cancer; brain tumor; bile duct cancer (the bile duct includes the intrahepatic and extrahepatic bile ducts); gallbladder cancer (the left two or three are collectively referred to as the biliary tract); pancreatic cancer (the pancreas is the duct and secretory tissue) The latter includes solid cancers such as the endocrine system and exocrine system); and hematopoietic tumors (blood cancers) such as leukemia, malignant lymphoma, and multiple myeloma
  • the cancer therapeutic agent of the present invention can be applied as a first-choice therapy to cancer patients suffering from the above cancer. That is, cancer treatment (radical treatment of cancer) can be performed using the cancer therapeutic agent before performing surgical treatment such as cancer tissue resection surgery or radiation treatment on the cancer patient.
  • cancer therapeutic agent of the present invention is also applied to cancer patients who are resistant to cancer therapy, and the cancer does not disappear by other cancer chemotherapy, surgical treatment such as cancer tissue resection surgery, or radiation treatment. be able to.
  • the cancer recurrence-preventing agent of the present invention is used for cancer patients who have achieved a temporary cancer therapeutic effect by other cancer chemotherapy, surgical treatment such as cancer tissue resection surgery, or radiation treatment. It can be applied for the purpose of preventing.
  • a pharmaceutical kit for treating cancer or preventing cancer recurrence provides a second agent comprising a first agent containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action).
  • an anticancer agent preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action.
  • pharmaceutical kit both are collectively referred to as “pharmaceutical kit”.
  • the type, the content in the first agent, and the dose are as shown in the above “5. Cancer therapeutic agent and cancer recurrence preventive agent”. is there.
  • the anticancer agent preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action
  • the type, the content in the second agent, and the dosage are also described above. As described in "5. Cancer therapeutic agent and cancer recurrence preventive agent”.
  • first agent and the second agent may further contain a pharmaceutically acceptable carrier or additive, and examples of such carriers and additives are also described in “5. And the same as those used in the “cancer recurrence preventive agent”. Further, the formulation forms of the first agent and the second agent are not particularly limited, and specific examples thereof are the same as those in the case of “5. Cancer therapeutic agent and cancer recurrence preventing agent” above.
  • the cancer to be treated by the pharmaceutical kit of the present invention is the same as the cancer to which the above-mentioned “5. Cancer therapeutic agent and cancer recurrence preventing agent” is applied.
  • the pharmaceutical kit of the present invention may include an administration manual showing these administration methods and the like.
  • the present invention provides a radical cancer treatment method and a cancer recurrence prevention method (hereinafter, these methods are collectively referred to as "cancer radical cure and recurrence suppression therapy").
  • the cancer curative and recurrence-suppressing therapy of the present invention includes (1) a step of administering a CD13 inhibitor and an anticancer agent to a cancer patient, or (2) a CD13 inhibitor administration treatment and ionizing radiation irradiation for a cancer patient. It has the process of performing treatment, It is characterized by the above-mentioned.
  • the administration of the CD13 inhibitor and the anticancer agent to the cancer patient may be performed simultaneously, that is, in parallel, or may be performed at different administration timings, or a drug withdrawal period may be provided in the middle. good.
  • the type, content, added carrier and additive, dose, formulation form, and administration route are as described in “5. Cancer therapeutic agent and cancer recurrence preventive agent” above.
  • the anticancer agent is preferably a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
  • the formulation forms and administration routes of the CD13 inhibitor and anticancer agent may be the same or different.
  • administration of a CD13 inhibitor to a cancer patient may be performed simultaneously with the ionizing radiation irradiation treatment for the patient, that is, in parallel, or at a different time, and may be suspended during the course. A period or a rest period may be provided.
  • the type, content, carrier and additive to be added, dosage, formulation form, and administration route are as described in “5. Cancer therapeutic agent and cancer recurrence preventing agent” above.
  • the treatment conditions in the ionizing radiation irradiation treatment can be appropriately selected according to a standard method according to the type of cancer of the cancer patient, the seriousness such as the size and progression of the cancer, the age, sex and weight of the patient.
  • the cancer patient that is the subject of the cancer cure and the recurrence-suppressing therapy of the present invention is a cancer patient suffering from a cancer to which the above-mentioned “5. cancer therapeutic agent and cancer recurrence preventive agent” is applied, preferably Solid cancer patients, more preferably liver cancer, lung cancer, or gastrointestinal cancer patients, particularly preferably liver cancer or colon cancer patients.
  • Cancer radical therapy can be performed on such cancer patients before surgical treatment such as cancer tissue resection surgery or radiation treatment, and other cancer chemotherapy, surgery such as cancer tissue resection surgery, etc.
  • the present invention can also be applied to cancer patients who are resistant to cancer therapy and whose cancer has not disappeared even by treatment or irradiation treatment.
  • the method for preventing cancer recurrence according to the present invention provides cancer recurrence to a cancer patient who has achieved a temporary cancer therapeutic effect by other cancer chemotherapy, surgical treatment such as cancer tissue resection surgery, or radiation treatment. It is applied for the purpose of preventing.
  • ⁇ Experiment method> Cell culture human hepatoma cells HuH7 and PLC / PRF5 (obtained from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center) in RPMI 1640 medium (Invitrogen) containing 10% FBS (fetal bovine serum; Equitech-Bio) Culture was performed. The culture was performed in an atmosphere of 37 ° C. and 5% CO 2 .
  • the PCR primers used for amplification are as follows.
  • GCLM 5'-TTGTGTGATGCCACCAGATTT-3 '(SEQ ID NO: 1) and 5'-TTCACAATGACCGAATACCG-3' (SEQ ID NO: 2)
  • GAPDH 5′-TTGGTATCGTGGAAGGACTCA-3 ′ (SEQ ID NO: 3) and 5′-TGTCATCATATTTGGCAGGTTT-3 ′ (SEQ ID NO: 4).
  • doxorubicin was added to the culture (0.01, 0.05 and 0.1 ⁇ g / ml). 72 hours after the addition of the cancer chemotherapeutic agent, live cells were measured in the same manner as in the analysis of cell proliferation.
  • DMEM / F-12 serum-free medium (Invitrogen) consists of 2 mM L-glutamine, 1% sodium pyruvate (Invitrogen), 1% MEM non-essential amino acids (Invitrogen), 1% insulin-transferrin-selenium-X supplement (Invitrogen) , 1 ⁇ M dexamethasone (Wako), 200 ⁇ M L-ascorbic acid 2-phosphate (Sigma), 10 mM nicotinamide (Wako), 100 ⁇ g / ml penicillin G, and 100 U / ml streptomycin, 20 ng / ml epidermal growth factor And 10 ng / ml fibroblast growth factor 2 (PeproTech). Cell passage was performed every 3 days.
  • a fragment with an immunohistochemical thickness of 4 ⁇ m was obtained with a cryostat and fixed with 4% paraformaldehyde for 15 minutes. After 1 hour blocking, the fragments were incubated with primary antibody overnight at 4 ° C. in a humidified chamber.
  • Primary antibodies include anti-human CD13 mouse monoclonal antibody (clone WM15, dilution 1:50; Santa Cruz Biotechnology), anti-human carbonic anhydrase IX (CA9) rabbit polyclonal antibody (dilution 1: 1000; Novus Biologicals), anti-human CD90 rabbit monoclonal antibody (dilution 1: 1000; Epitomics) and anti-human Ki-67 rabbit polyclonal antibody (dilution 1: 100; Santa Cruz Biotechnology) were used.
  • tumor tissue live cancer tissue samples were obtained from Osaka University.
  • the tumor tissue was cut into small pieces of 2 mm or less, further chopped with a sterile scalpel, and then washed twice with DMEM / 10% FBS.
  • the tumor tissue slices were then placed in DMEM / 10% FBS containing 2 mg / ml collagenase A (Roche Diagnostics) solution. Incubation was performed with stirring at 7 ° C. until the tumor tissue slices were completely digested.
  • Cells were collected by passing through a 40 ⁇ m nylon mesh, washed twice, removed by Ficoll (GE Healthcare) concentration gradient centrifugation, cell fragments and cell debris were removed, and staining for flow cytometry was performed.
  • DXR-R Doxorubicin resistant HuH7 cells were established by sequential treatment with 1 ⁇ g / ml doxorubicin (DXR) and selection of resistant clones. Cell apoptosis was measured using Propidium Iodide (PI) and APC-Annexin V (BD Pharmingen) together with Apoptosis Detection Kit (Bio Vision).
  • PI Propidium Iodide
  • APC-Annexin V BD Pharmingen
  • mice In vivo analysis 1 x 10 5 cells of HuH7 and PLC / PRF / 5 were injected into NOD / SCID mice under anesthesia to produce xenografted model mice. In the cell injection step, cells were resuspended in a mixture containing medium and Matrigel (BD Biosciences) in a 1: 1 ratio. In mice xenografted with HuH7 cells, 5-FU (30 mg / kg; intraperitoneal administration) as a DNA synthesis inhibitor or Ubenimex (20 mg / kg; oral administration) as a CD13 inhibitor was administered for 3 days. The next day, mice were dissected and tumors removed for immunochemical histological analysis.
  • 5-FU (30 mg / kg, intraperitoneal administration for 5 days and discontinuation of drug administration for 2 days, 2 courses, 14 days
  • Ubenimex (20 mg / kg, 14-day gavage)
  • Ubenimex and 5-FU (a combination of 2 courses of 30 mg / kg of 5-FU and 20 mg / kg of Ubenimex for 14 days), respectively.
  • Tumor size and relative tumor volume were calculated according to the following formula.
  • mice After 14 days of 5-FU treatment, the remaining tumor was excised, shredded to a size of 2 mm, and subcutaneously administered with Matrigel to the second NOD / SCID. Mice were treated with ubenimex (20 mg / kg) the next day 7 days after transplantation. Tumor growth was observed for 3 weeks. In order to statistically analyze the results, each experiment was performed with 4 or more mice.
  • ROS analysis To examine intracellular ROS levels, cells were loaded into 10 ⁇ M 2 ′, 7′-dichlorofluorescein diacetate (DCF-DA) at 37 ° C. for 30 minutes. ROS was activated when treated with 100 ⁇ M H 2 O 2 at 37 ° C. for 120 minutes.
  • DCF-DA 7′-dichlorofluorescein diacetate
  • CD13 inhibition To examine the effect of CD13 inhibition on ROS levels, cells were pretreated for 4 hours at 37 ° C. with 5 ⁇ g / ml CD13 neutralizing antibody (mouse monoclonal anti-human CD13 antibody, clone WM15) or 25 ⁇ g / ml Ubenimex. Stained with DCF-DA.
  • mitochondrial ROS detection cells were loaded into 5 ⁇ M MitoSOX (Molecular Probes) at 37 ° C. for 20 minutes.
  • Non-patent Document 7 In order to identify specific cell surface markers related to the SP cell fraction, the gene expression profile data of the SP fraction and the non-SP fraction were used by microarray analysis (Non-patent Document 7). In SP cells, from the list of 268 genes that are up-regulated more than twice, using UniProtKB database (http://www.uniprot.org/) to potentially encode cell surface proteins 56 genes were selected. Furthermore, the surface marker highly expressed by SP fraction was identified using the antibody (commercial item) couple
  • CD13 and CD31 were identified.
  • the expression analysis results of CD13 were 1.64 ⁇ 0.45 (relative value) in the SP fraction and 0.51 ⁇ 0.03 (relative value) in the non-SP fraction (P ⁇ 0.01) (B in FIG. 1).
  • CD31 expression was high in the G2 / M / SP fraction (Fig. 2B) and was not common for hepatoma cells (HuH7, PLC / PRF / 5 and Hep3B). (B in FIG. 1).
  • Non-patent Document 11 Ma S, et al. Identification and characterization of tumorigenic liver cancer stem / progenitor cells. Gastroenterology. 2007; 132 (7): 2542-2556
  • Non-Patent Document 12 Zhu Z, et al. Cancer stem / progenitor cells are highly enriched in CD133 (+) CD44 (+) population in hepatocellular carcinoma.
  • Non-Patent Document 13 Yang ZF, et al. Significance of CD90 + cancer stem cells in human liver cancer. Cancer Cell. 2008; 13 (2): 153-166.
  • Patent Document 14 Yang ZF, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008; 47 (3): 919-928.).
  • CD133 expression was detected in HuH7 but not in PLC / PRF / 5.
  • CD90 expression was detected in PLC / PRF / 5 but not in HuH7.
  • the expression of CD13 was confirmed in any of Hep3B, HuH7, and PLC / PRF / 5 (C in FIG. 1 and A in FIG. 2). In particular, in HuH7, many CD13 + cells were observed in the fraction (CD13 + CD133 + ) overexpressing CD133.
  • Multi-color analysis with Hoechst staining revealed clear localization of CD13 + cells in the SP fractions of HuH7 and PLC / PRF / 5.
  • the CD13 ⁇ CD133 + and CD13 ⁇ CD90 + fractions were localized in the G1 to G2 fractions, but not in the SP fraction (D in FIG. 1).
  • CD13 is a universal marker candidate closely related to the hepatoma cell SP fraction.
  • no single marker showing a stronger association with the SP fraction than CD13 was found.
  • CD13 is a marker of potentially dormant hepatocellular carcinoma (HCC) cells Considering hematopoiesis and leukemic stem cells are in G0 phase, dormant or poorly proliferating cancer cells are resistant to anticancer drugs It is thought to be related to resistance and cancer recurrence. Therefore, the identification and characterization of cancer cell populations that are dormant or have a low proliferative ability are very important in examining resistance to anticancer drugs and cancer recurrence. CD13 expression of HuH7 and PLC / PRF / 5 and the relationship between the cell cycle of HuH7 and PLC / PRF / 5 were examined.
  • CD13 + fractions were present in the G1 / G0 phase, and CD13 was strongly expressed.
  • the apparent population was localized in the G0 phase.
  • the cell cycle was analyzed using a DNA binding stain (Hoechst blue: Hoechst 33342) and an RNA binding stain (Pyronin Y).
  • the population of CD133 + cells in HuH7 and the fraction of CD90 + cells in PLC / PRF / 5 were distributed in G1 / G0 and G2 / M phases.
  • a relationship between the SP fraction and the G0 cell cycle was also observed, and the SP fraction was clearly localized in the G0 phase even in the absence of reserpine (ABC transporter blocker) (A in FIG. 3).
  • CD13 + CD133 + fractions showed cell fragmentation and apoptotic changes during culture.
  • CD13 + CD90 ⁇ population was mainly in the G0 / G1 phase, and the CD13 + CD90 + population was clearly in the S–G2 / M phase.
  • CD13 ⁇ CD90 + cells were present in all cell cycles, but clearly had a higher proportion in the G2 / M and S phases than the CD13 + CD90 ⁇ population (D in FIG. 3).
  • CD13 + cells are also used in colorectal cancer, which is a type of digestive cancer. It can be seen that it is a cancer stem cell positioned higher in the differentiation hierarchy and a cell resistant to an anticancer agent.
  • CD13 + cells form spheres and create a CD90 + phenotype
  • the formation of spheres is a common feature of stem cells.
  • expression of CD13 in spheres derived from HuH7, PLC / PRF / 5 and clinically obtained HCC was examined.
  • CD13 expression is both HuH7 (67.0%, 33.5-fold increase in the sphere versus control 2.0%) and PLC / PRF / 5 (83.8%, 5.51-fold increase in the sphere versus control 15.2%). It increased (A in FIG. 5). There was no significant difference in the expression of CD133 in HuH7.
  • CD90 expression was decreased in the sphere (2.5% in the sphere, a 14.28-fold increase in the sphere compared to 35.7% in the control).
  • CD13 expression was more immature stem-like than CD133 and CD90, suggesting a dormant population.
  • the sphere obtained from the clinically obtained HCC sample was localized in the CD13 + CD90 ⁇ CD133 ⁇ fraction as in the case of PLC / PRF / 5 (FIG. 5B).
  • the time course of CD13 and CD90 expression in PLC / PRF / 5 was examined.
  • the CD13 + CD90 ⁇ fraction was isolated from the PLC / PRF / 5 sphere and cultured in a serum-containing medium, the CD13 + CD90 + fraction was observed after 96 hours (C in FIG. 5).
  • the isolated CD13 ⁇ CD90 ⁇ fraction induced cell death within a few days and was unable to maintain viability.
  • the isolated CD13 ⁇ CD90 ⁇ fraction rapidly produced a CD13 + CD90 ⁇ fraction within 24 hours (FIG. 5C).
  • CD13 + CD133 + , CD13 ⁇ CD133 + and CD13 ⁇ CD133 ⁇ were confirmed in HuH7.
  • the CD13 + CD133 + fraction was more resistant to DXR than the CD13 ⁇ CD133 + and CD13 ⁇ CD133 ⁇ fractions (FIG. 7B).
  • the CD13 ⁇ CD133 ⁇ fraction showed a high drug resistance, although the cell growth rate was slow in proliferation tests and cell fate studies (FIGS. 7A and C).
  • PLC / PRF / 5 the CD13 ⁇ CD90 + fraction shifted to the CD13 + fraction and the CD90 + fraction decreased (A in FIG. 7).
  • HuH7 and PLC / PRF / 5 cells were irradiated with radiation, and cell surface markers expressed in the cells remaining after irradiation were analyzed. After 24 hours of irradiation, the remaining cells were localized in the CD13 + fraction in HuH7 and in the CD13 + CD90 - fraction in PLC / PRF / 5. After 48 hours of irradiation, the remaining cells started to grow, and CD13 ⁇ CD133 + cells were created with HuH7, and CD13 + CD90 + cells were created with PLC / PRF / 5 (C in FIG. 7). These results corroborate the examination results of changes with time (C in FIG. 6), and show that CD13 + cells exist as a core fraction of the cellular hierarchy.
  • the CD13 - CD90 + fraction was higher in the relapsed sample after hepatic artery embolization than in the sample without hepatic artery embolization (40 in the sample without hepatic artery embolization). Compared to ⁇ 18%, 12 ⁇ 5%: 3.3-fold increase in the sample of recurrence after hepatic artery embolization therapy) (A in FIG. 8). In all 12 clinically obtained HCC samples, the expression pattern was very close to PLC / RLF / 5. Here, the percentage of cells indicates the percentage (%) of cells surviving after mechanical and enzymatic digestion. Most hepatocellular carcinoma cells retain liver cell function, accumulate fat and glycogen, and produce bilirubin. Hepatocyte cancer cells are relatively large compared to other cancer cells and are more susceptible to damage by mechanical and enzymatic digestion.
  • CD13 expression was confirmed in fresh cryosurgical specimens. In cases after hepatic artery embolization, CD13 + HCC cells were present along fibrous capsules forming cell clusters. In cases where hepatic artery embolization was not performed, CD13 + HCC cells usually formed small cell clusters inside the cancer lesion (FIG. 8B). CD13 was expressed on the cell surface in the HCC case. In normal liver samples, CD13 was expressed in sinusoids and bile ducts, clearly different from CD13 expression in HCC samples.
  • HCC recurrence after hepatic artery embolization usually occurs in fibrotic capsules, and drug-resistant viable HCC (chemo-resistant viable HCC) is mainly present around fibrotic capsules, so immunity in samples after hepatic artery embolization Histochemical findings fully support clinical experience.
  • drug-resistant viable HCC chemo-resistant viable HCC
  • CD13 + CD90 + fraction was mainly present in the G2 / M / S phase (A in FIG. 3), this fraction increased after treatment with DXR, which is a DNA synthesis inhibitor.
  • DXR ATP-binding Cassette
  • CD13 is presumed to be responsible for cytoprotection against anticancer drugs (resistance to anticancer drugs).
  • DXR is also known as an ABC transporter-dependent anticancer agent.
  • a DXR resistant HuH7 clone was established that was able to survive 90% of cells with 0.5 ⁇ g / ml DXR (FIG. 10). Note that 99% of the HuH7 parental cells can be killed by the above concentration of DXR.
  • CD13 Inhibition of CD13 was able to suppress cell proliferation to 50% or less in the DXR resistant HuH7 clone (C in FIG. 9). This finding can inhibit the multidrug resistance of cancer cells by inhibiting CD13, resulting in a reduction in the number of cancer cells that can remain after treatment with conventional anticancer drugs by inhibiting CD13 It suggests that you can.
  • CD13 + HuH7 cells have high tumorigenicity.
  • the CD13 + CD133 + fraction formed tumors from 100 cells
  • the CD13 ⁇ CD133 + fraction formed tumors from 1,000 cells
  • the CD13 ⁇ CD133 ⁇ fraction failed to form tumors even from 5,000 cells. .
  • CD13 + cells generated by treatment can be made fresh from the remaining CD90 + cells.
  • cancer stem cells which are CD13 + cells
  • a combination of a CD13 inhibitor such as Ubenimex and an anticancer agent such as 5-FU an anticancer agent based on DNA synthesis inhibition. It was confirmed that it induces apoptosis of cancer stem cells. From this, it is possible to eliminate not only cancer cells but also cancer stem cells that are resistant to cancer treatment by using a combination of a CD13 inhibitor and an anticancer agent, preferably an anticancer agent based on an inhibitory action on DNA synthesis. Treatment is expected to be possible.
  • cancer stem cells which are CD13 + cells
  • a combination of a CD13 inhibitor and an anticancer agent preferably an anticancer agent based on DNA synthesis inhibitory action
  • an anticancer agent preferably an anticancer agent based on DNA synthesis inhibitory action
  • CD13 + confirmed 10 of that cell contains a low level of ROS. Confirmation that DNA strand double strand damage is kept low in CD13 + cells
  • Dormant stem cells that are capable of self-renewal usually have low levels of ROS because intracellular ROS is low, or low ROS is beneficial for cell survival even if ROS levels are not reached immediately It has been reported that the operating principle of vital functions is shifted in the direction of maintaining the above, and that dysregulation of ROS levels impairs the function of stem cells (Non-patent Document 8).
  • Intracellular ROS was measured by 2 ', 7'-dichlorofluorescein diacetate (DCF-DA) staining.
  • DCF-DA 7'-dichlorofluorescein diacetate
  • the CD13 + fraction had a lower ROS concentration than the CD133 strong expression fraction and the CD90 + fraction.
  • ROS was clearly lower in the CD13 + fraction than in the CD13 ⁇ fraction.
  • Treatment with a CD13 neutralizing antibody or a CD13 inhibitor such as Ubenimex significantly increased the ROS concentration in CD13 + cells to the same extent as the ROS concentration in the CD13 ⁇ fraction (FIG. 12A).
  • the CD13 + CD90 ⁇ fraction showed a lower ROS concentration than the CD13 ⁇ CD90 + and CD13 + CD90 + fraction (FIG. 12B).
  • the CD13 + fraction contained MitoSOX, another ROS indicator (FIG. 12C).
  • GCLM a gene capable of encoding glutamine-cysteine ligase
  • Non-patent Document 9 It is known that cell death after cytotoxic chemotherapy and ionizing radiation is partly caused by free radicals (Non-patent Document 9). In this study, a low ROS concentration was shown in the CD13 + cell population, so it was verified whether the CD13 + fraction caused DNA damage. For this verification, purified CD13 + CD90 ⁇ , CD13 + CD90 + , CD13 ⁇ CD90 + , and CD13 ⁇ CD90 ⁇ HCC cells were irradiated and subjected to an alkaline comet assay. There was no significant difference in the extent of DNA damage in cells that were not irradiated after ionizing radiation, but when ionizing radiation was applied, DNA in CD13 + CD90 - cells was higher than in the other three fractions.
  • CD13 is specifically expressed on the surface of cancer stem cells, especially solid stem cancer stem cells of human liver cancer and gastrointestinal cancer (colon cancer), and is involved in the regulation of ROS elimination pathway Thus, it has an essential function for maintaining cancer stem cells.
  • CD13 is a specific marker for cancer stem cells, particularly cancer stem cells of solid cancers such as liver cancer and gastrointestinal cancer (colon cancer).
  • cancer stem cells expressing CD13 are in the cell cycle quiescence, ROS concentration is suppressed low, and DNA double-strand damage is suppressed or double. Since the ability to repair chain damage was activated, it was confirmed that the solid cancer stem cells were extremely resistant to conventional treatments such as chemotherapy and ionizing radiation.
  • problems in cancer treatment such as conventional chemotherapy and ionizing radiation (incurable, recurrence, metastasis) may be caused by CD13 + cells.
  • problems in conventional cancer treatment can be solved, cancer can be cured, and cancer recurrence and metastasis can be prevented.
  • hypoxia the tissue falls into acidosis, and the effects of anticancer drugs and anticancer treatment with radiation are diminished.
  • Hypoxia is considered to cause cancer cells with higher malignancy by further causing genetic changes in tumor cells.
  • cell division is likely to stop and the number of stationary cells increases.
  • Such quiescent cells have high resistance to cancer treatment by anticancer agents and radiation.
  • Hypoxia also occurs when tumor angiogenesis does not catch up with tumor growth (in part because the tumor itself moves its surrounding environment in a direction that favors cancer). It is also known that the anticancer agent itself does not reach the target site at such sites.
  • the cancer stem cells which are CD13 + cells are in a hypoxic state (ROS concentration is suppressed to a low level), they have high resistance to cancer treatment by anticancer agents and radiation irradiation.
  • the present invention uses a combination of a CD13 inhibitor such as a CD13 neutralizing antibody or ubenimex and a cancer treatment with an anticancer agent or radiation to induce apoptosis in cancer stem cells remaining in the conventional therapy. It is effective as a treatment method for cancer cure (cancer radical treatment method) and as a treatment method for preventing cancer recurrence (cancer recurrence prevention therapy).
  • CD13 + cells have DNA double strand damage suppressed or DNA double strand damage repair ability is activated. From this, it is possible to improve sensitivity to anticancer agents by increasing ROS by treating with CD13 inhibitors, and preferably by using anticancer agents having an inhibitory action on DNA synthesis such as 5-fluorouracil as anticancer agents, DNA fragmentation and apoptosis can be guided, and as a result, cancer can be cured and cancer recurrence can be prevented.
  • anticancer agents having an inhibitory action on DNA synthesis such as 5-fluorouracil as anticancer agents
  • SEQ ID NOs: 1 and 2 are the nucleotide sequences of PCR primers used for the amplification of the glutamine-cysteine ligase (GCLM) gene, and SEQ ID NOs: 1 and 2 are glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene sequences. It means the base sequence of PCR primer used for amplification.
  • GCLM glutamine-cysteine ligase
  • GPDH glyceraldehyde-3-phosphate dehydrogenase

Abstract

A functional molecule involved in the regulation of cancer stem cells is newly identified. Thus, disclosed are: a technique for detecting cancer stem cells accurately; and a technique for inducing the apoptosis of cancer stem cells to completely cure cancer. CD13 is involved in the regulation of an active oxygen species removal pathway in a cancer stem cell, and is therefore a molecule essential to the maintenance of cancer stem cells. Therefore, cancer stem cells can be detected accurately using CD13 as an indicator. Further, the radical treatment of cancer (particularly liver cancer and gastrointestinal cancer) can be achieved using a CD13 inhibitor and an anti-cancer agent or a radiation therapy in combination.

Description

癌幹細胞の検出方法、及び癌の治療剤または再発予防剤Cancer stem cell detection method and cancer therapeutic or recurrence preventive agent
 本発明は、癌幹細胞の検出方法、及び癌を治療または再発予防するための薬剤に関する。 The present invention relates to a method for detecting cancer stem cells and a drug for treating or preventing cancer recurrence.
 癌細胞には、自己増殖能があり、周辺組織への湿潤や離れた組織への転移が可能であるという特性がある。しかしながら、癌組織を形成している癌細胞の全てにおいて、これらの特性が備わっているのではなく、癌を発症させたり、癌を進行させる癌細胞は、癌細胞の中でもごく僅かにしか存在しない癌幹細胞であることが分かっている。癌幹細胞は、正常幹細胞と同様に未分化な表面形質を示し、自己複製能と分化能を有し、癌組織を構成する多様な分化段階にあるあらゆる癌細胞を生みだす特性を有している。即ち、癌幹細胞は、癌組織中で自己複製により自分と同じ細胞を維持しつつ、分化によって大多数の癌細胞を生み出すもとになっていると考えられている。 Cancer cells have the property of being capable of self-proliferation and being able to wet to surrounding tissues or metastasize to distant tissues. However, not all of the cancer cells forming the cancer tissue have these characteristics, and there are very few cancer cells that develop cancer or advance cancer. It is known to be a cancer stem cell. Cancer stem cells exhibit undifferentiated surface characteristics like normal stem cells, have self-renewal ability and differentiation ability, and have the property of producing all cancer cells in various differentiation stages constituting cancer tissue. That is, cancer stem cells are thought to be responsible for generating the majority of cancer cells by differentiation while maintaining the same cells as themselves by self-replication in cancer tissues.
 癌の制圧の目的を具現化するためには、癌幹細胞の性状を明らかにし、癌幹細胞を制圧することが重要であると考えられている。そのため、癌幹細胞を的確に検出できる技術を確立できれば、癌の根治はもとより、癌の予防や危険度の予測に極めて有用であり、医療界に与えるインパクトは強い。 In order to embody the purpose of cancer suppression, it is considered important to clarify the properties of cancer stem cells and to suppress cancer stem cells. Therefore, if a technique capable of accurately detecting cancer stem cells can be established, it will be extremely useful not only for the cure of cancer but also for the prevention of cancer and the prediction of risk, and the impact on the medical community will be strong.
 従来、癌幹細胞の検出の指標とされる分子には、癌幹細胞としての機能性をもたず単なる指標に過ぎないもの(機能性があっても癌幹細胞としての機能をとは関係ないもの)と、機能分子として癌幹細胞の制御に関わるものがある。前者については、幾つかの候補分子が報告されているが、後者については未だ確固たる候補分子は報告されていない。例えば、CD133、CD44、CD90等が、癌幹細胞の指標となることが報告されているが(例えば、非特許文献1~6参照)、これらの分子のみを癌幹細胞の指標として検出する技術では、癌幹細胞の検出精度の点で不十分である。このため、癌幹細胞の制御に関与している機能分子を新たに同定することにより、癌幹細胞を的確に検出する技術を確立することが切望されている。 Conventionally, molecules that have been used as indicators for detecting cancer stem cells have no functionality as cancer stem cells, but are merely indicators (those that have functionality have nothing to do with functions as cancer stem cells) There are also functional molecules involved in the control of cancer stem cells. Several candidate molecules have been reported for the former, but no firm candidate molecules have been reported for the latter. For example, although it has been reported that CD133, CD44, CD90 and the like are indicators of cancer stem cells (see, for example, Non-Patent Documents 1 to 6), in the technology for detecting only these molecules as indicators of cancer stem cells, The detection accuracy of cancer stem cells is insufficient. For this reason, it is eagerly desired to establish a technique for accurately detecting cancer stem cells by newly identifying functional molecules involved in the control of cancer stem cells.
 本発明は、癌幹細胞の制御に関与している機能分子を新たに同定することにより、癌幹細胞を的確に検出する技術を提供することを目的とする。また、本発明は、癌幹細胞についてDNAフラグメンテーションやアポトーシスを導き、癌を根治させる技術、すなわち癌の根治的な治療剤(癌根治薬)及び治療方法(癌根治療法)を提供することを目的とする。更に本発明は、癌幹細胞についてDNAフラグメンテーションやアポトーシスを導き、癌を根治させることにより、癌の再発を予防するための技術、すなわち癌の再発予防剤及び再発予防方法を提供することを目的とする。 An object of the present invention is to provide a technique for accurately detecting cancer stem cells by newly identifying functional molecules involved in the control of cancer stem cells. Another object of the present invention is to provide a technique for leading to DNA fragmentation and apoptosis for cancer stem cells and curing the cancer, that is, a radical therapeutic agent for cancer (cancer radical treatment) and a treatment method (cancer radical treatment method). To do. A further object of the present invention is to provide a technique for preventing recurrence of cancer by leading to DNA fragmentation and apoptosis of cancer stem cells and curing the cancer, that is, a cancer recurrence preventive agent and a recurrence preventive method. .
 本発明者等は、上記課題を解決すべく、鋭意検討を行ったところ、CD13は、癌幹細胞において活性酸素種(reactive oxgen species;ROS)除去経路の制御に関与しており、癌幹細胞の維持に不可欠な分子であること、つまり癌幹細胞はCD13陽性細胞(CD13細胞)であること、このためCD13を指標とすることにより、癌幹細胞を的確に検出できることを見出した。更に、従来の化学療法や電離放射線照射などの癌治療と、CD13を阻害する作用を有する化合物(以下、「CD13阻害剤」という)による処置とを組み合わせることによって、ROS濃度が低くまた細胞周期が休眠期または遅い状態に存在するという特性を有し、非常に高い治療抵抗性を示す癌幹細胞を標的にすることが可能であり、その結果、癌の治療効果を著明に向上させることができること、特に癌の根治や再発予防に有効であることを見出した。つまり、このことは、CD13阻害剤と抗癌剤または電離放射線照射処理とを併用することによって癌を根本的に治療することができ、癌の再発が予防できること、言い換えれば、CD13阻害剤と癌療法(抗癌剤投与または電離放射線照射処理)との併用が、癌根治療法または癌再発予防療法として有効であることを意味する。また、CD13細胞はDNAの2本鎖損傷が抑制されているか、または2本鎖損傷の修復能が活性化されていることから(図14参照)、CD13阻害剤と、例えば5-フルオロウラシル等のようにDNA合成抑制作用を有する抗癌剤とを併用することにより、より高い癌根治効果または癌再発予防効果を得ることができると考えられる。同様に、非常に高いROSの上昇効果を有するアントラサイクリン系抗癌剤のドキソルビシン等を併用することにより、CD13阻害剤の有するROS排泄効果の阻害作用を増強させることにより、CD13阻害剤によってROSの上昇が惹起された状態の癌幹細胞を非常に高い効率で障害し、癌の根治へ結び付けることが可能となる。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems. As a result, CD13 is involved in the control of the reactive oxgen species (ROS) removal pathway in cancer stem cells and maintains cancer stem cells. It was found that cancer stem cells are CD13-positive cells (CD13 + cells), and that cancer stem cells can be accurately detected by using CD13 as an index. Furthermore, by combining conventional cancer treatments such as chemotherapy and ionizing radiation with treatment with a compound having an action of inhibiting CD13 (hereinafter referred to as “CD13 inhibitor”), the ROS concentration is low and the cell cycle is reduced. It is possible to target cancer stem cells that have the characteristic of being in the dormant or late state and exhibit extremely high treatment resistance, and as a result, the therapeutic effect of cancer can be significantly improved In particular, it was found to be effective in the cure of cancer and prevention of recurrence. In other words, this means that a combination of a CD13 inhibitor and an anticancer agent or ionizing radiation treatment can fundamentally treat cancer and prevent cancer recurrence, in other words, a CD13 inhibitor and cancer therapy ( It means that combined use with anticancer drug administration or ionizing radiation treatment is effective as a cancer radical treatment method or a cancer recurrence prevention therapy. Further, CD13 + cells are suppressed in DNA double-strand damage or have activated double-strand damage repair ability (see FIG. 14), so a CD13 inhibitor and, for example, 5-fluorouracil, etc. Thus, it is considered that a higher cancer curative effect or cancer recurrence preventing effect can be obtained by using in combination with an anticancer agent having a DNA synthesis inhibitory action. Similarly, an anthracycline anticancer agent doxorubicin having a very high ROS increase effect is used in combination to enhance the ROS excretion effect of the CD13 inhibitor, thereby increasing the ROS by the CD13 inhibitor. It is possible to damage cancer stem cells in the induced state with very high efficiency, and to lead to the cure of cancer.
 本発明は、かかる知見に基づいて、更に検討を重ねることにより完成したものである。 The present invention has been completed by further studies based on such knowledge.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
(I)癌幹細胞の検出方法
(I-1).癌組織又は癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程を有する、癌幹細胞の検出方法。
(I-2).CD13を発現している細胞の測定が、CD13に特異的に結合可能な抗体を用いて行われる、(I-1)に記載の検出方法。
(I-3).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(I-2)記載の検出方法。
(I-4).CD13と共にCD90を発現している細胞を測定する工程を有する、(I-1)乃至(I-3)のいずれかに記載の検出方法。
(I-5).CD90を発現している細胞の測定が、CD90に特異的に結合可能な抗体を用いて行われる、(I-4)に記載の検出方法。
(I-6).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(I-5)記載の検出方法。
(I-7).CD13またはCD90を発現している細胞の測定がフローサイトメトリー法によって行なわれる、(I-1)乃至(I-6)のいずれかに記載の検出方法。
That is, this invention provides the invention of the aspect hung up below.
(I) Cancer stem cell detection method (I-1). A method for detecting cancer stem cells, comprising measuring a cell expressing CD13 for a test cell derived from a cancer tissue or a tissue after cancer treatment.
(I-2). The detection method according to (I-1), wherein the measurement of cells expressing CD13 is performed using an antibody capable of specifically binding to CD13.
(I-3). The detection method according to (I-2), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(I-4). The detection method according to any one of (I-1) to (I-3), which comprises a step of measuring cells expressing CD90 together with CD13.
(I-5). The detection method according to (I-4), wherein measurement of cells expressing CD90 is performed using an antibody capable of specifically binding to CD90.
(I-6). The detection method according to (I-5), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(I-7). The detection method according to any one of (I-1) to (I-6), wherein measurement of cells expressing CD13 or CD90 is performed by a flow cytometry method.
 (II)癌の症状の程度又は危険度を測定する方法
(II-1).被験者の癌の症状の程度(癌重篤度)又は癌危険度を測定する方法であって、
(A)被験者の癌組織又は癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程、及び
(B)前記(A)工程で測定されたCD13発現細胞の数に応じて、癌重篤度又は癌危険度を決定する工程、
を含むことを特徴とする、上記測定方法。
(II-2).上記(B)工程が、前記(A)工程で測定されたCD13発現細胞の数が多い場合に癌重篤度及び癌危険度が高く、CD13発現細胞の数が少ない場合に癌重篤度及び癌危険度が低いと決定する工程である、(II-1)に記載する測定方法。
(II-3).CD13発現細胞の測定がCD13に特異的に結合可能な抗体を用いて行われる、(II-1)または(II-2)に記載の測定方法。
(II-4).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(II-3)記載の測定方法。
(II-5).(A)工程が、CD13と共にCD90を発現している細胞を測定する工程である、(II-1)乃至(II-4)のいずれかに記載の測定方法。
(II-6).CD90を発現している細胞の測定が、CD90に特異的に結合可能な抗体を用いて行われる、(II-5)に記載の測定方法。
(II-7).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(II-6)記載の測定方法。
(II-8).CD13またはCD90を発現している細胞の測定がフローサイトメトリー法によって行なわれる、(II-1)乃至(II-7)のいずれかに記載の測定方法。
(II-9).癌重篤度又は癌危険度が、癌が再発する確率である(II-1)乃至(II-8)のいずれかに記載の測定方法。
(II) Method of measuring the degree or risk of cancer symptoms (II-1). A method of measuring the degree of cancer symptoms (cancer severity) or cancer risk of a subject,
(A) a step of measuring a cell expressing CD13 for a test cell derived from a cancer tissue of a subject or a tissue after cancer treatment, and (B) a CD13-expressing cell measured in the step (A) Determining the cancer severity or cancer risk according to the number of
The above-mentioned measuring method characterized by including.
(II-2). In the step (B), when the number of CD13-expressing cells measured in the step (A) is large, the cancer severity and cancer risk are high, and when the number of CD13-expressing cells is small, the cancer severity and The measurement method according to (II-1), which is a step of determining that the cancer risk is low.
(II-3). The measurement method according to (II-1) or (II-2), wherein the measurement of CD13-expressing cells is performed using an antibody capable of specifically binding to CD13.
(II-4). The measurement method according to (II-3), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(II-5). (A) The measuring method according to any one of (II-1) to (II-4), wherein the step is a step of measuring cells expressing CD90 together with CD13.
(II-6). The measurement method according to (II-5), wherein the measurement of cells expressing CD90 is performed using an antibody capable of specifically binding to CD90.
(II-7). The measurement method according to (II-6), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(II-8). The measurement method according to any one of (II-1) to (II-7), wherein measurement of cells expressing CD13 or CD90 is performed by a flow cytometry method.
(II-9). The measurement method according to any one of (II-1) to (II-8), wherein the cancer severity or cancer risk is the probability that the cancer will recur.
 (III)癌の治療効果の測定方法
(III-1).癌患者について癌の治療効果を測定する方法であって、
(a)癌患者の癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程、及び
(b)前記(a)工程で測定されたCD13発現細胞の有無に応じて、癌の治療効果を決定する工程、
を含むことを特徴とする、上記測定方法。
(III-2).上記(b)工程が、前記(a)工程でCD13発現細胞が検出された場合に癌治療効果が不良、CD13発現細胞が検出されなかった場合に癌治療効果が良好と、決定する工程である、(III-1)に記載する予測方法。
(III-3).CD13発現細胞の測定がCD13に特異的に結合可能な抗体を用いて行われる、(III-1)または(III-2)に記載の測定方法。
(III-4).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(III-3)記載の測定方法。
(III-5).(A)工程が、CD13と共にCD90を発現している細胞を測定する工程である、(III-1)乃至(III-4)のいずれかに記載の測定方法。
(III-6).CD90を発現している細胞の測定が、CD90に特異的に結合可能な抗体を用いて行われる、(III-5)に記載の測定方法。
(III-7).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(III-6)記載の測定方法。
(III-8).CD13またはCD90を発現している細胞の測定がフローサイトメトリー法によって行なわれる、(III-1)乃至(III-7)のいずれかに記載の測定方法。
(III) Method for measuring the therapeutic effect of cancer (III-1). A method for measuring the therapeutic effect of cancer on a cancer patient,
(A) a step of measuring a cell expressing CD13 in a test cell derived from a tissue after cancer treatment of a cancer patient, and (b) the presence or absence of a CD13-expressing cell measured in the step (a) Depending on the step of determining the therapeutic effect of the cancer,
The above-mentioned measuring method characterized by including.
(III-2). The step (b) is a step of determining that the cancer treatment effect is poor when CD13-expressing cells are detected in the step (a) and that the cancer treatment effect is good when CD13-expressing cells are not detected. The prediction method described in (III-1).
(III-3). The measurement method according to (III-1) or (III-2), wherein measurement of CD13-expressing cells is performed using an antibody capable of specifically binding to CD13.
(III-4). The measurement method according to (III-3), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(III-5). (A) The measuring method according to any one of (III-1) to (III-4), wherein the step is a step of measuring cells expressing CD90 together with CD13.
(III-6). The measurement method according to (III-5), wherein the measurement of cells expressing CD90 is performed using an antibody capable of specifically binding to CD90.
(III-7). The measurement method according to (III-6), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(III-8). The measurement method according to any one of (III-1) to (III-7), wherein measurement of cells expressing CD13 or CD90 is performed by a flow cytometry method.
 (IV)癌の再発危険度を測定する方法
(IV-1).癌患者について癌の治療後に癌再発危険度を測定する方法であって、
(a’)癌患者の癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程、及び
(b’)前記(a’)工程で測定されたCD13発現細胞の有無に応じて、当該癌患者の癌再発危険度を決定する工程、
を含むことを特徴とする、上記測定方法。
(IV-2).上記(b’)工程が、前記(a’)工程でCD13発現細胞が検出された場合に、当該癌患者は癌再発危険度が高いと決定し、CD13発現細胞が検出されなかった場合に、当該癌患者は癌再発危険度が低いと決定する工程である、(IV-1)に記載する予測方法。
(IV-3).CD13発現細胞の測定がCD13に特異的に結合可能な抗体を用いて行われる、(IV-1)または(IV-2)に記載の測定方法。
(IV-4).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(IV-3)記載の測定方法。
(IV-5).(A)工程が、CD13と共にCD90を発現している細胞を測定する工程である、(IV-1)乃至(IV-4)のいずれかに記載の測定方法。
(IV-6).CD90を発現している細胞の測定が、CD90に特異的に結合可能な抗体を用いて行われる、(IV-5)に記載の測定方法。
(IV-7).上記抗体が、蛍光物質及び酵素から選択される標識物質で標識されているものである、(IV-6)記載の測定方法。
(IV-8).CD13またはCD90を発現している細胞の測定がフローサイトメトリー法によって行なわれる、(IV-1)乃至(IV-7)のいずれかに記載の測定方法。
(IV) Method of measuring the risk of cancer recurrence (IV-1). A method for measuring the risk of cancer recurrence after cancer treatment for a cancer patient,
(A ′) a step of measuring a cell expressing CD13 in a test cell derived from a tissue after cancer treatment of a cancer patient, and (b ′) CD13 expression measured in the step (a ′) Determining the cancer recurrence risk of the cancer patient according to the presence or absence of cells,
The above-mentioned measuring method characterized by including.
(IV-2). In the above step (b ′), when CD13-expressing cells are detected in the step (a ′), the cancer patient is determined to have a high risk of cancer recurrence, and when CD13-expressing cells are not detected, The prediction method according to (IV-1), which is a step of determining that the cancer patient has a low risk of cancer recurrence.
(IV-3). The measurement method according to (IV-1) or (IV-2), wherein measurement of CD13-expressing cells is performed using an antibody capable of specifically binding to CD13.
(IV-4). The measurement method according to (IV-3), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(IV-5). (A) The measurement method according to any one of (IV-1) to (IV-4), wherein the step is a step of measuring cells expressing CD90 together with CD13.
(IV-6). The measurement method according to (IV-5), wherein measurement of cells expressing CD90 is performed using an antibody capable of specifically binding to CD90.
(IV-7). The measurement method according to (IV-6), wherein the antibody is labeled with a labeling substance selected from a fluorescent substance and an enzyme.
(IV-8). The measurement method according to any one of (IV-1) to (IV-7), wherein measurement of cells expressing CD13 or CD90 is performed by a flow cytometry method.
 (V)癌幹細胞の検出試薬及び検出キット
 (V-1).CD13に特異的に結合する物質(以下、「CD13結合性物質」という)を有効成分とする、癌幹細胞の検出試薬。
(V-2).CD13結合性物質が、CD13に特異的に結合可能な、抗体(以下、これを「抗CD13抗体」という)、マイクロRNA、RNAアプタマー、及びドミナントネガティブ変異体からなる群から選択される少なくとも1種である、(V-1)に記載する検出試薬。
(V-3).CD13結合性物質を癌幹細胞の検出試薬として含むことを特徴とする癌幹細胞の検出キット。
(V-4).更に、CD90に特異的に結合する物質(以下、「CD90結合性物質」という)を含む、(V-3)に記載の検出キット。
(V-5).CD90結合性物質が、CD90に特異的に結合可能な、抗体(以下、これを「抗CD90抗体」という)、マイクロRNA、RNAアプタマー、及びドミナントネガティブ変異体からなる群から選択される少なくとも1種である(V-4)に記載する検出キット。
(V) Cancer stem cell detection reagent and detection kit (V-1). A cancer stem cell detection reagent comprising a substance that specifically binds to CD13 (hereinafter referred to as “CD13-binding substance”) as an active ingredient.
(V-2). At least one selected from the group consisting of an antibody (hereinafter referred to as “anti-CD13 antibody”), a microRNA, an RNA aptamer, and a dominant negative mutant, wherein the CD13 binding substance can specifically bind to CD13. The detection reagent according to (V-1).
(V-3). A cancer stem cell detection kit comprising a CD13 binding substance as a cancer stem cell detection reagent.
(V-4). The detection kit according to (V-3), further comprising a substance that specifically binds to CD90 (hereinafter referred to as “CD90-binding substance”).
(V-5). At least one selected from the group consisting of an antibody (hereinafter referred to as “anti-CD90 antibody”), a microRNA, an RNA aptamer, and a dominant negative mutant, wherein the CD90-binding substance can specifically bind to CD90. The detection kit according to (V-4).
 (VI)癌治療剤、癌治療用医薬品キット及び癌根治療法
(VI-1).CD13阻害剤及び抗癌剤を含有することを特徴とする、癌治療剤。
(VI-2).CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、(VI-1)に記載の癌治療剤。
(VI-3).抗癌剤がDNA合成阻害剤またはROS上昇作用を有する抗癌剤である、(VI-1)又は(VI-2)に記載の癌治療剤。
(VI-4).DNA合成阻害剤が5-フルオロウラシル、そのプロドラッグ、ドキソルビシンまたはこれらの塩である、(VI-3)に記載の癌治療剤。
(VI-5).ROS上昇作用を有する抗癌剤が、アントラサイクリン系抗癌剤、好ましくはドキソルビシンまたはその薬学的に許容される塩である、(VI-3)に記載の癌治療剤。
(VI-6).癌の根治的治療剤である、(VI-1)乃至(VI-5)のいずれかに記載の癌治療剤。
(VI-7).治療の対象とする癌がCD13を発現している固形癌、好ましくは肝癌、肺癌及び消化管癌、より好ましくは肝癌及び大腸癌である、(VI-1)乃至(VI-6)のいずれかに記載の抗癌剤。
(VI-8).CD13阻害剤を含有する第1剤と、抗癌剤を含有する第2剤を別個の包装形態で含むことを特徴とする、癌治療用医薬品キット。
(VI-9).上記CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、(VI-8)に記載のキット。
(VI-10).抗癌剤がDNA合成阻害剤またはROS上昇作用を有する抗癌剤である、(VI-8)又は(VI-9)に記載のキット。
(VI-11).癌の根治的治療用医薬品キットである、(VI-8)乃至(VI-10)のいずれかに記載のキット。
(VI-12).治療の対象とする癌がCD13を発現している固形癌、好ましくは肝癌、肺癌及び消化管癌、より好ましくは肝癌及び大腸癌である、(VI-7)乃至(VI-11)のいずれかに記載のキット。
(VI-13).癌患者にCD13阻害剤及び抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を投与する工程を有するか、または癌患者にCD13阻害剤投与処置と電離放射線照射処置を行う工程を有する、癌の根治的治療方法。
(VI-14).上記CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、(VI-13)に記載の方法。
(VI-15).抗癌剤がDNA合成阻害剤またはROS上昇作用を有する抗癌剤である、(VI-13)又は(VI-14)に記載の方法。
(VI-16).CD13阻害剤と抗癌剤の組み合わせ物、好ましくはCD13阻害剤とDNA合成阻害剤またはROS上昇作用を有する抗癌剤との組み合わせ物の、癌の根治的治療剤の調製のための使用。
(VI-17).癌を根治的に治療するために使用される、CD13阻害剤と抗癌剤の組み合わせ物、好ましくはCD13阻害剤とDNA合成阻害剤またはROS上昇作用を有する抗癌剤との組み合わせ物。
(VI-18). CD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)の組み合わせ物が、CD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を含有する調合剤であるか、またはCD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を別個の包装形態で含有する医薬品キットである、(VI-17)に記載する組み合わせ物。
(VI) Cancer therapeutic agents, drug kits for cancer treatment, and cancer radical treatment methods (VI-1). A cancer therapeutic agent comprising a CD13 inhibitor and an anticancer agent.
(VI-2). The cancer therapeutic agent according to (VI-1), wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
(VI-3). The cancer therapeutic agent according to (VI-1) or (VI-2), wherein the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
(VI-4). The cancer therapeutic agent according to (VI-3), wherein the DNA synthesis inhibitor is 5-fluorouracil, a prodrug thereof, doxorubicin or a salt thereof.
(VI-5). The cancer therapeutic agent according to (VI-3), wherein the anticancer agent having an action of increasing ROS is an anthracycline anticancer agent, preferably doxorubicin or a pharmaceutically acceptable salt thereof.
(VI-6). The cancer therapeutic agent according to any one of (VI-1) to (VI-5), which is a radical therapeutic agent for cancer.
(VI-7). Any of (VI-1) to (VI-6), wherein the cancer to be treated is a solid cancer expressing CD13, preferably liver cancer, lung cancer and gastrointestinal cancer, more preferably liver cancer and colon cancer The anticancer agent as described in.
(VI-8). A pharmaceutical kit for treating cancer, comprising a first agent containing a CD13 inhibitor and a second agent containing an anticancer agent in separate packaging forms.
(VI-9). The kit according to (VI-8), wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
(VI-10). The kit according to (VI-8) or (VI-9), wherein the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
(VI-11). The kit according to any one of (VI-8) to (VI-10), which is a pharmaceutical kit for radical treatment of cancer.
(VI-12). Any of (VI-7) to (VI-11), wherein the cancer to be treated is a solid cancer expressing CD13, preferably liver cancer, lung cancer and gastrointestinal cancer, more preferably liver cancer and colon cancer The kit according to 1.
(VI-13). Having a step of administering a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) to a cancer patient, or a step of performing a CD13 inhibitor administration treatment and an ionizing radiation treatment to a cancer patient , A radical cure for cancer.
(VI-14). The method according to (VI-13), wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
(VI-15). The method according to (VI-13) or (VI-14), wherein the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
(VI-16). Use of a combination of a CD13 inhibitor and an anticancer agent, preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-elevating action, for the preparation of a radical therapeutic agent for cancer.
(VI-17). A combination of a CD13 inhibitor and an anticancer agent, preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, which is used for radically treating cancer.
(VI-18). A combination preparation comprising a combination of a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action). Or a combination according to (VI-17), which is a pharmaceutical kit containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action) in a separate packaging form.
 (VII)癌再発予防剤、癌再発予防医薬品キット及び癌再発予防法
(VII-1).CD13阻害剤及び抗癌剤を含有することを特徴とする癌再発予防剤。
(VII-2).CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、(VII-1)に記載の癌再発予防剤。
(VII-3).抗癌剤がDNA合成阻害剤またはROS上昇作用を有する抗癌剤である、(VII-1)又は(VII-2)に記載の癌再発予防剤。
(VII-4).DNA合成阻害剤が5-フルオロウラシル、そのプロドラッグ、ドキソルビシンまたはこれらの塩である、(VII-3)に記載の癌再発予防剤。
(VII-5).ROS上昇作用を有する抗癌剤が、アントラサイクリン系の抗癌剤、好ましくはドキソルビシンまたはその薬学的に許容される塩である、(VII-3)に記載の癌再発予防剤。
(VII-6).対象とする癌がCD13を発現している固形癌、好ましくは肝癌、肺癌及び消化管癌、より好ましくは肝癌及び大腸癌である、(VII-1)乃至(VII-5)のいずれかに記載の癌再発予防剤。
(VII-7).CD13阻害剤を含有する第1剤と、抗癌剤を含有する第2剤を含むことを特徴とする、癌再発予防用医薬品キット。
(VII-8).CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、(VII-6)に記載のキット。
(VII-9).抗癌剤がDNA合成阻害剤またはROS上昇作用を有する抗癌剤である、(VII-7)又は(VII-8)に記載のキット。
(VII-10).対象とする癌がCD13を発現している固形癌、好ましくは肝癌、肺癌及び消化管癌、より好ましくは肝癌及び大腸癌である、(VII-6)乃至(VII-9)に記載のキット。
(VII-11).癌患者にCD13阻害剤及び抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を投与する工程を有するか、または癌患者にCD13阻害剤投与処置と電離放射線照射処置を行う工程を有する、癌の再発予防方法。
(VII-12).上記CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、(VII-11)に記載の方法。
(VII-13).抗癌剤がDNA合成阻害剤またはROS上昇作用を有する抗癌剤である、(VII-11)又は(VII-12)に記載の方法。
(VII-14).CD13阻害剤と抗癌剤の組み合わせ物、好ましくはCD13阻害剤とDNA合成阻害剤またはROS上昇作用を有する抗癌剤との組み合わせ物の、癌の再発予防剤の調製のための使用。
(VII-15).癌の再発を予防するために使用される、CD13阻害剤と抗癌剤の組み合わせ物、好ましくはCD13阻害剤とDNA合成阻害剤またはROS上昇作用を有する抗癌剤の組み合わせ物。
(VII-16). CD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)の組み合わせ物が、CD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を含有する調合剤であるか、またはCD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を別個の包装形態で含有する医薬品キットである、(VII-15)に記載する組み合わせ物。
(VII) Cancer recurrence preventive agent, cancer recurrence prevention pharmaceutical kit and cancer recurrence prevention method (VII-1). A cancer recurrence preventive agent comprising a CD13 inhibitor and an anticancer agent.
(VII-2). The cancer recurrence preventive agent according to (VII-1), wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
(VII-3). The cancer recurrence preventive agent according to (VII-1) or (VII-2), wherein the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
(VII-4). The cancer recurrence preventive agent according to (VII-3), wherein the DNA synthesis inhibitor is 5-fluorouracil, a prodrug thereof, doxorubicin or a salt thereof.
(VII-5). The cancer recurrence preventive agent according to (VII-3), wherein the anticancer agent having an ROS-elevating action is an anthracycline-based anticancer agent, preferably doxorubicin or a pharmaceutically acceptable salt thereof.
(VII-6). The target cancer is a solid cancer expressing CD13, preferably liver cancer, lung cancer or gastrointestinal cancer, more preferably liver cancer or colon cancer, any of (VII-1) to (VII-5) For preventing cancer recurrence.
(VII-7). A pharmaceutical kit for preventing cancer recurrence, comprising a first agent containing a CD13 inhibitor and a second agent containing an anticancer agent.
(VII-8). The kit according to (VII-6), wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
(VII-9). The kit according to (VII-7) or (VII-8), wherein the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
(VII-10). The kit according to any one of (VII-6) to (VII-9), wherein the target cancer is a solid cancer expressing CD13, preferably liver cancer, lung cancer and gastrointestinal cancer, more preferably liver cancer and colon cancer.
(VII-11). Having a step of administering a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) to a cancer patient, or a step of performing a CD13 inhibitor administration treatment and an ionizing radiation treatment to a cancer patient How to prevent cancer recurrence.
(VII-12). The method according to (VII-11), wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
(VII-13). The method according to (VII-11) or (VII-12), wherein the anticancer agent is a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action.
(VII-14). Use of a combination of a CD13 inhibitor and an anticancer agent, preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, for the preparation of an agent for preventing cancer recurrence.
(VII-15). A combination of a CD13 inhibitor and an anticancer agent, preferably a combination of a CD13 inhibitor and a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action, used for preventing cancer recurrence.
(VII-16). A combination preparation comprising a combination of a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action). Or a combination described in (VII-15), which is a pharmaceutical kit containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action) in a separate packaging form.
 本発明の検出方法によれば、癌幹細胞を的確に検出することができる。このため、本発明は、癌の治療技術の向上に寄与でき、癌の発生、進行、転移、及び再発などの癌の症状の程度または癌の危険度を予測するうえで極めて有用な革新的な技術になりえる。 According to the detection method of the present invention, cancer stem cells can be accurately detected. Therefore, the present invention can contribute to the improvement of cancer treatment technology, and is an innovative that is extremely useful for predicting the degree of cancer symptoms such as cancer occurrence, progression, metastasis, and recurrence or the risk of cancer. Can be technology.
 また、本発明の癌治療剤または癌治療用医薬品キットによれば、CD13阻害剤と抗癌剤、好ましくはDNA合成阻害剤とを併用することにより、癌細胞のみならず、癌幹細胞を消滅させて、癌を制圧することができるので、従来にない優れた治療効果を示す癌の根治療法剤及び癌根治療法を提供することもできる。また、本発明の癌再発予防剤または癌再発予防用医薬品キットによれば、従来の癌療法で生き残った癌細胞又は癌幹細胞を根絶することで癌の再発を予防し、ひいては癌患者の生存率を格段に向上させることができる。 In addition, according to the cancer therapeutic agent or cancer treatment pharmaceutical kit of the present invention, by using a CD13 inhibitor in combination with an anticancer agent, preferably a DNA synthesis inhibitor, not only cancer cells but also cancer stem cells are eliminated, Since cancer can be suppressed, it is also possible to provide a cancer root treatment method and a cancer root treatment method that exhibit an unprecedented excellent therapeutic effect. Further, according to the cancer recurrence preventive agent or the cancer recurrence prevention pharmaceutical kit of the present invention, cancer recurrence is prevented by eradicating cancer cells or cancer stem cells survived by conventional cancer therapy, and thus the survival rate of cancer patients. Can be significantly improved.
A:実施例における「1.CD13が癌幹細胞のマーカー候補であることの確認」を行った操作手順を示すフロー図である。B:CD13とCD31の2つのマーカー候補について、それぞれヒト肝癌細胞中のSPフラクション及びnon- SPフラクションにおける発現強度を示す図である。C及びD:肝炎感染陰性細胞株(HuH7)及び肝炎感染陽性細胞株(PLC/PRF/5:図中では「PLC」と記載する)におけるCD13、CD133、及びCD90の発現を分析した結果を示す図である。A: It is a flowchart which shows the operation procedure which performed "1. Confirmation that CD13 is a marker candidate of a cancer stem cell" in an Example. B: It is a figure which shows the expression intensity | strength in SP fraction in a human hepatoma cell, and a non- SP fraction about two marker candidates of CD13 and CD31, respectively. C and D: shows the results of analyzing the expression of CD13, CD133, and CD90 in hepatitis infection negative cell line (HuH7) and hepatitis infection positive cell line (PLC / PRF / 5: described as “PLC” in the figure) FIG. 実施例における「1.CD13が癌幹細胞のマーカー候補であることの確認」の項の結果を示す図である。A:HuH7、Hep3B、及びPLC/PRF/5におけるCD13及びCD31の発現状況を調べた結果を示す。B:HuH7におけるCD13とSPフラクションとの関係を示す。CD31細胞は、主にG2/M/SPフラクションに存在していることがわかる。It is a figure which shows the result of the term of "1. Confirmation that CD13 is a cancer stem cell marker candidate" in an Example. A: The results of examining the expression status of CD13 and CD31 in HuH7, Hep3B, and PLC / PRF / 5 are shown. B: shows the relationship between CD13 and Hu fraction in HuH7. It can be seen that CD31 + cells are mainly present in the G2 / M / SP fraction. 実施例における「2.CD13が潜在的に休眠期にある肝細胞癌(HCC)細胞のマーカーであることの確認」の項の結果を示す図である。A:HuH7及びPLC(PLC/PRF/5)のCD13発現、並びにHuH7及びPLC(PLC/PRF/5)の細胞周期の関連性について検討した結果を示す。B:細胞周期とCD13の発現の関連性を評価するために、CD13+CD133+細胞、CD13-CD133+細胞、及びCD13-CD133-細胞について細胞増殖性を比較した結果である。C:HuH7 CD13+細胞の細胞運命(cell fate)及び色素保持能(dye-retaining capacity)を分析した結果である。D:CD13+CD90-細胞、CD13+CD90細胞、CD13CD90細胞について、マルチカラー分析及び7-Amino-Actinomycin D (7-AAD) DNA標識による細胞周期分析を行った結果である。It is a figure which shows the result of the term of "2. Confirmation that CD13 is a marker of the hepatocellular carcinoma (HCC) cell in a dormant stage" in an Example. A: The result of examining the relationship between the expression of CD13 of HuH7 and PLC (PLC / PRF / 5) and the cell cycle of HuH7 and PLC (PLC / PRF / 5). B: Results of comparing cell proliferation of CD13 + CD133 + cells, CD13 CD133 + cells, and CD13 CD133 cells in order to evaluate the relationship between the cell cycle and the expression of CD13. C: Results of analysis of cell fate and dye-retaining capacity of HuH7 CD13 + cells. D: Results of multicolor analysis and cell cycle analysis by 7-Amino-Actinomycin D (7-AAD) DNA labeling for CD13 + CD90 cells, CD13 + CD90 + cells, and CD13 CD90 + cells. 実施例における「3.CD13が中分化~低分化型の大腸癌細胞において特異的に発現していることの確認」の項の結果を示す図である。具体的には、中分化~低分化型のヒト大腸癌組織を、抗CD13抗体(抗ヒトCD13マウスモノクローナル抗体)で免疫染色した結果を示す。(B)は、(A)の拡大図である。FIG. 4 is a view showing the results in the section “3. Confirmation that CD13 is specifically expressed in moderately to poorly differentiated colorectal cancer cells” in Examples. Specifically, the results of immunostaining a moderately to poorly differentiated human colon cancer tissue with an anti-CD13 antibody (anti-human CD13 mouse monoclonal antibody) are shown. (B) is an enlarged view of (A). 実施例における「4.CD13+細胞がスフェアーを形成し、CD90+の表現型を作ることの確認」の項において、HuH7、PLC/PRF/5及び臨床上得られたHCCに由来するスフェアーにおけるCD13の発現を検討した結果を示す図である。In the section “4. Confirmation that CD13 + cells form spheres and create a CD90 + phenotype” in the Examples section, CD13 in spheres derived from HuH7, PLC / PRF / 5 and clinically obtained HCC It is a figure which shows the result of having examined the expression of. 潜在的に休眠期にあるCD13CD90細胞(Dormant Cancer stem Cells: Dormant CSCs)から、増殖性を有するCD13CD90細胞(Activated CSCs)及びCD13-CD90細胞(Progesitors of Cancer Cells)(これらを総称して「CD90細胞」という)が生成され、これら増殖性のあるCD90細胞の幾つかから、潜在的に休眠期にあるCD13CD90細胞が生成されていることを示す模式図である。なお、ここでは併せて、CD13CD90細胞は、抗酸化能力が増加しているため細胞内のROSが低下していること、このため、従来の癌治療(遺伝毒性のある化学療法や放射線照射療法)に抵抗性があることを示している。Potentially dormant CD13 + CD90 cells (Dormant Cancer stem Cells: Dormant CSCs) to proliferating CD13 + CD90 + cells (Activated CSCs) and CD13 CD90 + cells (Progesitors of Cancer Cells) (these collectively referred to as "CD90 + cells") is generated, and from several CD90 + cells with these proliferative, potentially in dormant CD13 + CD90 - schematic diagram showing that the cells have been generated It is. It should be noted that CD13 + CD90 cells are also associated with a decrease in intracellular ROS due to an increase in antioxidant capacity. Therefore, conventional cancer treatments (genotoxic chemotherapy and radiation It shows resistance to radiation therapy. 実施例における「5.CD13+細胞が癌の化学療法及び放射線療法に耐性を示すことの確認」の項の結果を示す図である。A及びB:CD13+細胞が抗癌剤(ROS上昇作用を有する抗癌剤:塩酸ドキソルビシン(DXR))に耐性を有することを示す。C:CD13+細胞が放射線照射に耐性を有することを示す。図7のC中、「RT 4G 24h」は放射線照射(4 Gray)24時間後を意味し、「RT 4G 48h」は放射線照射(4 Gray)48時間後を意味する。It is a figure which shows the result of the section of "5. Confirmation that CD13 + cell shows resistance to cancer chemotherapy and radiotherapy" in an Example. A and B: shows that CD13 + cells are resistant to an anticancer drug (an anticancer drug having a ROS-raising action: doxorubicin hydrochloride (DXR)). C: Indicates that CD13 + cells are resistant to irradiation. In FIG. 7C, “RT 4G 24h” means 24 hours after irradiation (4 Gray), and “RT 4G 48h” means 48 hours after irradiation (4 Gray). 実施例における「6.治療耐性を示す細胞においてCD13が選択的に発現していることの確認」の項の結果を示す図である。A:臨床上得られたHCC細胞におけるCD13の発現を同定するために、HCCサンプルを消化し、造血性CD45(Lin/CD45)陰性フラクションをマルチカラーフローサイトメトリーで分析した結果を示す。B:CD13の発現を、新鮮な凍結外科標本において確認した結果を示す。図8中、「After TAE」とは肝動脈塞栓療法を行ったサンプルを意味し、「Non-TAE」及び「Not treatment」は、肝動脈塞栓療法を行っていないサンプルを意味する。また、図8のBにおいて、左端及び真ん中の縦列の像において、CD13は赤色で染色されており、DAPIは青色を呈している。It is a figure which shows the result of the term of "6. Confirmation that CD13 is selectively expressing in the cell which shows treatment tolerance" in an Example. A: In order to identify the expression of CD13 in clinically obtained HCC cells, the results of digesting an HCC sample and analyzing the hematopoietic CD45 (Lin / CD45) negative fraction by multicolor flow cytometry are shown. B: shows the result of confirming the expression of CD13 in a fresh cryosurgical specimen. In FIG. 8, “After TAE” means a sample subjected to hepatic artery embolization therapy, and “Non-TAE” and “Not treatment” mean samples not subjected to hepatic artery embolization therapy. In FIG. 8B, in the left end and middle column images, CD13 is stained red and DAPI is blue. 実施例における「7.CD13阻害が細胞をアポトーシスに導くことの確認」の項の結果を示す図である。図9の中、「CD13 Ab」は、CD13中和抗体を意味する。図9のB中、「Ube」とはウベニメックスを意味する。It is a figure which shows the result of the term of "7. Confirmation that CD13 inhibition leads to a cell apoptosis" in an Example. In FIG. 9, “CD13 Ab” means a CD13 neutralizing antibody. In FIG. 9B, “Ube” means Ubenimex. 実施例における「7.CD13阻害が細胞をアポトーシスに導くことの確認」の項の結果を示す図である。図10中、「DOX」は、DXRと同義である。It is a figure which shows the result of the term of "7. Confirmation that CD13 inhibition leads to a cell apoptosis" in an Example. In FIG. 10, “DOX” is synonymous with DXR. 実施例における「8.CD13阻害が腫瘍の退縮を誘導することの確認」の項の結果を示す図である。図11中、「Ube」とはウベニメックスを意味する。図11のAの像、及びBの右列の像において、CD13は赤色、Ki67は緑で染色されており、DAPIは青色を呈している。It is a figure which shows the result of the term of "8. Confirmation that CD13 inhibition induces tumor regression" in an Example. In FIG. 11, “Ube” means Ubenimex. In the image of A in FIG. 11 and the image in the right column of B, CD13 is stained red, Ki67 is stained green, and DAPI is blue. 実施例における「9.CD13+細胞が低レベルのROSを含むことの確認」及び「10.CD13細胞ではDNA鎖の2本鎖損傷が低く抑えられていることの確認」の項の結果を示す図である。図12の中、「CD13 Ab」は、CD13中和抗体を意味する。図12のB中、「Ube」とはウベニメックスを意味する。The results of the "confirmation that the double-stranded DNA damage strand is kept low in 10.CD13 + cells""9.CD13 + cells that confirmation containing low levels of ROS" and in Examples FIG. In FIG. 12, “CD13 Ab” means a CD13 neutralizing antibody. In FIG. 12B, “Ube” means Ubenimex. 実施例における「9.CD13+細胞が低レベルのROSを含むことの確認」及び「10.CD13細胞ではDNA鎖の2本鎖損傷が低く抑えられていることの確認」の項の結果を示す図である。図13中、「RT 4Gy」は放射線照射した群を意味し、「RT4Gy with Tempol」はtempol処置後に放射線照射した群を意味する。The results of the "confirmation that the double-stranded DNA damage strand is kept low in 10.CD13 + cells""9.CD13 + cells that confirmation containing low levels of ROS" and in Examples FIG. In FIG. 13, “RT 4Gy” means a group irradiated with radiation, and “RT4Gy with Tempol” means a group irradiated after tempol treatment. 実施例における「9.CD13+細胞が低レベルのROSを含むことの確認」及び「10.CD13細胞ではDNA鎖の2本鎖損傷が低く抑えられていることの確認」の項において、HuH7及びPLC/PRF/5を用いて、化学療法(DNA合成阻害剤: 5-FU、及びROS上昇作用を有する抗癌剤:DXR)後の細胞内ROS濃度を経時的に計測した結果を示す。なお、図中「dCSC」は「dormant cancer stem cell(s)」を意味する。In the sections of “9. Confirmation that CD13 + cells contain low levels of ROS” and “10. Confirmation that double strand damage to DNA strands is kept low in CD13 + cells” in the Examples, HuH7 And the result of having measured the intracellular ROS density | concentration after chemotherapy (DNA synthesis inhibitor: 5-FU and the anticancer agent which has a ROS raise effect | action: DXR) using PLC / PRF / 5 with time is shown. In the figure, “dCSC” means “dormant cancer stem cell (s)”. 実施例における「9.CD13+細胞が低レベルのROSを含むことの確認」及び「10.CD13細胞ではDNA鎖の2本鎖損傷が低く抑えられていることの確認」の項において、HuH7及びPLC/PRF/5を用いて、放射性照射処理(4Gy)後に、部分的にフリーラジカルに起因して生じたDNA鎖の2本鎖損傷を、γ-H2AXの出現を指標として経時的に定量測定した結果を示す。図中の赤色の数値は、CD13細胞(PLC/PRF/5:CD13CD90細胞、HuH7: CD13CD133細胞)におけるγ-H2AXの割合(%)、青色の数値は、CD13細胞(PLC/PRF/5:CD13CD90細胞、HuH7: CD13CD133細胞)におけるγ-H2AXの割合(%)をそれぞれ示す。In the sections of “9. Confirmation that CD13 + cells contain low levels of ROS” and “10. Confirmation that double strand damage to DNA strands is kept low in CD13 + cells” in the Examples, HuH7 And PLC / PRF / 5 to determine the double strand damage of DNA strands caused by free radicals after radioactive irradiation (4Gy) over time using γ-H2AX as an index The measurement results are shown. The red numbers in the figure are the percentage of γ-H2AX in CD13 + cells (PLC / PRF / 5: CD13 + CD90 cells, HuH7: CD13 + CD133 + cells), and the blue numbers are CD13 cells The ratio (%) of γ-H2AX in (PLC / PRF / 5: CD13 CD90 + cells, HuH7: CD13 CD133 + cells) is shown.
1.癌幹細胞の検出方法
 本発明の癌幹細胞の検出方法は、癌患者の癌組織又は癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定することを特徴とする。以下、本発明の検出方法について、詳述する。
1. Method for Detecting Cancer Stem Cell The method for detecting a cancer stem cell of the present invention is characterized by measuring a cell expressing CD13 in a test cell derived from a cancer tissue of a cancer patient or a tissue after cancer treatment. . Hereinafter, the detection method of the present invention will be described in detail.
 本発明において「癌幹細胞」とは、自己複製能を有し、且つ未分化の状態を維持しており、分化によって癌細胞を生み出すことができる細胞を意味する。 In the present invention, “cancer stem cell” means a cell that has self-replicating ability and maintains an undifferentiated state and can produce cancer cells by differentiation.
 本発明において「被験細胞」とは、CD13を発現しているか否か、すなわち癌幹細胞であるか否かの判定対象となる細胞である。当該被験細胞は、癌患者の癌組織又は癌治療後の組織から単離された単一細胞であってもよく、また癌組織又は癌治療後の組織から分離された細胞群であってもよい。 In the present invention, the “test cell” is a cell that is a target of determination of whether or not it expresses CD13, that is, whether or not it is a cancer stem cell. The test cell may be a single cell isolated from cancer tissue of a cancer patient or tissue after cancer treatment, or may be a group of cells isolated from cancer tissue or tissue after cancer treatment. .
 被験細胞の由来となる癌組織は、特に制限されるものではないが、例えば、肝癌、結腸直腸癌、食道癌、胃癌、胆管癌(胆管には肝内胆管と肝外胆管が含まれる)、胆嚢癌(左2つないし3つをあわせて胆道という)、膵臓癌(膵臓は、管と分泌腺組織に分けられ、後者は内分泌系と外分泌系が含まれる)、十二指腸癌、大腸癌(大腸には、上行、横行、下行、S状結腸、直腸が含まれる)、乳癌、及び脳腫瘍等の固形癌組織;並びに白血病、悪性リンパ腫、及び多発性骨髄腫等の造血器腫瘍(血液癌)に関わる造血組織が例示される。本発明は、肝癌に含まれる癌幹細胞の検出に好適であるので、これらの癌組織の中でも、好ましい癌組織の一例として、固形癌組織、特に好ましくは肝癌組織が挙げられる。 The cancer tissue from which the test cell is derived is not particularly limited, and examples thereof include liver cancer, colorectal cancer, esophageal cancer, gastric cancer, bile duct cancer (bile duct includes intrahepatic bile duct and extrahepatic bile duct), Gallbladder cancer (the left two or three are collectively called the biliary tract), pancreatic cancer (the pancreas is divided into duct and secretory gland tissue, the latter includes endocrine and exocrine systems), duodenal cancer, colon cancer (colon Includes ascending, transverse, descending, sigmoid colon, rectum), breast cancer, and solid tumor tissues such as brain tumors; and hematopoietic tumors (blood cancers) such as leukemia, malignant lymphoma, and multiple myeloma Hematopoietic tissue involved is exemplified. Since the present invention is suitable for detection of cancer stem cells contained in liver cancer, among these cancer tissues, examples of preferable cancer tissues include solid cancer tissues, particularly preferably liver cancer tissues.
 また、被験細胞の由来となる癌治療後の組織とは、上記癌を治療処置した後の組織であり、手術療法、化学療法、及び放射線療法から選択される少なくとも1種により、癌治療処置が施された後の組織であればよい。なお、手術療法により癌組織が切除された場合は、その切除部位近傍の組織を対象とすることができる。 The tissue after cancer treatment from which the test cells are derived is a tissue after the above cancer treatment, and the cancer treatment treatment is performed by at least one selected from surgical therapy, chemotherapy, and radiation therapy. Any organization after being applied may be used. In addition, when a cancer tissue is excised by surgical therapy, a tissue near the excision site can be targeted.
 本発明の検出方法において検出の対象とする被験細胞は、癌患者の癌組織、又は癌患者の癌治療後の組織から摘出された状態のものであってもよいし、また癌患者の癌組織又は癌患者の癌治療後の組織に存在する状態のものであってもよい。なお後者の場合、対象とする組織は、癌患者の体内に存在する状態であってもよいが、癌患者の体外に摘出した状態であることが好ましい。 The test cells to be detected in the detection method of the present invention may be those extracted from the cancer tissue of the cancer patient, or the tissue after cancer treatment of the cancer patient, or the cancer tissue of the cancer patient. Or the thing of the state which exists in the tissue after cancer treatment of a cancer patient may be sufficient. In the latter case, the target tissue may be in the body of the cancer patient, but is preferably in a state of being removed from the body of the cancer patient.
 なお、本発明で対象とする癌患者は、ヒトを含む哺乳動物である。好ましくはヒトであるが、マウス、ラット、及びモルモット等のげっ歯動物;ウサギ、ネコ、イヌ及びサル等の実験動物を対象とすることもできる。 Note that cancer patients targeted by the present invention are mammals including humans. Humans are preferred, but rodents such as mice, rats, and guinea pigs; and laboratory animals such as rabbits, cats, dogs, and monkeys can also be used.
 本発明の検出方法では、被験細胞を対象として、その中でCD13を発現している細胞を測定する。本発明者等によって、CD13は、癌幹細胞の表面に存在する分子であって、ROS除去経路の制御に関与しており、遺伝毒性的化学放射線ストレス後に生じるROS誘導のDNA損傷を軽減し、アポトーシスから癌幹細胞を保護する機能があることが解明されている(非特許文献10:Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M.  CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120(9):3326-3339.)。 In the detection method of the present invention, cells expressing CD13 are measured in test cells. By the present inventors, CD13 is a molecule present on the surface of cancer stem cells and is involved in the control of the ROS elimination pathway, reducing ROS-induced DNA damage that occurs after genotoxic chemoradiation stress, and apoptosis. (Non-patent document 10: Haraguchi 保護 N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H , Barnard GF, Doki Y, Mori M. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010; 120 (9): 3326-3339.).
 本発明の検出方法において、CD13に特異的に結合する物質(以下、「CD13結合性物質」という)を被験細胞と接触させて、被験細胞に対する当該物質の結合の有無を測定することによって、被験細胞の中でCD13を発現している細胞を測定することができる。つまり、被験細胞について、CD13結合性物質の結合を指標として、CD13を発現している細胞を検出することができる。ここで、CD13結合性物質としては、CD13に特異的に結合可能であることを限度として特に制限されないが、例えば、CD13に特異的に結合可能な、抗体(以下、これを「抗CD13抗体」という)、マイクロRNA、RNAアプタマー、ドミナントネガティブ変異体等が例示される。これらの中でも、好適なものとして抗CD13抗体が例示される。 In the detection method of the present invention, a substance that specifically binds to CD13 (hereinafter referred to as “CD13-binding substance”) is brought into contact with a test cell, and the presence or absence of binding of the substance to the test cell is measured. Among the cells, cells expressing CD13 can be measured. That is, for the test cell, a cell expressing CD13 can be detected using the binding of the CD13 binding substance as an index. Here, the CD13 binding substance is not particularly limited as long as it can specifically bind to CD13. For example, an antibody capable of specifically binding to CD13 (hereinafter referred to as “anti-CD13 antibody”). MicroRNA, RNA aptamer, dominant negative mutant and the like. Among these, an anti-CD13 antibody is exemplified as a preferable one.
 また、CD13結合性物質は、検出容易性の観点から、FITC等の蛍光物質や酵素等の標識物質で標識されていることが望ましい。CD13結合性物質が結合した被験細胞の測定は、当該技術分野で公知の方法で行うことができる。例えば、CD13結合性物質が蛍光物質で標識されている場合であれば、当該物質が結合した細胞は、フローサイトメトリーを使用することによって、定性的に且つ定量的に測定することができる。 Also, it is desirable that the CD13 binding substance is labeled with a fluorescent substance such as FITC or a labeling substance such as an enzyme from the viewpoint of easy detection. Measurement of a test cell bound with a CD13 binding substance can be performed by a method known in the art. For example, if the CD13 binding substance is labeled with a fluorescent substance, the cells to which the substance is bound can be measured qualitatively and quantitatively by using flow cytometry.
 また、本発明の検出方法において、CD13の発現に加えて、CD90が発現していることを測定することが好ましく、斯くして癌幹細胞の検出精度を一層高めることができる。CD90を発現している被験細胞の測定についても、上記CD13の場合と同様に、CD90に特異的に結合する物質(以下、「CD90結合性物質」)を被験細胞と接触させることによって行うことができる。CD90結合性物質としては、CD90に特異的に結合可能であることを限度として特に制限されないが、例えば、CD90に特異的に結合可能な、抗体(以下、これを「抗CD90抗体」という)、マイクロRNA、RNAアプタマー、ドミナントネガティブ変異体等が例示される。好ましくは抗CD90抗体である。また、CD90結合性物質についても、上記CD13の測定の場合と同様に、FITC等の蛍光物質や酵素等の標識物質で標識されていることが望ましい。CD90結合性物質が結合した被験細胞の測定方法についても、CD13の場合と同様に、フローサイトメトリーなど、当該技術分野で公知の方法で行うことができる。 In addition, in the detection method of the present invention, it is preferable to measure the expression of CD90 in addition to the expression of CD13, thus further improving the accuracy of detection of cancer stem cells. Measurement of test cells expressing CD90 can also be performed by contacting a test cell with a substance that specifically binds to CD90 (hereinafter referred to as “CD90-binding substance”), as in the case of CD13. it can. The CD90-binding substance is not particularly limited as long as it can specifically bind to CD90. For example, an antibody that can specifically bind to CD90 (hereinafter referred to as “anti-CD90 antibody”), Examples include microRNA, RNA aptamer, and dominant negative mutant. An anti-CD90 antibody is preferred. Also, the CD90 binding substance is desirably labeled with a fluorescent substance such as FITC or a labeling substance such as an enzyme, as in the case of the measurement of CD13. The method for measuring a test cell bound with a CD90-binding substance can also be performed by a method known in the art, such as flow cytometry, as in the case of CD13.
 斯くして測定された、CD13を発現している被験細胞、或いはCD13とCD90を発現している被験細胞は、癌幹細胞として検出、同定される。 Thus, the measured test cells expressing CD13 or the test cells expressing CD13 and CD90 thus measured are detected and identified as cancer stem cells.
 本発明の方法によって検出された癌幹細胞は、必要に応じて、単離して、癌の治療薬のスクリーニングや癌の治療薬の薬効評価に使用することもできる。例えば、本発明の方法によって検出された癌幹細胞を使用して、細胞周期静止期にあるクローン又は薬剤抵抗性クローンに特化した創薬を進めることにより、癌治療に対する耐性癌細胞だけに作用し、副作用のない癌治療剤の開発が可能になりえる。更に、本発明の方法によって検出された癌幹細胞を使用して創薬を進めることによって、癌根治薬や癌の再発を阻止する薬剤の開発、並びに薬効スペクトラムが癌幹細胞に特化した薬剤の開発も期待される。 The cancer stem cells detected by the method of the present invention can be isolated, if necessary, and used for screening for a therapeutic drug for cancer or for evaluating the efficacy of a therapeutic drug for cancer. For example, cancer stem cells detected by the method of the present invention are used to advance drug discovery specifically for clones in the cell cycle stationary phase or drug-resistant clones, thereby acting only on resistant cancer cells against cancer treatment. Therefore, it is possible to develop a cancer therapeutic agent that has no side effects. Furthermore, by developing drugs using cancer stem cells detected by the method of the present invention, the development of drugs that prevent cancer recurrence or cancer recurrence, and the development of drugs whose drug efficacy spectrum is specialized for cancer stem cells Is also expected.
 2.癌症状の程度又は癌の危険度を測定する方法
 癌組織における癌幹細胞の存在は、癌の症状の程度(癌重篤度)の判定や、癌の進行、再発または転移などの危険度(以下、単に「癌危険度」という)の予測にも使用できるので、上記本発明の検出方法は、癌重篤度又は癌危険度の測定方法として利用することができる。
2. Method of measuring the degree of cancer symptoms or the risk of cancer The presence of cancer stem cells in cancer tissue is used to determine the degree of cancer symptoms (cancer severity) and the risk of cancer progression, recurrence or metastasis The detection method of the present invention can be used as a method for measuring cancer severity or cancer risk.
 従って、本発明は、上記する「癌幹細胞の検出方法」を利用した、癌重篤度又は癌危険度の測定方法を提供するものでもある。 Therefore, the present invention also provides a method for measuring cancer seriousness or cancer risk using the above-mentioned “cancer stem cell detection method”.
 当該方法は、下記(A)及び(B)の工程を含むことを特徴とする:
(A)癌患者の癌組織又は癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞(CD13発現細胞)を測定する工程、
(B)上記(A)工程で検出されたCD13発現細胞の数に応じて、上記癌患者の癌重篤度又は癌危険度を決定する工程。
The method includes the following steps (A) and (B):
(A) a step of measuring cells expressing CD13 (CD13-expressing cells) for test cells derived from cancer tissues of cancer patients or tissues after cancer treatment;
(B) A step of determining the cancer severity or cancer risk of the cancer patient according to the number of CD13-expressing cells detected in the step (A).
 ここで「CD13発現細胞を測定する」とは、被験細胞におけるCD13発現細胞の存在の有無を測定する定性分析と、その存在量を測定する定量分析の両方を意味する。(A)工程において測定されるCD13発現細胞は癌幹細胞に相当する。このため、(B)工程は当該癌幹細胞の数を指標として癌重篤度又は癌危険度を予測する工程に相当する。 Here, “measuring CD13-expressing cells” means both qualitative analysis for measuring the presence or absence of CD13-expressing cells in a test cell and quantitative analysis for measuring the abundance thereof. The CD13-expressing cells measured in step (A) correspond to cancer stem cells. For this reason, the step (B) corresponds to a step of predicting cancer severity or cancer risk using the number of cancer stem cells as an index.
 (A)の工程は、本発明の検出方法に関して上記の「1.癌幹細胞の検出方法」の欄で説明したように、蛍光物質や酵素等の標識物質で標識されていてもよいCD13結合性物質を被験細胞と接触させて、被験細胞に対する当該物質の結合の有無を測定することによって実施することができる。斯くして被験細胞の中からCD13発現細胞、つまり癌幹細胞を、CD13結合性物質の結合を指標として検出することができる。当該CD13結合性物質の結合を指標としたCD13発現細胞の検出は、前述するように当該技術分野で公知の方法で行うことができ、例えば、CD13結合性物質が蛍光物質で標識されている場合は、フローサイトメトリーを使用することによって実施することができる。また、フローサイトメトリーを使用すると、CD13発現細胞(癌幹細胞)の数(量)も、蛍光強度の高低により同時に測定することができるため、CD13発現細胞(癌幹細胞)を定性的かつ定量的に測定することができる。 In the step (A), as described above in the section of “1. Detection method of cancer stem cells” with respect to the detection method of the present invention, the CD13 binding property may be labeled with a labeling substance such as a fluorescent substance or an enzyme. It can be carried out by bringing a substance into contact with a test cell and measuring the presence or absence of binding of the substance to the test cell. Thus, CD13-expressing cells, that is, cancer stem cells, can be detected from test cells using the binding of a CD13-binding substance as an indicator. Detection of CD13-expressing cells using the binding of the CD13-binding substance as an index can be performed by a method known in the art as described above. For example, when the CD13-binding substance is labeled with a fluorescent substance Can be performed by using flow cytometry. In addition, when flow cytometry is used, the number (amount) of CD13-expressing cells (cancer stem cells) can be measured simultaneously based on the level of fluorescence intensity, so CD13-expressing cells (cancer stem cells) can be qualitatively and quantitatively determined. Can be measured.
 (B)工程における測定は、具体的には、本発明の検出方法を用いた(A)工程において測定されるCD13発現細胞(癌幹細胞)が多い程、癌の症状が重篤であり、また癌危険度が高いと判定される。また、本発明の検出方法を用いた(A)工程において測定されるCD13発現細胞(癌幹細胞)が少ない程、癌の症状が軽く、癌危険度も低いと判定される。 In the measurement in the step (B), specifically, the more CD13-expressing cells (cancer stem cells) measured in the step (A) using the detection method of the present invention, the more severe the cancer symptoms, It is determined that the cancer risk is high. In addition, it is determined that the smaller the CD13-expressing cells (cancer stem cells) measured in step (A) using the detection method of the present invention, the lighter the cancer symptoms and the lower the risk of cancer.
 また、本発明の測定方法において、CD13の発現に加えてCD90の発現を測定することが好ましく、こうすることで癌幹細胞の検出精度を一層高めることができ、癌重篤度又は癌危険度をより精度よく決定することができる。なお、CD90発現の測定は、CD13発現と同様に行うことができる。 In addition, in the measurement method of the present invention, it is preferable to measure the expression of CD90 in addition to the expression of CD13. In this way, the accuracy of detection of cancer stem cells can be further increased, and the cancer severity or cancer risk can be increased. It can be determined more accurately. CD90 expression can be measured in the same manner as CD13 expression.
 3.癌治療効果または癌再発危険度の測定方法
 更に、癌の治療後の組織において、癌幹細胞の存在は、癌の治療効果の評価基準にすることができ、また癌再発の予測に使用することができる。このため、上記本発明の「1.癌幹細胞の検出方法」は、癌の治療効果の測定方法、及び癌再発危険度の測定方法としても利用することができる。
3. Method for Measuring Cancer Treatment Effect or Risk of Cancer Recurrence Furthermore, the presence of cancer stem cells in tissues after cancer treatment can be used as an evaluation standard for cancer treatment effect and can be used to predict cancer recurrence. it can. Therefore, the “1. Method for detecting cancer stem cells” of the present invention can also be used as a method for measuring the therapeutic effect of cancer and a method for measuring the risk of cancer recurrence.
 従って、本発明は、上記する「癌幹細胞の検出方法」を利用した、癌治療効果又は癌再発危険度の測定方法を提供するものでもある。 Therefore, the present invention also provides a method for measuring the effect of cancer treatment or the risk of cancer recurrence using the above-described “method for detecting cancer stem cells”.
 当該方法は、下記(a)及び(b)の工程を含むことを特徴とする:
(a)癌患者の癌治療後の組織に由来する被験細胞を対象にして、CD13を発現している細胞(CD13発現細胞)を測定する工程、
(b)上記(a)工程で測定されたCD13発現細胞の有無に応じて、上記癌患者に対する癌の治療効果又は癌再発危険度を決定する工程。
The method includes the following steps (a) and (b):
(A) measuring CD13-expressing cells (CD13-expressing cells) for test cells derived from tissues after cancer treatment of cancer patients;
(B) A step of determining a cancer therapeutic effect or cancer recurrence risk for the cancer patient according to the presence or absence of the CD13-expressing cells measured in the step (a).
 ここで「CD13発現細胞を測定する」とは、被験細胞におけるCD13発現細胞の存在の有無を測定する定性分析と、その存在量を測定する定量分析の両方を意味する。 Here, “measuring CD13-expressing cells” means both qualitative analysis for measuring the presence or absence of CD13-expressing cells in a test cell and quantitative analysis for measuring the abundance thereof.
 (a)工程において測定されるCD13発現細胞は、前述するように癌幹細胞であり、(b)工程は当該癌幹細胞の有無を指標として、癌患者に対する癌の治療効果又は癌再発危険度を決定する工程に相当する。 The CD13-expressing cells measured in step (a) are cancer stem cells as described above, and step (b) determines the cancer therapeutic effect or cancer recurrence risk for cancer patients using the presence or absence of the cancer stem cells as an index. It corresponds to the process to do.
 (a)の工程は、本発明の検出方法に関して上記「1.癌幹細胞の検出方法」の欄で説明したように、蛍光物質や酵素等の標識物質で標識されていてもよいCD13結合性物質を被験細胞と接触させて、被験細胞に対する当該物質の結合の有無を測定することによって実施することができる。斯くして被験細胞の中からCD13発現細胞、つまり癌幹細胞を、CD13結合性物質の結合を指標として検出することができる。当該CD13結合性物質の結合を指標としたCD13発現細胞の検出は、前述するように当該技術分野で公知の方法で行うことができ、例えば、CD13結合性物質が蛍光物質で標識されている場合は、フローサイトメトリーを使用することによって実施することができる。また、フローサイトメトリーを使用すると、CD13発現細胞(癌幹細胞)の数も蛍光強度の高低により同時に測定することができるため、CD13発現細胞(癌幹細胞)を定性的かつ定量的に測定することができる。 The step (a) is a CD13 binding substance which may be labeled with a fluorescent substance or a labeling substance such as an enzyme, as described in the section of “1. Detection method of cancer stem cells” above for the detection method of the present invention. Can be carried out by contacting the test cells with the test cells and measuring the presence or absence of binding of the substance to the test cells. Thus, CD13-expressing cells, that is, cancer stem cells, can be detected from test cells using the binding of a CD13-binding substance as an indicator. Detection of CD13-expressing cells using the binding of the CD13-binding substance as an index can be performed by a method known in the art as described above. For example, when the CD13-binding substance is labeled with a fluorescent substance Can be performed by using flow cytometry. In addition, using flow cytometry, the number of CD13-expressing cells (cancer stem cells) can also be measured simultaneously by the level of fluorescence intensity, so CD13-expressing cells (cancer stem cells) can be measured qualitatively and quantitatively. it can.
 (b)工程における決定は、具体的には、本発明の「癌幹細胞の検出方法」を用いた(a)工程において、癌の治療後の組織からCD13発現細胞(癌幹細胞)が検出された場合には、癌の治療効果が不良であり、また癌再発の可能性がある(癌再発危険度が高い)と判定される。また、癌幹細胞が検出されなかった場合には、癌の治療効果が良好であり、また癌再発の可能性が低い(癌再発危険度が低い)と判定される。 Specifically, in step (b), CD13-expressing cells (cancer stem cells) were detected from the tissue after cancer treatment in step (a) using the “method for detecting cancer stem cells” of the present invention. In some cases, it is determined that the therapeutic effect of cancer is poor and there is a possibility of cancer recurrence (high risk of cancer recurrence). If cancer stem cells are not detected, it is determined that the cancer treatment effect is good and the possibility of cancer recurrence is low (the risk of cancer recurrence is low).
 また、本発明の測定方法において、CD13の発現に加えてCD90の発現を測定することが好ましく、こうすることで癌幹細胞の検出精度を一層高めることができ、癌治療効果又は癌再発危険度をより精度よく決定することができる。なお、CD90発現の測定は、CD13発現と同様に行うことができる。 Further, in the measurement method of the present invention, it is preferable to measure the expression of CD90 in addition to the expression of CD13. This can further improve the accuracy of detection of cancer stem cells, and can increase the cancer therapeutic effect or the risk of cancer recurrence. It can be determined more accurately. CD90 expression can be measured in the same manner as CD13 expression.
 4.癌幹細胞の検出試薬及び検出キット
 本発明は、上記1に記載する「癌幹細胞の検出方法」を行うため、また上記2及び3に記載する測定方法においてCD13発現細胞(癌幹細胞)を定性的または定量的に測定するために使用される、癌幹細胞の検出試薬をも提供する。具体的には、本発明の検出試薬は、CD13に特異的に結合する物質(CD13結合性物質)を含むことを特徴とする。
4). Cancer Stem Cell Detection Reagent and Detection Kit The present invention is intended to perform the “cancer stem cell detection method” described in 1 above, and to qualitatively or alternatively detect CD13 expressing cells (cancer stem cells) in the measurement methods described in 2 and 3 above A reagent for detecting cancer stem cells, which is used for quantitative measurement, is also provided. Specifically, the detection reagent of the present invention includes a substance that specifically binds to CD13 (CD13-binding substance).
 また、本発明は、上記1に記載する「癌幹細胞の検出方法」を行うため、また上記2及び3に記載する測定方法においてCD13発現細胞(癌幹細胞)を定性的または定量的に測定するために使用される、癌幹細胞の検出キットをも提供する。具体的には、本発明の検出キットは、癌幹細胞の検出試薬としてCD13結合性物質を含むことを特徴とする。また、本発明の検出キットは、更に、癌幹細胞の検出試薬として別途CD90に特異的に結合する物質(CD90結合性物質)を含んでいてもよい。また、本発明の検出キットには、更に上記1に記載する「癌幹細胞の検出方法」、または上記2及び3に記載する測定方法を行うために必要とされる他の試薬や器具が含まれていてもよく、更に、本発明の検出キットには、上記検出方法を行うための手順書が含まれていてもよい。 In addition, the present invention is for performing the “cancer stem cell detection method” described in 1 above, and for qualitatively or quantitatively measuring CD13-expressing cells (cancer stem cells) in the measurement methods described in 2 and 3 above. Also provided is a kit for detecting cancer stem cells used in the above. Specifically, the detection kit of the present invention is characterized by containing a CD13 binding substance as a detection reagent for cancer stem cells. The detection kit of the present invention may further contain a substance that specifically binds to CD90 (CD90-binding substance) as a detection reagent for cancer stem cells. Further, the detection kit of the present invention further includes “reagent for detecting cancer stem cells” described in 1 above, or other reagents and instruments required for performing the measurement methods described in 2 and 3 above. Further, the detection kit of the present invention may include a procedure manual for performing the above detection method.
 本発明の癌幹細胞の検出試薬及び検出キットに使用されるCD13結合性物質、及びCD90結合性物質の具体例は、上記「1.癌幹細胞の検出方法」に記載の通りである。 Specific examples of the CD13 binding substance and the CD90 binding substance used in the cancer stem cell detection reagent and detection kit of the present invention are as described in “1. Detection method of cancer stem cells” above.
 また、前述するように、上記「癌幹細胞の検出方法」は、癌の症状の程度(癌重篤度)又は癌危険度の測定方法、或いは癌の治療効果または癌再発危険度の測定方法としても利用できるので、本発明の検出試薬及び検出キットは、癌の症状の程度(癌重篤度)又は癌危険度を測定するための診断薬及び診断キットとして、更には癌の治療効果または癌再発危険度を測定するための診断薬及び診断キットとしても利用できる。 In addition, as described above, the “cancer stem cell detection method” is a method for measuring the degree of cancer symptoms (cancer severity) or cancer risk, or a method for measuring cancer therapeutic effect or cancer recurrence risk. Therefore, the detection reagent and detection kit of the present invention can be used as a diagnostic agent and a diagnostic kit for measuring the degree of cancer symptoms (cancer severity) or cancer risk, and further the therapeutic effect of cancer or cancer. It can also be used as a diagnostic agent and a diagnostic kit for measuring the risk of recurrence.
 5.癌治療剤及び癌再発予防剤
 本発明は、更に、CD13阻害剤及び抗癌剤を含有することを特徴とする、癌治療剤及び癌再発予防剤を提供する。以下、本発明の癌治療剤及び癌再発予防剤について、詳述する。なお、本発明の癌治療剤は、癌を根治することを目的に使用することができ、この意味で癌根治薬ということもできる。また本発明の癌治療剤は、癌を根治する結果、癌の再発を予防することができる。
5. Therapeutic agent for cancer and preventive agent for cancer recurrence The present invention further provides a therapeutic agent for cancer and a preventive agent for cancer recurrence , which further comprises a CD13 inhibitor and an anticancer agent. Hereinafter, the cancer therapeutic agent and cancer recurrence preventing agent of the present invention will be described in detail. The cancer therapeutic agent of the present invention can be used for the purpose of curing cancer, and in this sense, it can also be referred to as a cancer curative. Moreover, the cancer therapeutic agent of this invention can prevent the recurrence of cancer as a result of curing cancer.
 本発明の癌治療剤及び癌再発予防剤でそれぞれ使用されるCD13阻害剤は、薬学的に許容でき、且つCD13の機能を阻害できるもの、即ち、ROS除去経路の制御機能を阻害できるものである限り、特に限定されるものではない。CD13阻害剤の具体例としては、CD13中和抗体、ウベニメックス(ベスタチン)、aminopeptidase N(APN/CD13) inhibitor 24F(Novel aminopeptidase N(APN/CD13) inhibitor 24F can suppress invasion of hepatocellular carcinoma cells as well as angiogenesis. Biosci Trends. 2010 Apr;4(2):56-60)等が例示される。 The CD13 inhibitor used in the cancer therapeutic agent and cancer recurrence preventive agent of the present invention is pharmaceutically acceptable and can inhibit the function of CD13, that is, can inhibit the control function of the ROS removal pathway. As long as it is not particularly limited. Specific examples of CD13 inhibitors include CD13 neutralizing antibody, ubenimex (bestatin), aminopeptidase N (APN / CD13) inhibitor 24F (Novel aminopeptidase N (APN / CD13) inhibitor 24F can suppress invasion of hepatocellular carcinoma cells as . Biosci Trends. 2010 2010 Apr; 4 (2): 56-60).
 これらのCD13阻害剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのCD13阻害剤は市販されている(例えば、CD13中和抗体は、「マウスモノクローナル抗ヒトCD13抗体(clone WM15)」がGene Tex社から、またウベニメックスは日本化薬から入手できる。)。このため、CD13阻害剤は市販品を使用してもよいが、公知の方法で製造して使用してもよい。 These CD13 inhibitors may be used alone or in combination of two or more. These CD13 inhibitors are commercially available (for example, as for the CD13 neutralizing antibody, “mouse monoclonal anti-human CD13 antibody (clone WM15)” is available from Gene Tex, and Ubenimex is available from Nippon Kayaku). For this reason, although a commercial item may be used for a CD13 inhibitor, it may be manufactured and used by a known method.
 本発明の癌治療剤及び癌再発予防剤で使用される抗癌剤としては、従来公知の、例えば、アルキル化薬(マスタード薬、ニトロウレア類)、代謝拮抗薬(葉酸代謝拮抗薬、ピリミジン代謝拮抗薬、プリン代謝拮抗薬、ヒドロキシカルバミド)、抗腫瘍性抗生物質(アントラサイクリン系薬、その他、マイトマイシンC等)、白金製剤、トポイソメラーゼ阻害薬(トポイソメラーゼI阻害薬、トポイソメラーゼII阻害薬)などを例示することができる。好ましくは、DNA合成阻害作用を有する抗癌剤(本発明では、かかる抗癌剤を「DNA合成阻害剤」と総称する)及びROS上昇作用を有する抗癌剤である。これらの抗癌剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Examples of anticancer agents used in the cancer therapeutic agent and cancer recurrence preventive agent of the present invention include conventionally known alkylating agents (mustard drugs, nitroureas), antimetabolites (folic acid antimetabolites, pyrimidine antimetabolites, Purine antimetabolite, hydroxycarbamide), antitumor antibiotics (anthracycline drugs, others, mitomycin C, etc.), platinum preparations, topoisomerase inhibitors (topoisomerase I inhibitors, topoisomerase II inhibitors), etc. it can. Preferred are anticancer agents having an activity of inhibiting DNA synthesis (in the present invention, such anticancer agents are collectively referred to as “DNA synthesis inhibitors”) and anticancer agents having an activity of increasing ROS. These anticancer agents may be used individually by 1 type, and may be used in combination of 2 or more type.
 DNA合成阻害剤としては、イホスファミド、メルファラン、ニムスチン塩酸塩、ラニムスチン、及び塩酸プロカルバジン等のアルキル化薬;5-フルオロウラシル(5-FU)、5-FUのプロドラッグ(例えばドキシフルリジン、テガフール、カルモフール)、5’-ドキシフルリジンのプロドラッグ(例えばカペシタビン)、シタラビン、シタラビンのプロドラッグ(例えばシタラビンオクホスファート水和物)、エノシタビン、ゲムシタビン塩酸塩などのピリミジン拮抗薬;メルカプトプリン水和物、フルダラビンリン酸エステル、クラドリビン等のプリン代謝拮抗薬、その他の代謝拮抗薬であるレボホリナートカルシウム及びヒドロキシカルバミド;ドキソルビシン塩酸塩、ダウノルビシン塩酸塩、ピラルビシン、及びミトキサントロン塩酸塩等のアントラサイクリン系の抗生物質;その他の抗生物質であるブレオマイシン塩酸塩等;シスプラチン、カルボプラチン、ネダプラチン等の白金製剤;エトポシドなどのトポイソメラーゼ阻害薬を例示することができる。好ましくは5-フルオロウラシル(5-FU)やそのプロドラッグなどの上記ピリミジン拮抗薬であり、より好ましくは5-フルオロウラシルである。これらのDNA合成阻害剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Examples of DNA synthesis inhibitors include alkylating agents such as ifosfamide, melphalan, nimustine hydrochloride, ranimustine, and procarbazine hydrochloride; 5-fluorouracil (5-FU), 5-FU prodrugs (eg, doxyfluridine, tegafur, carmofur) , 5'-doxyfluridine prodrugs (eg capecitabine), cytarabine, cytarabine prodrugs (eg cytarabine ocphosphate phosphate hydrate), pyrimidine antagonists such as enocitabine, gemcitabine hydrochloride; mercaptopurine hydrate, fludarabine phosphate Purine antimetabolites such as esters and cladribine, and other antimetabolites such as levofolinate calcium and hydroxycarbamide; doxorubicin hydrochloride, daunorubicin hydrochloride, pirarubicin, and mitoxantrone hydrochloride Examples include anthracycline antibiotics; other antibiotics such as bleomycin hydrochloride; platinum preparations such as cisplatin, carboplatin, and nedaplatin; and topoisomerase inhibitors such as etoposide. The above pyrimidine antagonists such as 5-fluorouracil (5-FU) and prodrugs thereof are preferable, and 5-fluorouracil is more preferable. These DNA synthesis inhibitors may be used individually by 1 type, and may be used in combination of 2 or more type.
 ROS上昇作用を有する抗癌剤としては、好ましくは抗腫瘍性抗生物質に属するアントラサイクリン系の抗癌剤を挙げることができる。アントラサイクリン系抗癌剤として、具体的にはドキソルビシン、ダウノルビシン、ピラルビシン、エピルビシン、イダルビシン、アクラルビシン、アムルビシン、ミトキサントロン、またはこれらの薬学的に許容される塩を挙げることができる。これらの抗癌剤は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また上記DNA合成阻害剤と併用してもよい。 An example of an anticancer agent having a ROS-raising action is an anthracycline anticancer agent belonging to an antitumor antibiotic. Specific examples of the anthracycline anticancer agent include doxorubicin, daunorubicin, pirarubicin, epirubicin, idarubicin, aclarubicin, amrubicin, mitoxantrone, or a pharmaceutically acceptable salt thereof. These anticancer agents may be used alone or in combination of two or more. Moreover, you may use together with the said DNA synthesis inhibitor.
 本発明の癌治療剤及び癌再発予防剤において、CD13阻害剤及び抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)の含有量は、治療対象の癌の種類や症状の程度、対象とする癌患者の年齢や性別等に応じた治療有効量であればよい。一律に規定することはできないが、例えば、成人1回当たりの投与量として下記範囲を充足する含有量であることが望ましい。
・CD13阻害剤の成人1回当たりの投与量:
 通常10~600mg、好ましくは15~90mg、更に好ましくは30~60mg
・抗癌剤(好ましくはDNA合成阻害剤)の成人1回当たりの投与量:
 通常100~3000mg、好ましくは200~1000mg、更に好ましくは250~750mg。
In the cancer therapeutic agent and cancer recurrence preventing agent of the present invention, the content of the CD13 inhibitor and the anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action) depends on the type of cancer to be treated, the degree of symptoms, A therapeutically effective amount according to the age, sex, etc. of the cancer patient is sufficient. Although it cannot be defined uniformly, for example, it is desirable that the content satisfy the following range as a dose per adult.
・ Dose of CD13 inhibitor per adult:
Usually 10 to 600 mg, preferably 15 to 90 mg, more preferably 30 to 60 mg
・ Dose of adult anticancer drug (preferably DNA synthesis inhibitor) per adult:
Usually 100 to 3000 mg, preferably 200 to 1000 mg, more preferably 250 to 750 mg.
 また、本発明の癌治療剤及び癌再発予防剤において、CD13阻害剤と抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)の比率については、上記治療有効量を充足する範囲で適宜設定されるが、CD13阻害剤1重量部に対する抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)の割合として、通常1~100重量部、好ましくは2~50重量部、更に好ましくは4~30重量部が例示される。 In the cancer therapeutic agent and cancer recurrence preventive agent of the present invention, the ratio of the CD13 inhibitor to the anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) is appropriately determined within the range satisfying the therapeutically effective amount. The ratio of the anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) to 1 part by weight of the CD13 inhibitor is usually 1 to 100 parts by weight, preferably 2 to 50 parts by weight, more preferably Examples are 4 to 30 parts by weight.
 本発明の癌治療剤及び癌再発予防剤には、CD13阻害剤及び抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)以外に、薬学的に許容される担体や添加剤を含んでいてもよい。このような担体及び基剤としては、例えば、賦形剤、増量剤、結合剤、崩壊剤、界面活性剤、滑沢剤、可溶化剤、可塑剤、pH調整剤、緩衝剤、キレート剤、保存剤、抗酸化剤、溶媒、崩壊剤等が挙げられる。 The cancer therapeutic agent and cancer recurrence preventive agent of the present invention include pharmaceutically acceptable carriers and additives in addition to a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action). May be. Examples of such carriers and bases include excipients, extenders, binders, disintegrants, surfactants, lubricants, solubilizers, plasticizers, pH adjusters, buffers, chelating agents, Preservatives, antioxidants, solvents, disintegrants and the like can be mentioned.
 また、本発明の癌治療剤及び癌再発予防剤の剤型は、特に制限されず、投与形態に応じて適宜設定すればよい。本発明の癌治療剤及び癌再発予防剤の剤型として、具体的には、錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤等が例示される。 In addition, the dosage forms of the cancer therapeutic agent and cancer recurrence preventing agent of the present invention are not particularly limited, and may be appropriately set according to the administration form. Specific examples of the dosage form of the cancer therapeutic agent and cancer recurrence preventing agent of the present invention include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules and the like.
 本発明の癌治療剤及び癌再発予防剤の投与形態については、治療対象となる癌の種類に応じて適宜設定すればよく、口腔内投与、舌下投与等の経口投与であってもよく、また静脈内投与、筋肉内投与、皮下投与、経肺投与、直腸投与等の非経口投与であってもよい。 The dosage form of the cancer therapeutic agent and cancer recurrence preventing agent of the present invention may be appropriately set according to the type of cancer to be treated, and may be oral administration such as buccal administration, sublingual administration, In addition, parenteral administration such as intravenous administration, intramuscular administration, subcutaneous administration, pulmonary administration, and rectal administration may be used.
 また、本発明の癌治療剤及び癌再発予防剤の治療対象となる癌は、CD13を発現している癌組織であればよく、その限りにおいて特に制限されない。癌には、例えば、食道癌、胃癌、十二指腸癌、結腸直腸癌、及び大腸癌(大腸には、上行、横行、下行、S状結腸、直腸が含まれる)等の消化管癌;肝癌;肺癌;乳癌;脳腫瘍;胆管癌(胆管には肝内胆管と肝外胆管が含まれる);胆嚢癌(左2つないし3つをあわせて胆道という);膵臓癌(膵臓は、管と分泌腺組織に分けられ、後者は内分泌系と外分泌系が含まれる)等の固形癌;;及び白血病、悪性リンパ腫、及び多発性骨髄腫等の造血器腫瘍(血液癌)等が知られているが、本発明で対象とする癌は、CD13を発現している癌である。これらの中でも、固形癌が好適であり、好ましくは肝癌、肺癌、及び消化管癌であり、特に好ましくは肝癌及び大腸癌である。 In addition, the cancer to be treated by the cancer therapeutic agent and the cancer recurrence preventing agent of the present invention is not particularly limited as long as it is a cancer tissue expressing CD13. Examples of cancer include gastrointestinal cancers such as esophageal cancer, gastric cancer, duodenal cancer, colorectal cancer, and colon cancer (the large intestine includes the ascending, transverse, descending, sigmoid colon, and rectum); liver cancer; lung cancer Breast cancer; brain tumor; bile duct cancer (the bile duct includes the intrahepatic and extrahepatic bile ducts); gallbladder cancer (the left two or three are collectively referred to as the biliary tract); pancreatic cancer (the pancreas is the duct and secretory tissue) The latter includes solid cancers such as the endocrine system and exocrine system); and hematopoietic tumors (blood cancers) such as leukemia, malignant lymphoma, and multiple myeloma. The cancer targeted by the invention is a cancer expressing CD13. Among these, solid cancer is preferable, preferably liver cancer, lung cancer, and gastrointestinal cancer, and particularly preferably liver cancer and colon cancer.
 本発明の癌治療剤は、上記癌に罹患している癌患者に第1選択療法として適用することができる。つまり、当該癌患者に対して、癌組織切除手術などの外科的処置や放射線照射処置をする前に、当該癌治療剤を用いて癌治療(癌の根治的治療)を行うことができる。また、本発明の癌治療剤は、他の癌化学療法、癌組織切除手術などの外科的処置、または放射線照射処置によっても癌が消滅しない、癌治療抵抗性の癌患者に対しても適用することができる。 The cancer therapeutic agent of the present invention can be applied as a first-choice therapy to cancer patients suffering from the above cancer. That is, cancer treatment (radical treatment of cancer) can be performed using the cancer therapeutic agent before performing surgical treatment such as cancer tissue resection surgery or radiation treatment on the cancer patient. In addition, the cancer therapeutic agent of the present invention is also applied to cancer patients who are resistant to cancer therapy, and the cancer does not disappear by other cancer chemotherapy, surgical treatment such as cancer tissue resection surgery, or radiation treatment. be able to.
 一方、本発明の癌再発予防剤は、他の癌化学療法、癌組織切除手術などの外科的処置、または放射線照射処置によって一応の癌治療効果が得られた癌患者に対して、癌の再発を予防する目的で適用することができる。 On the other hand, the cancer recurrence-preventing agent of the present invention is used for cancer patients who have achieved a temporary cancer therapeutic effect by other cancer chemotherapy, surgical treatment such as cancer tissue resection surgery, or radiation treatment. It can be applied for the purpose of preventing.
 6.癌治療用または癌再発予防用の医薬品キット
 更に、本発明は、CD13阻害剤を含有する第1剤と、抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)を含有する第2剤を含むことを特徴とする、癌治療用または癌再発予防用の医薬品キット(以下、両者を総称して「医薬品キット」という)を提供する。
6). A pharmaceutical kit for treating cancer or preventing cancer recurrence Further, the present invention provides a second agent comprising a first agent containing a CD13 inhibitor and an anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having a ROS-elevating action). A pharmaceutical kit for treating cancer or preventing cancer recurrence (hereinafter, both are collectively referred to as “pharmaceutical kit”).
 本発明の医薬品キットの第1剤に使用されるCD13阻害剤について、その種類、第1剤中の含有量、投与量は、上記「5.癌治療剤及び癌再発予防剤」に示す通りである。また、本発明の医薬品キットの第2剤に使用される抗癌剤(好ましくはDNA合成阻害剤またはROS上昇作用を有する抗癌剤)について、その種類、第2剤中の含有量、投与量も、上記「5.癌治療剤及び癌再発予防剤」に示す通りである。 Regarding the CD13 inhibitor used in the first agent of the pharmaceutical kit of the present invention, the type, the content in the first agent, and the dose are as shown in the above "5. Cancer therapeutic agent and cancer recurrence preventive agent". is there. In addition, regarding the anticancer agent (preferably a DNA synthesis inhibitor or an anticancer agent having an ROS-raising action) used in the second agent of the pharmaceutical kit of the present invention, the type, the content in the second agent, and the dosage are also described above. As described in "5. Cancer therapeutic agent and cancer recurrence preventive agent".
 また、第1剤及び第2剤は、それぞれ、更に、薬学的に許容される担体や添加剤を含んでいてもよく、このような担体や添加剤の例も、上記「5.癌治療剤及び癌再発予防剤」に使用されるものと同様である。更に、第1剤及び第2剤の製剤形態についても、特に制限されず、その具体例は、上記「5.癌治療剤及び癌再発予防剤」の場合と同様である。 Each of the first agent and the second agent may further contain a pharmaceutically acceptable carrier or additive, and examples of such carriers and additives are also described in “5. And the same as those used in the “cancer recurrence preventive agent”. Further, the formulation forms of the first agent and the second agent are not particularly limited, and specific examples thereof are the same as those in the case of “5. Cancer therapeutic agent and cancer recurrence preventing agent” above.
 更に、本発明の医薬品キットの治療対象となる癌についても、上記「5.癌治療剤及び癌再発予防剤」の適用対象となる癌と同様である。 Furthermore, the cancer to be treated by the pharmaceutical kit of the present invention is the same as the cancer to which the above-mentioned “5. Cancer therapeutic agent and cancer recurrence preventing agent” is applied.
 また、本発明の医薬品キットには、第1剤と第2剤に加えて、これらの投与方法等を示した投与指南書等が含まれていてもよい。 In addition to the first agent and the second agent, the pharmaceutical kit of the present invention may include an administration manual showing these administration methods and the like.
 7.癌根治療法及び癌再発予防方法
 本発明は、癌の根治的な治療方法及び癌の再発予防方法(以下、これらの方法を総称して「癌根治及び再発抑制療法」という)を提供する。
7). The present invention provides a radical cancer treatment method and a cancer recurrence prevention method (hereinafter, these methods are collectively referred to as "cancer radical cure and recurrence suppression therapy").
 本発明の癌根治及び再発抑制療法は、(1)癌患者に対してCD13阻害剤及び抗癌剤を投与する工程を有するか、または(2)癌患者に対してCD13阻害剤投与処置と電離放射線照射処置を行う工程を有することを特徴とする。 The cancer curative and recurrence-suppressing therapy of the present invention includes (1) a step of administering a CD13 inhibitor and an anticancer agent to a cancer patient, or (2) a CD13 inhibitor administration treatment and ionizing radiation irradiation for a cancer patient. It has the process of performing treatment, It is characterized by the above-mentioned.
 (1)の方法において、癌患者に対するCD13阻害剤及び抗癌剤の投与は、同時、つまり並行して行っても、また投与時期をずらして行ってもよく、また途中で休薬期間を設けても良い。CD13阻害剤及び抗癌剤について、その種類、含有量、添加される担体や添加剤、投与量、製剤形態、投与経路は、上記「5.癌治療剤及び癌再発予防剤」に示す通りである。抗癌剤は、DNA合成阻害剤またはROS上昇作用を有する抗癌剤であることが好ましい。CD13阻害剤と抗癌剤の製剤形態や投与経路は、それぞれ同一でも、また異なっていてもよい。 In the method of (1), the administration of the CD13 inhibitor and the anticancer agent to the cancer patient may be performed simultaneously, that is, in parallel, or may be performed at different administration timings, or a drug withdrawal period may be provided in the middle. good. Regarding the CD13 inhibitor and anticancer agent, the type, content, added carrier and additive, dose, formulation form, and administration route are as described in “5. Cancer therapeutic agent and cancer recurrence preventive agent” above. The anticancer agent is preferably a DNA synthesis inhibitor or an anticancer agent having an ROS increasing action. The formulation forms and administration routes of the CD13 inhibitor and anticancer agent may be the same or different.
 (2)の方法において、癌患者に対するCD13阻害剤の投与は、同患者に対する電離放射線照射処置と同時、つまり並行して行っても、また時期をずらして行ってもよく、また途中で休薬期間または休処置期間を設けても良い。CD13阻害剤について、その種類、含有量、添加される担体や添加剤、投与量、製剤形態、投与経路は、上記「5.癌治療剤及び癌再発予防剤」に示す通りである。電離放射線照射処置における処置条件は、癌患者の癌の種類、癌の大きさや進行度などの重篤度、患者の年齢や性別及び体重などに応じて、定法に従って適宜選択することができる。 In the method of (2), administration of a CD13 inhibitor to a cancer patient may be performed simultaneously with the ionizing radiation irradiation treatment for the patient, that is, in parallel, or at a different time, and may be suspended during the course. A period or a rest period may be provided. Regarding the CD13 inhibitor, the type, content, carrier and additive to be added, dosage, formulation form, and administration route are as described in “5. Cancer therapeutic agent and cancer recurrence preventing agent” above. The treatment conditions in the ionizing radiation irradiation treatment can be appropriately selected according to a standard method according to the type of cancer of the cancer patient, the seriousness such as the size and progression of the cancer, the age, sex and weight of the patient.
 更に、本発明の癌根治及び再発抑制療法の対象となる癌患者は、上記「5.癌治療剤及び癌再発予防剤」の適用対象としている癌に罹患している癌患者であり、好ましくは固形癌患者、より好ましくは肝癌、肺癌、又は消化管癌の患者、特に好ましくは肝癌または大腸癌の患者である。 Furthermore, the cancer patient that is the subject of the cancer cure and the recurrence-suppressing therapy of the present invention is a cancer patient suffering from a cancer to which the above-mentioned “5. cancer therapeutic agent and cancer recurrence preventive agent” is applied, preferably Solid cancer patients, more preferably liver cancer, lung cancer, or gastrointestinal cancer patients, particularly preferably liver cancer or colon cancer patients.
 癌根治療法は、かかる癌患者に対して、癌組織切除手術などの外科的処置や放射線照射処置をする前に行うことができるし、また、他の癌化学療法、癌組織切除手術などの外科的処置、または放射線照射処置によっても癌が消滅しない、癌治療抵抗性の癌患者に対しても適用することができる。一方、本発明の癌再発予防方法は、他の癌化学療法、癌組織切除手術などの外科的処置、または放射線照射処置によって一応の癌治療効果が得られた癌患者に対して、癌の再発を予防する目的で適用される。 Cancer radical therapy can be performed on such cancer patients before surgical treatment such as cancer tissue resection surgery or radiation treatment, and other cancer chemotherapy, surgery such as cancer tissue resection surgery, etc. The present invention can also be applied to cancer patients who are resistant to cancer therapy and whose cancer has not disappeared even by treatment or irradiation treatment. On the other hand, the method for preventing cancer recurrence according to the present invention provides cancer recurrence to a cancer patient who has achieved a temporary cancer therapeutic effect by other cancer chemotherapy, surgical treatment such as cancer tissue resection surgery, or radiation treatment. It is applied for the purpose of preventing.
 本発明の構成及び効果をより明確にすべく、以下に実験を説明するが、本発明はこれらによって限定されるものではない。 In order to clarify the configuration and effects of the present invention, experiments will be described below, but the present invention is not limited thereto.
 <実験方法>
 1.細胞培養
 ヒト肝癌細胞であるHuH7及びPLC/PRF5(東北大学加齢医学研究所附属医用細胞資源センターより入手)を10%FBS(fetal bovine serum;Equitech-Bio)を含むRPMI 1640培地(Invitrogen)で培養を行った。培養は、37℃、5% CO2の雰囲気下で行った。
<Experiment method>
1. Cell culture human hepatoma cells HuH7 and PLC / PRF5 (obtained from Tohoku University Institute of Aging Medicine, Medical Cell Resource Center) in RPMI 1640 medium (Invitrogen) containing 10% FBS (fetal bovine serum; Equitech-Bio) Culture was performed. The culture was performed in an atmosphere of 37 ° C. and 5% CO 2 .
 2.フローサイトメトリー分析及び細胞ソーティング
 各種抗体は、いずれも市販品を使用した。トリプシン及びEDTAを用いて細胞を回収した。ダブレット細胞は、FSC-A/FSC-H及びSSC-A/SSC-Hを用いて除去した。死細胞及び損傷を受けた細胞は、7-AAD (BD Pharmingen)を用いて除去した。アイソタイプコントロール(BD Biosciences)を使用した。FcRブロッキングは、FcR blocking reagent (Miltenyi-Biotec, BergischGladbach, Germany)を用いて行った。FITC結合Lineage Cocktail (Lin1; BD Pharmingen)及びFITC結合抗ヒトCD45抗体(BD Pharmingen, CA, USA)を用いて、臨床サンプル中の造血細胞を除去した。
2. Commercially available products were used for the flow cytometry analysis and cell sorting antibodies. Cells were harvested using trypsin and EDTA. Doublet cells were removed using FSC-A / FSC-H and SSC-A / SSC-H. Dead and damaged cells were removed using 7-AAD (BD Pharmingen). An isotype control (BD Biosciences) was used. FcR blocking was performed using FcR blocking reagent (Miltenyi-Biotec, BergischGladbach, Germany). Hematopoietic cells in clinical samples were removed using FITC-conjugated Lineage Cocktail (Lin1; BD Pharmingen) and FITC-conjugated anti-human CD45 antibody (BD Pharmingen, CA, USA).
 3.細胞周期分析
 SP(side population)フラクションの特徴を分析するために、2% FCS/1 mM HEPES buffer/DMEM 中で、1 x 106cellsを37℃で30分間プレインキュベートした。次いで、細胞を10μg/ml Hoechst 33342 (Molecular Probes)を用いて、染色培地(staining medium)中で37℃で70分間インキュベートして標識した。Hoechst染色工程において、15μg/mlのレセルピン(Sigma Aldrich)を使用した。pyronin Y (PY)染色の細胞周期の分析のために、細胞を先ず37℃でHoechst 33342で染色した。50分後に、1 μg/ml PYを添加し、細胞を37℃で20分間インキュベートした。FACSVantage SE DiVa (Becton Dickinson)及びFACS SORP Aria (Becton Dickinson)を用いて、分析及び細胞ソーティングを行った。細胞周期は、更に、10μg/mlの7-AAD (BD Pharmingen)で染色することによっても分析した。
3. Cell cycle analysis In order to analyze the characteristics of the SP (side population) fraction, 1 × 10 6 cells were preincubated at 37 ° C. for 30 minutes in 2% FCS / 1 mM HEPES buffer / DMEM. Cells were then labeled with 10 μg / ml Hoechst 33342 (Molecular Probes) by incubating at 37 ° C. for 70 minutes in a staining medium. In the Hoechst staining step, 15 μg / ml reserpine (Sigma Aldrich) was used. Cells were first stained with Hoechst 33342 at 37 ° C. for analysis of the cell cycle of pyronin Y (PY) staining. After 50 minutes, 1 μg / ml PY was added and the cells were incubated at 37 ° C. for 20 minutes. Analysis and cell sorting were performed using FACSVantage SE DiVa (Becton Dickinson) and FACS SORP Aria (Becton Dickinson). The cell cycle was further analyzed by staining with 10 μg / ml 7-AAD (BD Pharmingen).
 4.遺伝子発現の分析
 TRIzol reagent (Invitrogen)を用いて、全RNAを準備した。逆転写は、SuperScriptIII(Invitrogen)を用いて行った。定量的real-time RT-PCRは、LightCycler TaqMan Masterkit (Roche Diagnostics; Tokyo, Japan)を用いて行った。mRNAコピーの発現は、グリセルアルデヒド-3-リン酸デハイドロゲナーゼ(GAPDH) mRNA 発現量を基準として判定した。増幅に使用したPCRプライマーは、以下の通りである。
GCLM:5’- TGTGTGATGCCACCAGATTT-3’(配列番号1)及び5’-TTCACAATGACCGAATACCG -3’(配列番号2)
GAPDH:5’-TTGGTATCGTGGAAGGACTCA-3’(配列番号3)及び5’-TGTCATCATATTTGGCAGGTTT-3’(配列番号4)。
4). Analysis of gene expression Total RNA was prepared using TRIzol reagent (Invitrogen). Reverse transcription was performed using SuperScript III (Invitrogen). Quantitative real-time RT-PCR was performed using a LightCycler TaqMan Masterkit (Roche Diagnostics; Tokyo, Japan). The expression of the mRNA copy was determined based on the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA. The PCR primers used for amplification are as follows.
GCLM: 5'-TTGTGTGATGCCACCAGATTT-3 '(SEQ ID NO: 1) and 5'-TTCACAATGACCGAATACCG-3' (SEQ ID NO: 2)
GAPDH: 5′-TTGGTATCGTGGAAGGACTCA-3 ′ (SEQ ID NO: 3) and 5′-TGTCATCATATTTGGCAGGTTT-3 ′ (SEQ ID NO: 4).
 5.細胞増殖及び薬剤耐性の分析
 細胞増殖の分析のために、単離した細胞を、5×103cells/wellとなるように96穴培養プレートに播種した。72時間後、ATP bioluminescence assay (CellTiter-GloLuminescent Cell Viability Assay; Promega)によって、生細胞を測定し、luminescence signalをluminometer (ARVO MX; Perkin Elmer, Turku, Finland)を用いて検出した。
5. Analysis of cell proliferation and drug resistance For analysis of cell proliferation, the isolated cells were seeded in a 96-well culture plate at 5 × 10 3 cells / well. 72 hours later, live cells were measured by ATP bioluminescence assay (CellTiter-GloLuminescent Cell Viability Assay; Promega), and luminescence signal was detected using a luminometer (ARVO MX; Perkin Elmer, Turku, Finland).
 薬剤耐性の分析のために、細胞を5×103cells/wellとなるように96穴培養プレートに播種した。24時間後、ドキソルビシンを培養液中に添加した(0.01, 0.05 and 0.1 μg/ml)。癌化学療法剤の添加72時間後に、細胞増殖の分析の場合と同様の方法で、生細胞を測定した。 For analysis of drug resistance, cells were seeded in a 96-well culture plate at 5 × 10 3 cells / well. After 24 hours, doxorubicin was added to the culture (0.01, 0.05 and 0.1 μg / ml). 72 hours after the addition of the cancer chemotherapeutic agent, live cells were measured in the same manner as in the analysis of cell proliferation.
 6.細胞運命(Cell fate)の測定
 細胞を20μMのPKH26GL(Sigma)で標識した。精製した細胞群を単離し、CultureSlide(BD Falcon)4 Chamberの1ウェル当たり、5 x 103 cellsとなるように入れた。細胞は、20%ウシ胎児血清(FBS、Equitech-Bio)を含むRPMI 1640培地(Invitrogen)で培養した。細胞運命は、time-lapse fluorescence microscope (BZ-9000 Biorevo; Keyence)を用いて、30分毎に238時間にわたって分析した。データは、BZ-II analyzer (Keyence)を用いて解析した。
6). Measurement of cell fate Cells were labeled with 20 μM PKH26GL (Sigma). The purified cell group was isolated and placed at 5 × 10 3 cells per well of CultureSlide (BD Falcon) 4 Chamber. Cells were cultured in RPMI 1640 medium (Invitrogen) containing 20% fetal bovine serum (FBS, Equitech-Bio). Cell fate was analyzed every 30 minutes for 238 hours using a time-lapse fluorescence microscope (BZ-9000 Biorevo; Keyence). Data was analyzed using a BZ-II analyzer (Keyence).
 7.スフェアーの分析
 細胞を、Ultra Low Attachment culture dishes (Corning)上の無血清培地に播種した。DMEM/F-12無血清培地(Invitrogen)は、2 mML-グルタミン、1%ピルビン酸ナトリウム(Invitrogen)、1% MEM 非必須アミノ酸 (Invitrogen)、1% インスリン-トランスフェリン-セレニウム-Xサプリメント(Invitrogen)、1μM デキサメサゾン(Wako)、200μM L-アスコルビン酸2-リン酸(Sigma)、10 mM ニコチンアミド(Wako)、100μg/ml ペニシリンG、及び100 U/ml ストレプトマイシンを含み、20 ng/ml 上皮成長因子及び10 ng/ml 線維芽細胞増殖因子2(PeproTech)が補充されている。細胞の継代は、3日毎に行った。
7). Cells for sphere analysis were seeded in serum-free medium on Ultra Low Attachment culture dishes (Corning). DMEM / F-12 serum-free medium (Invitrogen) consists of 2 mM L-glutamine, 1% sodium pyruvate (Invitrogen), 1% MEM non-essential amino acids (Invitrogen), 1% insulin-transferrin-selenium-X supplement (Invitrogen) , 1 μM dexamethasone (Wako), 200 μM L-ascorbic acid 2-phosphate (Sigma), 10 mM nicotinamide (Wako), 100 μg / ml penicillin G, and 100 U / ml streptomycin, 20 ng / ml epidermal growth factor And 10 ng / ml fibroblast growth factor 2 (PeproTech). Cell passage was performed every 3 days.
 8.スフェアーからの分化の分析
 正常肝細胞から確立した単一スフェアーの各々を、培養チャンバー(BD bioscience)内に播種した。スフェアーは、10% FBSを含むスフェアー培地中で培養し、分化プロセスに入った。スフェアーがチャンバーの底部に接着し、spread out細胞が出現してから3日後に、細胞を固定化し、抗ヒトCD13マウスモノクローナル抗体(clone WM15, dilution 1:50; Santa Cruz Biotechnology)、FITC標識-抗ヒトアルブミンヤギポリクローナル抗体 (dilution 1:500; Bethyl Laboratories)、抗ヒトサイトケラチン19マウスモノクローナル抗体(clone RCK108, dilution 1:50;Dako)、及び抗ヒトαフェトプロテインマウスモノクローナル抗体 (clone 189502, concentration 5μg/ml; R&D Systems)で染色した。
8). Analysis of differentiation from spheres Each single sphere established from normal hepatocytes was seeded in a culture chamber (BD bioscience). The spheres were cultured in sphere medium containing 10% FBS and entered the differentiation process. Three days after the spheres adhered to the bottom of the chamber and spread out cells appeared, the cells were fixed, anti-human CD13 mouse monoclonal antibody (clone WM15, dilution 1:50; Santa Cruz Biotechnology), FITC-labeled anti-anti Human albumin goat polyclonal antibody (dilution 1: 500; Bethyl Laboratories), anti-human cytokeratin 19 mouse monoclonal antibody (clone RCK108, dilution 1:50; Dako), and anti-human α-fetoprotein mouse monoclonal antibody (clone 189502, concentration 5 μg / ml; R & D Systems).
 9.免疫組織化学
 厚さ4μmの断片をクライオスタットにより得て、4%パラホルムアルデヒドで15分間固定化を行った。1時間のブロッキングの後、断片を1次抗体と共に、加湿チャンバー内で4℃で終夜インキュベートした。1次抗体としては、抗ヒトCD13マウスモノクローナル抗体 (clone WM15, dilution 1:50; Santa Cruz Biotechnology)、抗ヒト炭酸脱水酵素IX(CA9) ウサギポリクローナル抗体(dilution 1:1000; Novus Biologicals)、抗ヒトCD90ウサギモノクローナル抗体 (dilution 1:1000; Epitomics)、及び抗ヒトKi-67ウサギポリクローナル抗体 (dilution 1:100; Santa Cruz Biotechnology)を使用した。2次抗体としては、goatanti-mouse IgG1, Alexa-Fluor 546-conjugateDNAd highly cross-adsorbeDNAtibody(Molecular Probes) 及びgoat anti-rabbit IgG, Alexa-Fluor 488-conjugateDNAd highly cross-adsorbeDNAtibody (Molecular Probes)を使用した。ProLong Gold 及び SlowFade GolDNAtifadeReagent (Molecular Probe)を用いて、Coverslipを据え付け、蛍光顕微鏡(BZ-9000 Biorevo)を用いて観察した。また、連続的なクライオスタット断片は、modified Hematoxylin and Eosin (H&E)で染色した。
9. A fragment with an immunohistochemical thickness of 4 μm was obtained with a cryostat and fixed with 4% paraformaldehyde for 15 minutes. After 1 hour blocking, the fragments were incubated with primary antibody overnight at 4 ° C. in a humidified chamber. Primary antibodies include anti-human CD13 mouse monoclonal antibody (clone WM15, dilution 1:50; Santa Cruz Biotechnology), anti-human carbonic anhydrase IX (CA9) rabbit polyclonal antibody (dilution 1: 1000; Novus Biologicals), anti-human CD90 rabbit monoclonal antibody (dilution 1: 1000; Epitomics) and anti-human Ki-67 rabbit polyclonal antibody (dilution 1: 100; Santa Cruz Biotechnology) were used. As secondary antibodies, goatanti-mouse IgG1, Alexa-Fluor 546-conjugate DNAd highly cross-adsorbe DNAtibody (Molecular Probes) and goat anti-rabbit IgG, Alexa-Fluor 488-conjugate DNAd highly cross-adsorbe DNAtibody (Molecular Probes) were used. Coverslip was installed using ProLong Gold and SlowFade GolDNAtifadeReagent (Molecular Probe), and observed using a fluorescence microscope (BZ-9000 Biorevo). Continuous cryostat fragments were stained with modified Hematoxylin and Eosin (H & E).
 10.腫瘍細胞の調製
 患者の同意と大阪大学の倫理審査委員会からの承認を得て、大阪大学から主な腫瘍組織(肝癌組織)サンプルを入手した。腫瘍組織は2mm以下の小さい断片にまで切断し、更に無菌の外科用メスで細断し、その後、DMEM/10% FBSで2回洗浄を行った。次いで、腫瘍組織の細切物を2 mg/ml collagenase A (Roche Diagnostics)溶液を含むDMEM/10% FBSに入れた。7℃で撹拌しながら、腫瘍組織の細切物が完全に消化されるまでインキュベートを行った。40μmナイロンメッシュに通して細胞を回収した後、2回洗浄し、Ficoll (GE Healthcare)濃度勾配遠心分離にて、細胞断片及び細胞の破片を取り除き、フローサイトメトリーのための染色を行った。
10. Preparation of tumor cells With the consent of the patient and approval from the ethics review committee of Osaka University, main tumor tissue (liver cancer tissue) samples were obtained from Osaka University. The tumor tissue was cut into small pieces of 2 mm or less, further chopped with a sterile scalpel, and then washed twice with DMEM / 10% FBS. The tumor tissue slices were then placed in DMEM / 10% FBS containing 2 mg / ml collagenase A (Roche Diagnostics) solution. Incubation was performed with stirring at 7 ° C. until the tumor tissue slices were completely digested. Cells were collected by passing through a 40 μm nylon mesh, washed twice, removed by Ficoll (GE Healthcare) concentration gradient centrifugation, cell fragments and cell debris were removed, and staining for flow cytometry was performed.
 11.CD13の阻害
 5 x 103 cellsを200μlの培地を入れた96穴プレートに播種した。24時間後、培養液を、1、5、10及び20μg/mlのCD13中和抗体(マウスモノクローナル抗ヒトCD13抗体、clone WM15; Gene Tex)又は25、50、100、250及び500μg/mlのウベニメックス(Nihon Kayaku)を含む新鮮な培地で入れ換えた。細胞の生存について、24、48及び72時間の時点で、cell counting kit-8 (Dojindo)を用いて分析した。680 XR microplate reader (Bio-Rad)を用いて、450nmにおける吸光度を測定した。ネガティブコントロールとして、10μg IgG1 マウスモノクローナル抗体 (Gene Tex)を用いた。1μg/mlのドキソルビシン(DXR)での処置と耐性クローンの選択を連続的に行うことにより、ドキソルビシン耐性(DXR-R) HuH7細胞を確立した。細胞アポトーシスは、Apoptosis Detection Kit (Bio Vision)と共にPropidium Iodide (PI)、APC-AnnexinV (BD Pharmingen)を用いて測定した。
11. Inhibition of CD13 5 × 10 3 cells were seeded in a 96-well plate containing 200 μl of medium. After 24 hours, the culture broth was diluted with 1, 5, 10 and 20 μg / ml CD13 neutralizing antibody (mouse monoclonal anti-human CD13 antibody, clone WM15; Gene Tex) or 25, 50, 100, 250 and 500 μg / ml Ubenimex. It was replaced with fresh medium containing (Nihon Kayaku). Cell survival was analyzed at 24, 48 and 72 hours using cell counting kit-8 (Dojindo). Absorbance at 450 nm was measured using a 680 XR microplate reader (Bio-Rad). As a negative control, 10 μg IgG1 mouse monoclonal antibody (Gene Tex) was used. Doxorubicin resistant (DXR-R) HuH7 cells were established by sequential treatment with 1 μg / ml doxorubicin (DXR) and selection of resistant clones. Cell apoptosis was measured using Propidium Iodide (PI) and APC-Annexin V (BD Pharmingen) together with Apoptosis Detection Kit (Bio Vision).
 12.In vivo分析
 1 x 10cellsのHuH7及びPLC/PRF/5を麻酔下でNOD/SCID マウスに注入することにより、異種移植されたモデルマウスを作成した。細胞の注入工程において、培地とマトリゲル(BD Biosciences)を1:1の比で含む混合物中で、細胞を再懸濁した。HuH7細胞で異種移植されたマウスでは、DNA合成阻害剤として5-FU (30mg/kg; 腹膜内投与)、又はCD13阻害剤としてウベニメックス(20mg/kg; 経口投与)を3日間投与した。次の日に、免疫化学組織分析のために、マウスを解剖して、腫瘍を摘出した。PLC/PRF/5細胞で異種移植されたモデルマウスの検討では、5-FU (30mg/kg、5日間の腹膜内投与及び2日間の薬剤投与の中止、2コース、14日間)、ウベニメックス(20mg/kg、14日間の強制経口投与)、ウベニメックス及び5-FU(30mg/kgの5-FUの2コースと20mg/kgのウベニメックスの14日間の組合せ)をそれぞれ投与した。腫瘍サイズ及び相対的腫瘍容積は、以下の式に従って算出した。
12 In vivo analysis 1 x 10 5 cells of HuH7 and PLC / PRF / 5 were injected into NOD / SCID mice under anesthesia to produce xenografted model mice. In the cell injection step, cells were resuspended in a mixture containing medium and Matrigel (BD Biosciences) in a 1: 1 ratio. In mice xenografted with HuH7 cells, 5-FU (30 mg / kg; intraperitoneal administration) as a DNA synthesis inhibitor or Ubenimex (20 mg / kg; oral administration) as a CD13 inhibitor was administered for 3 days. The next day, mice were dissected and tumors removed for immunochemical histological analysis. In the study of model mice xenotransplanted with PLC / PRF / 5 cells, 5-FU (30 mg / kg, intraperitoneal administration for 5 days and discontinuation of drug administration for 2 days, 2 courses, 14 days), Ubenimex (20 mg / kg, 14-day gavage), Ubenimex and 5-FU (a combination of 2 courses of 30 mg / kg of 5-FU and 20 mg / kg of Ubenimex for 14 days), respectively. Tumor size and relative tumor volume were calculated according to the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 14日間の処置の次の日に、免疫化学組織分析のために、マウスを解剖して、腫瘍を摘出した。相対的腫瘍容積は、次のようにして概算した。 The day after the 14-day treatment, the mice were dissected and the tumor was removed for immunochemical histological analysis. Relative tumor volume was estimated as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 5-FU処置14日後に残存する腫瘍を摘出し、2mmの大きさまで細断し、第2のNOD/SCIDにマトリゲルと共に皮下投与した。移植から7日後の次の日に、ウベニメックス(20mg/kg)でマウスを処置した。腫瘍の成長は、3週間観察した。結果を統計的に分析するために、各実験は4匹以上のマウスで行った。 After 14 days of 5-FU treatment, the remaining tumor was excised, shredded to a size of 2 mm, and subcutaneously administered with Matrigel to the second NOD / SCID. Mice were treated with ubenimex (20 mg / kg) the next day 7 days after transplantation. Tumor growth was observed for 3 weeks. In order to statistically analyze the results, each experiment was performed with 4 or more mice.
 13.ROS分析
 細胞内ROSレベルを検討するために、細胞を10μMの2’, 7’-dichlorofluorescein diacetate (DCF-DA)に37℃で30分間ロードした。ROSは、100μMのH2O2 37℃で120分間処理すると、活性化された。CD13阻害がROSレベルに及ぼす効果を検討するために、細胞を5μg/mlのCD13中和抗体(マウスモノクローナル抗ヒトCD13抗体、clone WM15)又は25μg/mlのウベニメックスにより37℃で4時間前処理し、DCF-DAで染色した。ミトコンドリアROS検出のために、細胞を5μMのMitoSOX (Molecular Probes)に、37℃20分間ロードした。
13. ROS analysis To examine intracellular ROS levels, cells were loaded into 10 μM 2 ′, 7′-dichlorofluorescein diacetate (DCF-DA) at 37 ° C. for 30 minutes. ROS was activated when treated with 100 μM H 2 O 2 at 37 ° C. for 120 minutes. To examine the effect of CD13 inhibition on ROS levels, cells were pretreated for 4 hours at 37 ° C. with 5 μg / ml CD13 neutralizing antibody (mouse monoclonal anti-human CD13 antibody, clone WM15) or 25 μg / ml Ubenimex. Stained with DCF-DA. For mitochondrial ROS detection, cells were loaded into 5 μM MitoSOX (Molecular Probes) at 37 ° C. for 20 minutes.
 14.DNAフラグメンテーション分析
 アルカリコメット分析のために、5000個の単離した細胞に氷上で放射線照射(4 Gray)を行い、0.6%の低融点アガロース中に懸濁し、スライド壁に播いて、アルカリ溶液中に30分間浸した。次いで、アルカリ電気泳動を行った。可視化のために、スライドは、銀で染色した。Tempol実験のために、放射線照射前に、細胞を10 mMのTempol (Sigma)で15分間処理した。断片化されたDNA検出のin situハイブリダイゼーションのために、新鮮な凍結サンプルから得られた10μmの厚さの連続的断片(section)をTumor TACS in situApoptosis Detection Kit (Trevigen)を用いて、terminal deoxynucleotide transferase (TdT)とハイブリダイズさせた。
14 DNA fragmentation analysis For alkaline comet analysis, 5000 isolated cells were irradiated (4 Gray) on ice, suspended in 0.6% low melting point agarose, seeded on a slide wall and placed in alkaline solution. Soaked for 30 minutes. Subsequently, alkaline electrophoresis was performed. Slides were stained with silver for visualization. For Tempol experiments, cells were treated with 10 mM Tempol (Sigma) for 15 minutes prior to irradiation. For in situ hybridization for fragmented DNA detection, 10 μm thick sections obtained from fresh frozen samples were terminal deoxynucleotide using the Tumor TACS in situ Apoptosis Detection Kit (Trevigen). Hybridized with transferase (TdT).
 <実験結果>
 1.CD13が癌幹細胞のマーカー候補であることの確認
 ヒト肝癌細胞であるHuH7及びPLC/PRF5を培養して、Hoechst Red及びHoechst Blueで染色した後に、SP(side population)フラクションとnon-SPフラクションにわけた。
<Experimental result>
1. Confirmation that CD13 is a candidate marker for cancer stem cells After culturing HuH7 and PLC / PRF5 human hepatoma cells and staining them with Hoechst Red and Hoechst Blue, it is divided into SP (side population) and non-SP fractions. It was.
 SP細胞フラクションに関連する特定の細胞表面マーカーを特定するために、マイクロアレイ分析によって、SPフラクションとnon-SPフラクションの遺伝子発現プロファイルのデータを利用した(非特許文献7)。SP細胞において、2倍以上にup-regulateされている268個の遺伝子のリストから、UniProtKB database (http://www.uniprot.org/)を利用して細胞表面タンパク質を潜在的にコードしている56個の遺伝子を選択した。更に、これらの遺伝子がコードする表面タンパク質に結合する抗体(市販品)を用いて、SPフラクションで高く発現している表面マーカーを同定した(図1のAに記載する操作手順参照)。 In order to identify specific cell surface markers related to the SP cell fraction, the gene expression profile data of the SP fraction and the non-SP fraction were used by microarray analysis (Non-patent Document 7). In SP cells, from the list of 268 genes that are up-regulated more than twice, using UniProtKB database (http://www.uniprot.org/) to potentially encode cell surface proteins 56 genes were selected. Furthermore, the surface marker highly expressed by SP fraction was identified using the antibody (commercial item) couple | bonded with the surface protein which these genes code (refer the operation procedure described in A of FIG. 1).
 本スクリーニングにおいて、CD13とCD31の2つのマーカー候補を同定した。CD13の発現分析結果は、SPフラクションにおいて1.64 ±0.45(相対値)、non-SPフラクションにおいて0.51 ± 0.03(相対値)であった(P < 0.01)(図1のB)。CD31の発現は、G2/M/SPフラクションにおいて高く(図2のB)、肝癌細胞(HuH7, PLC/PRF/5 and Hep3B)に対して一般的なものではなかったことから、CD13に着目して検討を進めた(図1のB)。 In this screening, two marker candidates, CD13 and CD31, were identified. The expression analysis results of CD13 were 1.64 ± 0.45 (relative value) in the SP fraction and 0.51 ± 0.03 (relative value) in the non-SP fraction (P <0.01) (B in FIG. 1). CD31 expression was high in the G2 / M / SP fraction (Fig. 2B) and was not common for hepatoma cells (HuH7, PLC / PRF / 5 and Hep3B). (B in FIG. 1).
 肝炎感染陰性(HuH7)及び陽性(PLC/PRF/5)の細胞株におけるCD13、CD133、及びCD90の発現を分析した。肝癌において、CD133+及びCD90+であるSPフラクションが、癌幹細胞又は癌/腫瘍開始細胞として報告されている(非特許文献11:Ma S, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007; 132(7): 2542-2556、非特許文献12:Zhu Z, et al. Cancer stem/progenitor cells are highly enriched in CD133(+)CD44(+) population in hepatocellular carcinoma. Int J Cancer. 2009; 126(9): 2067-2078、非特許文献13:Yang ZF, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008; 13(2): 153-166.、非特許文献14:Yang ZF, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008; 47(3): 919-928.)。CD133の発現は、HuH7において検出されたが、PLC/PRF/5では検出されなかった。また、CD90の発現は、PLC/PRF/5において検出されたが、HuH7では検出されなかった。CD13の発現は、Hep3B、HuH7、及びPLC/PRF/5のいずれでも確認された(図1のC、図2のA)。特に、HuH7において、CD13+細胞は、CD133を強発現しているフラクション(CD13+CD133+)において、多く認められた。 The expression of CD13, CD133, and CD90 in hepatitis infection negative (HuH7) and positive (PLC / PRF / 5) cell lines was analyzed. In liver cancer, the SP fraction of CD133 + and CD90 + has been reported as cancer stem cells or cancer / tumor initiating cells (Non-patent Document 11: Ma S, et al. Identification and characterization of tumorigenic liver cancer stem / progenitor cells. Gastroenterology. 2007; 132 (7): 2542-2556, Non-Patent Document 12: Zhu Z, et al. Cancer stem / progenitor cells are highly enriched in CD133 (+) CD44 (+) population in hepatocellular carcinoma. Int J Cancer 2009; 126 (9): 2067-2078, Non-Patent Document 13: Yang ZF, et al. Significance of CD90 + cancer stem cells in human liver cancer. Cancer Cell. 2008; 13 (2): 153-166. Patent Document 14: Yang ZF, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008; 47 (3): 919-928.). CD133 expression was detected in HuH7 but not in PLC / PRF / 5. CD90 expression was detected in PLC / PRF / 5 but not in HuH7. The expression of CD13 was confirmed in any of Hep3B, HuH7, and PLC / PRF / 5 (C in FIG. 1 and A in FIG. 2). In particular, in HuH7, many CD13 + cells were observed in the fraction (CD13 + CD133 + ) overexpressing CD133.
 Hoechst染色によるマルチカラー分析によって、HuH7及びPLC/PRF/5のSPフラクションにおいて、CD13+細胞の明らかな局在化が認められた。CD13-CD133及びCD13-CD90フラクションは、G1~G2フラクションに局在化していたが、SPフラクションには局在化していなかった(図1のD)。 Multi-color analysis with Hoechst staining revealed clear localization of CD13 + cells in the SP fractions of HuH7 and PLC / PRF / 5. The CD13 CD133 + and CD13 CD90 + fractions were localized in the G1 to G2 fractions, but not in the SP fraction (D in FIG. 1).
 これらの結果から、CD13が、肝癌細胞SPフラクションに密接に関連した普遍的なマーカー候補であることが確認された。なお、CD13よりも強くSPフラクションと関連性を示す単一マーカーは認められなかった。 From these results, it was confirmed that CD13 is a universal marker candidate closely related to the hepatoma cell SP fraction. In addition, no single marker showing a stronger association with the SP fraction than CD13 was found.
 2.CD13が潜在的に休眠期にある肝細胞癌(HCC)細胞のマーカーであることの確認
 造血及び白血病性幹細胞がG0期であることを考慮すると、休眠状態又は増殖能が低い癌細胞は抗癌剤に対する耐性や癌再発と関連性があると考えられる。従って、休眠状態又は増殖能が低い癌細胞集団の同定とその特性評価は、抗癌剤に対する耐性や癌再発を検討するうえで非常に重要である。HuH7及びPLC/PRF/5のCD13発現、並びにHuH7及びPLC/PRF/5の細胞周期の関連性について検討したところ、CD13+フラクションの殆どがG1/G0期に存在しており、CD13を強発現している集団はG0期に明らかに局在化していた。なお、細胞周期の分析については、DNA結合染色剤(Hoechst blue: Hoechst 33342)及びRNA結合染色剤(Pyronin Y)を用いて行った。HuH7におけるCD133+細胞の集団、及びPLC/PRF/5におけるCD90+細胞のフラクションは、G1/G0及びG2/M期に分布していた。SPフラクションとG0細胞周期との関係も認められ、レセルピン(ABC transporter blocker)がない条件でも、SPフラクションは明らかにG0期に局在していた(図3のA)。
2. Confirmation that CD13 is a marker of potentially dormant hepatocellular carcinoma (HCC) cells Considering hematopoiesis and leukemic stem cells are in G0 phase, dormant or poorly proliferating cancer cells are resistant to anticancer drugs It is thought to be related to resistance and cancer recurrence. Therefore, the identification and characterization of cancer cell populations that are dormant or have a low proliferative ability are very important in examining resistance to anticancer drugs and cancer recurrence. CD13 expression of HuH7 and PLC / PRF / 5 and the relationship between the cell cycle of HuH7 and PLC / PRF / 5 were examined. Most of the CD13 + fractions were present in the G1 / G0 phase, and CD13 was strongly expressed. The apparent population was localized in the G0 phase. The cell cycle was analyzed using a DNA binding stain (Hoechst blue: Hoechst 33342) and an RNA binding stain (Pyronin Y). The population of CD133 + cells in HuH7 and the fraction of CD90 + cells in PLC / PRF / 5 were distributed in G1 / G0 and G2 / M phases. A relationship between the SP fraction and the G0 cell cycle was also observed, and the SP fraction was clearly localized in the G0 phase even in the absence of reserpine (ABC transporter blocker) (A in FIG. 3).
 細胞周期とCD13の発現の関連性を評価するために、細胞増殖分析を行った。HuH7の集団の結果から、CD13+CD133+細胞はCD13-CD133+細胞に比べて増殖速度が遅いことが明らかとなった(図3のB)。CD13-CD133-細胞集団も、増殖が遅かったが、1週間は生存能力を保持していた。HuH7 CD13+細胞の細胞運命(cell fate)及び色素保持能(dye-retaining capacity)を分析するために、細胞表面をPKH26GL試薬で標識し、細胞運命を238時間観察した。各細胞集団について等量の細胞を播種した。CD13+CD133+フラクションは、CD13-CD133+フラクションに比べて非常に遅い増殖を示した。色素を保持した細胞は、CD13+CD133+フラクションにおいてのみ(図3のCにおいて「CD13+」と表示)、細胞の播種から238時間後でも観察された(図3のCの矢印参照)。CD13-CD133-フラクションは、培養中に、細胞のフラグメンテーションとアポトーシス変化を示した。 Cell proliferation analysis was performed to evaluate the relationship between cell cycle and CD13 expression. The results of the HuH7 population revealed that CD13 + CD133 + cells had a slower growth rate than CD13 CD133 + cells (B in FIG. 3). The CD13 CD133 cell population also grew slowly but remained viable for one week. In order to analyze the cell fate and dye-retaining capacity of HuH7 CD13 + cells, the cell surface was labeled with PKH26GL reagent, and the cell fate was observed for 238 hours. Equal amounts of cells were seeded for each cell population. The CD13 + CD133 + fraction showed very slow growth compared to the CD13 CD133 + fraction. Cells that retained the dye were observed only in the CD13 + CD133 + fraction (indicated as “CD13 + ” in FIG. 3C), even 238 hours after cell seeding (see arrow C in FIG. 3). CD13 - CD133 - fractions showed cell fragmentation and apoptotic changes during culture.
 PLC/PRF/5におけるCD13+細胞の細胞周期の状態を観察するために、マルチカラー分析及び7-Amino-Actinomycin D (7-AAD) DNA標識による細胞周期分析を行った。CD13+CD90-集団は主にG0/G1期にあり、CD13+CD90+集団は明らかにS~G2/M期であった。CD13-CD90+細胞は、全ての細胞周期に存在していたが、CD13+CD90-集団に比べて、明らかにG2/M及びS期に存在する割合が高かった(図3のD)。 In order to observe the state of the cell cycle of CD13 + cells in PLC / PRF / 5, multi-color analysis and cell cycle analysis by 7-Amino-Actinomycin D (7-AAD) DNA labeling were performed. The CD13 + CD90 population was mainly in the G0 / G1 phase, and the CD13 + CD90 + population was clearly in the S–G2 / M phase. CD13 CD90 + cells were present in all cell cycles, but clearly had a higher proportion in the G2 / M and S phases than the CD13 + CD90 population (D in FIG. 3).
 この結果から、HuH7及びPLC/PRF/5におけるCD13+細胞は、休眠期から細胞周期が遅い増殖状態にあることが明らかとなった。 From this result, it was revealed that CD13 + cells in HuH7 and PLC / PRF / 5 are in a proliferative state with a slow cell cycle from the dormant phase.
 3.CD13が中分化~低分化型の大腸癌細胞において特異的に発現していることの確認
 中分化~低分化型のヒト大腸癌組織を、抗CD13抗体(抗ヒトCD13マウスモノクローナル抗体)で免疫染色した結果を図4に示す。図4(A)の拡大図を(B)に示す。図17に示すように、中分化~低分化型のヒト大腸癌組織の中でCD13を発現している細胞(CD13細胞)が孤立性に染色されていることが確認された。一方、ヒト大腸癌組織の中でも高分化型大腸癌組織は、抗CD13抗体による染色は認められず(結果示さず)、CD13細胞は存在しないか、または存在していても極めて少ないと考えられた。このように、CD13は、分化制御の破綻が特徴的な中分化~低分化型の大腸癌において特異的に発現していることから、消化癌の一種である大腸癌においても、CD13細胞は分化階層性において上位に位置する癌幹細胞であること、また抗癌剤に対して耐性のある細胞であることがうかがわれる。
3. Confirmation that CD13 is specifically expressed in moderately differentiated to poorly differentiated colorectal cancer cells Immunostaining of moderately differentiated to poorly differentiated human colon cancer tissue with anti-CD13 antibody (anti-human CD13 mouse monoclonal antibody) The results are shown in FIG. An enlarged view of FIG. 4A is shown in FIG. As shown in FIG. 17, it was confirmed that cells expressing CD13 (CD13 + cells) were isolated in a moderately or poorly differentiated human colon cancer tissue. On the other hand, well-differentiated colorectal cancer tissue among human colorectal cancer tissues does not show staining with anti-CD13 antibody (results not shown), and it is considered that CD13 + cells are absent or very little even if they are present. It was. Thus, since CD13 is specifically expressed in moderately to poorly differentiated colorectal cancer, which is characterized by failure of differentiation control, CD13 + cells are also used in colorectal cancer, which is a type of digestive cancer. It can be seen that it is a cancer stem cell positioned higher in the differentiation hierarchy and a cell resistant to an anticancer agent.
 4.CD13 + 細胞がスフェアーを形成し、CD90 + の表現型を作ることの確認
 スフェアーの形成は幹細胞の共通の特徴である。癌幹細胞のマーカーとしてCD13を評価するために、HuH7、PLC/PRF/5及び臨床上得られたHCCに由来するスフェアーにおけるCD13の発現を検討した。CD13の発現は、HuH7(コントロール2.0%に対してスフェアーでは67.0%、33.5倍の増加)、及びPLC/PRF/5 (コントロール15.2%に対してスフェアーでは83.8%、5.51倍の増加)の双方で増加していた(図5のA)。HuH7におけるCD133の発現については有意な差は認められなかった。また、PLC/PRF/5では、スフェアーにおいて、CD90の発現は減少していた(コントロール35.7%に対してスフェアーでは2.5%、14.28倍の増加)。このスフェアーの検討において、CD13の発現は、CD133及びCD90に比べて、より未成熟幹細胞様(immature stem-like)であり、休眠期の集団であることが示唆された。臨床上得られたHCCサンプルから得られたスフェアーは、PLC/PRF/5の場合と同様に、CD13+CD90-CD133-フラクションに局在化していた(図5のB)。
4). Confirmation that CD13 + cells form spheres and create a CD90 + phenotype The formation of spheres is a common feature of stem cells. In order to evaluate CD13 as a marker for cancer stem cells, expression of CD13 in spheres derived from HuH7, PLC / PRF / 5 and clinically obtained HCC was examined. CD13 expression is both HuH7 (67.0%, 33.5-fold increase in the sphere versus control 2.0%) and PLC / PRF / 5 (83.8%, 5.51-fold increase in the sphere versus control 15.2%). It increased (A in FIG. 5). There was no significant difference in the expression of CD133 in HuH7. In PLC / PRF / 5, CD90 expression was decreased in the sphere (2.5% in the sphere, a 14.28-fold increase in the sphere compared to 35.7% in the control). In this sphere study, CD13 expression was more immature stem-like than CD133 and CD90, suggesting a dormant population. The sphere obtained from the clinically obtained HCC sample was localized in the CD13 + CD90 CD133 fraction as in the case of PLC / PRF / 5 (FIG. 5B).
 PLC/PRF/5におけるCD13及びCD90の発現の経時変化について検討した。PLC/PRF/5スフェアーからCD13+CD90-フラクションを単離し、血清含有培地で培養したところ、96時間後にCD13+CD90+フラクションが認められた(図5のC)。単離されたCD13-CD90-フラクションは、数日で細胞死を誘発し、生存状態を維持することができなかった。単離されたCD13-CD90-フラクションは、24時間以内に急速にCD13+CD90-フラクションを作り出した(図5のC)。これらの知見は、潜在的に休眠期にあるCD13+細胞が、増殖性があるCD90+細胞を作り出し、増殖性があるCD90+細胞の幾つかが潜在的に休眠期にあるCD13+細胞を作り出していることを示唆している(図6参照)。 The time course of CD13 and CD90 expression in PLC / PRF / 5 was examined. When the CD13 + CD90 fraction was isolated from the PLC / PRF / 5 sphere and cultured in a serum-containing medium, the CD13 + CD90 + fraction was observed after 96 hours (C in FIG. 5). The isolated CD13 CD90 fraction induced cell death within a few days and was unable to maintain viability. The isolated CD13 CD90 fraction rapidly produced a CD13 + CD90 fraction within 24 hours (FIG. 5C). These findings indicate that potentially dormant CD13 + cells produce proliferative CD90 + cells, and some proliferative CD90 + cells produce potentially dormant CD13 + cells. (See FIG. 6).
 5.CD13 + 細胞が癌の化学療法及び放射線療法に耐性を示すことの確認
 HuH7及びPLC/PRF/5を用いて、DNA合成抑制作用を有する抗癌剤である塩酸ドキソルビシン(DXR)による処置前後で細胞表面マーカー発現の変化を検討した。HuH7において、CD13の発現(コントロール2.0%に対して、DXR処置では40.3%)、及びSPフラクション(コントロール0.7%に対して、DXR処置では58.6%)が、DXR処置後に有意に増加していたが(図7のA)、CD133の発現(コントロール87.1%に対して、DXR処置では88.0%)は殆ど変化していなかった。次に、HuH7において、CD13+CD133+、CD13-CD133+及びCD13-CD133-の薬剤耐性を確認した。CD13+CD133+フラクションは、CD13-CD133+及びCD13-CD133-フラクションに比べて、DXRに対して高い耐性を示した(図7のB)。CD13-CD133-フラクションは、増殖試験及び細胞運命の検討において細胞の増殖速度が遅かったが(図7のA及びC)、このフラクションは、高い薬剤耐性を示した。PLC/PRF/5では、CD13-CD90+フラクションが、CD13+フラクションにシフトし、CD90+フラクションは減少した(図7のA)。
5. Confirmation that CD13 + cells are resistant to cancer chemotherapy and radiation therapy Cell surface markers before and after treatment with doxorubicin hydrochloride (DXR), an anticancer drug with an inhibitory effect on DNA synthesis, using HuH7 and PLC / PRF / 5 Changes in expression were examined. In HuH7, CD13 expression (control 2.0%, 40.3% with DXR treatment) and SP fraction (0.7% control, 58.6% with DXR treatment) were significantly increased after DXR treatment. (A in FIG. 7), the expression of CD133 (88.0% in DXR treatment compared to 87.1% in control) was hardly changed. Next, drug resistance of CD13 + CD133 + , CD13 CD133 + and CD13 CD133 was confirmed in HuH7. The CD13 + CD133 + fraction was more resistant to DXR than the CD13 CD133 + and CD13 CD133 fractions (FIG. 7B). The CD13 CD133 fraction showed a high drug resistance, although the cell growth rate was slow in proliferation tests and cell fate studies (FIGS. 7A and C). In PLC / PRF / 5, the CD13 CD90 + fraction shifted to the CD13 + fraction and the CD90 + fraction decreased (A in FIG. 7).
 次に、HuH7及びPLC/PRF/5の細胞に放射線を照射し、照射後に残存した細胞に発現している細胞表面マーカーを分析した。放射線照射24時間後に、残存細胞は、HuH7ではCD13+フラクションに局在化しており、PLC/PRF/5ではCD13+CD90-フラクションに局在化していた。放射線照射48時間後に、残存細胞は増殖を開始し、HuH7ではCD13-CD133+細胞を造り出し、PLC/PRF/5ではCD13+CD90+細胞を造り出した(図7のC)。これらの結果は、経時変化の検討結果(図6のC)を裏付けるものであり、CD13+細胞が細胞階層(cellular hierarchy)のコアフラクションとして存在していることを示している。 Next, HuH7 and PLC / PRF / 5 cells were irradiated with radiation, and cell surface markers expressed in the cells remaining after irradiation were analyzed. After 24 hours of irradiation, the remaining cells were localized in the CD13 + fraction in HuH7 and in the CD13 + CD90 - fraction in PLC / PRF / 5. After 48 hours of irradiation, the remaining cells started to grow, and CD13 CD133 + cells were created with HuH7, and CD13 + CD90 + cells were created with PLC / PRF / 5 (C in FIG. 7). These results corroborate the examination results of changes with time (C in FIG. 6), and show that CD13 + cells exist as a core fraction of the cellular hierarchy.
 6.治療耐性を示す細胞においてCD13が選択的に発現していることの確認
 臨床上得られたHCC細胞におけるCD13の発現を同定するために、HCCサンプルを消化し、造血性CD45(Lin/CD45)陰性フラクションをマルチカラーフローサイトメトリーで分析した。臨床上得られたHCCサンプル12個[3つは非肝炎由来HCC(1つは肝動脈塞栓療法後の再発)、9つは肝炎由来HCC(4つは肝動脈塞栓療法後の再発)]の全てにおいて、CD133の発現は認められなかった。また、全てのサンプルにおいて、CD13+CD90+、CD13+CD90-、CD13-CD90+及びCD13-CD90-の4つの集団として、CD13及びCD90の発現が認められた。肝動脈塞栓療法後の再発のサンプルでは、CD13+CD90-フラクションが、肝動脈塞栓療法を行っていないサンプルに比べて多かった(肝動脈塞栓療法後の再発のサンプルでは48±12%に対して、肝動脈塞栓療法を行っていないサンプルでは8±4%;6倍の増加)。また、CD13-CD90+フラクションは、肝動脈塞栓療法後の再発のサンプルの場合において、肝動脈塞栓療法を行っていないサンプルの場合に比べて多かった(肝動脈塞栓療法を行っていないサンプルでは40±18%に対して、肝動脈塞栓療法後の再発のサンプルでは12±5%:3.3倍の増加)(図8のA)。臨床上得られたHCCサンプル12個全てにおいて、PLC/RLF/5と非常に近い発現パターンであった。ここで、細胞の%とは、機械的及び酵素的消化後に生存している細胞の割合(%)を示す。肝細胞の癌細胞(hepatocellularcarcinoma cells)の殆どは、肝臓の細胞機能を保持し、脂肪及びグリコーゲンを蓄積し、ビリルビンを産生する。肝細胞の癌細胞は、他の癌細胞に比べて、比較的大きく、機械的及び酵素的消化によってダメージをより受け易い。
6). Confirmation that CD13 is selectively expressed in resistant cells To identify CD13 expression in clinically obtained HCC cells, digest HCC samples and be negative for hematopoietic CD45 (Lin / CD45) Fractions were analyzed by multicolor flow cytometry. 12 clinically obtained HCC samples [3 are non-hepatitis-derived HCC (1 is recurrence after hepatic artery embolization), 9 are hepatitis-derived HCC (4 are recurrence after hepatic artery embolization)] In all, expression of CD133 was not observed. In all samples, expression of CD13 and CD90 was observed as four groups of CD13 + CD90 + , CD13 + CD90 , CD13 CD90 + and CD13 CD90 . Samples with recurrence after hepatic artery embolization had a higher CD13 + CD90 - fraction than those without hepatic artery embolization (as compared to 48 ± 12% in samples with recurrence after hepatic artery embolization) (8 ± 4%; 6-fold increase in the sample without hepatic artery embolization). The CD13 - CD90 + fraction was higher in the relapsed sample after hepatic artery embolization than in the sample without hepatic artery embolization (40 in the sample without hepatic artery embolization). Compared to ± 18%, 12 ± 5%: 3.3-fold increase in the sample of recurrence after hepatic artery embolization therapy) (A in FIG. 8). In all 12 clinically obtained HCC samples, the expression pattern was very close to PLC / RLF / 5. Here, the percentage of cells indicates the percentage (%) of cells surviving after mechanical and enzymatic digestion. Most hepatocellular carcinoma cells retain liver cell function, accumulate fat and glycogen, and produce bilirubin. Hepatocyte cancer cells are relatively large compared to other cancer cells and are more susceptible to damage by mechanical and enzymatic digestion.
 CD13の発現を、新鮮な凍結外科標本において確認した。肝動脈塞栓療法後のケースでは、CD13+ HCC細胞は、細胞クラスターを形成している線維性カプセル(fibrous capsule)に沿って存在していた。肝動脈塞栓療法を行っていないケースでは、CD13+ HCC細胞は、通常、癌病巣の内部において、小さな細胞クラスターを形成していた(図8のB)。CD13は、HCCケースにおいて、細胞表面に発現していた。正常な肝臓サンプルでは、CD13は、シヌソイド(sinusoid)及び胆管において発現しており、HCCサンプルにおけるCD13の発現とは明らかに異なっていた。肝動脈塞栓療法後のHCC再発は線維性カプセルで通常生じ、薬剤耐性生存HCC(chemo-resistant viable HCC)は主に線維性カプセル周辺に存在しているので、肝動脈塞栓療後のサンプルにおける免疫組織化学的知見は、臨床的経験を十分に裏付けている。 CD13 expression was confirmed in fresh cryosurgical specimens. In cases after hepatic artery embolization, CD13 + HCC cells were present along fibrous capsules forming cell clusters. In cases where hepatic artery embolization was not performed, CD13 + HCC cells usually formed small cell clusters inside the cancer lesion (FIG. 8B). CD13 was expressed on the cell surface in the HCC case. In normal liver samples, CD13 was expressed in sinusoids and bile ducts, clearly different from CD13 expression in HCC samples. HCC recurrence after hepatic artery embolization usually occurs in fibrotic capsules, and drug-resistant viable HCC (chemo-resistant viable HCC) is mainly present around fibrotic capsules, so immunity in samples after hepatic artery embolization Histochemical findings fully support clinical experience.
 7.CD13阻害が細胞をアポトーシスに導くことの確認
 CD13の阻害が、細胞増殖に及ぼす影響を分析した。細胞増殖は、CD13中和抗体(CD13 Ab)に72時間晒すと、濃度依存的に抑制された。明らかに、CD13中和抗体 10μg/ml及び20μg/mlの濃度での処理により、細胞増殖は、24時間で約80%、72時間で約95%まで抑制された(図9のA)。アポトーシス分析では、CD13中和抗体(CD13 Ab)、及びCD13阻害剤であるウベニメックス(Ube)の双方が、24時間後にHuH7及びPLC/PRF/5の双方においてアポトーシスを誘導することが明らかになった(図9のB)。
7). Confirmation that inhibition of CD13 leads to apoptosis Apoptosis was analyzed for the effect of inhibition of CD13 on cell proliferation. Cell proliferation was suppressed in a concentration-dependent manner when exposed to CD13 neutralizing antibody (CD13 Ab) for 72 hours. Apparently, treatment with the CD13 neutralizing antibody concentrations of 10 μg / ml and 20 μg / ml suppressed cell growth to about 80% in 24 hours and to about 95% in 72 hours (A in FIG. 9). Apoptosis analysis revealed that both the CD13 neutralizing antibody (CD13 Ab) and the CD13 inhibitor ubenimex (Ube) induced apoptosis in both HuH7 and PLC / PRF / 5 after 24 hours. (B in FIG. 9).
 本結果から、CD13+CD90+フラクションは主にG2/M/S期に存在しているが(図3のA)、このフラクションはDNA合成阻害剤であるDXR処置後に増大していた。ABC(ATP-binding Cassette)トランスポーターだけでなく、CD13も、抗癌剤に対する細胞保護(抗癌剤に対する抵抗性)を担っていると推定される。DXRは、ABCトランスポーター依存性抗癌剤としても公知である。0.5μg/mlのDXRで90%の細胞が生き残ることができるDXR耐性HuH7クローンを確立した(図10)。なお、HuH7親細胞の99%は、上記濃度のDXRで死滅し得る。CD13の阻害により、DXR耐性HuH7クローンにおいて、細胞増殖を50%以下に抑制させることができた(図9のC)。この知見は、CD13を阻害することで癌細胞の多剤耐性能を喪失させることができ、その結果、従来の抗癌剤であれば治療後に残存しえる癌細胞数を、CD13を阻害することで低減できることを示唆している。 From this result, although the CD13 + CD90 + fraction was mainly present in the G2 / M / S phase (A in FIG. 3), this fraction increased after treatment with DXR, which is a DNA synthesis inhibitor. In addition to ABC (ATP-binding Cassette) transporter, CD13 is presumed to be responsible for cytoprotection against anticancer drugs (resistance to anticancer drugs). DXR is also known as an ABC transporter-dependent anticancer agent. A DXR resistant HuH7 clone was established that was able to survive 90% of cells with 0.5 μg / ml DXR (FIG. 10). Note that 99% of the HuH7 parental cells can be killed by the above concentration of DXR. Inhibition of CD13 was able to suppress cell proliferation to 50% or less in the DXR resistant HuH7 clone (C in FIG. 9). This finding can inhibit the multidrug resistance of cancer cells by inhibiting CD13, resulting in a reduction in the number of cancer cells that can remain after treatment with conventional anticancer drugs by inhibiting CD13 It suggests that you can.
 8.CD13阻害が腫瘍の退縮を誘導することの確認
 HuH7細胞の各集団(CD13+CD133+、CD13-CD133+、CD13-CD133-)を、表1に示す細胞量でNOD/SCIDマウス(5週齢)の背部に麻酔下で皮下投与した。4週間後に腫瘍の形成を分析した。使用したマウス当たり、腫瘍を形成したマウスの数を表1に示す。
8). Confirmation that CD13 inhibition induces tumor regression Each population of HuH7 cells (CD13 + CD133 + , CD13 CD133 + , CD13 CD133 ) was treated with NOD / SCID mice (5 weeks old) at the cell amounts shown in Table 1. ) Was administered subcutaneously under anesthesia. Tumor formation was analyzed after 4 weeks. The number of mice that formed tumors per mouse used is shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この結果から、表1に示すように、CD13+ HuH7細胞の腫瘍形成能が高いことが確認された。NOD/SCIDマウスにおいて、CD13+CD133+フラクションは、100cellsから腫瘍を形成し、CD13-CD133+フラクションは1,000 cellsから腫瘍を形成し、CD13-CD133-フラクションは5,000 cellsからでも腫瘍を形成できなかった。 From this result, as shown in Table 1, it was confirmed that CD13 + HuH7 cells have high tumorigenicity. In NOD / SCID mice, the CD13 + CD133 + fraction formed tumors from 100 cells, the CD13 CD133 + fraction formed tumors from 1,000 cells, and the CD13 CD133 fraction failed to form tumors even from 5,000 cells. .
 次いで、予備的検討において、HuH7細胞をNOD/SCIDマウスに移植し、DNA合成阻害作用を有する抗癌剤(5-FU)と、CD13阻害剤であるウベニメックス(Ube)とでそれぞれ処置し、CD13+フラクションが増えるか否かを確認した。結果を図11のAに示す。5-FU (30mg/kg)の腹腔内投与の3日後までに、Ki67+活性細胞は、殆どがなくなり、小さな病巣においてのみ残存していた。そして、腫瘍の大部分はCD13+Ki67-細胞によって入れ替わっていた。コントロールでは、CD13発現は、細胞クラスターを伴っている小さなフラクションに限定されており、CD13を発現する殆どの細胞はKi67-であった。一方、ウベニメックス(Ube)で処置したマウス(20mg/kg, 3days)において、CD13+細胞の殆どがなくなっており、Ki67+活性細胞によって入れ替わっていた(図11のA)。 Then, in the preliminary study, transplanted HuH7 cells in NOD / SCID mice, and anti-cancer agents with DNA synthesis inhibitory activity (5-FU), treated respectively out with ubenimex (Ube) a CD13 inhibitor, CD13 + fraction Confirmed whether or not. The results are shown in FIG. By 3 days after intraperitoneal administration of 5-FU (30 mg / kg), Ki67 + active cells were almost gone and remained only in small lesions. And most of the tumor was replaced by CD13 + Ki67 - cells. In the control, CD13 expression was limited to a small fraction with cell clusters, and most cells expressing CD13 were Ki67 . On the other hand, in the mouse (20 mg / kg, 3days) treated with Ubenimex (Ube), most of CD13 + cells were lost and replaced with Ki67 + active cells (A in FIG. 11).
 次いで、PLC/PRF/5を用いて、更なる分析を行った。本細胞株におけるマーカーの発現は、臨床上得られたHCCと類似しており、HCCモデルとして有用である。結果を図15のBに示す。コントロールのマウスでは、CD13の発現は、小さなフラクションに限定されており、細胞の殆どはCD90を発現していた。5-FU (30mg/kg, 5 days injection and 2 days of withdrawal, 2 courses)の投与後、CD90+細胞の殆どは無くなっており、腫瘍の大部分はCD13+細胞によって入れ替わっていた。ウベニメックス(Ube)処理(20mg/kg, every day for 14 days)後は、CD90+細胞のみならず、CD13+細胞が検出された。5-FUとウベニメックス(Ube)の双方で処置したケースでは、腫瘍細胞の殆どが無くなっていた。CD13の発現は、不規則、非特異的であることが確認された(図11のB)。CD90+細胞が、24時間以内に急速にCD13+細胞を作成すること、並びにCD13+細胞の殆どは5-FUとウベニメックス(Ube)の双方の処理によって消失したことを考慮すると、ウベニメックス(Ube)処置によって生じたCD13+細胞は、残存するCD90+細胞から新たに作成され得ると考えられる。 Further analysis was then performed using PLC / PRF / 5. Marker expression in this cell line is similar to clinically obtained HCC and is useful as an HCC model. The results are shown in FIG. In control mice, CD13 expression was limited to a small fraction and most of the cells expressed CD90. After administration of 5-FU (30 mg / kg, 5 days injection and 2 days of withdrawal, 2 courses), most of CD90 + cells disappeared, and most of the tumor was replaced by CD13 + cells. After Ubeimex (Ube) treatment (20 mg / kg, every day for 14 days), not only CD90 + cells but also CD13 + cells were detected. In the case treated with both 5-FU and Ubenimex (Ube), most of the tumor cells were lost. The expression of CD13 was confirmed to be irregular and non-specific (FIG. 11B). Considering that CD90 + cells rapidly create CD13 + cells within 24 hours, and that most of CD13 + cells have been lost by both 5-FU and Ubeimex (Ube) treatment, Ubenimex (Ube) It is believed that CD13 + cells generated by treatment can be made fresh from the remaining CD90 + cells.
 ウベニメックスと5-FUの処置例において核変性が高く認められたことから、DNAフラグメンテーションが生じていることが示唆された。DNAフラグメンテーションの状態は、terminal deoxynucleotidyl transferase (TdT)を用いたin situハイブリダイゼーションによって分析した。コントロール及び5-FU処置例の双方において、数個のDNAフラグメンテーションがあったが、ウベニメックス処置例ではDNAフラグメンテーションがより多く確認された。特に、5-FUとウベニメックスの双方による処置例では、残存腫瘍細胞においてかなりのDNAフラグメンテーションが認められた(図11のB)。 In the treatment examples of Ubenimex and 5-FU, high nuclear degeneration was observed, suggesting that DNA fragmentation occurred. The state of DNA fragmentation was analyzed by in situ hybridization using terminal deoxynucleotidyl transferase (TdT). There were several DNA fragmentations in both control and 5-FU treated cases, but more DNA fragmentation was observed in Ubenimex treated cases. In particular, in the treatment example with both 5-FU and Ubenimex, considerable DNA fragmentation was observed in the remaining tumor cells (FIG. 11B).
 5-FUとウベニメックスの双方で処置した群(Ube+5-FU)では、コントロール(Control)、5-FU単独で処置した群(5-FU)、又はウベニメックス単独処置した群(Ube)に比べて、処置14日後には、腫瘍量は有意に減少していた(図11のC及びD)。 In the group treated with both 5-FU and Ubenimex (Ube + 5-FU), compared to the control group, the group treated with 5-FU alone (5-FU), or the group treated with Ubenimex alone (Ube), After 14 days of treatment, tumor volume was significantly reduced (FIGS. 11C and D).
 次に、CD13阻害効果を検討した。5-FU処置マウスから得られたCD13+が多いフラクションを、連続的にNOD/SCIDマウスに移植した。移植後、マウスはウベニメックス(20mg/kg)で7日間処理した。3週間観察した後、ウベニメックス処置マウス(Ube)では、腫瘍の形成が認められなかった(n=0/6)。一方、ウベニメックス処置が無い場合(Control)、60%のマウスは、腫瘍を増大させた(n=6/10)(図11のE)。 Next, the CD13 inhibitory effect was examined. The CD13 + rich fractions obtained from 5-FU treated mice were serially transplanted into NOD / SCID mice. After transplantation, the mice were treated with ubenimex (20 mg / kg) for 7 days. After 3 weeks of observation, no tumor formation was observed in Ubenimex-treated mice (Ube) (n = 0/6). On the other hand, in the absence of Ubenimex treatment (Control), 60% of the mice had increased tumors (n = 6/10) (E in FIG. 11).
 以上のことから、CD13+細胞である癌幹細胞をウベニメックス等のCD13阻害剤と5-FU等の抗癌剤(DNA合成阻害作用に基づく抗癌剤)を組み合わせて処理することで、より効果的にDNAフラグメンテーションを起こさせるとともに、癌幹細胞のアポトーシスを誘導することが確認された。このことから、CD13阻害剤と抗癌剤、好ましくはDNA合成阻害作用に基づく抗癌剤とを併用することで、癌細胞のみならず、癌治療抵抗性の癌幹細胞までをも消失できること、つまり癌の根治的治療が可能になると考えられる。さらに、CD13+細胞である癌幹細胞を、CD13阻害剤と抗癌剤(好ましくはDNA合成阻害作用に基づく抗癌剤)とを組み合わせて処理することで、癌幹細胞の造腫瘍能、言い換えると自己複製能を抑えることができることが確認された。このことから、CD13阻害剤と抗癌剤とを併用することで、癌幹細胞に起因する癌再発の予防が可能になると考えられる。 Based on the above, it is possible to more effectively perform DNA fragmentation by treating cancer stem cells, which are CD13 + cells, with a combination of a CD13 inhibitor such as Ubenimex and an anticancer agent such as 5-FU (an anticancer agent based on DNA synthesis inhibition). It was confirmed that it induces apoptosis of cancer stem cells. From this, it is possible to eliminate not only cancer cells but also cancer stem cells that are resistant to cancer treatment by using a combination of a CD13 inhibitor and an anticancer agent, preferably an anticancer agent based on an inhibitory action on DNA synthesis. Treatment is expected to be possible. Furthermore, the treatment of cancer stem cells, which are CD13 + cells, with a combination of a CD13 inhibitor and an anticancer agent (preferably an anticancer agent based on DNA synthesis inhibitory action) suppresses the tumorigenicity of cancer stem cells, in other words, the ability of self-renewal. It was confirmed that it was possible. From this, it is considered that the recurrence of cancer caused by cancer stem cells can be prevented by using a CD13 inhibitor in combination with an anticancer agent.
 9.CD13 + 細胞が低レベルのROSを含むことの確認
 10.CD13 細胞ではDNA鎖の2本鎖損傷が低く抑えられていることの確認
 CD13を阻害することによって誘導されるDNAフラグメンテーション及びアポトーシスと、ROS除去経路の関連性に着目した。自己再生できる休眠期の幹細胞は、通常、細胞内ROSが低レベル、またはROSレベルに即座には至らなくてもROSが低レベルであることは細胞の生存にとって有利であることからROSを低レベルに保つ方向に生命機能の作動原理がシフトしており、ROSレベルの調節不全は幹細胞の機能を損なわせることが報告されている(非特許文献8)。細胞内ROSは、2’, 7’-dichlorofluorescein diacetate (DCF-DA)染色により測定した。HuH7及びPLC/PRF/5の双方において、CD13+フラクションは、CD133強発現フラクション及びCD90+フラクションに比べて、ROS濃度は低かった。H2O2による酸化ストレスの刺激後、ROSは、CD13-フラクションよりも、CD13+フラクションにおいて明らかに低濃度であった。CD13中和抗体又はウベニメックス等のCD13阻害剤で処置することによって、CD13+細胞におけるROS濃度は、CD13-フラクションのROS濃度と同程度まで有意に増加した(図12のA)。臨床上得られたHCCにおいて、PLC/PRF/5と同様、CD13+CD90-フラクションは、CD13-CD90+フラクション及びCD13+CD90+フラクションよりも、低いROS濃度を示した(図12のB)。CD13+フラクションは、他のROS指標であるMitoSOXを含んでいた(図12のC)。CD13とROS除去経路との相互関係を検討するために、グルタミン-システインリガーゼをコードしえる遺伝子であるGCLMの発現をRT-PCRによって分析した。GCLMの発現は、CD13+CD90-フラクションにおいて、CD13+CD90+、CD13-CD90+及びCD13-CD90-フラクションに比べて、過剰発現していた(p<0.001)(図12のC)。
9. CD13 + confirmed 10 of that cell contains a low level of ROS. Confirmation that DNA strand double strand damage is kept low in CD13 + cells We focused on the relationship between DNA fragmentation and apoptosis induced by inhibiting CD13 and the ROS removal pathway. Dormant stem cells that are capable of self-renewal usually have low levels of ROS because intracellular ROS is low, or low ROS is beneficial for cell survival even if ROS levels are not reached immediately It has been reported that the operating principle of vital functions is shifted in the direction of maintaining the above, and that dysregulation of ROS levels impairs the function of stem cells (Non-patent Document 8). Intracellular ROS was measured by 2 ', 7'-dichlorofluorescein diacetate (DCF-DA) staining. In both HuH7 and PLC / PRF / 5, the CD13 + fraction had a lower ROS concentration than the CD133 strong expression fraction and the CD90 + fraction. After stimulation of oxidative stress with H 2 O 2 , ROS was clearly lower in the CD13 + fraction than in the CD13 fraction. Treatment with a CD13 neutralizing antibody or a CD13 inhibitor such as Ubenimex significantly increased the ROS concentration in CD13 + cells to the same extent as the ROS concentration in the CD13 fraction (FIG. 12A). In clinically obtained HCC, like PLC / PRF / 5, the CD13 + CD90 fraction showed a lower ROS concentration than the CD13 CD90 + and CD13 + CD90 + fraction (FIG. 12B). The CD13 + fraction contained MitoSOX, another ROS indicator (FIG. 12C). In order to examine the correlation between CD13 and the ROS removal pathway, the expression of GCLM, a gene capable of encoding glutamine-cysteine ligase, was analyzed by RT-PCR. The expression of GCLM was overexpressed in the CD13 + CD90 fraction compared to the CD13 + CD90 + , CD13 CD90 + and CD13 CD90 fractions (p <0.001) (C in FIG. 12).
 細胞毒性化学療法及び電離放射線照射後の細胞死は、部分的にフリーラジカルに起因していることが知られている(非特許文献9)。本検討において、CD13+細胞集団において低ROS濃度が示されたことから、CD13+フラクションがDNA損傷を引き起こすか否かを検証した。この検証のために、精製したCD13+CD90-、CD13+CD90+、CD13-CD90+、及びCD13-CD90-のHCC細胞に放射線照射し、アルカリコメットアッセイに供した。電離放射線照射後をしていない細胞ではDNA損傷の程度に有意な差が認められなかったが、電離放射線照射を行った場合、CD13+CD90-細胞において、他の3つのフラクションに比べて、DNA鎖の破損は少なかった(P<0.01)(図13のA)。HuH7細胞において、CD13+フラクションは、DNA損傷のレベルが、CD13-フラクションに比べて低かった。CD13-CD133-フラクションにおいて、放射線照射した群とtempol処置した群との間では、有意な差は認められなかった(図13のB)。これらの知見は、CD13+フラクションにおいて増強されたROS防御は、遺伝毒性癌治療後のDNA損傷の減少に寄与していることを実証している。 It is known that cell death after cytotoxic chemotherapy and ionizing radiation is partly caused by free radicals (Non-patent Document 9). In this study, a low ROS concentration was shown in the CD13 + cell population, so it was verified whether the CD13 + fraction caused DNA damage. For this verification, purified CD13 + CD90 , CD13 + CD90 + , CD13 CD90 + , and CD13 CD90 HCC cells were irradiated and subjected to an alkaline comet assay. There was no significant difference in the extent of DNA damage in cells that were not irradiated after ionizing radiation, but when ionizing radiation was applied, DNA in CD13 + CD90 - cells was higher than in the other three fractions. There was little chain breakage (P <0.01) (A in FIG. 13). In HuH7 cells, the CD13 + fraction had a lower level of DNA damage compared to the CD13 fraction. In the CD13 CD133 fraction, no significant difference was observed between the irradiated group and the tempol treated group (FIG. 13B). These findings demonstrate that enhanced ROS protection in the CD13 + fraction contributes to reduced DNA damage after genotoxic cancer treatment.
 さらにHuH7及びPLC/PRF/5を用いて、化学療法(DNA合成阻害剤: 5-FU、及びROS上昇作用を有する抗癌剤[アントラサイクリン系抗癌剤]:DXR)後の細胞内ROS濃度を経時的に計測した結果を図14に示す。図14からわかるように、CD13細胞ではCD13-細胞に比べてROS濃度が低く抑えられており、化学療法によって一旦上昇したROS濃度も、速やかに低レベルまで復帰した。この事実は、CD13細胞が化学療法に耐性であることを示す図7の結果からも裏付けられる。 Furthermore, by using HuH7 and PLC / PRF / 5, the intracellular ROS concentration after chemotherapy (DNA synthesis inhibitor: 5-FU and anticancer agent with an ROS-raising effect [Anthracycline anticancer agent]: DXR) was changed over time. The measurement results are shown in FIG. As can be seen from FIG. 14, the ROS concentration in CD13 + cells was suppressed to be lower than that in CD13 cells, and the ROS concentration once increased by chemotherapy was quickly restored to a low level. This fact is also supported by the results in FIG. 7 showing that CD13 + cells are resistant to chemotherapy.
 HuH7及びPLC/PRF/5を用いて、電離放射線照射(4Gy)後の部分的にフリーラジカルに起因して生じたDNA鎖の2本鎖損傷を、γ-H2AXの出現を指標として経時的に定量測定した結果を図15に示す。図中の赤色の数値は、CD13細胞(PLC/PRF/5:CD13CD90細胞、HuH7: CD13CD133細胞)におけるγ-H2AXの割合(%)、青色の数値は、CD13細胞(PLC/PRF/5:CD13CD90細胞、HuH7: CD13CD133細胞)におけるγ-H2AXの割合(%)をそれぞれ示す。図15に示すように、CD13細胞ではCD13細胞に比べてDNA鎖の2本鎖損傷が低く抑えられていた。この事実は、CD13細胞が放射線照射療法に耐性であることを示す図7の結果からも裏付けられる。このように、電離放射線照射処理や化学療法をしても、CD13細胞ではDNA鎖の2本鎖損傷が抑制されており、またDNA鎖の2本鎖損傷の修復能が活性化されていることを示唆している。 Using HuH7 and PLC / PRF / 5, DNA strand double-strand damage caused by free radicals after ionizing irradiation (4Gy) was measured over time using the appearance of γ-H2AX as an index. The result of quantitative measurement is shown in FIG. The red numbers in the figure are the percentage of γ-H2AX in CD13 + cells (PLC / PRF / 5: CD13 + CD90 cells, HuH7: CD13 + CD133 + cells), and the blue numbers are CD13 cells The ratio (%) of γ-H2AX in (PLC / PRF / 5: CD13 CD90 + cells, HuH7: CD13 CD133 + cells) is shown. As shown in FIG. 15, double strand damage to DNA strands was suppressed to a lower level in CD13 + cells than in CD13 cells. This fact is also supported by the results in FIG. 7, which show that CD13 + cells are resistant to radiation therapy. Thus, even with ionizing radiation treatment or chemotherapy, double strand damage to DNA strands is suppressed in CD13 + cells, and the ability to repair double strand damage to DNA strands is activated. Suggests that.
 11.結果のまとめ
 以上の結果から、CD13は、癌幹細胞、特にヒトの肝癌や消化管癌(大腸癌)の固形癌の癌幹細胞の表面において特異的に発現しており、ROS除去経路の制御に関与して、癌幹細胞の維持に不可欠な機能を有している。このことから、CD13は癌幹細胞、特に肝癌や消化管癌(大腸癌)等の固形癌の癌幹細胞の特異的マーカーとなることが明らかとなった。特に、CD13を発現している癌幹細胞(CD13細胞)は、細胞周期静止期にあること、ROS濃度が低く抑えられていること、及びDNAの2本鎖損傷が抑制されているか若しくは2本鎖損傷の修復能が活性化されていること等から、従来の化学療法や電離放射線照射等の治療に対して極めて抵抗性の高い治療抵抗性の固形癌幹細胞であることが確認された。このことは、従来の化学療法や電離放射線照射等の癌治療における問題(根治不能、再発、転移)が、CD13細胞に起因している可能性を示唆している。つまり、CD13細胞を癌治療のターゲットにすることで、従来の癌治療における問題を解決し、癌を根治し、また癌の再発や転移を予防することができると考えられる。
11. Summary of the results Based on the above results, CD13 is specifically expressed on the surface of cancer stem cells, especially solid stem cancer stem cells of human liver cancer and gastrointestinal cancer (colon cancer), and is involved in the regulation of ROS elimination pathway Thus, it has an essential function for maintaining cancer stem cells. This revealed that CD13 is a specific marker for cancer stem cells, particularly cancer stem cells of solid cancers such as liver cancer and gastrointestinal cancer (colon cancer). In particular, cancer stem cells expressing CD13 (CD13 + cells) are in the cell cycle quiescence, ROS concentration is suppressed low, and DNA double-strand damage is suppressed or double. Since the ability to repair chain damage was activated, it was confirmed that the solid cancer stem cells were extremely resistant to conventional treatments such as chemotherapy and ionizing radiation. This suggests that problems in cancer treatment such as conventional chemotherapy and ionizing radiation (incurable, recurrence, metastasis) may be caused by CD13 + cells. In other words, it is considered that by using CD13 + cells as a target for cancer treatment, problems in conventional cancer treatment can be solved, cancer can be cured, and cancer recurrence and metastasis can be prevented.
 低酸素状態では、組織内はアシドーシスに陥り、抗癌剤や放射線照射のよる抗癌治療の効果が減弱する。また、低酸素状態は、腫瘍細胞の遺伝子変化を更に引き起こすことにより、より悪性度の高い癌細胞が生じると考えられている。さらに、低酸素状態では細胞分裂が止まった状態になり易く静止期の細胞が増える。かかる静止期の細胞は、抗癌剤や放射線照射による癌治療に高い抵抗性を有することになる。また、低酸素状態は腫瘍血管新生が腫瘍増殖に追い付かずにおこる(一部は腫瘍自体が自分の周囲環境を癌に優位な方向に動かしていることによる)が、このような血管新生が疎な部位では、抗癌剤自体が標的部位に到達しないということも知られている。 In hypoxia, the tissue falls into acidosis, and the effects of anticancer drugs and anticancer treatment with radiation are diminished. Hypoxia is considered to cause cancer cells with higher malignancy by further causing genetic changes in tumor cells. Furthermore, in a hypoxic state, cell division is likely to stop and the number of stationary cells increases. Such quiescent cells have high resistance to cancer treatment by anticancer agents and radiation. Hypoxia also occurs when tumor angiogenesis does not catch up with tumor growth (in part because the tumor itself moves its surrounding environment in a direction that favors cancer). It is also known that the anticancer agent itself does not reach the target site at such sites.
 前述するように、CD13細胞である癌幹細胞は、低酸素状態にあるため(ROS濃度が低く抑えられている)、抗癌剤や放射線照射による癌治療に高い抵抗性を有しているが、上記本発明の知見によれば、当該細胞をCD13阻害剤で処置することによって、CD13+細胞におけるROS濃度を上昇させることができ、その結果、抗癌剤や放射線照射に対する感受性を高め、癌の治療効果を向上させることができる。つまり本発明は、CD13中和抗体やウベニメックスなどのCD13阻害剤による処置と、抗癌剤や放射線照射による癌治療とを併用することで、従来の治療法では残存する癌幹細胞に対してもアポトーシスを誘導でき、癌を根治する治療法(癌根治療法)として、また癌の再発を予防するための治療法(癌再発予防療法)として有効である。 As described above, since the cancer stem cells which are CD13 + cells are in a hypoxic state (ROS concentration is suppressed to a low level), they have high resistance to cancer treatment by anticancer agents and radiation irradiation. According to the knowledge of the present invention, by treating the cells with a CD13 inhibitor, the ROS concentration in CD13 + cells can be increased, and as a result, the sensitivity to anticancer agents and radiation is increased, and the therapeutic effect of cancer is increased. Can be improved. In other words, the present invention uses a combination of a CD13 inhibitor such as a CD13 neutralizing antibody or ubenimex and a cancer treatment with an anticancer agent or radiation to induce apoptosis in cancer stem cells remaining in the conventional therapy. It is effective as a treatment method for cancer cure (cancer radical treatment method) and as a treatment method for preventing cancer recurrence (cancer recurrence prevention therapy).
 また、前述するように、CD13細胞はDNAの2本鎖損傷が抑制されているか、またはDNAの2本鎖損傷の修復能が活性化されている。このことから、CD13阻害剤で処置してROSを上昇させることで抗癌剤に対する感受性を向上させると共に、抗癌剤として好ましくは5-フルオロウラシル等のDNA合成阻害作用を有する抗癌剤を用いて処置することで、効果的にDNAフラグメンテーションとアポトーシスを導くことができ、その結果、癌を根治し、また癌の再発予防をすることが可能になる。 In addition, as described above, CD13 + cells have DNA double strand damage suppressed or DNA double strand damage repair ability is activated. From this, it is possible to improve sensitivity to anticancer agents by increasing ROS by treating with CD13 inhibitors, and preferably by using anticancer agents having an inhibitory action on DNA synthesis such as 5-fluorouracil as anticancer agents, DNA fragmentation and apoptosis can be guided, and as a result, cancer can be cured and cancer recurrence can be prevented.
 配列番号1及び2は、グルタミン-システインリガーゼ(GCLM)遺伝子の増幅に使用したPCRプライマーの塩基配列、配列番号1及び2は、グリセルアルデヒド-3-リン酸デハイドロゲナーゼ(GAPDH)遺伝子の増幅に使用したPCRプライマーの塩基配列をそれぞれ意味する。 SEQ ID NOs: 1 and 2 are the nucleotide sequences of PCR primers used for the amplification of the glutamine-cysteine ligase (GCLM) gene, and SEQ ID NOs: 1 and 2 are glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene sequences. It means the base sequence of PCR primer used for amplification.

Claims (15)

  1.  CD13阻害剤及び抗癌剤を含有することを特徴とする、CD13を発現している固形癌に対する癌治療剤または癌再発予防剤。 A cancer therapeutic agent or a cancer recurrence preventive agent for solid cancer expressing CD13, comprising a CD13 inhibitor and an anticancer agent.
  2.  CD13阻害剤が、CD13中和抗体及びウベニメックスよりなる群から選択される少なくとも1種である、請求項1に記載の癌治療剤または癌再発予防剤。 The cancer therapeutic agent or cancer recurrence preventing agent according to claim 1, wherein the CD13 inhibitor is at least one selected from the group consisting of a CD13 neutralizing antibody and Ubenimex.
  3.  抗癌剤がDNA合成阻害作用を有するか、またはROS上昇作用を有する抗癌剤である、請求項1又は2に記載の抗癌剤。 The anticancer agent according to claim 1 or 2, wherein the anticancer agent is an anticancer agent having a DNA synthesis inhibitory action or an ROS increasing action.
  4.  固形癌が、肝癌、肺癌及び消化管癌から選択されるいずれかである、請求項1乃至3のいずれかに記載の抗癌剤または癌再発予防剤。 The anticancer agent or cancer recurrence preventing agent according to any one of claims 1 to 3, wherein the solid cancer is any one selected from liver cancer, lung cancer and gastrointestinal cancer.
  5.  CD13阻害剤を含有する第1剤と、抗癌剤を含有する第2剤を含むことを特徴とする、CD13を発現している固形癌に対する癌治療用または癌再発予防用の医薬品キット。 A pharmaceutical kit for treating cancer or preventing cancer recurrence for a solid cancer expressing CD13, comprising a first agent containing a CD13 inhibitor and a second agent containing an anticancer agent.
  6.  癌患者にCD13阻害剤及び抗癌剤を投与する工程を有するか、または癌患者にCD13阻害剤投与処置と電離放射線照射処置を行う工程を有する、癌の根治的治療方法または再発予防方法。 A method of radically treating cancer or preventing recurrence, comprising a step of administering a CD13 inhibitor and an anticancer agent to a cancer patient, or a step of administering a CD13 inhibitor and ionizing radiation to a cancer patient.
  7.  癌患者について癌治療後の治療効果を測定する方法であって、
    (a)癌患者の癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程、及び
    (b)前記工程で検出されたCD13発現細胞の数に応じて、癌の治療効果を測定する工程、
    を含むことを特徴とする、上記測定方法。
    A method for measuring a therapeutic effect after cancer treatment for a cancer patient,
    (A) a step of measuring cells expressing CD13 in a test cell derived from a tissue after cancer treatment of a cancer patient, and (b) depending on the number of CD13-expressing cells detected in the step Measuring the therapeutic effect of cancer,
    The above-mentioned measuring method characterized by including.
  8.  癌患者について癌の治療後の癌再発危険度を測定する方法であって、
    (a’) 癌患者の癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程、及び
    (b’)前記工程で検出されたCD13発現細胞の数に応じて、癌再発危険度を測定する工程、
    を含むことを特徴とする、上記測定方法。
    A method of measuring the risk of cancer recurrence after cancer treatment for a cancer patient,
    (A ′) a step of measuring cells expressing CD13 in a test cell derived from a tissue after cancer treatment of a cancer patient, and (b ′) the number of CD13-expressing cells detected in the step According to the process of measuring the risk of cancer recurrence,
    The above-mentioned measuring method characterized by including.
  9.  癌組織又は癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定する工程を有する癌幹細胞の検出方法。 A method for detecting cancer stem cells comprising a step of measuring cells expressing CD13, targeting test cells derived from cancer tissue or tissue after cancer treatment.
  10.  CD13を発現している細胞の測定が、CD13に特異的に結合可能な抗体を用いて行われる、請求項1に記載の検出方法。 The detection method according to claim 1, wherein the measurement of cells expressing CD13 is performed using an antibody capable of specifically binding to CD13.
  11.  CD13と共にCD90を発現している細胞を測定する工程を有する、請求項1又は2に記載の検出方法。 The detection method according to claim 1 or 2, comprising a step of measuring cells expressing CD90 together with CD13.
  12.  CD13に特異的に結合する物質を含むことを特徴とする、癌幹細胞の検出試薬。 A cancer stem cell detection reagent comprising a substance that specifically binds to CD13.
  13.  CD13に特異的に結合する物質を含むことを特徴とする、癌幹細胞の検出キット。 A cancer stem cell detection kit comprising a substance that specifically binds to CD13.
  14.  更に、CD90に特異的に結合する物質を含む、請求項8に記載の検出キット。 The detection kit according to claim 8, further comprising a substance that specifically binds to CD90.
  15.  癌患者について癌症状の程度又は癌危険度を測定する方法であって、
    (A)癌患者の癌組織又は癌治療後の組織に由来する被験細胞を対象として、CD13を発現している細胞を測定工程、及び
    (B)前記工程で測定されたCD13発現細胞の数に応じて、癌症状の程度又は癌危険度を測定する工程、
    を含むことを特徴とする、上記測定方法。
    A method for measuring the degree of cancer symptoms or cancer risk for cancer patients,
    (A) measuring cells expressing CD13, targeting test cells derived from cancer tissue of cancer patients or tissue after cancer treatment, and (B) the number of CD13-expressing cells measured in the step In response, measuring the degree of cancer symptoms or cancer risk,
    The above-mentioned measuring method characterized by including.
PCT/JP2011/054287 2010-02-26 2011-02-25 Method for detection of cancer stem cell, and therapeutic agent or recurrence-preventing agent for cancer WO2011105551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010043353 2010-02-26
JP2010-043353 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105551A1 true WO2011105551A1 (en) 2011-09-01

Family

ID=44506948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054287 WO2011105551A1 (en) 2010-02-26 2011-02-25 Method for detection of cancer stem cell, and therapeutic agent or recurrence-preventing agent for cancer

Country Status (1)

Country Link
WO (1) WO2011105551A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121323A (en) * 2012-12-21 2014-07-03 Stembios Technologies Inc Method for evaluating action effect by stem cell
JP2014141457A (en) * 2012-12-27 2014-08-07 Nihon Medi Physics Co Ltd Anti-tumor agent and anti-tumor kit
US8852941B2 (en) 2010-02-18 2014-10-07 Osaka University Method for producing induced pluripotent stem cells
CN104678109A (en) * 2015-03-06 2015-06-03 复旦大学附属中山医院 IHC (immunohistochemistry) kit for human-derived CD13 soluble protein as well as application of IHC kit
KR20160034417A (en) * 2013-07-31 2016-03-29 비온테크 아게 Diagnosis and therapy of cancer involving cancer stem cells
JP6197077B1 (en) * 2016-07-14 2017-09-13 クラシエ製薬株式会社 Anticancer agent, radiosensitizer and food composition
US10143710B2 (en) 2010-08-04 2018-12-04 StemBios Technologies, Inc. Somatic stem cells
KR20190011340A (en) 2014-12-17 2019-02-01 데루타-후라이 화마 가부시키가이샤 Pharmaceutical composition for treatment or palliation of elderly or end-stage cancer patient
US10233253B2 (en) 2011-05-13 2019-03-19 Ganymed Pharmaceuticals Ag Antibodies for treatment of cancer expressing claudin 6
CN110452982A (en) * 2019-05-08 2019-11-15 中山大学孙逸仙纪念医院 Breast cancer circulating tumor cell miRNA and EMT markers in detecting kit and its application
US11473085B2 (en) 2009-02-20 2022-10-18 Ganymed Pharmaceuticals Gmbh Methods and compositions for diagnosis and treatment of cancer
US11492592B2 (en) 2012-12-06 2022-11-08 StemBios Technologies, Inc. Lgr5+ somatic stem cells

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ABE F. ET AL: "ENHANCEMENT OF ANTITUMOR EFFECT OF CYTOTOXIC AGENTS BY BESTATIN", THE JOURNAL OF ANTIBIOTICS, vol. 38, no. 3, March 1985 (1985-03-01), pages 411 - 414 *
AOZUKA Y. ET AL: "Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice", CANCER LETTERS, vol. 216, no. 1, 8 December 2004 (2004-12-08), pages 35 - 42 *
FLORIAN S. ET AL: "Detection of molecular targets on the surface of CD34+/CD38- stem cells in various myeloid malignancies", LEUKEMIA & LYMPHOMA, vol. 47, no. 2, February 2006 (2006-02-01), pages 207 - 222 *
FUMINORI ABE ET AL.: "Rat Kangan AH66 Hika Ishoku Shuyo ni Taisuru Bestatin to Bleomycin no Heiyo Koka", JAPANESE JOURNAL OF ANTIBIOTICS, vol. 37, no. 4, April 1984 (1984-04-01), pages 589 - 592 *
HARAGUCHI N. ET AL: "CD13 is a therapeutic target in human liver cancer stem cells", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 120, no. 9, 1 September 2010 (2010-09-01), pages 3326 - 3339 *
HIROFUMI YAMAMOTO ET AL.: "Cancer Stem Cells in Gastrointestinal Carcinomas", BIOTHERAPY, vol. 23, no. 5, September 2009 (2009-09-01), pages 386 - 392 *
KEHLEN A. ET AL: "Biological significance of aminopeptidase N/CD13 in thyroid carcinomas", CANCER RESEARCH, vol. 63, no. 23, 1 December 2003 (2003-12-01), pages 8500 - 8506 *
ROCKEN C. ET AL: "Canalicular immunostaining of aminopeptidase N (CD13) as a diagnostic marker for hepatocellular carcinoma", JOURNAL OF CLINICAL PATHOLOGY, vol. 58, no. 10, October 2005 (2005-10-01), pages 1069 - 1075 *
YAMASHITA M. ET AL: "Involvement of aminopeptidase N in enhanced chemosensitivity to paclitaxel in ovarian carcinoma in vitro and in vivo", INTERNATIONAL JOURNAL OF CANCER, vol. 120, no. 10, 15 May 2007 (2007-05-15), pages 2243 - 2250 *
YAMAZAKI H. ET AL: "CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 383, no. 2, 29 May 2009 (2009-05-29), pages 172 - 177 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473085B2 (en) 2009-02-20 2022-10-18 Ganymed Pharmaceuticals Gmbh Methods and compositions for diagnosis and treatment of cancer
US8852941B2 (en) 2010-02-18 2014-10-07 Osaka University Method for producing induced pluripotent stem cells
US10143710B2 (en) 2010-08-04 2018-12-04 StemBios Technologies, Inc. Somatic stem cells
US10233253B2 (en) 2011-05-13 2019-03-19 Ganymed Pharmaceuticals Ag Antibodies for treatment of cancer expressing claudin 6
US11859008B2 (en) 2011-05-13 2024-01-02 Ganymed Pharmaceuticals Gmbh Antibodies for treatment of cancer expressing claudin 6
US10919974B2 (en) 2011-05-13 2021-02-16 Ganymed Pharmaceuticals Gmbh Antibodies for treatment of cancer expressing claudin 6
US11492592B2 (en) 2012-12-06 2022-11-08 StemBios Technologies, Inc. Lgr5+ somatic stem cells
JP2014121323A (en) * 2012-12-21 2014-07-03 Stembios Technologies Inc Method for evaluating action effect by stem cell
JP2014141457A (en) * 2012-12-27 2014-08-07 Nihon Medi Physics Co Ltd Anti-tumor agent and anti-tumor kit
JP2016533738A (en) * 2013-07-31 2016-11-04 バイオエヌテック アーゲーBioNTech AG Diagnosis and treatment of cancer including cancer stem cells
US10604568B2 (en) 2013-07-31 2020-03-31 BioN Tech AG Diagnosis and therapy of cancer involving cancer stem cells
KR102308813B1 (en) 2013-07-31 2021-10-06 비온테크 에스이 Diagnosis and therapy of cancer involving cancer stem cells
KR20160034417A (en) * 2013-07-31 2016-03-29 비온테크 아게 Diagnosis and therapy of cancer involving cancer stem cells
US11795218B2 (en) 2013-07-31 2023-10-24 Biontech Ag Diagnosis and therapy of cancer involving cancer stem cells
KR20190011340A (en) 2014-12-17 2019-02-01 데루타-후라이 화마 가부시키가이샤 Pharmaceutical composition for treatment or palliation of elderly or end-stage cancer patient
US10293019B2 (en) 2014-12-17 2019-05-21 Delta-Fly Pharma, Inc. Pharmaceutical composition for treatment of or remission in elderly or terminal cancer patient
CN104678109A (en) * 2015-03-06 2015-06-03 复旦大学附属中山医院 IHC (immunohistochemistry) kit for human-derived CD13 soluble protein as well as application of IHC kit
JP2018008898A (en) * 2016-07-14 2018-01-18 クラシエ製薬株式会社 Anticancer agent, radiosensitizer, and food composition
JP6197077B1 (en) * 2016-07-14 2017-09-13 クラシエ製薬株式会社 Anticancer agent, radiosensitizer and food composition
CN110452982A (en) * 2019-05-08 2019-11-15 中山大学孙逸仙纪念医院 Breast cancer circulating tumor cell miRNA and EMT markers in detecting kit and its application

Similar Documents

Publication Publication Date Title
WO2011105551A1 (en) Method for detection of cancer stem cell, and therapeutic agent or recurrence-preventing agent for cancer
Haraguchi et al. CD13 is a therapeutic target in human liver cancer stem cells
Qian et al. p28GANK prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis
JP6132833B2 (en) Small molecule TRAIL gene induction of normal and tumor cells as anticancer therapy
US20150119267A1 (en) Inhibition of colony stimulating factor-1 receptor signaling for the treatment of brain cancer
JP2014514326A5 (en)
US20160113911A1 (en) Methods and compositions for the treatment of cancer
Vucur et al. Sublethal necroptosis signaling promotes inflammation and liver cancer
US20160304970A1 (en) Gene biomarker to diagnose metastic liver cancer and methods for targeting the same
Maekawa et al. Expression and localization of FOXO1 in non-small cell lung cancer
JP7314289B2 (en) Deoxycytidine derivative or deoxyuridine derivative for use in cancer therapy
Yousef et al. Norcantharidin potentiates sorafenib antitumor activity in hepatocellular carcinoma rat model through inhibiting IL-6/STAT3 pathway
KR20180132298A (en) Use related with liver cell differentiation and liver disease using Yap/Taz
Al-Shamma et al. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells
Cao et al. Erlotinib is effective against FLT3‐ITD mutant AML and helps to overcome intratumoral heterogeneity via targeting FLT3 and Lyn
Pinheiro et al. Targeting metabolic reprogramming as an anti-cancer strategy: aiming at monocarboxylate transporters
US11918550B2 (en) Sensitization of cancer cells to differentiation therapy with mitochondrial uncoupler niclosamide ethanolamine
WO2023008533A1 (en) Pharmaceutical composition for treatment of pancreatic cancer and bile duct cancer
US20240082183A1 (en) Methods for preventing or treating conditions related to t cell mediated intestinal disorders
Aggarwal et al. Detection of γ-OHPdG in circulating tumor cells of patients with hepatocellular carcinoma as a potential prognostic biomarker of recurrence
Ho Functional characterization and clinical relevance of ubiquitin conjugating enzyme E2T in hepatocellular carcinoma
WO2023044501A2 (en) Methods for treating a subtype of colorectal cancer
Abouzeid et al. of the American Pancreatic Association and the 17th Meeting of the International Association of Pancreatology, October 31YNovember 3, 2012, Miami, Florida
Toh et al. 5-alpha Reductase
Kinnaird Metabolic Reprogramming and Epigenetic Regulation in Renal Cell Carcinoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747507

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP