WO2011099259A1 - Phenol resin composition, cured product thereof, and friction material - Google Patents

Phenol resin composition, cured product thereof, and friction material Download PDF

Info

Publication number
WO2011099259A1
WO2011099259A1 PCT/JP2011/000658 JP2011000658W WO2011099259A1 WO 2011099259 A1 WO2011099259 A1 WO 2011099259A1 JP 2011000658 W JP2011000658 W JP 2011000658W WO 2011099259 A1 WO2011099259 A1 WO 2011099259A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
resin composition
copolymer
weight
friction
Prior art date
Application number
PCT/JP2011/000658
Other languages
French (fr)
Japanese (ja)
Inventor
貴春 阿部
正信 前田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2011099259A1 publication Critical patent/WO2011099259A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only

Definitions

  • the present invention relates to a phenol resin composition, a cured product thereof, and a friction material.
  • Phenolic resins have excellent mechanical properties, electrical properties, heat resistance, and adhesive properties, and binders for friction materials such as disc pads and drum brake linings, and electrical and electronic parts such as semiconductor encapsulants and laminates. It is used as a binder. On the other hand, phenolic resins are deficient in impact resistance and flexibility.
  • Non-asbestos type disc pads that do not use asbestos are widely used in Japan, Korea and North America due to carcinogenic problems.
  • NDH Noise, Vibration, Harsh.
  • a phenomenon called morning squeal in which a car starts from the garage when the temperature in the winter morning is low, and a large squeal or vibration occurs in the first few brakes, is particularly regarded as a problem.
  • the driver suddenly brakes just by stepping on the brake lightly, and noise and vibration are generated. Similar cases occur not only in the morning but also after a long parking in the rain or in humid areas.
  • modified phenol resins such as elastomer-modified phenol resins, oil-modified phenol resins, cashew-modified phenol resins, silicone-modified phenol resins, epoxy-modified phenol resins, and melamine-modified phenol resins have been studied.
  • Patent Document 1 describes a technique of mixing acrylonitrile-butadiene rubber (NBR) with a phenolic resin in order to improve impact resistance and flexibility.
  • NBR acrylonitrile-butadiene rubber
  • NBR in which these are mixed has a large particle size of 100 ⁇ m or more and is not compatible with phenolic resins. For this reason, the dispersibility of the mixed NBR is poor. Therefore, a large amount of NBR is required to obtain the effect of the above characteristics.
  • NBR acrylonitrile-butadiene rubber
  • heat resistance deteriorates
  • hygroscopicity deteriorates due to separation of the interface between the phenol resin phase and the NBR phase.
  • thermosetting resin composition that gives a cured product having excellent heat resistance, flexibility, and dimensional stability
  • thermosetting comprising a copolymer containing isopropenyl phenol as one component and a phenol resin.
  • Techniques related to the conductive resin composition are described. However, no specific study has been made on a resin composition that gives a cured product having excellent heat resistance, frictional sliding characteristics, and absorption vibration.
  • An object of the present invention is to provide a phenol resin composition from which a cured product having excellent heat resistance, frictional sliding properties, and absorption vibration properties can be obtained.
  • a phenol resin composition comprising a copolymer (I) of an acrylate ester monomer and an alkenyl phenol monomer and a phenol resin (II),
  • the copolymer (I) is a phenol resin composition that satisfies the following requirements (A), (B), and (C).
  • A) The weight ratio of the acrylate monomer / the alkenylphenol monomer is 95/5 to 65/35.
  • B The weight average molecular weight is 40000 or more and 90000 or less.
  • C The glass transition temperature is ⁇ 10 ° C. or lower.
  • [7] Further comprising an additive having at least one selected from the group consisting of fibers, fillers, lubricants and abrasives;
  • [10] A cured product obtained by curing the phenol resin composition according to any one of [1] to [9]. [11] The cured product according to [10], wherein the weight retention when the mass after being left for 120 hours under a temperature of 300 ° C. in an air atmosphere is 50% or more. [12] [10] A friction material comprising the cured product according to [11]. [13] The friction material according to [12], wherein a friction coefficient ( ⁇ ) measured under the following measurement conditions is 0.145 or less. [Measurement condition] The coefficient of friction is a value obtained by subtracting the coefficient of friction (2) of the baseline check from the value of the coefficient of friction (1) when the coefficient of friction increases to the maximum.
  • the friction coefficient (2) is obtained by cutting a sample and measuring it with an automotive standard JASO C 406 test method using a brake tester ( ⁇ brake 1/10 scale tester), and then applying a braking initial speed of 10 km / h. Measurement is performed at a deceleration of 1.0 m / s 2 , a braking interval of 60 seconds, and a braking frequency of 50 times.
  • the friction coefficient (1) is measured under the same conditions as the friction coefficient (2) after leaving the sample for 24 hours at 30 ° C. and 80% RH humidity.
  • the phenol resin composition of the present invention contains a copolymer (I) having a structure of an acrylate ester monomer and an alkenyl phenol monomer and a phenol resin (II).
  • Copolymer (I) As the acrylic acid ester monomer, an acrylic acid is used so that when the homopolymer of the acrylic acid ester monomer is homopolymerized to produce a homopolymer having a weight average molecular weight of 40000, the homopolymer has a glass transition temperature of ⁇ 20 ° C. or lower. It is preferred to select an ester monomer. When such a monomer is selected, the glass transition temperature of the copolymer (I) can be easily controlled to ⁇ 10 ° C. or lower.
  • the copolymer (I) having a glass transition temperature of ⁇ 10 ° C. or lower can be suitably used in a cold region, particularly in a North American region where the temperature often reaches ⁇ 10 ° C.
  • acrylic acid ester monomers examples include ethyl acrylate, n-propyl acrylate, n-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, and lauryl acrylate. These acrylic acid esters may be used alone or in combination of two or more. Among these, ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate are particularly preferable because they are easily available industrially and are inexpensive.
  • Alkenylphenol monomers include o-ethynylphenol, m-ethynylphenol, p-ethynylphenol, o-isopropenylphenol, m-isopropenylphenol, p-isopropenylphenol, 2- (1-propenyl) -1-hydroxy Benzene, 2- (2-propenyl) -1-hydroxybenzene, 3- (1-propenyl) -1-hydroxybenzene, 3- (2-propenyl) -1-hydroxybenzene, 4- (1-propenyl) -1 -Hydroxybenzene, 4- (2-propenyl) -1-hydroxybenzene, 2-ethynyl-1-hydroxynaphthalene, 4-ethynyl-1-hydroxynaphthalene, 5-ethynyl-1-hydroxynaphthalene, 6-ethynyl-1- Hydroxynaphthalene, 7-ethynyl-1-hy B
  • the weight ratio of the acrylate ester monomer / alkenylphenol monomer is preferably 95/5 to 65/35, and particularly preferably 90/10 to 80/20 (hereinafter referred to as the following).
  • “To” means that an upper limit value and a lower limit value are included unless otherwise specified).
  • the weight ratio of the alkenylphenol monomers is less than 5, the crosslink density between the alkenylphenols and the phenol resin is lowered, and the heat resistance may be lowered.
  • the weight ratio of the alkenylphenol monomer exceeds 35, the glass transition temperature of the copolymer (I) exceeds ⁇ 10 ° C., and the absorption vibration property in the low temperature region may be deteriorated.
  • the copolymer (I) of the present invention may contain structural units derived from monomers other than acrylic acid ester monomers and alkenylphenol monomers in an amount that does not impair the object of the present invention.
  • the units derived from other monomers can be generally 0 to 10% by weight, preferably 0 to 5% by weight, when the weight of the copolymer (I) is 100% by weight.
  • Examples of other monomers include n-butyl methacrylate and glycidyl methacrylate.
  • the lower limit is preferably 40000 or more, more preferably more than 50000, and further preferably 55000 or more, while the upper limit is preferably 90000 or less. More preferably, it is 80000 or less, More preferably, it is 75000 or less.
  • the weight average molecular weight is less than 40,000, the viscosity of the copolymer is reduced, so that it is easy to aggregate, the contact area between the alkenylphenol and the phenol resin of the copolymer is small, and the curing reaction is difficult, and the heat resistance is May decrease.
  • the weight average molecular weight exceeds 90000, the viscosity increases and the fine dispersion of the copolymer (I) becomes easy due to shear stress.
  • the molecules are easily entangled and difficult to move. Curing between the resins tends to proceed preferentially and the crosslink density increases, so that the resin is pulled by the characteristics of the phenolic resin and heat resistance is increased, but the absorption vibration property may be deteriorated. Therefore, by setting the weight average molecular weight of the copolymer (I) within the above range, the present invention excellent in heat resistance and absorption vibration can be obtained.
  • the ICI viscosity measured at 150 ° C. of the copolymer (I) is, for example, preferably from 1.0 to 13 Pa ⁇ s, more preferably from 1.0 to 10 Pa ⁇ s.
  • the glass transition temperature of the copolymer (I) is preferably ⁇ 10 ° C. or less, preferably ⁇ 15 ° C. or less, particularly preferably ⁇ 20 ° C. or less.
  • the glass transition temperature is higher than ⁇ 10 ° C., the absorption vibration property in the low temperature region is deteriorated. That is, when the glass transition temperature of the copolymer (I) is increased, the damping ability at low temperature is deteriorated and the decay time is prolonged, so that the noise reduction effect at low temperature may be lost.
  • the molecular weight distribution (Mw / Mn) of the copolymer (I) can be 1.0 to 5.0, and preferably 2.0 to 4.0.
  • the copolymer (I) of the present invention is preferably a random copolymer because stable performance is easily obtained.
  • copolymer (I) is obtained by reacting an acrylate ester monomer and an alkenylphenol monomer with a radical polymerization initiator, but is not particularly limited to this method.
  • Any initiator used in ordinary radical polymerization can be used.
  • azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, azobis-2-amidinopropane hydrochloride Salt, azobisisobutyric acid dimethyl, azobisisobutylamidine hydrochloride or 4,4′-azobis-4-cyanovaleric acid and other azo initiators benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, di-tert peroxide -Butyl, lauroyl peroxide, acetyl peroxide, diisopropyl dicarbonate, cumene hydroperoxide, tert-butyl hydroperoxide, dicumyl peroxide, p-menthane hydroperoxide, pinane hydroperoxide, methyl ethyl ketone peroxide , Peroxide initiators such as cyclo
  • azo initiators or peroxide initiators are preferable, and azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, dimethyl azobisisobutyrate, benzoyl peroxide, 2,4 More preferred are dichlorobenzoyl peroxide, di-tert-butyl peroxide, lauroyl peroxide, diisopropyl dicarbonate peroxide or acetyl peroxide.
  • the radical polymerization initiators can be used alone or in combination of two or more simultaneously or sequentially.
  • the amount of the radical polymerization agent used is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total of acrylic acid ester monomers and alkenylphenol monomers. 1 to 5 parts by weight is particularly preferred. You may use so that the whole quantity or one part of a radical polymerization agent may be added at the time of a heating start or after a superheat start.
  • Any solvent can be used as long as it does not inhibit the reaction, but ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone or ⁇ -butyrolactone, n-propyl alcohol, isopropyl alcohol, Alcohols such as n-butyl alcohol, tert-butyl alcohol, n-octanol, 2-ethylhexanol or n-dodecyl alcohol, glycols such as ethylene glycol, propylene glycol or diethylene glycol, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether or tetra Ethers such as lofuran and dioxane, alcohol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoeth
  • the amount of the solvent used can be determined by the raw material used, the type and amount of the radical polymerization initiator, the molecular weight of the desired copolymer, and the like. Usually, the amount of the solvent used is preferably 5 to 5000 parts by weight, more preferably 10 to 3000 parts by weight, and particularly preferably 30 to 1000 parts by weight with respect to 100 parts by weight of the total raw materials used.
  • the phenol resin (II) is an alternating polymer of a phenol compound and a compound having a divalent linking group.
  • Phenol resins (II) are phenol novolac resins, residues obtained by removing bisphenol from novolacs, resol type phenol resins, phenol-dicyclopentadiene resins, phenol aralkyl resins, biphenyl aralkyl resins, naphthol aralkyl resins. , Aniline aralkyl resins and the like, but phenol novolac resins that are easily available and inexpensive are particularly preferred.
  • the manufacturing method of phenol resin (II) is demonstrated.
  • the phenol resin (II) according to the present invention can be obtained, for example, by reacting a phenol compound and an aldehyde in the presence of an acid catalyst, but is not particularly limited to these methods.
  • phenol compound used examples include phenol, o-cresol, m-cresol, and p-cresol. Preferably it is phenol. You may use these individually or in combination of 2 or more types.
  • examples of the compound used as the compound of the two linking groups include aldehydes such as formaldehyde and paraformaldehyde. More preferred is formaldehyde. You may use these individually or in combination of 2 or more types.
  • metal salts such as zinc acetate, acids such as oxalic acid, hydrochloric acid, sulfuric acid, diethylsulfuric acid and paratoluenesulfonic acid can be used alone or in combination of two or more.
  • the amount of the catalyst used is 0.01 to 5 parts by weight with respect to 100 parts by weight of the phenol compound.
  • the phenol resin composition of the present invention can be obtained by mixing the copolymer (I) and the phenol resin (II).
  • the weight ratio of copolymer (I) / phenolic resin (II) is preferably 5/95 to 50/50, more preferably 10/90 to 40/60, and particularly preferably 20/80 to 30/70. .
  • the weight ratio of the copolymer (I) is less than 5, the absorption vibration performance at a low temperature may be lowered.
  • the weight ratio of the copolymer (I) exceeds 50, the heat resistance may be lowered.
  • the proportion of the copolymer (I) increases, the hardness and curability are improved, but the hygroscopicity may decrease because the amount of hydroxyl groups increases.
  • a mixing method of the copolymer (I) and the phenol resin (II) a method of mixing in a powder form by pulverization, a method of melting and mixing at a temperature of 120 to 180 ° C. for several minutes to several hours, ,
  • Common solvents for copolymer (I) and phenol resin (II) for example, alcohols such as methanol, ethanol, propenol, benzyl alcohol, diacetone alcohol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone
  • a method of dissolving and mixing in one or more solvents such as ethers such as dioxane, tetrahydrofuran, methyl cellosolve and ethyl cellosolve, and esters such as ethyl acetate and butyl acetate.
  • the phenol resin composition of the present invention may contain a curing agent such as paraformaldehyde or hexamine as necessary.
  • the content of the curing agent is preferably 3 to 20 parts by weight, and more preferably 5 to 15 parts by weight with respect to 100 parts by weight as a total of the copolymer (I) and the phenol resin (II).
  • the phenol resin composition of the present invention may contain various additives.
  • a resin composition for example, in addition to the copolymer (I), the phenol resin (II), and a curing agent, at least one additive selected from fibers, fillers, lubricants, and abrasives is used. You may contain.
  • the weight ratio of (copolymer (I) + phenol resin (II) + curing agent) / additive is 5/95 to 20/80, preferably 8/92. To 15/85.
  • fibers include aramid fibers, potassium titanate fibers, ceramic fibers, copper fibers, and glass fibers.
  • the filler include inorganic fillers such as barium sulfate, mica, antimony trisulfide, and calcium hydroxide, and organic fillers such as cashew dust, rubber dust, and wood powder.
  • the lubricant include graphite, antimony sulfide, molybdenum sulfide and the like.
  • abrasive include zirconium oxide and iron oxide.
  • the phenol resin composition of the present invention may contain additives other than those described above, for example, a colorant, a flame retardant, a coupling agent and the like, if necessary.
  • the cured product of the present invention is obtained by curing the phenol resin composition.
  • the cured product of the present invention is obtained by curing a phenol resin composition containing the copolymer (I), the phenol resin (II) and a curing agent, and further various additives as necessary. Can do.
  • a cross-linking reaction occurs between the copolymers (I), between the phenol resins (II), and between the copolymer (I) and the phenol resin (II). It is thought that it is formed.
  • the phenol resin composition is filled in a mold or the like, and molded under conditions of 130 to 180 ° C. and 10 to 100 MPa by heating or compression molding for 5 to 20 minutes. Thereafter, post-curing treatment is preferably performed at 160 to 250 ° C. as necessary. Thus, a molded product is obtained from the cured product of the present invention.
  • the obtained molded product is excellent in heat resistance and sliding characteristics and excellent in vibration absorption (particularly absorption vibration at low temperature). Therefore, it can be used for applications such as industrial machinery, railway vehicles, luggage vehicles, and friction sliding materials for automobiles.
  • the phenol resin composition of the present invention is particularly preferably used as a binder for friction materials such as disk pads and drum brake linings, and as a binder for electrical and electronic parts such as semiconductor encapsulants and laminates.
  • cured material of this invention can be used for a friction material.
  • the upper limit of the weight retention rate of the cured product of the present invention is not particularly limited, but can be, for example, 90% or less, more preferably 80% or less.
  • the lower limit of the weight retention is preferably 50% or more, and more preferably 55% or more.
  • This weight retention rate can represent the heat resistance of the cured product of the present invention.
  • the weight retention can be adjusted by the copolymer (I) according to the present invention, the ICI viscosity, and the like.
  • the upper limit value of the friction coefficient ( ⁇ ) of the cured product (friction material) of the present invention is, for example, preferably 0.145 or less, and more preferably 0.135 or less.
  • the lower limit value of the friction coefficient is not particularly limited, but may be, for example, 0.100 or more, and more preferably 0.110 or more.
  • This coefficient of friction can represent the hygroscopicity (friction sliding property) of the cured product of the present invention.
  • the friction coefficient includes the weight ratio of the acrylate ester monomer and the alkenylphenol monomer in the copolymer (I) according to the present invention, the weight ratio of the copolymer (I) and the phenol resin (II), etc. Can be adjusted.
  • the upper limit value of the required time ( ⁇ msec.) Required for vibration attenuation which represents the absorption vibration property of the cured product (friction material) of the present invention, is preferably 0.55 or less, and more preferably 0.50 or less.
  • the lower limit of required time ((DELTA) msec.) Is not specifically limited, For example, it can be set to 0.20 or more, and can be set to 0.30 or more. This coefficient of friction can represent the hygroscopicity of the cured product of the present invention.
  • the absorption vibration property can be adjusted by the glass transition temperature in the copolymer (I) according to the present invention, the weight average molecular weight of the copolymer (I), and the like.
  • Production Example 2 The same procedure as in Production Example 1 was carried out except that 95 g of ethyl acrylate and 5 g of p-isopropenylphenol were used instead of 80 g of n-butyl acrylate and 20 g of p-isopropenylphenol.
  • the weight average molecular weight was 62000 and Tg was ⁇ A copolymer having a temperature of 20 ° C. was obtained. The results are shown in Table 1.
  • ICI viscosity The ICI viscosity at 150 ° C. was measured using an ICI cone plate viscometer.
  • a resin composition having the following composition was pulverized and mixed for 5 minutes with a pulverizer, placed in a mold, and preformed under conditions of room temperature, 30 MPa, and 1 minute. Next, this preform is transferred to another mold preheated to 150 ° C., and while being removed of the generated gas, it is hot-pressed at 30 MPa and 150 ° C. for 10 minutes, and then after-curing at 180 ° C. for 6 hours. The molded product (pad) thus obtained was used as a sample for measuring the coefficient of friction and Tg.
  • Potassium titanate fiber 27.5% by weight Copper fiber (reinforced fiber) 15.0% by weight Barium sulfate (inorganic filler) 27.0% by weight Slaked lime (inorganic filler) 2.0% by weight Cashew dust (organic filler) 8.0% by weight Graphite (lubricated, abrasive) 5.0% by weight Iron oxide (lubricated, abrasive) 7.0% by weight Binder * 1) 8.5% by weight * 1)
  • the above phenol resin composition: hexamine (curing agent) 100: 2 (mass ratio)
  • Tg Glass transition temperature derived from copolymer (I)
  • the measurement was performed under the following conditions using a solid viscoelasticity measuring device TA (RSA).
  • the measurement temperature range is -100 to 400 ° C, and the heating rate is 3 ° C / min.
  • the measurement mode was a bending mode (Auto tension, Auto strain control), and the measurement frequency was 1 Hz. )
  • Weight retention The mass after being left for 120 hours at a temperature of 300 ° C. in an air atmosphere was measured, and the weight retention was calculated based on the following formula.
  • Weight retention [mass%] 100 ⁇ (W1-W2) / W1
  • W1 Sample mass before standing in a temperature of 300 ° C. and air atmosphere
  • W2 Sample weight after standing in a temperature of 300 ° C. and air atmosphere for 120 hours (evaluation criteria) ⁇ : 50% ⁇ weight retention ⁇ ; 45% ⁇ weight retention ⁇ 50% ⁇ ; Weight retention ⁇ 45%
  • Friction coefficient A sample is cut out and measured with the automotive standard JASO C 406 test method using a brake tester ( ⁇ brake 1/10 scale tester), then the initial braking speed is 10 km / h and the braking deceleration is 1.0 m / h.
  • the baseline of the coefficient of friction was measured at s 2 , a braking interval of 60 seconds and a braking frequency of 50 times.
  • the test product was allowed to stand at 30 ° C. and 80% RH for 24 hours, and the friction coefficient under the above conditions was measured again using a brake tester.
  • the coefficient of friction was calculated by subtracting the coefficient of friction of the baseline check from the value of the coefficient of friction when it increased to the maximum. (Evaluation criteria) ⁇ : Friction coefficient ⁇ 0.145 ⁇ ⁇ : 0.145 ⁇ ⁇ friction coefficient ⁇ 0.160 ⁇ ⁇ : 0.160 ⁇ ⁇ Friction coefficient
  • Examples 2 to 7, Comparative Examples 1 to 7 It carried out similarly to Example 1 except having replaced with the copolymer obtained in manufacture example 1, and manufacturing the phenol resin composition using the copolymer of Table 1. The results are shown in Table 1.
  • the addition amount shown in Table 1 represents parts by weight of the copolymer with respect to 100 parts by weight of the phenol resin.
  • * 1 shown in Table 1 is acrylonitrile (20% by mass) -n-butyl acrylate (65% by mass) -n-butyl methacrylate (8% by mass) -p-isopropenylphenol (8% by mass) Represents a copolymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a phenol resin composition containing a phenol resin (II) and a copolymer (I) of an acrylic ester monomer and an alkenyl phenol monomer, wherein the copolymer (I) fulfils the following requirements (A), (B), and (C): (A) the weight ratio of the acrylic ester monomer and the alkenyl phenol monomer is 95/5 to 65/35 (former/latter); (B) the weight average molecular weight is 40000 to 90000 inclusive; and (C) the glass transition temperature is -10°C or lower.

