WO2011093188A1 - ポジ型レジスト組成物及びマイクロレンズの製造方法 - Google Patents

ポジ型レジスト組成物及びマイクロレンズの製造方法 Download PDF

Info

Publication number
WO2011093188A1
WO2011093188A1 PCT/JP2011/050854 JP2011050854W WO2011093188A1 WO 2011093188 A1 WO2011093188 A1 WO 2011093188A1 JP 2011050854 W JP2011050854 W JP 2011050854W WO 2011093188 A1 WO2011093188 A1 WO 2011093188A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
component
resist composition
methyl
Prior art date
Application number
PCT/JP2011/050854
Other languages
English (en)
French (fr)
Inventor
昇志郎 湯川
慎哉 荒瀬
武山 敏明
勇樹 遠藤
健夫 毛呂
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to US13/574,938 priority Critical patent/US8722311B2/en
Priority to EP11736902.5A priority patent/EP2530524B1/en
Priority to CN201180007042.2A priority patent/CN102725691B/zh
Priority to KR1020127021815A priority patent/KR101852523B1/ko
Priority to JP2011551818A priority patent/JP5673963B2/ja
Publication of WO2011093188A1 publication Critical patent/WO2011093188A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image

Definitions

  • the present invention relates to a positive resist composition containing a polyfunctional epoxy compound having a triazine skeleton as a crosslinking agent.
  • This composition is particularly suitable for use as a planarizing film and a microlens material.
  • a microlens for an image sensor such as a charge coupled device (CCD) can produce a high-definition image sensor mainly by forming a fine pattern, and this fine pattern is produced using a photoresist.
  • a resist composition containing a polymer resin and a photosensitive agent is applied onto a substrate and formed into a film, and then patterned and developed by a photolithography method to form a single pattern, thereby producing a microlens. .
  • a resist composition used as a microlens material is required to have high sensitivity and excellent pattern forming ability.
  • the formed lens pattern since the formed lens pattern is exposed to high temperature conditions in the soldering process, the formed lens pattern has a desired radius of curvature in the resist composition, and has high heat resistance and transparency. Desired.
  • sensitivity One of the important characteristics described above is sensitivity.
  • the improvement in sensitivity leads to shortening of the production time in industrial production, and it is one of the very important characteristics nowadays as the demand for imaging devices is greatly increased. If the sensitivity is not sufficient, a desired pattern cannot be resolved and a good lens shape cannot be formed.
  • it is possible to improve the sensitivity by increasing the solubility of the polymer in the material in an alkaline developer, changing the composition of the polymer has a large effect on other properties such as refractive index and hygroscopicity. Therefore, there is a limit.
  • important characteristics required for the microlens material include transparency and heat resistance.
  • a module such as a camera having a microlens is mounted on a substrate on which an electronic circuit is built.
  • lead-containing solder has been conventionally used.
  • lead-free solder using metals other than lead has a higher melting point than lead-containing solder. Therefore, when lead-free solder is used in the mounting process, heat treatment at a higher temperature is required than when lead-containing solder is used. At this time, a material having insufficient heat resistance causes a problem that transparency is lowered.
  • a resist composition microlens material having high heat resistance, it is required that not only the resin but also the crosslinkable compound, the photosensitive material, and other additives to be excellent in heat resistance.
  • crosslinkable compounds that are not sufficiently heat-resistant yellowing, which causes a decrease in the heat resistance of the resist composition.
  • an epoxy compound having a long-chain alkylene chain (see Patent Documents 1, 2, and 3) is used as a compound having a triazinetrione ring having high heat resistance and a long-chain alkylene chain having solubility.
  • Patent Documents 1, 2, and 3 an epoxy compound having a long-chain alkylene chain
  • Patent Documents 1, 2, and 3 is used as a compound having a triazinetrione ring having high heat resistance and a long-chain alkylene chain having solubility.
  • the present invention is to provide a resist composition suitable for forming a microlens having excellent transparency, heat resistance, and sensitivity characteristics, excellent solubility in a developer, and high resolution.
  • the present inventors have adopted a specific polyfunctional epoxy compound having a triazine skeleton in the resist composition as a crosslinkable compound, which is highly sensitive and heat resistant.
  • the present invention was completed by finding that the material has excellent transparency.
  • the present invention provides, as a first aspect, the following components (A), (B), (C) and (D): (A) component: alkali-soluble polymer, (B) component: a compound having an organic group that undergoes photolysis to produce an alkali-soluble group, (C) Component: Formula (1): [R 1 , R 2 , and R 3 each independently represents an alkylene group or an oxyalkylene group which may have 1 to 6 carbon atoms, and E 1 , E 2 , and E 3 represent Independently formula (2) or formula (3): (Wherein R 4 represents a hydrogen atom or a methyl group) and represents a group having a structure represented by: A crosslinkable compound represented by (D) component: solvent,
  • the present invention relates to a positive resist composition containing
  • the alkali-soluble polymer of the component (A) is a polymer containing a hydroxy group, a carboxyl group
  • the alkali-soluble polymer of component (A) is a copolymer of a monomer having a hydroxy group, a carboxyl group, or a combination thereof and a monomer having a hydrophobic group, the first aspect or the second aspect The positive resist composition as described in 1. above.
  • the component (B) is represented by the formula (4): [In Formula (4), R 5 is a hydrogen atom or Formula (5): (In formula (5), R 7 represents a single bond or —SO 3 — group, R 8 represents an alkyl group having 1 to 10 carbon atoms, and m4 represents an integer of 0 to 3).
  • R 6 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a halogen atom, or an alkoxy group having 1 to 10 carbon atoms.
  • m3 represents an integer of 0 or 1.
  • m1 represents an integer of 1 to 5
  • m2 represents an integer satisfying 0 ⁇ m2 ⁇ (5-m1)
  • M1 represents an integer of 1 to 7
  • m2 represents an integer satisfying 0 ⁇ m2 ⁇ (7 ⁇ m1).
  • R 5 represents a structure of 10 to 100 mol% represented by the above formula (5).
  • the positive resist composition according to any one of the first aspect to the third aspect which is a compound having a structure represented by the formula:
  • the component (B) is represented by the formula (6):
  • R 5 and R 6 are the same as those represented by the above formula (4), R 7 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and m5 represents 0 to 10 represents an integer, m6 represents an integer of 1 to 5, m7 represents an integer satisfying 0 ⁇ m7 ⁇ (5-m6), m8 represents an integer of 0 to 1, and m9 represents an integer of 0 to 5 M10 represents an integer satisfying 0 ⁇ m10 ⁇ (5-m8 ⁇ m9), where R 5 represents 10 to 100 mol% of the structure represented by the above formula (5).
  • the positive resist composition according to the fourth aspect which is a compound.
  • E 1 , E 2 , E 3 in formula (1), or two or more selected from E 1 to E 3 are represented by formula (7): (Wherein, R 4 represents. A hydrogen atom or a methyl group) are those having an organic group represented by relates to a positive resist composition according to any one of the first aspect to the fifth aspect .
  • any one of the first to sixth aspects has a coating film property of having a transmittance with respect to light having a wavelength of 400 to 730 nm of 80% or more when a composition film having a thickness of 1.0 ⁇ m is formed.
  • the present invention relates to the positive resist composition described in item 1.
  • the present invention relates to a pattern forming method including the steps of applying the positive resist composition according to any one of the first to sixth aspects on a substrate, drying, exposing, and developing.
  • the present invention relates to the pattern forming method according to the eighth aspect, including a heating step after exposure and before development.
  • a 10th viewpoint it is related with the solid-state image sensor containing the microlens or the planarization film
  • the positive resist composition of the present invention uses a polyfunctional epoxy compound having a triazine trione ring skeleton as a crosslinking agent, so that a coating film obtained using the composition has high sensitivity and is soluble in a developer.
  • the cured film obtained is excellent in transparency and heat resistance, and can be excellent in solvent resistance.
  • the cured film having a film thickness of 1.0 ⁇ m obtained from the present invention has excellent transparency with a transmittance of 80% or more at a wavelength of 400 to 730 nm. Therefore, the positive resist composition of the present invention can be suitably used as a microlens material and a planarizing film material for forming a microlens.
  • the present invention is directed to a composition suitable for a planarizing film or a microlens material.
  • One application to which microlenses are applied is an image sensor that is a semiconductor device that converts an optical image into an electrical signal.
  • the image sensor includes a photodiode (light sensing element) that senses irradiated light and a portion that converts it into an electrical signal. The greater the amount of light received by the photodiode, the higher the sensitivity of the image sensor to light.
  • a method of forming the above-described microlens is employed.
  • a convex microlens is made of a material having a high light transmittance on the upper part of the photodiode, and the path of incident light is refracted by the microlens to collect a lot of light on the photodiode.
  • an interlayer insulating layer is formed on the photodiode formed on the substrate, a protective film is formed thereon, and a color filter layer made of R / G / B is formed thereon. Further, a planarizing film is formed on the color filter, and a microlens is formed thereon.
  • the microlens material is required to have high transparency as an optical material.
  • a positive photosensitive material (resist material) has been used to form a microlens.
  • a positive resist layer is formed by applying a positive resist composition on a planarizing layer and drying it.
  • a positive resist pattern is formed by exposure and development, and then a convex microlens is formed by thermal reflow or the like.
  • the shape of the lens depends on the pattern shape after development, and factors relating to the lens shape such as the curvature of the lens and the height formed will affect the light collection efficiency. For this reason, the microlens material is also required to be able to form an arbitrary lens shape in consideration of the focal point of the focused light, that is, to have good sensitivity and patternability.
  • planarization film layer under the microlens also plays an important role in forming the uniform optical axis of the microlens by forming a uniform surface, and further improving the light collection efficiency to the photodiode. Therefore, a highly transparent planarizing film layer is required. Since an opening for wiring may be provided in the planarization film layer, it is desirable that the patterning property is also good.
  • the present invention has been made to provide a positive resist composition that is a material having the above-described performance required for a microlens and a planarizing film, and each component contained in the composition will be described in detail below. .
  • the present invention includes the following components (A), (B), (C) and (D): (A) component: alkali-soluble polymer, (B) component: a compound having an organic group that undergoes photolysis to produce an alkali-soluble group, (C) component: the crosslinkable compound represented by the formula (1), (D) A positive resist composition containing component: solvent.
  • R 1 , R 2 , and R 3 each independently represents an alkylene group or an oxyalkylene group which may have a branch having 1 to 6 carbon atoms, and E 1 , E 2 And E 3 each independently represent a group containing a structure represented by the formula (2) or the formula (3).
  • the positive resist composition of the present invention may further contain (E) component: surfactant and / or (F) component: adhesion promoter described later, if necessary.
  • the solid content is 3 to 50% by mass, preferably 5 to 35% by mass, and more preferably 7 to 30% by mass.
  • the solid content is the ratio of the remaining components after removing the solvent from the positive resist composition.
  • the content of the component (A) in the solid content is 8 to 90% by mass, preferably 40 to 90% by mass, and more preferably 50 to 80% by mass.
  • the content of the component (B) in the solid content is 1 to 90% by mass, preferably 5 to 50% by mass, and more preferably 10 to 30% by mass.
  • the component (B) for example, 1,2-naphthoquinonediazide compound
  • the component (B) is not sufficiently decomposed by exposure for a short period of time, so that the sensitivity decreases, or the component (B) emits light. It may absorb and reduce the transparency of the cured film.
  • the content of the component (C) in the solid content is 0.24 to 45% by mass, preferably 0.56 to 40% by mass, and 0.80 to 35% by mass.
  • the crosslink density formed by the crosslinkable compound is not sufficient, so depending on the purpose of use, such as heat resistance after pattern formation, solvent resistance, long-time baking resistance, etc. The effect of improving process resistance may not be sufficiently obtained.
  • (A) component alkali-soluble polymer
  • a hydroxy group, a carboxyl group, or a combination thereof that is, a polymer containing a hydroxy group and a carboxyl group in a repeating unit
  • a monomer constituting the polymer a monomer containing a hydroxy group, a monomer containing a carboxyl group, or a monomer having both groups can be used, and these monomers can be used alone.
  • Copolymers obtained with polymers or other copolymerizable monomers can be used as alkali-soluble polymers.
  • Examples of the monomer having a carboxyl group constituting the alkali-soluble polymer (A) include monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid and 4-vinylbenzoic acid, maleic acid, fumaric acid, citraconic acid, mesacone Examples thereof include dicarboxylic acids such as acid and itaconic acid, and anhydrides of these dicarboxylic acids.
  • the monomer having a carboxyl group and another copolymerizable monomer are copolymerized, the monomer having a carboxyl group is preferably 10 to 70% by mass, particularly preferably 10%, based on all monomers used for copolymerization. Used at a ratio of ⁇ 50 mass%.
  • the use amount of the monomer having a carboxyl group is less than 10% by mass, the developability after exposure of the positive resist composition may be lowered. On the other hand, when the use amount exceeds 70% by mass, A predetermined remaining film rate may not be obtained.
  • examples of the monomer having a hydroxy group constituting the alkali-soluble polymer of component (A) include monomers having a phenolic hydroxy group such as 4-hydroxystyrene and 4-hydroxyphenyl methacrylate.
  • the monomer having a hydroxy group and another copolymerizable monomer are copolymerized, the monomer having a hydroxy group is preferably 30 to 100% by mass, particularly preferably 50%, based on all monomers used for copolymerization. Used at a ratio of ⁇ 100% by mass. When the usage-amount of the monomer which has the said hydroxyl group is less than 30 mass%, it exists in the tendency for the developability of an alkali-soluble polymer to fall.
  • the alkali-soluble polymer of component (A) is a copolymer of the above-mentioned monomer having a carboxyl group, a hydroxy group or a combination thereof and another copolymerizable monomer, a hydrophobic group as the other copolymerizable monomer Monomers having can be used.
  • Examples of the monomer having a hydrophobic group used herein include alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, and t-butyl methacrylate; glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ -n-propyl acrylate, glycidyl ⁇ -n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, -6 acrylate 7-epoxyheptyl, methacrylic acid-6,7-epoxyheptyl, ⁇ -ethylacrylic acid-6,7-epoxyheptyl, o-vinylbenzylglycidyl ether, m-vinylbenz
  • Acrylic acid alkyl ester, cyclohexyl methacrylate, 2-methylcyclohexyl Methacrylic acid cyclic alkyl esters such as tacrylate, dicyclopentanyl methacrylate, dicyclopentanyloxyethyl methacrylate, isobornyl methacrylate, cyclohexyl acrylate, 2-methylcyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentanyloxyethyl acrylate
  • Cyclic alkyl esters of acrylic acid such as isobornyl acrylate, N-substituted maleimides such as N-cyclohexylmaleimide, N-phenylmaleimide and N-benzylmaleimide, aryl methacrylates such as phenyl methacrylate and benzyl methacrylate, phenyl acrylate, benzyl Acrylic acid aryl esters such as acrylate, diethyl
  • styrene, t-butyl methacrylate, dicyclopentanyl methacrylate, p-methoxystyrene, 2-methylcyclohexyl acrylate, N-cyclohexylmaleimide, N-phenylmaleimide, 1,3-butadiene, ethylene glycol dimethacrylate, diethylene glycol Dimethacrylate, glycerol dimethacrylate, glycidyl methacrylate, methacrylic acid- ⁇ -methylglycidyl, 3-ethyl-3-oxetanyl methacrylate, 2-vinylnaphthalene, 4-vinylbiphenyl, etc. are copolymerization reactivity, controllability of molecular weight distribution and It is preferable from the viewpoint of solubility in an aqueous alkali solution. These may be used alone or in combination.
  • the solvent used for the synthesis of the component (A) alkali-soluble polymer include alcohols such as methanol and ethanol, ethers such as tetrahydrofuran, glycols such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether.
  • ethylene glycol alkyl ether acetates such as methyl cellosolve acetate and ethyl cellosolve acetate
  • diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and diethylene glycol ethyl methyl ether
  • propylene glycol methyl ether propylene Glycol ethyl a
  • Propylene glycol monoalkyl ethers such as propylene glycol propyl ether and propylene glycol butyl ether
  • propylene glycol alkyl ether acetates such as propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate propylene glycol butyl ether acetate, propylene Propylene glycol alkyl ether acetates such as
  • radical polymerization initiators As the polymerization initiator used for the synthesis of the alkali-soluble polymer of component (A), those generally known as radical polymerization initiators can be used.
  • radical polymerization initiators For example, 2,2′-azobisisobutyronitrile, 2 Azo compounds such as 2,2'-azobis- (2,4-dimethylvaleronitrile), 2,2'-azobis- (4-methoxy-2,4-dimethylvaleronitrile); benzoyl peroxide, lauroyl peroxide, t-butyl And organic peroxides such as peroxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane; and hydrogen peroxide.
  • the peroxide may be used together with a reducing agent to form a redox initiator.
  • a molecular weight modifier can be used to adjust the molecular weight.
  • halogenated hydrocarbons such as chloroform and carbon tetrabromide
  • mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan and thioglycolic acid
  • dimethylxanthogen examples thereof include xanthogens such as sulfide and diisopropylxanthogen disulfide, terpinolene, and ⁇ -methylstyrene dimer.
  • the alkali-soluble polymer of component (A) used in the present invention has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”), usually 2 ⁇ 10 3 to 1 ⁇ 10 5 , preferably 5 ⁇ 10 3 to 5 It is desirable that it is ⁇ 10 4 . If the Mw is less than 2 ⁇ 10 3 , the resulting film may have poor developability, residual film ratio, etc., or may be inferior in pattern shape, heat resistance, etc., whereas when it exceeds 1 ⁇ 10 5 , Sensitivity may decrease or pattern shape may be inferior.
  • Mw polystyrene-equivalent weight average molecular weight
  • the alkali-soluble polymer of the component (A) in the present invention is a polymer containing a hydroxy group and / or a carboxyl group, and has an appropriate solubility in an alkaline aqueous solution.
  • the positive resist composition of the present invention containing such a component (A) can easily form a coating film having a predetermined pattern without developing residue during development and without reducing the film thickness. it can.
  • Component (B) Compound having an organic group that undergoes photolysis to generate an alkali-soluble group
  • a compound having an organic group that undergoes photolysis to generate an alkali-soluble group specifically, a 1,2-naphthoquinonediazide compound having a partial structure represented by the formula (4) is used. Can do.
  • the 1,2-naphthoquinonediazide group contained in the component (B) present in the exposed area is irradiated with light. Converted to ketene, the resulting ketene is highly reactive and comes into contact with moisture to produce carboxyl groups.
  • the 1,2-naphthoquinonediazide group in the exposed portion generates indenecarboxylic acid upon exposure, so that it becomes soluble in the developer, and a pattern can be formed by the difference in solubility from the unexposed back portion. .
  • R 5 represents a hydrogen atom or a structure represented by Formula (5).
  • R 6 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a halogen atom, or an alkoxy group having 1 to 10 carbon atoms.
  • m3 represents an integer of 0 or 1. When m3 is 0, m1 represents an integer of 1 to 5, m2 represents an integer satisfying 0 ⁇ m2 ⁇ (5-m1), and when m3 is 1, , M1 represents an integer of 1 to 7, and m2 represents an integer satisfying 0 ⁇ m2 ⁇ (7 ⁇ m1).
  • R 5 represents a structure of 10 to 100 mol% represented by the above formula (5).
  • this is a structure in which 10 to 100 mol% of the group R 5 is represented by the formula (5) with respect to the total number of moles of the group R 5 contained in the compound having the structure represented by the formula (4).
  • R 7 represents a single bond or —SO 3 — group
  • R 8 represents an alkyl group having 1 to 10 carbon atoms
  • m4 represents an integer of 0 to 3.
  • alkyl group having 1 to 10 carbon atoms examples include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 1-methyl- Cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1, 2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl-n-propyl, cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2- Dimethyl-cyclopropyl, 2,3-dimethyl-cyclopropyl, 1-ethyl-cyclopropyl, 2-e
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group having 1 to 10 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, 1-methyl-n -Butoxy, 2-methyl-n-butoxy, 3-methyl-n-butoxy, 1,1-dimethyl-n-propoxy, 1,2-dimethyl-n-propoxy, 2,2-dimethyl-n-propoxy, 1 -Ethyl-n-propoxy, n-hexyloxy, 1-methyl-n-pentyloxy, 2-methyl-n-pentyloxy, 3-methyl-n-pentyloxy, 4-methyl-n-pentyloxy, 1, 1-dimethyl-n-butoxy, 1,2-dimethyl-n-butoxy,
  • a compound represented by the formula (6) can be used as the component (B), specifically, a compound represented by the formula (6).
  • R 5 and R 6 are the same as those represented by the above formula (4), and m5 represents 0 to 10 M6 represents an integer of 1 to 5, m7 represents an integer satisfying 0 ⁇ m7 ⁇ (5-m6), m8 represents an integer of 0 to 1, and m9 represents an integer of 0 to 5.
  • M10 represents an integer satisfying 0 ⁇ m10 ⁇ (5-m8 ⁇ m9).
  • R 5 represents a structure of 10 to 100 mol% represented by the above formula (5). That is, this is a structure in which 10 to 100 mol% of the group R 5 is represented by the formula (5) with respect to the total number of moles of the group R 5 contained in the compound represented by the formula (6). Indicates.
  • component (B) examples include compounds represented by the following formulas (B-1) to (B-5).
  • D represents a hydrogen atom or a 1,2-naphthoquinonediazide group represented by the above formula (5).
  • Examples of the component (B) used in the present invention also include compounds represented by the following (B-6) to (B-10).
  • D represents a hydrogen atom or a 1,2-naphthoquinonediazide group represented by the formula (5).
  • a crosslinkable compound represented by the formula (1) can be used as the component (C) used in the present invention.
  • R 1 , R 2 and R 3 each independently represents an alkylene group or oxyalkylene group which may have a branch having 1 to 6 carbon atoms.
  • E 1 , E 2 , and E 3 each independently represent a group including the structure represented by the formula (2) or the formula (3).
  • R 4 represents a hydrogen atom or a methyl group.
  • alkylene group having 1 to 6 carbon atoms examples include methylene, ethylene, n-propylene, isopropylene, cyclopropylene, n-butylene, isobutylene, s-butylene, t-butylene, cyclobutylene, and 1-methyl-cyclohexane.
  • Examples of the oxyalkylene group having 1 to 6 carbon atoms include oxymethylene, oxyethylene, oxy n-propylene, oxyisopropylene, oxycyclopropylene, oxy n-butylene, oxyisobutylene, oxy s-butylene, oxy t- Butylene, oxycyclobutylene, oxy 1-methyl-cyclopropylene, oxy 2-methyl-cyclopropylene, oxy n-pentylene, oxy 1-methyl-n-butylene, oxy 2-methyl-n-butylene, oxy 3-methyl- n-butylene, oxy 1,1-dimethyl-n-propylene, oxy 1,2-dimethyl-n-propylene, oxy 2,2-dimethyl-n-propylene, oxy 1-ethyl-n-propylene, oxycyclopentylene Oxy1-methyl-cyclobutylene, oxy 2-methyl-cyclobutylene, oxy 3-methyl-cycl
  • R 1 , R 2 , and R 3 are each an alkylene group having 1 to 3 carbon atoms, preferably an alkylene group having 2 to 3 carbon atoms, and E 1 , A compound in which E 2 and E 3 are organic groups represented by the formula (2), and R 4 is a hydrogen atom is preferable.
  • E 1 , E 2 , E 3 in the formula (1), or two or more selected from E 1 to E 3 are represented by the following formula (7).
  • Those having an organic group can also be used.
  • the proportion of the organic group represented by the formula (2) with respect to the total number of moles of E 1 , E 2 and E 3 is 67 to 100 mol%, preferably 90 to 100 mol%
  • R 4 in the above formula (7) represents a hydrogen atom or a methyl group.
  • component (C) in the present invention for example, compounds represented by the following formulas (C-1-1) to (C-1-15) can be preferably used.
  • crosslinkable compound represented by the formula (1) used in the present invention can be obtained by the following method, for example, in the case of a compound represented by the formula (C-1-2).
  • isocyanuric acid is converted to isocyanuric acid Na salt with sodium hydroxide.
  • This reaction can be carried out in an aqueous solvent at 0 to 100 ° C. for 1 to 10 hours.
  • the isocyanuric acid Na salt is reacted with the halogenated alkene to obtain the alkene-substituted isocyanuric acid.
  • This reaction can be performed, for example, in a DMF (N, N-dimethylformamide) solvent at 0 to 150 ° C. for 1 to 10 hours.
  • X represents a halogen atom, and monobromoalkene or monochloroalkene can be used as the halogenated alkene.
  • the alkene-substituted isocyanuric acid can be oxidized with a peracid to obtain an epoxy compound.
  • a peracid for example, metachloroperbenzoic acid, peracetic acid, hydrogen peroxide-tungstic acid, or the like can be used.
  • This reaction can be carried out in a solvent such as methylene chloride and toluene at 0 to 110 ° C. for 1 to 10 hours.
  • a solvent such as methylene chloride and toluene at 0 to 110 ° C. for 1 to 10 hours.
  • crosslinkable compound represented by the formula (1) used in the present invention can be obtained by the following method, for example, in the case of a compound represented by the formula (C-1-4).
  • tris (alkyleneoxyglycidyl) isocyanurate is obtained by reacting hydroxyalkyl isocyanurate with epihalohydrin.
  • hydroxyalkyl isocyanurate hydroxyethyl isocyanurate or the like is used.
  • X represents a halogen atom
  • examples of the epihalohydrin include epichlorohydrin and epibromohydrin.
  • the reaction is carried out in a solvent such as dioxane using BF 3 or tin chloride as a catalyst at 0 to 100 ° C. for 1 to 10 hours.
  • the compounds represented by the above formulas (C-1-5), (C-1-9), (C-1-10), (C-1-14), and (C-1-15) can be prepared by the same method. Can be synthesized.
  • E 1 , E 2 , and E 3 in the formula (1) can be synthesized by the following method in the same manner as described above, for example, as a compound having the structure represented by the formula (3).
  • alcohol is converted to halogenated alkene with carbon halide.
  • This reaction can be carried out, for example, in a dichloromethane solvent at 0 to 100 ° C. for 1 to 10 hours.
  • isocyanuric acid is converted to isocyanuric acid Na salt with sodium hydroxide.
  • This reaction can be carried out in an aqueous solvent at 0 to 100 ° C. for 1 to 10 hours.
  • the isocyanuric acid Na salt is reacted with a halogenated alkene to obtain an alkene-substituted isocyanuric acid.
  • This reaction can be performed, for example, in a DMF (N, N-dimethylformamide) solvent at 0 to 150 ° C.
  • X represents a halogen atom
  • monohaloalkene or monochloroalkene can be used as the halogenated alkene.
  • the alkene-substituted isocyanuric acid can be oxidized with a peracid to obtain an epoxy compound.
  • a peracid for example, metachloroperbenzoic acid, peracetic acid, hydrogen peroxide-tungstic acid, or the like can be used. This reaction can be carried out in a solvent such as methylene chloride and toluene at 0 to 110 ° C. for 1 to 10 hours.
  • crosslinkable compounds (C-1) represented by the formula (1) [for example, compounds represented by the formulas (C-1-1) to (C-1-15)] And a crosslinkable compound (C-2) having a structure other than (C-1), ie, (C-1) / [(C-1) + (C-2)]
  • the positive resist composition can be contained in a mass ratio of 1 mass%, 1.5 mass% or more, or 50 to 100 mass%.
  • the mass ratio of (C-1) / [(C-1) + (C-2)] is 100% by mass, that is, the crosslinkable compound (C-1) can be used alone. From the viewpoint of cost, an epoxy compound mixed with the crosslinkable compound (C-2) can be used.
  • the (C-1) compound is a general term for the (C-1) compound group represented by the (C-1-1) to (C-1-15) compounds and the exemplified compounds.
  • the (C-2) compound is a general term for the following (C-2-1) to (C-2-7) compounds and (C-2) compound groups represented by the exemplified compounds.
  • the above compound (C-1) can be used alone or in combination with any crosslinkable compound capable of crosslinking with the hydroxy group or other organic group in the component (C-1).
  • the crosslinkable compound (C-2) used in combination with the component (C-1) is shown below.
  • a compound having a cycloalkene oxide structure represented by the following formula (C-2-1) can be used.
  • k represents an integer of 2 to 10
  • m represents an integer of 0 to 4
  • R 1 represents a k-valent organic group.
  • Specific examples of the compound represented by the formula (C-2-1) include compounds having a cyclohexene oxide structure represented by the following formula (C-2-2).
  • a Denacol EX-252 (trade name, manufactured by Nagase Chemmutex Co., Ltd.), CY175, CY177, CY179 (trade name, CIBA-GEIGY A.G (currently manufactured by BASF)), Araldite CY-182, CY -192, CY-184 (trade name, CIBA-GEIGY A.G (current: BASF) manufactured), Epicron 200, 400 (trade name, manufactured by DIC Corporation), Epicort (current: jER) 871 872 (trade name, Yuka Shell Epoxy Co., Ltd. (currently manufactured by Mitsubishi Chemical Corporation)), and the like.
  • Epolide GT-401, GT-403, GT-301, and the like having a cyclohexene oxide structure from the viewpoint of heat resistance, solvent resistance, process resistance such as long-time baking resistance, and transparency.
  • GT-302, Celoxide 2021, and Celoxide 3000 are preferred.
  • a compound having an oxirane structure represented by the following formula (C-2-3) can be used as the crosslinkable compound.
  • k represents an integer of 2 to 10
  • R 1 represents a k-valent organic group.
  • Specific examples of the compound represented by the formula (C-2-3) include a compound represented by the formula (C-2-4).
  • bisphenol A type epoxy resins include, for example, Epicort (currently jER) 828, 834, 1001, and 1004 (trade names, all manufactured by Japan Epoxy Resins Co., Ltd. (currently Mitsubishi Chemical Corporation). ))), Epicron 850, 860, 4055 (trade names, all manufactured by DIC Corporation).
  • bisphenol F type epoxy resin include Epicoat (present: jER) 807 (trade name, manufactured by Japan Epoxy Resin Co., Ltd. (current: Mitsubishi Chemical Corporation)), Epicron 830 (trade name, manufactured by DIC Corporation). ) And the like.
  • Examples of the phenol novolac type epoxy resin include Epicron N-740, N-770, N-775 (trade names, all manufactured by DIC Corporation), Epicoat (currently: jER) 152, 154 (trade names). , All of which are manufactured by Japan Epoxy Resin Co., Ltd. (currently Mitsubishi Chemical Corporation).
  • Examples of the cresol novolac type epoxy resin include Epicron N-660, N-665, N-670, N-673, N-680, N-695, N-665-EXP, N-672. -EXP (trade name, all manufactured by DIC Corporation) and the like.
  • Examples of the glycidylamine type epoxy resin include Epicron 430, 430-L (trade name, manufactured by DIC Corporation), TETRAD-C, TETRAD-X (trade names, both manufactured by Mitsubishi Gas Chemical Co., Ltd.), Epicoat (current: jER) 604, 630 (trade name, all manufactured by Japan Epoxy Resin Co., Ltd. (current: Mitsubishi Chemical Corporation)), Sumiepoxy ELM120, Sumipepoxy ELM100, Sumipepoxy ELM434, Sumipepoxy ELM434HV (trade name, any Manufactured by Sumitomo Chemical Co., Ltd.), YH-434, YH-434L (trade names, both manufactured by Tohto Kasei Co., Ltd. (currently Nippon Steel Chemical Co., Ltd.)), Araldite MY-720 (trade name, Asahi Ciba Co., Ltd.).
  • R 1 represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom.
  • alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, and hexyl group.
  • the compound having a partial structure represented by the above formula (C-2-5) is not particularly limited as long as it is a compound having a hydroxymethyl group or an alkoxymethyl group, and preferably the hydroxymethyl group or alkoxymethyl group.
  • Is a compound that binds to a nitrogen atom that is, a compound containing an N-hydroxymethyl group or an N-alkoxymethyl group.
  • Specific examples thereof include compounds represented by the following formulas (C-2-6) and (C-2-7), and commercially available products shown below.
  • Specific examples of commercially available products include hexamethoxymethylmelamine, tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis (hydroxymethyl) glycoluril, 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea, 1,1,3,3- Tetrakis (methoxymethyl) urea, 1,3-bis (hydroxymethyl) -4,5-dihydroxy-2-imidazolinone, 1,3-bis (methoxymethyl) -4,5-dimethoxy-2-imidazolinone, etc.
  • Cymel 300, Cymel 301, Cymel 303, Cymel 350 (trade names, all manufactured by Mitsui Cytec Co., Ltd. (currently: Nippon Cytec Industries Co., Ltd.) can be mentioned.
  • Examples of the butoxymethyl type melamine compound include My Coat 506 and My Coat 508 (trade names, both manufactured by Mitsui Cytec Co., Ltd. (currently Japan Cytec Industries Co., Ltd.).
  • Cymel 1170, powder link 1174 trade names, both of which are manufactured by Mitsui Cytec Co., Ltd. (currently Nippon Cytec Industries Co., Ltd.).
  • UFR65 as a methylated urea resin
  • UFR300 U as a butylated urea resin
  • VAN10S60 U-VAN10R
  • U-VAN11HV trade names, all manufactured by Mitsui Cytec Co., Ltd. (currently Nippon Cytec Industries Co., Ltd.).
  • urea / formaldehyde resins include becamine J-300S and becamine P-955, Becamine N (trade name, all manufactured by DIC Corporation) and the like.
  • crosslinkable compound (C-2) it was substituted with a hydroxymethyl group or an alkoxymethyl group such as N-hydroxymethylacrylamide, N-methoxymethylmethacrylamide, N-ethoxymethylacrylamide and N-butoxymethylmethacrylamide.
  • a polymer produced using an acrylamide compound or a methacrylamide compound can be used. Examples of such a polymer include poly (N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methylmethacrylate, and N-ethoxymethylmethacrylamide.
  • the crosslinkable compound (C-2) can be used alone or in combination of two or more compounds with the compound of component (C-1).
  • a surfactant (E) may be added for the purpose of improving coatability.
  • a surfactant is not particularly limited, such as a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • the component (E) one or more of the surfactants can be used in combination.
  • fluorine-based surfactants are preferable because of their high coating property improving effect.
  • fluorosurfactants include FP EF301, EF303, and EF352 (trade names, all manufactured by Tochem Products Co., Ltd. (currently Mitsubishi Materials Electronics Chemical Co., Ltd.)), MegaFuck F171, F173, and R.
  • the addition amount of the component (E) in the positive resist composition of the present invention is 0.0008 to 4.5% by mass, preferably 0.0008 to 2.7% by mass, more preferably 0.0008, in the solid content. Is 1.8% by mass.
  • the addition amount of the surfactant is more than 4.5% by mass, unevenness is likely to occur in the coating film, and when it is less than 0.0008% by mass, striation or the like is likely to occur in the coating film.
  • adhesion promoter In the present invention, an adhesion promoter (F) can be added for the purpose of improving the adhesion to the substrate after development.
  • adhesion promoters are chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, diphenyldimethoxysilane, phenyltrimethylsilane.
  • Alkoxysilanes such as ethoxysilane, hexamethyldisilazane, N, N′-bis (trimethylsilyl) urea, silazanes such as dimethyltrimethylsilylamine, trimethylsilylimidazole, vinyltrichlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -amino Propyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, Silanes such as-(N-piperidinyl) propyltrimethoxysilane, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole, thiouracil, mercaptoimidazole, Examples thereof include heterocycl
  • one or two or more of the adhesion promoters can be used as the component (F).
  • the addition amount of these adhesion promoters is usually 18% by mass or less, preferably 0.0008 to 9% by mass, more preferably 0.04 to 9% by mass in the solid content. If it is used in an amount of 18% by mass or more, the heat resistance of the coating film may be lowered, and if it is less than 0.0008% by mass, a sufficient effect of the adhesion promoter may not be obtained.
  • pigments, dyes, storage stabilizers, antifoaming agents, dissolution accelerators such as polyphenols and polycarboxylic acids may be added as necessary.
  • the positive resist composition of the present invention containing the above-mentioned components is preferably a coating film having a transmittance of 80% or more for light having a wavelength of 400 to 730 nm when a composition film having a thickness of 1.0 ⁇ m is formed. It is what has.
  • the positive resist composition of the present invention comprises a glass substrate, a silicon wafer, an oxide film, a nitride film, a substrate such as a substrate coated with a metal such as aluminum, molybdenum or chromium, spin coating, flow coating, roll coating, After coating by slit coating, spin coating following the slit, ink jet coating, etc., the coating film can be formed by pre-drying (pre-baking) with a hot plate or oven. At this time, the preliminary drying is preferably performed at a temperature of 80 ° C. to 130 ° C. for 30 to 600 seconds, but the conditions can be appropriately selected as necessary.
  • the thickness of the coating film can be selected from the range of about 0.01 ⁇ m to 10 mm depending on the use of the cured product.
  • a mask having a predetermined pattern is attached, exposed by irradiating light such as ultraviolet rays, and developed with an alkali developer, so that the exposed portion is washed out and the end face is sharpened.
  • a relief pattern can be obtained.
  • the wavelength of light to be irradiated or exposed is, for example, about 150 to 800 nm, preferably 150 to 600 nm, more preferably 200 to 400 nm, and particularly about 300 to 400 nm.
  • Irradiation dose may vary depending on the thickness of the coating film, for example, 2 ⁇ 20000mJ / cm 2, preferably to the 5 ⁇ 5000mJ / cm 2 approximately.
  • Bake PEB
  • PEB can also be performed.
  • the developer used in the development is not particularly limited as long as it is an alkaline aqueous solution.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, potassium carbonate and sodium carbonate
  • aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline.
  • aqueous amine solutions such as ethanolamine, propylamine, and ethylenediamine.
  • the alkaline developer is generally an aqueous solution of 10% by mass or less, and preferably an aqueous solution of 0.1 to 3.0% by mass is used.
  • alcohols and surfactants may be added to the developer, and these are preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the developer.
  • a tetramethylammonium hydroxide 0.1 to 2.38% by mass aqueous solution is generally used as a photoresist developer, and the positive resist of the present invention uses this solution to cause swelling and the like. It can be developed without causing problems.
  • any of a liquid piling method, a dipping method, a rocking dipping method and the like may be used as a developing method. At that time, the development time is usually 15 to 180 seconds.
  • the coating film on which this pattern is formed is irradiated with light such as ultraviolet rays using a high-pressure mercury lamp or the like, and the component (B) (1,2-naphthoquinonediazide compound) remaining in the patterned coating film is irradiated.
  • light such as ultraviolet rays using a high-pressure mercury lamp or the like
  • component (B) (1,2-naphthoquinonediazide compound) remaining in the patterned coating film is irradiated.
  • the coating film is cured by heating using a hot plate, oven, etc. (hereinafter referred to as post-bake), and heat resistance, transparency, flatness, low water absorption, chemical resistance And a coating film having a good relief pattern can be obtained.
  • the post-baking conditions are as follows: a heating device such as a hot plate or oven is heated at a predetermined temperature, for example, 140 ° C. to 260 ° C., for a predetermined time, for example, 3 to 30 minutes on the hot plate, and 30 to 90 minutes in the oven. That's fine.
  • a cured film having a desired good pattern shape can be obtained.
  • This cured film is excellent in heat resistance, solvent resistance and transparency, and can be suitably used for interlayer insulating films, various insulating films, various protective films, microlenses, and the like.
  • PGME Propylene glycol monomethyl ether
  • PGMEA Propylene glycol monomethyl ether acetate MegaFac R30: Fluorosurfactant (trade name, manufactured by DIC Corporation)
  • TMAH tetramethylammonium hydroxide.
  • ARC-XHRiC-16 Composition for forming an antireflection film used for the resist underlayer (trade name, manufactured by Nissan Chemical Industries, Ltd.)
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the number average molecular weight (hereinafter referred to as “Mn”) and the weight average molecular weight (hereinafter referred to as “Mw”) of the copolymer obtained according to the following synthesis examples were measured using a GPC apparatus (Shodex (registered trademark) column manufactured by JASCO Corporation. KF803L and KF804L) were used, and the elution solvent THF was allowed to flow through a column (temperature 40 ° C.) at 1 mL / min for elution.
  • Mn and Mw are expressed in terms of polystyrene.
  • a reactor equipped with a stirrer and a condenser was charged with 400 ml of N, N-dimethylformamide as a solvent, and 157.5 g of sodium isocyanurate and 361.4 g of 5-bromo-1-pentene were reacted at 120 to 125 ° C. for 6 hours. Thereafter, the inorganic salt was separated by filtration, extracted with toluene, washed with water, dried, and evaporated to obtain 205 g of tris 5-pentenyl isocyanurate as a light brown oil.
  • a reactor equipped with a stirrer and a condenser was charged with 8,700 ml of methylene chloride as a solvent, 205 g of tris 5-pentenyl isocyanurate was added, 815 g of metachloroperbenzoic acid was slowly added at 30 ° C. or lower, and 4 ° C. at 25 ° C. Reacted for hours. After completion of the reaction, 3,000 ml of 10% aqueous sodium hydrogen sulfite solution was slowly added at 20 ° C. or lower, insoluble matter was filtered off, and chloroform was added to perform solvent extraction.
  • the obtained epoxy compound was tris (4,5-epoxypentyl) isocyanurate corresponding to the compound represented by the formula (C-1-2).
  • the obtained crosslinkable compound represented by the formula (C-1-2) is hereinafter abbreviated as CL1.
  • a reactor equipped with a stirrer and a condenser was charged with 400 ml of N, N-dimethylformamide as a solvent, and 157.5 g of sodium isocyanurate and 327.4 g of 4-bromo-1-butene were reacted at 120 to 125 ° C. for 6 hours. Thereafter, the inorganic salt was separated by filtration, extracted with toluene, washed with water, dried and evaporated to obtain 179 g of tris 4-butenyl isocyanurate as a light brown oily substance.
  • a reactor equipped with a stirrer and a condenser was charged with 8,700 ml of methylene chloride as a solvent, 179 g of tris 4-butenyl isocyanurate was added, and 815 g of metachloroperbenzoic acid was slowly added at 30 ° C. or lower at 25 ° C. The reaction was performed for 4 hours. After completion of the reaction, 3,000 ml of 10% aqueous sodium hydrogen sulfite solution was slowly added at 20 ° C. or lower, insoluble matter was filtered off, and chloroform was added to perform solvent extraction.
  • the obtained epoxy compound was tris (3,4-epoxybutyl) isocyanurate corresponding to the compound represented by the formula (C-1-1).
  • the obtained crosslinkable compound represented by the formula (C-1-1) is hereinafter abbreviated as CL2.
  • a reactor equipped with a stirrer and a condenser was charged with 400 ml of N, N-dimethylformamide as a solvent, and 157.5 g of sodium isocyanurate and 395.4 g of 6-bromo-1-hexene were reacted at 120 to 125 ° C. for 6 hours. Thereafter, the inorganic salt was separated by filtration, extracted with toluene, washed with water, dried, and evaporated to give 230.8 g of tris 6-hexenyl isocyanurate as a light brown oil.
  • a reactor equipped with a stirrer and a condenser was charged with 8,700 ml of methylene chloride as a solvent, 230.8 g of tris 6-hexenyl isocyanurate was added, 815 g of metachloroperbenzoic acid was slowly added at 30 ° C. or lower, and 25 ° C. For 4 hours.
  • 3,000 ml of 10% aqueous sodium hydrogen sulfite solution was slowly added at 20 ° C. or lower, insoluble matter was filtered off, and chloroform was added to perform solvent extraction. After thoroughly washing with a 10% aqueous sodium hydrogen sulfite solution and a saturated sodium hydrogen carbonate solution, the product was dried and evaporated to obtain a product.
  • This product was purified by silica gel chromatography to obtain 182.1 g of a transparent oil.
  • the obtained epoxy compound was tris (5,6-epoxyhexyl) isocyanurate corresponding to the compound represented by the formula (C-1-3).
  • the obtained crosslinkable compound represented by the formula (C-1-3) is hereinafter abbreviated as CL3.
  • Example 1 (A) component: 2.0 g of polymer (P-1), (B) component: 0.6 g of QD1, (C) component: 0.6 g of CL1, (D) component: 8.88 g of PGME and 8 A mixed solvent of .88 g of PGMEA and component (E): 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution to obtain a positive resist composition.
  • Example 2 (A) component: 2.0 g of polymer (P-1), (B) component: 0.6 g of QD1, (C) component: 0.6 g of CL2, (D) component: 8.88 g of PGME and 8 A mixed solvent of .88 g of PGMEA and component (E): 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution to obtain a positive resist composition.
  • Example 3 (A) component: 2.0 g of polymer (P-1), (B) component: 0.6 g of QD1, (C) component: 0.6 g of CL3, (D) component: 8.88 g of PGME and 8 A mixed solvent of .88 g of PGMEA and component (E): 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution to obtain a positive resist composition.
  • This coating film was irradiated with ultraviolet rays having a wavelength of 365 nm through a test mask by an i-line stepper NSR2205i12D (manufactured by Nikon Corporation). Thereafter, post-exposure baking was performed at 80 ° C. for 90 seconds, followed by development with a 0.2% TMAH aqueous solution at 23 ° C. for 50 seconds, followed by washing with ultrapure water to form a positive pattern. The obtained pattern was observed with a scanning electron microscope S4800 (manufactured by Hitachi, Ltd.). A case where a 2 ⁇ m dot pattern was formed in a rectangular shape without peeling was evaluated as ( ⁇ ) with good resolution, and a case where the pattern shape was not rectangular or not resolved was evaluated as ( ⁇ ). The obtained results are shown in Table 1.
  • CL1 to CL3 which are compounds represented by the formula (1) as crosslinkable compounds, exhibit high solubility in a solvent, and the positive resist compositions of Examples 1 to 3 using these crosslinkable compounds are resist films. A uniform coating film could be formed when the film was formed. As shown in Table 1, all the coating films obtained from the positive resist compositions of Examples 1 to 3 had good resolution and exhibited high light transmittance even after post-baking.
  • the alkylene group of R 1 , R 2 , and R 3 in the crosslinkable compound represented by the general formula (1) as the component (C) is an ethylene group (that is, a crosslinkable compound).
  • Example 1 using a compound which is tris (4,5-epoxypentyl) isocyanurate)) as a propylene group (ie tris (5,6-epoxyhexyl) isocyanurate as a crosslinkable compound))
  • Example 3 using a certain compound, compared with Example 2 using a compound which is a methylene group (that is, tris- (3,4-epoxybutyl) -isocyanurate as a crosslinkable compound), As a result, the transmittance was improved.
  • the compositions of Comparative Examples 1 and 3 exhibit a relatively high light transmittance even after post-baking, but cannot form a good pattern after development and have poor resolution. As a result. Further, with respect to the composition of Comparative Example 2, the light transmittance was remarkably lowered after post-baking, and a good pattern could not be formed after development. In Comparative Example 4, a uniform solution could not be obtained as described above. This is because the crosslinkable compound used in Comparative Example 4 does not completely dissolve at room temperature, and although a film formation was attempted, a uniform coating film could not be formed, and the positive resist composition was evaluated. could not.
  • the positive resist composition according to the present invention is excellent in terms of high sensitivity, heat resistance, and transparency, and is suitable as a material for forming a microlens used for a solid-state image sensor, and the solid-state image sensor can be miniaturized. It is a material corresponding to weather resistance such as mounting on vehicles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】透明性、耐熱性、感度特性に優れ、現像液に対する溶解性に優れ、その結果解像性の高いマイクロレンズ形成用に好適なレジスト組成物を提供する。 【解決手段】下記(A)成分、(B)成分、(C)成分及び(D)成分: (A)成分:アルカリ可溶性ポリマー、 (B)成分:光分解しアルカリ可溶性基を生ずる有機基を有する化合物、 (C)成分:式(1): 〔R1、R2、及びR3はそれぞれ独立して炭素原子数1~6の分岐を有していても良いアルキレン基又はオキシアルキレン基を表し、E1、E2、及びE3はそれぞれ独立して式(2)、又は式(3):(式中R4は水素原子又はメチル基を表す。)の構造を含む基を表す。〕で表される架橋性化合物、 (D)成分:溶剤を含むポジ型レジスト組成物。

Description

ポジ型レジスト組成物及びマイクロレンズの製造方法
 本発明は架橋剤としてトリアジン骨格を有する多官能エポキシ化合物を含有するポジ型レジスト組成物に関するものである。この組成物は特に平坦化膜及びマイクロレンズ材料として用いるのに好適である。
 電荷結合素子(CCD)等の撮像素子用マイクロレンズは、主に微細なパターン形成により高精細な撮像素子を作製することが可能であり、この微細パターンはフォトレジストを用いて作製される。具体的には、高分子樹脂と感光剤とを含むレジスト組成物を基板上に塗布し製膜した後、フォトリソグラフィー法でパターニング、現像することで一つのパターンを形成し、マイクロレンズを作製する。このため、マイクロレンズ材料として用いられるレジスト組成物には高感度であること、パターン形成能に優れることが求められる。また、形成されたレンズパターンは半田付け工程において高温条件に曝されるため、前記レジスト組成物には、形成されるレンズパターンが所望の曲率半径を有し、耐熱性、透明性が高いことも求められる。
 上記の要求特性の中で重要なものの一つとして、感度が挙げられる。感度の向上は工業的な生産において生産時間の短縮につながり、昨今の撮像素子の需要が大幅に高まっていく現在、非常に重要な特性の一つとなっている。また、感度が十分でない場合には所望のパターンを解像することができず、良好なレンズ形状を形成することができなくなる。材料中のポリマーのアルカリ現像液への溶解性を高めることで感度を向上させることも可能であるが、ポリマーの組成を変更することは屈折率、吸湿性等の他の特性への影響が大きいため限界がある。
 また、感度とともにマイクロレンズ材料に求められる重要な特性として、透明性及び耐熱性が挙げられる。通常、マイクロレンズを有するカメラなどのモジュールは、電子回路が作りこまれた基板に実装される。この実装では、鉛含有はんだが従来使用されてきたが、鉛は人体及び環境に有害であるため、近年、鉛を含まない無鉛はんだの使用が提唱されている。鉛以外の金属を用いた無鉛はんだは、鉛含有はんだよりも融点が高い。そのため、実装工程において、無鉛はんだを用いた場合には、鉛含有はんだを用いる場合よりも高い温度での加熱処理が必要となる。この際、耐熱性が十分でない材料では透明性が低下するという問題が生ずる。そして耐熱性の高いレジスト組成物(マイクロレンズ材料)を得るには、樹脂のみならず使用する架橋性化合物、感光材及びその他の添加材についても耐熱性に優れることが求められる。
 前述したように、マイクロレンズ材料として種々の特性を満足するレジスト組成物が求められる中、特に架橋性化合物は耐熱黄変性が十分でないものが多く、レジスト組成物の耐熱性を低下させる要因となっている。
 例えば、架橋性化合物としては、高い耐熱性を有するトリアジントリオン環と溶解性を有する長鎖アルキレン鎖を有する化合物として、長鎖アルキレン鎖を有するエポキシ化合物(特許文献1、2、3を参照)が開示されているものの、こうした高い耐熱性が期待できる化合物をレジスト組成物に適用した提案はなされていない。
 このように、従来提案されたレジスト組成物にあっては、高感度でありながら十分な耐熱性を有するといった種々の性能を満足できるものではなかった。
 従って本発明は透明性、耐熱性、感度特性に優れ、現像液に対する溶解性に優れその結果解像性の高いマイクロレンズ形成用に好適なレジスト組成物を提供することである。
 本発明者らは、上記の課題を解決するために鋭意検討した結果、レジスト組成物においトリアジン骨格を有する特定の多官能エポキシ化合物を架橋性化合物として採用することにより、高感度であり且つ耐熱性、透明性に優れた材料となることを見出し、本発明を完成させた。
 すなわち本発明は、第1観点として、下記(A)成分、(B)成分、(C)成分及び(D)成分:
(A)成分:アルカリ可溶性ポリマー、
(B)成分:光分解しアルカリ可溶性基を生ずる有機基を有する化合物、
(C)成分:式(1):
Figure JPOXMLDOC01-appb-C000007
〔R1、R2、及びR3はそれぞれ独立して炭素原子数1~6の分岐を有していても良いアルキレン基又はオキシアルキレン基を表し、E1、E2、及びE3はそれぞれ独立して式(2)、又は式(3):
Figure JPOXMLDOC01-appb-C000008
(式中R4は水素原子又はメチル基を表す。)で表される構造を含む基を表す。〕で表される架橋性化合物、
(D)成分:溶剤、
を含むポジ型レジスト組成物に関する。
 第2観点として、(A)成分のアルカリ可溶性ポリマーが、ヒドロキシ基、カルボキシル基、又はその組み合わせを繰り返し単位に含む重合体である、第1観点に記載のポジ型レジスト組成物に関する。
 第3観点として、(A)成分のアルカリ可溶性ポリマーが、ヒドロキシ基、カルボキシル基、又はその組み合わせを有するモノマーと、疎水性基を有するモノマーとの共重合体である、第1観点又は第2観点に記載のポジ型レジスト組成物に関する。
 第4観点として、(B)成分が式(4):
Figure JPOXMLDOC01-appb-C000009
〔式(4)中、R5は水素原子又は式(5):
Figure JPOXMLDOC01-appb-C000010
(式(5)中、R7は単結合、又は-SO3-基を表し、R8は炭素原子数1~10のアルキル基を表し、m4は0~3の整数を表す。)で表される構造を表し、R6は炭素原子数1~10の置換又は未置換のアルキル基、ハロゲン原子、又は炭素原子数1~10のアルコキシ基を表す。m3は0又は1の整数を表し、m3が0の時は、m1は1~5の整数を表し、m2は0≦m2≦(5-m1)を満たす整数を表し、m3が1の時は、m1は1~7の整数を表し、m2は0≦m2≦(7-m1)を満たす整数を表す。ただしR5は10~100モル%が上記式(5)で表される構造を表す。〕で表される構造を有する化合物である、第1観点乃至第3観点のうちいずれか1項に記載のポジ型レジスト組成物に関する。
 第5観点として、(B)成分が式(6):
Figure JPOXMLDOC01-appb-C000011
(式(6)中、R5、R6は上記式(4)で表されるものと同一であり、R7は水素原子又は炭素原子数1~10のアルキル基を表し、m5は0~10の整数を表し、m6は1~5の整数を表し、m7は0≦m7≦(5-m6)を満たす整数を表し、m8は0~1の整数を表し、m9は0~5の整数を表し、m10は0≦m10≦(5-m8-m9)を満たす整数を表す。ただしR5は10~100モル%が上記式(5)で表される構造を表す。)で表される化合物である、第4観点に記載のポジ型レジスト組成物に関する。
 第6観点として、(C)成分の架橋性化合物は、式(1)中のE1、E2、E3、又はこれらE1~E3から選択される2種以上が式(7):
Figure JPOXMLDOC01-appb-C000012
(式中、R4は水素原子又はメチル基を表す。)で表される有機基を有するものである、第1観点乃至第5観点のうちいずれか1項に記載のポジ型レジスト組成物に関する。
 第7観点として、厚さ1.0μmの組成物膜を形成したときに波長400~730nmの光に対する透過率が80%以上の塗膜物性を有する、第1観点乃至第6観点のうちいずれか1項に記載のポジ型レジスト組成物に関する。
 第8観点として、第1観点乃至第6観点のうちいずれか1項に記載のポジ型レジスト組成物を基板上に塗布し、乾燥し、露光し、そして現像する工程を含むパターン形成方法に関する。
 第9観点として、露光後、現像前に加熱工程を含む、第8観点に記載のパターン形成方法に関する。
 第10観点として、第8観点又は第9観点に記載のパターン形成方法で製造されたマイクロレンズ又は平坦化膜を含む固体撮像素子に関する。
 本発明のポジ型レジスト組成物は、トリアジントリオン環骨格を有する多官能エポキシ化合物を架橋剤として用いることにより、該組成物を用いて得られる塗膜は高感度でありかつ現像液に対する溶解性に優れ、そして得られる硬化膜は透明性及び耐熱性が高く、溶剤耐性にも優れたものとすることができる。特に本発明から得られる膜厚1.0μmの硬化膜は波長400~730nmにおいて透過率80%以上というすぐ偉た透明性を有する。
 このため、本発明のポジ型レジスト組成物は、マイクロレンズ用材料、及びマイクロレンズを形成する為の平坦化膜材料として好適に用いることができる。
 本発明は、平坦化膜やマイクロレンズ材料に好適な組成物を対象とする。
 マイクロレンズが適用される用途の一つに、光学映像を電気的な信号に変換させる半導体装置であるイメージセンサーが挙げられる。イメージセンサーは照射される光を感知するフォトダイオード(光感知素子)と、それを電気信号に変換する部分とから構成される。フォトダイオードの受光量が大きければ大きいほど、イメージセンサーの光に対する感度は高くなる。この受光量を高める集光技術の一つとして前述のマイクロレンズを形成する方法が採用されている。具体的には、フォトダイオードの上部に光透過率の高い物質で凸状マイクロレンズを作り、そのマイクロレンズにより入射光の経路を屈折させて多くの光をフォトダイオード上に集光させるものである。より詳細には、基板上に形成されたフォトダイオード上に層間絶縁層が形成され、その上に保護膜が形成され、その上にR/G/Bからなるカラーフィルター層が形成される。さらにカラーフィルター上に平坦化膜が形成され、その上にマイクロレンズが形成されることとなる。このように、マイクロレンズ材料は光学材料としての高い透明性が求められる。
 従来、マイクロレンズの形成にはポジ型感光性材料(レジスト材料)が用いられており、具体的には、平坦化層上にポジ型レジスト組成物を塗布して乾燥することによりポジ型レジスト層を形成し、露光と現像によりポジ型レジストパターンを形成し、その後、熱リフロー等により凸状のマイクロレンズを形成する。レンズの形状は現像後のパターン形状に依存し、そしてレンズの曲率や形成された高さなどのレンズ形状に関する因子が集光効率を左右することとなる。このためマイクロレンズ材料には、集束される光の焦点を考慮して任意のレンズ形状を形成できること、すなわち、感度、パターニング性が良好であることも求められる。
 また、マイクロレンズの下層に存在する平坦化膜層も、均一な面を形成する事によりマイクロレンズの均一な光軸形成にとって重要な役割を担い、そしてフォトダイオードへの集光効率をより高めるには、やはり透明性の高い平坦化膜層が求められる。平坦化膜層に配線のための開口部を設ける場合もあることから、パターニング性も良好であることが望ましい。
 本発明は、マイクロレンズや平坦化膜に求められる上述の性能を備える材料であるポジ型レジスト組成物を提供すべくなされたものであり、以下に該組成物に含まれる各成分について詳述する。
 本発明は下記(A)成分、(B)成分、(C)成分及び(D)成分:
(A)成分:アルカリ可溶性ポリマー、
(B)成分:光分解しアルカリ可溶性基を生ずる有機基を有する化合物、
(C)成分:前記式(1)で表される架橋性化合物、
(D)成分:溶剤、を含むポジ型レジスト組成物である。
 前記式(1)中、R1、R2、及びR3はそれぞれ独立して炭素原子数1~6の分岐を有していても良いアルキレン基又はオキシアルキレン基を表し、E1、E2、及びE3はそれぞれ独立して前記式(2)又は前記式(3)で表される構造を含む基を表す。
 また本発明のポジ型レジスト組成物は、更に必要に応じて後述の(E)成分:界面活性剤及び/又は(F)成分:密着促進剤を含有することができる。
 本発明のポジ型レジスト組成物において、その固形分は3~50質量%、好ましくは5~35質量%、更に好ましくは7~30質量%である。固形分とはポジ型レジスト組成物より溶剤を除去した残りの成分の割合である。
 上記固形分中で(A)成分の含有量は、8~90質量%、好ましくは40~90質量%、更に好ましくは50~80質量%である。
 また、固形分中で(B)成分の含有量は、1~90質量%、好ましくは5~50質量%、更に好ましくは10~30質量%である。(B)成分の割合がこの下限値以下の場合は、露光部と未露光部の現像液への溶解度差が小さくなり、現像によるパターニングが困難になる場合がある。また、上限値を超える場合には短時間の露光では(B)成分(例えば1,2-ナフトキノンジアジド化合物)が充分に分解されないため、感度が低下する場合や、また(B)成分が光を吸収してしまい硬化膜の透明性を低下させてしまう場合がある。
 また、固形分中での(C)成分の含有量は、0.24~45質量%、好ましくは0.56~40質量%、0.80~35質量%である。架橋性化合物の含有量が少ない場合には、架橋性化合物によって形成される架橋の密度が十分ではないため、使用する目的によってはパターン形成後の耐熱性、耐溶剤性、長時間焼成耐性等の耐プロセス性を向上させる効果が十分に得られない場合がある。一方、架橋性化合物の含有量が上記数値範囲を超える場合、使用する目的によっては未架橋の架橋性化合物が存在し、解像度が低下したり、或いはパターン形成後の耐熱性、耐溶剤性、長時間焼成耐性等の耐プロセス性が低下し、また、レジスト組成物の保存安定性が悪くなる場合がある。
 以下に各成分について詳述する。
[(A)成分:アルカリ可溶性ポリマー]
 (A)成分のアルカリ可溶性ポリマーとしては、ヒドロキシ基、カルボキシル基、又はその組み合わせ、すなわちヒドロキシ基及びカルボキシル基を繰り返し単位に含む重合体を使用することができる。
 例えば、前記重合体を構成するモノマーとして、ヒドロキシ基を含有するモノマー、カルボキシル基を含有する単量体、並びの双方の基を有するモノマーを用いることができ、これらモノマーを単独で用いて得られる重合体又は他の共重合性モノマーと共に用いて得られる共重合体をアルカリ可溶性ポリマーとして使用することができる。
 (A)成分のアルカリ可溶性ポリマーを構成するカルボキシル基を有するモノマーとしては、例えばアクリル酸、メタクリル酸、クロトン酸、4-ビニル安息香酸などのモノカルボン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸などのジカルボン酸、並びにこれらジカルボン酸の無水物を挙げることができる。これらカルボキシル基を有するモノマーと、他の共重合性モノマーとを共重合させる場合、前記カルボキシル基を有するモノマーは、共重合に使用する全モノマー当たり、好ましくは10~70質量%、特に好ましくは10~50質量%の割合で使用する。前記カルボキシル基を有するモノマーの使用量が10質量%未満であると、ポジ型レジスト組成物を露光後の現像性が低下することがあり、一方、これらの使用量が70質量%を越えると、所定の残膜率が得られない場合がある。
 また、(A)成分のアルカリ可溶性ポリマーを構成するヒドロキシ基を有するモノマーとしては、例えば4-ヒドロキシスチレン、4-ヒドロキシフェニルメタクリレートなどのフェノール性ヒドロキシ基を有するモノマーを挙げることができる。これらヒドロキシ基を有するモノマーと、他の共重合性モノマーとを共重合させる場合、前記ヒドロキシ基を有するモノマーは、共重合に使用する全モノマー当たり、好ましくは30~100質量%、特に好ましくは50~100質量%の割合で使用する。前記ヒドロキシ基を有するモノマーの使用量が30質量%未満の場合は、アルカリ可溶性重合体の現像性が低下する傾向にある。
 (A)成分のアルカリ可溶性ポリマーは、前述のカルボキシル基、ヒドロキシ基又はその組み合わせを有するモノマーと、他の共重合性モノマーとの共重合体である場合、他の共重合性モノマーとして疎水性基を有するモノマーを使用できる。ここで用いられる疎水性基を有するモノマーとしては、例えばメチルメタクリレート、エチルメクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレートなどのメタクリル酸アルキルエステル;アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-6,7-エポキシヘプチル、メタクリル酸-6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、(メタ)アクリル酸-β-メチルグリシジル、(メタ)アクリル酸-β-エチルグリシジル、(メタ)アクリル酸-β-プロピルグリシジル、α-チルアクリル酸-β-メチルグリシジル、(メタ)アクリル酸-3-メチル-3,4-エポキシブチル、(メタ)アクリル酸-3-エチル-3,4-エポキシブチル、(メタ)アクリル酸-4-メチル-4,5-エポキシペンチル、(メタ)アクリル酸-5-メチル-5,6-エポキシヘキシル、3-エチル-3-オキセタニルメタクリレート、3-エチル-3-オキセタニルアクリレートなどの不飽和二重結合を有する環状エーテル類、メチルアクリレート、イソプロピルアクリレートなどのアクリル酸アルキルエステル、シクロヘキシルメタクリレート、2-メチルシクロヘキシルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルオキシエチルメタクリレート、イソボロニルメタクリレートなどのメタクリル酸環状アルキルエステル、シクロヘキシルアクリレート、2-メチルシクロヘキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルオキシエチルアクリレート、イソボロニルアクリレートなどのアクリル酸環状アルキルエステル、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ベンジルマレイミドなどのN-置換マレイミド、フェニルメタクリレート、ベンジルメタクリレートなどのメタクリル酸アリールエステル、フェニルアクリレート、ベンジルアクリレートなどのアクリル酸アリールエステル、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチルなどのジカルボン酸ジエステル、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレートなどのヒドロキシアルキルエステル、及びスチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルトルエン、p-メトキシスチレン、2-ビニルナフタレン、4-ビニルビフェニル、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニル、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、フェニルマレイイミド、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、グリセロールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセロールジメタクリレートなどが挙げられる。
 これらのうち、スチレン、t-ブチルメタクリレート、ジシクロペンタニルメタクリレート、p-メトキシスチレン、2-メチルシクロヘキシルアクリレート、N-シクロヘキシルマレイミド、N-フェニルマレイミド、1,3-ブタジエン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、グリセロールジメタクリレート、メタクリル酸グリシジル、メタクリル酸-β-メチルグリシジル、3-エチル-3-オキセタニルメタクリレート、2-ビニルナフタレン、4-ビニルビフェニルなどが共重合反応性、分子量分布のコントロール性及びアルカリ水溶液に対する溶解性の点から好ましい。これらは、単独であるいは組み合わせて用いられる。
 (A)成分のアルカリ可溶性ポリマーの合成に用いられる溶剤としては、具体的には、例えばメタノール、エタノールなどのアルコール類、テトラヒドロフランなどのエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのグリコールエーテル類、メチルセロソルブアセテート、エチルセロソルブアセテートなどのエチレングリコールアルキルエーテルアセテート類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなどのジエチレングリコール類、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールプロピルエーテル、プロピレングリコールブチルエーテルなどのプロピレングリコールモノアルキルエーテル類、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテートプロピレングリコールブチルエーテルアセテートなどのプロピレングリコールアルキルエーテルアセテート類、プロピレングリコールメチルエーテルプロピオネート、プロピレングリコールエチルエーテルプロピオネート、プロピレングリコールプロピルエーテルプロピオネート、プロピレングリコールブチルエーテルプロピオネートなどのプロピレングリコールアルキルエーテルアセテート類、トルエン、キシレンなどの芳香族炭化水素類、メチルエチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどのケトン類、及び酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3-ヒドロキシプロピオン酸メチル、3-ヒドロキシプロピオン酸エチル、3-ヒドロキシプロピオン酸プロピル、3-ヒドロキシプロピオン酸ブチル、2-ヒドロキシ-3-メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-メトキシプロピオン酸ブチル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-エトキシプロピオン酸プロピル、2-エトキシプロピオン酸ブチル、2-ブトキシプロピオン酸メチル、2-ブトキシプロピオン酸エチル、2-ブトキシプロピオン酸プロピル、2-ブトキシプロピオン酸ブチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸プロピル、3-エトキシプロピオン酸ブチル、3-プロポキシプロピオン酸メチル、3-プロポキシプロピオン酸エチル、3-プロポキシプロピオン酸プロピル、3-プロポキシプロピオン酸ブチル、3-ブトキシプロピオン酸メチル、3-ブトキシプロピオン酸エチル、3-ブトキシプロピオン酸プロピル、3-ブトキシプロピオン酸ブチルなどのエステル類が挙げられる。この溶剤は本発明のポジ型レジスト組成物の溶剤(D)としても用いることができる。
 (A)成分のアルカリ可溶性ポリマーの合成に用いられる重合開始剤としては、一般的にラジカル重合開始剤として知られているものが使用でき、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、1,1’-ビス-(t-ブチルペルオキシ)シクロヘキサンなどの有機過酸化物;及び過酸化水素が挙げられる。ラジカル重合開始剤として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。
 (A)成分のアルカリ可溶性ポリマーの合成においては、分子量を調整するために分子量調整剤を使用することができる。その具体例としては、クロロホルム、四臭化炭素等のハロゲン化炭化水素類、n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、チオグリコール酸等のメルカプタン類、ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン類、ターピノーレン、α-メチルスチレンダイマー等が挙げられる。
 本発明で用いられる(A)成分のアルカリ可溶性ポリマーは、ポリスチレン換算重量平均分子量(以下、「Mw」という)が、通常、2×103~1×105、好ましくは5×103~5×104であることが望ましい。Mwが2×103未満であると、得られる被膜は、現像性、残膜率などが低下したり、またパターン形状、耐熱性などに劣ることがあり、一方1×105を超えると、感度が低下したりパターン形状に劣ることがある。
 上記のように本発明における(A)成分のアルカリ可溶性ポリマーは、ヒドロキシ基及び/又はカルボキシル基を含有する重合体であり、アルカリ水溶液に対して適切な溶解性を有する。このような(A)成分を含む本発明のポジ型レジスト組成物は、現像する際に現像残りを生じることなく、また膜減りすることなく、容易に所定パターンを有する塗膜を形成することができる。
[(B)成分:光分解しアルカリ可溶性基を生ずる有機基を有する化合物]
 (B)成分としては光分解しアルカリ可溶性基を生ずる有機基を有する化合物であり、具体的には、前記式(4)で表される部分構造を有する1,2-ナフトキノンジアジド化合物を用いることができる。
 本発明のポジ型レジスト組成物が被覆された塗膜をフォトマスクを用いて露光し現像すると、露光部に存在する(B)成分に含まれる1,2-ナフトキノンジアジド基は光照射を受けてケテンに変換され、生じたケテンは反応性が高く、水分と接触し、カルボキシル基を生成する。即ち、露光部においてレジスト組成物は1,2-ナフトキノンジアジド基が露光によりインデンカルボン酸を生じるため現像液に可溶になり、未露後部との溶解性の差異によりパターンを形成することができる。
 式(4)中、R5は水素原子又は前記式(5)で表される構造を表す。R6は炭素原子数1~10の置換又は未置換のアルキル基、ハロゲン原子、又は炭素原子数1~10のアルコキシ基を表す。m3は0又は1の整数を表し、m3が0の時は、m1は1~5の整数を表し、m2は0≦m2≦(5-m1)を満たす整数を表し、m3が1の時は、m1は1~7の整数を表し、m2は0≦m2≦(7-m1)を満たす整数を表す。
 ただし、R5は10~100モル%が上記式(5)で表される構造を表す。すなわちこれは、式(4)で表される構造を有する化合物中に含まれる基R5の総モル数に対して、10~100モル%の基R5が式(5)で表される構造であることを示す。
 また式(5)中、R7は単結合、又は-SO3-基を表し、R8は炭素原子数1~10のアルキル基を表し、m4は0~3の整数を表す。
 上記炭素原子数1~10のアルキル基としては、メチル、エチル、n-プロピル、i-プロピル、シクロプロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、シクロブチル、1-メチル-シクロプロピル、2-メチル-シクロプロピル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、1,2-ジメチル-n-プロピル、2,2-ジメチル-n-プロピル、1-エチル-n-プロピル、シクロペンチル、1-メチル-シクロブチル、2-メチル-シクロブチル、3-メチル-シクロブチル、1,2-ジメチル-シクロプロピル、2,3-ジメチル-シクロプロピル、1-エチル-シクロプロピル、2-エチル-シクロプロピル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、3-メチル-n-ペンチル、4-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1,2-ジメチル-n-ブチル、1,3-ジメチル-n-ブチル、2,2-ジメチル-n-ブチル、2,3-ジメチル-n-ブチル、3,3-ジメチル-n-ブチル、1-エチル-n-ブチル、2-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、1,2,2-トリメチル-n-プロピル、1-エチル-1-メチル-n-プロピル、1-エチル-2-メチル-n-プロピル、シクロヘキシル、1-メチル-シクロペンチル、2-メチル-シクロペンチル、3-メチル-シクロペンチル、1-エチル-シクロブチル、2-エチル-シクロブチル、3-エチル-シクロブチル、1,2-ジメチル-シクロブチル、1,3-ジメチル-シクロブチル、2,2-ジメチル-シクロブチル、2,3-ジメチル-シクロブチル、2,4-ジメチル-シクロブチル、3,3-ジメチル-シクロブチル、1-n-プロピル-シクロプロピル、2-n-プロピル-シクロプロピル、1-i-プロピル-シクロプロピル、2-i-プロピル-シクロプロピル、1,2,2-トリメチル-シクロプロピル、1,2,3-トリメチル-シクロプロピル、2,2,3-トリメチル-シクロプロピル、1-エチル-2-メチル-シクロプロピル、2-エチル-1-メチル-シクロプロピル、2-エチル-2-メチル-シクロプロピル及び2-エチル-3-メチル-シクロプロピル等が挙げられる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上記炭素原子数1~10のアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、1-メチル-n-ブトキシ、2-メチル-n-ブトキシ、3-メチル-n-ブトキシ、1,1-ジメチル-n-プロポキシ、1,2-ジメチル-n-プロポキシ、2,2-ジメチル-n-プロポキシ、1-エチル-n-プロポキシ、n-ヘキシルオキシ、1-メチル-n-ペンチルオキシ、2-メチル-n-ペンチルオキシ、3-メチル-n-ペンチルオキシ、4-メチル-n-ペンチルオキシ、1,1-ジメチル-n-ブトキシ、1,2-ジメチル-n-ブトキシ、1,3-ジメチル-n-ブトキシ、2,2-ジメチル-n-ブトキシ、2,3-ジメチル-n-ブトキシ、3,3-ジメチル-n-ブトキシ、1-エチル-n-ブトキシ、2-エチル-n-ブトキシ、1,1,2-トリメチル-n-プロポキシ、1,2,2,-トリメチル-n-プロポキシ、1-エチル-1-メチル-n-プロポキシ、及び1-エチル-2-メチル-n-プロポキシ等が挙げられる。
 (B)成分としては、具体的には前記式(6)で表される化合物を用いることができる。式(6)中、R5、R6は上記式(4)で表されるものと同一であり、R7は水素原子又は炭素原子数1~10のアルキル基を表し、m5は0~10の整数を表し、m6は1~5の整数を表し、m7は0≦m7≦(5-m6)を満たす整数を表し、m8は0~1の整数を表し、m9は0~5の整数を表し、m10は0≦m10≦(5-m8-m9)を満たす整数を表す。ただし、R5は10~100モル%が上記式(5)で表される構造を表す。すなわちこれは、式(6)で表される化合物中に含まれる基R5の総モル数に対して、10~100モル%の基R5が式(5)で表される構造であることを示す。
 (B)成分の具体例として、下記式(B-1)~(B-5)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 上記式(B-1)~(B-5)中、Dは水素原子又は前記式(5)で表される1,2-ナフトキノンジアジド基を表す。
 また、本発明に用いられる(B)成分として、下記(B-6)~(B-10)で表される化合物も例示できる。
Figure JPOXMLDOC01-appb-C000014
 上記式(B-6)~(B-10)中、Dは水素原子又は式(5)で表される1,2-ナフトキノンジアジド基を表す。
[(C)成分:式(1)で表される架橋性化合物]
 本発明に用いられる(C)成分としては、前記式(1)で表される架橋性化合物を用いることができる。
 式(1)中、R1、R2、及びR3はそれぞれ独立して炭素原子数1~6の分岐を有していても良いアルキレン基、又はオキシアルキレン基を表す。
 E1、E2、及びE3はそれぞれ独立して前記式(2)、又は前記式(3)で表される構造を含む基を表す。また式(2)中、R4は水素原子又はメチル基を表す。
 上記炭素原子数1~6のアルキレン基としては、例えばメチレン、エチレン、n-プロピレン、イソプロピレン、シクロプロピレン、n-ブチレン、イソブチレン、s-ブチレン、t-ブチレン、シクロブチレン、1-メチル-シクロプロピレン、2-メチル-シクロプロピレン、n-ペンチレン、1-メチル-n-ブチレン、2-メチル-n-ブチレン、3-メチル-n-ブチレン、1,1-ジメチル-n-プロピレン、1,2-ジメチル-n-プロピレン、2,2-ジメチル-n-プロピレン、1-エチル-n-プロピレン、シクロペンチレン、1-メチル-シクロブチレン、2-メチル-シクロブチレン、3-メチル-シクロブチレン、1,2-ジメチル-シクロプロピレン、2,3-ジメチル-シクロプロピレン、1-エチル-シクロプロピレン、2-エチル-シクロプロピレン、n-ヘキシレン、1-メチル-n-ペンチレン、2-メチル-n-ペンチレン、3-メチル-n-ペンチレン、4-メチル-n-ペンチレン、1,1-ジメチル-n-ブチレン、1,2-ジメチル-n-ブチレン、1,3-ジメチル-n-ブチレン、2,2-ジメチル-n-ブチレン、2,3-ジメチル-n-ブチレン、3,3-ジメチル-n-ブチレン、1-エチル-n-ブチレン、2-エチル-n-ブチレン、1,1,2-トリメチル-n-プロピレン、1,2,2-トリメチル-n-プロピレン、1-エチル-1-メチル-n-プロピレン、1-エチル-2-メチル-n-プロピレン、シクロヘキシレン、1-メチル-シクロペンチレン、2-メチル-シクロペンチレン、3-メチル-シクロペンチレン、1-エチル-シクロブチレン、2-エチル-シクロブチレン、3-エチル-シクロブチレン、1,2-ジメチル-シクロブチレン、1,3-ジメチル-シクロブチレン、2,2-ジメチル-シクロブチレン、2,3-ジメチル-シクロブチレン、2,4-ジメチル-シクロブチレン、3,3-ジメチル-シクロブチレン、1-n-プロピル-シクロプロピレン、2-n-プロピル-シクロプロピレン、1-イソプロピル-シクロプロピレン、2-イソプロピル-シクロプロピレン、1,2,2-トリメチル-シクロプロピレン、1,2,3-トリメチル-シクロプロピレン、2,2,3-トリメチル-シクロプロピレン、1-エチル-2-メチル-シクロプロピレン、2-エチル-1-メチル-シクロプロピレン、2-エチル-2-メチル-シクロプロピレン及び2-エチル-3-メチル-シクロプロピレン等が挙げられる。R1、R2、及びR3はそれぞれ上記に挙げた基の中でも炭素原子数1~3のアルキレン基が好ましく、特に炭素原子数2~3の上記アルキレン基が好ましい。
 上記炭素原子数1~6のオキシアルキレン基としては、例えばオキシメチレン、オキシエチレン、オキシn-プロピレン、オキシイソプロピレン、オキシシクロプロピレン、オキシn-ブチレン、オキシイソブチレン、オキシs-ブチレン、オキシt-ブチレン、オキシシクロブチレン、オキシ1-メチル-シクロプロピレン、オキシ2-メチル-シクロプロピレン、オキシn-ペンチレン、オキシ1-メチル-n-ブチレン、オキシ2-メチル-n-ブチレン、オキシ3-メチル-n-ブチレン、オキシ1,1-ジメチル-n-プロピレン、オキシ1,2-ジメチル-n-プロピレン、オキシ2,2-ジメチル-n-プロピレン、オキシ1-エチル-n-プロピレン、オキシシクロペンチレン、オキシ1-メチル-シクロブチレン、オキシ2-メチル-シクロブチレン、オキシ3-メチル-シクロブチレン、オキシ1,2-ジメチル-シクロプロピレン、オキシ2,3-ジメチル-シクロプロピレン、オキシ1-エチル-シクロプロピレン、オキシ2-エチル-シクロプロピレン、オキシn-ヘキシレン、オキシ1-メチル-n-ペンチレン、オキシ2-メチル-n-ペンチレン、オキシ3-メチル-n-ペンチレン、オキシ4-メチル-n-ペンチレン、オキシ1,1-ジメチル-n-ブチレン、オキシ1,2-ジメチル-n-ブチレン、オキシ1,3-ジメチル-n-ブチレン、オキシ2,2-ジメチル-n-ブチレン、オキシ2,3-ジメチル-n-ブチレン、オキシ3,3-ジメチル-n-ブチレン、オキシ1-エチル-n-ブチレン、オキシ2-エチル-n-ブチレン、オキシ1,1,2-トリメチル-n-プロピレン、オキシ1,2,2-トリメチル-n-プロピレン、オキシ1-エチル-1-メチル-n-プロピレン、オキシ1-エチル-2-メチル-n-プロピレン、オキシシクロヘキシレン、オキシ1-メチル-シクロペンチレン、オキシ2-メチル-シクロペンチレン、オキシ3-メチル-シクロペンチレン、オキシ1-エチル-シクロブチレン、オキシ2-エチル-シクロブチレン、オキシ3-エチル-シクロブチレン、オキシ1,2-ジメチル-シクロブチレン、オキシ1,3-ジメチル-シクロブチレン、オキシ2,2-ジメチル-シクロブチレン、オキシ2,3-ジメチル-シクロブチレン、オキシ2,4-ジメチル-シクロブチレン、オキシ3,3-ジメチル-シクロブチレン、オキシ1-n-プロピル-シクロプロピレン、オキシ2-n-プロピル-シクロプロピレン、オキシ1-イソプロピル-シクロプロピレン、オキシ2-イソプロピル-シクロプロピレン、オキシ1,2,2-トリメチル-シクロプロピレン、オキシ1,2,3-トリメチル-シクロプロピレン、オキシ2,2,3-トリメチル-シクロプロピレン、オキシ1-エチル-2-メチル-シクロプロピレン、オキシ2-エチル-1-メチル-シクロプロピレン、オキシ2-エチル-2-メチル-シクロプロピレン及びオキシ2-エチル-3-メチル-シクロプロピレン等が挙げられる。特に、オキシエチレン基、オキシイソプロピレン基が好ましく用いられる。
 上記(C)成分では、式(1)において、R1、R2、及びR3が炭素原子数1~3のアルキレン基、好ましくは炭素原子数2~3のアルキレン基であり、E1、E2、及びE3が式(2)で表される有機基であり、上記R4が水素原子である化合物が好ましい。
 また、上記(C)成分の架橋性化合物において、式(1)中のE1、E2、E3、又はこれらE1~E3から選択される2種以上が下記式(7)で表される有機基を有するものを用いることもできる。例えばそのような化合物として、E1とE2とE3の合計モル数に対して式(2)で表される有機基の割合が67~100モル%、好ましくは90~100モル%の割合であり、残部が式(7)で表される有機基とする、式(1)で表される架橋性化合物を用いることができる。
 上記式(7)中のR4は水素原子又はメチル基を表す。
 本発明における(C)成分として、例えば、下記式(C-1-1)~式(C-1-15)で表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 本発明に用いられる式(1)で表される架橋性化合物は、例えば式(C-1-2)で表される化合物の場合、以下の方法で得ることができる。
Figure JPOXMLDOC01-appb-C000019
 上記反応では、まず、イソシアヌール酸を水酸化ナトリウムでイソシアヌール酸Na塩に変換する。この反応は、水溶媒中で、0~100℃、1~10時間で行うことができる。
 続いてイソシアヌール酸Na塩とハロゲン化アルケンを反応させて、アルケン置換イソシアヌール酸を得る。この反応は例えばDMF(N,N-ジメチルホルムアミド)溶剤中で、0~150℃、1~10時間で行うことができる。式中Xはハロゲン原子を表し、ハロゲン化アルケンとしてはモノブロモアルケンや、モノクロロアルケンを用いることができる。
 その後、アルケン置換イソシアヌール酸を過酸で酸化してエポキシ化合物を得ることができる。ここで過酸は例えば、メタクロロ過安息香酸、過酢酸、過酸化水素-タングステン酸等を用いることができる。この反応は塩化メチレン、トルエン等の溶剤中で、0~110℃、1~10時間で行うことができる。
 上記式(C-1-1)、(C-1-3)、(C-1-6)~(C-1-8)、(C-1-11)~(C-1-13)で表される化合物も同様の方法で合成することができる。
 本発明に用いられる式(1)で表される架橋性化合物は、例えば式(C-1-4)で表される化合物の場合、以下の方法で得ることが出来る。
Figure JPOXMLDOC01-appb-C000020
 上記反応ではヒドロキシアルキルイソシアヌレートとエピハロヒドリンを反応させてトリス(アルキレンオキシグリシジル)イソシアヌレートが得られる。ヒドロキシアルキルイソシアヌレートは、ヒドロキシエチルイソシアヌレート等が用いられる。式中Xはハロゲン原子を表し、エピハロヒドリンはエピクロルヒドリン、エピブロモヒドリン等が挙げられる。反応はジオキサン等の溶剤中で、BF3や塩化錫を触媒として用い、0~100℃で、1~10時間の反応によって行われる。上記式(C-1-5)、(C-1-9)、(C-1-10)、(C-1-14)、(C-1-15)で表される化合物も同様の方法で合成することができる。
 本発明において式(1)におけるE1、E2、及びE3が式(3)で表される構造を有する化合物としては例えば上記と同様に以下の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000021
 上記反応でアルコールをハロゲン化炭素でハロゲン化アルケンに変換する。この反応は例えばジクロロメタン溶媒中で、0~100℃、1~10時間で行うことができる。
 一方で、イソシアヌール酸を水酸化ナトリウムでイソシアヌール酸Na塩に変換する。この反応は、水溶媒中で、0~100℃、1~10時間で行うことができる。
 更にイソシアヌール酸Na塩とハロゲン化アルケンを反応させて、アルケン置換イソシアヌール酸を得る。この反応は例えばDMF(N,N-ジメチルホルムアミド)溶剤中で、0~150℃、1~10時間で行うことができる。式中Xはハロゲン原子を表し、ハロゲン化アルケンはモノブロモアルケンや、モノクロロアルケンを用いることができる。
 そしてアルケン置換イソシアヌール酸を過酸で酸化してエポキシ化合物を得ることができる。ここで過酸は例えば、メタクロロ過安息香酸、過酢酸、過酸化水素-タングステン酸等を用いることができる。この反応は塩化メチレン、トルエン等の溶剤中で、0~110℃、1~10時間で行うことができる。
 本発明において式(1)で表される架橋性化合物(C-1)[例えば式(C-1-1)~(C-1-15)で表される化合物]に加えて、少なくとも2個のエポキシ基を有し且つ(C-1)以外の構造を有する架橋性化合物(C-2)を併用し、すなわち、(C-1)/〔(C-1)+(C-2)〕の質量比が1質量%、又は1.5質量%以上、又は50~100質量%の割合で含有するポジ型レジスト組成物とすることができる。この(C-1)/〔(C-1)+(C-2)〕の質量比は100質量%、すなわち上記架橋性化合物(C-1)を単独で用いることは可能であるが、製造コストの観点から、架橋性化合物(C-2)と混合したエポキシ化合物とすることができる。
 なお、(C-1)化合物とは(C-1-1)~(C-1-15)化合物及びその例示される化合物に代表される(C-1)化合物群の総称である。また、(C-2)化合物とは以下の(C-2-1)~(C-2-7)化合物及びその例示される化合物に代表される(C-2)化合物群の総称である。
 上記の(C-1)化合物は単独で用いるほか、(C-1)成分中のヒドロキシ基又は他の有機基と架橋されうる任意の架橋性化合物と組み合わせて用いることができる。
 (C-1)成分と組み合わせて使用される架橋性化合物(C-2)としては以下に示される。
 例えば下記式(C-2-1)で表されるシクロアルケンオキサイド構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000022
 上記式中、kは2~10の整数を表し、mは0~4の整数を表し、R1はk価の有機基を表す。
 上記式(C-2-1)で表される化合物の具体例としては、下記式(C-2-2)で表されるシクロヘキセンオキサイド構造を有する化合物が例示される。
Figure JPOXMLDOC01-appb-C000023
 その他にも以下に示す市販品等が挙げられる。
 市販品としては、エポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、セロキサイド3000(商品名、以上ダイセル化学工業(株)製)、脂環式エポキシ樹脂であるデナコールEX-252(商品名、ナガセケムッテクス(株)製)、CY175、CY177、CY179(商品名、以上CIBA-GEIGY A.G(現:BASF)製)、アラルダイトCY-182、同CY-192、同CY-184(商品名、以上CIBA-GEIGY A.G(現:BASF)製)、エピクロン200、同400(商品名、以上DIC(株)製)、エピコート(現:jER)871、同872(商品名、以上油化シェルエポキシ(株)(現:三菱化学(株))製)、等を挙げることができる。
 これらのうち、耐熱性、耐溶剤性、耐長時間焼成耐性等の耐プロセス性、及び透明性の観点からシクロヘキセンオキサイド構造を有する、エポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、セロキサイド3000が好ましい。
 また、架橋性化合物として、下記式(C-2-3)で表されるオキシラン構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000024
 式中、kは2~10の整数を表し、R1はk価の有機基を表す。
 式(C-2-3)で表される化合物の具体例としては、式(C-2-4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 その他にも以下に示す市販品等が挙げられる。
 市販品として、ビスフェノールA型エポキシ樹脂としては、例えば、エピコート(現:jER)828、同834、同1001、同1004(商品名、いずれもジャパンエポキシレジン(株)製(現:三菱化学(株)))、エピクロン850、同860、同4055(商品名、いずれもDIC(株)製)等が挙げられる。ビスフェノールF型エポキシ樹脂としては、例えば、エピコート(現:jER)807(商品名、ジャパンエポキシレジン(株)製(現:三菱化学(株)))、エピクロン830(商品名、DIC(株)製)等が挙げられる。フェノールノボラック型エポキシ樹脂としては、例えば、エピクロンN-740、同N-770、同N-775(商品名、いずれもDIC(株)製)、エピコート(現:jER)152、同154(商品名、いずれもジャパンエポキシレジン(株)製(現:三菱化学(株)))等が挙げられる。クレゾールノボラック型エポキシ樹脂としては、例えば、エピクロンN-660、同N-665、同-670、同N-673、同N-680、同N-695、同N-665-EXP、同N-672-EXP(商品名、いずれもDIC(株)製)等が挙げられる。グリシジルアミン型エポキシ樹脂としては、例えば、エピクロン430、同430-L(商品名、DIC(株)製)、TETRAD-C、TETRAD-X(商品名、いずれも三菱ガス化学(株)製)、エピコート(現:jER)604、同630(商品名、いずれもジャパンエポキシレジン(株)製(現:三菱化学(株)))、スミエポキシELM120、スミエポキシELM100、スミエポキシELM434、スミエポキシELM434HV(商品名、いずれも住友化学(株)製)、YH-434、YH-434L(商品名、いずれも東都化成(株)製(現:新日鐵化学(株)))、アラルダイトMY-720(商品名、旭チバ(株)製)等を挙げることができる。
 また、架橋性化合物として、下記式(C-2-5)で表される部分構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000026
 式中、R1は炭素原子数が1~6のアルキル基又は水素原子を表す。
 上記炭素原子数1~6のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等を挙げることができる。
 上記式(C-2-5)で表される部分構造を有する化合物は、すなわち、ヒドロキシメチル基又はアルコキシメチル基を有する化合物であれば特に限定されず、好ましくは該ヒドロキシメチル基又はアルコキシメチル基が窒素原子に結合する化合物、すなわちN-ヒドロキシメチル基又はN-アルコキシメチル基を含有する化合物である。その具体例としては、下記式(C-2-6)及び式(C-2-7)で表される化合物や、以下に示す市販品等が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 市販品の具体例としては、ヘキサメトキシメチルメラミン、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、及び1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。市販品としては、メトキシメチルタイプメラミン化合物としては、例えばサイメル300、サイメル301、サイメル303、サイメル350(商品名、いずれも三井サイテック(株)製(現:日本サイテックインダストリーズ(株))が挙げられる。ブトキシメチルタイプメラミン化合物としては、例えばマイコート506、マイコート508(商品名、いずれも三井サイテック(株)製(現:日本サイテックインダストリーズ(株))が挙げられる。グリコールウリル化合物としては、例えばサイメル1170、パウダーリンク1174(商品名、いずれも三井サイテック(株)製(現:日本サイテックインダストリーズ(株))が挙げられる。メチル化尿素樹脂としてUFR65、ブチル化尿素樹脂としては、例えばUFR300、U-VAN10S60、U-VAN10R、U-VAN11HV(商品名、いずれも三井サイテック(株)製(現:日本サイテックインダストリーズ(株))が挙げられる。尿素/ホルムアルデヒド系樹脂としては、例えばベッカミンJ-300S、ベッカミンP-955、ベッカミンN(商品名、いずれもDIC(株)製)等を挙げることができる。
 また、架橋性化合物(C-2)として、N-ヒドロキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-エトキシメチルアクリルアミド及びN-ブトキシメチルメタクリルアミド等のヒドロキシメチル基又はアルコキシメチル基で置換されたアクリルアミド化合物又はメタクリルアミド化合物を使用して製造されるポリマーを用いることができる。そのようなポリマーとしては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンの共重合体、N-ヒドロキシメチルメタクリルアミドとメチルメタクリレートの共重合体、N-エトキシメチルメタクリルアミドとベンジルメタクリレートの共重合体、及びN-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートの共重合体等を挙げることができる。
 上記の架橋性化合物(C-2)は、一種のみ又は二種以上の化合物を(C-1)成分の化合物と組み合わせて用いることができる。
[(E)成分:界面活性剤]
 本発明では塗布性を向上させる目的で界面活性剤(E)を添加しても良い。このような界面活性剤は、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤など特に限定されない。(E)成分として、前記界面活性剤のうち1種又は2種類以上を組み合わせて用いることができる。
 これらの界面活性剤の中で、塗布性改善効果の高さからフッ素系界面活性剤が好ましい。フッ素系界面活性剤の具体例としては、エフップEF301、EF303、EF352(商品名、いずれも(株)トーケムプロダクツ製(現:三菱マテリアル電子化成(株)))、メガファックF171、F173、R-30、R-08、R-90、BL-20、F-482(商品名、いずれもDIC(株)製)、フロラードFC430、FC431(商品名、いずれも住友スリーエム(株)製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(商品名、いずれも旭硝子(株)製)等が挙げられるが、これらに限定されるものではない。
 本発明のポジ型レジスト組成物における(E)成分の添加量は固形分中で、0.0008~4.5質量%、好ましくは0.0008~2.7質量%、より好ましくは0.0008~1.8質量%である。界面活性剤の添加量が4.5質量%よりも多いと塗膜にムラが起こり易く、0.0008質量%よりも下回る場合には、塗膜にストリエーション等が発生し易くなる。
[(F)成分:密着促進剤]
 本発明では現像後の基板との密着性を向上させる目的で、密着促進剤(F)を添加することができる。これらの密着促進剤はトリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフェニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、ビニルトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-(N-ピペリジニル)プロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環状化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、又はチオ尿素化合物を挙げることができる。
 (F)成分として、前記密着促進剤のうち1種又は2種類以上を組み合わせて用いることができる。これらの密着促進剤の添加量は固形分中で、通常18質量%以下、好ましくは0.0008~9質量%、より好ましくは0.04~9質量%である。18質量%以上用いると塗膜の耐熱性が低下する場合があり、また、0.0008質量%未満では密着促進剤の十分な効果を得られない場合がある。
 その他の添加剤として、更に必要に応じて顔料、染料、保存安定剤、消泡剤や多価フェノール、多価カルボン酸等の溶解促進剤等を添加しても良い。
 上述した成分を含有する本発明のポジ型レジスト組成物は、好ましくは、厚さ1.0μmの組成物膜を形成したときに波長400~730nmの光に対する透過率が80%以上の塗膜物性を有するものである。
[パターン形成方法]
 本発明のポジ型レジスト組成物は、ガラス基板、シリコンウェハー、酸化膜、窒化膜、アルミニウムやモリブデンやクロムなどの金属が被覆された基板などの基材上に回転塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット塗布などによって塗布した後、ホットプレートやオーブン等で予備乾燥(プリベーク)して塗膜を形成することができる。その際、予備乾燥は、温度80℃~130℃で30~600秒間の条件とすることが好ましいが、必要に応じて適宜条件を選択することができる。また塗膜の厚みは、硬化物の用途によって応じて、0.01μm~10mm程度の範囲から選択できる。
 上記で得られた塗膜上に、所定のパターンを有するマスクを装着して紫外線等の光を照射して露光し、アルカリ現像液で現像することで、露光部が洗い出されて端面のシャープなレリーフパターンが得られる。
 照射又は露光する光の波長は、例えば150~800nm、好ましくは150~600nm、さらに好ましくは200~400nm、特に300~400nm程度である。照射光量は、塗膜の厚みにより異なるが、例えば2~20000mJ/cm2、好ましくは5 ~5000mJ/cm2程度とすることができる。
 なお、パターン形状に対する定在波の影響を抑制したり、架橋性化合物(C)と前述ポリマー(A)、1,2-ナフトキノンジアジド化合物(B)との架橋度合いを調整するために、露光後ベーク(PEB)を行うことも出来る。
 現像の際に使用される現像液はアルカリ水溶液であれば特に限定されない。その具体例としては、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液を挙げることができる。
 前記アルカリ現像液は10質量%以下の水溶液であることが一般的で、好ましくは0.1~3.0質量%の水溶液などが用いられる。さらに上記現像液にアルコール類や界面活性剤を添加して使用することもでき、これらはそれぞれ、現像液100質量部に対して、好ましくは0.05~10質量部である。
 この中で、水酸化テトラメチルアンモニウム0.1~2.38質量%水溶液は、フォトレジストの現像液として一般的に使用されており、本発明のポジ型レジストはこの溶液を用い、膨潤などの問題を起こすことなく現像することができる。
 また現像方法は液盛り法、ディッピング法、揺動浸漬法などのいずれを用いても良い。その際、現像時間は、通常15~180秒間である。
 現像後、流水洗浄を20~90秒間行い、圧縮空気や圧縮窒素、若しくはスピンにより風乾させることによって、基板上の水分を除去し、パターンが形成された塗膜を得る。
 その後、このパターンが形成された塗膜に、高圧水銀灯などを用いた紫外線等の光を全面に照射し、パターン状塗膜中に残存する(B)成分(1,2-ナフトキノンジアジド化合物)を完全に分解させることにより、塗膜の透明性を向上させる。
 続いて、ホットプレート、オーブンなどを用いて加熱することにより、塗膜の硬化処理(以下、ポストベークと称す。)を行い、耐熱性、透明性、平坦化性、低吸水性、耐薬品性に優れ、良好なレリーフパターンを有する塗膜を得ることができる。
 ポストベークの条件は、ホットプレート、オーブンなどの加熱装置により、所定温度、例えば140℃~260℃で、所定時間、例えばホットプレート上では3~30分間、オーブン中では30~90分間加熱処理すればよい。
 このようにして目的とする良好なパターン形状を有する硬化膜を得ることができる。この硬化膜は耐熱性、耐溶剤性、透明性に優れ、層間絶縁膜、各種絶縁膜、各種保護膜及びマイクロレンズ等に好適に用いることができる。
 以下、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 略記号は以下の意味を表す。また以下の商品名等で表される化合物の構造は以下の通りである。
 MAA:メタクリル酸
 MAIB:2,2’-アゾビスイソ酪酸ジメチル
 QD1:上記式B-5で表される化合物1mol中、式中のDが、モル比で2.0molが1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド、同1.0molが水素原子で置換された化合物
 式(C-2-4)で表される化合物:エピコート(現:jER)828、ジャパンエポキシレジン(株)製(現:三菱化学)
Figure JPOXMLDOC01-appb-C000028
 式(C-2-8)で表される化合物:YH-434L、東都化成(株)製(現:新日鐵化学(株)
Figure JPOXMLDOC01-appb-C000029
 式(C-2-9)で表される化合物:TETRAD-C、三菱ガス化学(株)製
Figure JPOXMLDOC01-appb-C000030
 式(C-2-10)で表される化合物:トリス-(2,3-エポキシプロピル)-イソシアヌレート(商品名テピック)、日産化学工業(株)製
Figure JPOXMLDOC01-appb-C000031
 PGME:プロピレングリコールモノメチルエーテル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 メガファックR30:フッ素系界面活性剤(商品名、DIC(株)製)
 TMAH:テトラメチルアンモニウムヒドロキシド。
 ARC-XHRiC-16:レジスト下層に用いる反射防止膜を形成するための組成物(商品名、日産化学工業(株)製)
(数平均分子量及び重量平均分子量の測定)
 以下の合成例に従い得られた共重合体の数平均分子量(以下、Mnと称す)及び重量平均分子量(以下、Mwと称す)を、日本分光(株)製GPC装置(Shodex(登録商標)カラムKF803L及びKF804L)を用い、溶出溶媒THFを1mL/分でカラム(温度40℃)中に流して溶離させるという条件で測定した。なお、下記のMn及びMwは、ポリスチレン換算値にて表される。
(合成例1:架橋性化合物CL1の合成)
 反応器に106gのイソシアヌル酸と420mlの水を加えたスラリーに、206gの48%水酸化ナトリウム溶液を滴下して、60~70℃の温度で2時間反応後、水を留去、メタノール洗浄、そして乾燥してイソシアヌル酸ナトリウム157.5gの白色結晶として得た。攪拌機、冷却器を取り付けた反応器に溶剤としてN,N-ジメチルホルムアミド400mlを入れ、157.5gのイソシアヌル酸ナトリウムと361.4gの5-ブロモ1-ペンテンを120~125℃で6時間反応させた後、無機塩を濾別、トルエン抽出、水洗、乾燥、溶媒留去してトリス5-ペンテニルイソシアヌレート205gの薄茶色油状物として得た。攪拌機、冷却器を取り付けた反応器に溶剤として塩化メチレン8,700mlを入れ、205gのトリス5-ペンテニルイソシアヌレートを加え、815gのメタクロロ過安息香酸を30℃以下でゆっくりと加え、25℃で4時間反応させた。反応終了後、10%亜硫酸水素ナトリウム水溶液3,000mlを20℃以下でゆっくり加え、不溶物を濾別後、クロロホルムを加えて溶媒抽出した。10%亜硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム溶液で充分洗浄後、乾燥、溶媒留去して租物を得た。この租物をシリカゲルクロマトグラフィーで精製して透明油状物161.7gを得た。得られたエポキシ化合物は式(C-1-2)で表される化合物に相当するトリス(4,5-エポキシペンチル)イソシアヌレートであった。
 得られた式(C-1-2)で表される架橋性化合物を以降CL1と略す。
(合成例2:架橋性化合物CL2の合成)
 反応器に106gのイソシアヌル酸と420mlの水を加えたスラリーに、206gの48%水酸化ナトリウム溶液を滴下して、60~70℃の温度で2時間反応後、水を留去、メタノール洗浄、そして乾燥してイソシアヌル酸ナトリウム157.5gの白色結晶として得た。攪拌機、冷却器を取り付けた反応器に溶剤としてN,N-ジメチルホルムアミド400mlを入れ、157.5gのイソシアヌル酸ナトリウムと327.4gの4-ブロモ1-ブテンを120~125℃で6時間反応させた後、無機塩を濾別、トルエン抽出、水洗、乾燥、溶媒留去してトリス4-ブテニルイソシアヌレート179gの薄茶色油状物として得た。攪拌機、冷却器を取り付けた反応器に溶剤として塩化メチレン8,700mlを入れ、179gのトリス4-ブテニルイソシアヌレートを加え、815gのメタクロロ過安息香酸を30℃以下でゆっくりと加え、25℃で4時間反応させた。反応終了後、10%亜硫酸水素ナトリウム水溶液3,000mlを20℃以下でゆっくり加え、不溶物を濾別後、クロロホルムを加えて溶媒抽出した。10%亜硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム溶液で充分洗浄後、乾燥、溶媒留去して租物を得た。この租物をシリカゲルクロマトグラフィーで精製して透明油状物141.3gを得た。得られたエポキシ化合物は式(C-1-1)で表される化合物に相当するトリス(3,4-エポキシブチル)イソシアヌレートであった。
 得られた式(C-1-1)で表される架橋性化合物を以降CL2と略す。
(合成例3:架橋性化合物CL3の合成)
 反応器に106gのイソシアヌル酸と420mlの水を加えたスラリーに、206gの48%水酸化ナトリウム溶液を滴下して、60~70℃の温度で2時間反応後、水を留去、メタノール洗浄、そして乾燥してイソシアヌル酸ナトリウム157.5gの白色結晶として得た。攪拌機、冷却器を取り付けた反応器に溶剤としてN,N-ジメチルホルムアミド400mlを入れ、157.5gのイソシアヌル酸ナトリウムと395.4gの6-ブロモ1-ヘキセンを120~125℃で6時間反応させた後、無機塩を濾別、トルエン抽出、水洗、乾燥、溶媒留去してトリス6-ヘキセニルイソシアヌレート230.8gの薄茶色油状物として得た。攪拌機、冷却器を取り付けた反応器に溶剤として塩化メチレン8,700mlを入れ、230.8gのトリス6-ヘキセニルイソシアヌレートを加え、815gのメタクロロ過安息香酸を30℃以下でゆっくりと加え、25℃で4時間反応させた。反応終了後、10%亜硫酸水素ナトリウム水溶液3,000mlを20℃以下でゆっくり加え、不溶物を濾別後、クロロホルムを加えて溶媒抽出した。10%亜硫酸水素ナトリウム水溶液、飽和炭酸水素ナトリウム溶液で充分洗浄後、乾燥、溶媒留去して租物を得た。この租物をシリカゲルクロマトグラフィーで精製して透明油状物182.1gを得た。得られたエポキシ化合物は式(C-1-3)で表される化合物に相当するトリス(5,6-エポキシヘキシル)イソシアヌレートであった。
 得られた式(C-1-3)で表される架橋性化合物を以降CL3と略す。
(合成例4:(A)成分のアルカリ可溶性ポリマー(P-1)の合成)
 (A)成分を構成するモノマー成分として、スチレン(60.0g)、MAA(21.2g)を使用し、ラジカル重合開始剤としてMAIB(4.1g)を使用し、これらを1,4-ジオキサン(340.0g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応溶液を室温まで冷却後、多量のn-ヘキサンに投入してポリマーを再沈殿し、50℃で加熱乾燥をしてMn6,000、Mw14,000である白色粉末状の(A)成分:ポリマー(P-1)を得た。
(実施例1)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gのCL1、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とし、ポジ型レジスト組成物を得た。
(実施例2)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gのCL2、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とし、ポジ型レジスト組成物を得た。
(実施例3)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gのCL3、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とし、ポジ型レジスト組成物を得た。
(比較例1)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gの式(C-2-4)で表される化合物、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とし、ポジ型レジスト組成物を得た。
(比較例2)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gの式(C-2-8)で表される化合物、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とし、ポジ型レジスト組成物を得た。
(比較例3)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gの式(C-2-9)で表される化合物、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とし、ポジ型レジスト組成物を得た。
(比較例4)
 (A)成分:2.0gのポリマー(P-1)、(B)成分:0.6gのQD1、(C)成分:0.6gの式(C-2-10)で表される化合物、(D)成分:8.88gのPGMEと8.88gのPGMEAの混合溶剤、及び(E)成分:0.01gのメガファックR30を混合した。この混合物を室温で12時間攪拌したが、均一な溶液は得られなかった。
 得られた実施例1~3及び比較例1~3の各ポジ型レジスト組成物について、それぞれ解像度、ベーク後の光透過率、屈折率を各々測定し、それらの評価を行った。
(解像性の評価)
 以下の露光以外の工程は、全て自動塗付現像装置ACT-8(東京エレクトロン(株)製)を用いて行った。シリコンウェハー上にARC-XHRiC-16をスピンコーターを用いて塗布した後、175℃で60秒間のベークを行い反射防止膜を形成した。この膜上に実施例1~3及び比較例1~3で得られたポジ型レジスト組成物をそれぞれスピンコーターを用いて塗付した後、80℃で90秒間のプリベークを行い膜厚0.6μmの塗膜を形成した。この塗膜にテストマスクを通して、i線ステッパーNSR2205i12D((株)ニコン製)により、波長365nmの紫外線を照射した。その後、80℃で90秒間の露光後ベークを行った後、23℃の0.2%TMAH水溶液で50秒間現像し、さらに超純水洗浄を行い、ポジ型のパターンを形成した。
 得られたパターンを走査型電子顕微鏡S4800((株)日立製作所製)により観察した。2μmのドットパターンが剥離なく矩形に形成されているものを解像性が良好として(○)と評価し、パターン形状が矩形でない場合又は解像しない場合を(×)と評価した。得られた結果を表1に示す。
(透明性の評価)
 石英基板上に実施例1~3及び比較例1~3で得られたポジ型レジスト組成物をそれぞれスピンコーターを用いて塗付した後、80℃で3分間ホットプレート上で加熱を行うことによりプリベークを行い膜厚1.0μmの塗膜を形成した。その後、得られた塗膜の全面に紫外線照射装置PLA-501(F)(キヤノン(株)製)を用いて波長365nmでの照射量が1000mJ/cm2である紫外光を照射し、160℃で5分間、200℃で5分間加熱することでポストベークを行い、続いて250℃で10分間加熱することにより高温ベークを行った。
 紫外光照射後及びポストベーク後の塗膜について、波長400nmの光に対する光透過率を紫外線可視分光光度計UV-2550((株)島津製作所製)を用いて測定した。得られた結果を表1に示す。
(溶剤耐性の評価)
 シリコン基板上に実施例1~3及び比較例1~3で得られたポジ型レジスト組成物をそれぞれスピンコーターを用いて塗付した後、80℃で4分間ホットプレート上で加熱を行うことによりプリベークを行い膜厚1.0μmの塗膜を形成した。その後、得られた塗膜の全面に紫外線照射装置PLA-501(F)(キヤノン(株)製)を用いて波長365nmでの照射量が500mJ/cm2である紫外光を照射し、160℃で5分間、200℃で5分間のポストベークを行った。
 作成した塗膜をPGME又はPGMEAに1分間浸漬し、残膜があるものを溶剤耐性が良好として(○)と評価し、残膜がなくなる場合を(×)と評価した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000032
 架橋性化合物として式(1)で表される化合物であるCL1~CL3は、溶剤に高い溶解性を示し、これら架橋性化合物を用いた実施例1~3のポジ型レジスト組成物は、レジスト膜を形成したときに均一な塗膜を形成できた。
 そして表1に示すように、実施例1~3のポジ型レジスト組成物より得られる塗膜はいずれも解像性が良好であり、ポストベークを行った後にも高い光透過率を示した。
 なお、実施例1~3において、(C)成分として一般式(1)で表される架橋性化合物中のR1、R2、及びR3のアルキレン基が、エチレン基(即ち、架橋性化合物としてトリス(4,5-エポキシペンチル)イソシアヌレート))である化合物を用いた実施例1の場合と、プロピレン基(即ち、架橋性化合物としてトリス(5,6-エポキシヘキシル)イソシアヌレート))である化合物を用いた実施例3の場合は、メチレン基(即ち、架橋性化合物としてトリス-(3,4-エポキシブチル)-イソシアヌレート))である化合物を用いた実施例2に比べて、光透過率が向上したとする結果となった。
 一方、比較例1及び3の組成物については、ポストベークを行った後にも比較的高い光透過率を示すものの、現像後に良好なパターンを形成することができず、解像性に劣るとする結果となった。
 また比較例2の組成物については、ポストベークを行った後に光透過率が著しく低下し、また現像後に良好なパターンを形成することができなかった。
 なお、比較例4については、前述のとおり、均一な溶液を得ることができなかった。これは、比較例4に用いた架橋性化合物は室温で完全に溶解するものではなく、膜形成を試みたものの均一な塗膜を形成することができず、ポジ型レジスト組成物としての評価ができなかった。
 本発明によるポジ型レジスト組成物は高感度、耐熱性及び透明性の点で優れ、固体撮像素子などに用いられるマイクロレンズを形成する材料として好適であり、固体撮像素子の微細化が可能であり、車両搭載などの耐候性に対応した材料である。
米国特許出願公開第2007/0295956号明細書 米国特許出願公開第2007/0295983号明細書 米国特許出願公開第2007/0299162号明細書

Claims (10)

  1. 下記(A)成分、(B)成分、(C)成分及び(D)成分:
    (A)成分:アルカリ可溶性ポリマー、
    (B)成分:光分解しアルカリ可溶性基を生ずる有機基を有する化合物、
    (C)成分:式(1):
    Figure JPOXMLDOC01-appb-C000001
    〔R1、R2、及びR3はそれぞれ独立して炭素原子数1~6の分岐を有していても良いアルキレン基又はオキシアルキレン基を表し、E1、E2、及びE3はそれぞれ独立して式(2)、又は式(3):
    Figure JPOXMLDOC01-appb-C000002
    (式中R4は水素原子又はメチル基を表す。)で表される構造を含む基を表す。〕で表される架橋性化合物、
    (D)成分:溶剤、
    を含むポジ型レジスト組成物。
  2. (A)成分のアルカリ可溶性ポリマーが、ヒドロキシ基、カルボキシル基、又はその組み合わせを繰り返し単位に含む重合体である、請求項1に記載のポジ型レジスト組成物。
  3. (A)成分のアルカリ可溶性ポリマーが、ヒドロキシ基、カルボキシル基、又はその組み合わせを有するモノマーと、疎水性基を有するモノマーとの共重合体である、請求項1又は請求項2に記載のポジ型レジスト組成物。
  4. (B)成分が式(4):
    Figure JPOXMLDOC01-appb-C000003
    〔式(4)中、R5は水素原子又は式(5):
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、R7は単結合、又は-SO3-基を表し、R8は炭素原子数1~10のアルキル基を表し、m4は0~3の整数を表す。)で表される構造を表し、R6は炭素原子数1~10の置換又は未置換のアルキル基、ハロゲン原子、又は炭素原子数1~10のアルコキシ基を表す。m3は0又は1の整数を表し、m3が0の時は、m1は1~5の整数を表し、m2は0≦m2≦(5-m1)を満たす整数を表し、m3が1の時は、m1は1~7の整数を表し、m2は0≦m2≦(7-m1)を満たす整数を表す。ただしR5は10~100モル%が上記式(5)で表される構造を表す。〕で表される構造を有する化合物である、請求項1乃至請求項3のうちいずれか1項に記載のポジ型レジスト組成物。
  5. (B)成分が式(6):
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、R5、R6は上記式(4)で表されるものと同一であり、R7は水素原子又は炭素原子数1~10のアルキル基を表し、m5は0~10の整数を表し、m6は1~5の整数を表し、m7は0≦m7≦(5-m6)を満たす整数を表し、m8は0~1の整数を表し、m9は0~5の整数を表し、m10は0≦m10≦(5-m8-m9)を満たす整数を表す。ただしR5は10~100モル%が上記式(5)で表される構造を表す。)で表される化合物である、請求項4に記載のポジ型レジスト組成物。
  6. (C)成分の架橋性化合物は、式(1)中のE1、E2、E3、又はこれらE1~E3から選択される2種以上が式(7):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R4は水素原子又はメチル基を表す。)で表される有機基を有するものである、請求項1乃至請求項5のうちいずれか1項に記載のポジ型レジスト組成物。
  7. 厚さ1.0μmの組成物膜を形成したときに波長400~730nmの光に対する透過率が80%以上の塗膜物性を有する、請求項1乃至請求項6のうちいずれか1項に記載のポジ型レジスト組成物。
  8. 請求項1乃至請求項6のうちいずれか1項に記載のポジ型レジスト組成物を基板上に塗布し、乾燥し、露光し、そして現像する工程を含むパターン形成方法。
  9. 露光後、現像前に加熱工程を含む、請求項8に記載のパターン形成方法。
  10. 請求項8又は請求項9に記載のパターン形成方法で製造されたマイクロレンズ又は平坦化膜を含む固体撮像素子。
PCT/JP2011/050854 2010-01-26 2011-01-19 ポジ型レジスト組成物及びマイクロレンズの製造方法 WO2011093188A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/574,938 US8722311B2 (en) 2010-01-26 2011-01-19 Positive resist composition and method for producing microlens
EP11736902.5A EP2530524B1 (en) 2010-01-26 2011-01-19 Positive-type resist composition and method for producing microlens
CN201180007042.2A CN102725691B (zh) 2010-01-26 2011-01-19 正型抗蚀剂组合物及图案形成方法、固体摄像元件
KR1020127021815A KR101852523B1 (ko) 2010-01-26 2011-01-19 포지티브형 레지스트 조성물 및 마이크로 렌즈의 제조 방법
JP2011551818A JP5673963B2 (ja) 2010-01-26 2011-01-19 ポジ型レジスト組成物及びマイクロレンズの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010014505 2010-01-26
JP2010-014505 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011093188A1 true WO2011093188A1 (ja) 2011-08-04

Family

ID=44319178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050854 WO2011093188A1 (ja) 2010-01-26 2011-01-19 ポジ型レジスト組成物及びマイクロレンズの製造方法

Country Status (7)

Country Link
US (1) US8722311B2 (ja)
EP (1) EP2530524B1 (ja)
JP (1) JP5673963B2 (ja)
KR (1) KR101852523B1 (ja)
CN (1) CN102725691B (ja)
TW (1) TWI548943B (ja)
WO (1) WO2011093188A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225880A (ja) * 2010-04-22 2011-11-10 Evonik Degussa Gmbh 架橋された有機ポリマーの製造法
WO2012017948A1 (ja) * 2010-08-05 2012-02-09 日産化学工業株式会社 窒素含有環を有するエポキシ化合物
WO2012017894A1 (ja) * 2010-08-05 2012-02-09 日産化学工業株式会社 シアヌル酸骨格を有するエポキシ化合物の製造方法
WO2013047435A1 (ja) * 2011-09-29 2013-04-04 日産化学工業株式会社 光硬化性樹脂組成物
WO2014065239A1 (ja) * 2012-10-25 2014-05-01 日産化学工業株式会社 エポキシ化合物の製造方法
CN103906753A (zh) * 2011-11-01 2014-07-02 韩国生产技术研究院 含烷氧基甲硅烷基的异氰脲酸酯环氧化合物、它的制备方法、包括它的组合物、组合物的固化产物和组合物的应用
US9150686B2 (en) 2011-08-25 2015-10-06 Korea Institute Of Industrial Technology Epoxy compound having alkoxysilyl group, method of preparing the same, composition and cured product comprising the same, and uses thereof
US9670309B2 (en) 2012-07-06 2017-06-06 Korea Institute Of Industrial Technology Novolac-based epoxy compound, production method for same, composition and cured article comprising same, and use for same
US9902803B2 (en) 2012-03-14 2018-02-27 Korea Institute Of Industrial Technology Epoxy compound having alkoxy silyl group, composition comprising same, cured product, use thereof and method for preparing epoxy compound having alkoxy silyl group
US10689482B2 (en) 2012-04-02 2020-06-23 Korea Institute Of Industrial Technology Epoxy compound having alkoxysilyl group, composition and hardened material comprising same, use for same, and production method for epoxy compound having alkoxysilyl group
WO2021157282A1 (ja) * 2020-02-03 2021-08-12 太陽インキ製造株式会社 硬化性組成物、そのドライフィルムおよび硬化物
US11840601B2 (en) 2019-11-15 2023-12-12 Korea Institute Of Industrial Technology Composition of alkoxysilyl-functionalized epoxy resin and composite thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093525B2 (ja) * 2007-05-17 2012-12-12 日産化学工業株式会社 感光性樹脂及びマイクロレンズの製造方法
CN102317343B (zh) * 2009-02-10 2013-07-31 日产化学工业株式会社 含有长链亚烷基的环氧化合物
JP5741860B2 (ja) * 2010-01-26 2015-07-01 日産化学工業株式会社 硬化性長鎖アルキレン基含有エポキシ樹脂組成物
JP6384678B2 (ja) * 2013-10-21 2018-09-05 日産化学株式会社 ポジ型感光性樹脂組成物
KR20150068899A (ko) * 2013-12-12 2015-06-22 제이엔씨 주식회사 포지티브형 감광성 조성물
EP3034527B1 (de) 2014-12-19 2017-05-31 Evonik Degussa GmbH Covernetzersysteme für Verkapselungsfolien umfassend Bis-(alkenylamid)-Verbindungen
CN104892586B (zh) * 2015-05-31 2017-05-10 黄山华惠科技有限公司 制备异氰脲酸三缩水甘油酯的新方法
KR20190056088A (ko) * 2017-11-16 2019-05-24 롬엔드하스전자재료코리아유한회사 감광성 수지 조성물 및 이로부터 제조된 경화막
KR20210052452A (ko) 2018-08-30 2021-05-10 닛산 가가쿠 가부시키가이샤 네가티브형 감광성 수지조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251745A (ja) * 1988-03-31 1989-10-06 Mitsui Petrochem Ind Ltd 発光または受光装置および発光または受光素子用封止剤
JPH04166944A (ja) * 1990-10-31 1992-06-12 Mitsubishi Kasei Corp 感光性樹脂組成物
JPH0695386A (ja) * 1992-09-11 1994-04-08 Tosoh Corp マイクロレンズ用ポジ型感光材料
WO2003029898A1 (fr) * 2001-09-27 2003-04-10 Clariant International Ltd. Composition de resine photosensible
US20070295956A1 (en) 2006-06-27 2007-12-27 Gelcore Llc Optoelectronic device
US20070295983A1 (en) 2006-06-27 2007-12-27 Gelcore Llc Optoelectronic device
US20070299162A1 (en) 2006-06-27 2007-12-27 Gelcore Llc Optoelectronic device
JP2008007782A (ja) * 2006-06-27 2008-01-17 Lumination Llc オプトエレクトロニックデバイス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101264A (en) 1988-03-31 1992-03-31 Mitsui Petrochemical Ind. Light-emitting or receiving device with smooth and hard encapsulant resin
EP0794984B1 (en) * 1994-11-28 2003-02-05 Nissan Chemical Industries, Limited Resin composition for powder coating
JP3482753B2 (ja) * 1994-11-28 2004-01-06 日産化学工業株式会社 粉体塗料用樹脂組成物
SE9704643D0 (sv) * 1997-12-12 1997-12-12 Astra Ab Inhalation apparatus and method
US7001705B2 (en) 2002-04-18 2006-02-21 Nissan Chemical Industries, Ltd. Positively photosensitive resin composition and method of pattern formation
JP4692219B2 (ja) * 2004-10-29 2011-06-01 Jsr株式会社 ポジ型感光性絶縁樹脂組成物およびその硬化物
DE602005021812D1 (de) * 2004-10-29 2010-07-22 Jsr Corp Positiv lichtempfindliche isolierende harzzusammensetzung und ausgehärtetes produkt davon
JP4823959B2 (ja) * 2006-08-10 2011-11-24 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
US7745104B2 (en) * 2006-08-10 2010-06-29 Shin-Etsu Chemical Co., Ltd. Bottom resist layer composition and patterning process using the same
JP4973876B2 (ja) 2007-08-22 2012-07-11 信越化学工業株式会社 パターン形成方法及びこれに用いるパターン表面コート材
KR20100099122A (ko) * 2007-11-29 2010-09-10 닛산 가가쿠 고교 가부시키 가이샤 실리카 함유 에폭시 경화제 및 에폭시 수지 경화체
JP5158430B2 (ja) * 2008-06-23 2013-03-06 Dic株式会社 エポキシ化合物及びエポキシ硬化物
US9348222B2 (en) * 2008-07-16 2016-05-24 Nissan Chemical Industries, Ltd. Positive resist composition and method for production of microlens
CN102317343B (zh) * 2009-02-10 2013-07-31 日产化学工业株式会社 含有长链亚烷基的环氧化合物
JP5515399B2 (ja) * 2009-05-12 2014-06-11 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物、硬化膜、パターン硬化膜の製造方法及び電子部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251745A (ja) * 1988-03-31 1989-10-06 Mitsui Petrochem Ind Ltd 発光または受光装置および発光または受光素子用封止剤
JPH04166944A (ja) * 1990-10-31 1992-06-12 Mitsubishi Kasei Corp 感光性樹脂組成物
JPH0695386A (ja) * 1992-09-11 1994-04-08 Tosoh Corp マイクロレンズ用ポジ型感光材料
WO2003029898A1 (fr) * 2001-09-27 2003-04-10 Clariant International Ltd. Composition de resine photosensible
US20070295956A1 (en) 2006-06-27 2007-12-27 Gelcore Llc Optoelectronic device
US20070295983A1 (en) 2006-06-27 2007-12-27 Gelcore Llc Optoelectronic device
US20070299162A1 (en) 2006-06-27 2007-12-27 Gelcore Llc Optoelectronic device
JP2008007782A (ja) * 2006-06-27 2008-01-17 Lumination Llc オプトエレクトロニックデバイス

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225880A (ja) * 2010-04-22 2011-11-10 Evonik Degussa Gmbh 架橋された有機ポリマーの製造法
KR101734189B1 (ko) 2010-08-05 2017-05-11 닛산 가가쿠 고교 가부시키 가이샤 시아누르산 골격을 갖는 에폭시 화합물의 제조방법
WO2012017948A1 (ja) * 2010-08-05 2012-02-09 日産化学工業株式会社 窒素含有環を有するエポキシ化合物
WO2012017894A1 (ja) * 2010-08-05 2012-02-09 日産化学工業株式会社 シアヌル酸骨格を有するエポキシ化合物の製造方法
US9102663B2 (en) 2010-08-05 2015-08-11 Nissan Chemical Industries, Ltd. Method for producing epoxy compound having cyanuric acid skeleton
US9896535B2 (en) 2011-08-25 2018-02-20 Korea Institute Of Industrial Technology Epoxy compound having alkoxysilyl group, method of preparing the same, composition and cured product comprising the same, and uses thereof
US9150686B2 (en) 2011-08-25 2015-10-06 Korea Institute Of Industrial Technology Epoxy compound having alkoxysilyl group, method of preparing the same, composition and cured product comprising the same, and uses thereof
WO2013047435A1 (ja) * 2011-09-29 2013-04-04 日産化学工業株式会社 光硬化性樹脂組成物
JPWO2013047435A1 (ja) * 2011-09-29 2015-03-26 日産化学工業株式会社 光硬化性樹脂組成物
US9714364B2 (en) 2011-09-29 2017-07-25 Nissan Chemical Industries, Ltd. Photo-curable resin composition
CN103906753A (zh) * 2011-11-01 2014-07-02 韩国生产技术研究院 含烷氧基甲硅烷基的异氰脲酸酯环氧化合物、它的制备方法、包括它的组合物、组合物的固化产物和组合物的应用
US9534075B2 (en) 2011-11-01 2017-01-03 Korea Institute Of Industrial Technology Isocyanurate epoxy compound having alkoxysilyl group, method of preparing same, composition including same, cured product of the composition, and use of the composition
CN103906753B (zh) * 2011-11-01 2017-02-15 韩国生产技术研究院 含烷氧基甲硅烷基的异氰脲酸酯环氧化合物、它的制备方法、包括它的组合物、组合物的固化产物和组合物的应用
US9902803B2 (en) 2012-03-14 2018-02-27 Korea Institute Of Industrial Technology Epoxy compound having alkoxy silyl group, composition comprising same, cured product, use thereof and method for preparing epoxy compound having alkoxy silyl group
US10689482B2 (en) 2012-04-02 2020-06-23 Korea Institute Of Industrial Technology Epoxy compound having alkoxysilyl group, composition and hardened material comprising same, use for same, and production method for epoxy compound having alkoxysilyl group
US9670309B2 (en) 2012-07-06 2017-06-06 Korea Institute Of Industrial Technology Novolac-based epoxy compound, production method for same, composition and cured article comprising same, and use for same
US9464074B2 (en) 2012-10-25 2016-10-11 Nissan Chemical Industries, Ltd. Method for producing epoxy compound
JPWO2014065239A1 (ja) * 2012-10-25 2016-09-08 日産化学工業株式会社 エポキシ化合物の製造方法
WO2014065239A1 (ja) * 2012-10-25 2014-05-01 日産化学工業株式会社 エポキシ化合物の製造方法
US11840601B2 (en) 2019-11-15 2023-12-12 Korea Institute Of Industrial Technology Composition of alkoxysilyl-functionalized epoxy resin and composite thereof
WO2021157282A1 (ja) * 2020-02-03 2021-08-12 太陽インキ製造株式会社 硬化性組成物、そのドライフィルムおよび硬化物

Also Published As

Publication number Publication date
EP2530524A1 (en) 2012-12-05
KR20120127609A (ko) 2012-11-22
JP5673963B2 (ja) 2015-02-18
TWI548943B (zh) 2016-09-11
EP2530524B1 (en) 2019-05-29
CN102725691B (zh) 2014-06-11
EP2530524A4 (en) 2015-03-04
KR101852523B1 (ko) 2018-04-27
US8722311B2 (en) 2014-05-13
JPWO2011093188A1 (ja) 2013-06-06
CN102725691A (zh) 2012-10-10
US20120292487A1 (en) 2012-11-22
TW201144944A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
JP5673963B2 (ja) ポジ型レジスト組成物及びマイクロレンズの製造方法
JP5387861B2 (ja) ポジ型レジスト組成物、マイクロレンズ、固体撮像素子、平坦化膜、液晶表示素子、led表示装置及びパターン形成方法
JP5477595B2 (ja) フルオレン骨格を有する光重合性ポリマーを用いる感光性組成物
JP5093525B2 (ja) 感光性樹脂及びマイクロレンズの製造方法
TW201805723A (zh) 包含具有藉由碳原子間之不飽和鍵之光交聯基之化合物的段差基板被覆組成物
KR101229381B1 (ko) 포지티브형 감광성 수지조성물 및 이에 의해 얻어지는 층간절연막 및 마이크로렌즈
EP2833203B1 (en) Photosensitive resin composition
JP4240204B2 (ja) ポジ型感光性樹脂組成物
JPH07104464A (ja) ポジ型熱硬化感光性組成物
JPH0798501A (ja) 熱硬化ポジ型感光材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007042.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551818

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13574938

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127021815

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011736902

Country of ref document: EP