WO2011096556A1 - Ultrasonic diagnosis device, and blood flow image generation method - Google Patents

Ultrasonic diagnosis device, and blood flow image generation method Download PDF

Info

Publication number
WO2011096556A1
WO2011096556A1 PCT/JP2011/052473 JP2011052473W WO2011096556A1 WO 2011096556 A1 WO2011096556 A1 WO 2011096556A1 JP 2011052473 W JP2011052473 W JP 2011052473W WO 2011096556 A1 WO2011096556 A1 WO 2011096556A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
velocity
tissue
speed
image
Prior art date
Application number
PCT/JP2011/052473
Other languages
French (fr)
Japanese (ja)
Inventor
剛啓 辻田
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011552851A priority Critical patent/JP5938822B2/en
Publication of WO2011096556A1 publication Critical patent/WO2011096556A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and a method for generating a blood flow image, and in particular, improves the accuracy of a blood flow image generated in a state where pressure on a tomographic tissue including a blood vessel of a subject is changing. It is related to the technology.
  • the ultrasonic diagnostic apparatus transmits ultrasonic waves to the inside of the subject using an ultrasonic probe, receives an ultrasonic reflected echo signal corresponding to the structure of the living tissue from the inside of the subject, and produces a tomographic image (e.g., B mode). Image etc.) and displayed for diagnosis.
  • a tomographic image e.g., B mode. Image etc.
  • the blood flow image is generated by performing Doppler demodulation, blood flow calculation, etc. on the reflected echo signal It has been known.
  • Patent Document 1 it has been disclosed to generate an elastic image representing the hardness or softness of the tissue on the tomographic plane of the subject. More specifically, the elastic image is obtained by compressing the tissue while compressing the tissue of the subject on the ultrasound transmission / reception surface of the ultrasound probe or using body motion such as the heartbeat of the subject. While measuring the ultrasonic reception signal, the displacement of the tissue on the tomographic plane is obtained based on the two RF signal frame data with different compression states, and generated based on the displacement data.
  • malignant tumors such as cancer are often harder than the surrounding tissues, and as shown in Patent Document 1, if parameters representing hardness can be imaged, effective information for determining benign and malignant tumors Can help you diagnose.
  • malignant tumors such as cancer are known to draw blood vessels for growth in tissues, and knowing whether blood vessels exist in tumors also determines benign / malignant tumors Can be useful information.
  • the blood flow image is displayed by imaging the Doppler component of the reflected echo signal. If possible, it is considered useful because the benign / malignant tumor can be judged from different indices such as tissue hardness and blood flow.
  • a reflected echo signal is acquired in a state where the tissue on the tomographic plane is fluctuating.
  • Doppler components due to tissue changes are included, and artifacts may be generated in the blood flow image.
  • Patent Document 2 discloses a means for detecting a flash artifact that occurs largely on a blood flow image and removing it for each detected frame. The removal of artifacts in the flow image is not considered.
  • the state in which no artifact occurs is only the one time phase in which the pressing / pulling of the compression is switched, and the velocity component of the tissue due to the compression is added to the Doppler component in the other frames. Will be.
  • the tissue in order to acquire an elastic image, the tissue needs to be displaced by pressing / pulling of compression. Therefore, it is considered difficult to improve the accuracy of the blood flow image while simultaneously acquiring the elastic image and the blood flow image by the means for removing the frame in which the artifact is generated.
  • the Doppler shift frequency is determined by the moving speed of the observation system (e.g., ultrasound probe) in addition to the speed of the observation target (e.g. blood flow), but in Patent Document 2, the ultrasonic probe associated with the compression technique is used. The moving speed of the child is not considered.
  • the observation system e.g., ultrasound probe
  • the ultrasonic probe associated with the compression technique is used. The moving speed of the child is not considered.
  • an object of the present invention is to improve the accuracy of a blood flow image generated in a state in which the pressure on the tissue on the tomographic plane of the subject is changing.
  • the ultrasonic diagnostic apparatus basically includes an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject, and Doppler measurement based on reflected echo signals measured by the ultrasonic probe.
  • An ultrasonic diagnostic apparatus comprising a blood flow image constructing unit that generates a blood flow image by a blood flow and an image display that displays a blood flow image, a measurement speed computing unit that computes a measurement speed by Doppler measurement, A tissue movement speed calculation unit that obtains a tissue movement speed that is the movement speed of the tissue of the specimen, and a blood flow rate calculation unit that corrects the measurement speed based on the tissue movement speed and obtains the blood flow speed of the subject.
  • the flow image construction unit constructs a blood flow image based on the blood flow velocity obtained by the blood flow velocity calculation unit.
  • the reflected echo signal contains the displacement of the tissue in addition to the Doppler component of the blood flow.
  • Doppler component is included.
  • the present invention obtains at least the moving speed of the tissue on the tomographic plane due to the change in pressure, and corrects the measuring speed obtained by the measuring speed calculating unit based on the moving speed of the tissue.
  • a highly accurate blood flow image excluding components can be obtained.
  • the velocity calculation unit when changing the pressure on the tissue on the tomographic plane of the subject while pressing the subject on the ultrasonic transmission / reception surface of the ultrasonic probe, includes at least the displacement frame data and the elastic frame data.
  • the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject are obtained, and the blood flow image constructing unit obtains the measuring speed obtained by the measuring speed computing unit from the speed computing unit.
  • the blood flow image can be configured to be corrected based on the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject obtained by the above.
  • the present invention obtains the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject, and determines the moving speed of the ultrasonic probe and the moving of the tissue on the tomographic plane of the subject. By correcting the measurement speed obtained by the measurement speed calculation unit based on the speed, a highly accurate blood flow image can be obtained.
  • the blood flow velocity calculation unit that calculates the blood flow velocity can be configured to generate a blood flow image based on the corrected blood flow velocity.
  • the present invention it is possible to improve the accuracy of a blood flow image generated in a state where the pressure on the tissue on the tomographic plane of the subject is changing.
  • Block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment The figure which shows the detail of the tomographic 2D image structure part of 1st Example, the blood flow 2D image structure part, and the elastic 2D image structure part
  • the figure which shows the concept of the compression of the subject by the ultrasonic probe Diagram showing the concept of region of interest setting Schematic diagram of the subject when measuring blood flow and elasticity simultaneously Schematic representation of the measurement speed V dop measured in blood flow measurement and the tissue movement speed V disp , which is the Doppler shift speed due to compression of the ultrasound probe
  • Schematic diagram showing the probe moving speed V probe by the Doppler shift speed generated by the displacement of the ultrasonic probe and its region of interest A diagram schematically showing the processing in the blood flow velocity calculation unit
  • Conceptual diagram of input image and output image in image composition unit The figure which shows the detail of the tomographic 2D image structure part of 2nd Example, the blood flow 2D image structure part, and the elastic 2D image structure part
  • FIG. 1 is a block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 14 that is used in contact with the subject 12, and a time interval between the subject 12 and the ultrasonic probe 14.
  • a transmitter 16 that repeatedly transmits ultrasonic waves
  • a receiver 18 that receives time-series reflected echo signals generated from the subject 12
  • a transmission / reception controller 20 that controls the transmitter 16 and the receiver 18, and a receiver 18
  • a phasing addition unit 22 for phasing and adding the reflected echo received in (1).
  • the ultrasonic diagnostic apparatus 100 also includes a control unit 28 that controls each part of the apparatus in response to a command input via a control panel 27 serving as an input interface such as a keyboard, a mouse, a touch panel, and a trackball. It has been.
  • a data selection unit 24 that selects arbitrary RF signal frame data from time-series RF signal frame data output from the phasing addition unit 22 in response to a command from the control unit 28, and a data selection unit 24
  • a tomographic two-dimensional image constructing unit 26 that generates a tomographic image based on RF signal frame data
  • a blood flow two-dimensional image constructing unit 30 that generates a blood flow image
  • an elastic two-dimensional image constructing unit 32 that generates an elastic image.
  • a synthesis processing unit 34 that performs processing such as image synthesis based on image data output from each image configuration unit, and a display 36 that displays an image output from the synthesis processing unit 34 are provided. .
  • the tomographic image data is transferred to the tomographic two-dimensional image constructing unit 26 via the data selecting unit 24, and the tomographic image of the subject based on the installation conditions in the control unit 28. For example, a black and white tomographic image is constructed.
  • the blood flow image data is transferred to the blood flow two-dimensional image construction unit 30 via the data selection unit 24, and is subjected to coverage based on the installation conditions in the control unit 28.
  • Blood flow image of the specimen for example, a power image showing the blood flow in warm color, and the velocity component generated from blood cells approaching the ultrasound probe 14 in a warm color, and the velocity component generated from moving blood cells in a cool color
  • a color blood flow image represented in the system is constructed.
  • the elasticity image data is transferred to the elasticity two-dimensional image configuration unit 32 via the data selection unit 24, and based on the installation conditions in the control unit 28, A color elastic image is constructed in which the distortion generated in the subject 12 due to the compression is represented by a hue that shifts from blue to green to red.
  • the ultrasonic probe 14 is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 12 via the transducers.
  • the transmission unit 16 generates a transmission pulse for generating an ultrasonic wave by driving the ultrasonic probe 14, and has a function of setting a convergence point of the transmitted ultrasonic wave to a certain depth. Yes.
  • the receiving unit 18 amplifies the reflected echo signal received by the ultrasonic probe 14 with a predetermined gain to generate an RF signal, that is, a received signal.
  • the phasing / adding unit 22 receives the RF signal amplified by the receiving unit 18 and performs phase control, and forms an ultrasonic beam at one or more convergence points to generate RF signal frame data.
  • the ultrasonic diagnostic apparatus 100 of the present embodiment performs measurement of elasticity data and measurement of blood flow data simultaneously using the above-described apparatus configuration.
  • the measurement speed V dop quantified in the measurement of the speed data is obtained by obtaining the Doppler frequency generated by a phenomenon called the Doppler effect, and the ultrasonic probe 14 as the observation system is stationary, and the subject 12 Is a positive direction, the Doppler frequency can be obtained by Equation (1), where f is the ultrasonic frequency and c is the speed of sound.
  • the measurement speed V dop is generally obtained by obtaining ⁇ f using the following equation (2).
  • ultrasound transmission / reception is performed on the subject 12 shown in FIG. 3 (A) as shown in FIG. 3 (B). Press through the surface to generate 5-20% distortion. Then, as shown in FIG. 3 (C), the amount of displacement with respect to the subject 12 is measured by repeatedly pressing the ultrasonic probe 14 up and down so that distortion of about 0.2 to 1% occurs. And measure the hardness.
  • the tissue assumed as a sound source in Doppler measurement is obtained by oscillating at the ultrasonic probe 14 which is an observation system in Doppler measurement and the frequency of the irradiated ultrasonic wave, regardless of the magnitude of distortion. Apart from the assumption that it is stationary, Equation (2) does not hold correctly.
  • the ultrasonic probe 14 as an observation system receives an ultrasonic signal while moving at a probe moving speed V probe by a compression technique.
  • the Doppler transition caused by the movement of blood cells flowing in the blood vessel the Doppler transition caused by the tissue movement caused by the compression technique occurs from the subject 12.
  • the blood cell moving speed is V blood
  • the tissue moving speed by compression is the tissue moving speed V disp
  • the ultrasonic wave is expressed by Equation (3).
  • the blood flow velocity V blood which is the moving speed of the blood cells flowing in the blood vessel is sufficiently smaller than the sound velocity c propagating in the living body, and the displacement velocity due to the compression is further smaller, c >> V blood , c >> V It can be assumed that disp , c >> V probe .
  • the measurement speed V dop is generally obtained by obtaining ⁇ f using the following equation (4).
  • Equation (5) If the velocity component observed by equation (2) used for normal Doppler measurement is composed of the terms shown in equation (4), the blood flow velocity V blood under the compression procedure is Using the measurement speed V dop , it is obtained as shown in Equation (5).
  • the present embodiment is characterized in that the blood flow velocity V blood that does not depend on the compression technique is calculated by removing the tissue movement velocity V disp that is the tissue movement velocity due to the compression from the measurement velocity V dop . . Therefore, the blood flow velocity V blood does not affect the compression procedure. Furthermore, the blood flow velocity V blood can be corrected based on the probe moving velocity V probe which is a Doppler shift velocity generated by the displacement of the ultrasonic probe. Details will be described below using each embodiment.
  • FIG. 2 is a diagram showing details of processing of each block of the tomographic two-dimensional image construction unit 26, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 which are characteristic parts in FIG.
  • the tomographic 2D image construction unit 26 includes a tomographic information calculation unit 40, a tomographic 2D coordinate conversion unit 42, and a tomographic image processing unit 44.
  • the tomographic information calculation unit 40 inputs the RF signal frame data from the phasing addition unit 22 via the data selection unit 24, performs signal processing such as gain correction, log compression, detection, contour enhancement, filter processing, etc. Image data is obtained. Further, the tomographic two-dimensional coordinate conversion unit 42 performs conversion processing of the tomographic image data from the tomographic information calculation unit 40 into a shape that matches the display 36.
  • the tomographic image processing unit 44 performs filter processing and gamma processing for presenting the examiner with an image quality suitable for diagnosis, and transfers the result to the synthesis processing unit 34.
  • the elastic 2D image construction unit 32 stores the RF signal frame data output from the phasing addition unit 22 via the data selection unit 24, and an RF frame selection unit 50 for selecting at least two pieces of frame data,
  • a displacement measurement unit 52 that measures the displacement of the biological tissue of the specimen 12
  • an elasticity information calculation unit 54 that obtains strain or elastic modulus from the displacement information calculated by the displacement measurement unit 52, and an output signal of the elasticity information calculation unit 54 are displayed.
  • An elastic two-dimensional coordinate conversion unit 56 that converts the display to match the display of the device 36, and an elastic image processing unit 58 that performs filter processing for display on the output image of the elastic two-dimensional coordinate conversion unit 56. Yes.
  • the RF frame selection unit 50 stores a plurality of elasticity measurement RF signal frame data obtained from the phasing addition unit 22 via the data selection unit 24, and one set, that is, two RF signals from the stored RF signal frame data group.
  • Select signal frame data For example, the RF signal frame data generated based on the time series, that is, the frame rate of the image from the phasing adder 22, is sequentially stored in the RF frame selector 50, and the stored RF signal frame data (N) is stored in the first
  • N, M, and X are index numbers assigned to the RF signal frame data, and are natural numbers.
  • the displacement measuring unit 52 performs one-dimensional or two-dimensional correlation processing from the selected set of data, that is, the RF signal frame data (N) and the RF signal frame data (X), to correspond to each point of the tomographic image.
  • a one-dimensional or two-dimensional displacement distribution related to the displacement or movement vector in the living tissue, that is, the direction and magnitude of the displacement is obtained.
  • a block matching method is used to detect the movement vector.
  • the block matching method divides an image into blocks consisting of N ⁇ N pixels, for example, focuses on the block in the region of interest, searches the previous frame for the block that most closely matches the block of interest, and refers to this
  • predictive coding that is, processing for determining the sample value by the difference is performed.
  • the elastic information calculation unit 54 generates an elastic image signal indicating the distortion, that is, elastic frame data, based on a measurement value output from the displacement measuring unit 52, for example, a movement vector and a displacement amount. At this time, the strain data is calculated by spatially differentiating the movement amount of the living tissue, for example, the displacement.
  • the elastic two-dimensional coordinate conversion unit 56 converts the elastic image data from the elastic information calculation unit 54 into a shape that matches the display 36, and the elastic image processing unit 58 is suitable for diagnosis by the examiner. Filter processing and gamma processing for presenting with a high image quality are performed and transferred to the composition processing unit 34.
  • the elasticity information calculation unit 54 has a function of calculating the accuracy of the elasticity information from the correlation calculation result or the displacement calculation result, and the elasticity data is set to zero or not displayed as an error in a region with low accuracy. be able to.
  • the ultrasonic diagnostic apparatus 100 of the present embodiment has a configuration including a pressure measurement unit that directly measures the pressure due to the compression procedure, the displacement amount and the pressure measurement output from the displacement measurement unit 52 are measured.
  • the strain and elastic modulus of the living tissue corresponding to each point on the tomographic image can be calculated from the pressure value output from the unit.
  • the elastic modulus is calculated by dividing the change in pressure by the change in strain.
  • the region of interest for elasticity measurement follows the first region of interest 59 set by the operator to display the velocity data, and the Doppler shift caused by the tissue moving due to the compression of the ultrasound probe
  • a second region for measuring the probe movement velocity V probe which is a Doppler shift velocity generated by the displacement of the ultrasonic probe.
  • Three regions of interest 62 are automatically set.
  • the third region of interest is automatically set so as to be in contact with the transmission / reception surface of the ultrasonic probe or with the vicinity of the transmission / reception surface as the upper end.
  • the first region of interest is set to the same region as the second region of interest.
  • the third region of interest 62 for measuring the probe movement speed V probe which is the Doppler shift speed generated by the displacement of the ultrasonic probe 14, is determined by the examiner from the structure of the tissue and the displacement image. It is also possible to determine and set an arbitrary position.
  • the elastic two-dimensional image construction unit 32 includes a tissue movement speed calculation unit 64, and the blood flow two-dimensional image construction unit 30 includes a blood flow velocity calculation unit 66.
  • the tissue movement speed calculation unit 64 can calculate the displacement speed (tissue movement speed V disp ) from the displacement amount (displacement frame data) obtained by the displacement measurement unit 52.
  • the tissue movement speed can be calculated by dividing the displacement amount representing the movement distance between two frames by the measurement time, and the displacement amount is calculated as the time between the two frames selected by the RF frame selection unit 50. Divided by the interval, it is transferred to the blood flow velocity calculation unit 66 of the blood flow two-dimensional image construction unit 30.
  • the same result can be obtained by multiplying the amount of displacement obtained by the displacement measuring unit 52 by the frame rate.
  • the tissue movement speed calculation unit 64 is not limited to the amount of displacement, and can calculate the tissue movement speed from the elastic frame data obtained by the elasticity information calculation unit 54.
  • the characteristic part of the present embodiment includes an ultrasonic probe 12 that transmits / receives ultrasonic waves to / from a subject, and a blood flow image obtained by Doppler measurement based on a reflected echo signal measured by the ultrasonic probe 12
  • a blood flow image construction unit 30 for generating a blood flow image and an image display 36 for displaying a blood flow image, a measurement speed calculation unit 72 for calculating a measurement speed by Doppler measurement, a subject
  • a tissue movement speed calculation unit 64 that calculates a tissue movement speed that is the movement speed of the tissue, and a blood flow rate calculation unit 66 that corrects the measurement speed based on the tissue movement speed and calculates the blood flow velocity of the subject
  • the blood flow image construction unit 30 constructs a blood flow image based on the blood flow velocity obtained by the blood flow velocity calculation unit 66.
  • the blood flow velocity obtained by the blood flow velocity calculator 66 is a velocity that does not depend on the compression technique.
  • the blood flow velocity calculation unit 66 obtains the blood flow velocity by removing the tissue movement velocity from the measurement velocity.
  • the blood flow velocity calculation unit 66 obtains the blood flow velocity by subtracting the tissue movement velocity from the measurement velocity.
  • a probe moving speed calculation unit that obtains a probe moving speed that is a Doppler shift speed generated by the displacement of the ultrasonic probe 12 is provided. Based on this, the blood flow velocity is obtained by correcting the measurement velocity.
  • a probe moving speed calculation unit calculates a moving speed at each sample point as indicated by a sample point 68 in the third region of interest 62.
  • the moving speed of the ultrasonic probe can be obtained based on at least one of the displacement frame data and the elastic frame data in the third region of interest.
  • the probe moving speed V probe which is the Doppler shift speed generated by the displacement of the ultrasonic probe, differs from line to line
  • the speed value averaged in the sample direction by the sample direction averaging processing unit 70 is calculated. The same number of samples as in the second region of interest 60 are set.
  • the blood flow two-dimensional image construction unit 30 is a measurement speed calculation unit 72 that calculates a measurement speed from the RF signal frame data output from the phasing addition unit 22 via the data selection unit 24 and the input RF signal frame data. And, using the velocity information by the compression technique from the tissue movement speed calculation unit 64, the blood flow velocity calculation unit 66 for removing the tissue movement speed that is the displacement speed component from the measurement speed that is the output signal of the measurement speed calculation unit 72, A blood flow two-dimensional coordinate conversion unit 74 that performs coordinate conversion and a blood flow image processing unit 76 that performs image processing such as gamma processing on the blood flow image after coordinate conversion are provided.
  • the measurement speed calculation unit 72 performs signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing on the input RF frame data, and outputs speed data, flow rate data, and speed dispersion data. .
  • the blood flow velocity calculation unit 66 removes the tissue movement velocity V disp that is the tissue movement velocity by the compression obtained from the tissue movement velocity calculation unit 64 from the measurement velocity V dop obtained in the measurement velocity calculation unit 72, and performs the compression procedure.
  • the blood flow velocity that does not depend on is calculated.
  • FIG. 5 is a schematic diagram of a subject when blood flow and elasticity are simultaneously measured.
  • the subject 12 includes a structure 80 and a blood flow 82 that are harder than the surroundings, and the blood as shown in FIG. Assume that the region of interest is set for measurement of flow and elasticity.
  • FIG. 6 is a diagram schematically showing a measurement speed V dop measured in normal blood flow measurement and a tissue movement speed V disp that is a tissue movement speed due to compression.
  • a Doppler measurement image 84 represents a Doppler shift speed measured in normal blood flow measurement, and a speed artifact 86a and a speed artifact 86b due to compression appear on the tissue. Further, since the hard structure in the subject does not move at the same speed as the movement of the ultrasonic probe, a speed artifact 86c is generated. Also in the blood vessel 88, velocity artifacts 86d and velocity artifacts 86e are generated under the influence of compression from the blood vessel wall of the tissue. In addition, artifacts are generated inside the subject 12 as long as the tissue in the subject does not move at the same speed as the movement of the ultrasound probe. The blood flow velocity including velocity artifacts is measured by the movement of the tentacles.
  • the tissue displacement Doppler measurement image 90 is represented by the tissue moving speed generated when the tissue moves due to the compression of the ultrasonic probe. Specifically, the result is calculated from the amount of displacement by the tissue movement speed calculation unit 64, and the tissue movement speeds 92a and 92b due to the movement of the tissue due to the compression appear on the tissue. Further, the displacement of the hard structure in the subject is also calculated as the tissue moving speed, and a tissue moving speed 92c is generated. Even in the blood vessel 89, velocity artifacts 87a and velocity artifacts 87b are generated when affected by the pressure from the blood vessel wall of the tissue. In the blood vessel 89, in the position where the compression does not reach, the accuracy obtained by the elasticity information calculation unit 54 is low, so that there may be no speed.
  • FIG. 7 is a schematic diagram showing a probe moving speed V probe which is a Doppler shift speed generated by the displacement of the ultrasonic probe and a region of interest.
  • a probe moving speed image 94 is a speed value obtained by calculating the probe moving speed V probe in the third region of interest 62 from the amount of displacement by the tissue moving speed calculating unit 64. Since this measurement value is independent for each ultrasonic beam, a velocity offset of the same value is generated between samples on the same beam. Accordingly, as indicated by the probe moving speed 96 for each beam, the sample direction averaging processing unit 70 averages the sample direction and sets the same size as the first region of interest.
  • FIG. 8 schematically shows processing in the blood flow velocity calculation unit 66.
  • the blood flow rate arithmetic unit 66 from the measurement speed V dop 102 in accordance with Equation (5), and tissue movement velocity V disp 104 is a tissue displacement Doppler due to compression by the displacement of the ultrasonic probe
  • tissue movement velocity V disp 104 is a tissue displacement Doppler due to compression by the displacement of the ultrasonic probe
  • Measured speed calculation unit 72 creates flow rate data not only from the speed but also from the amplitude calculation value of the Doppler signal.
  • the blood flow velocity calculation unit 66 determines that it is a Doppler amplitude from the tissue due to compression when the result of correction according to Equation (5) is zero or near zero, and has a function of setting the flow rate data value to zero. The artifact can be suppressed even in the flow rate image.
  • the blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data based on the blood flow velocity corrected by the blood flow velocity calculation unit 66 into a shape matching the display 36, and the blood flow image processing unit Filter processing and gamma processing for presenting the image with an image quality suitable for diagnosis are performed for the operator, and the result is transferred to the synthesis processing unit 34.
  • FIG. 9 is a conceptual diagram of an input image and an output image in the composition processing unit 34.
  • the blood flow image 0901 is output from the blood flow 2D image configuration unit 30, the elasticity image 0902 is output from the elasticity 2D image configuration unit 32, and the tomographic image 0903 is output from the tomography 2D image configuration unit 26.
  • the composition processing unit 34 sets a weighting ratio for each pixel based on the values of these data, and performs color coding to create a composite image 0904, which is displayed on the display 36.
  • the blood flow velocity calculation unit 66 performs Doppler correction processing according to the following equation (6) by excluding the term of the probe moving velocity V probe which is the displacement velocity component of the ultrasonic probe from equation (5). Also, it has a function of removing the displacement rate component of the tissue due to external force or body movement.
  • FIG. 10 shows details of the second embodiment of the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention.
  • the blood flow two-dimensional image constructing unit 30 shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the moving speed of the ultrasonic probe obtained by the tissue moving speed calculating unit 64.
  • Blood flow velocity obtained based on the RF signal frame data frequency-shifted by the frequency shifter and blood moving velocity based on the tissue moving velocity calculated by the tissue moving velocity calculation unit It is an Example which produces
  • the displacement speed (tissue movement speed V disp ) calculated in the third region of interest is averaged in the sample direction in the sample direction averaging processing unit 70, and the blood flow two-dimensional image constructing unit 30 Input to the frequency shifter 120 located in the first stage.
  • the characteristic processing of the second embodiment is the frequency shifter 120 located in the preceding stage of the measurement speed calculation unit 72.
  • the frequency shifter 120 is a process for shifting the blood flow signal by the Doppler frequency corresponding to the moving speed of the ultrasonic probe that is the observation system, which is calculated by the sample direction averaging processing unit 70.
  • the moving speed component of the probe can be removed.
  • the measurement speed calculation unit 72 performs signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing on the RF blood flow data output from the frequency shifter 120 to obtain speed data, flow rate data, dispersion Output data.
  • signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing on the RF blood flow data output from the frequency shifter 120 to obtain speed data, flow rate data, dispersion Output data.
  • the blood flow velocity calculation unit 66 in the present embodiment removes the displacement velocity (tissue movement velocity V disp ) obtained from the tissue movement velocity calculator 64 from the measurement velocity in the velocity data obtained by the measurement velocity calculator 72. Unlike the first embodiment, the displacement speed component of the ultrasonic probe is removed by the frequency shifter 120. Therefore, the speed artifact caused by the compression can be removed by performing the Doppler correction process described in Equation (6).
  • the measurement velocity calculation unit 72 subtracts the displacement velocity due to the compression calculated from the second region of interest from the output data of the measurement velocity calculation unit 72, and the blood flow Transfer to the two-dimensional coordinate conversion unit 74.
  • the blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data corrected in the blood flow velocity calculation unit 66 into a shape that matches the display 36, and the blood flow image processing unit
  • filter processing and gamma processing for presenting image quality suitable for diagnosis are performed, transferred to the synthesis processing unit 34, and displayed on the display 36. According to the above processing, in the present embodiment, a correct Doppler measurement result without artifacts and offset can be displayed.
  • FIG. 11 shows the details of the third embodiment regarding the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention.
  • the blood flow two-dimensional image constructing unit 30 has only the Doppler frequency corresponding to the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject obtained by the tissue moving speed calculating unit 64.
  • a frequency shifter that shifts the frequency of the RF signal frame data is provided, and a blood flow image is generated based on the blood flow velocity obtained based on the RF signal frame data shifted in frequency by the frequency shifter.
  • the tissue movement speed calculation unit 64 calculates the displacement speed from the displacement amount obtained by the displacement measurement unit 52, the displacement speed at each sample point in the region in the second region of interest 60, and the third region of interest 62 Calculate the displacement speed.
  • the displacement speed in the second region of interest 60 is transferred to the frequency shifter 120 located in the first stage of the blood flow two-dimensional image construction unit 30. Further, the displacement speed calculated in the third region of interest is also averaged in the sample direction by the sample direction averaging processing unit 70 and input to the frequency shifter 120.
  • the characteristic processing of the third embodiment is the frequency shifter 120 located in the preceding stage of the blood flow velocity calculation unit 66.
  • the frequency shifter 120 calculates only the difference (V disp ⁇ V probe ) of the Doppler frequency corresponding to the moving speed of the ultrasonic probe that is the observation system, calculated by the tissue moving speed calculating unit 64 and the sample direction averaging processing unit 70. This is a process of shifting the blood flow signal. By performing the Doppler correction process described in the equation (5), the speed artifact due to the compression can be removed.
  • the blood flow velocity calculation unit 66 performs signal processing such as autocorrelation processing, velocity calculation, power calculation, dispersion calculation, and filter processing on the RF blood flow data output from the frequency shifter 120, and the velocity data, flow rate data, The distributed data is transferred to the blood flow two-dimensional coordinate conversion unit 74.
  • a blood flow two-dimensional coordinate conversion unit 74 performs a conversion process of blood flow image data into a shape that matches the display 36, and the blood flow image processing unit provides the operator with an image quality suitable for diagnosis. Filter processing and gamma processing are performed, transferred to the synthesis processing unit 34, and displayed on the display 36. According to the present embodiment, it is possible to display a correct Doppler measurement result without artifacts and offsets.
  • FIG. 12 shows the details of the fourth embodiment regarding the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention.
  • FIG. 12 shows the details of the fourth embodiment regarding the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention.
  • the present embodiment is a method for obtaining a part of the displacement speed due to the compression of the ultrasonic probe by the calculation processing in the measurement speed calculation section. More specifically, the moving speed of the ultrasonic probe is obtained by the measurement speed calculation unit, and the measurement speed obtained by the measurement speed calculation unit, the moving speed of the ultrasonic probe, and the tissue movement speed calculation unit are obtained. A blood flow image is generated based on the moving speed of the tissue on the tomographic plane of the subject. In other words, the calculation of the displacement speed in the third region of interest 62 is directly performed by the measurement speed calculator 72. A description of the same parts as in the first embodiment will be omitted.
  • the tissue movement speed calculation unit 64 calculates the displacement speed at each sample point in the region of the second region of interest 60 from the displacement obtained by the displacement measurement unit 52, and the blood flow of the blood flow two-dimensional image configuration unit 30 Transfer to speed calculator 66.
  • the region of interest near the body surface in contact with the ultrasonic probe is automatically set by the operator or arbitrarily, and the moving speed of the tissue in the region of interest is directly obtained.
  • the moving speed of the ultrasound probe calculated by the measurement speed calculating unit 72 is averaged in the sample direction in the sample direction averaging processing unit 70, together with the tissue displacement speed information output from the tissue moving speed calculating unit 64, This is input to the blood flow velocity calculation unit 66.
  • the blood flow velocity calculation unit 66 in the present embodiment can remove the velocity artifact due to the compression by realizing the equation (5).
  • the blood flow velocity calculation unit 66 outputs the difference between the displacement velocity due to the compression calculated from the second region of interest and the displacement velocity of the ultrasonic probe calculated from the third region of interest.
  • the data is subtracted from the data and transferred to the blood flow two-dimensional coordinate conversion unit 74.
  • the blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data corrected in the blood flow velocity calculation unit 66 into a shape that matches the display 36, and the blood flow image processing unit Filter processing and gamma processing for presentation with an image quality suitable for diagnosis are performed, transferred to the synthesis processing unit 34, and displayed on the display 36.
  • FIG. 13 shows the details of the fifth embodiment regarding the processing of each block of the tomographic 2D image construction unit 26 in FIG. 1, the blood flow 2D image construction unit 30 and the elastic 2D image construction unit 32 characteristic of the present invention.
  • FIG. 13 shows the details of the fifth embodiment regarding the processing of each block of the tomographic 2D image construction unit 26 in FIG. 1, the blood flow 2D image construction unit 30 and the elastic 2D image construction unit 32 characteristic of the present invention.
  • This embodiment is a method of calculating the displacement speed of the ultrasonic probe in the second embodiment by blood flow speed calculation processing in the measurement speed calculation section. More specifically, the moving speed of the ultrasonic probe is obtained by the measurement speed calculation unit 72, and only the Doppler frequency corresponding to the moving speed of the ultrasonic probe obtained by the measurement speed calculation unit 72 is an RF signal frame. A frequency shifter for shifting the frequency of the data is provided, and the blood flow velocity obtained based on the RF signal frame data frequency-shifted by the frequency shifter and the tomographic plane of the subject obtained by the tissue movement velocity calculation unit 64 A blood flow image is generated based on the moving speed of the tissue. Description of the same parts as those in the first or second embodiment will be omitted.
  • the tissue movement speed calculation unit 64 calculates the tissue movement speed by calculating the displacement speed at each sample point in the region of the second region of interest 60 from the amount of displacement obtained by the displacement measurement unit 52.
  • a blood flow velocity calculation unit 66 that removes the tissue movement velocity from the measurement velocity obtained by the measurement velocity calculation unit 72, and a blood flow two-dimensional coordinate conversion unit 74 that performs coordinate conversion on the output signal of the blood flow velocity calculation unit 66
  • a blood flow image processing unit 76 that performs image processing such as gamma processing on the blood flow image after coordinate conversion.
  • the fifth embodiment differs from the second embodiment in that the measurement speed calculation unit 72 directly calculates the displacement speed in the third region of interest 62.
  • the third region of interest the region of interest near the body surface in contact with the ultrasound probe is automatically set by the examiner or arbitrarily, and the moving speed of the tissue in the region of interest is directly obtained by the measurement speed calculation unit 72.
  • the moving speed of the ultrasound probe calculated by the measurement speed calculation unit 72 is averaged in the sample direction by the sample direction averaging processing unit 70, and the frequency shifter 120 located in the first stage of the blood flow two-dimensional image construction unit 30 Entered.
  • the frequency shifter 120 is a process for shifting the blood flow signal by the Doppler frequency corresponding to the moving speed of the ultrasonic probe that is the observation system, which is calculated by the sample direction averaging processing unit 70.
  • the moving speed component of the probe can be removed.
  • the measurement speed calculation unit 72 calculates the moving speed of the ultrasonic probe in the third region of interest, and inputs it to the frequency shifter 120. Then, for the RF blood flow data output from the frequency shifter 120, Signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing is performed, and speed data, flow rate data, and dispersion data are output.
  • Signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing is performed, and speed data, flow rate data, and dispersion data are output.
  • the blood flow velocity calculation unit 66 in the present embodiment can remove velocity artifacts due to compression by realizing Equation (6). Further, in the blood flow velocity calculation unit 66, the measurement velocity calculation unit 72 subtracts the displacement velocity due to the compression calculated from the second region of interest from the output data of the measurement velocity calculation unit 72, and the blood flow two-dimensional coordinate conversion unit Forward to 74.
  • the blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data corrected by the blood flow velocity calculation unit 66 into a shape that matches the display 36.
  • filter processing and gamma processing for presenting the examiner with an image quality suitable for diagnosis are performed, transferred to the synthesis processing unit 34, and displayed on the display 36.
  • the processing of the blood flow velocity calculation unit 66 in the present embodiment can also be performed by the frequency shifter 120 as in the third embodiment.
  • the blood flow velocity calculation unit 66 includes the frequency shifter 120 that shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the probe moving speed.
  • the blood flow velocity is obtained based on the measurement speed shifted by the frequency shifter 120 and the tissue movement speed. It has a frequency shifter 120 that shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the probe moving speed and the tissue moving speed, and the blood flow velocity calculating unit 66 is an RF signal frequency-shifted by the frequency shifter 120.
  • the blood flow velocity is obtained based on the frame data.
  • the tissue movement speed calculation unit 64 includes at least the displacement frame data and the elastic frame data. Based on one, the tissue moving speed is obtained, and the blood flow speed calculating unit 66 calculates the blood flow speed based on the probe moving speed and the tissue moving speed.
  • the tissue movement speed calculation unit 64 is at least one of displacement frame data and elastic frame data.
  • the blood flow velocity calculation unit 66 has a frequency shifter 120 that shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the probe movement velocity. The blood flow velocity is calculated based on the measurement velocity obtained based on the shifted RF signal frame data, the probe movement velocity, and the tissue movement velocity.
  • FIG. 14 is a diagram illustrating the overall configuration of the ultrasonic diagnostic apparatus according to the sixth embodiment.
  • the present embodiment is an embodiment in the case of creating a three-dimensional image using the methods described in the first to fifth embodiments.
  • a motor is connected to a probe head portion formed by arranging a plurality of transducers, and the subject 12 is three-dimensionally connected to the subject 12 via the transducers. It has a function to transmit and receive ultrasonic waves.
  • an ultrasonic probe that two-dimensionally arranges transducers and transmits and receives ultrasonic signals in three dimensions is connected.
  • the tomographic 2D image configuration unit 26, the blood flow 2D image configuration unit 30, and the elastic 2D image configuration unit 32 convert various image data before the 2D coordinate conversion into the tomographic 3D.
  • the data is input to the three-dimensional coordinate conversion unit 122, the blood flow three-dimensional coordinate conversion unit 124, and the elastic three-dimensional coordinate conversion unit 126.
  • the tomographic 3D coordinate conversion unit 122, the blood flow 3D coordinate conversion unit 124, and the elastic 3D coordinate conversion unit 126 perform 3D coordinate conversion on the input image, and output 3D volume data to the rendering unit 128.
  • the rendering unit 128 accumulates various 3D volume data from the tomographic 3D coordinate conversion unit 122, the blood flow 3D coordinate conversion unit 124, and the elastic 3D coordinate conversion unit 126 on the 2D projection plane by multiplying the transmittance. Then, a three-dimensional image is created and output to the synthesis processing unit 34.
  • FIG. 15 is a diagram showing details of processing of each block of the tomographic two-dimensional image construction unit 26, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 in FIG.
  • the output signal of the tomographic information calculation unit 40 is output to the tomographic three-dimensional coordinate conversion unit 122. Further, in order to perform the three-dimensional coordinate conversion, the output signal of the elastic information calculation unit 54 is output to the elastic three-dimensional coordinate conversion unit 126. Further, in order to perform the three-dimensional coordinate conversion, the output signal of the blood flow velocity calculation unit 66 is output to the blood flow three-dimensional coordinate conversion unit 124.
  • FIG. 16 shows a conceptual diagram in a case where a blood flow image is acquired three-dimensionally while performing a compression technique on a subject via an ultrasonic probe.
  • the ultrasonic probe 14 is manually or mechanically pushed into the subject 12, and the amount of displacement is measured by applying pressure.
  • the two-dimensional tomographic image / blood flow composite image 130 is a composite image of a tomographic image and a blood flow image acquired when the ultrasound probe 14 is stationary, and includes a tumor 132 and a blood vessel 134.
  • a positive Doppler shift approaching the ultrasonic probe during the push-in operation and a negative movement away from the ultrasonic probe during the pull-back operation are performed.
  • the direction Doppler shift is taken into account.
  • a two-dimensional tomographic image / blood flow composite image 136 is a composite image of a tomographic image and a blood flow image being pushed in, and an artifact 138 resulting from the push is superimposed on the image.
  • the two-dimensional ultrasonic image 140 is an ultrasonic image during the pull back operation, and the artifact 142 due to the pull back is superimposed on the image.
  • the blood flow image does not show the correct speed due to the compression technique, and a cyclic offset is applied depending on the compression technique, and the Doppler shift amount is detected even from a stationary area. Artifacts are generated on the structure in the subject and the blood flow image.
  • FIG. 17 is a conceptual diagram of a three-dimensional image created by removing artifacts by performing Doppler shift correction processing.
  • a 3D blood flow image without a speed artifact and a 3D composite image 150 of a 3D tomographic image are obtained.
  • a 3D elasticity image is created by rendering processing, it can be superimposed on the 3D composite image 150 to create and display a 3D blood flow / tomographic / elastic composite image 152.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

In order to improve the accuracy of a blood flow image generated in the state in which compression on the tissue of a cross-sectional plane of a subject is changing, disclosed is an ultrasonic diagnosis device provided with an ultrasonic probe (12) which transmits/receives ultrasonic waves to/from the subject, a blood flow image construction unit (30) which generates a blood flow image by Doppler measurement on the basis of a reflection echo signal measured by the ultrasonic probe (12), and an image display unit (36) which displays the blood flow image, the ultrasonic diagnosis device being provided with a measured velocity calculation unit (72) which calculates the measured velocity by Doppler measurement, a tissue movement velocity calculation unit (64) which finds the tissue movement velocity that is the movement velocity of the tissue of the subject, and a blood flow velocity calculation unit (66) which corrects the measured velocity on the basis of the tissue movement velocity to find the blood flow velocity of the subject. The blood flow image construction unit (30) constructs the blood flow image on the basis of the blood flow velocity found by the blood flow velocity calculation unit (66). The blood flow velocity found by the blood flow velocity calculation unit (66) is a velocity independent of the compression technique.

Description

超音波診断装置、及び血流画像生成方法Ultrasonic diagnostic apparatus and blood flow image generation method
 本発明は、超音波診断装置、及び血流画像の生成方法に係り、特に、被検体の血管を含む断層面の組織に対する圧迫が変化している状態において生成される血流画像の精度を向上させる技術に関する。 The present invention relates to an ultrasonic diagnostic apparatus and a method for generating a blood flow image, and in particular, improves the accuracy of a blood flow image generated in a state where pressure on a tomographic tissue including a blood vessel of a subject is changing. It is related to the technology.
 超音波診断装置は、超音波探触子により被検体内部に超音波を送信するとともに、被検体内部から生体組織の構造に応じた超音波の反射エコー信号を受信し、断層画像(例えばBモード像等)を構成して診断用に表示するものである。 The ultrasonic diagnostic apparatus transmits ultrasonic waves to the inside of the subject using an ultrasonic probe, receives an ultrasonic reflected echo signal corresponding to the structure of the living tissue from the inside of the subject, and produces a tomographic image (e.g., B mode). Image etc.) and displayed for diagnosis.
 また、断層画像以外にも、例えば反射エコー信号の超音波周波数が血球の移動によりドプラシフトする性質を利用して、反射エコー信号についてドプラ復調、血流演算などを行って血流画像を生成することが知られている。 In addition to tomographic images, for example, using the property that the ultrasonic frequency of the reflected echo signal is Doppler shifted by the movement of blood cells, the blood flow image is generated by performing Doppler demodulation, blood flow calculation, etc. on the reflected echo signal It has been known.
 さらに近年、特許文献1に示す様に、被検体の断層面の組織の硬さ又は軟らかさを表す弾性画像を生成することが開示されている。より具体的には、弾性画像は、超音波探触子の超音波送受信面で被検体の組織を圧迫しながら、又は被検体の心臓の拍動等の体動を利用して組織を圧迫しながら超音波受信信号を計測し、圧迫状態が異なる2つのRF信号フレームデータに基づいて断層面の組織の変位を求め、その変位データに基づいて生成される。 More recently, as disclosed in Patent Document 1, it has been disclosed to generate an elastic image representing the hardness or softness of the tissue on the tomographic plane of the subject. More specifically, the elastic image is obtained by compressing the tissue while compressing the tissue of the subject on the ultrasound transmission / reception surface of the ultrasound probe or using body motion such as the heartbeat of the subject. While measuring the ultrasonic reception signal, the displacement of the tissue on the tomographic plane is obtained based on the two RF signal frame data with different compression states, and generated based on the displacement data.
 例えば癌などの悪性の腫瘍は、周辺組織より硬くなることが多く、特許文献1に示されるように、硬さを表わすパラメータを画像化できれば、腫瘍の良性、悪性を判断するための有効な情報を得ることができ、診断の助けとなる。 For example, malignant tumors such as cancer are often harder than the surrounding tissues, and as shown in Patent Document 1, if parameters representing hardness can be imaged, effective information for determining benign and malignant tumors Can help you diagnose.
 一方で、癌のような悪性の腫瘍は組織内に成長のための血管を引き込むことが知られており、腫瘍内に血管が存在するかどうかを知ることも腫瘍の良性/悪性を判断するための有効な情報となりうる。 On the other hand, malignant tumors such as cancer are known to draw blood vessels for growth in tissues, and knowing whether blood vessels exist in tumors also determines benign / malignant tumors Can be useful information.
 そこで、超音波探触子により組織を圧迫しながら又は拍動等を利用して組織を圧迫しながら弾性画像を表示すると同時に、反射エコー信号のドプラ成分を画像化することにより血流画像を表示することができれば、組織の硬さと血流の有無という異なる指標から腫瘍の良性/悪性を判断できるので有用であると考えられる。 Therefore, while displaying the elastic image while compressing the tissue with an ultrasonic probe or compressing the tissue using pulsation, etc., the blood flow image is displayed by imaging the Doppler component of the reflected echo signal. If possible, it is considered useful because the benign / malignant tumor can be judged from different indices such as tissue hardness and blood flow.
特開2000-060853号公報JP 2000-060853 A 特開2006-110360号公報JP 2006-110360 A
 しかしながら、弾性画像と血流画像を同時に取得しようとした場合、断層面の組織に対して変動が生じている状態で反射エコー信号が取得されるから、反射エコー信号には血流のドプラ成分に加え、組織の変動によるドプラ成分が含まれて、血流画像にアーチファクトが生成されるおそれがある。 However, if an elastic image and a blood flow image are acquired simultaneously, a reflected echo signal is acquired in a state where the tissue on the tomographic plane is fluctuating. In addition, Doppler components due to tissue changes are included, and artifacts may be generated in the blood flow image.
 この点、特許文献2には、血流画像上に大きく発生するフラッシュアーチファクトを検出し、検出されたフレームごと除去する手段が開示されているが、弾性画像と血流画像を同時に取得しながら血流画像のアーチファクトを除去することは考慮されていない。 In this regard, Patent Document 2 discloses a means for detecting a flash artifact that occurs largely on a blood flow image and removing it for each detected frame. The removal of artifacts in the flow image is not considered.
 すなわち、組織に対して繰り返し圧迫を行っている以上、アーチファクトが発生しない状態は圧迫の押し/引きが入れ替わる1時相のみであり、その他のフレームにはドプラ成分に圧迫による組織の速度成分が加味されることになる。一方で、弾性画像を取得するためには、圧迫の押し/引きにより組織が変位している必要がある。したがって、アーチファクトが発生するフレームを除去する手段では、弾性画像と血流画像とを同時に取得しながら、血流画像の精度を向上させることは難しいと考えられる。 In other words, as long as the tissue is repeatedly compressed, the state in which no artifact occurs is only the one time phase in which the pressing / pulling of the compression is switched, and the velocity component of the tissue due to the compression is added to the Doppler component in the other frames. Will be. On the other hand, in order to acquire an elastic image, the tissue needs to be displaced by pressing / pulling of compression. Therefore, it is considered difficult to improve the accuracy of the blood flow image while simultaneously acquiring the elastic image and the blood flow image by the means for removing the frame in which the artifact is generated.
 さらに、ドプラ偏移周波数は観測対象(例えば血流)の速度に加え、観測系(例えば超音波探触子)の移動速度により決定されるが、特許文献2では圧迫手技にともなう超音波探触子の移動速度について考慮されていない。 Furthermore, the Doppler shift frequency is determined by the moving speed of the observation system (e.g., ultrasound probe) in addition to the speed of the observation target (e.g. blood flow), but in Patent Document 2, the ultrasonic probe associated with the compression technique is used. The moving speed of the child is not considered.
 そこで本発明は、被検体の断層面の組織に対する圧迫が変化している状態で生成される血流画像の精度を向上させることを課題とする。 Therefore, an object of the present invention is to improve the accuracy of a blood flow image generated in a state in which the pressure on the tissue on the tomographic plane of the subject is changing.
 本発明の超音波診断装置は、基本的な構成として、被検体との間で超音波を送受信する超音波探触子と、超音波探触子で計測された反射エコー信号に基づいてドプラ計測による血流画像を生成する血流画像構成部と、血流画像を表示する画像表示器とを備えた超音波診断装置であって、ドプラ計測により計測速度を演算する計測速度演算部と、被検体の組織の移動速度である組織移動速度を求める組織移動速度演算部と、組織移動速度に基づいて計測速度を補正し、被検体の血流速度を求める血流速度演算部とを備え、血流画像構成部は、血流速度演算部によって求められた血流速度に基づいて血流画像を構成する。 The ultrasonic diagnostic apparatus according to the present invention basically includes an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject, and Doppler measurement based on reflected echo signals measured by the ultrasonic probe. An ultrasonic diagnostic apparatus comprising a blood flow image constructing unit that generates a blood flow image by a blood flow and an image display that displays a blood flow image, a measurement speed computing unit that computes a measurement speed by Doppler measurement, A tissue movement speed calculation unit that obtains a tissue movement speed that is the movement speed of the tissue of the specimen, and a blood flow rate calculation unit that corrects the measurement speed based on the tissue movement speed and obtains the blood flow speed of the subject. The flow image construction unit constructs a blood flow image based on the blood flow velocity obtained by the blood flow velocity calculation unit.
 すなわち、被検体の心臓の拍動等の体動を利用して断層面の組織に対する圧迫を変化させながら血流画像を生成する場合、反射エコー信号には血流のドプラ成分に加え組織の変位によるドプラ成分が含まれる。この点、本発明は少なくとも圧迫の変化による断層面の組織の移動速度を求めて、計測速度演算部で得られた計測速度を、組織の移動速度に基づいて補正するので、組織の変位によるドプラ成分を除外した精度の高い血流画像を得ることができる。 That is, when generating a blood flow image while changing the pressure on the tissue on the tomographic plane using body motion such as the heartbeat of the subject, the reflected echo signal contains the displacement of the tissue in addition to the Doppler component of the blood flow. Doppler component is included. In this respect, the present invention obtains at least the moving speed of the tissue on the tomographic plane due to the change in pressure, and corrects the measuring speed obtained by the measuring speed calculating unit based on the moving speed of the tissue. A highly accurate blood flow image excluding components can be obtained.
 また例えば、超音波探触子の超音波送受信面で被検体を押圧しながら被検体の断層面の組織に対する圧迫を変化させる場合には、速度演算部は、変位フレームデータ及び弾性フレームデータの少なくとも一方に基づいて、超音波探触子の移動速度と被検体の断層面の組織の移動速度とを求め、血流画像構成部は、計測速度演算部により求められた計測速度を、速度演算部により求められた超音波探触子の移動速度と被検体の断層面の組織の移動速度とに基づいて補正して血流画像を生成するよう構成することができる。 Also, for example, when changing the pressure on the tissue on the tomographic plane of the subject while pressing the subject on the ultrasonic transmission / reception surface of the ultrasonic probe, the velocity calculation unit includes at least the displacement frame data and the elastic frame data. On the basis of one of them, the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject are obtained, and the blood flow image constructing unit obtains the measuring speed obtained by the measuring speed computing unit from the speed computing unit. The blood flow image can be configured to be corrected based on the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject obtained by the above.
 すなわち、超音波探触子の超音波送受信面で被検体を押圧する場合には、組織の変位だけではなく、観測系である超音波探触子自体の変位も血流画像の精度を悪化させる要因となる。そこで本発明は、超音波探触子の移動速度と被検体の断層面の組織の移動速度とを求めて、求められた超音波探触子の移動速度と被検体の断層面の組織の移動速度とに基づいて、計測速度演算部で得られた計測速度を補正することにより、精度の高い血流画像を得ることができる。 In other words, when the subject is pressed by the ultrasound transmission / reception surface of the ultrasound probe, not only the displacement of the tissue but also the displacement of the ultrasound probe itself as the observation system deteriorates the accuracy of the blood flow image. It becomes a factor. Accordingly, the present invention obtains the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject, and determines the moving speed of the ultrasonic probe and the moving of the tissue on the tomographic plane of the subject. By correcting the measurement speed obtained by the measurement speed calculation unit based on the speed, a highly accurate blood flow image can be obtained.
 より具体的には、計測速度演算部により求められた計測速度から、速度演算部により求められた超音波探触子の移動速度と被検体の断層面の組織の移動速度との差分を引いて、血流速度を演算する血流速度演算部を有し、補正された血流速度に基づいて血流画像を生成するよう構成することができる。 More specifically, the difference between the moving speed of the ultrasound probe obtained by the speed calculating section and the moving speed of the tissue on the tomographic plane of the subject is subtracted from the measured speed obtained by the measuring speed calculating section. The blood flow velocity calculation unit that calculates the blood flow velocity can be configured to generate a blood flow image based on the corrected blood flow velocity.
 本発明によれば、被検体の断層面の組織に対する圧迫が変化している状態で生成される血流画像の精度を向上させることができる。 According to the present invention, it is possible to improve the accuracy of a blood flow image generated in a state where the pressure on the tissue on the tomographic plane of the subject is changing.
本実施形態の超音波診断装置の全体構成を示すブロック図Block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment 第1実施例の断層2次元画像構成部、血流2次元画像構成部、及び弾性2次元画像構成部の詳細を示す図The figure which shows the detail of the tomographic 2D image structure part of 1st Example, the blood flow 2D image structure part, and the elastic 2D image structure part 超音波探触子による被検体の圧迫の概念を示す図The figure which shows the concept of the compression of the subject by the ultrasonic probe 関心領域の設定についての概念を示す図Diagram showing the concept of region of interest setting 血流と弾性を同時計測する場合の被検体の模式図Schematic diagram of the subject when measuring blood flow and elasticity simultaneously 血流計測において計測される計測速度Vdop、超音波探触子の圧迫によるドプラ偏移速度である組織移動速度Vdispを模式的に表した図Schematic representation of the measurement speed V dop measured in blood flow measurement and the tissue movement speed V disp , which is the Doppler shift speed due to compression of the ultrasound probe 超音波探触子の変位により発生するドプラ偏移速度による探触子移動速度Vprobeとその関心領域を表した模式図Schematic diagram showing the probe moving speed V probe by the Doppler shift speed generated by the displacement of the ultrasonic probe and its region of interest 血流速度演算部における処理を模式的に表した図A diagram schematically showing the processing in the blood flow velocity calculation unit 画像合成部における入力画像と出力画像の概念図Conceptual diagram of input image and output image in image composition unit 第2実施例の断層2次元画像構成部、血流2次元画像構成部、及び弾性2次元画像構成部の詳細を示す図The figure which shows the detail of the tomographic 2D image structure part of 2nd Example, the blood flow 2D image structure part, and the elastic 2D image structure part 第3実施例の断層2次元画像構成部、血流2次元画像構成部、及び弾性2次元画像構成部の詳細を示す図The figure which shows the detail of the tomographic 2D image structure part of 3rd Example, the blood flow 2D image structure part, and the elastic 2D image structure part 第4実施例の断層2次元画像構成部、血流2次元画像構成部、及び弾性2次元画像構成部の詳細を示す図The figure which shows the detail of the tomographic 2-dimensional image structure part of 4th Example, the blood flow 2-dimensional image structure part, and the elastic 2-dimensional image structure part 第5実施例の断層2次元画像構成部、血流2次元画像構成部、及び弾性2次元画像構成部の詳細を示す図The figure which shows the detail of the tomographic 2D image structure part of 5th Example, the blood flow 2D image structure part, and the elastic 2D image structure part 第6実施例の超音波診断装置の全体構成を示すブロック図The block diagram which shows the whole structure of the ultrasonic diagnosing device of 6th Example 第6実施例の断層2次元画像構成部、血流2次元画像構成部、及び弾性2次元画像構成部の詳細を示す図The figure which shows the detail of the tomographic 2D image structure part of 6th Example, the blood flow 2D image structure part, and the elastic 2D image structure part 超音波探触子を介して被検体に対し圧迫手技を実施しながら3次元的に血流画像を取得した場合の概念図Conceptual diagram when blood flow images are acquired three-dimensionally while performing a compression procedure on a subject via an ultrasound probe ドプラシフト補正処理を行うことでアーチファクトを除去して作成した3次元画像の概念図Conceptual diagram of a 3D image created by removing artifacts by performing Doppler shift correction processing
 以下、本発明を適用してなる超音波診断装置の実施形態を説明する。なお、以下の説明では、同一機能部品については同一符号を付して重複説明を省略する。 Hereinafter, embodiments of an ultrasonic diagnostic apparatus to which the present invention is applied will be described. In the following description, the same functional parts are denoted by the same reference numerals, and redundant description is omitted.
 図1は本実施形態の超音波診断装置の全体構成を示すブロック図である。図1に示すように、超音波診断装置100には、被検体12に当接させて用いる超音波探触子14と、超音波探触子14を介して被検体12に時間間隔をおいて超音波を繰り返し送信する送信部16と、被検体12から発生する時系列の反射エコー信号を受信する受信部18と、送信部16と受信部18を制御する送受信制御部20と、受信部18で受信された反射エコーを整相加算する整相加算部22とが備えられている。 FIG. 1 is a block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment. As shown in FIG. 1, the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 14 that is used in contact with the subject 12, and a time interval between the subject 12 and the ultrasonic probe 14. A transmitter 16 that repeatedly transmits ultrasonic waves, a receiver 18 that receives time-series reflected echo signals generated from the subject 12, a transmission / reception controller 20 that controls the transmitter 16 and the receiver 18, and a receiver 18 And a phasing addition unit 22 for phasing and adding the reflected echo received in (1).
 また、超音波診断装置100には、キーボード、マウス、タッチパネル、トラックボール等の入力インターフェースとなるコントロールパネル27を介して入力される指令に応じて装置を構成する各部を制御する制御部28が備えられている。また、制御部28からの指令に応じて整相加算部22から出力された時系列のRF信号フレームデータから任意のRF信号フレームデータを選択するデータ選択部24と、データ選択部24から出力されるRF信号フレームデータに基づいて断層画像を生成する断層2次元画像構成部26、血流画像を生成する血流2次元画像構成部30、弾性画像を生成する弾性2次元画像構成部32が備えられている。さらに、各画像構成部から出力された画像データに基づいて画像の合成等の処理を行う合成処理部34と、合成処理部34から出力される画像が表示される表示器36が備えられている。 The ultrasonic diagnostic apparatus 100 also includes a control unit 28 that controls each part of the apparatus in response to a command input via a control panel 27 serving as an input interface such as a keyboard, a mouse, a touch panel, and a trackball. It has been. In addition, a data selection unit 24 that selects arbitrary RF signal frame data from time-series RF signal frame data output from the phasing addition unit 22 in response to a command from the control unit 28, and a data selection unit 24 A tomographic two-dimensional image constructing unit 26 that generates a tomographic image based on RF signal frame data, a blood flow two-dimensional image constructing unit 30 that generates a blood flow image, and an elastic two-dimensional image constructing unit 32 that generates an elastic image. It has been. Further, a synthesis processing unit 34 that performs processing such as image synthesis based on image data output from each image configuration unit, and a display 36 that displays an image output from the synthesis processing unit 34 are provided. .
 整相加算部22からのRF信号フレームデータのうち、断層画像データはデータ選択部24を介して断層2次元画像構成部26に転送され、制御部28における設置条件に基づいて被検体の断層画像例えば白黒断層画像が構築される。 Among the RF signal frame data from the phasing adder 22, the tomographic image data is transferred to the tomographic two-dimensional image constructing unit 26 via the data selecting unit 24, and the tomographic image of the subject based on the installation conditions in the control unit 28. For example, a black and white tomographic image is constructed.
 また、整相加算部22からのRF信号フレームデータのうち、血流画像データはデータ選択部24を介して血流2次元画像構成部30に転送され、制御部28における設置条件に基づいて被検体の血流画像、例えば血流量を暖色系の色づかいで示すパワー画像や、超音波探触子14に向かって近づく血球から生じる速度成分を暖色系の色で、遠ざかる血球から生じる速度成分を寒色系で表したカラーの血流画像が構築される。 Of the RF signal frame data from the phasing adder 22, the blood flow image data is transferred to the blood flow two-dimensional image construction unit 30 via the data selection unit 24, and is subjected to coverage based on the installation conditions in the control unit 28. Blood flow image of the specimen, for example, a power image showing the blood flow in warm color, and the velocity component generated from blood cells approaching the ultrasound probe 14 in a warm color, and the velocity component generated from moving blood cells in a cool color A color blood flow image represented in the system is constructed.
 また、整相加算部22からのRF信号フレームデータのうち、弾性画像データはデータ選択部24を介して弾性2次元画像構成部32に転送され、制御部28における設置条件に基づいて検者の圧迫によって被検体12に生じた歪みを青から緑を経て赤へと移る色相で表したカラーの弾性画像が構築される。 In addition, among the RF signal frame data from the phasing addition unit 22, the elasticity image data is transferred to the elasticity two-dimensional image configuration unit 32 via the data selection unit 24, and based on the installation conditions in the control unit 28, A color elastic image is constructed in which the distortion generated in the subject 12 due to the compression is represented by a hue that shifts from blue to green to red.
 断層2次元画像構成部26、血流2次元画像構成部30、弾性2次元画像構成部32で構築した各種画像は合成処理部34において重畳処理され、表示器36へと転送され、表示される。 Various images constructed by the tomographic two-dimensional image construction unit 26, the blood flow two-dimensional image construction unit 30, and the elastic two-dimensional image construction unit 32 are superimposed in the synthesis processing unit 34, transferred to the display 36, and displayed. .
 超音波探触子14は、複数の振動子を配設して形成されており、被検体12に振動子を介して超音波を送受信する機能を有している。送信部16は、超音波探触子14を駆動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波の収束点をある深さに設定する機能を有している。また、受信部18は、超音波探触子14で受信した反射エコー信号について所定のゲインで増幅してRF信号すなわち受波信号を生成するものである。整相加算部22は、受信部18で増幅されたRF信号を入力して位相制御し、一点又は複数の収束点に対し超音波ビームを形成してRF信号フレームデータを生成するものである。 The ultrasonic probe 14 is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 12 via the transducers. The transmission unit 16 generates a transmission pulse for generating an ultrasonic wave by driving the ultrasonic probe 14, and has a function of setting a convergence point of the transmitted ultrasonic wave to a certain depth. Yes. The receiving unit 18 amplifies the reflected echo signal received by the ultrasonic probe 14 with a predetermined gain to generate an RF signal, that is, a received signal. The phasing / adding unit 22 receives the RF signal amplified by the receiving unit 18 and performs phase control, and forms an ultrasonic beam at one or more convergence points to generate RF signal frame data.
 ここで、本実施形態の超音波診断装置100は、上記記載の装置構成を用いて、弾性データの計測と、血流データの計測を同時に行うものである。速度データの計測において数値化される計測速度Vdopはドプラ効果と呼ばれる現象により発生するドプラ周波数を求めることにより成り立ち、観測系である超音波探触子14が静止した状態であり、被検体12が超音波探触子14から遠ざかる方向に進む速度を正方向であるとすれば、超音波の周波数をf、音速をcとしてドプラ周波数は式(1)により求められる。 Here, the ultrasonic diagnostic apparatus 100 of the present embodiment performs measurement of elasticity data and measurement of blood flow data simultaneously using the above-described apparatus configuration. The measurement speed V dop quantified in the measurement of the speed data is obtained by obtaining the Doppler frequency generated by a phenomenon called the Doppler effect, and the ultrasonic probe 14 as the observation system is stationary, and the subject 12 Is a positive direction, the Doppler frequency can be obtained by Equation (1), where f is the ultrasonic frequency and c is the speed of sound.
Figure JPOXMLDOC01-appb-M000001
 ここで、速度データの計測において、血流からのドプラ効果は血管内を流れる血球の移動により発生すると解釈されているため、血流以外の組織が静止している状態では計測速度Vdopは血球の移動速度となり、生体内を伝搬する音速cに比べ十分に小さく、c>>Vdopと仮定することができる。
Figure JPOXMLDOC01-appb-M000001
Here, in the measurement of velocity data, it is interpreted that the Doppler effect from the blood flow is caused by the movement of blood cells flowing in the blood vessel. Therefore, when the tissue other than the blood flow is stationary, the measurement velocity V dop is It can be assumed that c >> V dop , which is sufficiently smaller than the sound velocity c propagating through the living body.
 したがって、計測速度Vdopは一般に下記の式(2)を用いてΔfを求めることにより求められる。 Therefore, the measurement speed V dop is generally obtained by obtaining Δf using the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 一方で、弾性データの計測を行うために超音波探触子14を介して圧迫を加える場合、図3(A)に示す被検体12に対し、図3(B)に示すように超音波送受信面を介して押圧して5~20%程度の歪みを発生させる。そして、図3(C)に示すように0.2~1%程度の歪みが発生するように超音波探触子14を繰り返し上下に圧迫することで被検体12に対し変位する変位量を計測して硬さの計測を行う。
Figure JPOXMLDOC01-appb-M000002
On the other hand, when pressure is applied via the ultrasound probe 14 to measure elasticity data, ultrasound transmission / reception is performed on the subject 12 shown in FIG. 3 (A) as shown in FIG. 3 (B). Press through the surface to generate 5-20% distortion. Then, as shown in FIG. 3 (C), the amount of displacement with respect to the subject 12 is measured by repeatedly pressing the ultrasonic probe 14 up and down so that distortion of about 0.2 to 1% occurs. And measure the hardness.
 このとき、歪みの大きさに関わらずドプラ計測における観測系である超音波探触子14と、通常、照射された超音波の周波数で振動することにより、ドプラ計測において音源と仮定される組織は静止しているという仮定を離れ、式(2)が正しく成立しない。 At this time, the tissue assumed as a sound source in Doppler measurement is obtained by oscillating at the ultrasonic probe 14 which is an observation system in Doppler measurement and the frequency of the irradiated ultrasonic wave, regardless of the magnitude of distortion. Apart from the assumption that it is stationary, Equation (2) does not hold correctly.
 このとき観測系である超音波探触子14は圧迫手技により探触子移動速度Vprobeで移動しながら超音波信号の受信を行うと考えることができる。また、被検体12からは血管内を流れる血球の移動によるドプラ遷移に加え、圧迫手技による組織の移動よるドプラ遷移が生じる。 At this time, it can be considered that the ultrasonic probe 14 as an observation system receives an ultrasonic signal while moving at a probe moving speed V probe by a compression technique. In addition to the Doppler transition caused by the movement of blood cells flowing in the blood vessel, the Doppler transition caused by the tissue movement caused by the compression technique occurs from the subject 12.
 ここで、被検体が超音波探触子から遠ざかって進む速度を正方向であるとき、血球の移動速度を血流速度Vblood、圧迫による組織の移動速度を組織移動速度Vdispとし、超音波探触子の移動する方向と圧迫により移動する組織の方向が一致しているとするとドプラ周波数は式(3)に示される。 Here, when the speed at which the subject is moving away from the ultrasound probe is in the positive direction, the blood cell moving speed is V blood , the tissue moving speed by compression is the tissue moving speed V disp , and the ultrasonic wave Assuming that the direction of movement of the probe and the direction of the tissue that moves due to the compression are the same, the Doppler frequency is expressed by Equation (3).
Figure JPOXMLDOC01-appb-M000003
 ここで、血管内を流れる血球の移動速度である血流速度Vbloodは生体内を伝搬する音速cに比べ十分に小さく、圧迫による変位速度はさらに小さく、c>>Vblood、c>>Vdisp、c>>Vprobeと仮定することができる。
Figure JPOXMLDOC01-appb-M000003
Here, the blood flow velocity V blood which is the moving speed of the blood cells flowing in the blood vessel is sufficiently smaller than the sound velocity c propagating in the living body, and the displacement velocity due to the compression is further smaller, c >> V blood , c >> V It can be assumed that disp , c >> V probe .
 したがって、計測速度Vdopは一般に下記の式(4)を用いてΔfを求めることにより求められる。 Therefore, the measurement speed V dop is generally obtained by obtaining Δf using the following equation (4).
Figure JPOXMLDOC01-appb-M000004
 通常のドプラ計測に用いられている式(2)により観測される速度成分が、式(4)に示される項より成り立っているとすれば、圧迫手技下の血流速度Vbloodはドプラ計測による計測速度Vdopを用いて式(5)のように求められる。
Figure JPOXMLDOC01-appb-M000004
If the velocity component observed by equation (2) used for normal Doppler measurement is composed of the terms shown in equation (4), the blood flow velocity V blood under the compression procedure is Using the measurement speed V dop , it is obtained as shown in Equation (5).
Figure JPOXMLDOC01-appb-M000005
 ここで、本実施形態では圧迫による組織の移動速度である組織移動速度Vdispを、計測速度Vdopから除去することにより、圧迫手技に依存しない血流速度Vbloodを演算することを特徴としている。よって、血流速度Vbloodは圧迫手技に影響しない。さらに、超音波探触子の変位により発生するドプラ偏移速度である探触子移動速度Vprobeに基づいて血流速度Vbloodを補正することもできる。以下、詳細について各実施例を用いて説明する。
Figure JPOXMLDOC01-appb-M000005
Here, the present embodiment is characterized in that the blood flow velocity V blood that does not depend on the compression technique is calculated by removing the tissue movement velocity V disp that is the tissue movement velocity due to the compression from the measurement velocity V dop . . Therefore, the blood flow velocity V blood does not affect the compression procedure. Furthermore, the blood flow velocity V blood can be corrected based on the probe moving velocity V probe which is a Doppler shift velocity generated by the displacement of the ultrasonic probe. Details will be described below using each embodiment.
 (第1実施例)
 第1の実施例について説明する。図2は、図1における断層2次元画像構成部26、特徴部である血流2次元画像構成部30、及び弾性2次元画像構成部32の各ブロックの処理について詳細を示した図である。
(First Example)
A first embodiment will be described. FIG. 2 is a diagram showing details of processing of each block of the tomographic two-dimensional image construction unit 26, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 which are characteristic parts in FIG.
 断層2次元画像構成部26は、断層情報演算部40と、断層2次元座標変換部42と、断層画像処理部44とを有している。断層情報演算部40は、データ選択部24を介して整相加算部22からのRF信号フレームデータを入力してゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理を行い、断層画像データを得るものである。また、断層2次元座標変換部42は、断層情報演算部40からの断層画像データを表示器36に合わせた形状への変換処理を行う。断層画像処理部44は検者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理を行い、合成処理部34へと転送する。 The tomographic 2D image construction unit 26 includes a tomographic information calculation unit 40, a tomographic 2D coordinate conversion unit 42, and a tomographic image processing unit 44. The tomographic information calculation unit 40 inputs the RF signal frame data from the phasing addition unit 22 via the data selection unit 24, performs signal processing such as gain correction, log compression, detection, contour enhancement, filter processing, etc. Image data is obtained. Further, the tomographic two-dimensional coordinate conversion unit 42 performs conversion processing of the tomographic image data from the tomographic information calculation unit 40 into a shape that matches the display 36. The tomographic image processing unit 44 performs filter processing and gamma processing for presenting the examiner with an image quality suitable for diagnosis, and transfers the result to the synthesis processing unit 34.
 弾性2次元画像構成部32は、整相加算部22からデータ選択部24を介して出力されるRF信号フレームデータを記憶し、少なくとも2枚のフレームデータを選択するRFフレーム選択部50と、被検体12の生体組織の変位を計測する変位計測部52と、変位計測部52で算定された変位情報から歪み又は弾性率を求める弾性情報演算部54と、弾性情報演算部54の出力信号を表示器36の表示に合うように変換する弾性2次元座標変換部56と、弾性2次元座標変換部56の出力画像に対し、表示のためのフィルタ処理など行う弾性画像処理部58とが備えられている。 The elastic 2D image construction unit 32 stores the RF signal frame data output from the phasing addition unit 22 via the data selection unit 24, and an RF frame selection unit 50 for selecting at least two pieces of frame data, A displacement measurement unit 52 that measures the displacement of the biological tissue of the specimen 12, an elasticity information calculation unit 54 that obtains strain or elastic modulus from the displacement information calculated by the displacement measurement unit 52, and an output signal of the elasticity information calculation unit 54 are displayed. An elastic two-dimensional coordinate conversion unit 56 that converts the display to match the display of the device 36, and an elastic image processing unit 58 that performs filter processing for display on the output image of the elastic two-dimensional coordinate conversion unit 56. Yes.
 RFフレーム選択部50は、整相加算部22からデータ選択部24を介して得られる複数の弾性計測用RF信号フレームデータを格納し、格納されたRF信号フレームデータ群から1組すなわち2つのRF信号フレームデータを選択する。例えば、整相加算部22から時系列すなわち画像のフレームレートに基づいて生成されるRF信号フレームデータをRFフレーム選択部50に順次記憶し、記憶されたRF信号フレームデータ(N)を第1のデータとして選択すると同時に、時間的に過去に記憶されたRF信号フレームデータ群(N-1、N-2、N-3・・・N-M)の中から1つのRF信号フレームデータ(X)を選択する。なお、ここでN、M、XはRF信号フレームデータに付されたインデックス番号であり、自然数とする。 The RF frame selection unit 50 stores a plurality of elasticity measurement RF signal frame data obtained from the phasing addition unit 22 via the data selection unit 24, and one set, that is, two RF signals from the stored RF signal frame data group. Select signal frame data. For example, the RF signal frame data generated based on the time series, that is, the frame rate of the image from the phasing adder 22, is sequentially stored in the RF frame selector 50, and the stored RF signal frame data (N) is stored in the first At the same time as selecting data, select one RF signal frame data (X) from the RF signal frame data group (N-1, N-2, N-3 ... NM) stored in the past in time To do. Here, N, M, and X are index numbers assigned to the RF signal frame data, and are natural numbers.
 そして、変位計測部52は、選択された1組のデータすなわちRF信号フレームデータ(N)及びRF信号フレームデータ(X)から1次元或いは2次元相関処理を行って、断層画像の各点に対応する生体組織における変位や移動ベクトルすなわち変位の方向と大きさに関する1次元又は2次元変位分布を求める。ここで、移動ベクトルの検出にはブロックマッチング法を用いる。ブロックマッチング法とは、画像を例えばN×N画素からなるブロックに分け、関心領域内のブロックに着目し、着目しているブロックに最も近似しているブロックを前のフレームから探し、これを参照して予測符号化すなわち差分により標本値を決定する処理を行うものである。 Then, the displacement measuring unit 52 performs one-dimensional or two-dimensional correlation processing from the selected set of data, that is, the RF signal frame data (N) and the RF signal frame data (X), to correspond to each point of the tomographic image. A one-dimensional or two-dimensional displacement distribution related to the displacement or movement vector in the living tissue, that is, the direction and magnitude of the displacement is obtained. Here, a block matching method is used to detect the movement vector. The block matching method divides an image into blocks consisting of N × N pixels, for example, focuses on the block in the region of interest, searches the previous frame for the block that most closely matches the block of interest, and refers to this Thus, predictive coding, that is, processing for determining the sample value by the difference is performed.
 弾性情報演算部54は、変位計測部52から出力される計測値、例えば移動ベクトルや変位量より、その歪みを示す弾性画像信号すなわち弾性フレームデータを生成するものである。このとき、歪みのデータは、生体組織の移動量例えば変位を空間微分することによって算出される。 The elastic information calculation unit 54 generates an elastic image signal indicating the distortion, that is, elastic frame data, based on a measurement value output from the displacement measuring unit 52, for example, a movement vector and a displacement amount. At this time, the strain data is calculated by spatially differentiating the movement amount of the living tissue, for example, the displacement.
 また、弾性2次元座標変換部56は、弾性情報演算部54からの弾性画像データを表示器36に合わせた形状への変換処理を行い、弾性画像処理部58では検者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理が行われ、合成処理部34へと転送される。 The elastic two-dimensional coordinate conversion unit 56 converts the elastic image data from the elastic information calculation unit 54 into a shape that matches the display 36, and the elastic image processing unit 58 is suitable for diagnosis by the examiner. Filter processing and gamma processing for presenting with a high image quality are performed and transferred to the composition processing unit 34.
 また、弾性情報演算部54は相関演算結果、又は変位演算結果より弾性情報の確度を算定する機能を有しており、確度が低い領域についてはエラーとして弾性データを零に、あるいは非表示とすることができる。 The elasticity information calculation unit 54 has a function of calculating the accuracy of the elasticity information from the correlation calculation result or the displacement calculation result, and the elasticity data is set to zero or not displayed as an error in a region with low accuracy. be able to.
 ここで、本実施例の超音波診断装置100が圧迫手技による圧力を直接的に測定する圧力計測部を備えた構成であった場合には、変位計測部52から出力される変位量と圧力計測部から出力される圧力値とから断層画像上の各点に対応する生体組織の歪みや弾性率を演算することができる。弾性率は、圧力の変化を歪みの変化で除することによって計算される。 Here, when the ultrasonic diagnostic apparatus 100 of the present embodiment has a configuration including a pressure measurement unit that directly measures the pressure due to the compression procedure, the displacement amount and the pressure measurement output from the displacement measurement unit 52 are measured. The strain and elastic modulus of the living tissue corresponding to each point on the tomographic image can be calculated from the pressure value output from the unit. The elastic modulus is calculated by dividing the change in pressure by the change in strain.
 例えば、変位計測部52により計測された変位をL(X)、圧力計測部により計測された圧力をP(X)とすると、歪みΔS(X)は、L(X)を空間微分することによって算出することができるから、ΔS(X)=ΔL(X)/ΔXという式を用いて求められる。
また、弾性率データのヤング率Ym(X)は、Ym=(ΔP(X))/ΔS(X)という式によって算出される。このヤング率Ymから断層画像の各点に相当する生体組織の弾性率が求められるので、2次元の弾性画像データを連続的に得ることができる。なお、ヤング率とは、物体に加えられた単純引張り応力と、引張りに平行に生じるひずみに対する比である。もちろん、この機能がなかったとしても本発明の目的とするところに影響はない。
For example, assuming that the displacement measured by the displacement measuring unit 52 is L (X) and the pressure measured by the pressure measuring unit is P (X), the strain ΔS (X) is obtained by spatially differentiating L (X). Since it can be calculated, it is obtained using the equation: ΔS (X) = ΔL (X) / ΔX.
Further, the Young's modulus Ym (X) of the elastic modulus data is calculated by the equation Ym = (ΔP (X)) / ΔS (X). Since the Young's modulus Ym determines the elastic modulus of the living tissue corresponding to each point of the tomographic image, two-dimensional elastic image data can be obtained continuously. The Young's modulus is a ratio of a simple tensile stress applied to the object and a strain generated in parallel with the tension. Of course, the absence of this function does not affect the object of the present invention.
 ここで、本実施例で設定される弾性計測のための関心領域を、図4を用いて説明する。
弾性計測のための関心領域は、操作者が速度データの表示を行うために設定する任意の第1の関心領域59に従い、超音波探触子の圧迫によって組織が動くことにより発生するドプラ偏移速度である組織移動速度Vdispを計測するための第2の関心領域60と、超音波探触子の変位により発生するドプラ偏移速度である探触子移動速度Vprobeを計測するための第3の関心領域62が自動的に設定される。第3の関心領域は超音波探触子の送受信面と接する様に、もしくは送受信面近傍を上端として、自動設定される。なおこの例では、第1の関心領域は第2の関心領域と同じ領域に設定されているものとする。
Here, the region of interest for elasticity measurement set in the present embodiment will be described with reference to FIG.
The region of interest for elasticity measurement follows the first region of interest 59 set by the operator to display the velocity data, and the Doppler shift caused by the tissue moving due to the compression of the ultrasound probe A second region of interest 60 for measuring the tissue movement velocity V disp which is a velocity, and a second region for measuring the probe movement velocity V probe which is a Doppler shift velocity generated by the displacement of the ultrasonic probe. Three regions of interest 62 are automatically set. The third region of interest is automatically set so as to be in contact with the transmission / reception surface of the ultrasonic probe or with the vicinity of the transmission / reception surface as the upper end. In this example, it is assumed that the first region of interest is set to the same region as the second region of interest.
 また、超音波探触子14の変位により発生するドプラ偏移速度である探触子移動速度Vprobeを計測するための第3の関心領域62については、組織の構造や変位画像から検者が判断し、任意の位置に設定することも可能である。 The third region of interest 62 for measuring the probe movement speed V probe , which is the Doppler shift speed generated by the displacement of the ultrasonic probe 14, is determined by the examiner from the structure of the tissue and the displacement image. It is also possible to determine and set an arbitrary position.
 弾性2次元画像構成部32には組織移動速度演算部64が備えられており、血流2次元画像構成部30には血流速度演算部66が備えられている。組織移動速度演算部64は変位計測部52で得られる変位量(変位フレームデータ)から変位速度(組織移動速度Vdisp)を演算することができる。組織移動速度は、2フレーム間の移動距離を表わす変位量をその計測時間で除することで演算することが可能であり、変位量を、RFフレーム選択部50において選択された2フレーム間の時間間隔で除し、血流2次元画像構成部30の血流速度演算部66へと転送される。簡便には、変位計測部52で得られる変位量にフレームレートを乗じることでも同様の結果を得ることができる。なお組織移動速度演算部64は変位量に限らず、弾性情報演算部54で求められた弾性フレームデータから組織移動速度を演算することもできる。 The elastic two-dimensional image construction unit 32 includes a tissue movement speed calculation unit 64, and the blood flow two-dimensional image construction unit 30 includes a blood flow velocity calculation unit 66. The tissue movement speed calculation unit 64 can calculate the displacement speed (tissue movement speed V disp ) from the displacement amount (displacement frame data) obtained by the displacement measurement unit 52. The tissue movement speed can be calculated by dividing the displacement amount representing the movement distance between two frames by the measurement time, and the displacement amount is calculated as the time between the two frames selected by the RF frame selection unit 50. Divided by the interval, it is transferred to the blood flow velocity calculation unit 66 of the blood flow two-dimensional image construction unit 30. For simplicity, the same result can be obtained by multiplying the amount of displacement obtained by the displacement measuring unit 52 by the frame rate. The tissue movement speed calculation unit 64 is not limited to the amount of displacement, and can calculate the tissue movement speed from the elastic frame data obtained by the elasticity information calculation unit 54.
 本実施例の特徴部としては、被検体との間で超音波を送受信する超音波探触子12と、超音波探触子12で計測された反射エコー信号に基づいてドプラ計測による血流画像を生成する血流画像構成部30と、血流画像を表示する画像表示器36とを備えた超音波診断装置であって、 ドプラ計測により計測速度を演算する計測速度演算部72と、被検体の組織の移動速度である組織移動速度を求める組織移動速度演算部64と、組織移動速度に基づいて計測速度を補正し、被検体の血流速度を求める血流速度演算部66とを備え、血流画像構成部30は、血流速度演算部66によって求められた血流速度に基づいて血流画像を構成する。血流速度演算部66によって求められた血流速度は、圧迫手技に依存しない速度である。 The characteristic part of the present embodiment includes an ultrasonic probe 12 that transmits / receives ultrasonic waves to / from a subject, and a blood flow image obtained by Doppler measurement based on a reflected echo signal measured by the ultrasonic probe 12 A blood flow image construction unit 30 for generating a blood flow image and an image display 36 for displaying a blood flow image, a measurement speed calculation unit 72 for calculating a measurement speed by Doppler measurement, a subject A tissue movement speed calculation unit 64 that calculates a tissue movement speed that is the movement speed of the tissue, and a blood flow rate calculation unit 66 that corrects the measurement speed based on the tissue movement speed and calculates the blood flow velocity of the subject, The blood flow image construction unit 30 constructs a blood flow image based on the blood flow velocity obtained by the blood flow velocity calculation unit 66. The blood flow velocity obtained by the blood flow velocity calculator 66 is a velocity that does not depend on the compression technique.
 血流速度演算部66は、計測速度から組織移動速度を除去して血流速度を求める。血流速度演算部66は、計測速度から組織移動速度を差分することにより、血流速度を求める。また、超音波探触子12の変位により発生するドプラ偏移速度である探触子移動速度を求める探触子移動速度演算部を備え、血流速度演算部66は、探触子移動速度に基づいて計測速度を補正して血流速度を求める。 The blood flow velocity calculation unit 66 obtains the blood flow velocity by removing the tissue movement velocity from the measurement velocity. The blood flow velocity calculation unit 66 obtains the blood flow velocity by subtracting the tissue movement velocity from the measurement velocity. In addition, a probe moving speed calculation unit that obtains a probe moving speed that is a Doppler shift speed generated by the displacement of the ultrasonic probe 12 is provided. Based on this, the blood flow velocity is obtained by correcting the measurement velocity.
 探触子移動速度演算部(図示しない。)は、第3の関心領域62においてサンプル点68に示すように各サンプル点における移動速度を演算する。第3の関心領域における変位フレームデータ及び弾性フレームデータの少なくとも一方に基づいて、超音波探触子の移動速度を求めることができる。ここで、超音波探触子の変位により発生するドプラ偏移速度である探触子移動速度Vprobeはライン毎に異なるため、サンプル方向平均化処理部70においてサンプル方向に平均化した速度値を、第2の関心領域60と同じサンプル数だけ設定する。 A probe moving speed calculation unit (not shown) calculates a moving speed at each sample point as indicated by a sample point 68 in the third region of interest 62. The moving speed of the ultrasonic probe can be obtained based on at least one of the displacement frame data and the elastic frame data in the third region of interest. Here, since the probe moving speed V probe, which is the Doppler shift speed generated by the displacement of the ultrasonic probe, differs from line to line, the speed value averaged in the sample direction by the sample direction averaging processing unit 70 is calculated. The same number of samples as in the second region of interest 60 are set.
 血流2次元画像構成部30は整相加算部22からデータ選択部24を介して出力されるRF信号フレームデータと、入力されるRF信号フレームデータより、計測速度を演算する計測速度演算部72と、組織移動速度演算部64からの圧迫手技による速度情報を用い、計測速度演算部72の出力信号である計測速度から変位速度成分である組織移動速度を除去する血流速度演算部66と、座標変換を行う血流2次元座標変換部74と、座標変換後の血流画像に対し、ガンマ処理などの画像処理を行う血流画像処理部76が備えられている。 The blood flow two-dimensional image construction unit 30 is a measurement speed calculation unit 72 that calculates a measurement speed from the RF signal frame data output from the phasing addition unit 22 via the data selection unit 24 and the input RF signal frame data. And, using the velocity information by the compression technique from the tissue movement speed calculation unit 64, the blood flow velocity calculation unit 66 for removing the tissue movement speed that is the displacement speed component from the measurement speed that is the output signal of the measurement speed calculation unit 72, A blood flow two-dimensional coordinate conversion unit 74 that performs coordinate conversion and a blood flow image processing unit 76 that performs image processing such as gamma processing on the blood flow image after coordinate conversion are provided.
 計測速度演算部72は、入力されるRFフレームデータに対し、自己相関処理、速度演算、パワー演算、分散演算、フィルタ処理等の信号処理を行い、速度データ、流量データ、速度分散データを出力する。 The measurement speed calculation unit 72 performs signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing on the input RF frame data, and outputs speed data, flow rate data, and speed dispersion data. .
 血流速度演算部66は、計測速度演算部72において得られる計測速度Vdopから、組織移動速度演算部64から得られる圧迫による組織の移動速度である組織移動速度Vdispを除去し、圧迫手技に依存しない血流速度を演算する。 The blood flow velocity calculation unit 66 removes the tissue movement velocity V disp that is the tissue movement velocity by the compression obtained from the tissue movement velocity calculation unit 64 from the measurement velocity V dop obtained in the measurement velocity calculation unit 72, and performs the compression procedure. The blood flow velocity that does not depend on is calculated.
 ここで、図5は血流と弾性を同時計測する場合の被検体の模式図であり、被検体12に周りよりも硬い構造物80と血流82を内包し、図5に示す様に血流、弾性の計測における関心領域を設定した場合を想定する。図6は通常の血流計測において計測される計測速度Vdop、圧迫による組織の移動速度である組織移動速度Vdispを模式的に表した図である。 Here, FIG. 5 is a schematic diagram of a subject when blood flow and elasticity are simultaneously measured. The subject 12 includes a structure 80 and a blood flow 82 that are harder than the surroundings, and the blood as shown in FIG. Assume that the region of interest is set for measurement of flow and elasticity. FIG. 6 is a diagram schematically showing a measurement speed V dop measured in normal blood flow measurement and a tissue movement speed V disp that is a tissue movement speed due to compression.
 図6において、ドプラ計測画像84は通常の血流計測において計測されるドプラ偏移速度を表わし、圧迫による速度アーチファクト86aや、速度アーチファクト86bが組織上に現れる。また、被検体内の硬い構造物も、超音波探触子の動きと全く同じ速度で移動しないため、速度アーチファクト86cが発生する。血管内88においても組織の血管壁からの圧迫の影響を受けて速度アーチファクト86dや速度アーチファクト86eが発生する。また、被検体12の内部においても被検体内の組織が超音波探触子の動きと全く同じ速度で移動しない限り、アーチファクトが発生しており、血管内88においても観測系である超音波探触子の移動によって、速度アーチファクトの含まれた血流速度が計測されている。 In FIG. 6, a Doppler measurement image 84 represents a Doppler shift speed measured in normal blood flow measurement, and a speed artifact 86a and a speed artifact 86b due to compression appear on the tissue. Further, since the hard structure in the subject does not move at the same speed as the movement of the ultrasonic probe, a speed artifact 86c is generated. Also in the blood vessel 88, velocity artifacts 86d and velocity artifacts 86e are generated under the influence of compression from the blood vessel wall of the tissue. In addition, artifacts are generated inside the subject 12 as long as the tissue in the subject does not move at the same speed as the movement of the ultrasound probe. The blood flow velocity including velocity artifacts is measured by the movement of the tentacles.
 組織変位ドプラ計測画像90は超音波探触子の圧迫によって組織が動くことにより発生する組織移動速度によって表される。具体的には、組織移動速度演算部64にて変位量から算定した結果を表わし、圧迫により組織が動いたことによる組織移動速度92a、92bが組織上に現れる。また、被検体内の硬い構造物の変位も組織移動速度として算定され、組織移動速度92cが発生する。血管内89であっても組織の血管壁からの圧迫の影響を受ける場合には速度アーチファクト87aや速度アーチファクト87bが発生する。血管内89において、圧迫が届かない位置においては弾性情報演算部54において得られる確度が低くなるため、速度がないという結果となり得る。 The tissue displacement Doppler measurement image 90 is represented by the tissue moving speed generated when the tissue moves due to the compression of the ultrasonic probe. Specifically, the result is calculated from the amount of displacement by the tissue movement speed calculation unit 64, and the tissue movement speeds 92a and 92b due to the movement of the tissue due to the compression appear on the tissue. Further, the displacement of the hard structure in the subject is also calculated as the tissue moving speed, and a tissue moving speed 92c is generated. Even in the blood vessel 89, velocity artifacts 87a and velocity artifacts 87b are generated when affected by the pressure from the blood vessel wall of the tissue. In the blood vessel 89, in the position where the compression does not reach, the accuracy obtained by the elasticity information calculation unit 54 is low, so that there may be no speed.
 図7は超音波探触子の変位により発生するドプラ偏移速度である探触子移動速度Vprobeとその関心領域を表した模式図である。図7において、探触子移動速度画像94は、第3の関心領域62内における探触子移動速度Vprobeを組織移動速度演算部64にて変位量から算定した速度値である。この測定値は超音波ビームごとに独立であるため、同一ビーム上のサンプル間は同値の速度オフセットが発生する。従って、ビーム毎の探触子移動速度96に示す様に、サンプル方向平均化処理部70においてサンプル方向に平均化し、第1の関心領域と同じ大きさにする。 FIG. 7 is a schematic diagram showing a probe moving speed V probe which is a Doppler shift speed generated by the displacement of the ultrasonic probe and a region of interest. In FIG. 7, a probe moving speed image 94 is a speed value obtained by calculating the probe moving speed V probe in the third region of interest 62 from the amount of displacement by the tissue moving speed calculating unit 64. Since this measurement value is independent for each ultrasonic beam, a velocity offset of the same value is generated between samples on the same beam. Accordingly, as indicated by the probe moving speed 96 for each beam, the sample direction averaging processing unit 70 averages the sample direction and sets the same size as the first region of interest.
 図8は血流速度演算部66における処理を模式的に表したものである。図8に示す様に、血流速度演算部66では、式(5)に従い計測速度Vdop102より、圧迫による組織変位ドプラである組織移動速度Vdisp104と超音波探触子の変位により発生する探触子移動速度Vprobe106との差分を減じることで、圧迫手技下においても正しい血流速度Vblood108を計測することができる。その結果計測される血流速度110はアートファクトのない正しい速度を示す。 FIG. 8 schematically shows processing in the blood flow velocity calculation unit 66. As shown in FIG. 8 occurs, the blood flow rate arithmetic unit 66, from the measurement speed V dop 102 in accordance with Equation (5), and tissue movement velocity V disp 104 is a tissue displacement Doppler due to compression by the displacement of the ultrasonic probe By subtracting the difference from the probe moving speed V probe 106 to be performed, the correct blood flow speed V blood 108 can be measured even under the compression technique. As a result, the measured blood flow velocity 110 shows a correct velocity without artifacts.
 計測速度演算部72は速度だけでなく、ドプラ信号の振幅演算値より流量データを作成する。血流速度演算部66は、式(5)に従い補正を行った結果がゼロ、もしくはゼロ付近である場合、圧迫による組織からのドプラ振幅であると判断し、流量データ値をゼロにする機能を有し、流量画像においてもアーチファクトを抑制することができる。 Measured speed calculation unit 72 creates flow rate data not only from the speed but also from the amplitude calculation value of the Doppler signal. The blood flow velocity calculation unit 66 determines that it is a Doppler amplitude from the tissue due to compression when the result of correction according to Equation (5) is zero or near zero, and has a function of setting the flow rate data value to zero. The artifact can be suppressed even in the flow rate image.
 血流2次元座標変換部74は、血流速度演算部66において補正された血流速度に基づく血流画像データを表示器36に合わせた形状への変換処理を行い、血流画像処理部では操作者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理が行われ、合成処理部34へと転送される。 The blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data based on the blood flow velocity corrected by the blood flow velocity calculation unit 66 into a shape matching the display 36, and the blood flow image processing unit Filter processing and gamma processing for presenting the image with an image quality suitable for diagnosis are performed for the operator, and the result is transferred to the synthesis processing unit 34.
 図9は合成処理部34における入力画像と出力画像の概念図である。血流画像0901は血流2次元画像構成部30より出力され、弾性画像0902は弾性2次元画像構成部32より出力され、断層画像0903は断層2次元画像構成部26より出力され、それぞれ合成処理部34へ入力される。合成処理部34はこれらのデータの値により重み付け比率をピクセル毎に設定し、カラー符号化して合成画像0904を作成し、表示器36に表示される。 FIG. 9 is a conceptual diagram of an input image and an output image in the composition processing unit 34. The blood flow image 0901 is output from the blood flow 2D image configuration unit 30, the elasticity image 0902 is output from the elasticity 2D image configuration unit 32, and the tomographic image 0903 is output from the tomography 2D image configuration unit 26. Input to the unit 34. The composition processing unit 34 sets a weighting ratio for each pixel based on the values of these data, and performs color coding to create a composite image 0904, which is displayed on the display 36.
 上記の処理により、本実施例ではアーチファクト、オフセットのない正しいドプラ計測結果を断層画像、弾性画像とともに表示することができる。また、超音波探触子による圧迫を実施せずその他の外力や体動による変位を検出することで弾性計測と血流計測を同時に行う場合、観測系である超音波探触子の移動成分はドプラ偏移周波数に含まれない。したがって、血流速度演算部66は、式(5)より超音波探触子の変位速度成分である探触子移動速度Vprobeの項を除いた下記の式(6)によるドプラ補正処理を行い、外力や体動による組織の変位速度成分を除去する機能も有する。 According to the above processing, in this embodiment, correct Doppler measurement results without artifacts and offsets can be displayed together with tomographic images and elasticity images. In addition, when elastic measurement and blood flow measurement are performed simultaneously by detecting displacement due to other external forces and body movements without performing compression by the ultrasonic probe, the moving component of the ultrasonic probe that is the observation system is Not included in Doppler shift frequency. Therefore, the blood flow velocity calculation unit 66 performs Doppler correction processing according to the following equation (6) by excluding the term of the probe moving velocity V probe which is the displacement velocity component of the ultrasonic probe from equation (5). Also, it has a function of removing the displacement rate component of the tissue due to external force or body movement.
Figure JPOXMLDOC01-appb-M000006
 (第2実施例)
 ここで、超音波探触子の圧迫による速度アーチファクトを除去する方法の第2の実施例について図10を用いて説明する。図10は図1における断層2次元画像構成部26、本発明に特徴的な血流2次元画像構成部30と弾性2次元画像構成部32の各ブロックの処理についての第2の実施例について詳細を示した図である。本実施例は、血流2次元画像構成部30が、組織移動速度演算部64により求められた超音波探触子の移動速度に相当するドプラ周波数だけRF信号フレームデータの周波数をシフトさせる周波数シフタを設け、周波数シフタにより周波数偏移されたRF信号フレームデータに基づいて求められた血流速度と、組織移動速度演算部により求められた被検体の断層面の組織の移動速度とに基づいて血流画像を生成する実施例である。第1の実施例と同様の部分については説明を省略する。
Figure JPOXMLDOC01-appb-M000006
(Second embodiment)
Here, a second embodiment of the method for removing the speed artifact due to the compression of the ultrasonic probe will be described with reference to FIG. FIG. 10 shows details of the second embodiment of the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention. FIG. In this embodiment, the blood flow two-dimensional image constructing unit 30 shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the moving speed of the ultrasonic probe obtained by the tissue moving speed calculating unit 64. Blood flow velocity obtained based on the RF signal frame data frequency-shifted by the frequency shifter and blood moving velocity based on the tissue moving velocity calculated by the tissue moving velocity calculation unit. It is an Example which produces | generates a flow image. A description of the same parts as in the first embodiment will be omitted.
 図10に示すように、第3の関心領域内で演算した変位速度(組織移動速度Vdisp)はサンプル方向平均化処理部70においてサンプル方向に平均化され、血流2次元画像構成部30の初段に位置する周波数シフタ120に入力される。 As shown in FIG. 10, the displacement speed (tissue movement speed V disp ) calculated in the third region of interest is averaged in the sample direction in the sample direction averaging processing unit 70, and the blood flow two-dimensional image constructing unit 30 Input to the frequency shifter 120 located in the first stage.
 ここで、第2実施例の特徴的な処理は、計測速度演算部72の前段に位置する周波数シフタ120である。周波数シフタ120はサンプル方向平均化処理部70において演算された、観測系である超音波探触子の移動速度に相当するドプラ周波数だけ血流信号をシフトさせる処理であり、これにより圧迫による超音波探触子の移動速度成分を除去することができる。 Here, the characteristic processing of the second embodiment is the frequency shifter 120 located in the preceding stage of the measurement speed calculation unit 72. The frequency shifter 120 is a process for shifting the blood flow signal by the Doppler frequency corresponding to the moving speed of the ultrasonic probe that is the observation system, which is calculated by the sample direction averaging processing unit 70. The moving speed component of the probe can be removed.
 計測速度演算部72は、周波数シフタ120より出力されるRF血流データに対し、自己相関処理、速度演算、パワー演算、分散演算、フィルタ処理等の信号処理を行い、速度データ、流量データ、分散データを出力する。 The measurement speed calculation unit 72 performs signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing on the RF blood flow data output from the frequency shifter 120 to obtain speed data, flow rate data, dispersion Output data.
 本実施例における血流速度演算部66は、計測速度演算部72において得られる速度データ中の計測速度より、組織移動速度演算部64から得られる変位速度(組織移動速度Vdisp)を除去するが、第1実施例と異なり、超音波探触子の変位速度成分については周波数シフタ120にて除去されている。したがって、式(6)に記載されるドプラ補正処理を実施することで圧迫による速度アーチファクトを除去することができる。 The blood flow velocity calculation unit 66 in the present embodiment removes the displacement velocity (tissue movement velocity V disp ) obtained from the tissue movement velocity calculator 64 from the measurement velocity in the velocity data obtained by the measurement velocity calculator 72. Unlike the first embodiment, the displacement speed component of the ultrasonic probe is removed by the frequency shifter 120. Therefore, the speed artifact caused by the compression can be removed by performing the Doppler correction process described in Equation (6).
 よって、本実施例では、血流速度演算部66において、計測速度演算部72より、第2の関心領域より演算される圧迫による変位速度を計測速度演算部72の出力データより減算し、血流2次元座標変換部74へ転送する。 Therefore, in this embodiment, in the blood flow velocity calculation unit 66, the measurement velocity calculation unit 72 subtracts the displacement velocity due to the compression calculated from the second region of interest from the output data of the measurement velocity calculation unit 72, and the blood flow Transfer to the two-dimensional coordinate conversion unit 74.
 また、血流2次元座標変換部74は、血流速度演算部66において補正された血流画像データを表示器36に合わせた形状への変換処理を行い、血流画像処理部では操作者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理が行われ合成処理部34へと転送され、表示器36に表示される。上記の処理により、本実施例ではアーチファクト、オフセットのない正しいドプラ計測結果を表示することができる。 In addition, the blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data corrected in the blood flow velocity calculation unit 66 into a shape that matches the display 36, and the blood flow image processing unit On the other hand, filter processing and gamma processing for presenting image quality suitable for diagnosis are performed, transferred to the synthesis processing unit 34, and displayed on the display 36. According to the above processing, in the present embodiment, a correct Doppler measurement result without artifacts and offset can be displayed.
 (第3の実施例)
 超音波探触子の圧迫による速度アーチファクトを除去する方法の第3の実施例について図11を用いて説明する。図11は図1における断層2次元画像構成部26、本発明に特徴的な血流2次元画像構成部30及び弾性2次元画像構成部32の各ブロックの処理についての第3の実施例について詳細を示した図である。本実施例は、血流2次元画像構成部30が、組織移動速度演算部64により求められた超音波探触子の移動速度及び被検体の断層面の組織の移動速度に相当するドプラ周波数だけRF信号フレームデータの周波数をシフトさせる周波数シフタを設け、周波数シフタにより周波数偏移されたRF信号フレームデータに基づいて求められた血流速度に基づいて血流画像を生成する実施例である。第1の実施例と同様の部分については説明を省略する。
(Third embodiment)
A third embodiment of a method for removing velocity artifacts due to ultrasound probe compression will be described with reference to FIG. FIG. 11 shows the details of the third embodiment regarding the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention. FIG. In this embodiment, the blood flow two-dimensional image constructing unit 30 has only the Doppler frequency corresponding to the moving speed of the ultrasonic probe and the moving speed of the tissue on the tomographic plane of the subject obtained by the tissue moving speed calculating unit 64. In this embodiment, a frequency shifter that shifts the frequency of the RF signal frame data is provided, and a blood flow image is generated based on the blood flow velocity obtained based on the RF signal frame data shifted in frequency by the frequency shifter. A description of the same parts as in the first embodiment will be omitted.
 組織移動速度演算部64は、変位計測部52で得られる変位量から変位速度の演算を行い、第2の関心領域60における領域内の各サンプル点における変位速度と、第3の関心領域62における変位速度の演算を行う。第2の関心領域60における変位速度は血流2次元画像構成部30の初段に位置する周波数シフタ120へ転送される。また、第3の関心領域内で演算した変位速度についてもサンプル方向平均化処理部70においてサンプル方向に平均化され、周波数シフタ120に入力される。 The tissue movement speed calculation unit 64 calculates the displacement speed from the displacement amount obtained by the displacement measurement unit 52, the displacement speed at each sample point in the region in the second region of interest 60, and the third region of interest 62 Calculate the displacement speed. The displacement speed in the second region of interest 60 is transferred to the frequency shifter 120 located in the first stage of the blood flow two-dimensional image construction unit 30. Further, the displacement speed calculated in the third region of interest is also averaged in the sample direction by the sample direction averaging processing unit 70 and input to the frequency shifter 120.
 ここで、第3実施例の特徴的な処理は、血流速度演算部66の前段に位置する周波数シフタ120である。周波数シフタ120は組織移動速度演算部64、サンプル方向平均化処理部70において演算された、観測系である超音波探触子の移動速度に相当するドプラ周波数の差分(Vdisp-Vprobe)だけ血流信号をシフトさせる処理であり、これにより式(5)に記載されるドプラ補正処理を実施することで圧迫による速度アーチファクトを除去することができる。 Here, the characteristic processing of the third embodiment is the frequency shifter 120 located in the preceding stage of the blood flow velocity calculation unit 66. The frequency shifter 120 calculates only the difference (V disp −V probe ) of the Doppler frequency corresponding to the moving speed of the ultrasonic probe that is the observation system, calculated by the tissue moving speed calculating unit 64 and the sample direction averaging processing unit 70. This is a process of shifting the blood flow signal. By performing the Doppler correction process described in the equation (5), the speed artifact due to the compression can be removed.
 血流速度演算部66は、周波数シフタ120より出力されるRF血流データに対し、自己相関処理、速度演算、パワー演算、分散演算、フィルタ処理等の信号処理を行い、速度データ、流量データ、分散データを血流2次元座標変換部74へ転送する。 The blood flow velocity calculation unit 66 performs signal processing such as autocorrelation processing, velocity calculation, power calculation, dispersion calculation, and filter processing on the RF blood flow data output from the frequency shifter 120, and the velocity data, flow rate data, The distributed data is transferred to the blood flow two-dimensional coordinate conversion unit 74.
 血流2次元座標変換部74は、血流画像データを表示器36に合わせた形状への変換処理を行い、血流画像処理部では操作者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理が行われ合成処理部34へと転送され、表示器36に表示される。本実施例によれば、アーチファクト、オフセットのない正しいドプラ計測結果を表示することができる。 A blood flow two-dimensional coordinate conversion unit 74 performs a conversion process of blood flow image data into a shape that matches the display 36, and the blood flow image processing unit provides the operator with an image quality suitable for diagnosis. Filter processing and gamma processing are performed, transferred to the synthesis processing unit 34, and displayed on the display 36. According to the present embodiment, it is possible to display a correct Doppler measurement result without artifacts and offsets.
 (第4の実施例)
 第4の実施例について図12を用いて説明する。図12は図1における断層2次元画像構成部26、本発明に特徴的な血流2次元画像構成部30と弾性2次元画像構成部32の各ブロックの処理についての第4の実施例について詳細を示した図である。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. FIG. 12 shows the details of the fourth embodiment regarding the processing of each block of the tomographic two-dimensional image construction unit 26 in FIG. 1, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 characteristic of the present invention. FIG.
 本実施例は、超音波探触子の圧迫による変位速度の一部を、計測速度演算部における演算処理で求める方法である。より具体的には、計測速度演算部により超音波探触子の移動速度を求め、計測速度演算部により求められた計測速度及び超音波探触子の移動速度と、組織移動速度演算部により求められた被検体の断層面の組織の移動速度とに基づいて血流画像を生成するものである。言い換えれば、第3の関心領域62における変位速度の演算を計測速度演算部72で直接行うものである。第1の実施例と同様の部分については説明を省略する。 The present embodiment is a method for obtaining a part of the displacement speed due to the compression of the ultrasonic probe by the calculation processing in the measurement speed calculation section. More specifically, the moving speed of the ultrasonic probe is obtained by the measurement speed calculation unit, and the measurement speed obtained by the measurement speed calculation unit, the moving speed of the ultrasonic probe, and the tissue movement speed calculation unit are obtained. A blood flow image is generated based on the moving speed of the tissue on the tomographic plane of the subject. In other words, the calculation of the displacement speed in the third region of interest 62 is directly performed by the measurement speed calculator 72. A description of the same parts as in the first embodiment will be omitted.
 組織移動速度演算部64は、変位計測部52で得られる変位量から第2の関心領域60における領域内の各サンプル点における変位速度の演算を行い、血流2次元画像構成部30の血流速度演算部66に転送する。 The tissue movement speed calculation unit 64 calculates the displacement speed at each sample point in the region of the second region of interest 60 from the displacement obtained by the displacement measurement unit 52, and the blood flow of the blood flow two-dimensional image configuration unit 30 Transfer to speed calculator 66.
 第3の関心領域は、超音波探触子と接する体表近くの関心領域を自動、又は操作者が任意で設定され、関心領域内の組織の移動速度が直接求められる。計測速度演算部72で演算された超音波探触子の移動速度はサンプル方向平均化処理部70においてサンプル方向に平均化され、組織移動速度演算部64から出力される組織の変位速度情報とともに、血流速度演算部66に入力される。 As the third region of interest, the region of interest near the body surface in contact with the ultrasonic probe is automatically set by the operator or arbitrarily, and the moving speed of the tissue in the region of interest is directly obtained. The moving speed of the ultrasound probe calculated by the measurement speed calculating unit 72 is averaged in the sample direction in the sample direction averaging processing unit 70, together with the tissue displacement speed information output from the tissue moving speed calculating unit 64, This is input to the blood flow velocity calculation unit 66.
 本実施例における血流速度演算部66は実施例1と同じく、式(5)を実現することにより、圧迫による速度アーチファクトを除去することができる。 As in the first embodiment, the blood flow velocity calculation unit 66 in the present embodiment can remove the velocity artifact due to the compression by realizing the equation (5).
 血流速度演算部66は、第2の関心領域より演算される圧迫による変位速度と第3の関心領域より演算される超音波探触子の変位速度との差分を計測速度演算部72の出力データより減算し、血流2次元座標変換部74へ転送する。 The blood flow velocity calculation unit 66 outputs the difference between the displacement velocity due to the compression calculated from the second region of interest and the displacement velocity of the ultrasonic probe calculated from the third region of interest. The data is subtracted from the data and transferred to the blood flow two-dimensional coordinate conversion unit 74.
 血流2次元座標変換部74は、血流速度演算部66において補正された血流画像データを表示器36に合わせた形状への変換処理を行い、血流画像処理部では操作者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理が行われ合成処理部34へと転送され、表示器36に表示される。上記の処理により、本実施例によれば、アーチファクト、オフセットのない正しいドプラ計測結果を表示することができる。 The blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data corrected in the blood flow velocity calculation unit 66 into a shape that matches the display 36, and the blood flow image processing unit Filter processing and gamma processing for presentation with an image quality suitable for diagnosis are performed, transferred to the synthesis processing unit 34, and displayed on the display 36. By the above processing, according to the present embodiment, it is possible to display a correct Doppler measurement result without artifacts and offsets.
 (第5の実施例)
 ここで第5の実施例について図13を用いて説明する。図13は図1における断層2次元画像構成部26、本発明に特徴的な血流2次元画像構成部30及び弾性2次元画像構成部32の各ブロックの処理についての第5の実施例について詳細を示した図である。
(Fifth embodiment)
Here, a fifth embodiment will be described with reference to FIG. FIG. 13 shows the details of the fifth embodiment regarding the processing of each block of the tomographic 2D image construction unit 26 in FIG. 1, the blood flow 2D image construction unit 30 and the elastic 2D image construction unit 32 characteristic of the present invention. FIG.
 本実施例は、第2の実施例における超音波探触子の変位速度の算定を、計測速度演算部における血流速度演算処理で行う方法である。より具体的には、計測速度演算部72により超音波探触子の移動速度を求めるとともに、計測速度演算部72により求められた超音波探触子の移動速度に相当するドプラ周波数だけRF信号フレームデータの周波数をシフトさせる周波数シフタを設け、周波数シフタにより周波数偏移されたRF信号フレームデータに基づいて求められた血流速度と、組織移動速度演算部64により求められた被検体の断層面の組織の移動速度とに基づいて血流画像を生成するものである。第1又は第2の実施例と同様の部分については説明を省略する。 This embodiment is a method of calculating the displacement speed of the ultrasonic probe in the second embodiment by blood flow speed calculation processing in the measurement speed calculation section. More specifically, the moving speed of the ultrasonic probe is obtained by the measurement speed calculation unit 72, and only the Doppler frequency corresponding to the moving speed of the ultrasonic probe obtained by the measurement speed calculation unit 72 is an RF signal frame. A frequency shifter for shifting the frequency of the data is provided, and the blood flow velocity obtained based on the RF signal frame data frequency-shifted by the frequency shifter and the tomographic plane of the subject obtained by the tissue movement velocity calculation unit 64 A blood flow image is generated based on the moving speed of the tissue. Description of the same parts as those in the first or second embodiment will be omitted.
 組織移動速度演算部64は、変位計測部52で得られる変位量から第2の関心領域60における領域内の各サンプル点における変位速度を演算して組織移動速度の演算を行う。計測速度演算部72により求められた計測速度から組織移動速度を除去する血流速度演算部66と、血流速度演算部66の出力信号に対し、座標変換を行う血流2次元座標変換部74と、座標変換後の血流画像に対し、ガンマ処理などの画像処理を行う血流画像処理部76が備えられている。 The tissue movement speed calculation unit 64 calculates the tissue movement speed by calculating the displacement speed at each sample point in the region of the second region of interest 60 from the amount of displacement obtained by the displacement measurement unit 52. A blood flow velocity calculation unit 66 that removes the tissue movement velocity from the measurement velocity obtained by the measurement velocity calculation unit 72, and a blood flow two-dimensional coordinate conversion unit 74 that performs coordinate conversion on the output signal of the blood flow velocity calculation unit 66 And a blood flow image processing unit 76 that performs image processing such as gamma processing on the blood flow image after coordinate conversion.
 ここで、第5の実施例が第2の実施例と異なる点は、第3の関心領域62における変位速度の演算を計測速度演算部72で直接行っている点である。第3の関心領域は、超音波探触子と接する体表近くの関心領域を自動、又は検者が任意で設定し、計測速度演算部72において関心領域内の組織の移動速度が直接求められる。計測速度演算部72で演算された超音波探触子の移動速度はサンプル方向平均化処理部70においてサンプル方向に平均化され、血流2次元画像構成部30の初段に位置する周波数シフタ120に入力される。 Here, the fifth embodiment differs from the second embodiment in that the measurement speed calculation unit 72 directly calculates the displacement speed in the third region of interest 62. As the third region of interest, the region of interest near the body surface in contact with the ultrasound probe is automatically set by the examiner or arbitrarily, and the moving speed of the tissue in the region of interest is directly obtained by the measurement speed calculation unit 72. . The moving speed of the ultrasound probe calculated by the measurement speed calculation unit 72 is averaged in the sample direction by the sample direction averaging processing unit 70, and the frequency shifter 120 located in the first stage of the blood flow two-dimensional image construction unit 30 Entered.
 周波数シフタ120はサンプル方向平均化処理部70において演算された、観測系である超音波探触子の移動速度に相当するドプラ周波数だけ血流信号をシフトさせる処理であり、これにより圧迫による超音波探触子の移動速度成分を除去することができる。 The frequency shifter 120 is a process for shifting the blood flow signal by the Doppler frequency corresponding to the moving speed of the ultrasonic probe that is the observation system, which is calculated by the sample direction averaging processing unit 70. The moving speed component of the probe can be removed.
 計測速度演算部72は、第3の関心領域における超音波探触子の移動速度を算定し、周波数シフタ120に対して入力をした後、周波数シフタ120より出力されるRF血流データに対し、自己相関処理、速度演算、パワー演算、分散演算、フィルタ処理等の信号処理を行い、速度データ、流量データ、分散データを出力する。 The measurement speed calculation unit 72 calculates the moving speed of the ultrasonic probe in the third region of interest, and inputs it to the frequency shifter 120. Then, for the RF blood flow data output from the frequency shifter 120, Signal processing such as autocorrelation processing, speed calculation, power calculation, dispersion calculation, and filter processing is performed, and speed data, flow rate data, and dispersion data are output.
 本実施例における血流速度演算部66は、式(6)を実現することにより、圧迫による速度アーチファクトを除去することができる。また、血流速度演算部66において、計測速度演算部72より、第2の関心領域より演算される圧迫による変位速度を計測速度演算部72の出力データより減算し、血流2次元座標変換部74へ転送する。 The blood flow velocity calculation unit 66 in the present embodiment can remove velocity artifacts due to compression by realizing Equation (6). Further, in the blood flow velocity calculation unit 66, the measurement velocity calculation unit 72 subtracts the displacement velocity due to the compression calculated from the second region of interest from the output data of the measurement velocity calculation unit 72, and the blood flow two-dimensional coordinate conversion unit Forward to 74.
 血流2次元座標変換部74は、血流速度演算部66において補正された血流画像データを表示器36に合わせた形状への変換処理を行う。血流画像処理部では検者に対し、診断に適した画質で提示するためのフィルタ処理、ガンマ処理が行われ合成処理部34へと転送され、表示器36に表示される。上記の処理により、本実施例によれば、アーチファクト、オフセットのない正しいドプラ計測結果を表示することができる。なお、本実施例における血流速度演算部66の処理は、実施例3と同様に周波数シフタ120にて実施することもできる。 The blood flow two-dimensional coordinate conversion unit 74 converts the blood flow image data corrected by the blood flow velocity calculation unit 66 into a shape that matches the display 36. In the blood flow image processing unit, filter processing and gamma processing for presenting the examiner with an image quality suitable for diagnosis are performed, transferred to the synthesis processing unit 34, and displayed on the display 36. By the above processing, according to the present embodiment, it is possible to display a correct Doppler measurement result without artifacts and offsets. Note that the processing of the blood flow velocity calculation unit 66 in the present embodiment can also be performed by the frequency shifter 120 as in the third embodiment.
 第2の実施例~第5の実施例によれば、探触子移動速度に相当するドプラ周波数だけRF信号フレームデータの周波数をシフトさせる周波数シフタ120を有し、血流速度演算部66は、周波数シフタ120により周波数偏移された計測速度と組織移動速度とに基づいて血流速度を求める。探触子移動速度及び組織移動速度に相当するドプラ周波数だけRF信号フレームデータの周波数をシフトさせる周波数シフタ120を有し、血流速度演算部66は、周波数シフタ120により周波数偏移されたRF信号フレームデータに基づいて血流速度を求める。超音波探触子の超音波送受信面で被検体を押圧しながら前記被検体の断層面の組織に対する圧迫を変化させる場合、組織移動速度演算部64は、変位フレームデータ及び前記弾性フレームデータの少なくとも一方に基づいて、組織移動速度を求め、血流速度演算部66は、探触子移動速度と組織移動速度とに基づいて血流速度を演算する。 超音波探触子の超音波送受信面で被検体を押圧しながら前記被検体の断層面の組織に対する圧迫を変化させる場合、組織移動速度演算部64は、変位フレームデータ及び弾性フレームデータの少なくとも一方に基づいて、組織移動速度を求め、血流速度演算部66は、探触子移動速度に相当するドプラ周波数だけRF信号フレームデータの周波数をシフトさせる周波数シフタ120を有し、該周波数シフタにより周波数偏移されたRF信号フレームデータに基づいて求められた計測速度と、探触子移動速度と組織移動速度とに基づいて血流速度を演算する。 According to the second to fifth embodiments, the blood flow velocity calculation unit 66 includes the frequency shifter 120 that shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the probe moving speed. The blood flow velocity is obtained based on the measurement speed shifted by the frequency shifter 120 and the tissue movement speed. It has a frequency shifter 120 that shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the probe moving speed and the tissue moving speed, and the blood flow velocity calculating unit 66 is an RF signal frequency-shifted by the frequency shifter 120. The blood flow velocity is obtained based on the frame data. When the pressure on the tissue on the tomographic plane of the subject is changed while pressing the subject on the ultrasound transmission / reception surface of the ultrasound probe, the tissue movement speed calculation unit 64 includes at least the displacement frame data and the elastic frame data. Based on one, the tissue moving speed is obtained, and the blood flow speed calculating unit 66 calculates the blood flow speed based on the probe moving speed and the tissue moving speed. When changing the pressure on the tissue on the tomographic plane of the subject while pressing the subject on the ultrasound transmission / reception surface of the ultrasound probe, the tissue movement speed calculation unit 64 is at least one of displacement frame data and elastic frame data. The blood flow velocity calculation unit 66 has a frequency shifter 120 that shifts the frequency of the RF signal frame data by the Doppler frequency corresponding to the probe movement velocity. The blood flow velocity is calculated based on the measurement velocity obtained based on the shifted RF signal frame data, the probe movement velocity, and the tissue movement velocity.
  (第6の実施例)
 第6の実施例について図14を用いて説明する。図14は第6の実施例の超音波診断装置の全体構成を表した図である。本実施例は、第1実施例-第5実施例までに記載した方式を用いて3次元画像を作成する場合の実施例である。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG. FIG. 14 is a diagram illustrating the overall configuration of the ultrasonic diagnostic apparatus according to the sixth embodiment. The present embodiment is an embodiment in the case of creating a three-dimensional image using the methods described in the first to fifth embodiments.
 本実施例における超音波探触子14は、複数の振動子を配設して形成された探触子ヘッド部にモータが接続されており、被検体12に振動子を介して3次元的に超音波を送受信する機能を有している。また、2次元に振動子を配置し、3次元的に超音波信号を送受信する超音波探触子が接続される場合もある。 In the ultrasonic probe 14 in this embodiment, a motor is connected to a probe head portion formed by arranging a plurality of transducers, and the subject 12 is three-dimensionally connected to the subject 12 via the transducers. It has a function to transmit and receive ultrasonic waves. In some cases, an ultrasonic probe that two-dimensionally arranges transducers and transmits and receives ultrasonic signals in three dimensions is connected.
 また、図14に示すように、断層2次元画像構成部26、血流2次元画像構成部30、弾性2次元画像構成部32は、2次元座標変換を行う前の各種画像データを、断層3次元座標変換部122、血流3次元座標変換部124、弾性3次元座標変換部126に入力する。断層3次元座標変換部122、血流3次元座標変換部124、弾性3次元座標変換部126は、入力画像に対して3次元座標変換を行い、3次元ボリュームデータをレンダリング部128に出力する。 Further, as shown in FIG. 14, the tomographic 2D image configuration unit 26, the blood flow 2D image configuration unit 30, and the elastic 2D image configuration unit 32 convert various image data before the 2D coordinate conversion into the tomographic 3D. The data is input to the three-dimensional coordinate conversion unit 122, the blood flow three-dimensional coordinate conversion unit 124, and the elastic three-dimensional coordinate conversion unit 126. The tomographic 3D coordinate conversion unit 122, the blood flow 3D coordinate conversion unit 124, and the elastic 3D coordinate conversion unit 126 perform 3D coordinate conversion on the input image, and output 3D volume data to the rendering unit 128.
 レンダリング部128は断層3次元座標変換部122、血流3次元座標変換部124、弾性3次元座標変換部126からの各種の3次元ボリュームデータを2次元投影面上に透過率を乗じて累積加算し、3次元画像を作成し、合成処理部34へ出力する。 The rendering unit 128 accumulates various 3D volume data from the tomographic 3D coordinate conversion unit 122, the blood flow 3D coordinate conversion unit 124, and the elastic 3D coordinate conversion unit 126 on the 2D projection plane by multiplying the transmittance. Then, a three-dimensional image is created and output to the synthesis processing unit 34.
 図15は図14における断層2次元画像構成部26、血流2次元画像構成部30と弾性2次元画像構成部32の各ブロックの処理について詳細を示した図である。 FIG. 15 is a diagram showing details of processing of each block of the tomographic two-dimensional image construction unit 26, the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 in FIG.
 本実施例では、3次元座標変換を実施するため、断層情報演算部40の出力信号は断層3次元座標変換部122へ出力される。また、3次元座標変換を実施するため、弾性情報演算部54の出力信号は弾性3次元座標変換部126へ出力される。また、3次元座標変換を実施するため、血流速度演算部66の出力信号は血流3次元座標変換部124へ出力される。 In this embodiment, since the three-dimensional coordinate conversion is performed, the output signal of the tomographic information calculation unit 40 is output to the tomographic three-dimensional coordinate conversion unit 122. Further, in order to perform the three-dimensional coordinate conversion, the output signal of the elastic information calculation unit 54 is output to the elastic three-dimensional coordinate conversion unit 126. Further, in order to perform the three-dimensional coordinate conversion, the output signal of the blood flow velocity calculation unit 66 is output to the blood flow three-dimensional coordinate conversion unit 124.
 ここで、超音波探触子を介して被検体に対し圧迫手技を実施しながら3次元的に血流画像を取得した場合の概念図を図16に示す。本実施例では、被検体12に対して超音波探触子14を手動、又は機械的押し込み、圧迫を加えて変位量の計測を行う。ここで、2次元断層画像・血流合成画像130は超音波探触子14が静止している時に取得される断層画像と血流画像の合成画像であり、腫瘍132や血管134を内包する。 Here, FIG. 16 shows a conceptual diagram in a case where a blood flow image is acquired three-dimensionally while performing a compression technique on a subject via an ultrasonic probe. In this embodiment, the ultrasonic probe 14 is manually or mechanically pushed into the subject 12, and the amount of displacement is measured by applying pressure. Here, the two-dimensional tomographic image / blood flow composite image 130 is a composite image of a tomographic image and a blood flow image acquired when the ultrasound probe 14 is stationary, and includes a tumor 132 and a blood vessel 134.
 このとき、血流フレームデータを同時に走査、取得していることから押し込み動作の際には超音波探触子に近づく正方向のドプラシフトが、引き戻し動作の際には超音波探触子から遠ざかる負方向のドプラシフトが加味される。図16中、2次元断層画像・血流合成画像136は押し込み動作中の断層画像と血流画像の合成画像であり、押し込みによるアーチファクト138が画像上に重畳されている。また、2次元超音波画像140は引き戻し動作中の超音波画像であり、引き戻しによるアーチファクト142が画像上に重畳されてしまう。つまり、圧迫手技によって血流画像が正しい速度を示さず、圧迫手技に依存して周期的なオフセットがかかり、静止している領域からもドプラシフト量が検出されることから、本来、静止して描出される被検体中構造物や血流画像上にアーチファクトが発生する。 At this time, since blood flow frame data is simultaneously scanned and acquired, a positive Doppler shift approaching the ultrasonic probe during the push-in operation and a negative movement away from the ultrasonic probe during the pull-back operation are performed. The direction Doppler shift is taken into account. In FIG. 16, a two-dimensional tomographic image / blood flow composite image 136 is a composite image of a tomographic image and a blood flow image being pushed in, and an artifact 138 resulting from the push is superimposed on the image. Further, the two-dimensional ultrasonic image 140 is an ultrasonic image during the pull back operation, and the artifact 142 due to the pull back is superimposed on the image. In other words, the blood flow image does not show the correct speed due to the compression technique, and a cyclic offset is applied depending on the compression technique, and the Doppler shift amount is detected even from a stationary area. Artifacts are generated on the structure in the subject and the blood flow image.
 これが3次元画像の場合、3次元断層画像・血流合成画像144に示すように、2次元画像の押し込み、引き戻し時のアーチファクトがそのまま重畳されて表示される。ここで、組織移動速度演算部64において計測される速度量は、このドプラシフトに相当し、血流速度演算部66においてドプラシフト補正処理を行うことでアーチファクトを除いた良好な画像を得ることができる。 If this is a three-dimensional image, as shown in the three-dimensional tomographic image / blood flow composite image 144, artifacts at the time of pushing and pulling the two-dimensional image are superimposed and displayed as they are. Here, the amount of velocity measured by the tissue movement velocity calculation unit 64 corresponds to this Doppler shift, and by performing Doppler shift correction processing in the blood flow velocity calculation unit 66, a good image excluding artifacts can be obtained.
 図17はドプラシフト補正処理を行うことでアーチファクトを除去して作成した3次元画像の概念図である。本実施例では、図17に示すように速度アーチファクトのない3次元血流画像と3次元断層画像の3次元合成画像150となる。また、3次元弾性画像をレンダリング処理により作成した場合には、これを3次元合成画像150に重畳し、3次元血流・断層・弾性合成画像152を作成し、表示することができる。 FIG. 17 is a conceptual diagram of a three-dimensional image created by removing artifacts by performing Doppler shift correction processing. In the present embodiment, as shown in FIG. 17, a 3D blood flow image without a speed artifact and a 3D composite image 150 of a 3D tomographic image are obtained. When a 3D elasticity image is created by rendering processing, it can be superimposed on the 3D composite image 150 to create and display a 3D blood flow / tomographic / elastic composite image 152.
 なお本実施例では、血流2次元画像構成部30、弾性2次元画像構成部32のドプラ補正処理を実施例1と同じ構成にて実施する例を示しているが、実施例2-実施例5の構成に変えて実施することもできる。 In this embodiment, an example is shown in which the Doppler correction processing of the blood flow two-dimensional image construction unit 30 and the elastic two-dimensional image construction unit 32 is performed with the same configuration as in the first embodiment. It can also be implemented by changing to the configuration of 5.
 12 被検体、14 超音波探触子、22 整相加算部、36 表示器、52 変位計測部、54 弾性情報演算部、58 弾性画像処理部、59 第1の関心領域、60 第2の関心領域、62 第3の関心領域、64 組織移動速度演算部、66 血流速度演算部、72 計測速度演算部、76 血流画像処理部、100 超音波診断装置、120 周波数シフタ 12 subject, 14 ultrasound probe, 22 phasing and adding unit, 36 display, 52 displacement measuring unit, 54 elastic information calculating unit, 58 elastic image processing unit, 59 first region of interest, 60 second interest Area, 62 third region of interest, 64 tissue movement speed calculation section, 66 blood flow speed calculation section, 72 measurement speed calculation section, 76 blood flow image processing section, 100 ultrasonic diagnostic device, 120 frequency shifter

Claims (12)

  1.  被検体との間で超音波を送受信する超音波探触子と、前記超音波探触子で計測された反射エコー信号に基づいてドプラ計測による前記被検体の血流画像を生成する血流画像構成部と、前記血流画像を表示する画像表示器とを備えた超音波診断装置であって、
     前記ドプラ計測により計測速度を演算する計測速度演算部と、前記被検体の組織の移動速度である組織移動速度を求める組織移動速度演算部と、前記組織移動速度に基づいて前記計測速度を補正し、前記被検体の血流速度を求める血流速度演算部とを備え、前記血流画像構成部は、前記血流速度演算部によって求められた前記血流速度に基づいて前記血流画像を構成することを特徴とする超音波診断装置。
    An ultrasonic probe that transmits / receives ultrasonic waves to / from a subject, and a blood flow image that generates a blood flow image of the subject by Doppler measurement based on a reflected echo signal measured by the ultrasonic probe An ultrasound diagnostic apparatus comprising a component and an image display for displaying the blood flow image,
    A measurement speed calculation unit that calculates a measurement speed by the Doppler measurement; a tissue movement speed calculation unit that obtains a tissue movement speed that is a movement speed of the tissue of the subject; and the measurement speed is corrected based on the tissue movement speed. A blood flow velocity calculation unit that obtains a blood flow velocity of the subject, and the blood flow image construction unit composes the blood flow image based on the blood flow velocity obtained by the blood flow velocity computation unit An ultrasonic diagnostic apparatus.
  2.  請求項1の超音波診断装置において、
     前記血流速度演算部によって求められた前記血流速度は、圧迫手技に依存しない速度であることを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 1,
    The ultrasonic diagnostic apparatus, wherein the blood flow velocity obtained by the blood flow velocity calculating unit is a velocity that does not depend on a compression technique.
  3.  請求項1の超音波診断装置において、
     前記血流速度演算部は、前記計測速度から前記組織移動速度を除去して前記血流速度を求めることを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 1,
    The ultrasonic diagnostic apparatus, wherein the blood flow velocity calculation unit obtains the blood flow velocity by removing the tissue movement velocity from the measurement velocity.
  4.  請求項1の超音波診断装置において、
     前記血流速度演算部は、前記計測速度から前記組織移動速度を差分することにより、前記血流速度を求めることを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 1,
    The ultrasonic diagnostic apparatus, wherein the blood flow velocity calculation unit obtains the blood flow velocity by subtracting the tissue movement velocity from the measurement velocity.
  5.  請求項1の超音波診断装置において、
     前記超音波探触子の変位により発生するドプラ偏移速度である探触子移動速度を求める探触子移動速度演算部を備え、前記血流速度演算部は、前記探触子移動速度に基づいて前記計測速度を補正して前記血流速度を求めることを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 1,
    A probe moving speed calculation unit for obtaining a probe moving speed that is a Doppler shift speed generated by the displacement of the ultrasonic probe, and the blood flow rate calculating unit is based on the probe moving speed An ultrasonic diagnostic apparatus characterized in that the blood flow velocity is obtained by correcting the measurement velocity.
  6.  請求項5の超音波診断装置において、
     前記探触子移動速度に相当するドプラ周波数だけ前記RF信号フレームデータの周波数をシフトさせる周波数シフタを有し、前記血流速度演算部は、該周波数シフタにより周波数偏移された前記計測速度と前記組織移動速度とに基づいて前記血流速度を求めることを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 5,
    A frequency shifter that shifts the frequency of the RF signal frame data by a Doppler frequency corresponding to the probe moving speed, and the blood flow velocity calculation unit and the measurement velocity shifted by the frequency shifter and the frequency An ultrasonic diagnostic apparatus characterized in that the blood flow velocity is obtained based on a tissue moving velocity.
  7.  請求項5の超音波診断装置において、
     前記探触子移動速度及び前記組織移動速度に相当するドプラ周波数だけ前記RF信号フレームデータの周波数をシフトさせる周波数シフタを有し、前記血流速度演算部は、該周波数シフタにより周波数偏移されたRF信号フレームデータに基づいて前記血流速度を求めることを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 5,
    A frequency shifter that shifts the frequency of the RF signal frame data by a Doppler frequency corresponding to the probe movement speed and the tissue movement speed, and the blood flow velocity calculation unit is frequency-shifted by the frequency shifter. An ultrasonic diagnostic apparatus characterized in that the blood flow velocity is obtained based on RF signal frame data.
  8.  請求項5の超音波診断装置において、
     前記超音波探触子の超音波送受信面で前記被検体を押圧しながら前記被検体の断層面の組織に対する圧迫を変化させる場合、
     前記組織移動速度演算部は、前記変位フレームデータ及び前記弾性フレームデータの少なくとも一方に基づいて、前記組織移動速度を求め、
     前記血流速度演算部は、前記探触子移動速度と前記組織移動速度とに基づいて前記血流速度を演算することを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 5,
    When changing the pressure on the tissue of the tomographic plane of the subject while pressing the subject on the ultrasound transmitting / receiving surface of the ultrasound probe,
    The tissue movement speed calculation unit obtains the tissue movement speed based on at least one of the displacement frame data and the elastic frame data,
    The ultrasonic diagnostic apparatus, wherein the blood flow velocity calculation unit calculates the blood flow velocity based on the probe moving velocity and the tissue moving velocity.
  9.  請求項5の超音波診断装置において、
     超音波探触子の超音波送受信面で前記被検体を押圧しながら前記被検体の断層面の組織に対する圧迫を変化させる場合、
     前記組織移動速度演算部は、前記変位フレームデータ及び前記弾性フレームデータの少なくとも一方に基づいて、前記組織移動速度を求め、
     前記血流速度演算部は、前記探触子移動速度に相当するドプラ周波数だけ前記RF信号フレームデータの周波数をシフトさせる周波数シフタを有し、該周波数シフタにより周波数偏移されたRF信号フレームデータに基づいて求められた計測速度と、前記探触子移動速度と前記組織移動速度とに基づいて前記血流速度を演算することを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 5,
    When changing the pressure on the tissue of the tomographic plane of the subject while pressing the subject on the ultrasound transmission / reception surface of the ultrasound probe,
    The tissue movement speed calculation unit obtains the tissue movement speed based on at least one of the displacement frame data and the elastic frame data,
    The blood flow velocity calculation unit has a frequency shifter that shifts the frequency of the RF signal frame data by a Doppler frequency corresponding to the probe moving speed, and the RF signal frame data frequency-shifted by the frequency shifter An ultrasonic diagnostic apparatus, wherein the blood flow velocity is calculated based on a measurement velocity obtained based on the probe velocity, the probe movement velocity, and the tissue movement velocity.
  10.  請求項1の超音波診断装置において、
     前記超音波探触子は前記被検体の複数断層面の組織の反射エコー信号を計測可能な3次元走査可能な探触子であり、
     前記組織移動速度演算部は、前記変位フレームデータ及び前記弾性フレームデータの少なくとも一方に基づいて、前記組織移動速度を求め、
     前記血流速度演算部は、前記複数断層面のそれぞれにおける前記計測速度演算部により求められた計測速度と前記組織移動速度とに基づいて前記血流速度を演算することを特徴とする超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 1,
    The ultrasonic probe is a probe capable of three-dimensional scanning capable of measuring a reflected echo signal of a tissue of a plurality of tomographic planes of the subject,
    The tissue movement speed calculation unit obtains the tissue movement speed based on at least one of the displacement frame data and the elastic frame data,
    The blood flow velocity calculation unit calculates the blood flow velocity based on the measurement velocity obtained by the measurement velocity calculation unit and the tissue movement velocity in each of the plurality of tomographic planes. apparatus.
  11.  請求項5の超音波診断装置において、
     圧迫手技を行わない計測時には、前記探触子移動速度が零である超音波診断装置。
    In the ultrasonic diagnostic apparatus of claim 5,
    An ultrasonic diagnostic apparatus in which the probe moving speed is zero at the time of measurement without performing a compression technique.
  12.  ドプラ計測により計測速度を演算するステップと、被検体の組織の移動速度である組織移動速度を求めるステップと、組織移動速度に基づいて計測速度を補正し、被検体の血流速度を求めるステップと、血流速度に基づいて血流画像を構成するステップとを含むことを特徴とする血流画像生成方法。 A step of calculating a measurement speed by Doppler measurement, a step of obtaining a tissue movement speed that is a movement speed of the tissue of the subject, a step of correcting the measurement speed based on the tissue movement speed, and obtaining a blood flow velocity of the subject And a step of constructing a blood flow image based on the blood flow velocity.
PCT/JP2011/052473 2010-02-08 2011-02-07 Ultrasonic diagnosis device, and blood flow image generation method WO2011096556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552851A JP5938822B2 (en) 2010-02-08 2011-02-07 Ultrasonic diagnostic apparatus and blood flow image generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010025457 2010-02-08
JP2010-025457 2010-10-22

Publications (1)

Publication Number Publication Date
WO2011096556A1 true WO2011096556A1 (en) 2011-08-11

Family

ID=44355549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052473 WO2011096556A1 (en) 2010-02-08 2011-02-07 Ultrasonic diagnosis device, and blood flow image generation method

Country Status (2)

Country Link
JP (1) JP5938822B2 (en)
WO (1) WO2011096556A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112294364A (en) * 2019-07-26 2021-02-02 株式会社日立制作所 Ultrasonic imaging apparatus and ultrasonic signal processing apparatus
US11241219B2 (en) * 2015-09-03 2022-02-08 Siemens Medical Solutions Usa, Inc. Ultrasound system and method for generating elastic image
US11497477B2 (en) * 2015-10-01 2022-11-15 Fujifilm Corporation Acoustic wave diagnostic apparatus and control method thereof
CN112294364B (en) * 2019-07-26 2024-06-07 富士胶片医疗健康株式会社 Ultrasonic imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523743A (en) * 2002-04-26 2005-08-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Contrast-enhanced color flow rendering process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042336A (en) * 1989-11-27 1992-01-07 Acoustic Imaging Technol Corp Ultrasonic doppler flow measurement and imaging device
JP2807131B2 (en) * 1992-08-05 1998-10-08 オリンパス光学工業株式会社 Ultrasound diagnostic equipment
JPH0759770A (en) * 1993-08-26 1995-03-07 Ge Yokogawa Medical Syst Ltd Ultrasonic doppler diagnostic system and ultrasonic doppler data display method
JPH07289547A (en) * 1994-03-02 1995-11-07 Ge Yokogawa Medical Syst Ltd Ultrasonic doppler information display method, ultrasonic doppler tissue moving information display method and ultrasonic doppler diagnostic system
JP3370780B2 (en) * 1994-06-28 2003-01-27 フクダ電子株式会社 Ultrasound diagnostic equipment
JP5074097B2 (en) * 2007-05-21 2012-11-14 株式会社日立メディコ Ultrasonic diagnostic equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523743A (en) * 2002-04-26 2005-08-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Contrast-enhanced color flow rendering process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241219B2 (en) * 2015-09-03 2022-02-08 Siemens Medical Solutions Usa, Inc. Ultrasound system and method for generating elastic image
US11497477B2 (en) * 2015-10-01 2022-11-15 Fujifilm Corporation Acoustic wave diagnostic apparatus and control method thereof
US11771404B2 (en) 2015-10-01 2023-10-03 Fujifilm Corporation Acoustic wave diagnostic apparatus and control method thereof
CN112294364A (en) * 2019-07-26 2021-02-02 株式会社日立制作所 Ultrasonic imaging apparatus and ultrasonic signal processing apparatus
JP2021019813A (en) * 2019-07-26 2021-02-18 株式会社日立製作所 Supersonic imaging device and supersonic signal processing device
JP7304230B2 (en) 2019-07-26 2023-07-06 富士フイルムヘルスケア株式会社 Ultrasound imaging device
US11751840B2 (en) 2019-07-26 2023-09-12 Fujifilm Healthcare Corporation Ultrasonic imaging device and ultrasonic signal processing device
CN112294364B (en) * 2019-07-26 2024-06-07 富士胶片医疗健康株式会社 Ultrasonic imaging device

Also Published As

Publication number Publication date
JP5938822B2 (en) 2016-06-22
JPWO2011096556A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP4966578B2 (en) Elastic image generation method and ultrasonic diagnostic apparatus
JP5689073B2 (en) Ultrasonic diagnostic apparatus and three-dimensional elastic ratio calculation method
US20110194748A1 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP5559788B2 (en) Ultrasonic diagnostic equipment
JP5199690B2 (en) Ultrasonic diagnostic equipment
JP5436533B2 (en) Ultrasonic diagnostic apparatus and elastic image display method
CN106963419B (en) Analysis device
US20210315543A1 (en) Analyzing apparatus
JP5647990B2 (en) Ultrasonic diagnostic apparatus and image construction method
JP4989262B2 (en) Medical diagnostic imaging equipment
JP5156421B2 (en) Ultrasonic diagnostic equipment
JP6469876B2 (en) Ultrasonic imaging apparatus and ultrasonic signal processing method
JP5074097B2 (en) Ultrasonic diagnostic equipment
JP5280379B2 (en) Ultrasonic diagnostic apparatus, ultrasonic elastic information processing method, and ultrasonic elastic information processing program
JP2015136449A (en) Ultrasonic diagnostic apparatus and beam forming method
KR101776530B1 (en) Ultrasonic image display apparatus and control program thereof
JP2012110527A (en) Ultrasonic diagnostic apparatus
JP5938822B2 (en) Ultrasonic diagnostic apparatus and blood flow image generation method
JP5455592B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP5179812B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
JP2008000588A (en) Ultrasonic diagnostic apparatus
JP6230801B2 (en) Ultrasonic imaging apparatus and ultrasonic image display method
JP6299194B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP5394693B2 (en) Ultrasonic diagnostic equipment
JP5848894B2 (en) Medical imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552851

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739903

Country of ref document: EP

Kind code of ref document: A1