Description

フェノール樹脂組成物、その硬化物および摩擦材Phenolic resin composition, cured product thereof and friction material
 本発明はフェノール樹脂組成物、その硬化物および摩擦材に関する。 The present invention relates to a phenol resin composition, a cured product thereof, and a friction material.
 フェノール樹脂は優れた機械的特性、電気特性、耐熱性、および接着性を有しており、ディスクパッド、ドラムブレーキ用ライニング等の摩擦材用バインダーや半導体封止材や積層板等の電気電子部品用バインダーとして使用されている。一方、フェノール樹脂は耐衝撃性や柔軟性に不足している。 Phenolic resins have excellent mechanical properties, electrical properties, heat resistance, and adhesive properties, and binders for friction materials such as disc pads and drum brake linings, and electrical and electronic parts such as semiconductor encapsulants and laminates. It is used as a binder. On the other hand, phenolic resins are deficient in impact resistance and flexibility.
 発がん性の問題からアスベストを使用しないノンアスベストタイプのディスクパッドが日本、韓国、北米で広く使われている。しかし、このパットには、鳴き・ジャダー(NVH:Noise,Vibration,Harsh)に関するクレームが非常に多い。冬朝の気温が低い時に車庫から車が発進し、最初の数回のブレーキで大きな鳴きや振動が発生する、朝鳴きと言われる現象が特に問題視されている。このとき、運転者が軽くブレーキを踏んだだけで、急ブレーキとなり、音や振動まで発生するので大きなクレームとなるケースが多い。朝だけではなく、雨中の長時間駐車後や、多湿地帯でも同様のケースが生じる。この問題においては、ブレーキパッドとロータの間に関与している水が非常に大きな影響を及ぼす。このような問題に対しては、システムでの対応がほとんど不可能なので、低吸湿性および鳴き・ジャダーを吸収または緩和するために高振動吸収性の特性をパットに用いる樹脂に付与する必要がある。 Non-asbestos type disc pads that do not use asbestos are widely used in Japan, Korea and North America due to carcinogenic problems. However, this putt has a very large number of complaints regarding squeal and judder (NVH: Noise, Vibration, Harsh). A phenomenon called morning squeal, in which a car starts from the garage when the temperature in the winter morning is low, and a large squeal or vibration occurs in the first few brakes, is particularly regarded as a problem. At this time, the driver suddenly brakes just by stepping on the brake lightly, and noise and vibration are generated. Similar cases occur not only in the morning but also after a long parking in the rain or in humid areas. In this problem, the water involved between the brake pads and the rotor has a very significant effect. Since it is almost impossible for the system to deal with such problems, it is necessary to impart low vibration absorption and high vibration absorption characteristics to the resin used in the pad in order to absorb or relieve noise and judder. .
 このような特性を改善するために、エラストマー変性フェノール樹脂、油変性フェノール樹脂、カシュー変性フェノール樹脂、シリコーン変性フェノール樹脂、エポキシ変性フェノール樹脂、メラミン変性フェノール樹脂など変性フェノール樹脂が種々検討されている。 In order to improve such characteristics, various modified phenol resins such as elastomer-modified phenol resins, oil-modified phenol resins, cashew-modified phenol resins, silicone-modified phenol resins, epoxy-modified phenol resins, and melamine-modified phenol resins have been studied.
 特許文献1には、耐衝撃性や柔軟性の向上のためにアクリロニトリル-ブタジエンゴム(NBR)をフェノール系樹脂に混合する技術が記載されている。しかし、これらが混合されたNBRは、その粒径が100μm以上と大きく、かつ、フェノール系樹脂との相溶性がない。このため、混合されたNBRの分散性は悪い。そのため、上記特性の効果を得るには、多量のNBRが必要となる。しかし、NBRが多くなると、混合されたNBRにおいては、耐熱性の悪化や、フェノール樹脂相とNBR相の界面が分離していることによる吸湿性の悪化を招くことになる。 Patent Document 1 describes a technique of mixing acrylonitrile-butadiene rubber (NBR) with a phenolic resin in order to improve impact resistance and flexibility. However, NBR in which these are mixed has a large particle size of 100 μm or more and is not compatible with phenolic resins. For this reason, the dispersibility of the mixed NBR is poor. Therefore, a large amount of NBR is required to obtain the effect of the above characteristics. However, when NBR increases, in mixed NBR, heat resistance deteriorates, and hygroscopicity deteriorates due to separation of the interface between the phenol resin phase and the NBR phase.
 また、分散性の問題を改善するために、カルボキシ末端液状NBR等によるエラストマー変性フェノール樹脂を用いる技術がある。この技術においては、フェノール樹脂に溶解したエラストマーが硬化剤によってフェノール樹脂の硬化が進行するに従い、エラストマー相が球状に相分離することで靭性が付加される。しかし、硬化時の相分離を利用するため、硬化剤の種類や温度、時間等の硬化条件に大きく影響されやすく、安定した硬化物特性が得られにくい。さらにフェノール樹脂相とエラストマー相の界面が分離しているので吸湿性の悪化は免れない。 Also, there is a technique using an elastomer-modified phenol resin such as carboxy-terminated liquid NBR in order to improve the problem of dispersibility. In this technique, as the elastomer dissolved in the phenol resin is cured by the curing agent, the elastomer phase is spherically separated to add toughness. However, since phase separation at the time of curing is used, it is easily influenced by curing conditions such as the type of curing agent, temperature, time, etc., and stable cured product characteristics are difficult to obtain. Furthermore, since the interface between the phenol resin phase and the elastomer phase is separated, deterioration of hygroscopicity is inevitable.
 特許文献2には、耐熱性、可撓性、及び寸法安定性の優れた硬化物を与える熱硬化性樹脂組成物として、イソプロペニルフェノールを1成分とする共重合体とフェノール樹脂からなる熱硬化性樹脂組成物に関する技術が記載されている。しかしながら、耐熱性、摩擦摺動特性、および吸収振動性の優れた硬化物を与える樹脂組成物に関する具体的な検討はなされていない。 In Patent Document 2, as a thermosetting resin composition that gives a cured product having excellent heat resistance, flexibility, and dimensional stability, a thermosetting comprising a copolymer containing isopropenyl phenol as one component and a phenol resin. Techniques related to the conductive resin composition are described. However, no specific study has been made on a resin composition that gives a cured product having excellent heat resistance, frictional sliding characteristics, and absorption vibration.
特開昭60-184533号公報JP 60-184533 A 特開昭59-6246号公報JP 59-6246 A
 本発明の課題は、優れた耐熱性、摩擦摺動特性、および吸収振動性を有する硬化物が得られるフェノール樹脂組成物を提供することである。 An object of the present invention is to provide a phenol resin composition from which a cured product having excellent heat resistance, frictional sliding properties, and absorption vibration properties can be obtained.
 本発明を以下に示す。
[1]
 アクリル酸エステル類モノマーとアルケニルフェノール類モノマーとの共重合体(I)およびフェノール樹脂(II)を含むフェノール樹脂組成物であって、
 前記共重合体(I)は下記要件(A)、(B)及び(C)を満たす、フェノール樹脂組成物。
(A)前記アクリル酸エステル類モノマー/前記アルケニルフェノール類モノマーの重量比が95/5~65/35である。
(B)重量平均分子量が40000以上90000以下である。
(C)ガラス転移温度が-10℃以下である。
[2]
 前記共重合体(I)の重量平均分子量が50000を超え90000以下である、[1]に記載のフェノール樹脂組成物。
[3]
 前記共重合体(I)/前記フェノール樹脂(II)の重量比が5/95~50/50である、[1]または[2]に記載のフェノール樹脂組成物。
[4]
 前記アクリル酸エステル類モノマーがアクリル酸エチル、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルからなる群から選択される少なくとも一種を含む、[1]から[3]のいずれか1項に記載のフェノール樹脂組成物。
[5]
 前記アルケニルフェノール類モノマーがp-イソプロペニルフェノールである、[1]から[4]のいずれか1項に記載のフェノール樹脂組成物。
[6]
 前記共重合体(I)と前記フェノール樹脂(II)との合計100重量部に対して、さらに硬化剤を3~20重量部を含む、[1]から[5]のいずれか1項に記載のフェノール樹脂組成物。
[7]
 繊維、充填材、潤滑材および研削材からなる群から選択される少なくとも一種を有する添加剤をさらに含み、
 (前記共重合体(I)+前記フェノール樹脂(II)+前記硬化剤)/前記添加剤の重量比が5/95以上20/80以下である、[6]に記載のフェノール樹脂組成物。
[8]
 前記共重合体(I)の150℃におけるICI粘度が、1Pa・s以上13Pa・s以下である、[1]から[7]のいずれか1項に記載のフェノール樹脂組成物。
[9]
 摩擦材に用いる、[1]から[8]のいずれか1項に記載のフェノール樹脂組成物。
The present invention is shown below.
[1]
A phenol resin composition comprising a copolymer (I) of an acrylate ester monomer and an alkenyl phenol monomer and a phenol resin (II),
The copolymer (I) is a phenol resin composition that satisfies the following requirements (A), (B), and (C).
(A) The weight ratio of the acrylate monomer / the alkenylphenol monomer is 95/5 to 65/35.
(B) The weight average molecular weight is 40000 or more and 90000 or less.
(C) The glass transition temperature is −10 ° C. or lower.
[2]
The phenol resin composition according to [1], wherein the copolymer (I) has a weight average molecular weight of more than 50000 and 90000 or less.
[3]
The phenol resin composition according to [1] or [2], wherein a weight ratio of the copolymer (I) / the phenol resin (II) is 5/95 to 50/50.
[4]
The phenol according to any one of [1] to [3], wherein the acrylate monomer includes at least one selected from the group consisting of ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate. Resin composition.
[5]
The phenol resin composition according to any one of [1] to [4], wherein the alkenylphenol monomer is p-isopropenylphenol.
[6]
[1] to [5], further comprising 3 to 20 parts by weight of a curing agent with respect to a total of 100 parts by weight of the copolymer (I) and the phenol resin (II). Phenol resin composition.
[7]
Further comprising an additive having at least one selected from the group consisting of fibers, fillers, lubricants and abrasives;
The phenol resin composition according to [6], wherein a weight ratio of (the copolymer (I) + the phenol resin (II) + the curing agent) / the additive is 5/95 or more and 20/80 or less.
[8]
The phenol resin composition according to any one of [1] to [7], wherein the copolymer (I) has an ICI viscosity at 150 ° C of 1 Pa · s to 13 Pa · s.
[9]
The phenol resin composition according to any one of [1] to [8], which is used for a friction material.
[10]
 [1]から[9]のいずれか1項に記載のフェノール樹脂組成物を硬化させることにより得られる、硬化物。
[11]
 温度300℃、空気雰囲気下、120時間放置した後の質量を測定したときの重量保持率が50%以上である、[10]に記載の硬化物。
[12]
 [10]または[11]に記載の硬化物を含む、摩擦材。
[13]
 下記の測定条件で測定した摩擦係数(Δμ)が0.145以下である、[12]に記載の摩擦材。
[測定条件]
 摩擦係数は、最大に上昇した時の摩擦係数(1)の値からベースラインチェックの摩擦係数(2)を減じた値。
 ここで、前記摩擦係数(2)は、サンプルを切出し、ブレーキ試験機(曙ブレーキ 1/10スケールテスター)を使用して自動車規格JASO C 406試験方法で測定後、制動初速度10km/h、制動減速度1.0m/s、制動間隔60秒、制動回数50回で測定する。一方、前記摩擦係数(1)は、サンプルを30℃、80%RHの湿度下で24h放置後、前記摩擦係数(2)と同じ条件で測定する。
[10]
A cured product obtained by curing the phenol resin composition according to any one of [1] to [9].
[11]
The cured product according to [10], wherein the weight retention when the mass after being left for 120 hours under a temperature of 300 ° C. in an air atmosphere is 50% or more.
[12]
[10] A friction material comprising the cured product according to [11].
[13]
The friction material according to [12], wherein a friction coefficient (Δμ) measured under the following measurement conditions is 0.145 or less.
[Measurement condition]
The coefficient of friction is a value obtained by subtracting the coefficient of friction (2) of the baseline check from the value of the coefficient of friction (1) when the coefficient of friction increases to the maximum.
Here, the friction coefficient (2) is obtained by cutting a sample and measuring it with an automotive standard JASO C 406 test method using a brake tester (曙 brake 1/10 scale tester), and then applying a braking initial speed of 10 km / h. Measurement is performed at a deceleration of 1.0 m / s 2 , a braking interval of 60 seconds, and a braking frequency of 50 times. On the other hand, the friction coefficient (1) is measured under the same conditions as the friction coefficient (2) after leaving the sample for 24 hours at 30 ° C. and 80% RH humidity.
 本発明によれば、優れた耐熱性、摩擦摺動特性および吸収振動性を有する硬化物が得られるフェノール樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a phenol resin composition from which a cured product having excellent heat resistance, friction sliding properties and absorption vibration properties can be obtained.
 本発明のフェノール樹脂組成物は、アクリル酸エステル類モノマーとアルケニルフェノール類モノマーとの構造を有する共重合体(I)およびフェノール樹脂(II)を含有する。 The phenol resin composition of the present invention contains a copolymer (I) having a structure of an acrylate ester monomer and an alkenyl phenol monomer and a phenol resin (II).
(共重合体(I))
 アクリル酸エステル類モノマーとしては、当該アクリル酸エステル類モノマーを単独重合して重量平均分子量が40000のホモポリマーを製造した場合、ホモポリマーのガラス転移温度が-20℃以下になるような、アクリル酸エステル類モノマーを選択することが好ましい。そのようなモノマーを選択すると、共重合体(I)のガラス転移温度を-10℃以下に制御しやすくなる。ガラス転移温度が-10℃以下である共重合体(I)は、寒冷地区、特に気温が-10℃に達することが多い北米地区でも好適に使用できる。
(Copolymer (I))
As the acrylic acid ester monomer, an acrylic acid is used so that when the homopolymer of the acrylic acid ester monomer is homopolymerized to produce a homopolymer having a weight average molecular weight of 40000, the homopolymer has a glass transition temperature of −20 ° C. or lower. It is preferred to select an ester monomer. When such a monomer is selected, the glass transition temperature of the copolymer (I) can be easily controlled to −10 ° C. or lower. The copolymer (I) having a glass transition temperature of −10 ° C. or lower can be suitably used in a cold region, particularly in a North American region where the temperature often reaches −10 ° C.
 アクリル酸エステル類モノマーは、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n―ブチル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-ヘキシル、アクリル酸ラウリル等が挙げられる。これらのアクリル酸エステル類は、単独で使用しても2種以上を併用しても良い。中でも、アクリル酸エチル、アクリル酸n-ブチルおよび、アクリル酸2-エチルヘキシルが工業的に入手し易く、低価格であることから特に好ましい。 Examples of acrylic acid ester monomers include ethyl acrylate, n-propyl acrylate, n-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-hexyl acrylate, and lauryl acrylate. These acrylic acid esters may be used alone or in combination of two or more. Among these, ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate are particularly preferable because they are easily available industrially and are inexpensive.
 アルケニルフェノール類モノマーは、o-エチニルフェノール、m-エチニルフェノール、p-エチニルフェノール、o-イソプロペニルフェノール、m-イソプロペニルフェノール、p-イソプロペニルフェノール、2-(1-プロペニル)-1-ヒドロキシベンゼン、2-(2-プロペニル)-1-ヒドロキシベンゼン、3-(1-プロペニル)-1-ヒドロキシベンゼン、3-(2-プロペニル)-1-ヒドロキシベンゼン、4-(1-プロペニル)-1-ヒドロキシベンゼン、4-(2-プロペニル)-1-ヒドロキシベンゼン、2-エチニル-1-ヒドロキシナフタレン、4-エチニル-1-ヒドロキシナフタレン、5-エチニル-1-ヒドロキシナフタレン、6-エチニル-1-ヒドロキシナフタレン、7-エチニル-1-ヒドロキシナフタレン、8-エチニル-1-ヒドロキシナフタレン等が挙げられる。この中で、工業的に入手可能なp-イソプロペニルフェノールが特に好ましい。 Alkenylphenol monomers include o-ethynylphenol, m-ethynylphenol, p-ethynylphenol, o-isopropenylphenol, m-isopropenylphenol, p-isopropenylphenol, 2- (1-propenyl) -1-hydroxy Benzene, 2- (2-propenyl) -1-hydroxybenzene, 3- (1-propenyl) -1-hydroxybenzene, 3- (2-propenyl) -1-hydroxybenzene, 4- (1-propenyl) -1 -Hydroxybenzene, 4- (2-propenyl) -1-hydroxybenzene, 2-ethynyl-1-hydroxynaphthalene, 4-ethynyl-1-hydroxynaphthalene, 5-ethynyl-1-hydroxynaphthalene, 6-ethynyl-1- Hydroxynaphthalene, 7-ethynyl-1-hy B carboxymethyl naphthalene, 8-ethynyl-1-hydroxy-naphthalene. Of these, industrially available p-isopropenylphenol is particularly preferred.
 共重合体(I)において、アクリル酸エステル類モノマー/アルケニルフェノール類モノマーの重量比は、95/5~65/35であることが好ましく、特に好ましくは90/10~80/20である(以下、「~」は、特に明示しない限り、上限値と下限値を含むことを表す)。アルケニルフェノール類モノマーの重量比が5未満であると、アルケニルフェノール類とフェノール樹脂の架橋密度が低下し、耐熱性が低下することがある。アルケニルフェノール類モノマーの重量比が35を超えると、共重合体(I)のガラス転移温度が-10℃を超え、低温領域の吸収振動性が悪くなることがある。 In the copolymer (I), the weight ratio of the acrylate ester monomer / alkenylphenol monomer is preferably 95/5 to 65/35, and particularly preferably 90/10 to 80/20 (hereinafter referred to as the following). , “To” means that an upper limit value and a lower limit value are included unless otherwise specified). When the weight ratio of the alkenylphenol monomers is less than 5, the crosslink density between the alkenylphenols and the phenol resin is lowered, and the heat resistance may be lowered. When the weight ratio of the alkenylphenol monomer exceeds 35, the glass transition temperature of the copolymer (I) exceeds −10 ° C., and the absorption vibration property in the low temperature region may be deteriorated.
 本発明の共重合体(I)は、アクリル酸エステル類モノマー、アルケニルフェノール類モノマー以外の他のモノマーに由来する構成単位を、本発明の目的を損なわない範囲の量で含んでもよい。他のモノマーに由来する単位は、共重合体(I)の重量を100重量%とした場合、通常0~10重量%、好ましくは0~5重量%とすることができる。
 他のモノマーとしては、例えば、メタクリル酸n-ブチル、メタクリル酸グリシジル等が挙げられる。
The copolymer (I) of the present invention may contain structural units derived from monomers other than acrylic acid ester monomers and alkenylphenol monomers in an amount that does not impair the object of the present invention. The units derived from other monomers can be generally 0 to 10% by weight, preferably 0 to 5% by weight, when the weight of the copolymer (I) is 100% by weight.
Examples of other monomers include n-butyl methacrylate and glycidyl methacrylate.
 共重合体(I)の重量平均分子量としては、下限値は好ましくは40000以上であり、より好ましくは50000より大きく、さらに好ましくは55000以上であり、一方、上限値は、好ましくは90000以下であり、より好ましくは80000以下であり、さらに好ましくは75000以下である。重量平均分子量が40000未満であると、共重合体の粘度が低下することで、凝集しやすくなり、共重合体のアルケニルフェノールとフェノール樹脂の接触面積が小さくなるので硬化反応が難しく、耐熱性は低下することがある。一方、重量平均分子量が90000を超すと、粘度上昇とともに、せん断応力により、共重合体(I)の微分散は容易になるが、高分子化により、分子が絡みやすく、動き難くなるので、フェノール樹脂間の硬化が優先的に進行しやすくなり、架橋密度が高くなるため、フェノール樹脂の特性に引っ張られ、耐熱性は高くなるが、吸収振動性は悪くなることがある。従って、共重合体(I)の重量平均分子量を上記範囲内とすることにより、耐熱性と吸収振動性に優れた本発明が得られる。
 また、共重合体(I)の150℃で測定したICI粘度は、たとえば、1.0~13Pa・sであることが好ましく、1.0~10Pa・sであることがより好ましい。
As for the weight average molecular weight of the copolymer (I), the lower limit is preferably 40000 or more, more preferably more than 50000, and further preferably 55000 or more, while the upper limit is preferably 90000 or less. More preferably, it is 80000 or less, More preferably, it is 75000 or less. When the weight average molecular weight is less than 40,000, the viscosity of the copolymer is reduced, so that it is easy to aggregate, the contact area between the alkenylphenol and the phenol resin of the copolymer is small, and the curing reaction is difficult, and the heat resistance is May decrease. On the other hand, when the weight average molecular weight exceeds 90000, the viscosity increases and the fine dispersion of the copolymer (I) becomes easy due to shear stress. However, due to the high molecular weight, the molecules are easily entangled and difficult to move. Curing between the resins tends to proceed preferentially and the crosslink density increases, so that the resin is pulled by the characteristics of the phenolic resin and heat resistance is increased, but the absorption vibration property may be deteriorated. Therefore, by setting the weight average molecular weight of the copolymer (I) within the above range, the present invention excellent in heat resistance and absorption vibration can be obtained.
The ICI viscosity measured at 150 ° C. of the copolymer (I) is, for example, preferably from 1.0 to 13 Pa · s, more preferably from 1.0 to 10 Pa · s.
 共重合体(I)のガラス転移温度は-10℃以下が好ましく、-15℃以下が好ましく、特に好ましくは-20℃以下である。ガラス転移温度が-10℃より高くなると低温領域の吸収振動性が悪くなる。
 即ち、共重合体(I)のガラス転移温度が上昇すると低温での減衰能が悪化し、減衰時間が長くなるので、低温でのノイズ低減効果が無くなることがある。
The glass transition temperature of the copolymer (I) is preferably −10 ° C. or less, preferably −15 ° C. or less, particularly preferably −20 ° C. or less. When the glass transition temperature is higher than −10 ° C., the absorption vibration property in the low temperature region is deteriorated.
That is, when the glass transition temperature of the copolymer (I) is increased, the damping ability at low temperature is deteriorated and the decay time is prolonged, so that the noise reduction effect at low temperature may be lost.
 共重合体(I)の分子量分布(Mw/Mn)は、1.0~5.0とすることができ、好ましくは2.0~4.0とすることができる。 The molecular weight distribution (Mw / Mn) of the copolymer (I) can be 1.0 to 5.0, and preferably 2.0 to 4.0.
 本発明の共重合体(I)は、安定した性能が得られやすいことからランダム共重合体であることが好ましい。 The copolymer (I) of the present invention is preferably a random copolymer because stable performance is easily obtained.
 次に共重合体(I)の製造方法について説明する。
 前記共重合体(I)は、アクリル酸エステル類モノマーとアルケニルフェノール類モノマーとをラジカル重合開始剤によって反応させることによって得られるが、特にこの方法に限定されるものではない。
Next, the manufacturing method of copolymer (I) is demonstrated.
The copolymer (I) is obtained by reacting an acrylate ester monomer and an alkenylphenol monomer with a radical polymerization initiator, but is not particularly limited to this method.
 通常のラジカル重合において用いられる開始剤はいずれも使用することができ、例えば、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビス-2-アミジノプロパン塩酸塩、アゾビスイソ酪酸ジメチル、アゾビスイソブチルアミジン塩酸塩または4,4'-アゾビス-4-シアノ吉草酸等のアゾ系開始剤、過酸化ベンゾイル、2,4-ジクロル過酸化ベンゾイル、過酸化ジ-tert-ブチル、過酸化ラウロイル、過酸化アセチル、過酸化ジイソプロピルジカーボネート、クメンヒドロペルオキシド、tert-ブチルヒドロペルオキシド、ジクミルペルオキシド、p-メンタンヒドロペルオキシド、ピナンヒドロペルオキシド、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、ジイソプロピルペルオキシジカルボナート、tert-ブチルペルオキシラウレート、ジ-tert-ブチルペルオキシフタレート、ジベンジルオキシドまたは2,5-ジメチルヘキサン-2,5-ジヒドロペルオキシド等の過酸化物系開始剤、または過酸化ベンゾイル-N,N-ジメチルアニリンまたはペルオキソ二硫酸-亜硫酸水素ナトリウム等のレドックス系開始剤等が挙げられる。中でも、アゾ系開始剤または過酸化物系開始剤が好ましく、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸ジメチル、過酸化ベンゾイル、2,4-ジクロル過酸化ベンゾイル、過酸化ジ-tert-ブチル、過酸化ラウロイル、過酸化ジイソプロピルジカーボネートまたは過酸化アセチルがより好ましい。ラジカル重合開始剤は、単独でもまたは2種以上を同時にまたは順次に使用することもできる。 Any initiator used in ordinary radical polymerization can be used. For example, azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, azobis-2-amidinopropane hydrochloride Salt, azobisisobutyric acid dimethyl, azobisisobutylamidine hydrochloride or 4,4′-azobis-4-cyanovaleric acid and other azo initiators, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, di-tert peroxide -Butyl, lauroyl peroxide, acetyl peroxide, diisopropyl dicarbonate, cumene hydroperoxide, tert-butyl hydroperoxide, dicumyl peroxide, p-menthane hydroperoxide, pinane hydroperoxide, methyl ethyl ketone peroxide , Peroxide initiators such as cyclohexanone peroxide, diisopropylperoxydicarbonate, tert-butylperoxylaurate, di-tert-butylperoxyphthalate, dibenzyloxide or 2,5-dimethylhexane-2,5-dihydroperoxide Or redox initiators such as benzoyl peroxide-N, N-dimethylaniline or peroxodisulfuric acid-sodium hydrogen sulfite. Among them, azo initiators or peroxide initiators are preferable, and azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, dimethyl azobisisobutyrate, benzoyl peroxide, 2,4 More preferred are dichlorobenzoyl peroxide, di-tert-butyl peroxide, lauroyl peroxide, diisopropyl dicarbonate peroxide or acetyl peroxide. The radical polymerization initiators can be used alone or in combination of two or more simultaneously or sequentially.
 ラジカル重合剤の使用量は、アクリル酸エステル類モノマーとアルケニルフェノール類モノマーの合計100重量部に対して、0.1~15重量部が好ましく、より好ましくは0.5~10重量部であり、1~5重量部が特に好ましい。加熱開始時または、過熱開始後に、ラジカル重合剤の全量または一部を追加するように使用しても構わない。 The amount of the radical polymerization agent used is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total of acrylic acid ester monomers and alkenylphenol monomers. 1 to 5 parts by weight is particularly preferred. You may use so that the whole quantity or one part of a radical polymerization agent may be added at the time of a heating start or after a superheat start.
 また、モノマーと触媒を一括に装入するよりも、複数回に分けて装入するほうが、共重合体がブロックポリマーになりにくく、安定した性能のランダム共重合体が得られやすく、また未反応モノマーが少ないので好ましい。 Rather than charging the monomer and catalyst all at once, it is more difficult for the copolymer to become a block polymer, and it is easier to obtain a random copolymer with stable performance and unreacted. This is preferable because of less monomer.
 溶媒は、反応を阻害しないものであれば何れでも使用することができるが、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンまたはγ-ブチロラクトン等のケトン類、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、tert-ブチルアルコール、n-オクタノール、2-エチルヘキサノールまたはn-ドデシルアルコール等のアルコール類、エチレングリコール、プロピレングリコールまたはジエチレングリコール等のグリコール類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルまたはテトラヒドロフラン、ジオキサン等のエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルまたはジエチレングリコールモノメチルエーテル等のアルコールエーテル類、ギ酸n-プロピル、ギ酸イソプロピル、ギ酸n-ブチル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチルまたは酪酸メチル等のエステル類、2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸n-プロピル、2-オキシプロピオン酸イソプロピル、2-オキシ-2-メチルプロピオン酸エチルまたは2-オキシ-3-メチル酪酸メチル等のモノオキシカルボン酸エステル類、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチルまたは3-エトキシプロピオン酸メチル等のアルコキシカルボン酸エステル類、セロソルブアセテート、メチルセロソルブアセテート、エチルセロソルブアセテートまたはブチルセロソルブアセテート等のセロソルブエステル類、ベンゼン、トルエンまたはキシレン等の芳香族炭化水素類、トリクロロエチレン、クロロベンゼンまたはジクロロベンゼン等のハロゲン化炭化水素類、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルアセトアミド、N-メチルピロリドンまたはN,N'-ジメチルイミダゾリジノン等のアミド類等が挙げられる。これらの溶媒は、単独で使用しても、2種以上を混合して使用してもよい。また、これらの溶媒の使用によって、不均一な複数の相となっても構わないが、反応液が均一相となることが好ましい。 Any solvent can be used as long as it does not inhibit the reaction, but ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone or γ-butyrolactone, n-propyl alcohol, isopropyl alcohol, Alcohols such as n-butyl alcohol, tert-butyl alcohol, n-octanol, 2-ethylhexanol or n-dodecyl alcohol, glycols such as ethylene glycol, propylene glycol or diethylene glycol, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether or tetra Ethers such as lofuran and dioxane, alcohol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether or diethylene glycol monomethyl ether, n-propyl formate, isopropyl formate, n-formate Esters such as butyl, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate or methyl butyrate, -Methyl oxypropionate, ethyl 2-oxypropionate, n-propyl 2-oxypropionate, isopropyl 2-oxypropionate, 2-oxy-2-methylprop Monooxycarboxylic acid esters such as ethyl pionate or methyl 2-oxy-3-methylbutyrate, ethyl methoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate or methyl 3-ethoxypropionate Alkoxycarboxylic esters such as cellosolve acetate, methyl cellosolve acetate, cellosolve esters such as ethyl cellosolve acetate or butyl cellosolve acetate, aromatic hydrocarbons such as benzene, toluene or xylene, halogenation such as trichloroethylene, chlorobenzene or dichlorobenzene Amino acids such as hydrocarbons, dimethylacetamide, dimethylformamide, N-methylacetamide, N-methylpyrrolidone or N, N′-dimethylimidazolidinone And the like. These solvents may be used alone or in combination of two or more. Further, by using these solvents, a plurality of heterogeneous phases may be formed, but it is preferable that the reaction solution becomes a homogeneous phase.
 溶媒の使用量は、使用する原料やラジカル重合開始剤の種類や量、及び所望する共重合体の分子量等により決定できる。通常、溶媒の使用量は、使用する全原料100重量部に対して5~5000重量部が好ましく、より好ましくは、10~3000重量部であり、30~1000重量部の範囲が特に好ましい。 The amount of the solvent used can be determined by the raw material used, the type and amount of the radical polymerization initiator, the molecular weight of the desired copolymer, and the like. Usually, the amount of the solvent used is preferably 5 to 5000 parts by weight, more preferably 10 to 3000 parts by weight, and particularly preferably 30 to 1000 parts by weight with respect to 100 parts by weight of the total raw materials used.
(フェノール樹脂(II))
 フェノール樹脂(II)は、フェノール化合物と2価の連結基を有する化合物との交互重合体である。
(Phenolic resin (II))
The phenol resin (II) is an alternating polymer of a phenol compound and a compound having a divalent linking group.
 フェノール樹脂(II)は、フェノールノボラック樹脂類、ノボラック類からビスフェノール体を除いた残渣物、レゾール型フェノール樹脂類、フェノール-ジシクロペンタジエン樹脂類、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類、ナフトールアラルキル樹脂類、アニリンアラルキル樹脂類等が挙げられるが、入手し易く、価格が安いフェノールノボラック樹脂が特に好ましい。 Phenol resins (II) are phenol novolac resins, residues obtained by removing bisphenol from novolacs, resol type phenol resins, phenol-dicyclopentadiene resins, phenol aralkyl resins, biphenyl aralkyl resins, naphthol aralkyl resins. , Aniline aralkyl resins and the like, but phenol novolac resins that are easily available and inexpensive are particularly preferred.
 次にフェノール樹脂(II)の製造方法について説明する。
 本発明に係るフェノール樹脂(II)は、例えばフェノール化合物とアルデヒド類とを酸触媒存在下で反応させて得られるが、特にこれらの方法に限定されるものではない。
Next, the manufacturing method of phenol resin (II) is demonstrated.
The phenol resin (II) according to the present invention can be obtained, for example, by reacting a phenol compound and an aldehyde in the presence of an acid catalyst, but is not particularly limited to these methods.
 使用するフェノール化合物は、フェノール、o-クレゾール、m-クレゾール、p-クレゾールが挙げられる。好ましくはフェノールである。これらを単独または2種類以上組み合わせて使用してもよい。 Examples of the phenol compound used include phenol, o-cresol, m-cresol, and p-cresol. Preferably it is phenol. You may use these individually or in combination of 2 or more types.
 また、2基の連結基の化合物として使用する化合物は、ホルムアルデヒド、パラホルムアルデヒド等のアルデヒド類が挙げられる。より好ましくはホルムアルデヒドである。これらは単独または2種類以上を組み合わせて使用してもよい。フェノール化合物とアルデヒド類とを反応する際の触媒としては、酢酸亜鉛等の金属塩類、蓚酸、塩酸、硫酸、ジエチル硫酸、パラトルエンスルホン酸等の酸類を単独または2種類以上併用して使用できる。通常、触媒の使用量は、フェノール化合物100重量部に対して0.01~5重量部である。 Further, examples of the compound used as the compound of the two linking groups include aldehydes such as formaldehyde and paraformaldehyde. More preferred is formaldehyde. You may use these individually or in combination of 2 or more types. As a catalyst for reacting a phenol compound with aldehydes, metal salts such as zinc acetate, acids such as oxalic acid, hydrochloric acid, sulfuric acid, diethylsulfuric acid and paratoluenesulfonic acid can be used alone or in combination of two or more. Usually, the amount of the catalyst used is 0.01 to 5 parts by weight with respect to 100 parts by weight of the phenol compound.
(フェノール樹脂組成物)
 本発明のフェノール樹脂組成物は、上記共重合体(I)と上記フェノール樹脂(II)とを混合することにより得られる。
(Phenolic resin composition)
The phenol resin composition of the present invention can be obtained by mixing the copolymer (I) and the phenol resin (II).
 共重合体(I)/フェノール樹脂(II)の重量比は、5/95~50/50が好ましく、10/90~40/60がより好ましく、特に好ましくは20/80~30/70である。共重合体(I)の重量比が5未満だと、低温での吸収振動性能が低下することがある。一方、共重合体(I)の重量比が50を超すと、耐熱性が低下することがある。
 共重合体(I)の割合が増加すると硬度及び硬化性は改善されるが、水酸基の量が増加するので吸湿性は低下することがある。
The weight ratio of copolymer (I) / phenolic resin (II) is preferably 5/95 to 50/50, more preferably 10/90 to 40/60, and particularly preferably 20/80 to 30/70. . When the weight ratio of the copolymer (I) is less than 5, the absorption vibration performance at a low temperature may be lowered. On the other hand, when the weight ratio of the copolymer (I) exceeds 50, the heat resistance may be lowered.
When the proportion of the copolymer (I) increases, the hardness and curability are improved, but the hygroscopicity may decrease because the amount of hydroxyl groups increases.
 共重合体(I)とフェノール樹脂(II)との混合方法としては、粉砕により粉体状で混合する方法、120~180℃の温度で数分間~数時間加熱して溶融混合する方法、あるいは、共重合体(I)とフェノール樹脂(II)との共通溶媒、例えば、メタノール、エタノール、プロペノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ジオキサン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブなどのエーテル類、酢酸エチル、酢酸ブチルなどのエステル類等の1種以上の溶剤に溶解して混合する方法を挙げることができる。 As a mixing method of the copolymer (I) and the phenol resin (II), a method of mixing in a powder form by pulverization, a method of melting and mixing at a temperature of 120 to 180 ° C. for several minutes to several hours, , Common solvents for copolymer (I) and phenol resin (II), for example, alcohols such as methanol, ethanol, propenol, benzyl alcohol, diacetone alcohol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone And a method of dissolving and mixing in one or more solvents such as ethers such as dioxane, tetrahydrofuran, methyl cellosolve and ethyl cellosolve, and esters such as ethyl acetate and butyl acetate.
 本発明のフェノール樹脂組成物は、必要に応じてパラホルムアルデヒド、ヘキサミン等の硬化剤を含んでもよい。硬化剤の含有量は、共重合体(I)及びフェノール樹脂(II)の合計100重量部に対して、3~20重量部が好ましく、5~15重量部がより好ましい。 The phenol resin composition of the present invention may contain a curing agent such as paraformaldehyde or hexamine as necessary. The content of the curing agent is preferably 3 to 20 parts by weight, and more preferably 5 to 15 parts by weight with respect to 100 parts by weight as a total of the copolymer (I) and the phenol resin (II).
 また、本発明のフェノール樹脂組成物は、各種の添加剤を含んでいてもよい。 Moreover, the phenol resin composition of the present invention may contain various additives.
 このような樹脂組成物としては、例えば、共重合体(I)、フェノール樹脂(II)、硬化剤の他に、繊維、充填材、潤滑材および研削材から選ばれる少なくとも1種の添加剤を含有してもよい。このとき、本発明のフェノール樹脂組成物においては、(共重合体(I)+フェノール樹脂(II)+硬化剤)/添加剤の重量比が5/95~20/80、好ましくは8/92~15/85とすることができる。 As such a resin composition, for example, in addition to the copolymer (I), the phenol resin (II), and a curing agent, at least one additive selected from fibers, fillers, lubricants, and abrasives is used. You may contain. At this time, in the phenol resin composition of the present invention, the weight ratio of (copolymer (I) + phenol resin (II) + curing agent) / additive is 5/95 to 20/80, preferably 8/92. To 15/85.
 繊維としては、アラミド繊維、チタン酸カリウム繊維、セラミック繊維、銅繊維、ガラス繊維などを例示できる。充填材としては、硫酸バリウム、マイカ、三硫化アンチモン、水酸化カルシウムなどの無機充填材、カシューダスト、ゴムダスト、木粉などの有機充填材などを例示できる。潤滑材としては、黒鉛、硫化アンチモン、硫化モリブデンなどを例示できる。研削材としては、酸化ジルコニウム、酸化鉄などを挙げることができる。 Examples of fibers include aramid fibers, potassium titanate fibers, ceramic fibers, copper fibers, and glass fibers. Examples of the filler include inorganic fillers such as barium sulfate, mica, antimony trisulfide, and calcium hydroxide, and organic fillers such as cashew dust, rubber dust, and wood powder. Examples of the lubricant include graphite, antimony sulfide, molybdenum sulfide and the like. Examples of the abrasive include zirconium oxide and iron oxide.
 また、本発明のフェノール樹脂組成物は、必要に応じ、上記以外の添加剤、例えば着色剤、難燃剤、カップリング剤等を含んでいてもよい。 Moreover, the phenol resin composition of the present invention may contain additives other than those described above, for example, a colorant, a flame retardant, a coupling agent and the like, if necessary.
(フェノール樹脂組成物の硬化物)
 本発明の硬化物は、上記フェノール樹脂組成物を硬化することにより得られる。たとえば、本発明の硬化物は、共重合体(I)、フェノール樹脂(II)および硬化剤、さらに必要に応じて各種添加剤を含有するフェノール樹脂組成物を、熱により硬化させることにより得ることができる。フェノール樹脂組成物を加熱することにより、共重合体(I)間、フェノール樹脂(II)間、共重合体(I)とフェノール樹脂(II)の間で架橋反応が起こり、3次元架橋構造が形成されると考えられる。
(Hardened product of phenol resin composition)
The cured product of the present invention is obtained by curing the phenol resin composition. For example, the cured product of the present invention is obtained by curing a phenol resin composition containing the copolymer (I), the phenol resin (II) and a curing agent, and further various additives as necessary. Can do. By heating the phenol resin composition, a cross-linking reaction occurs between the copolymers (I), between the phenol resins (II), and between the copolymer (I) and the phenol resin (II). It is thought that it is formed.
 本発明の硬化物を得るには、例えば前記フェノール樹脂組成物を金型などに充填して、130~180℃、10~100MPaの条件下で、加熱、圧縮成形法などで5~20分間成形し、その後、必要に応じて160~250℃でポストキュアー処理を行うことが好ましい。このようにして、本発明の硬化物から成型品が得られる。 In order to obtain the cured product of the present invention, for example, the phenol resin composition is filled in a mold or the like, and molded under conditions of 130 to 180 ° C. and 10 to 100 MPa by heating or compression molding for 5 to 20 minutes. Thereafter, post-curing treatment is preferably performed at 160 to 250 ° C. as necessary. Thus, a molded product is obtained from the cured product of the present invention.
 得られた成形品は、耐熱性、摺動特性に優れ、吸収振動性(特に低温での吸収振動性)に優れる。したがって、産業機械、鉄道車両、荷物車両、自動車用摩擦摺動材等の用途に使用することができる。本発明のフェノール樹脂組成物は、ディスクパッド、ドラムブレーキ用ライニング等の摩擦材用バインダーや半導体封止材や積層板等の電気電子部品用バインダーとして使用することが特に好ましい。また、本発明の硬化物は、摩擦材に用いることができる。このように、本発明によれば、優れた耐熱性、摩擦摺動特性および吸収振動性を有する成形体(硬化物)が得られるフェノール樹脂組成物を提供することができ、工業的に極めて価値が高い。 The obtained molded product is excellent in heat resistance and sliding characteristics and excellent in vibration absorption (particularly absorption vibration at low temperature). Therefore, it can be used for applications such as industrial machinery, railway vehicles, luggage vehicles, and friction sliding materials for automobiles. The phenol resin composition of the present invention is particularly preferably used as a binder for friction materials such as disk pads and drum brake linings, and as a binder for electrical and electronic parts such as semiconductor encapsulants and laminates. Moreover, the hardened | cured material of this invention can be used for a friction material. Thus, according to the present invention, it is possible to provide a phenol resin composition from which a molded body (cured product) having excellent heat resistance, frictional sliding characteristics and absorption vibration properties can be obtained, which is extremely valuable industrially. Is expensive.
 本発明の硬化物の重量保持率の上限値は、特に限定されないが、たとえば、90%以下、より好ましくは80%以下とすることができる。重量保持率の下限値は、たとえば、50%以上が好ましく、55%以上がより好ましい。この重量保持率は、本発明の硬化物の耐熱性を表すことができる。また、重量保持率は、本発明に係る共重合体(I)、ICI粘度などにより調整することができる。 The upper limit of the weight retention rate of the cured product of the present invention is not particularly limited, but can be, for example, 90% or less, more preferably 80% or less. For example, the lower limit of the weight retention is preferably 50% or more, and more preferably 55% or more. This weight retention rate can represent the heat resistance of the cured product of the present invention. Further, the weight retention can be adjusted by the copolymer (I) according to the present invention, the ICI viscosity, and the like.
 本発明の硬化物(摩擦材)の摩擦係数(Δμ)の上限値は、たとえば、0.145以下が好ましく、0.135以下がより好ましい。摩擦係数の下限値は、特に限定されないが、たとえば、0.100以上がとすることができ、より好ましくは0.110以上とすることができる。この摩擦係数は、本発明の硬化物の吸湿性(摩擦摺動特性)を表すことができる。また、摩擦係数は、本発明に係る共重合体(I)中のアクリル酸エステル類モノマーとアルケニルフェノール類モノマーとの重量比、共重合体(I)とフェノール樹脂(II)との重量比などにより調整することができる。 The upper limit value of the friction coefficient (Δμ) of the cured product (friction material) of the present invention is, for example, preferably 0.145 or less, and more preferably 0.135 or less. The lower limit value of the friction coefficient is not particularly limited, but may be, for example, 0.100 or more, and more preferably 0.110 or more. This coefficient of friction can represent the hygroscopicity (friction sliding property) of the cured product of the present invention. Further, the friction coefficient includes the weight ratio of the acrylate ester monomer and the alkenylphenol monomer in the copolymer (I) according to the present invention, the weight ratio of the copolymer (I) and the phenol resin (II), etc. Can be adjusted.
 本発明の硬化物(摩擦材)の吸収振動性を表す、振動の減衰の必要な所要時間(Δmsec.)の上限値は、たとえば、0.55以下が好ましく、0.50以下がより好ましい。所要時間(Δmsec.)の下限値は、特に限定されないが、たとえば、0.20以上とすることができ、0.30以上とすることができる。この摩擦係数は、本発明の硬化物の吸湿性を表すことができる。また、吸収振動性は、本発明に係る共重合体(I)中のガラス転移温度、共重合体(I)の重量平均分子量などにより調整することができる。 The upper limit value of the required time (Δmsec.) Required for vibration attenuation, which represents the absorption vibration property of the cured product (friction material) of the present invention, is preferably 0.55 or less, and more preferably 0.50 or less. Although the lower limit of required time ((DELTA) msec.) Is not specifically limited, For example, it can be set to 0.20 or more, and can be set to 0.30 or more. This coefficient of friction can represent the hygroscopicity of the cured product of the present invention. The absorption vibration property can be adjusted by the glass transition temperature in the copolymer (I) according to the present invention, the weight average molecular weight of the copolymer (I), and the like.
(製造例1)
 撹拌機、還流コンデンサー、温度計つきの反応器にメチルエチルケトン35gを仕込み撹拌しながら昇温した。メチルエチルケトンが還流を始めたところで、アクリル酸エチル95g、p-イソプロペニルフェノール5g、メチルエチルケトン20gを混合した溶液の滴下を開始し、メチルエチルケトン還流下に反応を行った。この間、触媒であるアゾビス-2,4-ジメチルバレロニトリル1gをメチルエチルケトン5gに混合した溶液を複数回に分割して添加した。滴下は還流下に3時間で終了し、滴下終了後さらに30分熟成反応させた。その後、アゾビス-2,4-ジメチルバレロニトリル1gをメチルエチルケトン5gに混合した溶液を複数回に分割して添加しながらさらに反応を行った。反応終了後未反応モノマー、溶媒を除去し、重量平均分子量(Mw)が58000、ガラス転移温度(Tg)が-21℃である共重合体を得た。結果を表1に示す。
(Production Example 1)
A reactor equipped with a stirrer, a reflux condenser and a thermometer was charged with 35 g of methyl ethyl ketone, and the temperature was raised while stirring. When methyl ethyl ketone began to reflux, dropwise addition of a solution prepared by mixing 95 g of ethyl acrylate, 5 g of p-isopropenyl phenol and 20 g of methyl ethyl ketone was started, and the reaction was carried out under reflux of methyl ethyl ketone. During this time, a solution in which 1 g of azobis-2,4-dimethylvaleronitrile as a catalyst was mixed with 5 g of methyl ethyl ketone was added in several portions. The dropwise addition was completed in 3 hours under reflux, and after completion of the dropwise addition, the reaction was further aged for 30 minutes. Thereafter, the reaction was further carried out while adding a solution prepared by mixing 1 g of azobis-2,4-dimethylvaleronitrile with 5 g of methyl ethyl ketone in several portions. After completion of the reaction, unreacted monomers and solvent were removed to obtain a copolymer having a weight average molecular weight (Mw) of 58000 and a glass transition temperature (Tg) of -21 ° C. The results are shown in Table 1.
(製造例2)
 アクリル酸エチル95g、p-イソプロペニルフェノール5gに代えて、アクリル酸n-ブチル80g、p-イソプロペニルフェノール20gを用いた以外は製造例1と同様に行い、重量平均分子量が62000、Tgが-20℃である共重合体を得た。結果を表1に示す。
(Production Example 2)
The same procedure as in Production Example 1 was carried out except that 95 g of ethyl acrylate and 5 g of p-isopropenylphenol were used instead of 80 g of n-butyl acrylate and 20 g of p-isopropenylphenol. The weight average molecular weight was 62000 and Tg was − A copolymer having a temperature of 20 ° C. was obtained. The results are shown in Table 1.
(製造例3)
 アクリル酸n-ブチルを70gに、p-イソプロペニルフェノールを30gに変更した以外は製造例2と同様に行い、重量平均分子量が75000、Tgが-12℃である共重合体を得た。結果を表1に示す。
(Production Example 3)
A copolymer having a weight average molecular weight of 75,000 and Tg of −12 ° C. was obtained in the same manner as in Production Example 2, except that n-butyl acrylate was changed to 70 g and p-isopropenylphenol was changed to 30 g. The results are shown in Table 1.
(製造例4)
 アクリル酸n-ブチルを95gに、p-イソプロペニルフェノールを5gに変更した以外は製造例2と同様に行い、重量平均分子量が58000、Tgが-33℃である共重合体を得た。結果を表1に示す。
(Production Example 4)
A copolymer having a weight average molecular weight of 58000 and a Tg of −33 ° C. was obtained in the same manner as in Production Example 2 except that 95 g of n-butyl acrylate and 5 g of p-isopropenylphenol were used. The results are shown in Table 1.
(製造例5)
 アクリル酸n-ブチルを90gに、p-イソプロペニルフェノールを10gに変更した以外は製造例2と同様に行い、重量平均分子量が49000、Tgが-36℃である共重合体を得た。結果を表1に示す。
(Production Example 5)
A copolymer having a weight average molecular weight of 49000 and a Tg of −36 ° C. was obtained in the same manner as in Production Example 2, except that n-butyl acrylate was changed to 90 g and p-isopropenylphenol was changed to 10 g. The results are shown in Table 1.
(製造例6)
 アクリル酸エチル95g、p-イソプロペニルフェノール5gに代えて、アクリル酸2-エチルヘキシル80g、p-イソプロペニルフェノール20gを用いた以外は製造例1と同様に行い、重量平均分子量が47000、Tgが-40℃である共重合体を得た。結果を表1に示す。
(Production Example 6)
The same procedure as in Production Example 1 was carried out except that 95 g of ethyl acrylate and 5 g of p-isopropenylphenol were used, and 80 g of 2-ethylhexyl acrylate and 20 g of p-isopropenylphenol were used. The weight average molecular weight was 47000 and Tg was − A copolymer having a temperature of 40 ° C. was obtained. The results are shown in Table 1.
(比較製造例1)
 アゾビス-2,4-ジメチルバレロニトリルの添加量を20g(熟成前10g、熟成後10g)に変更した以外は、製造例2と同様に行い、重量平均分子量が15000、Tgが-23℃である共重合体を得た。結果を表1に示す。
(Comparative Production Example 1)
The same procedure as in Production Example 2, except that the amount of azobis-2,4-dimethylvaleronitrile added was changed to 20 g (10 g before aging, 10 g after aging), and the weight average molecular weight was 15000 and Tg was −23 ° C. A copolymer was obtained. The results are shown in Table 1.
(比較製造例2)
 アクリル酸n-ブチルを98gに、p-イソプロペニルフェノールを2gに変更した以外は製造例2と同様に行い、重量平均分子量が62000、Tgが-35℃である共重合体を得た。結果を表1に示す。
(Comparative Production Example 2)
A copolymer having a weight average molecular weight of 62000 and a Tg of −35 ° C. was obtained in the same manner as in Production Example 2, except that n-butyl acrylate was changed to 98 g and p-isopropenylphenol was changed to 2 g. The results are shown in Table 1.
(比較製造例3)
 アゾビス-2,4-ジメチルバレロニトリルの添加量を0.05g(熟成前0.025g、熟成後0.025g)に変更した以外は、製造例2と同様に行い、重量平均分子量が102000、Tgが-20℃である共重合体を得た。結果を表1に示す。
(Comparative Production Example 3)
The same procedure as in Production Example 2, except that the amount of azobis-2,4-dimethylvaleronitrile added was changed to 0.05 g (0.025 g before aging, 0.025 g after aging), and the weight average molecular weight was 102000, Tg A copolymer having a temperature of −20 ° C. was obtained. The results are shown in Table 1.
(比較製造例4)
 アクリル酸n-ブチルを60gに、p-イソプロペニルフェノールを40gに変更した以外は製造例2と同様に行い、重量平均分子量が65000、Tgが3℃である共重合体を得た。結果を表1に示す。
(Comparative Production Example 4)
A copolymer having a weight average molecular weight of 65000 and a Tg of 3 ° C. was obtained in the same manner as in Production Example 2, except that n-butyl acrylate was changed to 60 g and p-isopropenylphenol was changed to 40 g. The results are shown in Table 1.
(比較製造例5)
 アクリル酸エチル95g、p-イソプロペニルフェノール5gに代えて、アクリル酸n-ブチル90g、α-メチルスチレン10gを用いた以外は製造例1と同様に行い、重量平均分子量が69000、Tgが-30℃である共重合体を得た。結果を表1に示す。
(Comparative Production Example 5)
The same procedure as in Production Example 1 was conducted except that 95 g of ethyl acrylate and 5 g of p-isopropenylphenol were used, and 90 g of n-butyl acrylate and 10 g of α-methylstyrene were used. The weight average molecular weight was 69000 and Tg was −30. A copolymer having a temperature of 0 ° C. was obtained. The results are shown in Table 1.
(比較製造例6)
 アクリル酸n-ブチルを80gに、α-メチルスチレンを20gに変更した以外は比較製造例5と同様に行い、重量平均分子量が54000、Tgが-20℃である共重合体を得た。結果を表1に示す。
(Comparative Production Example 6)
A copolymer having a weight average molecular weight of 54000 and Tg of −20 ° C. was obtained in the same manner as in Comparative Production Example 5 except that n-butyl acrylate was changed to 80 g and α-methylstyrene was changed to 20 g. The results are shown in Table 1.
 製造例、比較製造例において共重合体の重量平均分子量(Mw)、数平均分子量(Mn)およびICI粘度は以下の方法で測定した。結果を表1に示す。 In the production examples and comparative production examples, the weight average molecular weight (Mw), number average molecular weight (Mn) and ICI viscosity of the copolymer were measured by the following methods. The results are shown in Table 1.
[分子量:重量平均分子量(Mw)、数平均分子量(Mn)]
 次の条件にてGPC法を行った。
 測定機器:GPC8220(東ソー株式会社製)
 カラム:TSK-G4000H(1本)、TSK-G2500H(1本)およびTSK-G2000H(2本)をこの順番に直列に連結して用いた。
 溶媒:テトラヒドロフラン(THF)
 流量:0.8mL/min
 カラム温度:40℃
 サンプル濃度:0.06g/10cc 
 注入量:100μL
 最大検出感度:200mV/分
 検出器:RI
 標準物質:ポリスチレン(東ソー株式会社製)  
[Molecular weight: weight average molecular weight (Mw), number average molecular weight (Mn)]
The GPC method was performed under the following conditions.
Measuring instrument: GPC8220 (manufactured by Tosoh Corporation)
Column: TSK-G4000H (1), TSK-G2500H (1) and TSK-G2000H (2) were connected in series in this order.
Solvent: tetrahydrofuran (THF)
Flow rate: 0.8mL / min
Column temperature: 40 ° C
Sample concentration: 0.06g / 10cc
Injection volume: 100 μL
Maximum detection sensitivity: 200 mV / min Detector: RI
Standard material: Polystyrene (Tosoh Corporation)
[ICI粘度]
 ICIコーンプレート粘度計を用いて150℃におけるICI粘度を測定した。
[ICI viscosity]
The ICI viscosity at 150 ° C. was measured using an ICI cone plate viscometer.
 また、共重合体のTgは後述の方法で測定した。
(実施例1)
The Tg of the copolymer was measured by the method described later.
Example 1
[フェノール樹脂組成物の製造]
 攪拌機、温度計付きの反応器にノボラック型フェノール樹脂(商品名:NVG2000、群栄化学(株)製)100gを投入して150~170℃に昇温した後、製造例1で得られた共重合体30gを溶媒(メチルエチルケトン)に溶解した溶液を反応器内に1時間かけて滴下した。次いで溶媒を留去させながらさらに1時間反応を行った。その後減圧下に溶媒等を除去し、フェノール樹脂組成物を得た。
[Production of phenolic resin composition]
A reactor equipped with a stirrer and a thermometer was charged with 100 g of a novolak type phenol resin (trade name: NVG2000, manufactured by Gunei Chemical Co., Ltd.) and heated to 150 to 170 ° C., and then the co-polymer obtained in Production Example 1 was used. A solution prepared by dissolving 30 g of the polymer in a solvent (methyl ethyl ketone) was dropped into the reactor over 1 hour. Next, the reaction was further carried out for 1 hour while distilling off the solvent. Thereafter, the solvent and the like were removed under reduced pressure to obtain a phenol resin composition.
[重量保持率、吸収振動性測定用サンプルの調整]
 上記フェノール樹脂組成物100gおよび硬化剤としてヘキサミン12gを混合粉砕し、150℃で10分間加熱して成形品(直径50mm、高さ3.5mmの円筒)を作成した。
 その後150℃で6時間アフターキュアしたものを重量保持率、吸収振動性測定用サンプルとした。
[Adjustment of sample for weight retention and absorption vibration measurement]
100 g of the phenol resin composition and 12 g of hexamine as a curing agent were mixed and pulverized, and heated at 150 ° C. for 10 minutes to produce a molded product (a cylinder having a diameter of 50 mm and a height of 3.5 mm).
Thereafter, after-curing at 150 ° C. for 6 hours was used as a sample for measuring weight retention and absorption vibration.
[摩擦係数、Tg測定用サンプルの調整]
 下記組成の樹脂組成物を粉砕機で5分間粉砕混合し、金型に入れて、室温、30MPa、1分間の条件で予備成形した。次にこの予備成形体を予め150℃に加温した別の金型に移し、発生するガスを除去しながら、30MPa、150℃で10分間熱プレスを行い、ついで180℃で6時間アフターキュアを行った成形品(パッド)を摩擦係数、Tg測定用サンプルとした。
[Adjustment of friction coefficient and Tg measurement sample]
A resin composition having the following composition was pulverized and mixed for 5 minutes with a pulverizer, placed in a mold, and preformed under conditions of room temperature, 30 MPa, and 1 minute. Next, this preform is transferred to another mold preheated to 150 ° C., and while being removed of the generated gas, it is hot-pressed at 30 MPa and 150 ° C. for 10 minutes, and then after-curing at 180 ° C. for 6 hours. The molded product (pad) thus obtained was used as a sample for measuring the coefficient of friction and Tg.
チタン酸カリウム繊維(補強繊維) 27.5重量%
銅繊維(補強繊維)        15.0重量%
硫酸バリウム(無機充填材)    27.0重量%
消石灰(無機充填材)        2.0重量%
カシューダスト(有機充填材)    8.0重量%
黒鉛(潤滑、研削材)        5.0重量% 
酸化鉄(潤滑、研削材)       7.0重量%     
バインダー*1)     8.5重量%
*1)上記フェノール樹脂組成物:ヘキサミン(硬化剤)=100:2(質量比)
Potassium titanate fiber (reinforcing fiber) 27.5% by weight
Copper fiber (reinforced fiber) 15.0% by weight
Barium sulfate (inorganic filler) 27.0% by weight
Slaked lime (inorganic filler) 2.0% by weight
Cashew dust (organic filler) 8.0% by weight
Graphite (lubricated, abrasive) 5.0% by weight
Iron oxide (lubricated, abrasive) 7.0% by weight
Binder * 1) 8.5% by weight
* 1) The above phenol resin composition: hexamine (curing agent) = 100: 2 (mass ratio)
[各物性の測定方法]
 前記の測定用サンプルを用いて以下の方法で測定した。その結果を表1に示す。
[Measurement method of each physical property]
Measurement was performed by the following method using the measurement sample. The results are shown in Table 1.
(1)共重合体(I)由来のガラス転移温度(Tg)
 固体粘弾性測定装置TA製(RSA)を用いて以下の条件で測定した。測定温度レンジは-100~400℃、昇温速度は3℃/min.、測定モードは曲げモード(Auto tension, Auto strain制御)、測定周波数は1Hzで行った。)
(1) Glass transition temperature (Tg) derived from copolymer (I)
The measurement was performed under the following conditions using a solid viscoelasticity measuring device TA (RSA). The measurement temperature range is -100 to 400 ° C, and the heating rate is 3 ° C / min. The measurement mode was a bending mode (Auto tension, Auto strain control), and the measurement frequency was 1 Hz. )
(2)重量保持率
 温度300℃、空気雰囲気下、120時間放置しての質量を測定して、重量保持率を以下の式に基づいて算出した。
 重量保持率[質量%]=100×(W1-W2)/W1
 W1:温度300℃、空気雰囲気下の放置前のサンプル質量
 W2:温度300℃、空気雰囲気下、120時間放置した後のサンプル質量
(評価基準)
○;50%≦重量保持率
△;45%≦重量保持率<50%
×;    重量保持率<45%
(2) Weight retention The mass after being left for 120 hours at a temperature of 300 ° C. in an air atmosphere was measured, and the weight retention was calculated based on the following formula.
Weight retention [mass%] = 100 × (W1-W2) / W1
W1: Sample mass before standing in a temperature of 300 ° C. and air atmosphere W2: Sample weight after standing in a temperature of 300 ° C. and air atmosphere for 120 hours (evaluation criteria)
○: 50% ≦ weight retention Δ; 45% ≦ weight retention <50%
×; Weight retention <45%
(3)摩擦係数
 サンプルを切出し、ブレーキ試験機(曙ブレーキ 1/10スケールテスター)を使用して自動車規格JASO C 406試験方法で測定後、制動初速度10km/h、制動減速度1.0m/s、制動間隔60秒、制動回数50回で摩擦係数のベースラインを測定した。試験品を30℃、80%RHの湿度下で24h放置後、再度ブレーキ試験機を使用して上記条件の摩擦係数を測定した。
 摩擦係数は最大に上昇した時の摩擦係数の値からベースラインチェックの摩擦係数を減じた値を算出した。
(評価基準)
○;        摩擦係数≦0.145Δμ
△;0.145Δμ<摩擦係数≦0.160Δμ
×;0.160Δμ<摩擦係数
(3) Friction coefficient A sample is cut out and measured with the automotive standard JASO C 406 test method using a brake tester (曙 brake 1/10 scale tester), then the initial braking speed is 10 km / h and the braking deceleration is 1.0 m / h. The baseline of the coefficient of friction was measured at s 2 , a braking interval of 60 seconds and a braking frequency of 50 times. The test product was allowed to stand at 30 ° C. and 80% RH for 24 hours, and the friction coefficient under the above conditions was measured again using a brake tester.
The coefficient of friction was calculated by subtracting the coefficient of friction of the baseline check from the value of the coefficient of friction when it increased to the maximum.
(Evaluation criteria)
○: Friction coefficient ≦ 0.145Δμ
Δ: 0.145Δμ <friction coefficient ≦ 0.160Δμ
×: 0.160Δμ <Friction coefficient
(4)吸収振動性
 20℃と-20℃の雰囲気下で、FFTアナライザー測定機(オロス34)を使用し、試験片にハンマーで加振し、加速度が150m/sから50m/sまで減衰に所要した時間を算出し、-20℃条件下の所要時間から20℃条件下の所要時間を減じた値を記した。
(評価基準)
○;           吸収振動性≦0.55Δmsec.
△;0.55Δmsec.<吸収振動性≦0.75Δmsec.
×;0.75Δmsec.<吸収振動性
(4) Absorbing vibration property Using an FFT analyzer measuring machine (Oros 34) in an atmosphere of 20 ° C and -20 ° C, the test piece is vibrated with a hammer, and the acceleration is from 150 m / s 2 to 50 m / s 2 The time required for decay was calculated, and the value obtained by subtracting the time required under the 20 ° C. condition from the time required under the −20 ° C. condition was indicated.
(Evaluation criteria)
○: Absorbing vibration property ≦ 0.55 Δmsec.
Δ: 0.55 Δmsec. <Absorptive vibration property ≦ 0.75 Δmsec.
×: 0.75 Δmsec. <Absorption vibration
(実施例2~7、比較例1~7)
 製造例1で得られた共重合体に代えて、表1に記載の共重合体を用いてフェノール樹脂組成物を製造した以外は実施例1と同様に行った。結果を表1に示す。
(Examples 2 to 7, Comparative Examples 1 to 7)
It carried out similarly to Example 1 except having replaced with the copolymer obtained in manufacture example 1, and manufacturing the phenol resin composition using the copolymer of Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中に示す添加量は、フェノール樹脂100重量部に対する共重合体の重量部を表す。また、表1中に示す*1は、アクリロニトリル(20質量%)-アクリル酸n-ブチル(65質量%)-メタクリル酸n-ブチル(8質量%)-p-イソプロペニルフェノール(8質量%)共重合体を表す。 The addition amount shown in Table 1 represents parts by weight of the copolymer with respect to 100 parts by weight of the phenol resin. * 1 shown in Table 1 is acrylonitrile (20% by mass) -n-butyl acrylate (65% by mass) -n-butyl methacrylate (8% by mass) -p-isopropenylphenol (8% by mass) Represents a copolymer.
 表1の結果から明らかなように、本発明のフェノール樹脂組成物により製造された成形体は、優れた耐熱性、摩擦摺動特性、および吸収振動性を有することが分かった。 As is apparent from the results in Table 1, it was found that the molded product produced from the phenol resin composition of the present invention had excellent heat resistance, frictional sliding properties, and absorption vibration properties.
 この出願は、平成22年2月12日に出願された日本出願特願2010-28533号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-28533 filed on Feb. 12, 2010, the entire disclosure of which is incorporated herein.

Claims (13)

  1.  アクリル酸エステル類モノマーとアルケニルフェノール類モノマーとの共重合体(I)およびフェノール樹脂(II)を含むフェノール樹脂組成物であって、
     前記共重合体(I)は下記要件(A)、(B)及び(C)を満たす、フェノール樹脂組成物。
    (A)前記アクリル酸エステル類モノマー/前記アルケニルフェノール類モノマーの重量比が95/5~65/35である。
    (B)重量平均分子量が40000以上90000以下である。
    (C)ガラス転移温度が-10℃以下である。
    A phenol resin composition comprising a copolymer (I) of an acrylate ester monomer and an alkenyl phenol monomer and a phenol resin (II),
    The copolymer (I) is a phenol resin composition that satisfies the following requirements (A), (B), and (C).
    (A) The weight ratio of the acrylate monomer / the alkenylphenol monomer is 95/5 to 65/35.
    (B) The weight average molecular weight is 40000 or more and 90000 or less.
    (C) The glass transition temperature is −10 ° C. or lower.
  2.  前記共重合体(I)の重量平均分子量が50000を超え90000以下である、請求項1に記載のフェノール樹脂組成物。 The phenol resin composition according to claim 1, wherein the copolymer (I) has a weight average molecular weight of more than 50000 and 90000 or less.
  3.  前記共重合体(I)/前記フェノール樹脂(II)の重量比が5/95~50/50である、請求項1又は2に記載のフェノール樹脂組成物。 3. The phenol resin composition according to claim 1, wherein a weight ratio of the copolymer (I) / the phenol resin (II) is 5/95 to 50/50.
  4.  前記アクリル酸エステル類モノマーがアクリル酸エチル、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルからなる群から選択される少なくとも一種を含む、請求項1から3のいずれか1項に記載のフェノール樹脂組成物。 The phenol resin composition according to any one of claims 1 to 3, wherein the acrylate monomer includes at least one selected from the group consisting of ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate. object.
  5.  前記アルケニルフェノール類モノマーがp-イソプロペニルフェノールである、請求項1から4のいずれか1項に記載のフェノール樹脂組成物。 The phenol resin composition according to any one of claims 1 to 4, wherein the alkenylphenol monomer is p-isopropenylphenol.
  6.  前記共重合体(I)と前記フェノール樹脂(II)との合計100重量部に対して、さらに硬化剤を3~20重量部を含む、請求項1から5のいずれか1項に記載のフェノール樹脂組成物。 The phenol according to any one of claims 1 to 5, further comprising 3 to 20 parts by weight of a curing agent, based on a total of 100 parts by weight of the copolymer (I) and the phenol resin (II). Resin composition.
  7.  繊維、充填材、潤滑材および研削材からなる群から選択される少なくとも一種を有する添加剤をさらに含み、
     (前記共重合体(I)+前記フェノール樹脂(II)+前記硬化剤)/前記添加剤の重量比が5/95以上20/80以下である、請求項6に記載のフェノール樹脂組成物。
    Further comprising an additive having at least one selected from the group consisting of fibers, fillers, lubricants and abrasives;
    The phenol resin composition according to claim 6, wherein a weight ratio of (copolymer (I) + phenol resin (II) + curing agent) / additive is 5/95 or more and 20/80 or less.
  8.  前記共重合体(I)の150℃におけるICI粘度が、1Pa・s以上13Pa・s以下である、請求項1から7のいずれか1項に記載のフェノール樹脂組成物。 The phenol resin composition according to any one of claims 1 to 7, wherein the copolymer (I) has an ICI viscosity at 150 ° C of 1 Pa · s to 13 Pa · s.
  9.  摩擦材に用いる、請求項1から8のいずれか1項に記載のフェノール樹脂組成物。 The phenol resin composition according to any one of claims 1 to 8, which is used for a friction material.
  10.  請求項1から9のいずれか1項に記載のフェノール樹脂組成物を硬化させることにより得られる、硬化物。 A cured product obtained by curing the phenol resin composition according to any one of claims 1 to 9.
  11.  温度300℃、空気雰囲気下、120時間放置した後の質量を測定したときの重量保持率が50%以上である、請求項10に記載の硬化物。 The hardened | cured material of Claim 10 whose weight retention is 50% or more when measuring the mass after leaving it for 120 hours in temperature 300 degreeC and an air atmosphere.
  12.  請求項10または11に記載の硬化物を含む、摩擦材。 A friction material comprising the cured product according to claim 10 or 11.
  13.  下記の測定条件で測定した摩擦係数(Δμ)が0.145以下である、請求項12に記載の摩擦材。
    [測定条件]
     摩擦係数は、最大に上昇した時の摩擦係数(1)の値からベースラインチェックの摩擦係数(2)を減じた値。
     ここで、前記摩擦係数(2)は、サンプルを切出し、ブレーキ試験機(曙ブレーキ 1/10スケールテスター)を使用して自動車規格JASO C 406試験方法で測定後、制動初速度10km/h、制動減速度1.0m/s、制動間隔60秒、制動回数50回で測定する。一方、前記摩擦係数(1)は、サンプルを30℃、80%RHの湿度下で24h放置後、前記摩擦係数(2)と同じ条件で測定する。
    The friction material of Claim 12 whose friction coefficient ((DELTA) micro) measured on the following measurement conditions is 0.145 or less.
    [Measurement condition]
    The coefficient of friction is a value obtained by subtracting the coefficient of friction (2) of the baseline check from the value of the coefficient of friction (1) when the coefficient of friction increases to the maximum.
    Here, the friction coefficient (2) is obtained by cutting a sample and measuring it with an automotive standard JASO C 406 test method using a brake tester (曙 brake 1/10 scale tester), and then applying a braking initial speed of 10 km / h. Measurement is performed at a deceleration of 1.0 m / s 2 , a braking interval of 60 seconds, and a braking frequency of 50 times. On the other hand, the friction coefficient (1) is measured under the same conditions as the friction coefficient (2) after leaving the sample for 24 hours at 30 ° C. and 80% RH humidity.
PCT/JP2011/000658 2010-02-12 2011-02-07 Phenol resin composition, cured product thereof, and friction material WO2011099259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-028533 2010-02-12
JP2010028533A JP2013079292A (en) 2010-02-12 2010-02-12 Phenol resin composition, cured product using the same, and friction material

Publications (1)

Publication Number Publication Date
WO2011099259A1 true WO2011099259A1 (en) 2011-08-18

Family

ID=44367547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000658 WO2011099259A1 (en) 2010-02-12 2011-02-07 Phenol resin composition, cured product thereof, and friction material

Country Status (2)

Country Link
JP (1) JP2013079292A (en)
WO (1) WO2011099259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222817A (en) * 2015-06-01 2016-12-28 大塚化学株式会社 Resin composition, friction material and friction member using the same
JPWO2019065514A1 (en) * 2017-09-26 2020-11-05 国立大学法人北海道大学 High tough fiber composite elastomer
CN113308076A (en) * 2021-06-02 2021-08-27 中国铁道科学研究院集团有限公司金属及化学研究所 Novel zero-asbestos acrylate rubber-based composite brake shoe and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106272116A (en) * 2015-06-29 2017-01-04 圣戈班磨料磨具有限公司 Grinding tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106948A (en) * 1985-11-05 1987-05-18 Mitsui Toatsu Chem Inc Ic sealing composition
JPH06308733A (en) * 1993-04-23 1994-11-04 Kansai Paint Co Ltd Photosensitive composition and formation of pattern
JPH09166870A (en) * 1995-12-14 1997-06-24 Japan Synthetic Rubber Co Ltd Negative radiation-sensitive resin composition
JPH10239906A (en) * 1997-02-28 1998-09-11 Canon Inc Electrophotographic toner and its production
JP2000039709A (en) * 1998-07-24 2000-02-08 Jsr Corp Radiation sensitive resin composition, material for forming bump and for forming wiring and dry film resist
JP2000321785A (en) * 1999-05-06 2000-11-24 Kansai Paint Co Ltd Three-layer laminated coating film for forming pattern and formation of pattern
JP2002236360A (en) * 2001-02-09 2002-08-23 Mitsui Chemicals Inc Photosensitive resin composition and its use
JP2004532745A (en) * 2000-12-29 2004-10-28 コダック・ポリクローム・グラフィックス・エルエルシー Two-layer imageable element containing thermoreversible polymer
JP2010039270A (en) * 2008-08-06 2010-02-18 Jsr Corp Positive type photosensitive insulating resin composition
JP2010256508A (en) * 2009-04-23 2010-11-11 Jsr Corp Photosensitive insulating resin composition and insulating film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106948A (en) * 1985-11-05 1987-05-18 Mitsui Toatsu Chem Inc Ic sealing composition
JPH06308733A (en) * 1993-04-23 1994-11-04 Kansai Paint Co Ltd Photosensitive composition and formation of pattern
JPH09166870A (en) * 1995-12-14 1997-06-24 Japan Synthetic Rubber Co Ltd Negative radiation-sensitive resin composition
JPH10239906A (en) * 1997-02-28 1998-09-11 Canon Inc Electrophotographic toner and its production
JP2000039709A (en) * 1998-07-24 2000-02-08 Jsr Corp Radiation sensitive resin composition, material for forming bump and for forming wiring and dry film resist
JP2000321785A (en) * 1999-05-06 2000-11-24 Kansai Paint Co Ltd Three-layer laminated coating film for forming pattern and formation of pattern
JP2004532745A (en) * 2000-12-29 2004-10-28 コダック・ポリクローム・グラフィックス・エルエルシー Two-layer imageable element containing thermoreversible polymer
JP2002236360A (en) * 2001-02-09 2002-08-23 Mitsui Chemicals Inc Photosensitive resin composition and its use
JP2010039270A (en) * 2008-08-06 2010-02-18 Jsr Corp Positive type photosensitive insulating resin composition
JP2010256508A (en) * 2009-04-23 2010-11-11 Jsr Corp Photosensitive insulating resin composition and insulating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222817A (en) * 2015-06-01 2016-12-28 大塚化学株式会社 Resin composition, friction material and friction member using the same
JPWO2019065514A1 (en) * 2017-09-26 2020-11-05 国立大学法人北海道大学 High tough fiber composite elastomer
JP7232474B2 (en) 2017-09-26 2023-03-03 国立大学法人北海道大学 High tenacity fiber composite elastomer
CN113308076A (en) * 2021-06-02 2021-08-27 中国铁道科学研究院集团有限公司金属及化学研究所 Novel zero-asbestos acrylate rubber-based composite brake shoe and preparation method and application thereof
CN113308076B (en) * 2021-06-02 2022-05-24 中国铁道科学研究院集团有限公司金属及化学研究所 Zero-asbestos acrylate rubber-based composite brake shoe and preparation method and application thereof

Also Published As

Publication number Publication date
JP2013079292A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
CA2381808A1 (en) Phenolic resin composition
WO2011099259A1 (en) Phenol resin composition, cured product thereof, and friction material
JP2016190968A (en) Resol type phenolic resin for friction material and method for producing the same, adhesive for friction material and wet type friction plate
JP6338034B1 (en) Phenolic resin composition for friction material and friction material
JP3277810B2 (en) Phenolic resin excellent in fast curing property and heat resistance and method for producing the same
JP5977531B2 (en) Method for manufacturing friction modifier
JP3473928B2 (en) Phenolic resin composition
JP7182433B2 (en) Method for producing phenolic resin composition
CZ327994A3 (en) Process for producing heat-resistant shaped bodies
JP7290412B2 (en) Phenolic resin composition
JP2020002318A (en) Phenolic resin composition for wet friction material and wet friction material
JP6124101B2 (en) Friction plate
JP3522776B2 (en) Friction material
JP2019044134A (en) Resin composition for brake pad friction material, and brake pad friction material
JP4865303B2 (en) Chloroprene rubber adhesive composition
JP6095483B2 (en) Phenol resin composition, friction material, and method for producing phenol resin composition
JPH0828617A (en) Phenol resin composite for friction material
JP2006193538A (en) Phenol resin composition for friction material and method for producing the same
JPH0324499B2 (en)
JP2023090167A (en) Resin composition for friction material and friction material
JPH0874904A (en) Resin composition for frictional material
JP2014156557A (en) Phenol resin composition, cured product, phenol resin molding material and molded product
JPH1171497A (en) Phenol resin composition
JP2005097415A (en) Friction material composition and friction material
JP3075951B2 (en) Resin composition for friction material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP