WO2011105173A1 - Glasses for viewing stereoscopic images and device for displaying stereoscopic images - Google Patents

Glasses for viewing stereoscopic images and device for displaying stereoscopic images Download PDF

Info

Publication number
WO2011105173A1
WO2011105173A1 PCT/JP2011/051880 JP2011051880W WO2011105173A1 WO 2011105173 A1 WO2011105173 A1 WO 2011105173A1 JP 2011051880 W JP2011051880 W JP 2011051880W WO 2011105173 A1 WO2011105173 A1 WO 2011105173A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
group
stereoscopic image
shutter
polarization
Prior art date
Application number
PCT/JP2011/051880
Other languages
French (fr)
Japanese (ja)
Inventor
幸仁 中澤
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012501716A priority Critical patent/JPWO2011105173A1/en
Publication of WO2011105173A1 publication Critical patent/WO2011105173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/16Stereoscopic photography by sequential viewing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/008Aspects relating to glasses for viewing stereoscopic images

Definitions

  • the present invention relates to stereoscopic image viewing glasses and a stereoscopic image display device, and more specifically, stereoscopic image viewing glasses required in a system for stereoscopically displaying a two-dimensional image such as a television, and a stereoscopic image display device equipped with the same.
  • a stereoscopic image viewing glasses required in a system for stereoscopically displaying a two-dimensional image such as a television, and a stereoscopic image display device equipped with the same.
  • a stereoscopic image display device such as a television capable of displaying a stereoscopic image.
  • the methods for displaying the stereoscopic image there is a method for allowing the observer to recognize the two-dimensional image as a stereoscopic image by wearing dedicated stereoscopic image viewing glasses by the observer.
  • What is currently viewed as promising in this method is that the right-eye image and the left-eye image, which are parallax images, are alternately displayed in time series on a display that displays the image, and the observer as shown in FIG.
  • This is a method of wearing a stereoscopic image viewing glasses G1 and viewing an image on a liquid crystal display (see, for example, Patent Document 1).
  • the stereoscopic image viewing glasses G1 are provided with liquid crystal shutters S1 and S2 on the left and right eyes as shown in FIG. 11, and a control circuit C for controlling the liquid crystal shutters S1 and S2 is connected thereto.
  • the left-eye image LI and the right-eye image RI are assigned to two fields, respectively, and are time-sequentially. These are alternately displayed at high speed.
  • the light emitted from the liquid crystal display D is linearly polarized light.
  • the switching between opening and closing of the left and right liquid crystal shutters S1, S2 of the stereoscopic image viewing glasses G1 is performed in synchronization with the switching of the left-eye image LI and the right-eye image RI.
  • the liquid crystal shutters S1 and S2 have polarizing plates P11 and P12 and a liquid crystal layer LC, and the rotation angle of the linearly polarized light L1 incident on the liquid crystal shutters S1 and S2 is determined by the liquid crystal layer LC. Is used to control the transmittance of light emitted from the liquid crystal shutters S1 and S2.
  • the liquid crystal display D and the stereoscopic image viewing glasses G1 By controlling the liquid crystal display D and the stereoscopic image viewing glasses G1 in this manner, as shown in FIG. 12, when the left eye image LI is displayed on the liquid crystal display D, the right eye liquid crystal shutter S1 is opened. The liquid crystal shutter S2 for the left eye is closed and the liquid crystal shutter S2 for the right eye is opened.
  • the liquid crystal shutter S1 for the right eye is opened and the liquid crystal shutter S2 for the left eye is closed.
  • a display such as the liquid crystal display D in which the emitted light is not linearly polarized light, for example, a self-luminous display such as an organic EL display or a plasma display can be used.
  • FIG. 14 shows stereoscopic image viewing glasses G2 having two polarizing plates H1 and H2 having polarization axes orthogonal to each other for the right eye and the left eye, and linearly polarized light that is orthogonal to each other for each parallax image.
  • the two-dimensional display 11 includes a backlight K1, a polarizing plate K2, a liquid crystal layer K3, a polarizing plate K4, and a ⁇ / 2 plate array K5.
  • the polarizing plates K2 and K4 are arranged in crossed Nicols.
  • the ⁇ / 2 plate array K5 includes a ⁇ / 2 plate having a polarization axis such that linearly polarized light emitted from the polarizing plate K4 is converted into linearly polarized light having a polarization direction in the Y direction from LI1 to LI4, and from RI1.
  • ⁇ / 2 plates having polarization axes that are converted into linearly polarized light having a polarization direction in the X direction of RI4 are alternately arranged.
  • the ⁇ / 2 plate arranged from RI1 to RI4 may be an optically isotropic optical plate containing air.
  • the liquid crystal layer K3 and the ⁇ / 2 plate array K5 are combined with strip-shaped images corresponding to the right-eye image RI and the left-eye image LI.
  • a two-dimensional display in which the light emitted from the backlight K1, the polarizing plate K2, and the liquid crystal layer K3 is not linearly polarized light for example, a self-luminous display such as an organic EL display or a plasma display may be used. it can.
  • FIG. 15 is a graph showing that the rotation angle ⁇ in the ZY plane of the liquid crystal shutter affects the transmittance when a display that emits polarized light is used.
  • the liquid crystal layer LC is controlled so that the transmittance of the liquid crystal shutter S2 is maximized when the rotation angle ⁇ is 0 degrees.
  • J2 represents the rotation angle ⁇ of 0 degrees.
  • the liquid crystal layer LC is controlled so that the transmittance of the liquid crystal shutter S2 becomes zero.
  • S2 becomes S1.
  • the rotation angle ⁇ of the liquid crystal shutter is increased, the polarized light emitted from the display is shifted from the polarization axis of the polarizing plate P11 of the liquid crystal shutter.
  • the right-eye image RI is visually recognized by the left eye
  • the left-eye image LI is visually recognized by the right eye
  • the amount of light that the right-eye image RI enters the right eye and the left-eye image LI are Since the amount of light entering the left eye decreases, an image with a reduced stereoscopic effect is visually recognized.
  • the stereoscopic image display apparatus using the stereoscopic image viewing glasses G2 provided with two polarizing plates having polarization axes orthogonal to each other for the right eye and the left eye shown in FIG. . That is, when the stereoscopic image viewing glasses G2 are rotated in the ZY plane, the right-eye liquid crystal shutter H1 contains the left-eye image LI, and the left-eye liquid crystal shutter H2 contains the right-eye image RI. Visibility deteriorates due to penetration.
  • G2 when the LI and RI images in FIG. 12 are emitted by polarized light beams that are orthogonal to each other, G2 can be used. In this case, the same problem occurs, and the visibility deteriorates.
  • the transmittances of the polarizing plates P11 and P12 included in the liquid crystal shutters S1 and S2 employed in the stereoscopic image viewing glasses G1 and the liquid crystal layer LC are low, the light use efficiency of the stereoscopic image viewing glasses G1 is low.
  • An object of the present invention is to provide stereoscopic image viewing glasses and a stereoscopic image display device that do not deteriorate the light utilization efficiency and have little influence on the visibility by the rotation angle.
  • Stereoscopic image viewing glasses having a right-eye shutter and a left-eye shutter, both shutters including an electrochromic element.
  • Each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter has a polarizing plate in which the direction of the polarization axis is orthogonal to the polarization direction of each electrochromic element.
  • a stereoscopic image viewing glasses wherein polarization axes of electrochromic elements provided in the right-eye shutter and the left-eye shutter are parallel to each other;
  • a two-dimensional image display device that alternately displays a right-eye image and a left-eye image emitting linearly polarized light orthogonal to the polarization axis in time series;
  • a control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image;
  • a stereoscopic image display device comprising:
  • a two-dimensional image display device that alternately displays a right-eye image and a left-eye image in time series;
  • a control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image;
  • a stereoscopic image display device comprising:
  • a stereoscopic image display device comprising:
  • FIG. 4A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied
  • FIG. 4B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
  • FIG. 5A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied
  • FIG. 5B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
  • FIG. 6A is a schematic diagram of stereoscopic image viewing glasses 5 in which polarizing plates 6 and 8 are added in front of the right-eye shutter 3 and the left-eye shutter 4, and FIG. It is a schematic diagram showing that the polarization axes D5 and D6 of the right-eye shutter 3 and the left-eye shutter 4 and the polarization axes D7 and D8 of the polarizing plates 6 and 8 are perpendicular to each other. It is a schematic diagram which shows the relationship between the spectacles 5 for stereoscopic image visual recognition, and incident light.
  • FIG. 7A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied
  • FIG. 7B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
  • FIG. 3 is a schematic diagram of a stereoscopic image display device 21.
  • FIG. 3 is a schematic diagram of a stereoscopic image display device 22.
  • FIG. 3 is a schematic diagram of a stereoscopic image display device 23.
  • FIG. It is a schematic diagram of conventional stereoscopic image viewing glasses G1. It is a schematic diagram of the conventional stereoscopic image display apparatus. It is a schematic diagram of conventional liquid crystal shutters S1 and S2.
  • Stereoscopic image viewing glasses G2 including two polarizing plates H1 and H2 having polarization axes orthogonal to each other for the right eye and the left eye, and a two-dimensional display that emits linearly polarized light that is different from each other for each parallax image 11 is an example of a stereoscopic image display device having 11. It is a graph which shows that the rotation angle (theta) in the ZY plane of a liquid-crystal shutter influences the transmittance
  • FIG. 1 is a schematic diagram of stereoscopic image viewing glasses 1.
  • the stereoscopic image viewing glasses 1 include a right-eye shutter 3, a left-eye shutter 4, and a glasses frame 2.
  • the right-eye shutter 3 and the left-eye shutter 4 are provided with a polarization control element using an electrochromic element having a function of controlling the transmittance of incident light.
  • the polarization control element 110 includes a polarization control film and charge supply means. Specifically, the first electrode 101, the electrolyte layer 102 on the first electrode 101, the polarization control film 103 on the electrolyte layer 102, and A second electrode 104 on the polarization control film 103 is provided.
  • the charge supply means is means for supplying a charge to the pigment in the polarization control film 103, and includes the electrolyte layer 102, the first electrode 101, and the second electrode 104.
  • a charge can be supplied to the polarization control film 103 by applying a voltage between the first electrode 101 and the second electrode 104 facing each other.
  • the polarization characteristic of the polarization control film 103 is changed by the dye of the polarization control film 103 transferring charges through the electrolyte layer 102.
  • the polarization control element 110 thus includes the first electrode 101, the electrolyte layer 102, the polarization control film 103, and the second electrode 104, and the first electrode 101, the electrolyte layer 102, and the second electrode 104.
  • the transmittance of the polarization control film 103 when transmitting linearly polarized light is also high. Therefore, it is possible to obtain a high light utilization efficiency as compared with the conventional liquid crystal shutter.
  • a metal thin film such as gold, silver, chromium, copper, tungsten or the like, a conductive film made of a metal oxide, or the like can be used.
  • the metal oxide include ITO (In 2 O 3 —SnO 2 ), tin oxide, silver oxide, zinc oxide, and vanadium oxide.
  • the film thickness of the electrode is not particularly limited, but is usually in the range of 10 to 500 nm, preferably 50 to 300 nm, and the surface resistance (resistivity) is not particularly limited, but is usually 500 ⁇ / cm. Is preferably 2 or less, and particularly preferably in the range of 50 ⁇ / cm 2 or less.
  • the electrode For the formation of the electrode, known means can be arbitrarily adopted, but it is preferable to select the means to be adopted depending on the type of metal and / or metal oxide constituting the electrode. Usually, a vacuum deposition method, an ion plating method, a sputtering method, a sol-gel method, or the like is employed.
  • the electrolyte layer 102 is a layer that is located between the opposing electrodes and has a function of transporting charges between the two electrodes, and has an ion conductivity of 10 ⁇ 5 to 10 ⁇ 1 S / cm at room temperature. Is preferably used.
  • the electrolyte layer 102 is made of an electrolyte composition.
  • the electrolyte composition preferably contains an electrolyte substance and further contains a solvent.
  • As the electrolyte substance salts, acids, and alkalis can be used.
  • As a form of the electrolyte composition there are a liquid state, a gel form, and a solid form made of the solvent containing the electrolyte substance.
  • the polarization control element is preferably formed on the substrate and used together with the substrate.
  • the polarization control film 103 is a charge control type polarization control film in which the polarization characteristic is controlled by charge transfer, and the polarization control element is a charge control type polarization control element in which the polarization characteristic is controlled by charge transfer. It is.
  • the state of the polarization control film 103 is reversibly charged and transferred between a state in which the dye is in a colored state and having polarization characteristics, and a state in which the dye is in a decolored state and does not exhibit polarization characteristics. Can be controlled.
  • the dye when the voltage is not applied and when the voltage is applied, the dye is in a colored state and the polarization control film 103 has polarization characteristics, that is, a state in which linearly polarized light in a predetermined polarization direction is transmitted, and the dye is in a decolored state and polarized.
  • a mode in which the state in which the control film 103 does not have polarization characteristics, that is, a state in which all the polarized light is transmitted is reversibly changed is a preferable mode.
  • the degree of polarization P of linearly polarized light having a predetermined polarization direction in a state having polarization characteristics is the light intensity YP of linearly polarized light to be transmitted and the light intensity YC of linearly polarized light having a polarization direction orthogonal to the linearly polarized light to be transmitted. , (1).
  • the degree of polarization P can be measured, for example, with a polarizing film measuring device VAP-7070D (manufactured by JASCO Corporation).
  • the degree of polarization is preferably 80 or more and less than 100.
  • a dichroic dye is used for the polarization control film 103.
  • a dichroic dye has the property that the light absorption spectrum of a molecule changes reversibly by charge transfer.
  • That the light absorption spectrum of a molecule reversibly changes due to transfer of charge means that the wavelength or intensity of light absorbed by the dye reversibly changes when the dye molecule transfers charge.
  • a voltage of 0.01 V or more and 1000 V or less is applied in the presence of the electrolyte, whereby the light absorption spectrum changes in absorbance (absorbance (absorbance changes).
  • a dye having a voltage range and a wavelength range in which the absorbance (absorbance having the greater absorbance at a specific wavelength) / absorbance (absorbance having the smaller absorbance at that wavelength)) is 2 or more.
  • the absorbance maximum at 590 nm was 11.6 when the voltage of 4 V was applied, and the absorbance change was 11.6.
  • the change in absorbance can be obtained, for example, by sandwiching an electrolyte in which a dye is dissolved between transparent electrodes, applying a voltage thereto, and measuring the absorbance before and after applying the voltage.
  • Absorbance is a scale that represents the degree to which a medium absorbs when light is incident on the medium, and is a value measured by a spectrophotometer capable of measuring a wavelength having a maximum value of absorption.
  • the change in the absorption spectrum is not particularly limited, but those whose absorption maximum wavelength reversibly changes from a range of 400 nm to 1800 nm to 200 nm to 1600 nm are preferably used. More preferably, the region of 400 nm to 800 nm and the region of 200 nm to 400 nm are reversibly changed.
  • the electronic state of the dichroic dye is changed by the oxidation-reduction reaction, so that the absorption wavelength region is changed, and the absorption maximum at 590 nm is shifted to 400 nm or less.
  • FIG. 3 schematically shows a change in the absorption spectrum when the wavelength indicating the absorption maximum changes as an example of the change in the light absorption spectrum.
  • FIG. 3 shows the absorption spectrum A before applying the voltage and the absorption spectrum B after applying the voltage, with the vertical axis representing the absorbance and the horizontal axis representing the wavelength.
  • the dye a dye that can take a colored state and a decolored state in the visible region by transferring and receiving charges is preferable, and a dye that can reversibly take a colored and decolored state by transferring and receiving charges is preferably used.
  • charge transfer there is, for example, an oxidation-reduction reaction by transfer of charge between an electrode and a dye.
  • the dichroic dye in the present embodiment is a dye having absorption anisotropy, that is, a dye whose transmitted light varies depending on the direction of the transition moment of the dye, and an absorption difference caused by a change in the light absorption spectrum caused by charge transfer. It is a pigment that changes in magnitude.
  • dichroic dyes having rod-like skeletons, plate-like skeletons, and disk-like skeletons such as liquid crystal molecules and having dielectric anisotropy, and two colors whose molecular orientation is restricted in a specific direction by molecular aggregation or polymerization. Can be suitably used.
  • the dichroic ratio (D) is a value obtained by measuring with a polarizing film measuring device VAP-7070D (manufactured by JASCO Corporation).
  • dichroic dye examples include dyes described in functional dyes (Kodansha Scientific) p157-159, dyes described in paragraphs (0093) to (0101) of Japanese Patent No. 4074105, and the like.
  • dyes having a transition moment of the dye and the angle of the molecular axis of the dye within ⁇ 10 degrees or 90 degrees ⁇ 10 degrees are preferable.
  • a metal-organic complex, particularly a metal-bisterpyridine complex, etc. Can be suitably used.
  • Examples of compounds that can be suitably used include the compounds described below.
  • M 1 and M 2 each represent a metal ion and may be the same or different, and X 1 and X 2 each represent a nitrogen atom, an oxygen atom or a sulfur atom, It can be different.
  • L represents a group for linking X 1 and X 2 containing a carbon atom.
  • J represents a simple bond or a divalent linking group
  • Z 1 to Z 4 each represent a non-requirement necessary for forming a 5- or 6-membered nitrogen-containing heterocycle together with the C ⁇ N part.
  • M 1 and M 2 represent metal ions, which may be the same or different.
  • the metal ions represented by M 1 and M 2 are not particularly limited as long as they form a coordination polymer, but are not limited to group VIII, group Ib, group IIb, group IIIa. , Transition metal ions selected from group IVa, Va, VIa, and VIIa metal atoms are preferred. Specific examples include divalent metal ions such as Ni, Cu, Co, Mn, Zn, Fe, Ru, Ti, Pd, and Pt, and more preferably divalent metal such as Ni, Cu, Co, Mn, Fe, and Ru.
  • the metal ion is preferably a divalent metal ion of Fe.
  • X 1 and X 2 represent a nitrogen atom, an oxygen atom or a sulfur atom, and may be the same or different.
  • X 1 and X 2 are preferably nitrogen atoms.
  • L represents a group connecting X 1 and X 2 containing a carbon atom, and L forms a bifunctional organic ligand together with X 1 and X 2 .
  • the bifunctional organic ligand include bisterpyridine, bisphenanthroline, bisbipyridine, and the like.
  • J represents a simple bond or a divalent linking group.
  • the divalent linking group include an alkylene group that may have a substituent (for example, a methylene group, an ethylene group, and a trimethylene group), and a cycloalkylene group that may have a substituent (for example, a cyclohexylene group).
  • An alkenylene group (for example, ethenylene group, propenylene group, butenylene group, etc.) that may have a substituent, an ethynylene group, an arylene group that may have a substituent (for example, a phenylene group, a naphthylene group, etc.), Carbonyl group, oxygen atom, nitrogen atom, sulfur atom (for example, thioether group, sulfonyl group, etc.) or a combination of these linking groups (for example, aralkylene group, ester group, alkoxycarbonyl group, carbamoyl group, amide group, sulfamoyl) Group, sulfonamide group, disulfide group, hydrazino group, azo group, etc.) J is preferably an arylene group, more preferably a phenylene group, and particularly preferably a 1,4-phenylene group or a combination of 1,4-phenylene groups.
  • examples of the substituent that the divalent linking group represented by J may have include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group).
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group.
  • Z 1 to Z 4 each represent a nonmetallic atom group necessary for forming a 5- or 6-membered nitrogen-containing heterocycle together with the C ⁇ N part.
  • nitrogen-containing heterocycle include pyridine ring, pyrazole ring, imidazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, thiazole ring, isothiazole ring, thiadiazole, oxazole ring, isoxazole ring, oxadiazole ring , Triazole ring, tetrazole ring, quinoline ring, isoquinoline ring, benzothiazole ring, benzoisothiazole ring, benzoxazole ring, benzoisoxazole ring, benzopyrazole ring, benzimidazole ring and the like.
  • a pyridine ring and a benzimidazole ring are preferred, and particularly preferred is a pyridine ring.
  • These rings may have a substituent, and examples of the substituent include the same groups as the substituent that the divalent linking group represented by J may have. It may be substituted by a group.
  • Z 1 to Z 4 may be the same or different from each other.
  • a compound having a partial structure represented by the general formula (1) in the main chain is preferably used.
  • M 1 and M 2 each represent a metal ion, and may be the same or different, and X 1 and X 2 each represent a nitrogen atom, an oxygen atom, or a sulfur atom, and each is the same. Or different.
  • L represents a group for linking X 1 and X 2 containing a carbon atom.
  • examples of M 1 , M 2 , X 1 , X 2, and L include the same as those described above, and are the same as those described above. May have a counter anion.
  • the coordination polymer for an anisotropic dye film having the partial structure represented by the general formula (1) in the main chain is excellent in linearity, and is preferably an anisotropic dye film, particularly from the viewpoint of absorption anisotropy. This is useful for polarizing films that require a polarizing function. Furthermore, by selecting the type and combination of the terminal group and side substituent of the main axis of the coordination polymer, the intermolecular interaction between the coordination polymer and the polymer material or coordination polymer to be combined with it can be made arbitrarily. It is possible to control. In addition, since the coordination polymer is excellent in heat resistance, it can be used in anisotropic dye films for various applications that require heat resistance.
  • n in the structural formula described as an exemplary compound means that a plurality of structures in parentheses are repeated.
  • the above pigments can be produced according to a conventionally known method.
  • Synthesis 2006, No. 1; 17, 2873-2878 and JP-A No. 2007-1212769 can be referred to to synthesize ligands and coordination polymers.
  • the polarization control film 103 contains the above-described dichroic dye that is oriented.
  • Oriented means that dye molecules (hereinafter also simply referred to as dyes) are arranged with a certain directionality, and measured with a polarizing film measuring device VAP-7070D (manufactured by JASCO Corporation). Sometimes the degree of polarization is 50 or more.
  • the polarization control film 103 having an oriented dichroic dye may be a liquid film or a solid film.
  • the thickness of the polarization control film 103 is 50 nm to 500 ⁇ m, preferably 100 nm to 10 ⁇ m.
  • Examples of methods for orienting the dye include methods using an electric field, a magnetic field, a wind flow, a liquid flow, oblique deposition, rubbing, a photo-alignment film, substrate unevenness, wettability differences, shearing, and the like.
  • the polarization control film 103 may be made of only a pigment or may contain a binder.
  • the polarization control film 103 in which the dye is oriented can be obtained.
  • a dye composition containing an alignment material and a dye is applied to an electric field, magnetic field, wind flow, liquid flow, oblique deposition, rubbing, photo-alignment film, substrate unevenness, wettability difference, shearing, stretching, etc.
  • the orientation mode is preferably in-plane uniaxial orientation.
  • In-plane uniaxial orientation means that the dye in the film has an optical axis or an absorption axis, the axis is parallel to the substrate surface on which the dye solution is applied, and an electric field is applied to the dye solution or the dye film. It can be formed by processing such as magnetic field, wind flow, liquid flow, oblique deposition, rubbing, photo-alignment film, substrate unevenness, difference in wettability, shearing and stretching.
  • a plurality of stereoscopic image viewing glasses may be used depending on a method of adopting a direction of a polarization axis in a direction of transmitting linearly polarized light in an electrochromic element provided in the right-eye shutter 3 and the left-eye shutter 4 and an addition of a polarizing plate.
  • the polarization axis of each shutter refers to the polarization axis of the electrochromic element.
  • FIG. 4 shows the relationship between incident light and stereoscopic image viewing glasses 1 having a right-eye shutter 3 and a left-eye shutter 4 having polarization axes D1 and D2 that are parallel to each other and transmit linearly polarized light. It is a schematic diagram shown.
  • FIG. 4A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied
  • FIG. 4B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
  • the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 may be oriented in either direction.
  • the axis direction shown in the figure has a polarization axis in the Y direction.
  • the right-eye shutter 3 and the left-eye shutter 4 having such a polarization axis are made to enter polarized light P1 and P2 having a polarization direction perpendicular to the polarization axes D1 and D2 and parallel to each other, and entering each shutter. Control the voltage to be applied.
  • the polarization P1 incident on the right-eye shutter 3 and the polarization P2 incident on the left-eye shutter 4 are the polarization axes D1 and D2, respectively. Since it has a perpendicular polarization direction, the transmittance is ideally 0, and is shielded by the right-eye shutter 3 and the left-eye shutter 4, respectively.
  • each shutter transmits all polarized light, so that the polarized light P1 incident on the right-eye shutter 3 and the left-eye shutter 4 are applied.
  • the incident polarized light P2 passes through the right-eye shutter 3 and the left-eye shutter 4 respectively.
  • the transmittance is controlled by using two shutters having parallel polarization axes. be able to.
  • FIG. 5 is a schematic diagram showing a relationship between incident light and stereoscopic image viewing glasses 1 having a right-eye shutter 3 and a left-eye shutter 4 having polarization axes D3 and D4 perpendicular to each other.
  • FIG. 5A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied
  • FIG. 5B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
  • the polarization axis of the right-eye shutter 3 and the left-eye shutter 4 may be in either direction.
  • the polarization axis D3 of the right-eye shutter 3 faces the X direction
  • the polarization axis D4 of the left-eye shutter 4 faces the Y direction.
  • the right-eye shutter 3 and the left-eye shutter 4 having such a polarization axis are allowed to enter polarizations P1 and P2 having a polarization direction perpendicular to the polarization axis and perpendicular to each other, and entering each shutter.
  • the voltage applied to the is controlled.
  • the polarization P1 incident on the right-eye shutter 3 and the polarization P2 incident on the left-eye shutter 4 are polarization axes D3 and D4, respectively. Since it has a perpendicular polarization direction, the transmittance is ideally 0, and is shielded by the right-eye shutter 3 and the left-eye shutter 4, respectively.
  • each shutter transmits all polarized light, so that the polarized light P1 incident on the right-eye shutter 3 and the left-eye shutter 4 are applied.
  • the incident polarized light P2 passes through the right-eye shutter 3 and the left-eye shutter 4 respectively.
  • the transmittance is controlled by using two shutters having mutually perpendicular polarization axes. can do.
  • FIG. 6 is a schematic diagram of the stereoscopic image viewing glasses 5 in which a polarizing plate is added to each shutter of the stereoscopic image viewing glasses 1.
  • FIG. 6A is a schematic diagram of stereoscopic image viewing glasses 5 in which polarizing plates 6 and 8 are added in front of the right-eye shutter 3 and the left-eye shutter 4, and FIG. It is a schematic diagram showing that the polarization axes D5 and D6 of the right-eye shutter 3 and the left-eye shutter 4 and the polarization axes D7 and D8 of the polarizing plates 6 and 8 are perpendicular to each other.
  • the polarization axes D5 and D6 may be oriented in any direction as long as they are parallel.
  • FIG. 7 is a schematic diagram showing the relationship between the stereoscopic image viewing glasses 5 and the incident light.
  • FIG. 7A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied
  • FIG. 7B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
  • the circularly polarized state also includes the non-polarized state.
  • the relationship between the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 does not matter. This figure shows a case where the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 are parallel.
  • Unpolarized polarized light P1 and P2 are incident on the stereoscopic image viewing glasses 5, and the voltage applied to each shutter is controlled.
  • the light emitted from the polarizing plates 6 and 8 is linearly polarized light, and the linearly polarized light is the right eye shutter 3 and the left eye shutter. 4 is shaded.
  • each shutter transmits all polarized light, so that linearly polarized light incident on the right-eye shutter 3 and the left-eye shutter 4 are applied.
  • the incident linearly polarized light passes through the right-eye shutter 3 and the left-eye shutter 4 respectively.
  • the transmittance of light in the non-polarized state can be obtained by using the stereoscopic image viewing glasses 5 to which a polarizing plate is added. Can be controlled.
  • Steposcopic image display device Next, the stereoscopic image display devices 21, 22, and 23 using the stereoscopic image viewing glasses 1 and 5 will be described.
  • FIG. 8 is a schematic diagram of the stereoscopic image display device 21.
  • the stereoscopic image display device 21 includes a two-dimensional display 10, stereoscopic image viewing glasses 1, an overall control circuit 7, and an EC control circuit 9.
  • the stereoscopic image viewing glasses 1 are provided with a right-eye shutter 3 and a left-eye shutter 4 using electrochromic elements having parallel polarization axes D1 and D2.
  • the two-dimensional display 10 is a display device that emits linearly polarized light, and a liquid crystal display is preferably used. If linearly polarized light is emitted using a polarizing plate, a display device that emits non-polarized light, such as a cathode ray tube (CRT), a plasma display, and an electroluminescence (Electro Luminescence) display, may be employed. it can.
  • the left-eye image LI and the right-eye image RI are assigned to two fields, respectively, and these are alternately displayed at high speed and displayed in time series.
  • the left eye image LI and the right eye image RI are parallax images.
  • a right-eye image RI (dotted line) viewed from the right and a left-eye image LI (solid line) viewed from the left are displayed on the two-dimensional display 10 as an example.
  • the overall control circuit 7 includes a display timing of the left-eye image LI and the right-eye image RI displayed on the two-dimensional display, and an EC control circuit 9 that controls an electrochromic element of the stereoscopic image viewing glasses 1 described later. To control.
  • the left-eye image LI and the right-eye image RI are prepared by being received by a camera (not shown) for the left-eye image LI and the right-eye image RI, and are received in advance and recorded on a recording medium (not shown). To be prepared.
  • the left-eye image LI and the right-eye image RI may be prepared using computer graphics.
  • the overall control circuit 7 displays the left-eye image LI and the right-eye image RI on the two-dimensional display 10 alternately in time series.
  • the speed displayed in time series is a speed at which at least a human can visually recognize as a continuous image, for example, at an interval of 1/30 second.
  • EC control circuit 9 controls the electrochromic element of the stereoscopic image viewing glasses 1. Specifically, the voltage applied to the electrochromic elements provided in the right eye shutter 3 and the left eye shutter 4 is controlled to control the optical characteristics of the electrochromic elements.
  • the overall control circuit 7 and the EC control circuit 9 are disposed on either the two-dimensional display 10 or the stereoscopic image viewing glasses 1.
  • the overall control circuit 7 is preferably arranged integrally with the two-dimensional display 10, and the EC control circuit 9 is arranged integrally with the stereoscopic image viewing glasses 1.
  • the EC control circuit 9 controls the stereoscopic image viewing glasses 1, the influence of the voltage noise is avoided by bringing them close to the stereoscopic image viewing glasses 1.
  • the overall control circuit 7 is preferably arranged integrally with the two-dimensional display 10, and when the EC control circuit 9 is arranged integrally with the stereoscopic image viewing glasses 1, the overall control circuit 7 and the EC control circuit 9
  • the connection for the communication may be wired or wireless. For the convenience of the user, it is desirable that the overall control circuit 7 and the EC control circuit 9 communicate with each other wirelessly. When communicating wirelessly, the overall control circuit 7 and the EC control circuit 9 are provided with wireless communication means.
  • the two-dimensional display 10 alternately displays the left-eye image LI and the right-eye image RI, which are parallax images, in time series.
  • the light from the two-dimensional display is linearly polarized light, and the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 of the stereoscopic image viewing glasses 1 are orthogonal to the polarization direction of the light from the two-dimensional display.
  • the right-eye shutter 3 and the left-eye shutter 4 can control the transmittance of light from the two-dimensional display.
  • the EC control circuit 9 determines when the two-dimensional display 10 displays the left-eye image LI or the right-eye image RI and when the right-eye shutter 3 and the left-eye shutter 4 transmit or block incident light. Control.
  • the degree of polarization for example, it is desirable that the light intensity of the right-eye image RI is incident on the right eye at least five times or more than the light intensity of the left-eye image LI.
  • the observer can view the stereoscopic image by wearing the stereoscopic image viewing glasses 1 and observing the two-dimensional display 10 at a position according to the parallax.
  • the stereoscopic image display device 21 in the case where all the polarized light of each optical shutter is transmitted, that is, in the state where the dye is decolored and the polarization control film 103 does not have the polarization characteristics, The light quantity of the desired light does not change due to the difference in the polarization angle of the incident light that is polarized light. Therefore, when the right-eye shutter 3 and the left-eye shutter 4 transmit incident light, the desired light transmittance does not change even if the stereoscopic image viewing glasses 1 rotate in the XY plane. . Therefore, the light shutter that transmits light has little influence on the visibility of the stereoscopic image of the stereoscopic image display device 21, and the observer can visually recognize a favorable stereoscopic image.
  • the stereoscopic image display device 21 can also obtain higher light utilization efficiency than the conventional stereoscopic image display device.
  • FIG. 9 is a schematic diagram of the stereoscopic image display device 22.
  • the difference between the stereoscopic image display device 22 and the stereoscopic image display device 21 is that the two-dimensional display has the two-dimensional display 11 described above, and the right-eye shutter 3 and the left-eye shutter of the stereoscopic image viewing glasses 1. This is the point where the polarization axes of 4 are orthogonal to each other.
  • the two-dimensional display 11 has a backlight K1, a polarizing plate K2, a liquid crystal layer K3, a polarizing plate K4, and a ⁇ / 2 plate array K5.
  • the polarizing plates K2 and K4 are arranged in crossed Nicols.
  • the ⁇ / 2 plate array K5 includes a ⁇ / 2 plate having a polarization axis such that linearly polarized light emitted from the polarizing plate K4 is converted into linearly polarized light having a polarization direction in the Y direction from LI1 to LI4, and from RI1.
  • ⁇ / 2 plates having polarization axes that are converted into linearly polarized light having a polarization direction in the X direction of RI4 are alternately arranged.
  • the ⁇ / 2 plate arranged from RI1 to RI4 may be an optically isotropic optical plate containing air.
  • the liquid crystal layer K3 and the ⁇ / 2 plate array K5 are composed of strip-shaped images corresponding to the right-eye image RI and the left-eye image LI.
  • the ⁇ / 2 plate array K5 two polarizing plates having polarization axes orthogonal to each other corresponding to the right-eye image RI and the left-eye image LI are arranged in parallel.
  • the right eye image RI is observed for the right eye
  • the left eye image LI is observed for the left eye.
  • a two-dimensional display in which the light emitted from the backlight K1, the polarizing plate K2, and the liquid crystal layer K3 is not linearly polarized light, such as a plasma display, may be used.
  • the EC control circuit 9 controls the timing at which the right eye shutter S3 and the left eye shutter S4 transmit or block incident light.
  • the degree of polarization for example, it is desirable that the light intensity of the right-eye image RI is incident on the right eye at least five times or more than the light intensity of the left-eye image LI.
  • the stereoscopic image display device 22 can be used as a stereoscopic image display device as described above, and a parallax is applied to the two-dimensional display 11 by applying a voltage to all optical shutters to transmit all polarized light. It is possible to visually recognize the two-dimensional image by displaying a two-dimensional image having no image. Thus, when visually recognizing a two-dimensional image, higher light utilization efficiency can be obtained compared to the case of using conventional stereoscopic image viewing glasses.
  • a phase difference plate is laminated on the surface of the stereoscopic image viewing glasses 1 and 5 on the two-dimensional display 10 and 11 side and the surface of the two-dimensional display 10 and 11 on the stereoscopic image viewing glasses 1 and 5 side. You may do it. For example, if a ⁇ / 4 plate is provided at such a position, the dependency of visibility on the rotation angle can be suppressed.
  • FIG. 10 is a schematic diagram of the stereoscopic image display device 23.
  • the difference between the stereoscopic image display device 23 and the stereoscopic image display device 21 is that the two-dimensional display has a two-dimensional display 12 that emits non-polarized light and a stereoscopic image viewing glasses 5. .
  • the linearly polarized light that has passed through the polarizing plate 6 is transmitted through the right-eye shutter 3 so as to be transmitted through the right-eye shutter 3.
  • the linearly polarized light passing through the polarizing plate 8 is shielded from light without applying a voltage to the shutter 3 and applying a voltage to the left-eye shutter 4.
  • the left polarized light passes through the left eye shutter 4 so that the linearly polarized light that has passed through the polarizing plate 8 is transmitted.
  • the linearly polarized light that has passed through the polarizing plate 6 is shielded from light without applying a voltage to the eye shutter 4 and applying a voltage to the right eye shutter 3.
  • the EC control circuit 9 controls the timing at which the right eye shutter 3 and the left eye shutter 4 transmit or block incident light.
  • the degree of polarization for example, it is desirable that the light intensity of the right-eye image RI is incident on the right eye at least five times or more than the light intensity of the left-eye image LI.
  • the observer can view the stereoscopic image by wearing the stereoscopic image viewing glasses 1 and observing the two-dimensional display 10 at a position according to the parallax.
  • the stereoscopic image display device 23 in the case where all the polarized light of each optical shutter is transmitted, that is, in the state where the dye is decolored and the polarization control film 103 does not have the polarization characteristics, The light quantity of the desired light does not change due to the difference in the polarization angle of the incident light that is polarized light. Therefore, when the right-eye shutter 3 and the left-eye shutter 4 transmit incident light, even if the stereoscopic image viewing glasses 5 rotate in the XY plane, the desired light transmittance does not change. . Therefore, the optical shutter that transmits light has little influence on the visibility of the stereoscopic image of the stereoscopic image display device 23, and the observer can visually recognize a favorable stereoscopic image.
  • the stereoscopic image display device 23 can also obtain higher light utilization efficiency than the conventional stereoscopic image display device.
  • a right-eye shutter and a left-eye shutter including an electrochromic element are used, it is possible to provide stereoscopic image viewing glasses that exhibit high light utilization efficiency.
  • the electrochromic device transmits only linearly polarized light in a predetermined polarization direction when no voltage is applied, and transmits all polarized light when a voltage is applied. It is possible to provide stereoscopic image viewing glasses whose visibility is not easily lowered by the corners.
  • the degree of polarization of linearly polarized light transmitted through the electrochromic element is 80 or more and less than 100.
  • the right eye has 5 times or more the light intensity of the left-eye image LI.
  • the right-eye image RI having light intensity can be incident, and good visibility can be obtained in the observation of a stereoscopic image.
  • each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter has a polarizing plate in which the direction of the polarization axis is orthogonal to the polarization direction of each electrochromic element. Further, it is possible to provide stereoscopic image viewing glasses that do not deteriorate the light utilization efficiency and are less likely to have low visibility due to the rotation angle.
  • stereoscopic image viewing glasses having electrochromic elements provided in the right-eye shutter and the left-eye shutter, A two-dimensional image display device that alternately displays a right-eye image and a left-eye image that emit linearly polarized light orthogonal to the polarization axis of each shutter in time series; A control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image; Therefore, a stereoscopic image display device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Disclosed are glasses for viewing stereoscopic images and a device for displaying stereoscopic images which do not impair light utilisation efficiency and experience little effect on visibility from angle of rotation. Further disclosed are glasses for viewing stereoscopic images equipped with a left eye shutter and a right eye shutter provided with electrochromic elements permeable only by linearly polarised light in a designated polarisation direction when voltage is not applied, and permeable by all polarised light when voltage is applied; a two-dimensional image display device which displays a left eye image and a right eye image alternately in chronological order; and a control circuit which coordinates the timing of the application of voltage to the electrochromic elements with the timing of the display of the left eye images and the right eye images.

Description

立体画像視認用眼鏡、及び立体画像表示装置Stereoscopic image viewing glasses and stereoscopic image display device
 本発明は、立体画像視認用眼鏡、及び立体画像表示装置に関し、更に詳しくは、テレビなどの2次元画像を立体表示するシステムにおいて必要な立体画像視認用眼鏡と、それを搭載した立体画像表示装置に関する。 The present invention relates to stereoscopic image viewing glasses and a stereoscopic image display device, and more specifically, stereoscopic image viewing glasses required in a system for stereoscopically displaying a two-dimensional image such as a television, and a stereoscopic image display device equipped with the same. About.
 近年、立体画像の表示が可能なテレビなどの立体画像表示装置が提唱されている。この立体画像を表示させる方式の一つに、専用の立体画像視認用眼鏡を観測者が着用することで、2次元画像を立体画像として観測者に認識させる方式がある。この方式で現在有力視されているのが、画像を表示するディスプレイに視差画像である右眼用画像と左眼用画像とを時系列で交互に切り替えて映し出し、観測者は図11に示すような立体画像視認用眼鏡G1を着用して、液晶ディスプレイの画像を見るという方式である(例えば特許文献1参照)。 Recently, a stereoscopic image display device such as a television capable of displaying a stereoscopic image has been proposed. As one of the methods for displaying the stereoscopic image, there is a method for allowing the observer to recognize the two-dimensional image as a stereoscopic image by wearing dedicated stereoscopic image viewing glasses by the observer. What is currently viewed as promising in this method is that the right-eye image and the left-eye image, which are parallax images, are alternately displayed in time series on a display that displays the image, and the observer as shown in FIG. This is a method of wearing a stereoscopic image viewing glasses G1 and viewing an image on a liquid crystal display (see, for example, Patent Document 1).
 立体画像視認用眼鏡G1には、図11に示すように左右の目に液晶シャッタS1,S2が備え付けられ、これらの液晶シャッタS1,S2を制御する制御回路Cが接続されている。図12に示す立体画像表示装置のように、液晶ディスプレイDに映し出される画像としては、2枚のフィールドに、左眼用画像LIと右眼用画像RIとがそれぞれ割り当てられてあり、時系列でこれらが交互に高速に切り替わって表示される。液晶ディスプレイDから出射される光は直線偏光である。さらに立体画像視認用眼鏡G1の左右の液晶シャッタS1,S2の開閉の切り替えは、左眼用画像LIと右眼用画像RIの切り替えに同期させて行う。 The stereoscopic image viewing glasses G1 are provided with liquid crystal shutters S1 and S2 on the left and right eyes as shown in FIG. 11, and a control circuit C for controlling the liquid crystal shutters S1 and S2 is connected thereto. As in the stereoscopic image display device shown in FIG. 12, as the image displayed on the liquid crystal display D, the left-eye image LI and the right-eye image RI are assigned to two fields, respectively, and are time-sequentially. These are alternately displayed at high speed. The light emitted from the liquid crystal display D is linearly polarized light. Furthermore, the switching between opening and closing of the left and right liquid crystal shutters S1, S2 of the stereoscopic image viewing glasses G1 is performed in synchronization with the switching of the left-eye image LI and the right-eye image RI.
 液晶シャッタS1,S2は、図13に示すように、偏光板P11,P12と液晶層LCを有しており、液晶シャッタS1,S2に入射する直線偏光の光L1の回転角を、液晶層LCを用いて制御することで、液晶シャッタS1,S2から出射する光の透過率を制御している。このように液晶ディスプレイDと立体画像視認用眼鏡G1とを制御することにより、図12に示すように、液晶ディスプレイDに左眼用画像LIが表示されている時には右眼用の液晶シャッタS1が閉じて左眼用の液晶シャッタS2が開き、逆に右眼用画像RIが表示されているときには右眼用の液晶シャッタS1が開いて左眼用の液晶シャッタS2が閉じることになる。なお、液晶ディスプレイDのように発せられる光が直線偏光でないディスプレイ、例えば有機ELディスプレイやプラズマディスプレイなどの自発光型ディスプレイを用いることもできる。 As shown in FIG. 13, the liquid crystal shutters S1 and S2 have polarizing plates P11 and P12 and a liquid crystal layer LC, and the rotation angle of the linearly polarized light L1 incident on the liquid crystal shutters S1 and S2 is determined by the liquid crystal layer LC. Is used to control the transmittance of light emitted from the liquid crystal shutters S1 and S2. By controlling the liquid crystal display D and the stereoscopic image viewing glasses G1 in this manner, as shown in FIG. 12, when the left eye image LI is displayed on the liquid crystal display D, the right eye liquid crystal shutter S1 is opened. The liquid crystal shutter S2 for the left eye is closed and the liquid crystal shutter S2 for the right eye is opened. Conversely, when the image RI for the right eye is displayed, the liquid crystal shutter S1 for the right eye is opened and the liquid crystal shutter S2 for the left eye is closed. Note that a display such as the liquid crystal display D in which the emitted light is not linearly polarized light, for example, a self-luminous display such as an organic EL display or a plasma display can be used.
 さらに、液晶シャッタを用いない立体画像表示装置も提案されている。図14は、右眼用と左眼用とに相直交する偏光軸を有する二つの偏光板H1、H2を備えた立体画像視認用眼鏡G2と、視差画像毎に異なる相直交する直線偏光を出射する2次元ディスプレイ11を有する立体画像表示装置の例である。2次元ディスプレイ11は、バックライトK1、偏光板K2、液晶層K3、偏光板K4、及びλ/2板アレイK5を有する。偏光板K2と偏光板K4とは直交ニコル配置されている。 Furthermore, a stereoscopic image display device that does not use a liquid crystal shutter has also been proposed. FIG. 14 shows stereoscopic image viewing glasses G2 having two polarizing plates H1 and H2 having polarization axes orthogonal to each other for the right eye and the left eye, and linearly polarized light that is orthogonal to each other for each parallax image. It is an example of the stereoscopic image display apparatus which has the two-dimensional display 11 to do. The two-dimensional display 11 includes a backlight K1, a polarizing plate K2, a liquid crystal layer K3, a polarizing plate K4, and a λ / 2 plate array K5. The polarizing plates K2 and K4 are arranged in crossed Nicols.
 λ/2板アレイK5には、偏光板K4を出射した直線偏光が、LI1からLI4のY方向の偏光方向を有する直線偏光に変換されるような偏光軸を有するλ/2板と、RI1からRI4のX方向の偏光方向を有する直線偏光に変換されるような偏光軸を有するλ/2板とが交互に配置されている。 The λ / 2 plate array K5 includes a λ / 2 plate having a polarization axis such that linearly polarized light emitted from the polarizing plate K4 is converted into linearly polarized light having a polarization direction in the Y direction from LI1 to LI4, and from RI1. Λ / 2 plates having polarization axes that are converted into linearly polarized light having a polarization direction in the X direction of RI4 are alternately arranged.
 尚、RI1からRI4に配置されるλ/2板は、空気を含む光学的に等方性の光学板であってもよい。液晶層K3とλ/2板アレイK5とは、同図に示すように、右眼用画像RIと左眼用画像LIに対応して短冊状に区切られた像が合成されている。立体画像視認用眼鏡G2で2次元ディスプレイ11を観察することで、右眼には右眼用画像RI、左眼には左眼用画像LIが観察される。なお、2次元ディスプレイ11において、バックライトK1、偏光板K2、液晶層K3の部分を発せられる光が直線偏光でない2次元ディスプレイ、例えば有機ELディスプレイやプラズマディスプレイなどの自発光型ディスプレイを用いることもできる。 It should be noted that the λ / 2 plate arranged from RI1 to RI4 may be an optically isotropic optical plate containing air. As shown in the figure, the liquid crystal layer K3 and the λ / 2 plate array K5 are combined with strip-shaped images corresponding to the right-eye image RI and the left-eye image LI. By observing the two-dimensional display 11 with the stereoscopic image viewing glasses G2, the right eye image RI is observed for the right eye and the left eye image LI is observed for the left eye. In the two-dimensional display 11, a two-dimensional display in which the light emitted from the backlight K1, the polarizing plate K2, and the liquid crystal layer K3 is not linearly polarized light, for example, a self-luminous display such as an organic EL display or a plasma display may be used. it can.
特開平8-201942号公報Japanese Patent Application Laid-Open No. 8-201942
 特許文献1に記載の液晶シャッタにおいては、液晶シャッタの回転角、すなわち立体画像視認用眼鏡G1の回転角が視認性に影響する。図15は、偏光光を出射するディスプレイを用いた場合の液晶シャッタのZY平面内における回転角θが透過率に影響することを示すグラフである。 In the liquid crystal shutter described in Patent Document 1, the rotation angle of the liquid crystal shutter, that is, the rotation angle of the stereoscopic image viewing glasses G1 affects the visibility. FIG. 15 is a graph showing that the rotation angle θ in the ZY plane of the liquid crystal shutter affects the transmittance when a display that emits polarized light is used.
 左眼用画像LIがS2を透過する際、回転角θが0度の時に液晶シャッタS2の透過率が最大になるように液晶層LCを制御した場合を示し、J2は回転角θが0度の時に液晶シャッタS2の透過率が0になるように液晶層LCを制御した場合を示す。また、右眼用画像RIの場合はS2がS1となる以外は上記と同じである。何れの場合も、液晶シャッタの回転角θが大きくなると、ディスプレイから出射される偏光光と液晶シャッタの偏光板P11の偏光軸がずれる。そのため、右眼用画像RIが左眼に視認され、左眼用画像LIが右眼に視認されることとなり、更に、右眼用画像RIが右眼に入る光量及び、左眼用画像LIが左眼に入る光量それぞれが低下するため、立体感が損なわれた画像を視認することとなる。 When the left-eye image LI is transmitted through S2, the liquid crystal layer LC is controlled so that the transmittance of the liquid crystal shutter S2 is maximized when the rotation angle θ is 0 degrees. J2 represents the rotation angle θ of 0 degrees. In this case, the liquid crystal layer LC is controlled so that the transmittance of the liquid crystal shutter S2 becomes zero. Further, in the case of the right-eye image RI, it is the same as the above except that S2 becomes S1. In any case, when the rotation angle θ of the liquid crystal shutter is increased, the polarized light emitted from the display is shifted from the polarization axis of the polarizing plate P11 of the liquid crystal shutter. Therefore, the right-eye image RI is visually recognized by the left eye, the left-eye image LI is visually recognized by the right eye, and the amount of light that the right-eye image RI enters the right eye and the left-eye image LI are Since the amount of light entering the left eye decreases, an image with a reduced stereoscopic effect is visually recognized.
 図14に示す右眼用と左眼用とに相直交する偏光軸を有する二つの偏光板を備えた立体画像視認用眼鏡G2を用いた立体画像表示装置の場合においても同様の不具合が発生する。すなわち、立体画像視認用眼鏡G2がZY平面内で回転した場合、右眼用の液晶シャッタH1には、左眼用画像LIが入り、左眼用の液晶シャッタH2には、右眼用画像RIが入りこむことで、視認性が悪化する。 The same problem occurs in the case of the stereoscopic image display apparatus using the stereoscopic image viewing glasses G2 provided with two polarizing plates having polarization axes orthogonal to each other for the right eye and the left eye shown in FIG. . That is, when the stereoscopic image viewing glasses G2 are rotated in the ZY plane, the right-eye liquid crystal shutter H1 contains the left-eye image LI, and the left-eye liquid crystal shutter H2 contains the right-eye image RI. Visibility deteriorates due to penetration.
 また、図12のLIとRIの画像がそれぞれ直交する偏光光で出射される場合、G2を利用することが出来るが、この場合も同様の不具合が発生し、視認性が悪化する。 In addition, when the LI and RI images in FIG. 12 are emitted by polarized light beams that are orthogonal to each other, G2 can be used. In this case, the same problem occurs, and the visibility deteriorates.
 また、立体画像視認用眼鏡G1に採用される液晶シャッタS1,S2が有する偏光板P11,P12と液晶層LCの透過率は低いことから、立体画像視認用眼鏡G1の光利用効率は低い。 Further, since the transmittances of the polarizing plates P11 and P12 included in the liquid crystal shutters S1 and S2 employed in the stereoscopic image viewing glasses G1 and the liquid crystal layer LC are low, the light use efficiency of the stereoscopic image viewing glasses G1 is low.
 さらに、両者の立体画像表示装置において、有機ELディスプレイやプラズマディスプレイなどの自発光型ディスプレイを用いると、自発光型ディスプレイから発せられる光は偏光板で遮光されることで光強度が半分に減少してしまい、光利用効率が悪化する。 Furthermore, when a self-luminous display such as an organic EL display or a plasma display is used in both of the stereoscopic image display devices, light emitted from the self-luminous display is shielded by a polarizing plate, thereby reducing the light intensity by half. As a result, the light utilization efficiency deteriorates.
 本発明は、光利用効率を悪化させず、回転角によって視認性に与える影響が少ない立体画像視認用眼鏡、及び立体画像表示装置を提供することを目的とする。 An object of the present invention is to provide stereoscopic image viewing glasses and a stereoscopic image display device that do not deteriorate the light utilization efficiency and have little influence on the visibility by the rotation angle.
 前述の目的は、下記に記載する発明により達成される。 The above object is achieved by the invention described below.
 1.右眼用シャッタと左眼用シャッタとを有し、双方のシャッタがエレクトロクロミック素子を備えることを特徴とする立体画像視認用眼鏡。 1. Stereoscopic image viewing glasses having a right-eye shutter and a left-eye shutter, both shutters including an electrochromic element.
 2.前記エレクトロクロミック素子は、電圧非印加時に、所定の偏光方向の直線偏光のみ透過し、電圧印加時に、全ての偏光を透過することを特徴とする前記1に記載の立体画像視認用眼鏡。 2. 2. The stereoscopic image viewing glasses according to 1 above, wherein the electrochromic element transmits only linearly polarized light in a predetermined polarization direction when no voltage is applied, and transmits all polarized light when a voltage is applied.
 3.前記直線偏光の偏光度が、80以上100未満であることを特徴とする前記2に記載の立体画像視認用眼鏡。 3. 3. The stereoscopic image viewing glasses according to 2, wherein the linearly polarized light has a polarization degree of 80 or more and less than 100.
 4.前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に、偏光軸の方向が各エレクトロクロミック素子の偏光方向と直交する偏光板を有することを特徴とする前記2又は3に記載の立体画像視認用眼鏡。 4. Each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter has a polarizing plate in which the direction of the polarization axis is orthogonal to the polarization direction of each electrochromic element. The stereoscopic image viewing glasses according to 3.
 5.前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の偏光軸が互いに平行である前記2又は3に記載の立体画像視認用眼鏡と、
 前記偏光軸と直交する直線偏光を発する右眼用画像と左眼用画像とを時系列で交互に表示する2次元画像表示装置と、
 前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に電圧を印加するタイミングと、前記右眼用画像と前記左眼用画像とを表示させるタイミングを合わせる制御回路と、
 を有することを特徴とする立体画像表示装置。
5. The stereoscopic image viewing glasses according to 2 or 3, wherein polarization axes of electrochromic elements provided in the right-eye shutter and the left-eye shutter are parallel to each other;
A two-dimensional image display device that alternately displays a right-eye image and a left-eye image emitting linearly polarized light orthogonal to the polarization axis in time series;
A control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image; ,
A stereoscopic image display device comprising:
 6.前記4に記載の立体画像視認用眼鏡と、
 右眼用画像と左眼用画像とを時系列で交互に表示する2次元画像表示装置と、
 前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に電圧を印加するタイミングと、前記右眼用画像と前記左眼用画像とを表示させるタイミングを合わせる制御回路と、
 を有することを特徴とする立体画像表示装置。
6). The stereoscopic image viewing glasses described in 4 above,
A two-dimensional image display device that alternately displays a right-eye image and a left-eye image in time series;
A control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image; ,
A stereoscopic image display device comprising:
 7.前記右眼用シャッタと前記左眼用シャッタに、受光する画像の偏光方向と相直交する偏光軸を具備し偏光軸が相直交するエレクトロクロミック素子を備えた前記2又は3に記載の立体画像視認用眼鏡と、
 相直交する偏光方向を有する直線偏光を各々射出する右眼用画像と左眼用画像とが交互に並列された2次元画像表示装置と、
 前記右眼用画像と前記左眼用画像の表示のタイミングを合わせる制御回路と、
 を有することを特徴とする立体画像表示装置。
7). The stereoscopic image viewing according to 2 or 3, wherein the right-eye shutter and the left-eye shutter are provided with an electrochromic element having a polarization axis orthogonal to a polarization direction of a received image and a polarization axis orthogonal to each other. Glasses for
A two-dimensional image display device in which right-eye images and left-eye images each emitting linearly polarized light having mutually orthogonal polarization directions are alternately arranged;
A control circuit for adjusting the display timing of the right-eye image and the left-eye image;
A stereoscopic image display device comprising:
 光利用効率を悪化させず、回転角に視認性が依存しない立体画像視認用眼鏡、及び立体画像表示装置を提供できる。 It is possible to provide stereoscopic image viewing glasses and a stereoscopic image display device that do not deteriorate the light utilization efficiency and do not depend on the visibility of the rotation angle.
立体画像視認用眼鏡1の概要図である。It is a schematic diagram of the glasses 1 for stereoscopic image viewing. 偏光制御素子の、典型的な構成の例の模式図である。It is a schematic diagram of the example of a typical structure of a polarization control element. 光吸収スペクトルの変化の例として、吸収極大を示す波長が変化する場合の吸収スペクトルの変化を表す模式図である。It is a schematic diagram showing the change of an absorption spectrum in case the wavelength which shows an absorption maximum changes as an example of the change of a light absorption spectrum. 互いに平行な偏光軸D1,D2を有する右眼用シャッタ3と左眼用シャッタ4とを有する立体画像視認用眼鏡1と入射光との関係を示す模式図である。図4(a)は、電圧を印加しない場合の偏光の挙動を示す模式図であり、図4(b)は、電圧を印加する場合の偏光の挙動を示す模式図である。It is a schematic diagram which shows the relationship between the stereoscopic image viewing spectacles 1 which have the shutter 3 for right eyes and the shutter 4 for left eyes which have mutually parallel polarization axes D1, D2, and incident light. FIG. 4A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied, and FIG. 4B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied. 互いに垂直な偏光軸D3,D4を有する右眼用シャッタ3と左眼用シャッタ4とを有する立体画像視認用眼鏡1と入射光との関係を示す模式図である。図5(a)は、電圧を印加しない場合の偏光の挙動を示す模式図であり、図5(b)は、電圧を印加する場合の偏光の挙動を示す模式図である。It is a schematic diagram showing a relationship between the stereoscopic image viewing glasses 1 having the right eye shutter 3 and the left eye shutter 4 having polarization axes D3 and D4 perpendicular to each other and the incident light. FIG. 5A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied, and FIG. 5B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied. 立体画像視認用眼鏡1の各シャッタに偏光板を付加されてなる立体画像視認用眼鏡5の模式図である。図6(a)は、右眼用シャッタ3と左眼用シャッタ4の前方に偏光板6,8を付加されてなる立体画像視認用眼鏡5の模式図を示し、図6(b)は、右眼用シャッタ3と左眼用シャッタ4の偏光軸D5,D6と、偏光板6,8の偏光軸D7,D8が各々垂直な関係であることを示す模式図である。It is a schematic diagram of the stereoscopic image viewing glasses 5 in which a polarizing plate is added to each shutter of the stereoscopic image viewing glasses 1. FIG. 6A is a schematic diagram of stereoscopic image viewing glasses 5 in which polarizing plates 6 and 8 are added in front of the right-eye shutter 3 and the left-eye shutter 4, and FIG. It is a schematic diagram showing that the polarization axes D5 and D6 of the right-eye shutter 3 and the left-eye shutter 4 and the polarization axes D7 and D8 of the polarizing plates 6 and 8 are perpendicular to each other. 立体画像視認用眼鏡5と入射光との関係を示す模式図である。図7(a)は、電圧を印加しない場合の偏光の挙動を示す模式図であり、図7(b)は、電圧を印加する場合の偏光の挙動を示す模式図である。It is a schematic diagram which shows the relationship between the spectacles 5 for stereoscopic image visual recognition, and incident light. FIG. 7A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied, and FIG. 7B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied. 立体画像表示装置21の概要図である。3 is a schematic diagram of a stereoscopic image display device 21. FIG. 立体画像表示装置22の概要図である。3 is a schematic diagram of a stereoscopic image display device 22. FIG. 立体画像表示装置23の概要図である。3 is a schematic diagram of a stereoscopic image display device 23. FIG. 従来の立体画像視認用眼鏡G1の模式図である。It is a schematic diagram of conventional stereoscopic image viewing glasses G1. 従来の立体画像表示装置の模式図である。It is a schematic diagram of the conventional stereoscopic image display apparatus. 従来の液晶シャッタS1,S2の模式図である。It is a schematic diagram of conventional liquid crystal shutters S1 and S2. 右眼用と左眼用とに相直交する偏光軸を有する二つの偏光板H1、H2を備えた立体画像視認用眼鏡G2と、視差画像毎に異なる相直交する直線偏光を出射する2次元ディスプレイ11を有する立体画像表示装置の例である。Stereoscopic image viewing glasses G2 including two polarizing plates H1 and H2 having polarization axes orthogonal to each other for the right eye and the left eye, and a two-dimensional display that emits linearly polarized light that is different from each other for each parallax image 11 is an example of a stereoscopic image display device having 11. 偏光光を出射するディスプレイを用いた場合の液晶シャッタのZY平面内における回転角θが透過率に影響することを示すグラフである。It is a graph which shows that the rotation angle (theta) in the ZY plane of a liquid-crystal shutter influences the transmittance | permeability at the time of using the display which radiate | emits polarized light.
 以下に本発明の実施形態を図面により説明するが、本実施形態は以下に説明する実施形態に限られるものではない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings, but the present embodiment is not limited to the embodiments described below. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.
 (立体画像視認用眼鏡)
 図1は、立体画像視認用眼鏡1の概要図である。立体画像視認用眼鏡1は、右眼用シャッタ3、左眼用シャッタ4と眼鏡フレーム2とを有する。
(Three-dimensional image viewing glasses)
FIG. 1 is a schematic diagram of stereoscopic image viewing glasses 1. The stereoscopic image viewing glasses 1 include a right-eye shutter 3, a left-eye shutter 4, and a glasses frame 2.
 右眼用シャッタ3と左眼用シャッタ4には、入射する光の透過率を制御する機能を有するエレクトロクロミック(Electrochromic)素子を用いた偏光制御素子が備えられている。 The right-eye shutter 3 and the left-eye shutter 4 are provided with a polarization control element using an electrochromic element having a function of controlling the transmittance of incident light.
 (偏光制御素子)
 偏光制御素子の、典型的な構成の例の模式図を図2に示す。偏光制御素子110は、偏光制御膜及び電荷供給手段を有し、具体的には、第一の電極101、第一の電極101上の電解質層102、電解質層102上の偏光制御膜103、及び偏光制御膜103上の第二の電極104を有する。
(Polarization control element)
A schematic diagram of an example of a typical configuration of the polarization control element is shown in FIG. The polarization control element 110 includes a polarization control film and charge supply means. Specifically, the first electrode 101, the electrolyte layer 102 on the first electrode 101, the polarization control film 103 on the electrolyte layer 102, and A second electrode 104 on the polarization control film 103 is provided.
 電荷供給手段は、偏光制御膜103中の色素に電荷を供給する手段であり、電解質層102、及び第一の電極101、及び第二の電極104で構成される。対向する第一の電極101と第二の電極104との間に電圧をかけることで、偏光制御膜103に電荷を供給することができる。 The charge supply means is means for supplying a charge to the pigment in the polarization control film 103, and includes the electrolyte layer 102, the first electrode 101, and the second electrode 104. A charge can be supplied to the polarization control film 103 by applying a voltage between the first electrode 101 and the second electrode 104 facing each other.
 後述するように偏光制御膜103の色素が、電解質層102を介して電荷を授受することで、偏光制御膜103の偏光特性が変化する。 As described later, the polarization characteristic of the polarization control film 103 is changed by the dye of the polarization control film 103 transferring charges through the electrolyte layer 102.
 偏光制御素子110は、このように第一の電極101、電解質層102、偏光制御膜103、及び第二の電極104を有し、第一の電極101、電解質層102、及び第二の電極104の透過率は高く、後述するように直線偏光を透過させる際の偏光制御膜103の透過率も高い。従って、従来の液晶シャッタに比べて高い光利用効率を得ることができる。 The polarization control element 110 thus includes the first electrode 101, the electrolyte layer 102, the polarization control film 103, and the second electrode 104, and the first electrode 101, the electrolyte layer 102, and the second electrode 104. As described later, the transmittance of the polarization control film 103 when transmitting linearly polarized light is also high. Therefore, it is possible to obtain a high light utilization efficiency as compared with the conventional liquid crystal shutter.
 電極としては、例えば、金、銀、クロム、銅、タングステン等の金属薄膜、金属酸化物からなる導電膜などが使用でき、用途にもよるが透明電極であることが好ましい。前記金属酸化物としては、例えば、ITO(In-SnO)、酸化錫、酸化銀、酸化亜鉛、酸化バナジウム等が挙げられる。電極の膜厚は、特に制限されるものではないが、通常10~500nm、好ましくは50~300nmの範囲にあり、表面抵抗(抵抗率)は特に制限されるものではないが、通常500Ω/cm以下が好ましく、特に50Ω/cm以下の範囲にあることが好ましい。電極の形成には、公知の手段を任意に採用することができるが、電極を構成する金属および/又は金属酸化物等の種類により、採用する手段を選択するのが好ましい。通常は、真空蒸着法、イオンプレーティング法、スパッタリング法、ゾルゲル法等が採用される。 As the electrode, for example, a metal thin film such as gold, silver, chromium, copper, tungsten or the like, a conductive film made of a metal oxide, or the like can be used. Examples of the metal oxide include ITO (In 2 O 3 —SnO 2 ), tin oxide, silver oxide, zinc oxide, and vanadium oxide. The film thickness of the electrode is not particularly limited, but is usually in the range of 10 to 500 nm, preferably 50 to 300 nm, and the surface resistance (resistivity) is not particularly limited, but is usually 500 Ω / cm. Is preferably 2 or less, and particularly preferably in the range of 50 Ω / cm 2 or less. For the formation of the electrode, known means can be arbitrarily adopted, but it is preferable to select the means to be adopted depending on the type of metal and / or metal oxide constituting the electrode. Usually, a vacuum deposition method, an ion plating method, a sputtering method, a sol-gel method, or the like is employed.
 電解質層102は、対向する電極の間に位置し、両極間の電荷輸送を行う機能を有する層であり、室温で10-5~10-1S/cmのイオン伝導性を有している層が好ましく用いられる。電解質層102は電解質組成物からなる。電解質組成物は、電解質物質を含有し、さらに溶媒を含有することが好ましい。電解質物質としては塩類、酸類、アルカリ類が使用できる。電解質組成物の形態としては、上記電解質物質を含有する上記溶媒からなる液体の状態、ゲル状、固体状の形態がある。偏光制御素子は、基板上に形成されて基板と共に用いられることが好ましい。 The electrolyte layer 102 is a layer that is located between the opposing electrodes and has a function of transporting charges between the two electrodes, and has an ion conductivity of 10 −5 to 10 −1 S / cm at room temperature. Is preferably used. The electrolyte layer 102 is made of an electrolyte composition. The electrolyte composition preferably contains an electrolyte substance and further contains a solvent. As the electrolyte substance, salts, acids, and alkalis can be used. As a form of the electrolyte composition, there are a liquid state, a gel form, and a solid form made of the solvent containing the electrolyte substance. The polarization control element is preferably formed on the substrate and used together with the substrate.
 (偏光制御膜)
 偏光制御膜103は、偏光特性の制御が電荷の授受により行われる、電荷制御型偏光制御膜であり、偏光制御素子は、偏光特性の制御が電荷の授受により行われる、電荷制御型偏光制御素子である。本実施形態では、偏光制御膜103の状態を、色素が発色状態であって偏光特性を有する状態と、色素が消色状態であって偏光特性を示さない状態とを、可逆的に電荷の授受により制御できる。
(Polarization control film)
The polarization control film 103 is a charge control type polarization control film in which the polarization characteristic is controlled by charge transfer, and the polarization control element is a charge control type polarization control element in which the polarization characteristic is controlled by charge transfer. It is. In this embodiment, the state of the polarization control film 103 is reversibly charged and transferred between a state in which the dye is in a colored state and having polarization characteristics, and a state in which the dye is in a decolored state and does not exhibit polarization characteristics. Can be controlled.
 即ち、電圧非印加時と電圧印加時とにおいて、色素が発色状態で偏光制御膜103が偏光特性を有する状態、すなわち所定の偏光方向の直線偏光を透過する状態と、色素が消色状態で偏光制御膜103が偏光特性を有さない状態、すなわち全ての偏光を透過させる状態とが、可逆的に変化する態様が好ましい態様である。 That is, when the voltage is not applied and when the voltage is applied, the dye is in a colored state and the polarization control film 103 has polarization characteristics, that is, a state in which linearly polarized light in a predetermined polarization direction is transmitted, and the dye is in a decolored state and polarized. A mode in which the state in which the control film 103 does not have polarization characteristics, that is, a state in which all the polarized light is transmitted is reversibly changed is a preferable mode.
 偏光特性を有する状態における、所定の偏光方向を有する直線偏光の偏光度Pは、透過させる直線偏光の光強度YPと、透過させる直線偏光に直交する偏光方向を有する直線偏光の光強度YCとで、(1)式のように表される。 The degree of polarization P of linearly polarized light having a predetermined polarization direction in a state having polarization characteristics is the light intensity YP of linearly polarized light to be transmitted and the light intensity YC of linearly polarized light having a polarization direction orthogonal to the linearly polarized light to be transmitted. , (1).
 P=(YP-YC)/(YP+YC)×100         (1)
 偏光度Pは、例えば、偏光フィルム測定装置VAP-7070D(日本分光株式会社製)で測定可能である。偏光度は80以上100未満が好ましい。
P = (YP−YC) / (YP + YC) × 100 (1)
The degree of polarization P can be measured, for example, with a polarizing film measuring device VAP-7070D (manufactured by JASCO Corporation). The degree of polarization is preferably 80 or more and less than 100.
 (2色性色素)
 偏光制御膜103には2色性色素が採用される。2色性色素は、電荷の授受により分子の光吸収スペクトルが可逆的に変化する性質を有する。
(Dichroic dye)
A dichroic dye is used for the polarization control film 103. A dichroic dye has the property that the light absorption spectrum of a molecule changes reversibly by charge transfer.
 電荷の授受により分子の光吸収スペクトルが可逆的に変化するとは、色素分子が電荷を授受することで、色素が吸収する光の波長または強度が可逆的に変化することである。本実施形態においては、波長範囲400nm~1800nmの範囲において、0.01V以上、1000V以下の電圧を、電解質の存在下に印加することで、光吸収スペクトルが、吸光度変化(吸光度(吸光度が変化したときの特定波長における吸光度の大きな方の吸光度)/吸光度(その波長における吸光度の小さい方の吸光度))が2以上、となるように変化する電圧範囲及び波長範囲を有する色素をいう。好ましくは、7以上となるように、変化するものであり、より好ましくは、10以上となるように、変化するものである。 That the light absorption spectrum of a molecule reversibly changes due to transfer of charge means that the wavelength or intensity of light absorbed by the dye reversibly changes when the dye molecule transfers charge. In the present embodiment, in the wavelength range of 400 nm to 1800 nm, a voltage of 0.01 V or more and 1000 V or less is applied in the presence of the electrolyte, whereby the light absorption spectrum changes in absorbance (absorbance (absorbance changes). A dye having a voltage range and a wavelength range in which the absorbance (absorbance having the greater absorbance at a specific wavelength) / absorbance (absorbance having the smaller absorbance at that wavelength)) is 2 or more. Preferably, it changes so that it may become 7 or more, More preferably, it changes so that it may become 10 or more.
 例えば、一例として後述する化合物1では、590nmにある吸収極大が、4Vの電圧の印加によって、吸光度変化が11.6であった。吸光度の変化は、例えば色素を溶解した電解質を透明な電極で挟み、これに電圧をかけ、電圧をかける前後の吸光度を測定することで得られる。 For example, in Compound 1, which will be described later as an example, the absorbance maximum at 590 nm was 11.6 when the voltage of 4 V was applied, and the absorbance change was 11.6. The change in absorbance can be obtained, for example, by sandwiching an electrolyte in which a dye is dissolved between transparent electrodes, applying a voltage thereto, and measuring the absorbance before and after applying the voltage.
 吸光度は、光が媒質に入射した際、媒質が吸収する程度を表す尺度であり、吸収の極大値を有する波長が測定可能な分光光度計により測定した値である。 Absorbance is a scale that represents the degree to which a medium absorbs when light is incident on the medium, and is a value measured by a spectrophotometer capable of measuring a wavelength having a maximum value of absorption.
 好ましくは、吸収スペクトルの変化は、特に制限はないが、その吸収極大値の波長が、400nm~1800nmの領域から、200nm~1600nmへと可逆的に変化するものが好ましく用いられる。より好ましくは、400nm~800nmの領域と200nm~400nmの領域を可逆的に変化するものである。 Preferably, the change in the absorption spectrum is not particularly limited, but those whose absorption maximum wavelength reversibly changes from a range of 400 nm to 1800 nm to 200 nm to 1600 nm are preferably used. More preferably, the region of 400 nm to 800 nm and the region of 200 nm to 400 nm are reversibly changed.
 例えば、一例として後述する化合物1では、酸化還元反応により2色性色素の電子状態が変化するため、吸収波長領域が変化し、590nmの吸収極大が、400nm以下へ吸収波長極大がシフトした。 For example, in Compound 1, which will be described later as an example, the electronic state of the dichroic dye is changed by the oxidation-reduction reaction, so that the absorption wavelength region is changed, and the absorption maximum at 590 nm is shifted to 400 nm or less.
 図3に、光吸収スペクトルの変化の例として、吸収極大を示す波長が変化する場合の吸収スペクトルの変化を模式的に示す。 FIG. 3 schematically shows a change in the absorption spectrum when the wavelength indicating the absorption maximum changes as an example of the change in the light absorption spectrum.
 図3においては、縦軸を吸光度、横軸を波長として、電圧を印加する前の吸収スペクトルAと、電圧を印加した後の吸収スペクトルBとを示した。 FIG. 3 shows the absorption spectrum A before applying the voltage and the absorption spectrum B after applying the voltage, with the vertical axis representing the absorbance and the horizontal axis representing the wavelength.
 色素としては、特に電荷の授受で、可視領域において、発色状態と、消色状態をとりうるものが好ましく、発色状態と消色状態を、電荷の授受で可逆的にとりうる色素が好ましく用いられる。 As the dye, a dye that can take a colored state and a decolored state in the visible region by transferring and receiving charges is preferable, and a dye that can reversibly take a colored and decolored state by transferring and receiving charges is preferably used.
 電荷の授受の具体的態様としては、例えば電極と色素の電荷の授受による酸化還元反応が挙げられる。 As a specific aspect of charge transfer, there is, for example, an oxidation-reduction reaction by transfer of charge between an electrode and a dye.
 本実施形態における2色性色素とは、吸収異方性を有する色素、即ち透過光が色素の遷移モーメントの方向によって異なる色素であり、且つ電荷の授受により生じた光吸収スペクトルの変化により吸収異方性の大きさが変化する色素である。 The dichroic dye in the present embodiment is a dye having absorption anisotropy, that is, a dye whose transmitted light varies depending on the direction of the transition moment of the dye, and an absorption difference caused by a change in the light absorption spectrum caused by charge transfer. It is a pigment that changes in magnitude.
 即ち、分子の遷移モーメントの方向と、遷移モーメントと直交する方向の光吸収強度が異なる波長範囲を有する色素であり、下記の2色性測定により、2色性比が3以上である領域を有するものをいう。例えば、液晶分子のような棒状骨格、板状骨格、円盤状骨格のもので誘電異方性を持つ2色性色素や、分子凝集や重合などによって、分子配向が特定方向に制限される2色性色素などが好適に用いることができる。 That is, it is a dye having a wavelength range in which the light absorption intensity in the direction of the transition moment of the molecule and the direction orthogonal to the transition moment is different, and has a region where the dichroic ratio is 3 or more by the following dichroism measurement. Say things. For example, dichroic dyes having rod-like skeletons, plate-like skeletons, and disk-like skeletons such as liquid crystal molecules and having dielectric anisotropy, and two colors whose molecular orientation is restricted in a specific direction by molecular aggregation or polymerization. Can be suitably used.
 2色性比(D)は、偏光フィルム測定装置VAP-7070D(日本分光株式会社製)で測定することによって得られた値である。 The dichroic ratio (D) is a value obtained by measuring with a polarizing film measuring device VAP-7070D (manufactured by JASCO Corporation).
 2色性色素としては、例えば、機能性色素(講談社サイエンティフィク)p157-159に記載の色素や特許第4074105号明細書の段落(0093)~(0101)に記載の色素などが挙げられ、これらの中でも特に、色素の遷移モーメントと色素の分子軸の角度が±10度以内または90度±10度以内である色素が好適であり、例えば、金属-有機物錯体、特に金属-ビスターピリジン錯体などを好適に用いることができる。 Examples of the dichroic dye include dyes described in functional dyes (Kodansha Scientific) p157-159, dyes described in paragraphs (0093) to (0101) of Japanese Patent No. 4074105, and the like. Among these, dyes having a transition moment of the dye and the angle of the molecular axis of the dye within ± 10 degrees or 90 degrees ± 10 degrees are preferable. For example, a metal-organic complex, particularly a metal-bisterpyridine complex, etc. Can be suitably used.
 好適に用いられる化合物としては、例えば下述する化合物が挙げられる。 Examples of compounds that can be suitably used include the compounds described below.
 配位高分子であり、下記一般式(1)で表される部分構造を主鎖に有する化合物。 A compound which is a coordination polymer and has a partial structure represented by the following general formula (1) in the main chain.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、M及びMは金属イオンを表し、それぞれ同じであっても異なっていても良く、X及びXは窒素原子、酸素原子または硫黄原子を表し、それぞれ同じであっても異なっていても良い。Lは炭素原子を含むXとXを連結する基を表す。 In the general formula (1), M 1 and M 2 each represent a metal ion and may be the same or different, and X 1 and X 2 each represent a nitrogen atom, an oxygen atom or a sulfur atom, It can be different. L represents a group for linking X 1 and X 2 containing a carbon atom.
 さらに、前記配位高分子が金属イオンと下記一般式(2)で表される化合物を含有する化合物が挙げられる。 Furthermore, there are compounds in which the coordination polymer contains a metal ion and a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、Jは単なる結合手または2価の連結基を表し、Z~ZはそれぞれC=N部と共に5または6員の含窒素複素環を形成するのに必要な非金属原子群を表す。 In the general formula (2), J represents a simple bond or a divalent linking group, and Z 1 to Z 4 each represent a non-requirement necessary for forming a 5- or 6-membered nitrogen-containing heterocycle together with the C═N part. Represents a metal atom group.
 [前記一般式(1)で表される化合物]
 前記一般式(1)において、M及びMは金属イオンを表し、それぞれ同じであっても異なっていても良い。
[Compound represented by the general formula (1)]
In the general formula (1), M 1 and M 2 represent metal ions, which may be the same or different.
 前記一般式(1)において、M及びMで表される金属イオンとしては、配位高分子を形成するものであれば特に制限はないが、VIII族、Ib族、IIb族、IIIa族、IVa族、Va族、VIa族、VIIa族の金属原子から選ばれる遷移金属イオンが好ましい。具体的にはNi、Cu、Co、Mn、Zn、Fe、Ru、Ti、Pd、Ptの2価の金属イオンが挙げられ、さらに好ましくはNi、Cu、Co、Mn、Fe、Ruの2価の金属イオンが挙げられ、特に好ましくはFeの2価の金属イオンである。 In the general formula (1), the metal ions represented by M 1 and M 2 are not particularly limited as long as they form a coordination polymer, but are not limited to group VIII, group Ib, group IIb, group IIIa. , Transition metal ions selected from group IVa, Va, VIa, and VIIa metal atoms are preferred. Specific examples include divalent metal ions such as Ni, Cu, Co, Mn, Zn, Fe, Ru, Ti, Pd, and Pt, and more preferably divalent metal such as Ni, Cu, Co, Mn, Fe, and Ru. The metal ion is preferably a divalent metal ion of Fe.
 前記一般式(1)において、X及びXは窒素原子、酸素原子または硫黄原子を表し、それぞれ同じであっても異なっていても良い。X及びXは窒素原子が好ましい。 In the general formula (1), X 1 and X 2 represent a nitrogen atom, an oxygen atom or a sulfur atom, and may be the same or different. X 1 and X 2 are preferably nitrogen atoms.
 前記一般式(1)において、Lは炭素原子を含むXとXを連結する基を表すが、Lは、X及びXと共に二官能性の有機配位子を形成する。二官能性の有機配位子としては、例えば、ビスターピリジン、ビスフェナントロリン、ビスビピリジン等を挙げることができる。 In the general formula (1), L represents a group connecting X 1 and X 2 containing a carbon atom, and L forms a bifunctional organic ligand together with X 1 and X 2 . Examples of the bifunctional organic ligand include bisterpyridine, bisphenanthroline, bisbipyridine, and the like.
 [前記一般式(2)で表される化合物]
 前記一般式(2)において、Jは単なる結合手または2価の連結基を表す。2価の連結基として、例えば、置換基を有してもよいアルキレン基(例えば、メチレン基、エチレン基、トリメチレン基等)、置換基を有してもよいシクロアルキレン基(例えば、シクロヘキシレン基)、置換基を有してもよいアルケニレン基(例えば、エテニレン基、プロペニレン基、ブテニレン基等)、エチニレン基、置換基を有してもよいアリーレン基(例えば、フェニレン基、ナフチレン基等)、カルボニル基、酸素原子、窒素原子、硫黄原子(例えば、チオエーテル基、スルホニル基等)、あるいはこれらの連結基の組み合わせ(例えば、アラルキレン基、エステル基、アルコシカルボニル基、カルバモイル基、アミド基、スルファモイル基、スルホンアミド基、ジスルフィド基、ヒドラジノ基、アゾ基等)を挙げることができる。Jはアリーレン基が好ましく、フェニレン基がさらに好ましく、1,4-フェニレン基または1,4-フェニレン基同士の組み合わせが特に好ましい。
[Compound represented by the general formula (2)]
In the general formula (2), J represents a simple bond or a divalent linking group. Examples of the divalent linking group include an alkylene group that may have a substituent (for example, a methylene group, an ethylene group, and a trimethylene group), and a cycloalkylene group that may have a substituent (for example, a cyclohexylene group). ), An alkenylene group (for example, ethenylene group, propenylene group, butenylene group, etc.) that may have a substituent, an ethynylene group, an arylene group that may have a substituent (for example, a phenylene group, a naphthylene group, etc.), Carbonyl group, oxygen atom, nitrogen atom, sulfur atom (for example, thioether group, sulfonyl group, etc.) or a combination of these linking groups (for example, aralkylene group, ester group, alkoxycarbonyl group, carbamoyl group, amide group, sulfamoyl) Group, sulfonamide group, disulfide group, hydrazino group, azo group, etc.) J is preferably an arylene group, more preferably a phenylene group, and particularly preferably a 1,4-phenylene group or a combination of 1,4-phenylene groups.
 前記一般式(2)において、Jで表される2価の連結基が有してもよい置換基として、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2-プロペニル基、3-ブテニル基、1-メチル-3-プロペニル基、3-ペンテニル基、1-メチル-3-ブテニル基、4-ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシル基、カルボン酸の塩、ヒドロキシル基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は、同様の置換基によってさらに置換されていてもよい。 In the general formula (2), examples of the substituent that the divalent linking group represented by J may have include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group). Group, pentyl group, hexyl group, octyl group, dodecyl group, trifluoromethyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), aryl group (eg, phenyl group, naphthyl group, etc.), acylamino group (Eg acetylamino group, benzoylamino group etc.), alkylthio group (eg methylthio group, ethylthio group etc.), arylthio group (eg phenylthio group, naphthylthio group etc.), alkenyl group (eg vinyl group, 2-propenyl etc.) Group, 3-butenyl group, 1-methyl-3-propenyl group, 3-pentenyl group, 1-methyl group Ru-3-butenyl group, 4-hexenyl group, cyclohexenyl group, etc.), halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom etc.), alkynyl group (eg propargyl group etc.), heterocyclic group (Eg, pyridyl group, thiazolyl group, oxazolyl group, imidazolyl group, etc.), alkylsulfonyl group (eg, methylsulfonyl group, ethylsulfonyl group, etc.), arylsulfonyl group (eg, phenylsulfonyl group, naphthylsulfonyl group, etc.), alkyl Sulfinyl group (for example, methylsulfinyl group), arylsulfinyl group (for example, phenylsulfinyl group), phosphono group, acyl group (for example, acetyl group, pivaloyl group, benzoyl group), carbamoyl group (for example, aminocarbonyl group) , Methylaminocarbonyl group Dimethylaminocarbonyl group, butylaminocarbonyl group, cyclohexylaminocarbonyl group, phenylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group) Group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), sulfonamide group (for example, methanesulfonamide group) Benzenesulfonamido group, etc.), cyano group, alkoxy group (eg methoxy group, ethoxy group, propoxy group etc.), aryloxy group (eg Phenoxy group, naphthyloxy group, etc.), heterocyclic oxy group, siloxy group, acyloxy group (eg, acetyloxy group, benzoyloxy group, etc.), sulfonic acid group, sulfonic acid salt, aminocarbonyloxy group, amino group ( For example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, etc.), anilino group (for example, phenylamino group, chlorophenylamino group, toluidino group, anisidino group) Group, naphthylamino group, 2-pyridylamino group, etc.), imide group, ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthyl group) Ureido group, -Pyridylaminoureido group etc.), alkoxycarbonylamino group (eg methoxycarbonylamino group, phenoxycarbonylamino group etc.), alkoxycarbonyl group (eg methoxycarbonyl group, ethoxycarbonyl group, phenoxycarbonyl etc.), aryloxycarbonyl group (eg Examples thereof include phenoxycarbonyl group, etc., heterocyclic thio group, thioureido group, carboxyl group, carboxylic acid salt, hydroxyl group, mercapto group, nitro group and the like. These substituents may be further substituted with the same substituent.
 前記一般式(2)において、Z~ZはそれぞれC=N部と共に5または6員の含窒素複素環を形成するのに必要な非金属原子群を表す。含窒素複素環の具体例として、ピリジン環、ピラゾール環、イミダゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、チアゾール環、イソチアゾール環、チアジアゾール、オキサゾール環、イソオキサゾール環、オキサジアゾール環、トリアゾール環、テトラゾール環、キノリン環、イソキノリン環、ベンゾチアゾール環、ベンゾイソチアゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環、ベンゾピラゾール環、ベンゾイミダゾール環等の各環を挙げることができる。好ましくはピリジン環、ベンゾイミダゾール環であり、特に好ましくはピリジン環である。これらの環は置換基を有してもよく、置換基としては前記Jで表される2価の連結基が有してもよい置換基と同様の基を挙げることができ、さらに同様の置換基によって置換されていてもよい。また、Z~Zはそれぞれ同じであっても、異なっていてもよい。 In the general formula (2), Z 1 to Z 4 each represent a nonmetallic atom group necessary for forming a 5- or 6-membered nitrogen-containing heterocycle together with the C═N part. Specific examples of nitrogen-containing heterocycle include pyridine ring, pyrazole ring, imidazole ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, thiazole ring, isothiazole ring, thiadiazole, oxazole ring, isoxazole ring, oxadiazole ring , Triazole ring, tetrazole ring, quinoline ring, isoquinoline ring, benzothiazole ring, benzoisothiazole ring, benzoxazole ring, benzoisoxazole ring, benzopyrazole ring, benzimidazole ring and the like. Preferred are a pyridine ring and a benzimidazole ring, and particularly preferred is a pyridine ring. These rings may have a substituent, and examples of the substituent include the same groups as the substituent that the divalent linking group represented by J may have. It may be substituted by a group. Z 1 to Z 4 may be the same or different from each other.
 さらに、前記一般式(1)で表される部分構造を主鎖に有する化合物が好ましく用いられる。 Furthermore, a compound having a partial structure represented by the general formula (1) in the main chain is preferably used.
 前記一般式(1)において、M及びMは金属イオンを表し、それぞれ同じであっても異なっていても良く、X及びXは窒素原子、酸素原子または硫黄原子を表し、それぞれ同じであっても異なっていても良い。Lは炭素原子を含むXとXを連結する基を表す。 In the general formula (1), M 1 and M 2 each represent a metal ion, and may be the same or different, and X 1 and X 2 each represent a nitrogen atom, an oxygen atom, or a sulfur atom, and each is the same. Or different. L represents a group for linking X 1 and X 2 containing a carbon atom.
 前記一般式(1)において、M、M、X、X及びLとしては、例えば、上述で説明したものと同様のものを挙げることができ、さらに、上述で説明したものと同様のカウンターアニオンを有してもよい。 In the general formula (1), examples of M 1 , M 2 , X 1 , X 2, and L include the same as those described above, and are the same as those described above. May have a counter anion.
 前記一般式(1)で表される部分構造を主鎖に有する異方性色素膜用配位高分子は、直線性に優れており、吸収異方性の観点から異方性色素膜、特に偏光機能を必要とする偏光膜に有用である。さらに、配位高分子の主軸の末端基や側方置換基の種類や組み合わせを選択することで、配位高分子とそれと組み合わせる高分子材料や配位高分子同士の分子間相互作用を任意に制御することが可能である。また、配位高分子は、耐熱性にも優れていることから、耐熱性が必要とされる種々の用途の異方性色素膜に用いることができる。 The coordination polymer for an anisotropic dye film having the partial structure represented by the general formula (1) in the main chain is excellent in linearity, and is preferably an anisotropic dye film, particularly from the viewpoint of absorption anisotropy. This is useful for polarizing films that require a polarizing function. Furthermore, by selecting the type and combination of the terminal group and side substituent of the main axis of the coordination polymer, the intermolecular interaction between the coordination polymer and the polymer material or coordination polymer to be combined with it can be made arbitrarily. It is possible to control. In addition, since the coordination polymer is excellent in heat resistance, it can be used in anisotropic dye films for various applications that require heat resistance.
 以下に、2色性色素の具体例を示すが、2色性色素はこれらに限定されるものではない。尚、例示化合物として記載の構造式中のnは、括弧内の構造が複数個繰り返していることを意味する。 Specific examples of the dichroic dye are shown below, but the dichroic dye is not limited to these. In addition, n in the structural formula described as an exemplary compound means that a plurality of structures in parentheses are repeated.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記のような色素は、従来公知の方法に従って製造することができる。例えば、Synthesis2006,No.17,2873-2878、特開2007-112769号公報に記載の方法を参考にして、配位子および配位高分子を合成することができる。 The above pigments can be produced according to a conventionally known method. For example, Synthesis 2006, No. 1; 17, 2873-2878 and JP-A No. 2007-1212769 can be referred to to synthesize ligands and coordination polymers.
 (配向)
 偏光制御膜103は、配向された、上述した2色性色素を含有する。
(Orientation)
The polarization control film 103 contains the above-described dichroic dye that is oriented.
 配向された、とは色素分子(以下単に色素とも称する)が、一定の方向性を有して配置されていることであり、偏光フィルム測定装置VAP-7070D(日本分光株式会社製)で測定したときに、偏光度50以上であることをいう。 “Oriented” means that dye molecules (hereinafter also simply referred to as dyes) are arranged with a certain directionality, and measured with a polarizing film measuring device VAP-7070D (manufactured by JASCO Corporation). Sometimes the degree of polarization is 50 or more.
 配向された2色性色素を有する偏光制御膜103は、液体状膜であってもよいし、固体状膜であってもよい。 The polarization control film 103 having an oriented dichroic dye may be a liquid film or a solid film.
 偏光制御膜103においては、その厚さが、50nm~500μmであり、特に100nm~10μmであることが好ましい。 The thickness of the polarization control film 103 is 50 nm to 500 μm, preferably 100 nm to 10 μm.
 色素を配向させる方法としては、電場、磁場、風の流れ、液体の流れ、斜め蒸着、ラビング、光配向膜、基材凹凸、濡れ性の違い、剪断などを用いた方法が挙げられる。 Examples of methods for orienting the dye include methods using an electric field, a magnetic field, a wind flow, a liquid flow, oblique deposition, rubbing, a photo-alignment film, substrate unevenness, wettability differences, shearing, and the like.
 偏光制御膜103としては、色素のみからなってもよいし、バインダーなどを含有する態様でもよい。 The polarization control film 103 may be made of only a pigment or may contain a binder.
 また、樹脂と色素とを含有する色素組成物を膜状にして、この膜を延伸することで、色素が配向された偏光制御膜103を得ることができる。 Further, by forming a dye composition containing a resin and a dye into a film and stretching the film, the polarization control film 103 in which the dye is oriented can be obtained.
 また、配向材と色素とを含有する色素組成物を、電場、磁場、風の流れ、液体の流れ、斜め蒸着、ラビング、光配向膜、基材凹凸、濡れ性の違い、剪断、延伸などの処理をすることで、色素が配向された偏光制御膜103を得ることができる。 In addition, a dye composition containing an alignment material and a dye is applied to an electric field, magnetic field, wind flow, liquid flow, oblique deposition, rubbing, photo-alignment film, substrate unevenness, wettability difference, shearing, stretching, etc. By performing the treatment, it is possible to obtain the polarization control film 103 in which the dye is aligned.
 配向の態様としては、面内一軸配向であることが好ましい。 The orientation mode is preferably in-plane uniaxial orientation.
 面内一軸配向とは、膜内の色素が、光軸または吸収軸を有し、その軸が、色素溶液を塗工する基材面に対し平行であり、色素溶液または色素膜に、電場、磁場、風の流れ、液体の流れ、斜め蒸着、ラビング、光配向膜、基材凹凸、濡れ性の違い、剪断、延伸などの処理をすることにより、形成することができる。 In-plane uniaxial orientation means that the dye in the film has an optical axis or an absorption axis, the axis is parallel to the substrate surface on which the dye solution is applied, and an electric field is applied to the dye solution or the dye film. It can be formed by processing such as magnetic field, wind flow, liquid flow, oblique deposition, rubbing, photo-alignment film, substrate unevenness, difference in wettability, shearing and stretching.
 (立体画像視認用眼鏡の構成と動作)
 図4から図7を用いて立体画像視認用眼鏡の構成と動作について説明する。立体画像視認用眼鏡は右眼用シャッタ3と左眼用シャッタ4に備えられたエレクトロクロミック素子における直線偏光を透過させる方向の偏光軸の方向の採用の仕方や、偏光板の付加に態様によって複数の構成を用いることができる。以下、各シャッタの偏光軸とはエレクトロクロミック素子の偏光軸のことを指すものとする。
(Configuration and operation of glasses for viewing stereoscopic images)
The configuration and operation of the stereoscopic image viewing glasses will be described with reference to FIGS. A plurality of stereoscopic image viewing glasses may be used depending on a method of adopting a direction of a polarization axis in a direction of transmitting linearly polarized light in an electrochromic element provided in the right-eye shutter 3 and the left-eye shutter 4 and an addition of a polarizing plate. Can be used. Hereinafter, the polarization axis of each shutter refers to the polarization axis of the electrochromic element.
 図4は、互いに平行であり、直線偏光を透過させる方向の偏光軸D1,D2を有する右眼用シャッタ3と左眼用シャッタ4とを有する立体画像視認用眼鏡1と入射光との関係を示す模式図である。図4(a)は、電圧を印加しない場合の偏光の挙動を示す模式図であり、図4(b)は、電圧を印加する場合の偏光の挙動を示す模式図である。 FIG. 4 shows the relationship between incident light and stereoscopic image viewing glasses 1 having a right-eye shutter 3 and a left-eye shutter 4 having polarization axes D1 and D2 that are parallel to each other and transmit linearly polarized light. It is a schematic diagram shown. FIG. 4A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied, and FIG. 4B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
 平行な偏光軸を有しておれば、右眼用シャッタ3と左眼用シャッタ4の偏光軸は、どちらの方向を向いていても良い。同図では、同図中に示した軸方向についてY方向の偏光軸を有しているものとする。かかる偏光軸を有する右眼用シャッタ3と左眼用シャッタ4とに偏光軸D1,D2に対して垂直な偏光方向を有し互いに平行な偏光方向の偏光P1,P2を入射させ、各シャッタへ印加する電圧を制御する。 As long as they have parallel polarization axes, the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 may be oriented in either direction. In the figure, it is assumed that the axis direction shown in the figure has a polarization axis in the Y direction. The right-eye shutter 3 and the left-eye shutter 4 having such a polarization axis are made to enter polarized light P1 and P2 having a polarization direction perpendicular to the polarization axes D1 and D2 and parallel to each other, and entering each shutter. Control the voltage to be applied.
 図4(a)のように、各シャッタに電圧を印加しない場合、右眼用シャッタ3に入射する偏光P1と、左眼用シャッタ4に入射する偏光P2とは、各々偏光軸D1,D2と垂直な偏光方向を有するので、透過率が理想的には0になり、各々右眼用シャッタ3と左眼用シャッタ4とに遮光される。 As shown in FIG. 4A, when no voltage is applied to each shutter, the polarization P1 incident on the right-eye shutter 3 and the polarization P2 incident on the left-eye shutter 4 are the polarization axes D1 and D2, respectively. Since it has a perpendicular polarization direction, the transmittance is ideally 0, and is shielded by the right-eye shutter 3 and the left-eye shutter 4, respectively.
 一方、図4(b)のように、各シャッタに電圧を印加する場合、各シャッタは、全ての偏光を透過させるので、右眼用シャッタ3に入射する偏光P1と、左眼用シャッタ4に入射する偏光P2とは、各々右眼用シャッタ3と左眼用シャッタ4とを透過する。 On the other hand, as shown in FIG. 4B, when a voltage is applied to each shutter, each shutter transmits all polarized light, so that the polarized light P1 incident on the right-eye shutter 3 and the left-eye shutter 4 are applied. The incident polarized light P2 passes through the right-eye shutter 3 and the left-eye shutter 4 respectively.
 このように、右眼用シャッタ3と左眼用シャッタ4に入射する偏光P1,P2が平行な偏光方向を有する場合、平行な偏光軸を有する二つのシャッタを用いることで、透過率を制御することができる。 Thus, when the polarized light P1 and P2 incident on the right-eye shutter 3 and the left-eye shutter 4 have parallel polarization directions, the transmittance is controlled by using two shutters having parallel polarization axes. be able to.
 図5は、互いに垂直な偏光軸D3,D4を有する右眼用シャッタ3と左眼用シャッタ4とを有する立体画像視認用眼鏡1と入射光との関係を示す模式図である。図5(a)は、電圧を印加しない場合の偏光の挙動を示す模式図であり、図5(b)は、電圧を印加する場合の偏光の挙動を示す模式図である。 FIG. 5 is a schematic diagram showing a relationship between incident light and stereoscopic image viewing glasses 1 having a right-eye shutter 3 and a left-eye shutter 4 having polarization axes D3 and D4 perpendicular to each other. FIG. 5A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied, and FIG. 5B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
 垂直な偏光軸を有しておれば、右眼用シャッタ3と左眼用シャッタ4の偏光軸は、どちらの方向を向いていても良い。同図では、右眼用シャッタ3の偏光軸D3はX方向を向いており、左眼用シャッタ4の偏光軸D4はY方向を向いている。かかる偏光軸を有する右眼用シャッタ3と左眼用シャッタ4とに該偏光軸と偏光方向が垂直な偏光方向を有し、互いに垂直な偏光方向を有する偏光P1,P2を入射させ、各シャッタへ印加する電圧を制御する。 As long as it has a vertical polarization axis, the polarization axis of the right-eye shutter 3 and the left-eye shutter 4 may be in either direction. In the drawing, the polarization axis D3 of the right-eye shutter 3 faces the X direction, and the polarization axis D4 of the left-eye shutter 4 faces the Y direction. The right-eye shutter 3 and the left-eye shutter 4 having such a polarization axis are allowed to enter polarizations P1 and P2 having a polarization direction perpendicular to the polarization axis and perpendicular to each other, and entering each shutter. The voltage applied to the is controlled.
 図5(a)のように、各シャッタに電圧を印加しない場合、右眼用シャッタ3に入射する偏光P1と、左眼用シャッタ4に入射する偏光P2とは、各々偏光軸D3,D4と垂直な偏光方向を有するので、透過率が理想的には0になり、各々右眼用シャッタ3と左眼用シャッタ4とに遮光される。 As shown in FIG. 5A, when no voltage is applied to each shutter, the polarization P1 incident on the right-eye shutter 3 and the polarization P2 incident on the left-eye shutter 4 are polarization axes D3 and D4, respectively. Since it has a perpendicular polarization direction, the transmittance is ideally 0, and is shielded by the right-eye shutter 3 and the left-eye shutter 4, respectively.
 一方、図5(b)のように、各シャッタに電圧を印加する場合、各シャッタは、全ての偏光を透過させるので、右眼用シャッタ3に入射する偏光P1と、左眼用シャッタ4に入射する偏光P2とは、各々右眼用シャッタ3と左眼用シャッタ4とを透過する。 On the other hand, as shown in FIG. 5B, when a voltage is applied to each shutter, each shutter transmits all polarized light, so that the polarized light P1 incident on the right-eye shutter 3 and the left-eye shutter 4 are applied. The incident polarized light P2 passes through the right-eye shutter 3 and the left-eye shutter 4 respectively.
 このように、右眼用シャッタ3と左眼用シャッタ4に入射する偏光P1,P2が垂直な偏光方向を有する場合、互いに垂直な偏光軸を有する二つのシャッタを用いることで、透過率を制御することができる。 Thus, when the polarizations P1 and P2 incident on the right-eye shutter 3 and the left-eye shutter 4 have vertical polarization directions, the transmittance is controlled by using two shutters having mutually perpendicular polarization axes. can do.
 図6は、立体画像視認用眼鏡1の各シャッタに偏光板を付加されてなる立体画像視認用眼鏡5の模式図である。図6(a)は、右眼用シャッタ3と左眼用シャッタ4の前方に偏光板6,8を付加されてなる立体画像視認用眼鏡5の模式図を示し、図6(b)は、右眼用シャッタ3と左眼用シャッタ4の偏光軸D5,D6と、偏光板6,8の偏光軸D7,D8が各々垂直な関係であることを示す模式図である。 FIG. 6 is a schematic diagram of the stereoscopic image viewing glasses 5 in which a polarizing plate is added to each shutter of the stereoscopic image viewing glasses 1. FIG. 6A is a schematic diagram of stereoscopic image viewing glasses 5 in which polarizing plates 6 and 8 are added in front of the right-eye shutter 3 and the left-eye shutter 4, and FIG. It is a schematic diagram showing that the polarization axes D5 and D6 of the right-eye shutter 3 and the left-eye shutter 4 and the polarization axes D7 and D8 of the polarizing plates 6 and 8 are perpendicular to each other.
 偏光軸D5,D6は、平行で有ればどちらの方向を向いていても良い。 The polarization axes D5 and D6 may be oriented in any direction as long as they are parallel.
 図7は、立体画像視認用眼鏡5と入射光との関係を示す模式図である。図7(a)は、電圧を印加しない場合の偏光の挙動を示す模式図であり、図7(b)は、電圧を印加する場合の偏光の挙動を示す模式図である。 FIG. 7 is a schematic diagram showing the relationship between the stereoscopic image viewing glasses 5 and the incident light. FIG. 7A is a schematic diagram illustrating the behavior of polarized light when no voltage is applied, and FIG. 7B is a schematic diagram illustrating the behavior of polarized light when a voltage is applied.
 立体画像視認用眼鏡5では、各シャッタへの入射光は無偏光状態(以下、円偏光状態も無偏光状態を含むものとする)であるものとする。右眼用シャッタ3と左眼用シャッタ4の偏光軸の関係は問わない。同図では、右眼用シャッタ3と左眼用シャッタ4の偏光軸が平行な場合を示している。 In the stereoscopic image viewing glasses 5, it is assumed that the light incident on each shutter is in a non-polarized state (hereinafter, the circularly polarized state also includes the non-polarized state). The relationship between the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 does not matter. This figure shows a case where the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 are parallel.
 かかる立体画像視認用眼鏡5に無偏光状態偏光P1,P2を入射させ、各シャッタへ印加する電圧を制御する。 Unpolarized polarized light P1 and P2 are incident on the stereoscopic image viewing glasses 5, and the voltage applied to each shutter is controlled.
 図7(a)のように、各シャッタに電圧を印加しない場合、偏光板6,8を出射した光は直線偏光となっており、各直線偏光は、右眼用シャッタ3と左眼用シャッタ4に遮光される。 As shown in FIG. 7A, when no voltage is applied to each shutter, the light emitted from the polarizing plates 6 and 8 is linearly polarized light, and the linearly polarized light is the right eye shutter 3 and the left eye shutter. 4 is shaded.
 一方、図7(b)のように、各シャッタに電圧を印加する場合、各シャッタは、全ての偏光を透過させるので、右眼用シャッタ3に入射する直線偏光と、左眼用シャッタ4に入射する直線偏光とは、各々右眼用シャッタ3と左眼用シャッタ4とを透過する。 On the other hand, as shown in FIG. 7B, when a voltage is applied to each shutter, each shutter transmits all polarized light, so that linearly polarized light incident on the right-eye shutter 3 and the left-eye shutter 4 are applied. The incident linearly polarized light passes through the right-eye shutter 3 and the left-eye shutter 4 respectively.
 このように、右眼用シャッタ3と左眼用シャッタ4に入射する光が無偏光状態の場合、偏光板を付加した立体画像視認用眼鏡5を用いることで、無偏光状態の光の透過率を制御することができる。 Thus, when the light incident on the right-eye shutter 3 and the left-eye shutter 4 is in a non-polarized state, the transmittance of light in the non-polarized state can be obtained by using the stereoscopic image viewing glasses 5 to which a polarizing plate is added. Can be controlled.
 (立体画像表示装置)
 次いで、立体画像視認用眼鏡1,5を用いた立体画像表示装置21,22,23について説明する。
(Stereoscopic image display device)
Next, the stereoscopic image display devices 21, 22, and 23 using the stereoscopic image viewing glasses 1 and 5 will be described.
 図8は、立体画像表示装置21の概要図である。立体画像表示装置21は、2次元ディスプレイ10、立体画像視認用眼鏡1、全体制御回路7、及びEC制御回路9を有する。 FIG. 8 is a schematic diagram of the stereoscopic image display device 21. The stereoscopic image display device 21 includes a two-dimensional display 10, stereoscopic image viewing glasses 1, an overall control circuit 7, and an EC control circuit 9.
 立体画像視認用眼鏡1には図4を用いて説明したタイプを用いる。すなわち、立体画像視認用眼鏡1には、平行な偏光軸D1,D2を有するエレクトロクロミック(Electrochromic)素子を用いた右眼用シャッタ3と左眼用シャッタ4が備えられている。 The type described with reference to FIG. 4 is used for the stereoscopic image viewing glasses 1. That is, the stereoscopic image viewing glasses 1 are provided with a right-eye shutter 3 and a left-eye shutter 4 using electrochromic elements having parallel polarization axes D1 and D2.
 2次元ディスプレイ10は、直線偏光を射出する表示装置であり、液晶ディスプレイが好ましく用いられる。偏光板を用いて直線偏光を射出させるようにすれば、ブラウン管(CRT)、プラズマディスプレイ、及びエレクトロルミネセンス(Electro Luminescence)ディスプレイなどの無偏光状態の光を射出する表示装置をも採用することができる。2次元ディスプレイ10には、2枚のフィールドに、左眼用画像LIと右眼用画像RIとがそれぞれ割り当てられてあり、時系列でこれらが交互に高速に切り替わって表示される。左眼用画像LIと右眼用画像RIとは視差画像である。図8では、2次元ディスプレイ10上に例示として立方体を右から見た右眼用画像RI(点線)と、左から見た左眼用画像LI(実線)とが表示されている。 The two-dimensional display 10 is a display device that emits linearly polarized light, and a liquid crystal display is preferably used. If linearly polarized light is emitted using a polarizing plate, a display device that emits non-polarized light, such as a cathode ray tube (CRT), a plasma display, and an electroluminescence (Electro Luminescence) display, may be employed. it can. In the two-dimensional display 10, the left-eye image LI and the right-eye image RI are assigned to two fields, respectively, and these are alternately displayed at high speed and displayed in time series. The left eye image LI and the right eye image RI are parallax images. In FIG. 8, a right-eye image RI (dotted line) viewed from the right and a left-eye image LI (solid line) viewed from the left are displayed on the two-dimensional display 10 as an example.
 全体制御回路7は、2次元ディスプレイ上に表示させる左眼用画像LIと右眼用画像RIとの表示タイミングと、後述する立体画像視認用眼鏡1のエレクトロクロミック素子を制御するEC制御回路9とを制御する。 The overall control circuit 7 includes a display timing of the left-eye image LI and the right-eye image RI displayed on the two-dimensional display, and an EC control circuit 9 that controls an electrochromic element of the stereoscopic image viewing glasses 1 described later. To control.
 左眼用画像LIと右眼用画像RIとは、左眼用画像LI用と右眼用画像RI用の図示しないカメラで受像されて用意され、また、予め受像されて図示しない記録媒体に記録されて用意される。この他、コンピュータグラフィックを用いて左眼用画像LIと右眼用画像RIとを用意してもよい。全体制御回路7は、これら左眼用画像LIと右眼用画像RIとを時系列に交互に2次元ディスプレイ10に表示させる。時系列に表示させる速度は少なくとも人間が連続画像として視認できる速度であり、例えば30分の1秒間隔である。 The left-eye image LI and the right-eye image RI are prepared by being received by a camera (not shown) for the left-eye image LI and the right-eye image RI, and are received in advance and recorded on a recording medium (not shown). To be prepared. In addition, the left-eye image LI and the right-eye image RI may be prepared using computer graphics. The overall control circuit 7 displays the left-eye image LI and the right-eye image RI on the two-dimensional display 10 alternately in time series. The speed displayed in time series is a speed at which at least a human can visually recognize as a continuous image, for example, at an interval of 1/30 second.
 EC制御回路9は、立体画像視認用眼鏡1のエレクトロクロミック素子を制御する。具体的には、右眼用シャッタ3と左眼用シャッタ4とに備えられたエレクトロクロミック素子に印加する電圧を制御し、エレクトロクロミック素子の光学特性を制御する。 EC control circuit 9 controls the electrochromic element of the stereoscopic image viewing glasses 1. Specifically, the voltage applied to the electrochromic elements provided in the right eye shutter 3 and the left eye shutter 4 is controlled to control the optical characteristics of the electrochromic elements.
 全体制御回路7とEC制御回路9とは、2次元ディスプレイ10と立体画像視認用眼鏡1の何れかに配置される。全体制御回路7は、好ましくは、2次元ディスプレイ10に一体化して配置され、EC制御回路9は立体画像視認用眼鏡1に一体化して配置される。EC制御回路9が立体画像視認用眼鏡1を制御する上で立体画像視認用眼鏡1に近接させることで電圧ノイズの影響が回避される。全体制御回路7は、好ましくは、2次元ディスプレイ10に一体化して配置され、EC制御回路9は立体画像視認用眼鏡1に一体化して配置された場合、全体制御回路7とEC制御回路9との通信のための接続は、有線でもよいし、無線でもよい。使用者の利便性の上では、全体制御回路7とEC制御回路9とは無線で通信されることが望ましい。無線で通信する場合には、全体制御回路7とEC制御回路9とに無線通信手段を設ける。 The overall control circuit 7 and the EC control circuit 9 are disposed on either the two-dimensional display 10 or the stereoscopic image viewing glasses 1. The overall control circuit 7 is preferably arranged integrally with the two-dimensional display 10, and the EC control circuit 9 is arranged integrally with the stereoscopic image viewing glasses 1. When the EC control circuit 9 controls the stereoscopic image viewing glasses 1, the influence of the voltage noise is avoided by bringing them close to the stereoscopic image viewing glasses 1. The overall control circuit 7 is preferably arranged integrally with the two-dimensional display 10, and when the EC control circuit 9 is arranged integrally with the stereoscopic image viewing glasses 1, the overall control circuit 7 and the EC control circuit 9 The connection for the communication may be wired or wireless. For the convenience of the user, it is desirable that the overall control circuit 7 and the EC control circuit 9 communicate with each other wirelessly. When communicating wirelessly, the overall control circuit 7 and the EC control circuit 9 are provided with wireless communication means.
 次いで、立体画像表示装置21の動作を説明する。 Next, the operation of the stereoscopic image display device 21 will be described.
 2次元ディスプレイ10は、視差画像である左眼用画像LIと右眼用画像RIとを時系列に交互に表示する。 The two-dimensional display 10 alternately displays the left-eye image LI and the right-eye image RI, which are parallax images, in time series.
 2次元ディスプレイからの光は直線偏光であり、立体画像視認用眼鏡1の右眼用シャッタ3と左眼用シャッタ4の偏光軸は、2次元ディスプレイからの光の偏光方向と直交していることから、上記したように、右眼用シャッタ3と左眼用シャッタ4は2次元ディスプレイからの光の透過率を制御することができる。 The light from the two-dimensional display is linearly polarized light, and the polarization axes of the right-eye shutter 3 and the left-eye shutter 4 of the stereoscopic image viewing glasses 1 are orthogonal to the polarization direction of the light from the two-dimensional display. Thus, as described above, the right-eye shutter 3 and the left-eye shutter 4 can control the transmittance of light from the two-dimensional display.
 立体画像視認用眼鏡1は、2次元ディスプレイ10が右眼用画像RIを表示している間は右眼用シャッタ3が入射光を透過し、左眼用シャッタ4が入射光を遮光する。そして、2次元ディスプレイ10が左眼用画像LIを表示している間は左眼用シャッタ4が入射光を透過し、右眼用シャッタ3が入射光を遮光する。2次元ディスプレイ10が左眼用画像LIまたは右眼用画像RIを表示するタイミングと、右眼用シャッタ3と左眼用シャッタ4とが入射光を透過しまたは遮光するタイミングはEC制御回路9が制御する。 In the stereoscopic image viewing glasses 1, while the two-dimensional display 10 displays the right-eye image RI, the right-eye shutter 3 transmits the incident light, and the left-eye shutter 4 blocks the incident light. While the two-dimensional display 10 displays the left-eye image LI, the left-eye shutter 4 transmits the incident light, and the right-eye shutter 3 blocks the incident light. The EC control circuit 9 determines when the two-dimensional display 10 displays the left-eye image LI or the right-eye image RI and when the right-eye shutter 3 and the left-eye shutter 4 transmit or block incident light. Control.
 偏光度については、例えば右眼には右眼用画像RIの光強度が左眼用画像LIの光強度より少なくとも5倍以上入射することが望ましいので、80以上100未満の偏光度が望ましい。 Regarding the degree of polarization, for example, it is desirable that the light intensity of the right-eye image RI is incident on the right eye at least five times or more than the light intensity of the left-eye image LI.
 観察者は立体画像視認用眼鏡1を装着し、視差に合わせた位置で、2次元ディスプレイ10を観察することで、立体画像を視認できる。 The observer can view the stereoscopic image by wearing the stereoscopic image viewing glasses 1 and observing the two-dimensional display 10 at a position according to the parallax.
 かかる立体画像表示装置21によれば、上記のように、各光シャッタの全ての偏光を透過させる場合、すなわち、色素が消色状態で偏光制御膜103が偏光特性を有さない状態では、直線偏光である入射光の偏光角の相違によって、所望の光の光量に変化が生じることはない。そのため、右眼用シャッタ3と左眼用シャッタ4とが入射光を透過させる時に、立体画像視認用眼鏡1がXY平面内で回転しても、所望の光の透過率が変化することはない。従って、光を透過させる光シャッタが立体画像表示装置21の立体画像の視認性に与える影響は少なく、観察者は良好な立体画像を視認できる。 According to the stereoscopic image display device 21, as described above, in the case where all the polarized light of each optical shutter is transmitted, that is, in the state where the dye is decolored and the polarization control film 103 does not have the polarization characteristics, The light quantity of the desired light does not change due to the difference in the polarization angle of the incident light that is polarized light. Therefore, when the right-eye shutter 3 and the left-eye shutter 4 transmit incident light, the desired light transmittance does not change even if the stereoscopic image viewing glasses 1 rotate in the XY plane. . Therefore, the light shutter that transmits light has little influence on the visibility of the stereoscopic image of the stereoscopic image display device 21, and the observer can visually recognize a favorable stereoscopic image.
 また、従来の液晶シャッタに比べて立体画像視認用眼鏡1は光利用効率が高いので、立体画像表示装置21も従来の立体画像表示装置に比べて高い光利用効率を得ることができる。 Also, since the stereoscopic image viewing glasses 1 have higher light utilization efficiency than the conventional liquid crystal shutter, the stereoscopic image display device 21 can also obtain higher light utilization efficiency than the conventional stereoscopic image display device.
 次いで、立体画像表示装置22について説明する。図9は、立体画像表示装置22の概要図である。立体画像表示装置22と立体画像表示装置21との相違点は、2次元ディスプレイには上記した2次元ディスプレイ11を有する点と、立体画像視認用眼鏡1の右眼用シャッタ3と左眼用シャッタ4の偏光軸が相直交する点である。 Next, the stereoscopic image display device 22 will be described. FIG. 9 is a schematic diagram of the stereoscopic image display device 22. The difference between the stereoscopic image display device 22 and the stereoscopic image display device 21 is that the two-dimensional display has the two-dimensional display 11 described above, and the right-eye shutter 3 and the left-eye shutter of the stereoscopic image viewing glasses 1. This is the point where the polarization axes of 4 are orthogonal to each other.
 2次元ディスプレイ11は、バックライトK1、偏光板K2、液晶層K3、偏光板K4、及びλ/2板アレイK5を有する。偏光板K2と偏光板K4とは直交ニコル配置されている。 The two-dimensional display 11 has a backlight K1, a polarizing plate K2, a liquid crystal layer K3, a polarizing plate K4, and a λ / 2 plate array K5. The polarizing plates K2 and K4 are arranged in crossed Nicols.
 λ/2板アレイK5には、偏光板K4を出射した直線偏光が、LI1からLI4のY方向の偏光方向を有する直線偏光に変換されるような偏光軸を有するλ/2板と、RI1からRI4のX方向の偏光方向を有する直線偏光に変換されるような偏光軸を有するλ/2板とが交互に配置されている。 The λ / 2 plate array K5 includes a λ / 2 plate having a polarization axis such that linearly polarized light emitted from the polarizing plate K4 is converted into linearly polarized light having a polarization direction in the Y direction from LI1 to LI4, and from RI1. Λ / 2 plates having polarization axes that are converted into linearly polarized light having a polarization direction in the X direction of RI4 are alternately arranged.
 尚、RI1からRI4に配置されるλ/2板は、空気を含む光学的等方性光学板が配置されていてもよい。 Incidentally, the λ / 2 plate arranged from RI1 to RI4 may be an optically isotropic optical plate containing air.
 液晶層K3とλ/2板アレイK5とは、同図に示すように、右眼用画像RIと左眼用画像LIに対応して短冊状に区切られた像が合成されている。λ/2板アレイK5においては、右眼用画像RIと左眼用画像LIに対応して相直交する偏光軸を有する二つの偏光板が並列されている。立体画像視認用眼鏡1で2次元ディスプレイ11を観察することで、右眼には右眼用画像RI、左眼には左眼用画像LIが観察される。なお、2次元ディスプレイ11において、バックライトK1、偏光板K2、液晶層K3の部分を発せられる光が直線偏光でない2次元ディスプレイ、例えばプラズマディスプレイを用いることもできる。 As shown in the figure, the liquid crystal layer K3 and the λ / 2 plate array K5 are composed of strip-shaped images corresponding to the right-eye image RI and the left-eye image LI. In the λ / 2 plate array K5, two polarizing plates having polarization axes orthogonal to each other corresponding to the right-eye image RI and the left-eye image LI are arranged in parallel. By observing the two-dimensional display 11 with the stereoscopic image viewing glasses 1, the right eye image RI is observed for the right eye and the left eye image LI is observed for the left eye. In the two-dimensional display 11, a two-dimensional display in which the light emitted from the backlight K1, the polarizing plate K2, and the liquid crystal layer K3 is not linearly polarized light, such as a plasma display, may be used.
 右眼用シャッタS3と左眼用シャッタS4とが入射光を透過しまたは遮光するタイミングはEC制御回路9が制御する。 The EC control circuit 9 controls the timing at which the right eye shutter S3 and the left eye shutter S4 transmit or block incident light.
 偏光度については、例えば右眼には右眼用画像RIの光強度が左眼用画像LIの光強度より少なくとも5倍以上入射することが望ましいので、80以上100未満の偏光度が望ましい。 Regarding the degree of polarization, for example, it is desirable that the light intensity of the right-eye image RI is incident on the right eye at least five times or more than the light intensity of the left-eye image LI.
 かかる立体画像表示装置22によれば、上記のように立体画像表示装置として用いることができるとともに、全ての光シャッタに電圧を印加して全ての偏光を透過させることで、2次元ディスプレイ11に視差のない2次元画像を表示させて2次元画像を視認することができる。このように2次元画像を視認する場合、従来の立体画像視認用眼鏡を使用する場合に比べて高い光利用効率を得ることができる。 According to the stereoscopic image display device 22, the stereoscopic image display device 22 can be used as a stereoscopic image display device as described above, and a parallax is applied to the two-dimensional display 11 by applying a voltage to all optical shutters to transmit all polarized light. It is possible to visually recognize the two-dimensional image by displaying a two-dimensional image having no image. Thus, when visually recognizing a two-dimensional image, higher light utilization efficiency can be obtained compared to the case of using conventional stereoscopic image viewing glasses.
 なお、立体画像視認用眼鏡1,5の2次元ディスプレイ10,11の側の面と、2次元ディスプレイ10,11の立体画像視認用眼鏡1,5の側の面に、各々位相差板を積層しても良い。かかる位置に例えばλ/4板を設ければ、視認性の回転角依存を抑制することができる。 A phase difference plate is laminated on the surface of the stereoscopic image viewing glasses 1 and 5 on the two- dimensional display 10 and 11 side and the surface of the two- dimensional display 10 and 11 on the stereoscopic image viewing glasses 1 and 5 side. You may do it. For example, if a λ / 4 plate is provided at such a position, the dependency of visibility on the rotation angle can be suppressed.
 次いで、立体画像表示装置23について説明する。図10は、立体画像表示装置23の概要図である。立体画像表示装置23と立体画像表示装置21との相違点は、2次元ディスプレイには無偏光状態の光を射出する2次元ディスプレイ12を有する点と、立体画像視認用眼鏡5を有する点である。 Next, the stereoscopic image display device 23 will be described. FIG. 10 is a schematic diagram of the stereoscopic image display device 23. The difference between the stereoscopic image display device 23 and the stereoscopic image display device 21 is that the two-dimensional display has a two-dimensional display 12 that emits non-polarized light and a stereoscopic image viewing glasses 5. .
 立体画像視認用眼鏡5においては、2次元ディスプレイ12が右眼用画像RIを表示している間は、偏光板6を通過した直線偏光が右眼用シャッタ3を透過するように、右眼用シャッタ3に電圧を印加し、左眼用シャッタ4に電圧を印加しないで、偏光板8を通過した直線偏光が遮光される。 In the stereoscopic image viewing glasses 5, while the two-dimensional display 12 displays the right-eye image RI, the linearly polarized light that has passed through the polarizing plate 6 is transmitted through the right-eye shutter 3 so as to be transmitted through the right-eye shutter 3. The linearly polarized light passing through the polarizing plate 8 is shielded from light without applying a voltage to the shutter 3 and applying a voltage to the left-eye shutter 4.
 また、立体画像視認用眼鏡5においては、2次元ディスプレイ12が左眼用画像LIを表示している間は、偏光板8を通過した直線偏光が左眼用シャッタ4を透過するように、左眼用シャッタ4に電圧を印加し、右眼用シャッタ3に電圧を印加しないで、偏光板6を通過した直線偏光が遮光される。 Further, in the stereoscopic image viewing glasses 5, while the two-dimensional display 12 displays the left eye image LI, the left polarized light passes through the left eye shutter 4 so that the linearly polarized light that has passed through the polarizing plate 8 is transmitted. The linearly polarized light that has passed through the polarizing plate 6 is shielded from light without applying a voltage to the eye shutter 4 and applying a voltage to the right eye shutter 3.
 右眼用シャッタ3と左眼用シャッタ4とが入射光を透過しまたは遮光するタイミングはEC制御回路9が制御する。 The EC control circuit 9 controls the timing at which the right eye shutter 3 and the left eye shutter 4 transmit or block incident light.
 偏光度については、例えば右眼には右眼用画像RIの光強度が左眼用画像LIの光強度より少なくとも5倍以上入射することが望ましいので、80以上100未満の偏光度が望ましい。 Regarding the degree of polarization, for example, it is desirable that the light intensity of the right-eye image RI is incident on the right eye at least five times or more than the light intensity of the left-eye image LI.
 観察者は立体画像視認用眼鏡1を装着し、視差に合わせた位置で、2次元ディスプレイ10を観察することで、立体画像を視認できる。 The observer can view the stereoscopic image by wearing the stereoscopic image viewing glasses 1 and observing the two-dimensional display 10 at a position according to the parallax.
 かかる立体画像表示装置23によれば、上記のように、各光シャッタの全ての偏光を透過させる場合、すなわち、色素が消色状態で偏光制御膜103が偏光特性を有さない状態では、直線偏光である入射光の偏光角の相違によって、所望の光の光量に変化が生じることはない。そのため、右眼用シャッタ3と左眼用シャッタ4とが入射光を透過させる時に、立体画像視認用眼鏡5がXY平面内で回転しても、所望の光の透過率が変化することはない。従って、光を透過させる光シャッタが立体画像表示装置23の立体画像の視認性へ与える影響は少なく、観察者は良好な立体画像を視認できる。 According to the stereoscopic image display device 23, as described above, in the case where all the polarized light of each optical shutter is transmitted, that is, in the state where the dye is decolored and the polarization control film 103 does not have the polarization characteristics, The light quantity of the desired light does not change due to the difference in the polarization angle of the incident light that is polarized light. Therefore, when the right-eye shutter 3 and the left-eye shutter 4 transmit incident light, even if the stereoscopic image viewing glasses 5 rotate in the XY plane, the desired light transmittance does not change. . Therefore, the optical shutter that transmits light has little influence on the visibility of the stereoscopic image of the stereoscopic image display device 23, and the observer can visually recognize a favorable stereoscopic image.
 また、従来の液晶シャッタに比べて立体画像視認用眼鏡5は光利用効率が高いので、立体画像表示装置23も従来の立体画像表示装置に比べて高い光利用効率を得ることができる。 Also, since the stereoscopic image viewing glasses 5 have higher light utilization efficiency than the conventional liquid crystal shutter, the stereoscopic image display device 23 can also obtain higher light utilization efficiency than the conventional stereoscopic image display device.
 以上のように本発明によれば、エレクトロクロミック素子を備える右眼用シャッタと左眼用シャッタとを用いることから、高い光利用効率を示す立体画像視認用眼鏡を提供することができる。 As described above, according to the present invention, since a right-eye shutter and a left-eye shutter including an electrochromic element are used, it is possible to provide stereoscopic image viewing glasses that exhibit high light utilization efficiency.
 また、本発明によれば、エレクトロクロミック素子は、電圧非印加時に、所定の偏光方向の直線偏光のみ透過し、電圧印加時に、全ての偏光を透過することから光利用効率を悪化させず、回転角によって視認性が低下しにくい立体画像視認用眼鏡を提供することができる。 Further, according to the present invention, the electrochromic device transmits only linearly polarized light in a predetermined polarization direction when no voltage is applied, and transmits all polarized light when a voltage is applied. It is possible to provide stereoscopic image viewing glasses whose visibility is not easily lowered by the corners.
 また、本発明によれば、エレクトロクロミック素子を透過させる直線偏光の偏光度が、80以上100未満であることから、例えば右眼には左眼用画像LIの光強度に比べて5倍以上の光強度を有する右眼用画像RIを入射させることができ、立体画像の観察において良好な視認性を得ることができる。 Further, according to the present invention, the degree of polarization of linearly polarized light transmitted through the electrochromic element is 80 or more and less than 100. For example, the right eye has 5 times or more the light intensity of the left-eye image LI. The right-eye image RI having light intensity can be incident, and good visibility can be obtained in the observation of a stereoscopic image.
 また、本発明によれば、右眼用シャッタと左眼用シャッタとに備えられたエレクトロクロミック素子の各々に、偏光軸の方向が各エレクトロクロミック素子の偏光方向と直交する偏光板を有することで、光利用効率を悪化させず、回転角によって視認性が低下しにくい立体画像視認用眼鏡を提供することができる。 According to the present invention, each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter has a polarizing plate in which the direction of the polarization axis is orthogonal to the polarization direction of each electrochromic element. Further, it is possible to provide stereoscopic image viewing glasses that do not deteriorate the light utilization efficiency and are less likely to have low visibility due to the rotation angle.
 また、本発明によれば、上記の右眼用シャッタと左眼用シャッタとに備えられたエレクトロクロミック素子を有する立体画像視認用眼鏡と、
 前記各々のシャッタの偏光軸と直交する直線偏光を発する右眼用画像と左眼用画像とを時系列で交互に表示する2次元画像表示装置と、
 前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に電圧を印加するタイミングと、前記右眼用画像と前記左眼用画像とを表示させるタイミングを合わせる制御回路と、を有することで、立体画像表示装置を提供することができる。
Further, according to the present invention, stereoscopic image viewing glasses having electrochromic elements provided in the right-eye shutter and the left-eye shutter,
A two-dimensional image display device that alternately displays a right-eye image and a left-eye image that emit linearly polarized light orthogonal to the polarization axis of each shutter in time series;
A control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image; Therefore, a stereoscopic image display device can be provided.
 1,5 立体画像視認用眼鏡
 3 右眼用シャッタ
 4 左眼用シャッタ
 7 全体制御回路
 9 EC制御回路
 10,11,12 2次元ディスプレイ
 21,22,23 立体画像表示装置
 101,104 電極
 102 電解質層
 103 偏光制御膜
 110 偏光制御素子
 LI 左眼用画像
 RI 右眼用画像
DESCRIPTION OF SYMBOLS 1,5 Glasses for stereoscopic image viewing 3 Shutter for right eye 4 Shutter for left eye 7 Overall control circuit 9 EC control circuit 10, 11, 12 Two- dimensional display 21, 22, 23 Stereoscopic image display device 101, 104 Electrode 102 Electrolyte layer 103 Polarization Control Film 110 Polarization Control Element LI Image for Left Eye RI Image for Right Eye

Claims (7)

  1.  右眼用シャッタと左眼用シャッタとを有し、双方のシャッタがエレクトロクロミック素子を備えることを特徴とする立体画像視認用眼鏡。 Stereoscopic image viewing glasses having a right-eye shutter and a left-eye shutter, both shutters having electrochromic elements.
  2.  前記エレクトロクロミック素子は、電圧非印加時に、所定の偏光方向の直線偏光のみ透過し、電圧印加時に、全ての偏光を透過することを特徴とする請求項1に記載の立体画像視認用眼鏡。 The stereoscopic image viewing glasses according to claim 1, wherein the electrochromic element transmits only linearly polarized light in a predetermined polarization direction when no voltage is applied, and transmits all polarized light when a voltage is applied.
  3.  前記直線偏光の偏光度が、80以上100未満であることを特徴とする請求項2に記載の立体画像視認用眼鏡。 The stereoscopic image viewing glasses according to claim 2, wherein the linearly polarized light has a polarization degree of 80 or more and less than 100.
  4.  前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に、偏光軸の方向が各エレクトロクロミック素子の偏光方向と直交する偏光板を有することを特徴とする請求項2又は3に記載の立体画像視認用眼鏡。 The electrochromic device provided in each of the right-eye shutter and the left-eye shutter has a polarizing plate in which the direction of the polarization axis is orthogonal to the polarization direction of each electrochromic device. Or 3D image viewing glasses according to 3;
  5.  前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の偏光軸が互いに平行である請求項2又は3に記載の立体画像視認用眼鏡と、
     前記偏光軸と直交する直線偏光を発する右眼用画像と左眼用画像とを時系列で交互に表示する2次元画像表示装置と、
     前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に電圧を印加するタイミングと、前記右眼用画像と前記左眼用画像とを表示させるタイミングを合わせる制御回路と、
     を有することを特徴とする立体画像表示装置。
    The stereoscopic image viewing glasses according to claim 2 or 3, wherein polarization axes of electrochromic elements provided in the right-eye shutter and the left-eye shutter are parallel to each other.
    A two-dimensional image display device that alternately displays a right-eye image and a left-eye image emitting linearly polarized light orthogonal to the polarization axis in time series;
    A control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image; ,
    A stereoscopic image display device comprising:
  6.  請求項4に記載の立体画像視認用眼鏡と、
     右眼用画像と左眼用画像とを時系列で交互に表示する2次元画像表示装置と、
     前記右眼用シャッタと前記左眼用シャッタとに備えられたエレクトロクロミック素子の各々に電圧を印加するタイミングと、前記右眼用画像と前記左眼用画像とを表示させるタイミングを合わせる制御回路と、
     を有することを特徴とする立体画像表示装置。
    Three-dimensional image viewing glasses according to claim 4,
    A two-dimensional image display device that alternately displays a right-eye image and a left-eye image in time series;
    A control circuit for adjusting a timing for applying a voltage to each of the electrochromic elements provided in the right-eye shutter and the left-eye shutter, and a timing for displaying the right-eye image and the left-eye image; ,
    A stereoscopic image display device comprising:
  7.  前記右眼用シャッタと前記左眼用シャッタに、受光する画像の偏光方向と相直交する偏光軸を具備し偏光軸が相直交するエレクトロクロミック素子を備えた請求項2又は3に記載の立体画像視認用眼鏡と、
     相直交する偏光方向を有する直線偏光を各々射出する右眼用画像と左眼用画像とが交互に並列された2次元画像表示装置と、
     前記右眼用画像と前記左眼用画像の表示のタイミングを合わせる制御回路と、
     を有することを特徴とする立体画像表示装置。
    4. The stereoscopic image according to claim 2, wherein the right-eye shutter and the left-eye shutter are each provided with an electrochromic element that has a polarization axis that is orthogonal to a polarization direction of a received image and whose polarization axis is orthogonal. Viewing glasses,
    A two-dimensional image display device in which right-eye images and left-eye images each emitting linearly polarized light having mutually orthogonal polarization directions are alternately arranged;
    A control circuit for adjusting the display timing of the right-eye image and the left-eye image;
    A stereoscopic image display device comprising:
PCT/JP2011/051880 2010-02-23 2011-01-31 Glasses for viewing stereoscopic images and device for displaying stereoscopic images WO2011105173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012501716A JPWO2011105173A1 (en) 2010-02-23 2011-01-31 Stereoscopic image viewing glasses and stereoscopic image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010037269 2010-02-23
JP2010-037269 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011105173A1 true WO2011105173A1 (en) 2011-09-01

Family

ID=44506594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051880 WO2011105173A1 (en) 2010-02-23 2011-01-31 Glasses for viewing stereoscopic images and device for displaying stereoscopic images

Country Status (2)

Country Link
JP (1) JPWO2011105173A1 (en)
WO (1) WO2011105173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253145A (en) * 2010-06-04 2011-12-15 Konica Minolta Opto Inc Stereoscopic image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175090A (en) * 1993-12-21 1995-07-14 Nikon Corp Electrochromic ophthalmic lens
JPH0876058A (en) * 1994-06-30 1996-03-22 Sanyo Electric Co Ltd Optical shutter and three-dimensional image display device
JP2005284007A (en) * 2004-03-30 2005-10-13 Konica Minolta Photo Imaging Inc Transmission type video display device
JP2009152897A (en) * 2007-12-20 2009-07-09 Toshiba Corp Stereoscopic video display device, stereoscopic video display method, and liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175090A (en) * 1993-12-21 1995-07-14 Nikon Corp Electrochromic ophthalmic lens
JPH0876058A (en) * 1994-06-30 1996-03-22 Sanyo Electric Co Ltd Optical shutter and three-dimensional image display device
JP2005284007A (en) * 2004-03-30 2005-10-13 Konica Minolta Photo Imaging Inc Transmission type video display device
JP2009152897A (en) * 2007-12-20 2009-07-09 Toshiba Corp Stereoscopic video display device, stereoscopic video display method, and liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253145A (en) * 2010-06-04 2011-12-15 Konica Minolta Opto Inc Stereoscopic image display device

Also Published As

Publication number Publication date
JPWO2011105173A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
KR101850374B1 (en) High-speed liquid crystal polarization modulator
US8472115B2 (en) Anistropic dye layer, coordination polymer for anistropic dye layer and polarization element, and polarization control film, polarization control element, multi-layer polarization control element, ellipse polarization plate, light emission element, and method for controlling polarization properties employing the anistropic dye layer
ES2389600T3 (en) Organic compounds, organic films and their manufacturing process
CN101743504B (en) Liquid crystal panel and liquid crystal display
JP2010515710A (en) Polycyclic organic compound, optically anisotropic film and method for producing the same
WO2011105173A1 (en) Glasses for viewing stereoscopic images and device for displaying stereoscopic images
JP5294301B2 (en) Display element
JP5614110B2 (en) Stereoscopic image display device
JP2011248195A (en) Head-mounted display
JP5304731B2 (en) Stereoscopic image display device
JP2011170231A (en) Glasses for observing three-dimensional image, and three-dimensional image display device
JP5181438B2 (en) Tin oxide porous layer forming method and electrochromic display element
JP2011248194A (en) Head-mounted display
JP2007121996A (en) Optical compensation sheet, polarizing plate using the same, and liquid crystal display device
JPH1138361A (en) Three-dimensional display device
JP5418048B2 (en) Polarization control element, laminated polarization control element, elliptically polarizing plate, light emitting element, and polarization characteristic control method
JP2009192577A (en) Polarizing film
JP5040218B2 (en) Display element
JP5699095B2 (en) 3D display device and 3D display system
US7951431B2 (en) Processes for producing coating fluid and optically anisotropic film
JP2008102417A (en) Azo dye for anisotropic dye film, composition for anisotropic dye film containing the azo dye, anisotropic dye film and polarizing element
WO2024051395A1 (en) Light modulation module and stereoscopic display device
JP5585441B2 (en) Electrochemical display element
JP2018154705A (en) Dichroic compound, liquid crystal composition and liquid crystal element
JP5381634B2 (en) Anisotropic dye film and polarizing element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501716

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747137

Country of ref document: EP

Kind code of ref document: A1