WO2011099142A1 - Wind turbine generator system - Google Patents

Wind turbine generator system Download PDF

Info

Publication number
WO2011099142A1
WO2011099142A1 PCT/JP2010/052055 JP2010052055W WO2011099142A1 WO 2011099142 A1 WO2011099142 A1 WO 2011099142A1 JP 2010052055 W JP2010052055 W JP 2010052055W WO 2011099142 A1 WO2011099142 A1 WO 2011099142A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
wind
generator
power generation
Prior art date
Application number
PCT/JP2010/052055
Other languages
French (fr)
Japanese (ja)
Inventor
松夫 坂東
Original Assignee
日本風力開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本風力開発株式会社 filed Critical 日本風力開発株式会社
Priority to PCT/JP2010/052055 priority Critical patent/WO2011099142A1/en
Publication of WO2011099142A1 publication Critical patent/WO2011099142A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a wind power generation system, and more particularly to a storage battery combined type wind power generation system.
  • the NAS battery When a NAS (sodium sulfur) battery is used as a storage battery, the NAS battery has a characteristic of charging and discharging at a temperature of about 300 degrees. The necessary temperature is maintained.
  • (A) A method of stopping wind power generation and charging the storage battery only with purchased power from other power generation companies (hereinafter referred to as “other power generation companies”), and selling this power
  • other power generation companies also power generation companies
  • the wind conditions are weak Stops wind power generation during times when power demand is low, purchases cheap power from other power generation companies and stores it in storage batteries, and purchases during times when power demand is high and power is traded at high prices Sell power that matches the amount of power.
  • the “wind condition” refers to the state and nature of the wind. Specifically, it refers to the situation of average wind speed, the situation of instantaneous wind speed, the appearance situation of wind direction, or the appearance situation of wind speed, and the like.
  • (B) A method of charging the storage battery with only purchased power, and then combining the discharged power and the power generated by wind power generation in the daytime to sell the power. Stop wind power generation, purchase inexpensive power from other power generation companies and store it in storage batteries, and combine it with the power generated by your own wind power generation during times when power demand is high and power is traded at high prices. To sell the power shaped into a constant waveform. In addition, charge to a storage battery is classified and controlled only as purchased power from another power generation company.
  • the present invention has been made in consideration of the above points, and intends to propose a wind power generation system capable of accurately measuring and classifying purchased power from other power generation companies and power generated by own wind power generation. .
  • FIG. 1st and 2nd embodiment show the structure of the wind power generation system by 1st and 2nd embodiment.
  • (A)-(B) are characteristic curve diagrams showing wind condition examples for two months before and after the strong wind season.
  • FIG. 1 denotes a wind power generation system according to the present embodiment as a whole.
  • the wind power generation system 1 includes a plurality of wind power plants 2.
  • Each wind power plant 2 includes a wind power generator 3, a transformer 4, and a switch 5. After the generated power output from the wind power generator 3 is transformed to a predetermined voltage by the converter 4, the switch 5 Is output to the first power cable 6. Then, the generated power output from each wind power plant 2 is combined and the combined power generated is the switch 7 on the first power cable 6 and the second power cable connected to the first power cable 6. The power is supplied to the AC / DC converter 10 through the switch 9 on the power supply 8 and is also supplied to the interconnection transformer 12 through the switch 11 on the first power cable 6.
  • the AC / DC converter 10 is purchased under the control of the storage battery control device 15 when the storage battery 13 is charged via the combined power generated from each wind power plant 2 or the power system 14 of the grid power company as described later.
  • the purchased power from the other power generation company is converted into DC waveform charging power and supplied to the storage battery 13. Thereby, the storage battery 13 is charged based on this charging power.
  • the orthogonal transformation device 10 converts the discharge power from the storage battery 13 into discharge power having an AC waveform and outputs it to the second power cable 8 when the storage battery 13 is discharged. Thereby, this discharge power is consumed in the wind power generation system 1 as described later, or is given to the interconnection transformer 12 via the switch 11.
  • the substation interconnection transformer 12 is a composite generated power and storage battery that are given via the first power cable 6 when selling power to an interconnection power company or the like under the control of a power monitoring control device 16 described later. 13 discharge power or the combined power of the combined generated power and the discharge power of the storage battery 13 is boosted to a predetermined voltage and output to the power system (transmission network) 14 of the grid power company. In addition, when purchasing power from another power generation company or the like, the substation linking transformer 12 steps down the purchased power taken in via the power grid 14 to a predetermined voltage and outputs it to the first power cable 6. .
  • the storage battery 13 is composed of, for example, a plurality (for example, 17 units) of NAS storage batteries connected in parallel.
  • Each NAS storage battery has a storage capacity of 2 MW, and a predetermined number (for example, 15 units) of NAS storage batteries among the plurality of NAS storage batteries is used.
  • the storage battery control device 15 is composed of, for example, a personal computer.
  • the storage battery control device 15 controls charging / discharging of the storage battery 13 via the AC / DC conversion device 10 under the control of the power monitoring control device 16.
  • the storage battery control device 15 manages the amount of power stored in the storage battery 13 and periodically notifies the power monitoring control device 16 of this amount of power.
  • the power monitoring control device 16 is constituted by, for example, a personal computer or a workstation.
  • the power monitoring and control device 16 is connected via a communication network 17 such as the Internet to a meteorological data distribution server of the weather service support center 18, a bid server of the Japan Wholesale Power Exchange 19, a central power supply command server of the central power supply command center 20, and the like. It is connected to the.
  • the power monitoring and control device 16 determines the amount of power that can be sold the next day as 30 minutes, which is the transaction unit time of the Japan Wholesale Power Exchange 19. Bids are placed on the bid server of the Japan Wholesale Electric Power Exchange 19 as a product. In addition, the power monitoring and control device 16 can stably output the fixed amount of power for which the transaction has been established to the power grid 14 of the grid power company in the corresponding time zone via the storage battery control device 15. And the amount of power generation at each wind power plant 2 is controlled via the wind power plant controller 22.
  • the power generation planning device 21 is composed of, for example, a personal computer on which a “power generation planning tool” that is predetermined application software is installed.
  • the power generation planning device 21 predicts wind conditions (wind speed, wind direction, etc.) for each hour and each wind power plant based on the weather forecast data distributed from the weather data distribution server of the meteorological work support center 18, and the prediction result And the power generation prediction amount for each wind power plant 2 is calculated based on the wind speed-specific output curve (power curve) for each wind power plant 2 managed in advance.
  • the power generation planning device 21 calculates the amount of wind power generation possible by summing up the predicted power generation amounts of all the wind power plants 2, and the wind power generation potential, the maintenance plan information of the wind power plant 2, the failure stop information, etc. Based on the above, the “weekly wind power generation plan” that is the power generation plan for one week and the “next day wind power generation plan” that is the power generation plan for the next day are created. The power generation planning device 21 corrects the “weekly wind power generation plan” based on weather forecast data that changes every day. Then, the “next day wind power generation plan” corrected based on the weather forecast data of the next day is the basis for the discharge / charge plan for the storage battery 13 and the wind power generation suppression plan.
  • the wind power plant control device 22 is SCADA (Supervisory Control ⁇ ⁇ and Data Acquisition System), which is control software for controlling and monitoring the measurement data of each wind power plant 2, and the output power and power factor adjustment of each wind power plant 2.
  • SCADA Supervisory Control ⁇ ⁇ and Data Acquisition System
  • WFMS Windfarm Management System
  • the wind power plant control device 22 is connected to the wind power generator 3 of each wind power plant 2 via the first network 23, and the transformer 4 of each wind power plant 2 via the second network 24. Under the control of the power monitoring control device 16, control and management of wind power generators at each wind power plant 2, suppression and management of power generation amount at each wind power plant 2, and the like are performed.
  • (1-2) Storage battery charge / discharge control system in wind power generation system Generally, the capacity of the storage battery installed in the wind power generation system is selected to be about 25-60% of the rated capacity of the wind power plant. For this reason, there is a limit to the amount of power that can be stored. Therefore, based on a reliable prediction of the wind conditions, it is necessary to operate in such a way as to limit the wind power generation in consideration of the storage battery capacity and not reduce the overall efficiency of the wind power plant.
  • the overall efficiency of the wind power plant 2 is improved by effectively utilizing the storage battery 13 as follows.
  • FIGS. 2 (A) to 2 (D) looking at the two months before and after the low wind period (June to September (see FIG. 24)), the wind conditions are weak for several days and the storage battery 13 by wind power generation is used. May not be able to charge.
  • FIG. 2 (A) shows an example of wind conditions in April, (B) in May, (C) in October, and (D) in November. Therefore, by accurately predicting this wind condition, charging the storage battery 13 with the purchased power from another power generation company, and selling the purchased power during the time when the power is traded at a high price, And a difference between the electricity sales fee and the electricity sales fee.
  • the power for measuring the amount of power transmitted and received at a predetermined measurement point is used as a means for measuring and classifying the purchased power from other power generation companies and the power generated by own wind power generation.
  • a quantity measuring unit 25 is provided. That is, as shown in FIG. 1, the electric energy measuring unit 25 is connected to the interconnection point side electric energy set between the electric power system 14 of the interconnection electric power company on the first electric power cable 6 and the interconnection transformer 12.
  • the transmission / reception power amount at the storage battery side power amount measurement point P3 set between the power cables 6 and 8 and the storage battery 13 is measured for each tidal direction.
  • the electric energy measuring unit 25 includes an interconnection point received electric energy meter 30 and an interconnection point transmission electric energy meter 31 connected to the interconnection point side electric energy measurement point P1.
  • connection point power reception watt-hour meter 30 measures the power reception power amount from the power system 14 side at the connection point side power amount measurement point P1, and connects one pulse every time a constant power amount (for example, 1 kW) is measured. It is sent to the power monitoring controller 16 as a system point power receiving pulse.
  • the connection point transmission watt-hour meter 31 also measures the transmission power amount to the power system 14 side at the connection point side power amount measurement point P1 and transmits one pulse every time a constant power amount is measured. A pulse is sent to the power monitoring control device 16.
  • the generator received power meter 32 measures the amount of power received from the power system 14 side at the generator side power amount measurement point P2, and each time a certain amount of power is measured, one pulse is received on the generator side. It transmits to the electric power monitoring control apparatus 16 as a pulse.
  • the generator transmission power meter 33 measures the amount of power transmitted to the power system 14 at the generator-side power amount measurement point P2 (that is, the combined amount of generated power) and measures a certain amount of power (for example, 1 kW). One pulse is transmitted to the power monitoring controller 16 as a generator-side power transmission pulse.
  • the storage battery charge watt-hour meter 34 measures the charge power amount for the storage battery 13 at the storage battery side power amount measurement point P3, and monitors power as one charge power pulse every time a constant power amount (for example, 1 kW) is measured. Transmit to the control device 16. Further, the storage battery discharge watt-hour meter 35 measures the discharge power amount from the storage battery 13 at the storage battery side power amount measurement point P3, and monitors power as one discharge power pulse every time a constant power amount (for example, 1 kW) is measured. Transmit to the control device 16.
  • the power monitoring and control device 16 includes a connection point power reception pulse and a connection point power transmission pulse transmitted from the connection point power reception energy meter 30 and the connection point transmission power energy meter 31, respectively, a generator reception power energy meter 32, and A generator-side power reception pulse and a generator-side power transmission pulse transmitted from the generator transmission power meter 33, respectively, and a charging power pulse and a discharge power pulse transmitted from the storage battery charging power meter 34 and the storage battery discharging power meter 35, respectively.
  • the number of pulses is cumulatively counted, for example, on a monthly basis.
  • the power monitoring control device 16 performs other power generation based on the accumulated results of the connection point power reception pulse, the connection point power transmission pulse, the generator side power reception pulse, the generator side power transmission pulse, the charge power pulse, and the discharge power pulse.
  • the electric power purchased from the company and the electric power generated by its own wind power generation are metered, for example, monthly.
  • the power monitoring and control device 16 uses the power charge bill 35A for charging the power company according to the amount of power sold based on the power amount thus metered, and the other according to the purchased power amount.
  • Various invoices / notifications 35 such as a charge invoice 35C are created every month. Examples of formats of the power bill 35A, the power bill transfer notification 35B, and the RPS power bill 35C are shown in FIGS.
  • the power monitoring control device 16 creates a meter reading notification 36 based on the amount of power metered and sorted as described above.
  • the meter reading notification 36 created at this time includes a meter reading notification (breakdown) 36A, a meter reading notification (linked-point transmission power calculation report) 36B, a meter reading notification 36C, a meter reading notification (RPS target calculation report) 36D, and There are five types of meter-reading notices (linked-point received power calculation form) 36E.
  • the meter reading notification (breakdown) 36A purchases the breakdown of the transmitted power amount and the received power amount at the connection point side power amount measurement point P1, the generator side power amount measurement point P2, and the storage battery side power amount measurement point P3. This is a notice for notifying a person, for example, in a format as shown in FIG.
  • the meter reading notification (linked point transmission power calculation report) 36B obtains the transmission power amount at the connection point side energy measurement point P1, the generator side energy measurement point P2, and the storage battery side energy measurement point P3. For example, and is created in the format shown in FIG.
  • the meter-reading notice 36C indicates the breakdown of the transmitted / received electric energy at the interconnection point side electric energy measurement point P1, the generator side electric energy measurement point P2, and the storage battery side electric energy measurement point P3.
  • the meter reading notice (RPS target calculation form) 36D is a notice for notifying the power purchaser of the amount of power to be subject to the RPS method and a watt-hour meter for measuring the amount of power, for example, FIG. Created in a format like
  • connection point received power calculation report 36E sells the received power amount at the connection point side energy measurement point P1, the generator side energy measurement point P2, and the storage battery side energy measurement point P3. This is a notice for notifying a person, for example, in a format as shown in FIG.
  • the power monitoring and control device 16 creates, for example, a daily report as shown in FIG. 12 or a monthly report as shown in FIG. 13 based on the amount of power metered and sorted as described above.
  • the power monitoring control device 16 outputs various bills / notifications 35, meter reading notifications 36, daily reports, monthly reports, and the like thus created to the printer 26 as necessary.
  • FIG. 14 shows specific processing contents of the power monitoring control device 16 regarding charging / discharging control of the storage battery 13 as described above.
  • the power monitoring control device 16 executes the storage battery charge / discharge control process shown in FIG. 14 in accordance with a corresponding control program stored in an internal memory (not shown).
  • the power monitoring control device 16 starts the storage battery charge / discharge control process.
  • the connection point given from the connection point power reception watt-hour meter 31 is started.
  • KR KR1, KR2, KRB
  • the electric energy KS (KS1, KS2, KSB) is set to a predetermined value set in advance.
  • the power monitoring control device 16 sets the count value of each counter described in step SP5, step SP7, step SP8, step SP11, step SP13 and step SP14 to the initial value “0”, and sets the instrument reading date and time.
  • the parameter n to be represented is set to an initial value “1” (SP1).
  • the power monitoring control device 16 receives the connection point transmission pulse from the connection point transmission energy meter 30, the connection point reception pulse from the connection point reception energy meter 31, and the generator transmission energy meter 32.
  • Generator-side power transmission pulse, generator-side received power meter 33 from generator-received energy meter 33, discharge power pulse from storage battery charge-power meter 34, and charge power pulse from storage battery charge-power meter 35 are input. It waits to do (SP2).
  • the power monitoring control device 16 receives any one of the connection point power transmission pulse, the connection point power reception pulse, the generator side power transmission pulse, the generator side power reception pulse, the discharge power pulse, and the charge power pulse. Then, it is determined whether the transmission source of the pulse is any one of the connection point transmission watt-hour meter 30, the generator transmission watt-hour meter 32, and the storage battery discharge watt-hour meter 34 (SP3).
  • the power monitoring control device 16 obtains a positive result in this determination, it continues to determine whether or not the transmission source of the pulse received in step SP2 is a connection point transmission power meter (SP4). When the power monitoring control device obtains a positive result in this determination, it increments the count value of the counter corresponding to the interconnection point transmission power meter 30 by 1 (SP5).
  • the power monitoring control device 16 determines whether or not the transmission source of the pulse received at step SP2 is the generator transmitted power meter 32 (SP6).
  • the power monitoring control device 16 increments the count value of the counter corresponding to the generator transmission power meter 32 by 1 (SP7), and obtains a negative result, The count value of the counter corresponding to the storage battery discharge watt-hour meter 34 is increased by 1 (SP8).
  • the power monitoring control device 16 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has reached a value representing a predetermined counter reading deadline date (SP9). ) If a negative result is obtained, the process returns to step SP2.
  • the power monitoring control device 16 determines whether or not the transmission source of the pulse received at step SP2 is the interconnection point received power meter 31 ( SP10). Then, when the power monitoring control device 16 obtains a positive result in this determination, the power monitoring control device 16 increases the count value of the counter corresponding to the interconnection point received power meter 31 by one. (SP11)
  • the power monitoring control device 16 determines whether or not the transmission source of the pulse received at step SP2 is the generator received power meter 33 (SP12). When the power monitoring control device 16 obtains a positive result in this determination, it increments the count value of the counter corresponding to the generator received power meter 33 by 1 (SP13). The count value of the counter corresponding to the watt hour meter 35 is incremented by one. (SP14)
  • the power monitoring control device 16 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has reached a value representing a predetermined counter reading deadline date (SP15). ) If a negative result is obtained, the process returns to step SP2.
  • the power monitoring control device 16 obtains a positive result in the determination at the above-described step SP9 or step SP15, it corresponds to the count value of the counter corresponding to the interconnection point transmission watt-hour meter 30 and the generator transmission watt-hour meter 32.
  • the interconnection point transmission power amount PS1 A generator transmission power amount PS2 and a storage battery discharge power amount PSB are respectively calculated (SP16).
  • the power monitoring control device 16 includes a counter value corresponding to the connection point received energy meter 31, a counter value corresponding to the generator received energy meter 33, and a counter corresponding to the storage battery charge energy meter 35. Is multiplied by the corresponding constant KR1, constant KR2, or constant KRB set in step SP1, respectively, to thereby calculate the interconnection point transmission power amount PR1, the generator transmission power amount PR2, and the storage battery discharge power amount PRB. (SP16).
  • the power monitoring control device 16 has the following formula:
  • the power loss TrlossR in the substation interconnection transformer 12 (FIG. 1) is calculated (SP17).
  • Trcloss and Trfloss are the copper loss and iron loss of the substation interconnection transformer 12, respectively, and P0 is the rating of the substation interconnection transformer 12.
  • the power monitoring control device 16 connects the connection point transmission power amount PS1, the generator transmission power amount PS2, and the storage battery discharge power amount PSB, the connection point reception power amount PR1, and the generator reception power obtained as described above. Necessary arithmetic processing is executed based on the power PR2 and the storage battery charge power PRB and the power loss TrlossR in the substation interconnection transformer 12 (SP18).
  • the power monitoring control device 16 supplies the amount of power given from the power system 14 (FIG. 1) out of the amount of power charged in the storage battery 13 (hereinafter referred to as storage battery charge power amount (system)).
  • LPC is the following formula
  • the amount of combined generated power out of the amount of power charged in the storage battery 13 hereinafter referred to as the storage battery charge power amount (power plant)
  • the power monitoring and control device 16 uses the GPS2 that expresses the amount of power directly transmitted to the power system 14 of the interconnected power company in the combined generated power (hereinafter referred to as “generator direct transmission power amount”). Calculated by
  • the power monitoring and control device 16 includes an amount of power corresponding to the amount of charge from the power system 14 among the amount of power discharged from the storage battery 13 (hereinafter referred to as storage battery discharge power amount (system charge)) LCPS10.
  • storage battery discharge power amount (system charge)) LCPS10 The following formula The amount of power corresponding to the amount of charge based on the combined generated power out of the amount of power discharged from the storage battery 13 (hereinafter referred to as storage battery discharge power (generator charge)) GCPS20 is Calculated by
  • the power monitoring and control device 16 uses the following formula combined generated power for the amount of charge to the storage battery 13 and the direct power to the power system 14 (hereinafter referred to as the combined power transmission power generation (power generation + storage)). Call the GPS22) Calculated by In addition, the power monitoring and control device 16 uses the power generation combined transmission power amount (power generation + storage), and the apportioned power amount obtained from the power system 14 out of the power amount transmitted to the power system 14 of the connected power company. (Hereinafter, this is referred to as interconnection-point transmission apportioned electric energy (system)). Of the amount of electric power calculated and transmitted to the grid of the grid power company, the amount of combined generated power (hereinafter referred to as grid-point transmission apportioned power (power plant)) GCPSB23 is (SP).
  • SP grid-point transmission apportioned power
  • the power monitoring control device 16 connects the interconnection point transmission power amount PS1, the generator transmission power amount PS2, and the storage battery discharge power amount PSB obtained in step SP16, and the interconnection point received power amount obtained in step SP16.
  • PR1 generator received power amount PR2 and storage battery charge power amount PRB, storage battery charge power amount (system) LPC, storage battery charge power amount (power plant) GPC, generator direct transmission power amount GPS2, storage battery calculated as described above Based on discharge power amount (system charge) LCPS10, storage battery discharge power amount (generator charge amount) GCPS20, interconnection point transmission apportioning electric energy (system) LCPSB13 and interconnection point transmission apportioning electric energy (power plant) GCPSB23 Then, a quarterly report and an annual report are prepared as necessary (SP19), and this is recorded and stored in a recording device (not shown).
  • the power monitoring and control device 16 determines, based on the numerical values obtained in step SP18, the power charge bill 35A, the power charge transfer notification 35B and the RPS power charge bill 35C described above with reference to FIGS.
  • Each meter-reading notice 36 (36A to 6E) is created and printed on the printer 24 (FIG. 1), and then the storage battery charge / discharge control process is terminated.
  • connection point transmission watt-hour meter 30 and the connection point are connected to the connection point side energy measurement point P1.
  • Receiving watt-hour meter 31, generator-side watt-hour measurement point P2, generator transmission watt-hour meter 32 and generator-receiving-power watt-hour meter 33, storage battery-side watt-hour measurement point P3, storage battery discharge watt-hour meter 34, and storage battery charging energy A total of 35 is provided, and these watt hour meters measure the transmission / reception electric energy at the interconnection point side electric energy measurement point P1, the generator side electric energy measurement point P2, and the storage battery side electric energy measurement point P3 for each tidal direction.
  • FIG. 1 40 shows the wind power generation system by 2nd Embodiment as a whole.
  • the wind power generation system 40 is configured in the same manner as the wind power generation system 1 according to the first embodiment, except that the charging / discharging control processing of the storage battery 13 by the power monitoring control device 41 is different.
  • the storage battery charge / discharge control process according to the first embodiment described above with reference to FIG. 14 is based on the assumption that the purchased power from the power system 14 charging the storage battery 13 is always from the same other power generation company. Yes. However, at present, it is also possible for each power generation company to sell power to other power generation companies using the power system of the power company, and therefore, from a plurality of other power generation companies (including power companies). It is also conceivable to purchase electric power and charge the storage battery 13 with the purchased electric power.
  • the wind power generation system 40 (FIG. 1) according to the present embodiment, when purchasing power from another power generation company and charging the storage battery 13, the name of the other power generation company (name of the power generation company) and The purchase time is recorded, and based on this information, the purchased power from other power generation companies is measured and classified for each other power generation company.
  • FIG. 15 shows the specific processing contents of the power monitoring control device 41 related to the storage battery charge / discharge control processing according to this embodiment.
  • the power monitoring control device 41 executes the storage battery charge / discharge control process shown in FIG. 15 according to a corresponding control program stored in an internal memory (not shown).
  • a power purchase schedule such as how much power is purchased from the business is set internally (SP30). This power purchase schedule may be input by a user operation, or may be created by the power monitoring control device 41 based on data acquired at the time of exchange with the bid server of the Japan Wholesale Power Exchange 19 good.
  • the power monitoring control device 41 also includes the power amount KR (KR1, KR2) for each pulse of the interconnection point power reception pulse, the generator side power reception pulse, and the charging power pulse described in step SP1 of FIG. , KRB) and the electric energy KS (KS1, KS2, KSB) for each one pulse of the connection point power transmission pulse, the generator-side power transmission pulse, and the discharge power pulse, are set to predetermined values. Further, the power monitoring and control apparatus 41 sets initial values for the counters described above for step SP5, step SP7, step SP8, step SP11, step SP13, and step SP14 in FIG. The parameter n indicating the instrument reading date and time is set to the initial value “1” while being set to “0” (SP30).
  • the power monitoring control device 41 performs steps SP31 and SP33 to SP45 in the same manner as steps SP3 to SP15 of the storage battery charge / discharge control process according to the first embodiment described above with reference to FIG.
  • Connection point power reception pulse from the connection point transmission watt-hour meter 30 connection point transmission pulse from the connection point power reception watt-hour meter 31, generator-side power reception pulse from the generator transmission power watt-hour meter 32, generator reception
  • a generator-side power transmission pulse from the electric energy meter 33, a charging power pulse from the storage battery discharging energy meter 34, or a discharging power pulse from the storage battery charging energy meter 35 is input, the corresponding counter is incremented by one.
  • the power monitoring and control device 41 follows the power purchase schedule set in step SP1 and generates power from the power selling source of the power purchased at that time.
  • the name of the person and the time at that time are recorded (SP32).
  • the power monitoring and control device 41 As soon as the counter reading deadline date (the closing date of the month) for reading the count value of each counter is reached, the power monitoring and control device 41, Then, the connection point received power amount PR2, the generator received power amount PR2, the storage battery charging power amount PRB, and the power loss TrlossR in the substation interconnection transformer are calculated (SP46, SP47).
  • the power monitoring and control device 41 stores the storage battery for each other power generation company purchased for charging the storage battery 13 based on the power purchase schedule set in step SP30 and the power generation company name and time recorded in step SP32.
  • the amount of charge power PRB is classified (SP48).
  • the power monitoring control device 41 performs the storage battery charging power amount for each other power generation company classified in step SP48 in the same manner as in step SP18 of the storage battery charge / discharge control process according to the first embodiment described above with reference to FIG. (System) LPC, storage battery charge energy (power plant) GPC, generator direct transmission energy GPS2, storage battery discharge energy (system charge) LCPS10, storage battery discharge energy (generator charge) GCPS20, connection point transmission distribution Electric power (system) LCPSB 13 and interconnection point transmission apportioned electric power (power plant) GCPSB 23 are respectively calculated (SP49).
  • System LPC storage battery charge energy (power plant) GPC
  • storage battery discharge energy (system charge) LCPS10 storage battery discharge energy (generator charge) GCPS20
  • connection point transmission distribution Electric power (system) LCPSB 13 and interconnection point transmission apportioned electric power (power plant) GCPSB 23 are respectively calculated (SP49).
  • step SP50 and step SP51 processes step SP50 and step SP51 in the same manner as step SP19 and step SP20 in FIG. 14, and eventually ends this storage battery charge / discharge control process.
  • the name of the power generation company of the power selling source purchased at the time of charging the storage battery 13 and the time are recorded, and the power selling source of the charging power to the storage battery 13 is recorded. Even when purchasing power for charging the storage battery 13 from a plurality of power generation companies in order to classify the power generation companies, it is determined how much power is purchased from which power generation company as the charging power for the storage battery 13 It is possible to classify with high accuracy.
  • FIG. 16 which shows the corresponding parts in FIG. 1 with the same reference numerals, shows a wind power generation system 50 according to a third embodiment.
  • this wind power generation system 50 it is assumed that the electric power stored in the storage battery 13 is used in the wind power generation system 50. Accordingly, the configuration of the electric energy measuring unit 51 and the storage battery 13 by the power monitoring control device 58 are assumed. The content of the charge / discharge control process is different from the wind power generation system 1 according to the first embodiment.
  • connection point transmission energy meter 30 and a connection point reception energy meter 31 a generator transmission energy meter 32 and a generator reception energy meter 33 that measure the transmission and reception energy at the generator-side energy measurement point P2
  • the first power cable 6 and Generator system-side received watt-hour meter for measuring the amount of power flowing to the wind power generator 3 side beyond the connection point PC of the second power cable 8 (hereinafter referred to as the generator-system-side received power amount) 52 is provided There.
  • the generator system side received power meter 52 is set between the connection point PC of the first power cable 6 and the second power cable 8 and the interconnection transformer 12, as shown in FIG.
  • the connection circuits 53 that connect between the generator system side received power amount measurement point P4 and the storage battery side power amount measurement point P3, the current transformer 54 on the storage battery side power amount measurement point P3 side and the connection
  • the circuit 53 is connected to a connection circuit 57 that connects the auxiliary current transformer 56 disposed between the terminals of the current transformer 55 at the generator system side received power amount measurement point P4.
  • FIG. 18 only R ⁇ is shown, but it goes without saying that t ⁇ has a similar circuit configuration.
  • connection circuit 53 configured in this way, the current of the IR2 flowing into the connection point PC of the first power cable 6 and the second power cable 8 from the power system 14 through the interconnection transformer 12.
  • Is the vector ir2 and the vector of the discharge power ISB of the storage battery 13 flowing from the storage battery 13 to the connection point PC is the vector isb
  • the vector iadd of the amount of power IADD flowing from the connection point PC to the wind power plant 2 side is Next formula It can be calculated as follows. However, the vector iadd and the vector isb are positive in the direction of the arrow in FIG. 18, and are “0” when negative.
  • the vector iadd of the electric energy Iadd minus the vector isb of the discharge electric energy ISB of the storage battery 13 represents the connection point PC of the first electric power cable 6 and the second electric power cable 8 from the electric power system 14. It becomes the vector amount of the generator system side received power amount IREM that flows into the wind power plant 2 side beyond.
  • the vector irem is also positive in the direction of the arrow in FIG.
  • the generator system side received energy meter 52 measures the generator system side received power amount IREM as described above, and each time a constant power amount (for example, 1 kW) is measured, one pulse is generated on the generator system side received power pulse. To the power monitoring control device 58.
  • the power monitoring control device 58 includes a connection point power reception pulse and a connection point power transmission pulse transmitted from the connection point power reception energy meter 30 and the connection point transmission power energy meter 31, respectively, A generator-side power reception pulse and a generator-side power transmission pulse transmitted from the generator transmission power meter 33, respectively, and a charge power pulse and a discharge power pulse transmitted from the storage battery charge power meter 34 and the storage battery discharge power meter 35, respectively.
  • the number of pulses is cumulatively counted, for example, on a monthly basis.
  • the power monitoring and control device 58 accumulates each of the connection point power reception pulse, the connection point power transmission pulse, the generator side power reception pulse, the generator side power transmission pulse, the charge power pulse, the discharge power pulse, and the generator system side power reception pulse. Based on the results, the purchased power from other power generation companies and the power generated by own wind power generation are categorized, for example, monthly, and various invoices / notifications 35 (FIG. 3) ) And various meter reading notices 36 (FIG. 3).
  • FIG. 21 shows specific processing contents of the power monitoring control device 58 relating to charge / discharge control of the storage battery 13 according to the third embodiment.
  • the power monitoring control device 58 executes the storage battery charge / discharge control process shown in FIG. 21 in accordance with a corresponding control program stored in an internal memory (not shown).
  • the power monitoring control device 58 starts the storage battery charge / discharge control process, and first executes a necessary setting process (SP60).
  • the power monitoring control device 58 uses the power amount KR (KR1, KR2, RM2) for each pulse of the connection point power reception pulse, the generator side power reception pulse, and the charging power pulse.
  • KRB the electric energy KS (KS1, KS2, KSB) for each one of the interconnection point power transmission pulse, the generator-side power transmission pulse, and the discharge power pulse are set to predetermined values set in advance.
  • the power monitoring control device 58 initializes the count values of the counters described above for step SP5, step SP7, step SP8, step SP11, step SP13 and step SP14 of FIG. 1 and the counter described later for step SP76, respectively.
  • a value “0” is set, and a parameter n indicating the instrument reading date is set to an initial value “1”. Furthermore, the power monitoring control device 58 sets the power amount KDG for one pulse of the generator system side received pulse given from the generator system side received power meter 52 to a predetermined value set in advance.
  • the power monitoring control device 58 receives the connection point transmission pulse from the connection point transmission energy meter 30, the connection point reception pulse from the connection point reception energy meter 31, and the generator transmission energy meter 32.
  • Generator-side power transmission pulse, generator-side power reception pulse from generator-received watt-hour meter 33, discharge power pulse from storage battery discharge watt-hour meter 34, charge power pulse from storage battery charge watt-hour meter 35, and generator system side reception It waits for any of the generator system side received pulses from the electricity meter 52 to be inputted (SP61).
  • the power monitoring and control device 58 includes any one of the connection point power transmission pulse, the connection point power reception pulse, the generator side power transmission pulse, the generator side power reception pulse, the discharge power pulse, the charge power pulse, and the generator system side power reception pulse.
  • the transmission source of the pulse is any one of the connection point transmission watt-hour meter 30, the generator transmission watt-hour meter 32, and the storage battery discharge watt-hour meter 34 (SP62). .
  • the power monitoring control device 58 When the power monitoring control device 58 obtains a positive result in this determination, it performs steps SP63 to SP67 in the same manner as steps SP4 to SP8 in FIG. Further, the power monitoring control device 58 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has become a value representing a predetermined counter reading deadline date (SP68), If a negative result is obtained, the process returns to step SP61.
  • SP68 counter reading deadline date
  • the power monitoring control device 58 when the power monitoring control device 58 obtains a negative result in the determination at step SP62, it performs steps SP69 to SP72 in the same manner as steps SP10 to SP13 in FIG. Further, when the power monitoring control device 58 obtains a negative result in the determination at step SP71, it determines whether or not the transmission source of the pulse received at step SP61 is the storage battery charging power meter 35 (SP73).
  • the power monitoring control device 58 When the power monitoring control device 58 obtains a positive result in this determination, the power monitoring control device 58 increases the count value of the counter corresponding to the storage battery charging power meter 35 by one. Thereafter, the power monitoring control device 58 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has become a value representing a predetermined counter reading deadline date ( If a negative result is obtained, the process returns to step SP61.
  • the power monitoring control device 58 when the power monitoring control device 58 obtains a negative result in the determination at step SP73, the power monitoring control device 58 increases the count value of the counter corresponding to the generator system side received power meter 52 by 1 (SP76). Thereafter, the power monitoring control device 58 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has reached a value representing a predetermined counter reading deadline date (SP77). ) If a negative result is obtained, the process returns to step SP61.
  • the power monitoring control device 58 eventually obtains a positive result in the determination at step SP68, step SP75, or step SP77, the count value of the counter corresponding to the connection point transmission power meter 30, the generator transmission power amount By multiplying the count value of the counter corresponding to the total 32 and the count value of the counter corresponding to the storage battery discharge energy meter 34 by the corresponding constant KS1, constant KS2 or constant KSB set in step SP60, respectively.
  • the system transmission power amount PS1, the generator transmission power amount PS2, and the storage battery discharge power amount PSB are calculated.
  • the power monitoring control device 58 includes a counter value corresponding to the connection point received power meter 31, a counter value corresponding to the generator received power meter 33, and a counter corresponding to the storage battery charge energy meter 35. Is multiplied by the corresponding constant KR1, constant KR2 or constant KRB set in step SP60, respectively, thereby calculating the interconnection point transmission power amount PR1, the generator transmission power amount PR2 and the storage battery discharge power amount PRB. .
  • the power monitoring and control device 58 multiplies the count value of the counter corresponding to the generator system side received power meter 52 by the corresponding constant KDG set in step SP60 to obtain the generator system side received power amount PLRG. Calculate (SP78).
  • the power monitoring and control device 58 calculates the power loss TrlossR in the interconnection transformer 12 by the above-described equation (1) (SP79), and thereafter the interconnection point transmission power obtained as described above.
  • Power amount PS1, generator transmission power amount PS2 and storage battery discharge power amount PSB, interconnection point received power amount PR1, generator received power amount PR2, storage battery charge power amount PRB and generator system side received power amount PLRG, and interconnection Necessary arithmetic processing is executed based on the power loss TrlossR in the transformer 12 (SP80).
  • the power monitoring control device 58 calculates the amount of power (storage battery charge power amount (system)) LPC given from the power system 14 among the amount of power charged in the storage battery 13 as follows: Of the amount of power charged in the storage battery 13, the amount of combined generated power (storage battery charge power amount (power plant)) GPC is calculated by the above equation (3).
  • the power monitoring and control device 58 uses the amount of power discharged from the storage battery 13, the amount of power consumed in the wind power generation system 50 (hereinafter referred to as storage battery discharge power amount (consumption within the power plant)) PSBG, Next formula Of the amount of power discharged from the storage battery 13, the amount of power transmitted to the power system 14 side via the interconnection point side energy measurement point P ⁇ b> 1 (hereinafter referred to as storage battery discharge energy (interconnection) PSBS) is called the following formula: Calculate with
  • the power monitoring and control device 58 calculates the amount of power (referred to as generator direct transmission power) GPS2 directly transmitted to the power grid 14 of the grid power company among the combined generated power by the above-described equation (4). To do.
  • the power monitoring control device 58 calculates the amount of power (storage battery discharge power (system charge)) LCPS 10 corresponding to the charge from the power system 14 among the power discharged from the storage battery 13 by the following formula.
  • the amount of power corresponding to the amount of charge based on the combined generated power out of the amount of power discharged from the storage battery 13 (hereinafter referred to as storage battery discharge power (generator charge)) GCPS20 is Calculated by
  • the power monitoring and control device 58 includes a total amount of power (power plant combined transmission power amount (power generation + storage)) GPS 22 for the amount of charge to the storage battery 13 and the direct transmission to the power system 14 by the combined power generated by the following formula:
  • the apportioned power obtained from the power grid 14 (interconnection point transmission apportioned power (system)) LCPSB 13 and the power grid 14 of the interconnected power company
  • the electric energy of the combined generated electric power (interconnection point transmission apportioned electric energy (power plant)) GCPSB 23 is calculated by the above-mentioned equations (7) to (9), respectively.
  • step SP81 and step SP82 processes step SP81 and step SP82 in the same manner as step SP19 and step SP20 in FIG. 14, and eventually ends this storage battery charge / discharge control process.
  • the purchased power input from the power system 14 exceeds the connection point PC of the first power cable 6 and the second power cable 8 and the wind power plant. Since the generator system side received energy meter 52 for measuring the generator system side received energy flowing into the second side is provided in the energy measuring unit 51, the power stored in the storage battery 13 is used for the wind power generation system 50. Even in the case of using the power generator, it is possible to accurately classify the purchased power from other power generation companies and the wind power generated by itself.
  • reference numeral 60 denotes a wind power generation system according to a fourth embodiment as a whole.
  • power is purchased from a plurality of other power generation companies (including power companies) and the purchased power is charged in the storage battery 13, and the power stored in the storage battery 13 is used in the wind power generation system 50. Accordingly, the content of the charge / discharge control processing of the storage battery 13 by the power monitoring control device 61 is different from the wind power generation system 50 according to the third embodiment.
  • the wind power generation system 60 when power is purchased from another power generation company and the storage battery 13 is charged, the name of the other power generation company (power generation company name) and the time are recorded. In addition, based on this information, electric power purchased from other power generation companies and own wind power generation are classified.
  • FIG. 22 shows specific processing contents of the power monitoring control device 61 relating to the charging / discharging control processing of the storage battery 13 according to this embodiment.
  • the power monitoring control device 61 executes the storage battery charge / discharge control process shown in FIG. 22 in accordance with a corresponding control program stored in an internal memory (not shown).
  • the power monitoring control device 61 starts the storage battery charge / discharge control process.
  • a power purchase schedule such as how much power is purchased from which power generation company is set internally (SP90).
  • the power monitoring control device 61 uses the power amount KR (KR1, KR2, KRB) for each pulse of the interconnection point power reception pulse, the generator side power reception pulse, and the charging power pulse.
  • the power amount KS (KS1, KS2, KSB) for each one pulse of the interconnection point power transmission pulse, the generator side power transmission pulse and the discharge power pulse, and the power amount KDG for one pulse of the generator system side power reception pulse Each is set to a predetermined value.
  • the power monitoring and control device 61 counts each of the counters described above for step SP5, step SP7, step SP8, step SP11, step SP13 and step SP14 in FIG. 14 and the counter described above for step SP77 in FIG. Are each set to an initial value “0”, and a parameter n indicating the instrument reading date and time is set to an initial value “1”. (SP90).
  • the power monitoring control device 61 receives the connection point transmission pulse from the connection point transmission energy meter 30, the connection point reception pulse from the connection point reception energy meter 31, and the generator transmission energy meter 32.
  • Generator-side power transmission pulse, generator-side power reception pulse from the power-receiving power meter 33, discharge power pulse from the battery discharge power meter 34, charge power pulse from the storage battery charge power meter 35, and generator system side It waits for any of the generator system side received pulses from the received electricity meter 52 to be input (SP91).
  • the power monitoring control device 61 performs steps SP93 to SP108 in the same manner as steps SP62 to SP77 of the storage battery charge / discharge control processing according to the first embodiment described above with reference to FIG.
  • steps SP93 to SP108 are input, the corresponding counter is incremented by one.
  • the power monitoring control device 61 follows the power purchase schedule set in step SP90 and generates power from the power selling source of the power purchased at that time.
  • the name of the person and the time at that time are recorded (SP92).
  • connection point transmission power amount PS1 generator transmission power amount PS2 and storage battery discharge power amount PSB
  • connection point received power amount PR2 the generator received power amount PR2
  • storage battery charge power amount PRB the generator system side received power amount PLRG
  • power loss TrlossR in the connection transformer 12 are calculated (SP109, SP110).
  • the power monitoring and control device 61 charges the storage battery for each other power generation company purchased at the time of charging the storage battery 13 based on the power purchase schedule set in step SP90 and the power generation company name and time recorded in step SP92.
  • the power amount PRB is classified (SP111).
  • the power monitoring and control device 61 performs storage battery charge power amount (system) LPC, storage battery charge power amount (power plant) GPC, and storage battery discharge for each power generation company classified in step SP111.
  • Electric energy (consumption in power plant) PSBG, battery discharge electric energy (interconnection point transmission) PSBS, generator direct transmission electric energy GPS2, storage battery discharge electric energy (system charge) LCPS10, battery discharge electric energy (generator charge) GCPS20
  • the connection point transmission apportioned electric energy (system) LCPSB 13 and the interconnection point transmission apportioned electric energy (power plant) GCPSB 23 are calculated (SP112).
  • step SP113 and step SP114 processes step SP113 and step SP114 in the same manner as step SP81 and step SP82 in FIG. 21, and eventually ends this storage battery charge / discharge control process.
  • the name and the time of the power generation company of the purchased power sale source are recorded, and the power generation company of the power sale source of the charging power to the storage battery 13 is recorded. Therefore, when purchasing power from multiple power generation companies and charging the storage battery with the purchased power, it is possible to accurately classify the purchased power from other power generation companies and their own wind power generation. it can.
  • the power is higher than the connection point PC of the first power cable 6 and the second power cable 8 in the first power cable 6.
  • the power amount measuring units 25 and 51 as power amount measuring means for measuring the tidal power amount for each tidal current on the storage battery 13 side than the connection point PC of the power cables 6 and 8 of FIG.
  • the electric power that separates the purchased electric power from other power generation companies and the electric power generated by own wind power generation based on the measurement results of the electric energy measuring units 25 and 51 is not limited to this.
  • such power classifying means may be provided separately from the power monitoring control devices 16, 41, 58, 61.
  • the present invention relates to a wind power generation system and can be widely applied to storage battery combined wind power generation systems having various configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A wind turbine generator system for outputting a constant electric power to external utility grids comprises: a wind turbine generator; a storage battery into which electric power generated by the wind turbine generator is charged; an electric power measuring unit for measuring the current electric powers of respective currents at first and second measuring points on a first power cable connecting the wind turbine generator and the external utility grids and at a third measuring point on a second power cable connecting the first power cable and the storage battery; and an electric power separation unit for, based on the measurement results by the electric power measuring unit, separating electric power to be purchased from a power producer from electric power generated by the wind turbine generator. The first measuring point is positioned between a connection point of the first and second power cables and the external utility grids, the second measuring point between the connection point and the wind turbine generator, and the third measuring point between the connection point and the storage battery.

Description

風力発電システムWind power generation system
 本発明は、風力発電システムに関し、特に蓄電池併用型風力発電システムに関する。 The present invention relates to a wind power generation system, and more particularly to a storage battery combined type wind power generation system.
 風力発電は、自然風力を原動力として発電するため、図23に示すように、風速変動に応じてその出力電力が変動する。このため、風力発電により得られた電力を電力会社の電力系統にそのまま連系送電することには問題がある。 Since wind power generation generates power using natural wind as a driving force, as shown in FIG. 23, the output power fluctuates according to the wind speed fluctuation. For this reason, there is a problem in directly transmitting the electric power obtained by wind power generation to the electric power system of the electric power company.
 この対策として、風力発電所に複数の蓄電池からなる蓄電設備を併設することによって、風速によって変動する発電力を蓄電池の充放電により出力一定型に整形制御したり、風力発電により得られた電力を電力需要の少ない夜間に蓄えて電力需要の多い昼間帯に電力系統に連系売電する事例が多くなりつつある(例えば特許文献1参照)。 As a countermeasure against this, by installing a storage facility consisting of multiple storage batteries at a wind power plant, the power generation that fluctuates depending on the wind speed can be shaped and controlled to a constant output by charging and discharging the storage battery, or the power obtained by wind power generation can be controlled. There are an increasing number of cases where power is stored at night when power demand is low and power is connected to the power grid in the daytime when power demand is high (see, for example, Patent Document 1).
 ただし、図24に示すように、通常、初夏から初秋までの期間は風が弱く風力発電量が極端に少ないため、上述のように蓄電池を併設したとしても蓄電池の稼動率が非常に低く、蓄電地の併設費用の回収上問題がある。 However, as shown in FIG. 24, since the wind is usually weak and the amount of wind power generation is extremely small during the period from early summer to early autumn, even if a storage battery is installed as described above, the operation rate of the storage battery is very low, There is a problem in collecting the cost of the land.
 また蓄電池としてNAS(ナトリウム硫黄)電池を採用した場合、当該NAS電池は300度程度の温度で充放電を行なう特性を有するため、通常は、設置したヒータによる保温と自らの充放電によるジュール熱とによって必要な温度を維持している。 When a NAS (sodium sulfur) battery is used as a storage battery, the NAS battery has a characteristic of charging and discharging at a temperature of about 300 degrees. The necessary temperature is maintained.
 しかしながら、NAS電池の場合、ジュール熱が電力の充放電量に比例するため、風速の弱い季節には風力発電の発電量が少なく、保温熱源がほとんどヒータになることから、発電所内の消費電力が増加するという問題がある。 However, in the case of NAS batteries, since Joule heat is proportional to the amount of charge and discharge of power, the amount of power generated by wind power generation is small in the season when wind speed is low, and the heat insulation heat source is mostly a heater. There is a problem of increasing.
特許第3758359号Japanese Patent No. 3758359
 以上のような問題を解決するための手法として、以下の3案が考えられる。 The following three proposals can be considered as methods for solving the above problems.
(a)風力発電を停止して他の発電事業者(以下、「他発電事業者」という)からの購入電力のみを蓄電池に充電しておき、これを売電する方法
 風況が弱い時期には、電力需要の少ない時間帯に風力発電を停止して、他発電事業者から安価な電力を購入して蓄電池に蓄え、電力需要が多く、電力が高価格で取引される時間帯には購入電力量に見合う電力を売電する。ここで、「風況」とは、風の状態や性質のことをいう。具体的には、平均風速の状況や、瞬間風速の状況、風向の出現状況及び又は風速の出現状況などを指す。
(A) A method of stopping wind power generation and charging the storage battery only with purchased power from other power generation companies (hereinafter referred to as “other power generation companies”), and selling this power When the wind conditions are weak Stops wind power generation during times when power demand is low, purchases cheap power from other power generation companies and stores it in storage batteries, and purchases during times when power demand is high and power is traded at high prices Sell power that matches the amount of power. Here, the “wind condition” refers to the state and nature of the wind. Specifically, it refers to the situation of average wind speed, the situation of instantaneous wind speed, the appearance situation of wind direction, or the appearance situation of wind speed, and the like.
(b)購入電力のみを蓄電池に充電しておき、昼間帯にその放電電力と風力発電による発電電力とを合成して売電する方法
 風況が弱い時期には、電力需要の少ない時間帯に風力発電を停止して、他発電事業者から安価な電力を購入して蓄電池に蓄え、電力需要が多く、電力が高価格で取引される時間帯には自らの風力発電による発電電力と合成して出力一定波形に整形した電力を売電する。なお、蓄電池への充電は、他発電事業者からの購入電力のみとして区分制御する。
(B) A method of charging the storage battery with only purchased power, and then combining the discharged power and the power generated by wind power generation in the daytime to sell the power. Stop wind power generation, purchase inexpensive power from other power generation companies and store it in storage batteries, and combine it with the power generated by your own wind power generation during times when power demand is high and power is traded at high prices. To sell the power shaped into a constant waveform. In addition, charge to a storage battery is classified and controlled only as purchased power from another power generation company.
(c)購入電力及び風力発電による発電電力を蓄電池に蓄えておき、昼間帯にその放電電力と風力実況発電による発電電力と合成して売電する方法
 風況が弱い時期で電力需要の少ない時間帯に他発電事業者から安価に購入する電力と自らの風力発電による発電電力とを合成して蓄電池に蓄えておき、電力需要が多く、高価格時間帯に出力一定波形に整形した電力を売電する。なお、蓄電池への充放電は、合成した電力にて行なう。
(C) Method of selling purchased power and power generated by wind power generation in a storage battery, and combining the discharged power with the power generated by actual wind power generation during the daytime to sell electricity The power purchased at low cost from other power generation companies and the power generated by its own wind power generation are combined and stored in the storage battery, and there is a lot of power demand. Electricity. In addition, charging / discharging to a storage battery is performed with the synthesized electric power.
 以上の3案のうち、(b)案及び(c)案を実際に行なうに際しては、RPS法(Renewable Portfolio Standard:新エネルギー利用等の促進に関する特別措置法)との関係で、他発電事業者からの購入電力と自らの風力発電による発電電力とを計量区分しなければならない。 Of the above three proposals, when (b) and (c) are actually carried out, other power generation companies are involved in relation to the RPS Act (Renewable Portfolio Standard: Special Measures Law for Promotion of New Energy Use, etc.). It is necessary to divide the electricity purchased from the plant and the electricity generated by its own wind power generation.
 しかしながら、現状では、このような計量区分の方法は存在せず、上記(b)案及び(c)案を実行することが困難な問題がある。 However, under the present circumstances, there is no method of such a metric classification, and there is a problem that it is difficult to execute the above plans (b) and (c).
 本発明は以上の点を考慮してなされたもので、他発電事業者からの購入電力と自らの風力発電による発電電力とを精度良く計量区分し得る風力発電システムを提案しようとするものである。 The present invention has been made in consideration of the above points, and intends to propose a wind power generation system capable of accurately measuring and classifying purchased power from other power generation companies and power generated by own wind power generation. .
 かかる課題を解決するため、本発明においては、風力発電機から出力される風力発電により得られた発電電力を蓄電池に充放電することにより一定電力を電力系統に出力する風力発電システムにおいて、前記風力発電機及び前記電力系統を接続する第1の電送線と、前記第1の電送線及び前記蓄電池間を接続する第2の電送線と、前記第1の電送線の前記第1及び第2の電送線の接続点よりも前記電力系統側と、前記第1の電送線の前記第1及び第2の電送線の接続点よりも前記風力発電機側と、前記第2の電送線の前記第1及び第2の電送線の接続点よりも前記蓄電池側とにおける潮流別の潮流電力量を計測する電力量計測部と、前記電力量計測部の計測結果に基づいて、他発電事業者からの購入電力と自らの風力発電による発電電力とを区分する電力区分部とを設けるようにした。 In order to solve such a problem, in the present invention, in the wind power generation system that outputs constant power to the power system by charging / discharging the storage battery with the generated power obtained by the wind power generation output from the wind power generator, A first transmission line connecting the generator and the power system; a second transmission line connecting the first transmission line and the storage battery; and the first and second of the first transmission line. The power system side from the connection point of the transmission line, the wind power generator side from the connection point of the first and second transmission lines of the first transmission line, and the first of the second transmission line. Based on the measurement result of the electric energy measuring unit and the electric energy measuring unit that measures the tidal electric energy for each tidal current on the storage battery side from the connection point of the first and second transmission lines, Purchased power and power generated by own wind power Classification was provided and a power division part for.
 本発明によれば、他発電事業者からの購入電力と自らの風力発電による発電電力とを精度良く計量区分し得る風力発電システムを実現できる。 According to the present invention, it is possible to realize a wind power generation system that can accurately measure and classify purchased power from other power generation companies and power generated by own wind power generation.
第1及び第2の実施の形態による風力発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the wind power generation system by 1st and 2nd embodiment. (A)~(B)は、強風季節の前後2ヶ月間における風況事例を示す特性曲線図である。(A)-(B) are characteristic curve diagrams showing wind condition examples for two months before and after the strong wind season. 第1及び第2の実施の形態における電力量計測部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the electric energy measuring part in 1st and 2nd embodiment. 電力料金請求書のフォーマット例を示す図である。It is a figure which shows the example of a format of a power bill. 電力料金振込通知書のフォーマット例を示す図である。It is a figure which shows the example of a format of a power bill transfer notification. RPS電力料金請求書のフォーマット例を示す図である。It is a figure which shows the example of a format of a RPS electric power bill. 検針通知書(内訳書)のフォーマット例を示す図である。It is a figure which shows the example of a format of a meter-reading notice (breakdown). 検針通知書(連系点送電電力算定書)のフォーマット例を示す図である。It is a figure which shows the example of a format of a meter-reading notification document (interconnection point transmission power calculation document). 検針通知書のフォーマット例を示す図である。It is a figure which shows the example of a format of a meter-reading notification. 検針通知書(RPS対象算定書)のフォーマット例を示す図である。It is a figure which shows the example of a format of a meter-reading notice (RPS object calculation report). 検針通知書(連系点受電電力算定書)のフォーマット例を示す図である。It is a figure which shows the example of a format of a meter-reading notification document (interconnection point received power calculation document). 日報のフォーマット例を示す図である。It is a figure which shows the example of a format of a daily report. 月報のフォーマット例を示す図である。It is a figure which shows the example of a format of a monthly report. 第1の実施の形態による蓄電池充放電制御処理に関する電力監視制御装置の具体的な処理内容を示すフローチャートである。It is a flowchart which shows the specific processing content of the electric power monitoring control apparatus regarding the storage battery charging / discharging control processing by 1st Embodiment. 第2の実施の形態による蓄電池充放電制御処理に関する電力監視制御装置の具体的な処理内容を示すフローチャートである。It is a flowchart which shows the specific processing content of the electric power monitoring control apparatus regarding the storage battery charging / discharging control processing by 2nd Embodiment. 第3及び第4の実施の形態による風力発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the wind power generation system by 3rd and 4th embodiment. 第3及び第4の実施の形態における電力量計測部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the electric energy measuring part in 3rd and 4th embodiment. 第3及び第4の実施の形態における電力量計測部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the electric energy measuring part in 3rd and 4th embodiment. (A)~(C)は、第3及び第4の実施の形態における電力量計測部の動作説明に供する概念図である。(A) to (C) are conceptual diagrams for explaining the operation of the electric energy measuring unit in the third and fourth embodiments. (A)~(C)は、第3及び第4の実施の形態における電力量計測部の動作説明に供する概念図である。(A) to (C) are conceptual diagrams for explaining the operation of the electric energy measuring unit in the third and fourth embodiments. 第3の実施の形態による蓄電池充放電制御処理に関する電力監視制御装置の具体的な処理内容を示すフローチャートである。It is a flowchart which shows the specific processing content of the electric power monitoring control apparatus regarding the storage battery charging / discharging control processing by 3rd Embodiment. 第4の実施の形態による蓄電池充放電制御処理に関する電力監視制御装置の具体的な処理内容を示すフローチャートである。It is a flowchart which shows the specific processing content of the electric power monitoring control apparatus regarding the storage battery charging / discharging control processing by 4th Embodiment. 風力発電における風速変動と出力変動との関係の説明に供する図である。It is a figure where it uses for description of the relationship between the wind speed fluctuation | variation and output fluctuation | variation in wind power generation. 季節ごとの風況事例を示す図である。It is a figure which shows the wind condition example for every season.
1,40,50,60…風力発電システム、2…風力発電所、3…風力発電機、6,8…電力ケーブル、10…交直変換装置、12…連系用変圧器、13…蓄電池、14…電力系統、16,41,58,61…電力監視制御装置、25,51…電力計側部、30…連系点送電電力量計、31…連結点受電電力量計、32…発電機送電電力量計、33…発電機受電電力量計、34…蓄電池放電電力量計、35…蓄電池充電電力量計、52…発電機系統側受電電力量計、P1…連系点側電力量計測点、P2…発電機側電力量計測点、P3…蓄電池側電力量計測点、P4…発電機系統側受電電力量計測点、PC…接続点 DESCRIPTION OF SYMBOLS 1,40,50,60 ... Wind power generation system, 2 ... Wind power plant, 3 ... Wind power generator, 6,8 ... Power cable, 10 ... AC / DC converter, 12 ... Transformer for connection, 13 ... Storage battery, 14 ... Power system, 16, 41, 58, 61 ... Power monitoring and control device, 25, 51 ... Power meter side, 30 ... Interconnection point transmission watt-hour meter, 31 ... Connection point received watt-hour meter, 32 ... Generator transmission Electricity meter, 33 ... Generator receiving energy meter, 34 ... Storage battery discharging energy meter, 35 ... Storage battery charging energy meter, 52 ... Generator system side receiving energy meter, P1 ... Interconnection point side energy measuring point , P2: Generator side power amount measurement point, P3: Storage battery side power amount measurement point, P4: Generator system side received power amount measurement point, PC: Connection point
 以下、図面を参照しつつ、本発明の実施形態を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(1)第1の実施の形態
(1-1)本実施の形態による風力発電システムの構成
 図1において、1は全体として本実施の形態による風力発電システムを示す。この風力発電システム1は、複数の風力発電所2を備えて構成される。
(1) First Embodiment (1-1) Configuration of Wind Power Generation System According to the Present Embodiment In FIG. 1, reference numeral 1 denotes a wind power generation system according to the present embodiment as a whole. The wind power generation system 1 includes a plurality of wind power plants 2.
 各風力発電所2は、風力発電機3、変圧器4及び開閉器5を備えており、風力発電機3から出力される発電電力を、変換器4において所定電圧に変圧した後、開閉器5を介して第1の電力ケーブル6に出力する。そして、各風力発電所2から出力された発電電力は合成されて、合成発電電力として第1の電力ケーブル6上の開閉器7及び当該第1の電力ケーブル6と接続された第2の電力ケーブル8上の開閉器9を介して交直変換装置10に与えられると共に、第1の電力ケーブル6上の開閉器11を介して連系用変圧器12に与えられる。 Each wind power plant 2 includes a wind power generator 3, a transformer 4, and a switch 5. After the generated power output from the wind power generator 3 is transformed to a predetermined voltage by the converter 4, the switch 5 Is output to the first power cable 6. Then, the generated power output from each wind power plant 2 is combined and the combined power generated is the switch 7 on the first power cable 6 and the second power cable connected to the first power cable 6. The power is supplied to the AC / DC converter 10 through the switch 9 on the power supply 8 and is also supplied to the interconnection transformer 12 through the switch 11 on the first power cable 6.
 交直変換装置10は、蓄電池制御装置15の制御の下に、蓄電池13の充電時には、各風力発電所2からの合成発電電力や、後述のように連系電力会社の電力系統14を介して購入した他発電事業者からの購入電力を直流波形の充電電力に変換して蓄電池13に与える。これにより、この充電電力に基づいて蓄電池13の充電が行なわれる。 The AC / DC converter 10 is purchased under the control of the storage battery control device 15 when the storage battery 13 is charged via the combined power generated from each wind power plant 2 or the power system 14 of the grid power company as described later. The purchased power from the other power generation company is converted into DC waveform charging power and supplied to the storage battery 13. Thereby, the storage battery 13 is charged based on this charging power.
 また、直交変換装置10は、蓄電池制御装置15の制御の下に、蓄電池13の放電時には、蓄電池13からの放電電力を交流波形の放電電力に変換して第2の電力ケーブル8に出力する。これにより、この放電電力が後述のように本風力発電システム1において消費されたり、開閉器11を介して連系用変圧器12に与えられる。 Further, under the control of the storage battery control device 15, the orthogonal transformation device 10 converts the discharge power from the storage battery 13 into discharge power having an AC waveform and outputs it to the second power cable 8 when the storage battery 13 is discharged. Thereby, this discharge power is consumed in the wind power generation system 1 as described later, or is given to the interconnection transformer 12 via the switch 11.
 変電所連系用変圧器12は、後述する電力監視制御装置16の制御の下に、連系電力会社などへの売電時には、第1の電力ケーブル6を介して与えられる合成発電電力、蓄電池13の放電電力、又は合成発電電力及び蓄電池13の放電電力の合成電力のいずれかを、所定電圧にまで昇圧して連系電力会社の電力系統(送電網)14に出力する。また、変電所連係用変圧器12は、他発電事業者などからの電力購入時には、かかる電力系統14を介して取り込んだ購入電力を所定電圧にまで降圧して第1の電力ケーブル6に出力する。 The substation interconnection transformer 12 is a composite generated power and storage battery that are given via the first power cable 6 when selling power to an interconnection power company or the like under the control of a power monitoring control device 16 described later. 13 discharge power or the combined power of the combined generated power and the discharge power of the storage battery 13 is boosted to a predetermined voltage and output to the power system (transmission network) 14 of the grid power company. In addition, when purchasing power from another power generation company or the like, the substation linking transformer 12 steps down the purchased power taken in via the power grid 14 to a predetermined voltage and outputs it to the first power cable 6. .
 蓄電池13は、例えば並列接続された複数(例えば17ユニット)のNAS蓄電池から構成される。各NAS蓄電池は、2MWの蓄電容量を有しており、これら複数のNAS蓄電池のうちの所定数分(例えば15ユニット分)のNAS蓄電池が使用される。 The storage battery 13 is composed of, for example, a plurality (for example, 17 units) of NAS storage batteries connected in parallel. Each NAS storage battery has a storage capacity of 2 MW, and a predetermined number (for example, 15 units) of NAS storage batteries among the plurality of NAS storage batteries is used.
 蓄電池制御装置15は、例えばパーソナルコンピュータなどから構成される。蓄電池制御装置15は、電力監視制御装置16の制御の下に、交直変換装置10を介して蓄電池13の充放電を制御する。また、蓄電池制御装置15は、蓄電池13に蓄積されている電力量を管理し、この電力量を周期的に電力監視制御装置16に通知する。 The storage battery control device 15 is composed of, for example, a personal computer. The storage battery control device 15 controls charging / discharging of the storage battery 13 via the AC / DC conversion device 10 under the control of the power monitoring control device 16. In addition, the storage battery control device 15 manages the amount of power stored in the storage battery 13 and periodically notifies the power monitoring control device 16 of this amount of power.
 電力監視制御装置16は、例えばパーソナルコンピュータやワークステーションなどから構成される。電力監視制御装置16は、インターネット等の通信網17を介して、気象業務支援センタ18の気象データ配信サーバや、日本卸電力取引所19の入札サーバ及び中央給電指令所20の中央給電指令サーバなどに接続されている。 The power monitoring control device 16 is constituted by, for example, a personal computer or a workstation. The power monitoring and control device 16 is connected via a communication network 17 such as the Internet to a meteorological data distribution server of the weather service support center 18, a bid server of the Japan Wholesale Power Exchange 19, a central power supply command server of the central power supply command center 20, and the like. It is connected to the.
 電力監視制御装置16は、後述する発電計画装置21により作成された「翌日風力発電計画」に基づいて、翌日に売電可能な電力量を日本卸電力取引所19の取引単位時間である30分ごとの商品として日本卸電力取引所19の入札サーバに入札する。また、電力監視制御装置16は、取引が成立した一定量の電力を、対応する時間帯に連系電力会社の電力系統14に安定して出力できるように、蓄電池制御装置15を介して蓄電池13の充放電を制御したり、風力発電所制御装置22を介して各風力発電所2における発電量を制御する。 Based on the “next day wind power generation plan” created by the power generation planning device 21 to be described later, the power monitoring and control device 16 determines the amount of power that can be sold the next day as 30 minutes, which is the transaction unit time of the Japan Wholesale Power Exchange 19. Bids are placed on the bid server of the Japan Wholesale Electric Power Exchange 19 as a product. In addition, the power monitoring and control device 16 can stably output the fixed amount of power for which the transaction has been established to the power grid 14 of the grid power company in the corresponding time zone via the storage battery control device 15. And the amount of power generation at each wind power plant 2 is controlled via the wind power plant controller 22.
 発電計画装置21は、例えば所定のアプリケーションソフトウェアである「発電計画ツール」が実装されたパーソナルコンピュータから構成される。発電計画装置21には、気象業務支援センタ18の気象データ配信サーバから配信される気象予測データに基づいて時間毎及び風力発電所毎の風況(風速及び風向など)を予測し、この予測結果と、予め管理している風力発電所2ごとの風速別出力曲線(パワーカーブ)とに基づいて風力発電所2毎の発電予測量を算出する。 The power generation planning device 21 is composed of, for example, a personal computer on which a “power generation planning tool” that is predetermined application software is installed. The power generation planning device 21 predicts wind conditions (wind speed, wind direction, etc.) for each hour and each wind power plant based on the weather forecast data distributed from the weather data distribution server of the meteorological work support center 18, and the prediction result And the power generation prediction amount for each wind power plant 2 is calculated based on the wind speed-specific output curve (power curve) for each wind power plant 2 managed in advance.
 また、発電計画装置21は、すべての風力発電所2の発電予測量を集計した風力発電可能電量を算出し、この風力発電可能電量と、風力発電所2の保守計画情報及び故障停止情報などとに基づいて、1週間分の発電計画である「週間風力発電計画」及び翌日分の発電計画である上述の「翌日風力発電計画」を作成する。なお、発電計画装置21は、毎日変化する気象予測データに基づいて「週間風力発電計画」を修正する。そして、翌日の気象予測データに基づいて修正された「翌日風力発電計画」が蓄電池13の放充電計画及び風力発電の抑制計画の根拠となる。 Further, the power generation planning device 21 calculates the amount of wind power generation possible by summing up the predicted power generation amounts of all the wind power plants 2, and the wind power generation potential, the maintenance plan information of the wind power plant 2, the failure stop information, etc. Based on the above, the “weekly wind power generation plan” that is the power generation plan for one week and the “next day wind power generation plan” that is the power generation plan for the next day are created. The power generation planning device 21 corrects the “weekly wind power generation plan” based on weather forecast data that changes every day. Then, the “next day wind power generation plan” corrected based on the weather forecast data of the next day is the basis for the discharge / charge plan for the storage battery 13 and the wind power generation suppression plan.
 風力発電所制御装置22は、各風力発電所2の計測データ制御及び監視のための制御ソフトウェアであるSCADA(Supervisory Control and Data Acquisition System)と、各風力発電所2の出力電力及び力率調整のための制御ソフトウェアであるWFMS(Windfarm Management System)が実装されたパーソナルコンピュータ又はワークステーションなどから構成される。 The wind power plant control device 22 is SCADA (Supervisory Control 計 測 and Data Acquisition System), which is control software for controlling and monitoring the measurement data of each wind power plant 2, and the output power and power factor adjustment of each wind power plant 2. For example, a personal computer or a workstation on which WFMS (Windfarm Management System) is installed.
 この風力発電所制御装置22は、第1のネットワーク23を介して各風力発電所2の風力発電機3と接続されると共に、第2のネットワーク24を介して各風力発電所2の変圧器4と接続されており、電力監視制御装置16の制御の下に、各風力発電所2における風力発電機の制御及び管理や、各風力発電所2における発電量の抑制及び管理などを行う。 The wind power plant control device 22 is connected to the wind power generator 3 of each wind power plant 2 via the first network 23, and the transformer 4 of each wind power plant 2 via the second network 24. Under the control of the power monitoring control device 16, control and management of wind power generators at each wind power plant 2, suppression and management of power generation amount at each wind power plant 2, and the like are performed.
(1-2)風力発電システムにおける蓄電池の充放電制御方式
 一般的に風力発電システムに併設される蓄電池の容量は、風力発電所の定格容量に対して25~60%程度に選定されており、このため蓄積可能な電力量には制約がある。従って、風況の確実な予測を基に、蓄電池容量を勘案して風力発電の制限を局限化して風力発電所の総合効率を低下させないような運用が必要となる。
(1-2) Storage battery charge / discharge control system in wind power generation system Generally, the capacity of the storage battery installed in the wind power generation system is selected to be about 25-60% of the rated capacity of the wind power plant. For this reason, there is a limit to the amount of power that can be stored. Therefore, based on a reliable prediction of the wind conditions, it is necessary to operate in such a way as to limit the wind power generation in consideration of the storage battery capacity and not reduce the overall efficiency of the wind power plant.
 そこで、本実施の形態による風力発電システム1では、以下のようにして蓄電池13を有効活用することにより、風力発電所2の総合効率の向上を図っている。 Therefore, in the wind power generation system 1 according to the present embodiment, the overall efficiency of the wind power plant 2 is improved by effectively utilizing the storage battery 13 as follows.
(a)電力系統からの電力のみの充放電しか連系電力会社から許可されないケース
 弱風時期となる時期(例えば初夏から初秋までの期間)は、風況が悪く、蓄電池13に充電できる風力発電電力が僅少で蓄電池13を十分に活用できない。そこで、この期間は風力発電所2の風力発電機3を停止し、電力需要が少ない時間帯に他発電事業者の安価な電力を購入して蓄電池13に充電し、この購入電力を電力需要が多い時間帯に売電する。
(A) Case where only charging / discharging of power from the power system is permitted by the connected power company Wind power generation that can charge the storage battery 13 during a period of low wind (for example, the period from early summer to early autumn) when the wind condition is bad The storage battery 13 cannot be fully utilized due to a small amount of electric power. Therefore, during this period, the wind power generator 3 of the wind power plant 2 is stopped, the inexpensive power of another power generation company is purchased and charged to the storage battery 13 during a time period when the power demand is low, Sell power at a lot of time.
(b)購入電力と自らの風力発電電力との合成が売電時のみ連系電力会社から許可されるケース
 風況が弱い時間帯に風力発電を停止し、他発電事業者から安価な電力を購入して蓄電池13に蓄え、この購入電量を電力需要が多く、電力が高価格で取引される時間帯に購入電力と自らの風力発電電力と合成して出力一定に整形した電力を売電する。
(B) Cases where the combined power of purchased power and own wind power is permitted by the grid power company only at the time of power sale Wind power is stopped during periods when the wind conditions are weak, and cheap power from other power generators Purchase and store in the storage battery 13, and sell the power that is shaped to a constant output by combining the purchased power with your own wind power during the time when the power demand is high and the power is traded at a high price .
 図2(A)~(D)に示すように、弱風時期(6月~9月(図24参照))の前後2ヶ月間を見ると、数日間風況が弱く風力発電による蓄電池13への充電ができない場合がある。なお、図2において、(A)は4月、(B)は5月、(C)は10月、(D)は11月の風況事例をそれぞれ示している。よって、この風況を的確に予測して他発電事業者からの購入電力を蓄電池13に充電し、この購入電力を電力が高価格で取引される時間帯に売電することによって、購入電力料と売電電力料との差益を得ることができる。 As shown in FIGS. 2 (A) to 2 (D), looking at the two months before and after the low wind period (June to September (see FIG. 24)), the wind conditions are weak for several days and the storage battery 13 by wind power generation is used. May not be able to charge. In FIG. 2, (A) shows an example of wind conditions in April, (B) in May, (C) in October, and (D) in November. Therefore, by accurately predicting this wind condition, charging the storage battery 13 with the purchased power from another power generation company, and selling the purchased power during the time when the power is traded at a high price, And a difference between the electricity sales fee and the electricity sales fee.
(c)購入電力と自らの風力発電電力との合成が連系電力会社から許可されているケース
 風況予測を正確に行い、風力発電電力が僅少で蓄電池13に充電余裕があるときに、電力料金が安価な時間帯に他発電事業者から購入した電力と、自らの風力発電電力とを合成して蓄電池13に蓄え、電力が高価格で取引される時間帯に蓄電池13の放電と、そのとき得られた自らの風力発電電力とを合成して売電する。
(C) Case where the combined power of purchased power and own wind power is permitted by the grid power company When the wind condition is accurately predicted and the wind power is very small and the storage battery 13 has a margin for charging The electric power purchased from other power generation companies in the time zone where the fee is inexpensive and the wind power generated by the power generator are combined and stored in the storage battery 13, and the discharge of the storage battery 13 is performed in the time zone when the power is traded at a high price. Combined with the wind power generated from time to time, the power is sold.
 ただし、以上のような運用を図るためには、上述のようにRPS法との関係で、他発電事業者からの購入電力と自らの風力発電による発電電力とを計量区分しなければならない。 However, in order to operate as described above, it is necessary to measure and divide the power purchased from other power generation companies and the power generated by own wind power generation in relation to the RPS law as described above.
 そこで、本実施の形態による風力発電システム1には、他発電事業者からの購入電力と自らの風力発電による発電電力とを計量区分する手段として、所定の計測点で送受電力量を計測する電力量計測部25が設けられている。即ち、電力量計測部25は、図1に示すように、第1の電力ケーブル6上の連系電力会社の電力系統14及び連系用変圧器12間に設定された連系点側電力量計測点P1と、第1及び第2の電力ケーブル6,8の接続点(ノード)PCと風力発電所2との間に設定された発電機側電力量計測点P2と、第1及び第2の電力ケーブル6,8と蓄電池13との間に設定された蓄電池側電力量計測点P3とにおける送受電力量を潮流方向別に計測する。 Therefore, in the wind power generation system 1 according to the present embodiment, the power for measuring the amount of power transmitted and received at a predetermined measurement point is used as a means for measuring and classifying the purchased power from other power generation companies and the power generated by own wind power generation. A quantity measuring unit 25 is provided. That is, as shown in FIG. 1, the electric energy measuring unit 25 is connected to the interconnection point side electric energy set between the electric power system 14 of the interconnection electric power company on the first electric power cable 6 and the interconnection transformer 12. A measurement point P1, a generator-side energy measurement point P2 set between the connection point (node) PC of the first and second power cables 6 and 8, and the wind power plant 2, and the first and second The transmission / reception power amount at the storage battery side power amount measurement point P3 set between the power cables 6 and 8 and the storage battery 13 is measured for each tidal direction.
 より具体的には、電力量計測部25は、図3に示すように、連系点側電力量計測点P1に接続された連系点受電電力量計30及び連系点送電電力量計31と、発電機側電力量計測点P2に接続された発電機受電電力量計32及び発電機送電電力量計33と、蓄電池側電力量計測点P3に接続された蓄電池充電電力量計34及び蓄電池放電電力計35とから構成される。 More specifically, as shown in FIG. 3, the electric energy measuring unit 25 includes an interconnection point received electric energy meter 30 and an interconnection point transmission electric energy meter 31 connected to the interconnection point side electric energy measurement point P1. A generator-received energy meter 32 and a generator-transmitted energy meter 33 connected to the generator-side energy measurement point P2, and a storage battery charge energy meter 34 and a storage battery connected to the storage battery-side energy measurement point P3. It comprises a discharge wattmeter 35.
 連系点受電電力量計30は、連系点側電力量計測点P1における電力系統14側からの受電電力量を計測し、一定電力量(例えば1kW)を計測するごとに1つのパルスを連系点受電パルスとして電力監視制御装置16に送出する。連系点送電電力量計31はまた、連系点側電力量計測点P1における電力系統14側への送電電力量を計測し、一定電力量を計測するごとに1つのパルスを連系点送電パルスとして電力監視制御装置16に送出する。 The connection point power reception watt-hour meter 30 measures the power reception power amount from the power system 14 side at the connection point side power amount measurement point P1, and connects one pulse every time a constant power amount (for example, 1 kW) is measured. It is sent to the power monitoring controller 16 as a system point power receiving pulse. The connection point transmission watt-hour meter 31 also measures the transmission power amount to the power system 14 side at the connection point side power amount measurement point P1 and transmits one pulse every time a constant power amount is measured. A pulse is sent to the power monitoring control device 16.
 同様に、発電機受電電力量計32は、発電機側電力量計測点P2における電力系統14側からの受電電力量を計測し、一定電力量を計測するごとに1つのパルスを発電機側受電パルスとして電力監視制御装置16に送信する。また発電機送電電力量計33は、発電機側電力量計測点P2における電力系統14側への送電電力量(つまり合成発電電力量)を計測し、一定電力量(例えば1kW)を計測するごとに1つのパルスを発電機側送電パルスとして電力監視制御装置16に送信する。 Similarly, the generator received power meter 32 measures the amount of power received from the power system 14 side at the generator side power amount measurement point P2, and each time a certain amount of power is measured, one pulse is received on the generator side. It transmits to the electric power monitoring control apparatus 16 as a pulse. The generator transmission power meter 33 measures the amount of power transmitted to the power system 14 at the generator-side power amount measurement point P2 (that is, the combined amount of generated power) and measures a certain amount of power (for example, 1 kW). One pulse is transmitted to the power monitoring controller 16 as a generator-side power transmission pulse.
 さらに、蓄電池充電電力量計34は、蓄電池側電力量計測点P3における蓄電池13に対する充電電力量を計測し、一定電力量(例えば1kW)を計測するごとに1つのパルスを充電電力パルスとして電力監視制御装置16に送信する。また蓄電池放電電力量計35は、蓄電池側電力量計測点P3における蓄電池13からの放電電力量を計測し、一定電力量(例えば1kW)を計測するごとに1つのパルスを放電電力パルスとして電力監視制御装置16に送信する。 Furthermore, the storage battery charge watt-hour meter 34 measures the charge power amount for the storage battery 13 at the storage battery side power amount measurement point P3, and monitors power as one charge power pulse every time a constant power amount (for example, 1 kW) is measured. Transmit to the control device 16. Further, the storage battery discharge watt-hour meter 35 measures the discharge power amount from the storage battery 13 at the storage battery side power amount measurement point P3, and monitors power as one discharge power pulse every time a constant power amount (for example, 1 kW) is measured. Transmit to the control device 16.
 電力監視制御装置16は、連系点受電電力量計30及び連系点送電電力量計31からそれぞれ送信される連系点受電パルス及び連系点送電パルスと、発電機受電電力量計32及び発電機送電電力量計33からそれぞれ送信される発電機側受電パルス及び発電機側送電パルスと、蓄電池充電電力量計34及び蓄電池放電電力量計35からそれぞれ送信される充電電力パルス及び放電電力パルスとについて、それぞれパルス数を例えば月単位で累積的にカウントする。 The power monitoring and control device 16 includes a connection point power reception pulse and a connection point power transmission pulse transmitted from the connection point power reception energy meter 30 and the connection point transmission power energy meter 31, respectively, a generator reception power energy meter 32, and A generator-side power reception pulse and a generator-side power transmission pulse transmitted from the generator transmission power meter 33, respectively, and a charging power pulse and a discharge power pulse transmitted from the storage battery charging power meter 34 and the storage battery discharging power meter 35, respectively. For example, the number of pulses is cumulatively counted, for example, on a monthly basis.
 また、電力監視制御装置16は、連系点受電パルス、連系点送電パルス、発電機側受電パルス、発電機側送電パルス、充電電力パルス及び放電電力パルスの各累積結果に基づいて、他発電事業者からの購入電力と自らの風力発電による発電電力とを例えば月ごとに計量区分する。 In addition, the power monitoring control device 16 performs other power generation based on the accumulated results of the connection point power reception pulse, the connection point power transmission pulse, the generator side power reception pulse, the generator side power transmission pulse, the charge power pulse, and the discharge power pulse. The electric power purchased from the company and the electric power generated by its own wind power generation are metered, for example, monthly.
 電力監視制御装置16は、このようにして計量区分した電力量に基づいて、売電電力量に応じた電力料金を電力会社に請求するための電力料金請求書35Aと、購入電力量に応じて他発電事業者の口座に振り込んだ電力料金を当該発電事業者に通知するための電力料金振込通知書35Bと、RPS法に基づく売電電力量に応じた電力料金を電力会社に請求するためのRPS電力料金請求書35Cとなどの各種請求書・通知書35を月ごとに作成する。なお、電力料金請求書35A、電力料金振込通知書35B及びRPS電力料金請求書35Cのフォーマット例を図4~図6に示す。 The power monitoring and control device 16 uses the power charge bill 35A for charging the power company according to the amount of power sold based on the power amount thus metered, and the other according to the purchased power amount. A power charge transfer notification 35B for notifying the power generation company of the power rate transferred to the power generation company's account, and RPS power for charging the power company according to the amount of power sold based on the RPS law Various invoices / notifications 35 such as a charge invoice 35C are created every month. Examples of formats of the power bill 35A, the power bill transfer notification 35B, and the RPS power bill 35C are shown in FIGS.
 また、電力監視制御装置16は、上述のようにして計量仕分けした電力量に基づいて、検針通知書36を作成する。このとき作成される検針通知書36としては、検針通知書(内訳)36A、検針通知書(連系点送電電力算定書)36B、検針通知書36C、検針通知書(RPS対象算定書)36D及び検針通知書(連系点受電電力算定書)36Eの5種類が存在する。 Also, the power monitoring control device 16 creates a meter reading notification 36 based on the amount of power metered and sorted as described above. The meter reading notification 36 created at this time includes a meter reading notification (breakdown) 36A, a meter reading notification (linked-point transmission power calculation report) 36B, a meter reading notification 36C, a meter reading notification (RPS target calculation report) 36D, and There are five types of meter-reading notices (linked-point received power calculation form) 36E.
 このうち検針通知書(内訳)36Aは、連系点側電力量計測点P1、発電機側電力量計測点P2及び蓄電池側電力量計測点P3における送電電力量及び受電電力量の内訳を買電者に通知するための通知書であり、例えば図7のようなフォーマットで作成される。また検針通知書(連系点送電電力算定書)36Bは、連系点側電力量計測点P1、発電機側電力量計測点P2及び蓄電池側電力量計測点P3における送電電力量を買電者に通知するための通知書であり、例えば図8のようなフォーマットで作成される。 Of these, the meter reading notification (breakdown) 36A purchases the breakdown of the transmitted power amount and the received power amount at the connection point side power amount measurement point P1, the generator side power amount measurement point P2, and the storage battery side power amount measurement point P3. This is a notice for notifying a person, for example, in a format as shown in FIG. In addition, the meter reading notification (linked point transmission power calculation report) 36B obtains the transmission power amount at the connection point side energy measurement point P1, the generator side energy measurement point P2, and the storage battery side energy measurement point P3. For example, and is created in the format shown in FIG.
 一方、検針通知書36Cは、連系点側電力量計測点P1、発電機側電力量計測点P2及び蓄電池側電力量計測点P3における送受電電力量の内訳を連系電力会社や他発電事業者に通知するための通知書であり、例えば図9のようなフォーマットで作成される。また、検針通知書(RPS対象算定書)36Dは、RPS法の対象となる電力量及びこれを計測する電力量計の指針等を買電者に通知するための通知書であり、例えば図10のようなフォーマットで作成される。 On the other hand, the meter-reading notice 36C indicates the breakdown of the transmitted / received electric energy at the interconnection point side electric energy measurement point P1, the generator side electric energy measurement point P2, and the storage battery side electric energy measurement point P3. For example, and is created in the format shown in FIG. The meter reading notice (RPS target calculation form) 36D is a notice for notifying the power purchaser of the amount of power to be subject to the RPS method and a watt-hour meter for measuring the amount of power, for example, FIG. Created in a format like
 さらに、検針通知書(連系点受電電力算定書)36Eは、連系点側電力量計測点P1、発電機側電力量計測点P2及び蓄電池側電力量計測点P3における受電電力量を売電者に通知するための通知書であり、例えば図11のようなフォーマットで作成される。 Further, the meter reading notification (interconnection point received power calculation report) 36E sells the received power amount at the connection point side energy measurement point P1, the generator side energy measurement point P2, and the storage battery side energy measurement point P3. This is a notice for notifying a person, for example, in a format as shown in FIG.
 さらに、電力監視制御装置16は、上述のようにして計量仕分けした電力量に基づいて、例えば図12に示すような日報や、図13に示すような月報を作成する。 Furthermore, the power monitoring and control device 16 creates, for example, a daily report as shown in FIG. 12 or a monthly report as shown in FIG. 13 based on the amount of power metered and sorted as described above.
 電力監視制御装置16は、このようにして作成した各種請求書・通知書35、各検針通知書36、日報及び月報などを、必要に応じてプリンタ26に出力する。 The power monitoring control device 16 outputs various bills / notifications 35, meter reading notifications 36, daily reports, monthly reports, and the like thus created to the printer 26 as necessary.
(1-3)蓄電池の充放電制御に関する電力監視制御装置の具体的な処理
 図14は、上述のような蓄電池13の充放電制御に関する電力監視制御装置16の具体的な処理内容を示す。電力監視制御装置16は、図示しない内部メモリに格納された対応する制御プログラムに従って、この図14に示す蓄電池充放電制御処理を実行する。
(1-3) Specific Processing of Power Monitoring and Control Device Regarding Charge / Discharge Control of Storage Battery FIG. 14 shows specific processing contents of the power monitoring control device 16 regarding charging / discharging control of the storage battery 13 as described above. The power monitoring control device 16 executes the storage battery charge / discharge control process shown in FIG. 14 in accordance with a corresponding control program stored in an internal memory (not shown).
 すなわち、電力監視制御装置16は、かかる蓄電池充放電制御処理の実行命令が入力されると、この蓄電池充放電制御処理を開始し、まず、連系点受電電力量計31から与えられる連系点受電パルス、発電機受電電力量計33から与えられる発電機側受電パルス及び蓄電池充電電力量計35から与えられる充電電力パルスの各1パルス分の電力量KR(KR1,KR2,KRB)と、連系点送電電力量計30から与えられる連系点送電パルス、発電機送電電力量計32から与えられる発電機側送電パルス及び蓄電池放電電力量計34から与えられる放電電力パルスの各1パルス分の電力量KS(KS1,KS2,KSB)とをそれぞれ予め設定された所定値に設定する。また、電力監視制御装置16は、ステップSP5、ステップSP7、ステップSP8、ステップSP11、ステップSP13及びステップSP14において説明する各カウンタのカウント値をそれぞれ初期値「0」に設定すると共に、計器読取り日時を表すパラメータnを初期値「1」に設定する(SP1)。 That is, when the execution instruction of the storage battery charge / discharge control process is input, the power monitoring control device 16 starts the storage battery charge / discharge control process. First, the connection point given from the connection point power reception watt-hour meter 31 is started. A power amount KR (KR1, KR2, KRB) for each one of the received pulse, the generator-side received pulse given from the generator received-power meter 33 and the charging power pulse given from the storage battery charging watt-hour meter 35, For each one pulse of the interconnection point transmission pulse given from the system point transmission watt-hour meter 30, the generator-side transmission pulse given from the generator transmission watt-hour meter 32, and the discharge power pulse given from the storage battery discharge watt-hour meter 34 The electric energy KS (KS1, KS2, KSB) is set to a predetermined value set in advance. Further, the power monitoring control device 16 sets the count value of each counter described in step SP5, step SP7, step SP8, step SP11, step SP13 and step SP14 to the initial value “0”, and sets the instrument reading date and time. The parameter n to be represented is set to an initial value “1” (SP1).
 続いて、電力監視制御装置16は、連系点送電電力量計30からの連系点送電パルス、連系点受電電力量計31からの連系点受電パルス、発電機送電電力量計32からの発電機側送電パルス、発電機受電電力量計33からの発電機側受電パルス、蓄電池充電電力量計34からの放電電力パルス及び蓄電池充電電力量計35からの充電電力パルスのいずれかが入力するのを待ち受ける(SP2)。 Subsequently, the power monitoring control device 16 receives the connection point transmission pulse from the connection point transmission energy meter 30, the connection point reception pulse from the connection point reception energy meter 31, and the generator transmission energy meter 32. Generator-side power transmission pulse, generator-side received power meter 33 from generator-received energy meter 33, discharge power pulse from storage battery charge-power meter 34, and charge power pulse from storage battery charge-power meter 35 are input. It waits to do (SP2).
 そして、電力監視制御装置16は、かかる連系点送電パルス、連系点受電パルス、発電機側送電パルス、発電機側受電パルス、放電電力パルス及び充電電力パルスのうちのいずれかのパルスが入力すると、そのパルスの送信元が連系点送電電力量計30、発電機送電電力量計32及び蓄電池放電電力量計34のいずれかであるか否かを判断する(SP3)。 Then, the power monitoring control device 16 receives any one of the connection point power transmission pulse, the connection point power reception pulse, the generator side power transmission pulse, the generator side power reception pulse, the discharge power pulse, and the charge power pulse. Then, it is determined whether the transmission source of the pulse is any one of the connection point transmission watt-hour meter 30, the generator transmission watt-hour meter 32, and the storage battery discharge watt-hour meter 34 (SP3).
 電力監視制御装置16は、この判断において肯定結果を得ると、ステップSP2において受信したパルスの送信元が連系点送電電力量計であるか否かを続けて判断する(SP4)。電力監視制御装置は、この判断において肯定結果を得ると、連系点送電電力量計30に対応するカウンタのカウント値を1増加させる(SP5)。 If the power monitoring control device 16 obtains a positive result in this determination, it continues to determine whether or not the transmission source of the pulse received in step SP2 is a connection point transmission power meter (SP4). When the power monitoring control device obtains a positive result in this determination, it increments the count value of the counter corresponding to the interconnection point transmission power meter 30 by 1 (SP5).
 また、電力監視制御装置16は、ステップSP4の判断において否定結果を得ると、ステップSP2において受信したパルスの送信元が発電機送電電力量計32であるか否かを判断する(SP6)。そして、電力監視制御装置16は、この判断において肯定結果を得ると、発電機送電電力量計32に対応するカウンタのカウント値を1増加させ(SP7)、これに対して否定結果を得ると、蓄電池放電電力量計34に対応するカウンタのカウント値を1増加させる(SP8)。 Further, when the power monitoring control device 16 obtains a negative result in the determination at step SP4, it determines whether or not the transmission source of the pulse received at step SP2 is the generator transmitted power meter 32 (SP6). When the power monitoring control device 16 obtains a positive result in this determination, it increments the count value of the counter corresponding to the generator transmission power meter 32 by 1 (SP7), and obtains a negative result, The count value of the counter corresponding to the storage battery discharge watt-hour meter 34 is increased by 1 (SP8).
 この後、電力監視制御装置16は、必要に応じてパラメータnの値を増加させると共に、当該パラメータnの値が予め定められたカウンタ読取期限日を表す値になったか否かを判断し(SP9)、否定結果を得るとステップSP2に戻る。 Thereafter, the power monitoring control device 16 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has reached a value representing a predetermined counter reading deadline date (SP9). ) If a negative result is obtained, the process returns to step SP2.
 これに対して、電力監視制御装置16は、ステップSP3の判断において否定結果を得ると、ステップSP2において受信したパルスの送信元が連系点受電電力量計31であるか否かを判断する(SP10)。そして、電力監視制御装置16は、この判断において肯定結果を得ると、連系点受電電力量計31に対応するカウンタのカウント値を1増加させる。(SP11) On the other hand, if the power monitoring control device 16 obtains a negative result in the determination at step SP3, it determines whether or not the transmission source of the pulse received at step SP2 is the interconnection point received power meter 31 ( SP10). Then, when the power monitoring control device 16 obtains a positive result in this determination, the power monitoring control device 16 increases the count value of the counter corresponding to the interconnection point received power meter 31 by one. (SP11)
 また、電力監視制御装置16は、ステップSP10の判断において否定結果を得ると、ステップSP2において受信したパルスの送信元が発電機受電電力量計33であるか否かを判断する(SP12)。そして、電力監視制御装置16は、この判断において肯定結果を得ると、発電機受電電力量計33に対応するカウンタのカウント値を1増加させ(SP13)、一方、否定結果を得ると、蓄電池充電電力量計35に対応するカウンタのカウント値を1増加させる。(SP14) Further, when the power monitoring control device 16 obtains a negative result in the determination at step SP10, it determines whether or not the transmission source of the pulse received at step SP2 is the generator received power meter 33 (SP12). When the power monitoring control device 16 obtains a positive result in this determination, it increments the count value of the counter corresponding to the generator received power meter 33 by 1 (SP13). The count value of the counter corresponding to the watt hour meter 35 is incremented by one. (SP14)
 この後、電力監視制御装置16は、必要に応じてパラメータnの値を増加させると共に、当該パラメータnの値が予め定められたカウンタ読取期限日を表す値になったか否かを判断し(SP15)、否定結果を得るとステップSP2に戻る。 Thereafter, the power monitoring control device 16 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has reached a value representing a predetermined counter reading deadline date (SP15). ) If a negative result is obtained, the process returns to step SP2.
 一方、電力監視制御装置16は、上述のステップSP9又はステップSP15の判断において肯定結果を得ると、連系点送電電力量計30に対応するカウンタのカウント値、発電機送電電力量計32に対応するカウンタのカウント値及び蓄電池放電電力量計34に対応するカウンタのカウント値にそれぞれステップSP1において設定した対応する定数KS1、定数KS2又は定数KSBを乗算することにより、連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電電力量PSBをそれぞれ算出する(SP16)。 On the other hand, if the power monitoring control device 16 obtains a positive result in the determination at the above-described step SP9 or step SP15, it corresponds to the count value of the counter corresponding to the interconnection point transmission watt-hour meter 30 and the generator transmission watt-hour meter 32. By multiplying the count value of the counter and the count value of the counter corresponding to the storage battery discharge energy meter 34 by the corresponding constant KS1, constant KS2 or constant KSB set in step SP1, respectively, the interconnection point transmission power amount PS1, A generator transmission power amount PS2 and a storage battery discharge power amount PSB are respectively calculated (SP16).
 また、電力監視制御装置16は、連系点受電電力量計31に対応するカウンタのカウント値、発電機受電電力量計33に対応するカウンタのカウント値及び蓄電池充電電力量計35に対応するカウンタのカウント値にそれぞれステップSP1において設定した対応する定数KR1、定数KR2又は定数KRBを乗算することにより、連系点送電電力量PR1、発電機送電電力量PR2及び蓄電池放電電力量PRBをそれぞれ算出する(SP16)。 In addition, the power monitoring control device 16 includes a counter value corresponding to the connection point received energy meter 31, a counter value corresponding to the generator received energy meter 33, and a counter corresponding to the storage battery charge energy meter 35. Is multiplied by the corresponding constant KR1, constant KR2, or constant KRB set in step SP1, respectively, to thereby calculate the interconnection point transmission power amount PR1, the generator transmission power amount PR2, and the storage battery discharge power amount PRB. (SP16).
 続いて電力監視制御装置16は、次式
Figure JPOXMLDOC01-appb-M000001
により、変電所連系用変圧器12(図1)における電力ロスTrlossRを算出する(SP17)。なお、(1)式において、Trcloss及びTrflossはそれぞれ変電所連系用変圧器12の銅損失及び鉄損失、P0は変電所連系用変圧器12の定格であり、これらは予め電力監視制御装置16に与えられる。
Subsequently, the power monitoring control device 16 has the following formula:
Figure JPOXMLDOC01-appb-M000001
Thus, the power loss TrlossR in the substation interconnection transformer 12 (FIG. 1) is calculated (SP17). In Equation (1), Trcloss and Trfloss are the copper loss and iron loss of the substation interconnection transformer 12, respectively, and P0 is the rating of the substation interconnection transformer 12. These are the power monitoring and control devices in advance. 16 is given.
 次いで電力監視制御装置16は、上述のようにして得られた連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電電力量PSBと、連系点受電電力量PR1、発電機受電電力量PR2及び蓄電池充電電力量PRBと、変電所連系用変圧器12における電力ロスTrlossRとに基づいて、必要な演算処理を実行する(SP18)。 Next, the power monitoring control device 16 connects the connection point transmission power amount PS1, the generator transmission power amount PS2, and the storage battery discharge power amount PSB, the connection point reception power amount PR1, and the generator reception power obtained as described above. Necessary arithmetic processing is executed based on the power PR2 and the storage battery charge power PRB and the power loss TrlossR in the substation interconnection transformer 12 (SP18).
 具体的に、電力監視制御装置16は、蓄電池13に充電された電力量のうち、電力系統14(図1)から与えられた電力量(以下、これを蓄電池充電電力量(系統)と呼ぶ)LPCを次式
Figure JPOXMLDOC01-appb-M000002
により算出すると共に、蓄電池13に充電された電力量のうち、合成発電電力の電力量(以下、これを蓄電池充電電力量(発電所)と呼ぶ)GPCを次式
Figure JPOXMLDOC01-appb-M000003
により算出する。
Specifically, the power monitoring control device 16 supplies the amount of power given from the power system 14 (FIG. 1) out of the amount of power charged in the storage battery 13 (hereinafter referred to as storage battery charge power amount (system)). LPC is the following formula
Figure JPOXMLDOC01-appb-M000002
And the amount of combined generated power out of the amount of power charged in the storage battery 13 (hereinafter referred to as the storage battery charge power amount (power plant)) GPC
Figure JPOXMLDOC01-appb-M000003
Calculated by
 また、電力監視制御装置16は、合成発電電力のうちの連系電力会社の電力系統14に直接送電された電力量(以下、これを発電機直送電電力量と呼ぶ)GPS2を、次式
Figure JPOXMLDOC01-appb-M000004
により算出する。
In addition, the power monitoring and control device 16 uses the GPS2 that expresses the amount of power directly transmitted to the power system 14 of the interconnected power company in the combined generated power (hereinafter referred to as “generator direct transmission power amount”).
Figure JPOXMLDOC01-appb-M000004
Calculated by
 さらに、電力監視制御装置16は、蓄電池13から放電された電力量のうち、電力系統14からの充電分に相当する電力量(以下、これを蓄電池放電電力量(系統充電分)と呼ぶ)LCPS10を次式
Figure JPOXMLDOC01-appb-M000005
により算出し、蓄電池13から放電された電力量のうち、合成発電電力に基づく充電分に相当する電力量(以下、これを蓄電池放電電力(発電機充電分)と呼ぶ)GCPS20を次式
Figure JPOXMLDOC01-appb-M000006
により算出する。
Further, the power monitoring and control device 16 includes an amount of power corresponding to the amount of charge from the power system 14 among the amount of power discharged from the storage battery 13 (hereinafter referred to as storage battery discharge power amount (system charge)) LCPS10. The following formula
Figure JPOXMLDOC01-appb-M000005
The amount of power corresponding to the amount of charge based on the combined generated power out of the amount of power discharged from the storage battery 13 (hereinafter referred to as storage battery discharge power (generator charge)) GCPS20 is
Figure JPOXMLDOC01-appb-M000006
Calculated by
 さらに、電力監視制御装置16は、次式合成発電電力による蓄電池13への充電量分及び電力系統14への直送分の合計電力量(以下、これを発電所合成送電電力量(発電+蓄電)と呼ぶ)GPS22を、次式
Figure JPOXMLDOC01-appb-M000007
により算出する。また電力監視制御装置16は、この発電所合成送電電力量(発電+蓄電)を用いて、連系電力会社の電力系統14に送電した電力量のうち、電力系統14から得られた按分電力量(以下、これを連系点送電按分電力量(系統)と呼ぶ)LCPSB13を、次式
Figure JPOXMLDOC01-appb-M000008
により算出し、連系電力会社の電力系統に送電した電力量のうち、合成発電電力の電力量(以下、これを連系点送電按分電力量(発電所)と呼ぶ)GCPSB23を次式
Figure JPOXMLDOC01-appb-M000009
により算出する(SP)。
Furthermore, the power monitoring and control device 16 uses the following formula combined generated power for the amount of charge to the storage battery 13 and the direct power to the power system 14 (hereinafter referred to as the combined power transmission power generation (power generation + storage)). Call the GPS22)
Figure JPOXMLDOC01-appb-M000007
Calculated by In addition, the power monitoring and control device 16 uses the power generation combined transmission power amount (power generation + storage), and the apportioned power amount obtained from the power system 14 out of the power amount transmitted to the power system 14 of the connected power company. (Hereinafter, this is referred to as interconnection-point transmission apportioned electric energy (system)).
Figure JPOXMLDOC01-appb-M000008
Of the amount of electric power calculated and transmitted to the grid of the grid power company, the amount of combined generated power (hereinafter referred to as grid-point transmission apportioned power (power plant)) GCPSB23 is
Figure JPOXMLDOC01-appb-M000009
(SP).
 続いて、電力監視制御装置16は、ステップSP16において得られた連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電電力量PSBと、ステップSP16において得られた連系点受電電力量PR1、発電機受電電力量PR2及び蓄電池充電電力量PRBと、上述のようにして算出した蓄電池充電電力量(系統)LPC、蓄電池充電電力量(発電所)GPC、発電機直送電電力量GPS2、蓄電池放電電力量(系統充電分)LCPS10、蓄電池放電電力量(発電機充電分)GCPS20、連系点送電按分電力量(系統)LCPSB13及び連系点送電按分電力量(発電所)GCPSB23とに基づいて、必要に応じて季報及び年報を作成し(SP19)、これを図示しない記録装置に記録して保管する。 Subsequently, the power monitoring control device 16 connects the interconnection point transmission power amount PS1, the generator transmission power amount PS2, and the storage battery discharge power amount PSB obtained in step SP16, and the interconnection point received power amount obtained in step SP16. PR1, generator received power amount PR2 and storage battery charge power amount PRB, storage battery charge power amount (system) LPC, storage battery charge power amount (power plant) GPC, generator direct transmission power amount GPS2, storage battery calculated as described above Based on discharge power amount (system charge) LCPS10, storage battery discharge power amount (generator charge amount) GCPS20, interconnection point transmission apportioning electric energy (system) LCPSB13 and interconnection point transmission apportioning electric energy (power plant) GCPSB23 Then, a quarterly report and an annual report are prepared as necessary (SP19), and this is recorded and stored in a recording device (not shown).
 次いで、電力監視制御装置16は、ステップSP18において得られた各数値に基づいて、図4~図6について上述した電力料金請求書35A、電力料金振込通知書35B及びRPS電力料金請求書35Cと、各検針通知書36(36A~6E)とを作成し、これらをそれぞれプリンタ24(図1)にプリントさせた後、この蓄電池充放電制御処理を終了する。 Next, the power monitoring and control device 16 determines, based on the numerical values obtained in step SP18, the power charge bill 35A, the power charge transfer notification 35B and the RPS power charge bill 35C described above with reference to FIGS. Each meter-reading notice 36 (36A to 6E) is created and printed on the printer 24 (FIG. 1), and then the storage battery charge / discharge control process is terminated.
(1-4)本実施の形態の効果
 以上の構成のように、本実施の形態による風力発電システム1では、連系点側電力量計測点P1に連系点送電電力量計30及び連結点受電電力量計31、発電機側電力量計測点P2に発電機送電電力量計32及び発電機受電電力量計33、蓄電池側電力量計測点P3に蓄電池放電電力量計34及び蓄電池充電電力量計35をそれぞれ設け、これらの電力量計によって連系点側電力量計測点P1、発電機側電力量計測点P2及び蓄電池側電力量計測点P3における送受電力量を潮流方向別に計測するようにしたことにより、これらの計測結果に基づいて、他発電事業者からの購入電力と自らの風力発電電力とを精度良く計量区分することができる。
(1-4) Effects of this Embodiment As described above, in the wind power generation system 1 according to this embodiment, the connection point transmission watt-hour meter 30 and the connection point are connected to the connection point side energy measurement point P1. Receiving watt-hour meter 31, generator-side watt-hour measurement point P2, generator transmission watt-hour meter 32 and generator-receiving-power watt-hour meter 33, storage battery-side watt-hour measurement point P3, storage battery discharge watt-hour meter 34, and storage battery charging energy A total of 35 is provided, and these watt hour meters measure the transmission / reception electric energy at the interconnection point side electric energy measurement point P1, the generator side electric energy measurement point P2, and the storage battery side electric energy measurement point P3 for each tidal direction. Thus, based on these measurement results, it is possible to accurately classify the purchased power from other power generation companies and the wind power generated by itself.
(2)第2の実施の形態
 図1において、40は、全体として、第2の実施の形態による風力発電システムを示す。この風力発電システム40は、電力監視制御装置41による蓄電池13の充放電制御処理が異なる点を除いて、第1の実施の形態による風力発電システム1と同様に構成されている。
(2) 2nd Embodiment In FIG. 1, 40 shows the wind power generation system by 2nd Embodiment as a whole. The wind power generation system 40 is configured in the same manner as the wind power generation system 1 according to the first embodiment, except that the charging / discharging control processing of the storage battery 13 by the power monitoring control device 41 is different.
 すなわち、図14について上述した第1の実施の形態による蓄電池充放電制御処理は、蓄電池13に充電する電力系統14からの購入電力が常に同一の他発電事業者からのものであることを前提としている。しかしながら、現在では、各発電事業者が電力会社の電力系統を利用して他発電事業者に対して売電することも可能であり、従って、複数の他発電事業者(電力会社を含む)から電力を購入して購入電力を蓄電池13に充電することも考えられる。 That is, the storage battery charge / discharge control process according to the first embodiment described above with reference to FIG. 14 is based on the assumption that the purchased power from the power system 14 charging the storage battery 13 is always from the same other power generation company. Yes. However, at present, it is also possible for each power generation company to sell power to other power generation companies using the power system of the power company, and therefore, from a plurality of other power generation companies (including power companies). It is also conceivable to purchase electric power and charge the storage battery 13 with the purchased electric power.
 そこで、本実施の形態による風力発電システム40(図1)では、他発電事業者から電力を購入して蓄電池13に充電する際には、当該他発電事業者の名称(発電事業者名)及び購入時刻を記録しておき、この情報に基づいて他発電事業者からの購入電力を他発電事業者ごとに計量区分する。 Therefore, in the wind power generation system 40 (FIG. 1) according to the present embodiment, when purchasing power from another power generation company and charging the storage battery 13, the name of the other power generation company (name of the power generation company) and The purchase time is recorded, and based on this information, the purchased power from other power generation companies is measured and classified for each other power generation company.
 なお、蓄電池13への充電電力の売電元の他発電事業者の区分については、連系電力会社以外の他発電事業者から電力を購入する場合には、何時から何時までどの他発電事業者からいくらの電力量を購入するかという売買契約が例えば日本卸電力取引所19(図1)において事前に行なわれるため、これを参照して行なう。 In addition, about the classification of the other power generation company of the electric power selling source of the charging power to the storage battery 13, when purchasing power from other power generation companies other than the grid power company, from what time to what other power generation business Since a sales contract for how much power is purchased from, for example, is carried out in advance at the Japan Wholesale Power Exchange 19 (FIG. 1), this is done with reference to this.
 図15は、このような本実施の形態による蓄電池充放電制御処理に関する電力監視制御装置41の具体的な処理内容を示している。電力監視制御装置41は、図示しない内部メモリに格納された対応する制御プログラムに従って、この図15に示す蓄電池充放電制御処理を実行する。 FIG. 15 shows the specific processing contents of the power monitoring control device 41 related to the storage battery charge / discharge control processing according to this embodiment. The power monitoring control device 41 executes the storage battery charge / discharge control process shown in FIG. 15 according to a corresponding control program stored in an internal memory (not shown).
 すなわち、電力監視制御装置41は、かかる蓄電池充放電制御処理の実行命令が入力されると、この蓄電池充放電制御処理を開始し、まず、例えば日本卸電力取引所19において何時から何時までどの発電事業者からいくらの電力量を購入するかといった電力購入のスケジュールを内部設定する(SP30)。この電力購入スケジュールは、ユーザ操作により入力したものであっても、また、日本卸電力取引所19の入札サーバとのやり取り時に取得したデータに基づき電力監視制御装置41が作成したものであっても良い。 That is, when the execution instruction of the storage battery charge / discharge control process is input, the power monitoring control device 41 starts the storage battery charge / discharge control process. A power purchase schedule such as how much power is purchased from the business is set internally (SP30). This power purchase schedule may be input by a user operation, or may be created by the power monitoring control device 41 based on data acquired at the time of exchange with the bid server of the Japan Wholesale Power Exchange 19 good.
 また、電力監視制御装置41は、これと併せて、図14のステップSP1において上述した連系点受電パルス、発電機側受電パルス及び充電電力パルスの各1パルス分の電力量KR(KR1,KR2,KRB)と、連系点送電パルス、発電機側送電パルス及び放電電力パルスの各1パルス分の電力量KS(KS1,KS2,KSB)とをそれぞれ予め設定された所定値に設定する。また、電力監視制御装置41は、図14のステップSP5、ステップSP7、ステップSP8、ステップSP11、ステップSP13及びステップSP14についてそれぞれ上述した各カウンタと、ステップSP107について後述するカウンタの各カウント値を初期値「0」に設定すると共に、計器読取り日時を表すパラメータnを初期値「1」に設定する(SP30)。 In addition to this, the power monitoring control device 41 also includes the power amount KR (KR1, KR2) for each pulse of the interconnection point power reception pulse, the generator side power reception pulse, and the charging power pulse described in step SP1 of FIG. , KRB) and the electric energy KS (KS1, KS2, KSB) for each one pulse of the connection point power transmission pulse, the generator-side power transmission pulse, and the discharge power pulse, are set to predetermined values. Further, the power monitoring and control apparatus 41 sets initial values for the counters described above for step SP5, step SP7, step SP8, step SP11, step SP13, and step SP14 in FIG. The parameter n indicating the instrument reading date and time is set to the initial value “1” while being set to “0” (SP30).
 続いて、電力監視制御装置41は、ステップSP31、ステップSP33~ステップSP45を図14について上述した第1の実施の形態による蓄電池充放電制御処理のステップSP3~ステップSP15と同様に処理することにより、連系点送電電力量計30からの連系点受電パルス、連系点受電電力量計31からの連系点送電パルス、発電機送電電力量計32からの発電機側受電パルス、発電機受電電力量計33からの発電機側送電パルス、蓄電池放電電力量計34からの充電電力パルス又は蓄電池充電電力量計35からの放電電力パルスが入力するごとに、対応するカウンタを1ずつ増加させる。 Subsequently, the power monitoring control device 41 performs steps SP31 and SP33 to SP45 in the same manner as steps SP3 to SP15 of the storage battery charge / discharge control process according to the first embodiment described above with reference to FIG. Connection point power reception pulse from the connection point transmission watt-hour meter 30, connection point transmission pulse from the connection point power reception watt-hour meter 31, generator-side power reception pulse from the generator transmission power watt-hour meter 32, generator reception Each time a generator-side power transmission pulse from the electric energy meter 33, a charging power pulse from the storage battery discharging energy meter 34, or a discharging power pulse from the storage battery charging energy meter 35 is input, the corresponding counter is incremented by one.
 この際、電力監視制御装置41は、蓄電池充電電力量計35から充電電力パルスが与えられたときには、ステップSP1において設定した電力購入スケジュールに従って、そのとき購入している電力の売電元の発電事業者名と、そのときの時刻とを記録する(SP32)。 At this time, when the charging power pulse is given from the storage battery charging watt-hour meter 35, the power monitoring and control device 41 follows the power purchase schedule set in step SP1 and generates power from the power selling source of the power purchased at that time. The name of the person and the time at that time are recorded (SP32).
 電力監視制御装置41は、やがて各カウンタのカウント値を読み取るカウンタ読取期限日(その月の締め日)になると、上述の連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電力量PSBと、連系点受電電力量PR2、発電機受電電力量PR2及び蓄電池充電電力量PRBと、変電所連系用変圧器における電力ロスTrlossRとをそれぞれ算出する(SP46,SP47)。 As soon as the counter reading deadline date (the closing date of the month) for reading the count value of each counter is reached, the power monitoring and control device 41, Then, the connection point received power amount PR2, the generator received power amount PR2, the storage battery charging power amount PRB, and the power loss TrlossR in the substation interconnection transformer are calculated (SP46, SP47).
 次いで、電力監視制御装置41は、ステップSP30において設定した電力購入スケジュールと、ステップSP32において記録した発電事業者名及び時刻とに基づいて、蓄電池13の充電用に購入した他発電事業者ごとの蓄電池充電電力量PRBを区分する(SP48)。 Next, the power monitoring and control device 41 stores the storage battery for each other power generation company purchased for charging the storage battery 13 based on the power purchase schedule set in step SP30 and the power generation company name and time recorded in step SP32. The amount of charge power PRB is classified (SP48).
 続いて電力監視制御装置41は、図14について上述した第1の実施の形態による蓄電池充放電制御処理のステップSP18と同様にして、ステップSP48において区分した他発電事業者ごとに、蓄電池充電電力量(系統)LPC、蓄電池充電電力量(発電所)GPC、発電機直送電電力量GPS2、蓄電池放電電力量(系統充電分)LCPS10、蓄電池放電電力量(発電機充電分)GCPS20、連系点送電按分電力量(系統)LCPSB13及び連系点送電按分電力量(発電所)GCPSB23をそれぞれ算出する(SP49)。 Subsequently, the power monitoring control device 41 performs the storage battery charging power amount for each other power generation company classified in step SP48 in the same manner as in step SP18 of the storage battery charge / discharge control process according to the first embodiment described above with reference to FIG. (System) LPC, storage battery charge energy (power plant) GPC, generator direct transmission energy GPS2, storage battery discharge energy (system charge) LCPS10, storage battery discharge energy (generator charge) GCPS20, connection point transmission distribution Electric power (system) LCPSB 13 and interconnection point transmission apportioned electric power (power plant) GCPSB 23 are respectively calculated (SP49).
 次いで、電力監視制御装置41は、ステップSP50及びステップSP51を図14のステップSP19及びステップSP20と同様に処理し、やがてこの蓄電池充放電制御処理を終了する。 Next, the power monitoring control device 41 processes step SP50 and step SP51 in the same manner as step SP19 and step SP20 in FIG. 14, and eventually ends this storage battery charge / discharge control process.
 以上のように本実施の形態による風力発電システム40では、蓄電池13の充電時に購入した電力の売電元の発電事業者名及びその時刻を記録し、蓄電池13への充電電力の売電元の発電事業者を区分するため、複数の発電事業者から蓄電池13への充電用に電力を購入した場合においても、蓄電池13への充電電力としてどの発電事業者からどの程度の電力を購入したかを精度良く区分することができる。 As described above, in the wind power generation system 40 according to the present embodiment, the name of the power generation company of the power selling source purchased at the time of charging the storage battery 13 and the time are recorded, and the power selling source of the charging power to the storage battery 13 is recorded. Even when purchasing power for charging the storage battery 13 from a plurality of power generation companies in order to classify the power generation companies, it is determined how much power is purchased from which power generation company as the charging power for the storage battery 13 It is possible to classify with high accuracy.
(3)第3の実施の形態
 図1における対応部分に同一符号を付して示す図16は、第3の実施の形態による風力発電システム50を示す。この風力発電システム50では、蓄電池13に蓄えた電力を風力発電システム50内で使用することを想定しており、これに伴い電力量計測部51の構成と、電力監視制御装置58による蓄電池13の充放電制御処理の内容とが第1の実施の形態による風力発電システム1と異なる。
(3) Third Embodiment FIG. 16, which shows the corresponding parts in FIG. 1 with the same reference numerals, shows a wind power generation system 50 according to a third embodiment. In this wind power generation system 50, it is assumed that the electric power stored in the storage battery 13 is used in the wind power generation system 50. Accordingly, the configuration of the electric energy measuring unit 51 and the storage battery 13 by the power monitoring control device 58 are assumed. The content of the charge / discharge control process is different from the wind power generation system 1 according to the first embodiment.
 すなわち、本実施の形態の場合、図3における対応部分に同一符号を付した図17に示すように、電力監視制御装置58は、連系点側電力量計測点P1における送受電力量を計測する連系点送電電力量計30及び連結点受電電力量計31と、発電機側電力量計測点P2における送受電力量を計測する発電機送電電力量計32及び発電機受電電力量計33と、蓄電池側電力量計測点P3における送受電力量を計測する蓄電池放電電力量計34及び蓄電池充電電力量計35とに加えて、電力系統14から入力した購入電力のうち、第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCを越えて風力発電機3側に流れ込む電力量(以下、これを発電機系統側受電電力量と呼ぶ)を計測するための発電機系統側受電電力量計52が設けられている。 That is, in the case of the present embodiment, as shown in FIG. 17 in which the same reference numerals are assigned to corresponding parts in FIG. A connection point transmission energy meter 30 and a connection point reception energy meter 31, a generator transmission energy meter 32 and a generator reception energy meter 33 that measure the transmission and reception energy at the generator-side energy measurement point P2, In addition to the storage battery discharge watt-hour meter 34 and the storage battery charge watt-hour meter 35 that measure the transmission / reception power amount at the storage battery-side power amount measurement point P3, among the purchased power input from the power system 14, the first power cable 6 and Generator system-side received watt-hour meter for measuring the amount of power flowing to the wind power generator 3 side beyond the connection point PC of the second power cable 8 (hereinafter referred to as the generator-system-side received power amount) 52 is provided There.
 この場合、発電機系統側受電電力量計52は、図18に示すように、第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCと連系用変圧器12との間に設定された発電機系統側受電電力量計測点P4と、蓄電池側電力量計測点P3との間を接続する接続回路53のうち、蓄電池側電力量計測点P3側の変流器54と、かかる接続回路53の発電機系統側受電電力量計測点P4の変流器55の端子間に配置された補助変流器56との間を接続する接続回路57に接続されている。なお、図18では、Rφについてのみ図示しているが、tφについても同様の回路構成を有することはいうまでもない。 In this case, the generator system side received power meter 52 is set between the connection point PC of the first power cable 6 and the second power cable 8 and the interconnection transformer 12, as shown in FIG. Among the connection circuits 53 that connect between the generator system side received power amount measurement point P4 and the storage battery side power amount measurement point P3, the current transformer 54 on the storage battery side power amount measurement point P3 side and the connection The circuit 53 is connected to a connection circuit 57 that connects the auxiliary current transformer 56 disposed between the terminals of the current transformer 55 at the generator system side received power amount measurement point P4. In FIG. 18, only Rφ is shown, but it goes without saying that tφ has a similar circuit configuration.
 このように構成された接続回路53では、電力系統14から連系用変圧器12を介して第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCに流れ込む電力量IR2の変流電流のベクトルをベクトルir2、蓄電池13からかかる接続点PCに流れ込む蓄電池13の放電電力量ISBのベクトルをベクトルisbとすると、かかる接続点PCから風力発電所2側に流れる電力量IADDのベクトルiaddは、次式
Figure JPOXMLDOC01-appb-M000010
のように算出することができる。ただし、ベクトルiadd及びベクトルisbは図18の矢印方向を正とし、負のときには「0」とする。
In the connection circuit 53 configured in this way, the current of the IR2 flowing into the connection point PC of the first power cable 6 and the second power cable 8 from the power system 14 through the interconnection transformer 12. Is the vector ir2 and the vector of the discharge power ISB of the storage battery 13 flowing from the storage battery 13 to the connection point PC is the vector isb, the vector iadd of the amount of power IADD flowing from the connection point PC to the wind power plant 2 side is Next formula
Figure JPOXMLDOC01-appb-M000010
It can be calculated as follows. However, the vector iadd and the vector isb are positive in the direction of the arrow in FIG. 18, and are “0” when negative.
 この場合において、かかる電力量IADDには、蓄電池13の放電電力量ISBも含まれているため、次式
のように、当該電力量Iaddのベクトルiaddから蓄電池13の放電電力量ISBのベクトルisbを差し引いたものが、電力系統14から第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCを越えて風力発電所2側に流れ込む発電機系統側受電電力量IREMのベクトル量となる。ただし、ベクトルiremも図18の矢印方向を正とする。
In this case, since the electric energy IADD includes the discharged electric energy ISB of the storage battery 13,
As shown in the figure, the vector iadd of the electric energy Iadd minus the vector isb of the discharge electric energy ISB of the storage battery 13 represents the connection point PC of the first electric power cable 6 and the second electric power cable 8 from the electric power system 14. It becomes the vector amount of the generator system side received power amount IREM that flows into the wind power plant 2 side beyond. However, the vector irem is also positive in the direction of the arrow in FIG.
 以上の検証例を図19及び図20に示す。図19及び図20では、説明を簡素化するため、各変流器の変流比を1対1としている。 The above verification examples are shown in FIGS. 19 and 20, the current transformer ratio of each current transformer is set to 1: 1 in order to simplify the description.
 発電機系統側受電電力量計52は、上述のようにして発電機系統側受電電力量IREMを計測し、一定電力量(例えば1kW)を計測するごとに1つのパルスを発電機系統側受電パルスとして電力監視制御装置58に送信する。 The generator system side received energy meter 52 measures the generator system side received power amount IREM as described above, and each time a constant power amount (for example, 1 kW) is measured, one pulse is generated on the generator system side received power pulse. To the power monitoring control device 58.
 電力監視制御装置58は、連系点受電電力量計30及び連系点送電電力量計31からそれぞれ送信される連系点受電パルス及び連系点送電パルスと、発電機受電電力量計32及び発電機送電電力量計33からそれぞれ送信される発電機側受電パルス及び発電機側送電パルスと、蓄電池充電電力量計34及び蓄電池放電電力量計35からそれぞれ送信される充電電力パルス及び放電電力パルスと、発電機系統側受電電力量計52から送信される発電機系統側受電パルスとについて、それぞれパルス数を例えば月単位で累積的にカウントする。 The power monitoring control device 58 includes a connection point power reception pulse and a connection point power transmission pulse transmitted from the connection point power reception energy meter 30 and the connection point transmission power energy meter 31, respectively, A generator-side power reception pulse and a generator-side power transmission pulse transmitted from the generator transmission power meter 33, respectively, and a charge power pulse and a discharge power pulse transmitted from the storage battery charge power meter 34 and the storage battery discharge power meter 35, respectively. For the generator system side received pulse transmitted from the generator system side received energy meter 52, the number of pulses is cumulatively counted, for example, on a monthly basis.
 また、電力監視制御装置58は、連系点受電パルス、連系点送電パルス、発電機側受電パルス、発電機側送電パルス、充電電力パルス、放電電力パルス及び発電機系統側受電パルスの各累積結果に基づいて、他発電事業者からの購入電力と自らの風力発電による発電電力とを例えば月ごとに計量区分し、計量区分した電力量に基づいて、各種請求書・通知書35(図3)と、各種検針通知書36(図3)とを作成する。 Further, the power monitoring and control device 58 accumulates each of the connection point power reception pulse, the connection point power transmission pulse, the generator side power reception pulse, the generator side power transmission pulse, the charge power pulse, the discharge power pulse, and the generator system side power reception pulse. Based on the results, the purchased power from other power generation companies and the power generated by own wind power generation are categorized, for example, monthly, and various invoices / notifications 35 (FIG. 3) ) And various meter reading notices 36 (FIG. 3).
 図21は、このような第3の実施の形態による蓄電池13の充放電制御に関する電力監視制御装置58の具体的な処理内容を示している。電力監視制御装置58は、図示しない内部メモリに格納された対応する制御プログラムに従って、この図21に示す蓄電池充放電制御処理を実行する。 FIG. 21 shows specific processing contents of the power monitoring control device 58 relating to charge / discharge control of the storage battery 13 according to the third embodiment. The power monitoring control device 58 executes the storage battery charge / discharge control process shown in FIG. 21 in accordance with a corresponding control program stored in an internal memory (not shown).
 すなわち、電力監視制御装置58は、かかる蓄電池充放電制御処理の実行命令が入力されると、この蓄電池充放電制御処理を開始し、まず、必要な設定処理を実行する(SP60)。 That is, when the execution instruction of the storage battery charge / discharge control process is input, the power monitoring control device 58 starts the storage battery charge / discharge control process, and first executes a necessary setting process (SP60).
 具体的に、電力監視制御装置58は、図14のステップSP1と同様にして、連系点受電パルス、発電機側受電パルス及び充電電力パルスの各1パルス分の電力量KR(KR1,KR2,KRB)と、連系点送電パルス、発電機側送電パルス及び放電電力パルスの各1パルス分の電力量KS(KS1,KS2,KSB)とをそれぞれ予め設定された所定値に設定する。また電力監視制御装置58は、図1のステップSP5、ステップSP7、ステップSP8、ステップSP11,ステップSP13及びステップSP14についてそれぞれ上述した各カウンタと、ステップSP76について後述するカウンタとの各カウント値をそれぞれ初期値「0」に設定すると共に、計器読取り日時を表すパラメータnを初期値「1」に設定する。さらに電力監視制御装置58は、発電機系統側受電電力量計52から与えられる発電機系統側受電パルスの1パルス分の電力量KDGを予め設定された所定値に設定する。 Specifically, in the same manner as in step SP1 of FIG. 14, the power monitoring control device 58 uses the power amount KR (KR1, KR2, RM2) for each pulse of the connection point power reception pulse, the generator side power reception pulse, and the charging power pulse. KRB) and the electric energy KS (KS1, KS2, KSB) for each one of the interconnection point power transmission pulse, the generator-side power transmission pulse, and the discharge power pulse are set to predetermined values set in advance. Further, the power monitoring control device 58 initializes the count values of the counters described above for step SP5, step SP7, step SP8, step SP11, step SP13 and step SP14 of FIG. 1 and the counter described later for step SP76, respectively. A value “0” is set, and a parameter n indicating the instrument reading date is set to an initial value “1”. Furthermore, the power monitoring control device 58 sets the power amount KDG for one pulse of the generator system side received pulse given from the generator system side received power meter 52 to a predetermined value set in advance.
 続いて電力監視制御装置58は、連系点送電電力量計30からの連系点送電パルス、連系点受電電力量計31からの連系点受電パルス、発電機送電電力量計32からの発電機側送電パルス、発電機受電電力量計33からの発電機側受電パルス、蓄電池放電電力量計34からの放電電力パルス、蓄電池充電電力量計35からの充電電力パルス及び発電機系統側受電電力量計52からの発電機系統側受電パルスのいずれかが入力するのを待ち受ける(SP61)。 Subsequently, the power monitoring control device 58 receives the connection point transmission pulse from the connection point transmission energy meter 30, the connection point reception pulse from the connection point reception energy meter 31, and the generator transmission energy meter 32. Generator-side power transmission pulse, generator-side power reception pulse from generator-received watt-hour meter 33, discharge power pulse from storage battery discharge watt-hour meter 34, charge power pulse from storage battery charge watt-hour meter 35, and generator system side reception It waits for any of the generator system side received pulses from the electricity meter 52 to be inputted (SP61).
 電力監視制御装置58は、かかる連系点送電パルス、連系点受電パルス、発電機側送電パルス、発電機側受電パルス、放電電力パルス、充電電力パルス及び発電機系統側受電パルスのうちのいずれかのパルスが入力すると、そのパルスの送信元が連系点送電電力量計30、発電機送電電力量計32及び蓄電池放電電力量計34のいずれかであるか否かを判断する(SP62)。 The power monitoring and control device 58 includes any one of the connection point power transmission pulse, the connection point power reception pulse, the generator side power transmission pulse, the generator side power reception pulse, the discharge power pulse, the charge power pulse, and the generator system side power reception pulse. When such a pulse is input, it is determined whether or not the transmission source of the pulse is any one of the connection point transmission watt-hour meter 30, the generator transmission watt-hour meter 32, and the storage battery discharge watt-hour meter 34 (SP62). .
 電力監視制御装置58は、この判断において肯定結果を得ると、ステップSP63~ステップSP67を図14のステップSP4~ステップSP8と同様に処理する。また電力監視制御装置58は、必要に応じてパラメータnの値を増加させると共に、当該パラメータnの値が予め定められたカウンタ読取期限日を表す値になったか否かを判断し(SP68)、否定結果を得ると、ステップSP61に戻る。 When the power monitoring control device 58 obtains a positive result in this determination, it performs steps SP63 to SP67 in the same manner as steps SP4 to SP8 in FIG. Further, the power monitoring control device 58 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has become a value representing a predetermined counter reading deadline date (SP68), If a negative result is obtained, the process returns to step SP61.
 これに対して、電力監視制御装置58は、ステップSP62の判断において否定結果を得ると、ステップSP69~ステップSP72を図14のステップSP10~ステップSP13と同様に処理する。また電力監視制御装置58は、ステップSP71の判断において否定結果を得ると、ステップSP61において受信したパルスの送信元が蓄電池充電電力量計35であるか否かを判断する(SP73)。 On the other hand, when the power monitoring control device 58 obtains a negative result in the determination at step SP62, it performs steps SP69 to SP72 in the same manner as steps SP10 to SP13 in FIG. Further, when the power monitoring control device 58 obtains a negative result in the determination at step SP71, it determines whether or not the transmission source of the pulse received at step SP61 is the storage battery charging power meter 35 (SP73).
 電力監視制御装置58は、この判断において肯定結果を得ると、蓄電池充電電力量計35に対応するカウンタのカウント値を1増加させる。そして電力監視制御装置58は、この後、必要に応じてパラメータnの値を増加させると共に、当該パラメータnの値が予め定められたカウンタ読取期限日を表す値になったか否かを判断し(SP75)、否定結果を得ると、ステップSP61に戻る。 When the power monitoring control device 58 obtains a positive result in this determination, the power monitoring control device 58 increases the count value of the counter corresponding to the storage battery charging power meter 35 by one. Thereafter, the power monitoring control device 58 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has become a value representing a predetermined counter reading deadline date ( If a negative result is obtained, the process returns to step SP61.
 また、電力監視制御装置58は、ステップSP73の判断において否定結果を得ると、発電機系統側受電電力量計52に対応するカウンタのカウント値を1増加させる(SP76)。電力監視制御装置58は、この後、必要に応じてパラメータnの値を増加させると共に、当該パラメータnの値が予め定められたカウンタ読取期限日を表す値になったか否かを判断し(SP77)、否定結果を得ると、ステップSP61に戻る。 Further, when the power monitoring control device 58 obtains a negative result in the determination at step SP73, the power monitoring control device 58 increases the count value of the counter corresponding to the generator system side received power meter 52 by 1 (SP76). Thereafter, the power monitoring control device 58 increases the value of the parameter n as necessary, and determines whether or not the value of the parameter n has reached a value representing a predetermined counter reading deadline date (SP77). ) If a negative result is obtained, the process returns to step SP61.
 一方、電力監視制御装置58は、やがて上述のステップSP68、ステップSP75又はステップSP77の判断において肯定結果を得ると、連系点送電電力量計30に対応するカウンタのカウント値、発電機送電電力量計32に対応するカウンタのカウント値及び蓄電池放電電力量計34に対応するカウンタのカウント値に対して、それぞれステップSP60において設定した対応する定数KS1、定数KS2又は定数KSBを乗算することにより、連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電電力量PSBをそれぞれ算出する。 On the other hand, when the power monitoring control device 58 eventually obtains a positive result in the determination at step SP68, step SP75, or step SP77, the count value of the counter corresponding to the connection point transmission power meter 30, the generator transmission power amount By multiplying the count value of the counter corresponding to the total 32 and the count value of the counter corresponding to the storage battery discharge energy meter 34 by the corresponding constant KS1, constant KS2 or constant KSB set in step SP60, respectively. The system transmission power amount PS1, the generator transmission power amount PS2, and the storage battery discharge power amount PSB are calculated.
 また、電力監視制御装置58は、連系点受電電力量計31に対応するカウンタのカウント値、発電機受電電力量計33に対応するカウンタのカウント値及び蓄電池充電電力量計35に対応するカウンタのカウント値にそれぞれステップSP60において設定した対応する定数KR1、定数KR2又は定数KRBを乗算することにより、連系点送電電力量PR1、発電機送電電力量PR2及び蓄電池放電電力量PRBをそれぞれ算出する。 In addition, the power monitoring control device 58 includes a counter value corresponding to the connection point received power meter 31, a counter value corresponding to the generator received power meter 33, and a counter corresponding to the storage battery charge energy meter 35. Is multiplied by the corresponding constant KR1, constant KR2 or constant KRB set in step SP60, respectively, thereby calculating the interconnection point transmission power amount PR1, the generator transmission power amount PR2 and the storage battery discharge power amount PRB. .
 さらに、電力監視制御装置58は、発電機系統側受電電力量計52に対応するカウンタのカウント値にステップSP60において設定した対応する定数KDGを乗算することにより、発電機系統側受電電力量PLRGを算出する(SP78)。 Furthermore, the power monitoring and control device 58 multiplies the count value of the counter corresponding to the generator system side received power meter 52 by the corresponding constant KDG set in step SP60 to obtain the generator system side received power amount PLRG. Calculate (SP78).
 続いて、電力監視制御装置58は、上述の(1)式により連系用変圧器12における電力ロスTrlossRを算出し(SP79)、この後、上述のようにして得られた連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電電力量PSBと、連系点受電電力量PR1、発電機受電電力量PR2、蓄電池充電電力量PRB及び発電機系統側受電電力量PLRGと、連系用変圧器12における電力ロスTrlossRとに基づいて、必要な演算処理を実行する(SP80)。 Subsequently, the power monitoring and control device 58 calculates the power loss TrlossR in the interconnection transformer 12 by the above-described equation (1) (SP79), and thereafter the interconnection point transmission power obtained as described above. Power amount PS1, generator transmission power amount PS2 and storage battery discharge power amount PSB, interconnection point received power amount PR1, generator received power amount PR2, storage battery charge power amount PRB and generator system side received power amount PLRG, and interconnection Necessary arithmetic processing is executed based on the power loss TrlossR in the transformer 12 (SP80).
 具体的に、電力監視制御装置58は、蓄電池13に充電された電力量のうち、電力系統14から与えられた電力量(蓄電池充電電力量(系統))LPCを次式
Figure JPOXMLDOC01-appb-M000012
により算出し、蓄電池13に充電された電力量のうち、合成発電電力の電力量(蓄電池充電電力量(発電所))GPCを上述の(3)式により算出する。
Specifically, the power monitoring control device 58 calculates the amount of power (storage battery charge power amount (system)) LPC given from the power system 14 among the amount of power charged in the storage battery 13 as follows:
Figure JPOXMLDOC01-appb-M000012
Of the amount of power charged in the storage battery 13, the amount of combined generated power (storage battery charge power amount (power plant)) GPC is calculated by the above equation (3).
 また電力監視制御装置58は、蓄電池13から放電された電力量のうち、風力発電システム50内で消費された電力量(以下、これを蓄電池放電電力量(発電所内消費)と呼ぶ)PSBGを、次式
Figure JPOXMLDOC01-appb-M000013
により計算すると共に、蓄電池13から放電された電力量のうち、連系点側電力量計測点P1を介して電力系統14側に送電された電力量(以下、これを蓄電池放電電力量(連系点送電)と呼ぶ)PSBSを、次式
Figure JPOXMLDOC01-appb-M000014
 により計算する。
In addition, the power monitoring and control device 58 uses the amount of power discharged from the storage battery 13, the amount of power consumed in the wind power generation system 50 (hereinafter referred to as storage battery discharge power amount (consumption within the power plant)) PSBG, Next formula
Figure JPOXMLDOC01-appb-M000013
Of the amount of power discharged from the storage battery 13, the amount of power transmitted to the power system 14 side via the interconnection point side energy measurement point P <b> 1 (hereinafter referred to as storage battery discharge energy (interconnection) PSBS) is called the following formula:
Figure JPOXMLDOC01-appb-M000014
Calculate with
 さらに、電力監視制御装置58は、合成発電電力のうちの連系電力会社の電力系統14に直接送電された電力量(発電機直送電電力量と呼ぶ)GPS2を、上述の(4)式により計算する。 Furthermore, the power monitoring and control device 58 calculates the amount of power (referred to as generator direct transmission power) GPS2 directly transmitted to the power grid 14 of the grid power company among the combined generated power by the above-described equation (4). To do.
 さらにまた、電力監視制御装置58は、蓄電池13から放電された電力量のうち、電力系統14からの充電分に相当する電力量(蓄電池放電電力量(系統充電分))LCPS10を次式
Figure JPOXMLDOC01-appb-M000015
により算出し、蓄電池13から放電された電力量のうち、合成発電電力に基づく充電分に相当する電力量(以下、これを蓄電池放電電力(発電機充電分)と呼ぶ)GCPS20を次式
Figure JPOXMLDOC01-appb-M000016
により算出する。
Furthermore, the power monitoring control device 58 calculates the amount of power (storage battery discharge power (system charge)) LCPS 10 corresponding to the charge from the power system 14 among the power discharged from the storage battery 13 by the following formula.
Figure JPOXMLDOC01-appb-M000015
The amount of power corresponding to the amount of charge based on the combined generated power out of the amount of power discharged from the storage battery 13 (hereinafter referred to as storage battery discharge power (generator charge)) GCPS20 is
Figure JPOXMLDOC01-appb-M000016
Calculated by
 さらに、電力監視制御装置58は、次式合成発電電力による蓄電池13への充電量分及び電力系統14への直送分の合計電力量(発電所合成送電電力量(発電+蓄電))GPS22と、連系電力会社の電力系統14に送電した電力量のうち、電力系統14から得られた按分電力量(連系点送電按分電力量(系統))LCPSB13と、連系電力会社の電力系統14に送電した電力量のうち、合成発電電力の電力量(連系点送電按分電力量(発電所))GCPSB23とをそれぞれ上述の(7)式~(9)式によりそれぞれ算出する。 Furthermore, the power monitoring and control device 58 includes a total amount of power (power plant combined transmission power amount (power generation + storage)) GPS 22 for the amount of charge to the storage battery 13 and the direct transmission to the power system 14 by the combined power generated by the following formula: Of the amount of power transmitted to the power grid 14 of the interconnected power company, the apportioned power obtained from the power grid 14 (interconnection point transmission apportioned power (system)) LCPSB 13 and the power grid 14 of the interconnected power company Of the transmitted electric energy, the electric energy of the combined generated electric power (interconnection point transmission apportioned electric energy (power plant)) GCPSB 23 is calculated by the above-mentioned equations (7) to (9), respectively.
 次いで、電力監視制御装置58は、ステップSP81及びステップSP82を図14のステップSP19及びステップSP20と同様に処理し、やがてこの蓄電池充放電制御処理を終了する。 Next, the power monitoring control device 58 processes step SP81 and step SP82 in the same manner as step SP19 and step SP20 in FIG. 14, and eventually ends this storage battery charge / discharge control process.
 以上のように、本実施の形態による風力発電システム50では、電力系統14から入力した購入電力のうち、第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCを越えて風力発電所2側に流れ込む発電機系統側受電電力量を計測するための発電機系統側受電電力量計52を電力量計測部51に設けるようにしているため、蓄電池13に蓄えた電力を風力発電システム50内で使用する場合においても他発電事業者からの購入電力と自らの風力発電電力とを精度良く計量区分することができる。 As described above, in the wind power generation system 50 according to the present embodiment, the purchased power input from the power system 14 exceeds the connection point PC of the first power cable 6 and the second power cable 8 and the wind power plant. Since the generator system side received energy meter 52 for measuring the generator system side received energy flowing into the second side is provided in the energy measuring unit 51, the power stored in the storage battery 13 is used for the wind power generation system 50. Even in the case of using the power generator, it is possible to accurately classify the purchased power from other power generation companies and the wind power generated by itself.
(4)第4の実施の形態
 図16において、60は全体として第4の実施の形態による風力発電システムを示す。この風力発電システム60では、複数の他発電事業者(電力会社を含む)から電力を購入して購入電力を蓄電池13に充電すると共に、蓄電池13に蓄えた電力を風力発電システム50内で使用することを想定しており、これに伴い電力監視制御装置61による蓄電池13の充放電制御処理の内容とが第3の実施の形態による風力発電システム50と異なる。
(4) Fourth Embodiment In FIG. 16, reference numeral 60 denotes a wind power generation system according to a fourth embodiment as a whole. In the wind power generation system 60, power is purchased from a plurality of other power generation companies (including power companies) and the purchased power is charged in the storage battery 13, and the power stored in the storage battery 13 is used in the wind power generation system 50. Accordingly, the content of the charge / discharge control processing of the storage battery 13 by the power monitoring control device 61 is different from the wind power generation system 50 according to the third embodiment.
 すなわち、本実施の形態による風力発電システム60では、他発電事業者から電力を購入して蓄電池13に充電する際には、当該他発電事業者の名称(発電事業者名)及びその時刻を記録しておき、この情報に基づいて他発電事業者からの購入電力と自らの風力発電電力とを計量区分する。 That is, in the wind power generation system 60 according to the present embodiment, when power is purchased from another power generation company and the storage battery 13 is charged, the name of the other power generation company (power generation company name) and the time are recorded. In addition, based on this information, electric power purchased from other power generation companies and own wind power generation are classified.
 図22は、このような本実施の形態による蓄電池13の充放電制御処理に関する電力監視制御装置61の具体的な処理内容を示している。電力監視制御装置61は、図示しない内部メモリに格納された対応する制御プログラムに従って、この図22に示す蓄電池充放電制御処理を実行する。 FIG. 22 shows specific processing contents of the power monitoring control device 61 relating to the charging / discharging control processing of the storage battery 13 according to this embodiment. The power monitoring control device 61 executes the storage battery charge / discharge control process shown in FIG. 22 in accordance with a corresponding control program stored in an internal memory (not shown).
 すなわち、電力監視制御装置61は、かかる蓄電池充放電制御処理の実行命令が入力されると、この蓄電池充放電制御処理を開始し、まず、例えば日本卸電力取引所19(図1)において何時から何時までどの発電事業者からいくらの電力量を購入するかといった電力購入スケジュールを内部設定する(SP90)。 That is, when the execution instruction of the storage battery charge / discharge control process is input, the power monitoring control device 61 starts the storage battery charge / discharge control process. First, for example, at the wholesale power exchange 19 (FIG. 1) A power purchase schedule such as how much power is purchased from which power generation company is set internally (SP90).
 また電力監視制御装置61は、図14のステップSP1と同様にして、連系点受電パルス、発電機側受電パルス及び充電電力パルスの各1パルス分の電力量KR(KR1,KR2,KRB)と、連系点送電パルス、発電機側送電パルス及び放電電力パルスの各1パルス分の電力量KS(KS1,KS2,KSB)と、発電機系統側受電パルスの1パルス分の電力量KDGとをそれぞれ予め設定された所定値に設定する。さらに電力監視制御装置61は、図14のステップSP5、ステップSP7、ステップSP8、ステップSP11、ステップSP13及びステップSP14についてそれぞれ上述した各カウンタと、図22のステップSP77について上述したカウンタとの各カウント値をそれぞれ初期値「0」に設定すると共に、計器読取り日時を表すパラメータnを初期値「1」に設定する。(SP90)。 Similarly to step SP1 in FIG. 14, the power monitoring control device 61 uses the power amount KR (KR1, KR2, KRB) for each pulse of the interconnection point power reception pulse, the generator side power reception pulse, and the charging power pulse. , The power amount KS (KS1, KS2, KSB) for each one pulse of the interconnection point power transmission pulse, the generator side power transmission pulse and the discharge power pulse, and the power amount KDG for one pulse of the generator system side power reception pulse Each is set to a predetermined value. Furthermore, the power monitoring and control device 61 counts each of the counters described above for step SP5, step SP7, step SP8, step SP11, step SP13 and step SP14 in FIG. 14 and the counter described above for step SP77 in FIG. Are each set to an initial value “0”, and a parameter n indicating the instrument reading date and time is set to an initial value “1”. (SP90).
 続いて、電力監視制御装置61は、連系点送電電力量計30からの連系点送電パルス、連系点受電電力量計31からの連系点受電パルス、発電機送電電力量計32からの発電機側送電パルス、発電機受電電力量計33からの発電機側受電パルス、蓄電池放電電力量計34からの放電電力パルス、蓄電池充電電力量計35からの充電電力パルス及び発電機系統側受電電力量計52からの発電機系統側受電パルスのいずれかが入力するのを待ち受ける(SP91)。 Subsequently, the power monitoring control device 61 receives the connection point transmission pulse from the connection point transmission energy meter 30, the connection point reception pulse from the connection point reception energy meter 31, and the generator transmission energy meter 32. Generator-side power transmission pulse, generator-side power reception pulse from the power-receiving power meter 33, discharge power pulse from the battery discharge power meter 34, charge power pulse from the storage battery charge power meter 35, and generator system side It waits for any of the generator system side received pulses from the received electricity meter 52 to be input (SP91).
 この後、電力監視制御装置61は、ステップSP93~ステップSP108を図21について上述した第1の実施の形態による蓄電池充放電制御処理のステップSP62~ステップSP77と同様に処理することにより、連系点受電パルス、連系点送電パルス、発電機側受電パルス、発電機側送電パルス、充電電力パルス、放電電力パルス又は発電所系統受電パルスが入力するごとに、対応するカウンタを1ずつ増加させる。 Thereafter, the power monitoring control device 61 performs steps SP93 to SP108 in the same manner as steps SP62 to SP77 of the storage battery charge / discharge control processing according to the first embodiment described above with reference to FIG. Each time a power reception pulse, a connection point power transmission pulse, a generator side power reception pulse, a generator side power transmission pulse, a charge power pulse, a discharge power pulse, or a power plant system power reception pulse is input, the corresponding counter is incremented by one.
 この際、電力監視制御装置61は、蓄電池充電電力量計35から充電電力パルスが与えられたときには、ステップSP90において設定した電力購入スケジュールに従って、そのとき購入している電力の売電元の発電事業者名と、そのときの時刻とを記録する(SP92)。 At this time, when a charge power pulse is given from the storage battery charge watt hour meter 35, the power monitoring control device 61 follows the power purchase schedule set in step SP90 and generates power from the power selling source of the power purchased at that time. The name of the person and the time at that time are recorded (SP92).
 電力監視制御装置は、やがて各カウンタのカウント値を読み取るカウンタ読取期限日(その月の締め日)になると、上述の連系点送電電力量PS1、発電機送電電力量PS2及び蓄電池放電力量PSBと、連系点受電電力量PR2、発電機受電電力量PR2、蓄電池充電電力量PRBと、発電機系統側受電電力量PLRGと、連系用変圧器12における電力ロスTrlossRとをそれぞれ算出する(SP109,SP110)。 When the power monitoring and control device eventually reaches the counter reading deadline date (the closing date of the month) for reading the count value of each counter, the above-mentioned connection point transmission power amount PS1, generator transmission power amount PS2 and storage battery discharge power amount PSB, The connection point received power amount PR2, the generator received power amount PR2, the storage battery charge power amount PRB, the generator system side received power amount PLRG, and the power loss TrlossR in the connection transformer 12 are calculated (SP109, SP110).
 次いで、電力監視制御装置61は、ステップSP90において設定した電力購入スケジュールと、ステップSP92において記録した発電事業者名及び時刻とに基づいて、蓄電池13の充電時に購入した他発電事業者ごとの蓄電池充電電力量PRBを区分する(SP111)。 Next, the power monitoring and control device 61 charges the storage battery for each other power generation company purchased at the time of charging the storage battery 13 based on the power purchase schedule set in step SP90 and the power generation company name and time recorded in step SP92. The power amount PRB is classified (SP111).
 続いて電力監視制御装置61は、図21のステップSP80と同様にして、ステップSP111において区分した発電事業者ごとの蓄電池充電電力量(系統)LPC、蓄電池充電電力量(発電所)GPC、蓄電池放電電力量(発電所内消費)PSBG、蓄電池放電電力量(連系点送電)PSBS、発電機直送電電力量GPS2、蓄電池放電電力量(系統充電分)LCPS10、蓄電池放電電力量(発電機充電分)GCPS20、連系点送電按分電力量(系統)LCPSB13及び連系点送電按分電力量(発電所)GCPSB23をそれぞれ算出する(SP112)。 Subsequently, in the same manner as step SP80 in FIG. 21, the power monitoring and control device 61 performs storage battery charge power amount (system) LPC, storage battery charge power amount (power plant) GPC, and storage battery discharge for each power generation company classified in step SP111. Electric energy (consumption in power plant) PSBG, battery discharge electric energy (interconnection point transmission) PSBS, generator direct transmission electric energy GPS2, storage battery discharge electric energy (system charge) LCPS10, battery discharge electric energy (generator charge) GCPS20 Then, the connection point transmission apportioned electric energy (system) LCPSB 13 and the interconnection point transmission apportioned electric energy (power plant) GCPSB 23 are calculated (SP112).
 次いで電力監視制御装置61は、ステップSP113及びステップSP114を図21のステップSP81及びステップSP82と同様に処理し、やがてこの蓄電池充放電制御処理を終了する。 Next, the power monitoring control device 61 processes step SP113 and step SP114 in the same manner as step SP81 and step SP82 in FIG. 21, and eventually ends this storage battery charge / discharge control process.
 以上のように本実施の形態による風力発電システム60では、購入している電力の売電元の発電事業者名及びその時刻を記録し、蓄電池13への充電電力の売電元の発電事業者を区分するため、複数の発電事業者から電力を購入し、その購入電力を蓄電池に充電する際にも他発電事業者からの購入電力と自らの風力発電電力とを精度良く計量区分することができる。 As described above, in the wind power generation system 60 according to the present embodiment, the name and the time of the power generation company of the purchased power sale source are recorded, and the power generation company of the power sale source of the charging power to the storage battery 13 is recorded. Therefore, when purchasing power from multiple power generation companies and charging the storage battery with the purchased power, it is possible to accurately classify the purchased power from other power generation companies and their own wind power generation. it can.
(5)他の実施の形態
 なお上述の第1~第4の実施の形態においては、第1の電力ケーブル6における第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCよりも電力系統14側と、第1の電力ケーブル6における第1の電力ケーブル6及び第2の電力ケーブル8の接続点PCよりも風力発電機3側と、第2の電力ケーブル8における第1及び第2の電力ケーブル6,8の接続点PCよりも蓄電池13側とにおける潮流別の潮流電力量を計測する電力量計測手段としての電力量計測部25,51を図3又は図17のように構成するようにした場合について述べたが、本発明はこれに限らず、この他種々の構成を広く適用することができる。
(5) Other Embodiments In the first to fourth embodiments described above, the power is higher than the connection point PC of the first power cable 6 and the second power cable 8 in the first power cable 6. The wind power generator 3 side from the connection point PC of the first power cable 6 and the first power cable 6 and the second power cable 8 in the first power cable 6, and the first and second in the second power cable 8. As shown in FIG. 3 or FIG. 17, the power amount measuring units 25 and 51 as power amount measuring means for measuring the tidal power amount for each tidal current on the storage battery 13 side than the connection point PC of the power cables 6 and 8 of FIG. Although the case has been described, the present invention is not limited to this, and various other configurations can be widely applied.
 また上述の第1~第4の実施の形態においては、電力量計測部25,51の計測結果に基づいて、他発電事業者からの購入電力と自らの風力発電による発電電力とを区分する電力区分手段として、風力発電システム1,40,50,60全体の動作制御を司る電力監視制御装置16,41,58,61を適用するようにした場合について述べたが、本発明はこれに限らず、例えばかかる電力区分手段をかかる電力監視制御装置16,41,58,61と別個に設けるようにしても良い。 In the first to fourth embodiments described above, the electric power that separates the purchased electric power from other power generation companies and the electric power generated by own wind power generation based on the measurement results of the electric energy measuring units 25 and 51. Although the case where the power monitoring control devices 16, 41, 58, and 61 that control the overall operation of the wind power generation systems 1, 40, 50, and 60 are applied as the sorting means has been described, the present invention is not limited to this. For example, such power classifying means may be provided separately from the power monitoring control devices 16, 41, 58, 61.
 本発明は、風力発電システムに関し、種々の構成の蓄電池併用型風力発電システムに広く適用することができる。
 
 
The present invention relates to a wind power generation system and can be widely applied to storage battery combined wind power generation systems having various configurations.

Claims (4)

  1.  一定電力を外部の電力系統に出力する風力発電システムであって、
     風力により発電を行う風力発電機と、
     前記風力発電機から出力される電力を充電する蓄電池と、
     前記風力発電機と前記外部の電力系統とを接続する第1の電力ケーブル上の第1の計測点及び第2の計測点、並びに前記第1の電力ケーブルと前記蓄電池とを接続する第2の電力ケーブル上の第3の計測点における潮流別の潮流電力量を計測する電力量計測部と、
     前記電力量計測部による各計測点における計測結果に基づいて、少なくとも一の発電事業者から購入すべき購入電力と前記風力発電機により発電される発電電力とを区分する電力区分部と、を備え,
     前記第1の計測点は、前記第1の電力ケーブルと前記第2の電力ケーブルとの接続点と前記外部の電力系統との間に位置し、前記第2の計測点は、前記接続点と前記風力発電機との間に位置し、前記第3の計測点は、前記接続点と前記蓄電池との間に位置する、
    風力発電システム。
    A wind power generation system that outputs constant power to an external power system,
    A wind power generator that generates power using wind power;
    A storage battery for charging power output from the wind power generator;
    A first measurement point and a second measurement point on a first power cable connecting the wind power generator and the external power system, and a second connecting the first power cable and the storage battery. An energy measuring unit for measuring the tidal current energy for each tidal current at the third measurement point on the power cable;
    Based on the measurement result at each measurement point by the power amount measurement unit, a power classification unit that classifies purchased power to be purchased from at least one power generation company and generated power generated by the wind power generator, and ,
    The first measurement point is located between a connection point between the first power cable and the second power cable and the external power system, and the second measurement point is connected to the connection point. Located between the wind power generator and the third measurement point is located between the connection point and the storage battery,
    Wind power generation system.
  2.  前記電力区分部は、
     前記発電事業者から購入した購入電力を前記蓄電池に充電する際に、当該発電事業者の識別情報及び購入時刻を記録し、当該発電事業者の識別情報及び購入時刻に基づいて当該発電事業者からの購入電力を前記発電事業者ごとに計量区分する、
    る請求項1に記載の風力発電システム。
    The power dividing unit is
    When charging the storage battery with purchased power purchased from the power generation company, the identification information and purchase time of the power generation company are recorded, and from the power generation company based on the identification information and purchase time of the power generation company. Metering the purchased power of each power generation company,
    The wind power generation system according to claim 1.
  3.  前記電力量計測部は、
     前記発電事業者からの購入電力のうち、前記第1の電力ケーブル及び第2の電力ケーブル線の接続点を越えて前記風力発電機側に流れ込む電力量を計測し、
     前記電力区分部は、
     前記電力量計測部による計測結果に基づいて、前記発電事業者からの購入電力と前記風力発電機により発電される発電電力とを区分する、
    請求項1に記載の風力発電システム。
    The power measurement unit
    Of the purchased power from the power generation company, measure the amount of power flowing into the wind power generator side beyond the connection point of the first power cable and the second power cable line,
    The power dividing unit is
    Based on the measurement result by the power amount measurement unit, the purchased power from the power generation company and the generated power generated by the wind power generator are classified.
    The wind power generation system according to claim 1.
  4.  前記電力区分部は、
     前記発電事業者から購入した購入電力を前記蓄電池に充電する際に、当該発電事業者の識別情報及び購入時刻を記録し、当該発電事業者の識別情報及び購入時刻に基づいて当該他発電事業者からの購入電力を前記発電事業者ごとに計量区分する
    請求項3に記載の風力発電システム。
     
    The power dividing unit is
    When charging the storage battery with purchased power purchased from the power generation company, the identification information and purchase time of the power generation company are recorded, and the other power generation company is based on the identification information and purchase time of the power generation company. The wind power generation system according to claim 3, wherein electric power purchased from the plant is metered for each power generation company.
PCT/JP2010/052055 2010-02-12 2010-02-12 Wind turbine generator system WO2011099142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052055 WO2011099142A1 (en) 2010-02-12 2010-02-12 Wind turbine generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052055 WO2011099142A1 (en) 2010-02-12 2010-02-12 Wind turbine generator system

Publications (1)

Publication Number Publication Date
WO2011099142A1 true WO2011099142A1 (en) 2011-08-18

Family

ID=44367445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052055 WO2011099142A1 (en) 2010-02-12 2010-02-12 Wind turbine generator system

Country Status (1)

Country Link
WO (1) WO2011099142A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441529A (en) * 2013-08-22 2013-12-11 国家电网公司 Variable-speed wind turbine generator inertia response simulating control method
CN105048519A (en) * 2015-07-27 2015-11-11 新疆金风科技股份有限公司 Frequency crossover method and device of direct-driven wind power generator
JP2017097514A (en) * 2015-11-20 2017-06-01 株式会社 日立産業制御ソリューションズ Power generation plan creation device, power generation plan coordination device and program
JP2019165539A (en) * 2018-03-19 2019-09-26 東芝三菱電機産業システム株式会社 Storage battery system and charge/discharge loss calculation device therefor
US10581249B2 (en) 2017-11-14 2020-03-03 Inventus Holdings, Llc Battery energy storage system integrated with electrical generation site
JP2020165929A (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Measurement system, measurement method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051117A (en) * 2008-08-22 2010-03-04 Japan Wind Development Co Ltd Wind power generation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051117A (en) * 2008-08-22 2010-03-04 Japan Wind Development Co Ltd Wind power generation system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441529A (en) * 2013-08-22 2013-12-11 国家电网公司 Variable-speed wind turbine generator inertia response simulating control method
CN105048519A (en) * 2015-07-27 2015-11-11 新疆金风科技股份有限公司 Frequency crossover method and device of direct-driven wind power generator
CN105048519B (en) * 2015-07-27 2018-03-16 新疆金风科技股份有限公司 Direct wind-driven generator frequency traversing method and device
JP2017097514A (en) * 2015-11-20 2017-06-01 株式会社 日立産業制御ソリューションズ Power generation plan creation device, power generation plan coordination device and program
US10581249B2 (en) 2017-11-14 2020-03-03 Inventus Holdings, Llc Battery energy storage system integrated with electrical generation site
JP2019165539A (en) * 2018-03-19 2019-09-26 東芝三菱電機産業システム株式会社 Storage battery system and charge/discharge loss calculation device therefor
JP2020165929A (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Measurement system, measurement method, and program
WO2020202716A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Measurement system, measurement method, and program
JP7129662B2 (en) 2019-03-29 2022-09-02 パナソニックIpマネジメント株式会社 Measurement system, measurement method, program and cooperation system

Similar Documents

Publication Publication Date Title
JP5373338B2 (en) Wind power generation system
US20220156775A1 (en) Distributed Energy Control
Berrada et al. Valuation of energy storage in energy and regulation markets
Connolly et al. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage
US9865024B2 (en) Systems and methods of determining optimal scheduling and dispatch of power resources
JP3631967B2 (en) Surplus power management system and control method thereof
WO2011099142A1 (en) Wind turbine generator system
Nyamdash et al. The impact of electricity storage on wholesale electricity prices
JP6732552B2 (en) Storage battery control system, method and program
Tsagkou et al. Stacking grid services with energy storage techno-economic analysis
JP6226282B2 (en) Power adjustment apparatus, power adjustment method, and program
Hu et al. Assessing the economics of customer-sited multi-use energy storage
JP4918624B1 (en) Power information management apparatus and power information management program
Yang et al. Peak-shaving and profit-sharing model by Aggregators in residential buildings with PV–a case study in Eskilstuna, Sweden
Denholm et al. Summary of market opportunities for electric vehicles and dispatchable load in electrolyzers
Choi et al. A study on determining an appropriate power trading contracts to promote renewable energy systems
Rose et al. A Framework for Readiness Assessments of Utility-Scale Energy Storage
Lin et al. Microgrid Optimal Investment Design for Cotton Farms in Australia
Fares et al. Economic operational planning of grid-connected battery energy storage
Lee et al. Solar energy management internetworking with demand response
Madani et al. Investment in Vehicle to Grid and Distributed Energy Resources: Distributor Versus Prosumer's Perspectives and the Impact of Applicable Rates
Scharff et al. Distributed Balancing of Wind Power Forecast Deviations by Intraday Trading and Internal Ex-ante Self-Balancing--A Modelling Approach
Jaakamo Impact of the 15-minute imbalance settlement period and electricity storage on an independent wind power producer
Mouton The impact of microgrids on the energy sector
Hennig Congestion Management and Tariffs for Electric Distribution Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.10.12)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10845739

Country of ref document: EP

Kind code of ref document: A1