WO2011074424A1 - Reflective illumination device - Google Patents

Reflective illumination device Download PDF

Info

Publication number
WO2011074424A1
WO2011074424A1 PCT/JP2010/071596 JP2010071596W WO2011074424A1 WO 2011074424 A1 WO2011074424 A1 WO 2011074424A1 JP 2010071596 W JP2010071596 W JP 2010071596W WO 2011074424 A1 WO2011074424 A1 WO 2011074424A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reflecting mirror
heat
illumination device
led
Prior art date
Application number
PCT/JP2010/071596
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 米田
満 斎藤
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Priority to JP2011527115A priority Critical patent/JPWO2011074424A1/en
Publication of WO2011074424A1 publication Critical patent/WO2011074424A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/767Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having directions perpendicular to the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a reflective illumination device that can be suitably used not only for medical purposes such as surgery but also in an exhibition hall or a theater.
  • This type of reflective illumination device illuminates a predetermined area by once reflecting light from a light source with a reflecting mirror.
  • a light source For example, a halogen lamp or a mercury lamp is used as the light source, but in recent years, a lamp using an LED has been developed.
  • a large light quantity LED called a power LED is used for an application that requires a large quantity of light in such a reflective illumination device.
  • a large amount of power LED is used, heat generation from the LED increases correspondingly, and it is necessary to provide a heat dissipation mechanism in order to prevent failure due to the heat.
  • this includes a concave mirror 1A, a heat radiation mechanism 2A attached to the back side of the concave mirror 1, an LED 3A provided so as to face the concave mirror 1A, and the heat radiation structure 2A. And a heat pipe 5A that connects the substrate 4A on which the LED 3A is placed through the central portion 12A of the concave mirror 1A, and the heat dissipation structure 2A is not provided on the LED 3A side.
  • the heat dissipation structure 2A is provided by projecting from the back side of the concave mirror 1A to the opposite side of the substrate 4A, so that the LED can be radiated without blocking the reflected light (patent). Reference 1).
  • Patent Document 1 also discloses a position adjustment mechanism 6A that adjusts the distance between the concave mirror 1A and the LED 3A in order to change the illumination range.
  • a connecting portion 6A for connecting the concave mirror 1A and the heat radiating member 2A includes a first connecting member 61A provided on the concave mirror 1A side and a first connecting member 61A provided on the heat radiating member 2A side.
  • the second connecting member 62A is slidably fitted to the first connecting member 61A, and the LED 3A is reflected by being fastened with a screw at a predetermined position. It is configured to be movable back and forth with respect to the surface 11A.
  • the position adjusting mechanism is provided between the concave mirror 1A and the heat dissipation structure 2A in order to provide a function of adjusting the distance between the LED 3A and the concave mirror 1A. Since 6A is interposed, the distance for transferring heat from the LED 1A to the heat dissipation mechanism 2A becomes long, and it is difficult to improve the heat dissipation efficiency.
  • the heat pipe 5A passes through the central portion 12A of the concave mirror 1A and is connected to the heat dissipation mechanism 2A, the center of the light emitted from the LED 3A and reaching the concave mirror 1A.
  • the intense light of the part is blocked by the heat pipe 5A and cannot reach the reflecting surface, and is wasted, and the light quantity of the entire reflective illumination device 100A is impaired.
  • the present invention has been made in view of the above-described problems. Even if one end of the heat conducting member is fixed to the substrate and the other end is directly fixed to the reflecting mirror, the position and orientation of the LED can be finely adjusted. It is an object of the present invention to provide a reflective illumination device that can improve the heat dissipation efficiency of heat generated in an LED and can effectively use high intensity light emitted from the LED at the center. To do.
  • the reflective illumination device of the present invention is attached to the substrate, a reflecting mirror having a concave reflecting surface formed on the front side, a substrate provided to face the central portion of the reflecting surface, and the substrate.
  • An LED that emits light toward the reflecting surface, one end of which is fixed to the substrate and the other end is fixed to the reflecting mirror, and the substrate and the reflecting mirror.
  • a rod-like heat conducting member for thermally connecting the electrodes is provided radially from the substrate to the outer edge of the reflecting mirror.
  • the said heat conductive member is a rod-shaped thing and is provided radially from the said board
  • the heat conducting member is fixed to the reflecting mirror itself, it is possible to dissipate heat from the reflecting mirror itself. Therefore, unlike the conventional case, it is not necessary to provide a heat radiating structure by greatly projecting along the optical axis from the back side of the reflecting mirror, and it is possible to eliminate the heat radiating structure or to reduce its size. As a result, since restrictions on heat dissipation are weakened, the degree of freedom of forming the back surface of the reflecting mirror on a substantially flat surface is increased, and it becomes easy to attach the reflective illumination device to a flat surface such as a ceiling.
  • the distance for transferring heat can be reduced as compared with the conventional case, so that the heat radiation efficiency can be further improved.
  • the heat conducting member is a rod-shaped member that is provided radially from the substrate to the outer edge of the reflecting mirror, the LED and the substrate are supported even if the diameter thereof is smaller than the conventional one. In addition, the light reflected on the reflecting surface can be hardly blocked. Accordingly, it is possible to further improve the amount of light emitted from the reflection type illumination device irradiated from the reflection surface.
  • a heat dissipation structure is formed on the back side of the reflecting mirror. If it is such, the distance of LED and a thermal radiation structure can be made very short, for example, the contribution of the thermal radiation effect by the heat conduction which made the air the medium can also be enlarged.
  • the heat conducting member is a heat pipe. If it is such, since it can be set as the heat conductive member of a very thin diameter, it can minimize that the light reflected in the reflective surface is interrupted, and does not impair the light quantity. be able to.
  • any position adjustment mechanism that adjusts the distance of the substrate to the reflection surface may be used.
  • the heat dissipation structure Is provided on the outer side of the reflecting mirror, the fixing part to which the other end of the heat conducting member is fixed, the contact part in contact with the back side of the reflecting surface, and provided between the fixing part and the contact part, What is necessary is just to be comprised from the fin part formed in the spiral.
  • the heat conducting member comprises the reflector, the substrate, and the like. What is necessary is just to be provided in between.
  • the surface of the reflecting surface only needs to be subjected to a textured process including a plurality of circular concave surfaces.
  • a transparent cover provided so as to cover the front side of the reflecting mirror is further provided, and the position adjusting mechanism includes a connecting member that connects between the substrate and the transparent cover; And an adjustment unit that is provided outside the transparent cover and moves the substrate in the optical axis direction of the reflecting mirror via the connection member.
  • the heat dissipation structure is formed on the back side of the reflecting mirror, the distance for transferring heat by the heat conducting member can be shortened compared to the conventional case, so that the heat dissipation efficiency is improved. Can do. Furthermore, since the rod-like heat conduction member is provided radially from the substrate to the outer edge of the reflecting mirror, it is possible to reflect the strong light of the central portion emitted from the LED on the reflecting surface without waste, It is possible to increase the amount of light irradiated to the irradiation target from the entire reflective illumination device.
  • FIG. 1 is a schematic perspective view showing a reflective illumination device according to an embodiment of the present invention.
  • the schematic diagram which shows an example of the use condition of the reflection type illuminating device in the embodiment.
  • the typical sectional view showing the structure of the reflection type lighting device concerning another embodiment of the present invention.
  • the typical sectional view showing the structure of the reflection type lighting installation concerning another embodiment of the present invention.
  • the typical sectional view showing the structure of the reflection type lighting installation concerning a different embodiment of the present invention.
  • the typical sectional view showing the reflection type lighting installation concerning other embodiments of the present invention.
  • the reflective illumination device 100 is a reflective shadowless illumination device used for medical use, particularly for dental treatment, and has a concave surface on the front side as shown in FIGS. 1 and 2. 11, a substrate 4 provided so as to face the central portion 12 of the reflection surface 11, and an LED 3 that is attached to the substrate 4 and emits light toward the reflection surface 11. , And a heat radiating structure 2 is formed on the back side of the reflecting mirror 1, and a heat pipe 5 serving as a heat conducting member for thermally connecting the heat radiating structure 2 and the substrate 4 is provided. . As shown in FIG.
  • the reflective illumination device 100 illuminates a predetermined region by once reflecting the light from the LED 3 so as to be directed inward by the reflecting surface 11, and the LED 3 and the substrate 4. In addition, the illumination is performed so that the shadow of the dentist's finger or the treatment tool J interposed between the irradiation region and the reflecting surface 11 does not occur in the predetermined region.
  • the reflecting mirror 1 has a shape obtained by removing a bowl shape from a substantially short cylindrical shape formed of a metal such as aluminum or copper having good thermal conductivity, and the reflective surface is obtained by performing aluminum deposition on the inner surface thereof. 11 is formed.
  • the reflecting surface 11 formed on the front side of the reflecting mirror 1 has a concave shape, and is specifically a parabolic mirror or an ellipsoidal mirror.
  • the heat dissipating structure 2 formed on the back side of the reflecting mirror 1 is a fin 21 formed by providing annular grooves at regular intervals on the side surface of the cylindrical body centered on the optical axis.
  • the depth of the grooves forming the fins 21 is formed as deep as possible within a range not reaching the reflecting surface 11 on the front side. That is, since the fin 21 which is the heat radiating structure 2 is formed directly on the reflecting mirror 1 itself, the heat transferred to the reflecting mirror 1 can be quickly radiated.
  • the substrate 4 has a truncated conical shape made of a highly heat conductive material such as metal (for example, aluminum or copper), and the tip of the heat pipe 5 is incident on the side surface substantially perpendicularly. It is provided to do.
  • LED3 is provided in the reflective surface 11 side, and the light inject
  • the LED 3 is provided on the surface of the substrate 4 on the reflective surface 11 side, and emits light in the visible light range toward the reflective surface 11.
  • the LED 3 includes light emitting elements of R (red), G (green), and B (blue), and emits these colors so as to be mixed.
  • one LED 3 is provided in the central portion 12 of the reflective surface side surface of the substrate 44.
  • the heat pipe 53 has a distal end portion fixed to the substrate 4 and a proximal end portion fixed to the outer edge portion 13 of the reflecting mirror 1.
  • substrate 4, the reflective mirror 1, and the heat pipe 5 are fixed by welding or press fit, and it is comprised so that sufficient heat conduction may be performed.
  • the heat pipe 5 has two functions: a function of transferring heat generated in the LED 3 to the heat dissipation structure 2 and a function of holding the substrate 4 and the LED 3 in a predetermined position.
  • the four heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1 at 90 degrees as viewed from the optical axis direction, thereby supporting the substrate 4 and the LEDs 3. And heat transfer.
  • the heat pipe 5 is a pipe formed of copper, aluminum, stainless steel, or the like.
  • a groove structure as a capillary structure is formed on the inner wall thereof, and a small amount of water and freon are contained therein.
  • a heat medium such as ammonia is sealed in a vacuum.
  • the reflection type illumination device 100 since the heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflection mirror 1, the substrate 4 and the reflection mirror 1 are provided with the heat pipe 5. Even if both ends of the heat pipe 5 are completely fixed by welding or press-fitting, the heat pipe 5 provided at an angle can bend the central portion, and the position of the substrate 4 can be changed minutely. can do. Therefore, it is possible to adjust the position and orientation of the LED while the heat pipe 5 is directly fixed to the reflecting mirror 1 and the heat can be sufficiently transferred.
  • the heat dissipation structure 2 is provided on the back side of the reflecting mirror 1, the heat generated in the LED 3 is transferred to the heat dissipation structure 2 by the substrate 4 and the heat pipe 5 without using an extra member. , Can dissipate heat. Therefore, compared with the prior art, the distance by which heat is transferred by the heat pipe 5 can be significantly shortened, so that the heat dissipation efficiency can be improved.
  • the heat pipe 5 is provided from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1, the heat pipe 5 is provided at the central portion 12 of the reflecting mirror 1 as in the prior art, and the reflecting surface 11.
  • the light emitted from the LED 3 can be reflected without wasting at all the strength of the central portion 12. That is, the amount of reflected light returning from the reflecting surface 11 can be increased, and the amount of light as the reflective illumination device 100 can be further improved.
  • a load to be supported is provided vertically. This can be improved compared to the case. That is, even if the diameter of the heat pipe 5 is reduced, the LED 3 and the substrate 4 can be supported and the diameter can be reduced, so that the light reflected from the reflecting surface 11 is blocked by the heat pipe 5. Can be minimized. That is, the amount of light that can be irradiated by the heat pipe 5 can be hardly impaired.
  • the heat pipe 5 is directly fixed to the reflecting mirror 1 so as to dissipate heat from the reflecting mirror 1 itself, the heat dissipating member such as a fin protrudes greatly from the back surface of the reflecting surface as in the prior art. There is no need to increase the heat dissipation amount. That is, the design restriction coming from the heat dissipation structure is weakened, and the degree of freedom in designing an equal shape that can make the shape of the back side of the reflecting surface substantially flat as in this embodiment is increased. As a result, it becomes easy to provide the reflective illumination device 100 of the present embodiment on a plane such as a ceiling, and can be used for various applications.
  • the reflective illumination device 100 of the embodiment may further include a position adjusting mechanism 6 that adjusts the distance of the substrate 4 with respect to the reflective surface 11.
  • a rod-shaped guide portion 61 that extends from the reflecting surface 11 toward the substrate 4 and is inserted into a hole formed in the substrate 4, and the substrate 4 is detachably fixed to the guide portion 61.
  • the fixing part 62 is constituted by a screw hole and a set screw which are formed on the side surface of the substrate 4 and which go to the guide part 61. If it is such, the distance of the said LED3 and the said reflective surface 11 can be adjusted, and the irradiation range by reflected light can be adjusted now appropriately.
  • the heat dissipation structure 2 may be formed so as to protrude perpendicularly to the curved surface from the back side of the reflecting mirror 1. More specifically, the heat dissipating structure 2 is generally formed in a spring shape, provided on the outside of the reflecting mirror, and a fixing portion 22 to which the other end of the heat pipe 5 as a heat conducting member is fixed, It comprises a contact portion 23 in contact with the back side of the reflecting surface, and a fin portion 24 provided between the fixing portion 22 and the contact portion 23 and formed in a spiral shape. In this embodiment, the pair of heat pipes 5 and the heat dissipation structure 2 are provided so as to be line symmetric with respect to the optical axis of the reflecting mirror 1.
  • the heat dissipation structure 2 is formed in a spring shape, so that the movement amount can be absorbed by expansion and contraction. This makes it possible to set the illumination range more easily.
  • the end portion of the heat pipe 5 is not fixed to the reflecting surface 11 of the reflecting mirror 1, but is directly fixed to the heat dissipation structure 2 in the outer edge portion 13. May be bent to the opposite side of the reflecting surface 11 and fixed to the substrate 4. Further, as shown in FIG. 6, one end of the heat pipe 5 is incident on the side surface of the substrate 4 that is formed obliquely, and the other end is incident on the reflecting mirror 1 with a slight inclination. It is configured.
  • the heat pipe 5 is fixed vertically to the reflecting mirror 1, and thus is incident and fixed obliquely. Compared to the case, it is easy to return to the vicinity of the LED 3 that is the heat generating portion and liquefy in the vicinity of the heat radiating structure 2, so that the heat dissipation efficiency can be further improved.
  • the heat pipe 5 may be bent to the reflective surface side, for example, in addition to the heat pipe 5 bent to the opposite side of the reflective surface 11.
  • the heat dissipation structure is a fin extending in the radial direction in the reflecting mirror, but may be extending in another direction, for example, the axial direction. In short, what is necessary is just to have the heat dissipation structure formed in the reflecting mirror itself.
  • the LED and the substrate are supported by the four heat pipes and the heat is transferred to the heat dissipation structure.
  • the number may be two or three.
  • a plurality of heat pipes greater than four may be used.
  • the heat conducting member is not limited to the heat pipe, and may be another heat conducting member.
  • the substrate portion of the heat pipe is provided at the outer edge portion of the reflecting mirror, particularly the outer edge portion of the reflecting surface.
  • the heat pipe substrate portion may be directly attached to the fin that is a heat dissipation structure. It doesn't matter.
  • FIGS. 7 In this embodiment, as shown in the perspective view of FIG. 7, four LEDs 3 are formed in a cross shape from the substrate 4 provided so that light is emitted to the reflecting surface 11 toward the outer edge portion 13 of the reflecting surface 11.
  • the heat pipe 5 is extended.
  • the heat pipe 5 is incident perpendicularly to the side surface of the substrate 4 and is substantially parallel to a plane including a virtual circle formed by the outer edge portion 13 of the reflecting mirror 1.
  • the heat pipe 5 is connected to a heat radiating block 2 which is a heat radiating structure formed in a cross shape on the back side of the reflecting mirror 1, and the heat generated by the LED 3 is transmitted to the substrate 4, the heat pipe 5, and the heat radiated. It is transmitted in the order of block 2 so as to dissipate heat efficiently.
  • the heat dissipating block is provided along the back side of the reflecting mirror 1 by combining two blocks having a substantially rectangular parallelepiped shape in the vertical and horizontal directions.
  • the tip portion protrudes from the outer edge portion 13 of the reflecting mirror 1 when viewed from the surface 11 side.
  • One end of the heat pipe 5 is bent and connected to a portion where the heat dissipation block protrudes outward from the reflecting mirror 1. Even in this configuration, the irradiation range of the reflected light from the reflecting surface 11 can be adjusted by moving the positions of the LED 3 and the substrate 4 back and forth by the position adjusting mechanism 6 by the elasticity of the heat pipe 5.
  • embossing is performed to provide a large number of circular concave surfaces 111 so as to cover the surface of the reflective surface 11 so that the reflected light from the reflective surface 11 is uniform.
  • the transparent cover 7 is schematically made of, for example, a transparent resin.
  • a position adjusting mechanism 6 for adjusting the distance to the reflecting surface 11 of the LED 3 is provided between the transparent cover and the substrate 4.
  • the position adjusting mechanism 6 is provided on the outside of the transparent cover 7 and the connection member 61 that connects the substrate 4 and the transparent cover 7, and the substrate 4 is moved through the connection member 61.
  • an adjusting unit 62 for moving back and forth in the optical axis direction of the reflecting mirror.
  • connection member 61 is a rod-shaped member that extends from a through hole formed in the center of the bottom surface of the substrate 4 to the center of the top surface of the transparent cover 7 and extends to the outside of the transparent cover. 61 are arranged so that the outline of 61 is inside the substrate 4. One end of the connecting member 61 is fixed to the bottom surface of the substrate 4, and the other end is slidably inserted into a through hole provided in the transparent cover 7.
  • the adjusting portion 62 is fixed in a state where the connecting member 61 protrudes to the outside of the transparent cover by a predetermined length.
  • the adjusting portion 61 is constituted by a thread groove formed on the other end side of the connection member 61 and a nut screwed with the thread groove on the outside of the transparent cover. That is, when the nut is rotated on the outer surface of the transparent cover 7 so as to advance toward the reflecting mirror 1, the nut is pressed by the transparent cover 7 and the connecting member 61 side where the thread groove is cut moves. Will do. As a result, as shown in FIG. 9B, the heat pipe 5 can be bent and the position of the LED 3 can be separated from the reflecting mirror 1.
  • the connecting member 61 is not limited to a rod-shaped member, and may be one that connects the substrate 4 other than the central portion of the transparent cover 7.
  • the adjustment unit 62 may be provided outside the transparent cover 7. For example, a plurality of small holes are arranged in the side surface of the connection member in the optical axis direction, and a stop pin is inserted into any small hole. The position of the substrate 4 and the LED 3 may be adjusted.
  • a power source such as a battery may be provided on the back side of the reflecting mirror, and wiring may be provided along the heat pipe.
  • the above-described reflective illumination device may be used for a car light or the like.
  • the position and orientation of the LED can be finely adjusted with the reflective illumination device of the present invention.
  • the heat radiation efficiency of the generated heat can be further improved, and light having high intensity in the central part emitted from the LED can be used effectively.

Abstract

Provided is a reflective illumination device wherein even if one end of a heat conduction member is secured to a substrate, and the other end is directly secured to a reflecting mirror, the position or the orientation of an LED can be finely adjusted, the heat release efficiency of heat generated in the LED can be improved, and high-intensity light at the center of light emitted from the LED can be effectively used. A reflective illumination device (100) is provided with a reflecting mirror (1) on which a reflective surface (11) is formed so as to define a concavity on the upper side, a substrate (4) provided so as to be opposite to the center portion (12) of the reflective surface (11), and a LED (3) for emitting light toward the reflective surface (11). Rod-like heat conduction members (5) wherein one end is secured to the substrate (4) and the other end is secured to the reflecting mirror (1) so that the substrate (4) and a heat release structure (2) are thermally connected, are radially extended from the substrate (4) to the outer edge (13) of the reflecting mirror (1).

Description

反射型照明装置Reflective lighting device
 本発明は、手術等の医用の他、展示場あるいは劇場等にでも好適に用いることができる反射型照明装置に関するものである。 The present invention relates to a reflective illumination device that can be suitably used not only for medical purposes such as surgery but also in an exhibition hall or a theater.
 この種の反射型照明装置は、光源からの光を一旦反射鏡で反射させて、所定領域を照明するものである。光源には例えばハロゲンランプや水銀灯が用いられていたが、近年、LEDを用いたものも開発されている。 This type of reflective illumination device illuminates a predetermined area by once reflecting light from a light source with a reflecting mirror. For example, a halogen lamp or a mercury lamp is used as the light source, but in recent years, a lamp using an LED has been developed.
 ところで、このような反射型照明装置において大きな光量が必要とされる用途には、パワーLEDと呼ばれる大光量のLEDが用いられる。大光量のパワーLEDを用いるとその分LEDからの発熱が大きくなり、その熱による故障等を防ぐために、放熱機構を設ける必要がある。 By the way, a large light quantity LED called a power LED is used for an application that requires a large quantity of light in such a reflective illumination device. When a large amount of power LED is used, heat generation from the LED increases correspondingly, and it is necessary to provide a heat dissipation mechanism in order to prevent failure due to the heat.
 このような反射型照明装置において、反射鏡で反射された光を大きく遮ることなくLEDの発熱を放熱できる放熱構造を有したものを本願発明者らは既に出願している。具体的にはこのものは、図11に示すように、凹面鏡1Aと、前記凹面鏡1の裏側に取り付けられる放熱機構2Aと、前記凹面鏡1Aに対向するように設けられたLED3Aと、前記放熱構造2Aと、前記LED3Aが載置されている基板4Aとを、前記凹面鏡1Aの中央部12Aを通過して接続するヒートパイプ5Aと、を備えたものであり、LED3A側に放熱構造2Aを設けるのではなく、凹面鏡1A側において当該凹面鏡1Aの裏側から前記基板4Aとは反対側へと突出させて放熱構造2Aを設けて反射光を遮ることなくLEDの放熱を行えるように構成したものである(特許文献1参照)。 The inventors of the present application have already applied for such a reflective illumination device having a heat dissipation structure that can dissipate the heat generated by the LED without largely blocking the light reflected by the reflecting mirror. Specifically, as shown in FIG. 11, this includes a concave mirror 1A, a heat radiation mechanism 2A attached to the back side of the concave mirror 1, an LED 3A provided so as to face the concave mirror 1A, and the heat radiation structure 2A. And a heat pipe 5A that connects the substrate 4A on which the LED 3A is placed through the central portion 12A of the concave mirror 1A, and the heat dissipation structure 2A is not provided on the LED 3A side. In addition, on the concave mirror 1A side, the heat dissipation structure 2A is provided by projecting from the back side of the concave mirror 1A to the opposite side of the substrate 4A, so that the LED can be radiated without blocking the reflected light (patent). Reference 1).
 さらに、特許文献1では、照明範囲を変更するために前記凹面鏡1Aと前記LED3Aとの距離を調節する位置調節機構6Aも開示されている。具体的には、図7に示すように前記凹面鏡1A及び前記放熱部材2Aを連結する連結部6Aが、凹面鏡1A側に設けられた第1連結部材61Aと、放熱部材2A側に設けられた第2連結部材62Aとから構成してあり、前記第1連結部材61Aに前記第2連結部材62Aがスライド移動可能に嵌合させてあるとともに、所定の位置でねじによって止めることで、前記LED3Aを反射面11Aに対して前後に移動できるように構成してある。 Furthermore, Patent Document 1 also discloses a position adjustment mechanism 6A that adjusts the distance between the concave mirror 1A and the LED 3A in order to change the illumination range. Specifically, as shown in FIG. 7, a connecting portion 6A for connecting the concave mirror 1A and the heat radiating member 2A includes a first connecting member 61A provided on the concave mirror 1A side and a first connecting member 61A provided on the heat radiating member 2A side. The second connecting member 62A is slidably fitted to the first connecting member 61A, and the LED 3A is reflected by being fastened with a screw at a predetermined position. It is configured to be movable back and forth with respect to the surface 11A.
 しかしながら、このものは前記凹面鏡1Aの裏側から前記放熱構造2Aを突出させてあるので、例えば、この反射型照明装置を天井等に取り付けたい場合には、この放熱構造2Aが邪魔となってしまう。そこで、図12に示すように、放熱構造2Aを取り外し、凹面鏡1Aにヒートパイプ5Aを直接取り付けることが考えられるが、この場合、ヒートパイプ5Aの端部が基板4A及び前記凹面鏡1Aにねじ止めのような点接触で固定されていると前記LED3Aで発生した熱を前記凹面鏡1Aに十分に伝導させることができないため、溶接や圧入等により面接触を確保できるように前記基板に固定しておく必要がある。すると、前記ヒートパイプ5Aの両端は、前記基板4A及び前記凹面鏡1Aに完全に固定されているため、当該基板4Aの位置を変更することはできず、LED3Aの向きや位置を微調整して、照明範囲等を変更することができなくなってしまう。 However, since this has the heat dissipation structure 2A protruding from the back side of the concave mirror 1A, for example, when it is desired to attach the reflective illumination device to a ceiling or the like, the heat dissipation structure 2A becomes an obstacle. Therefore, as shown in FIG. 12, it is conceivable to remove the heat dissipation structure 2A and directly attach the heat pipe 5A to the concave mirror 1A. In this case, the end of the heat pipe 5A is screwed to the substrate 4A and the concave mirror 1A. If it is fixed by such point contact, the heat generated by the LED 3A cannot be sufficiently conducted to the concave mirror 1A. Therefore, it is necessary to fix it to the substrate so as to ensure surface contact by welding or press fitting. There is. Then, since both ends of the heat pipe 5A are completely fixed to the substrate 4A and the concave mirror 1A, the position of the substrate 4A cannot be changed, and the direction and position of the LED 3A can be finely adjusted, The illumination range cannot be changed.
 また、図7に示したような反射型照明装置100Aでは、LED3Aと前記凹面鏡1Aとの距離を調節する機能を持たせるために、前記凹面鏡1Aと前記放熱構造2Aとの間に前記位置調節機構6Aが介在しているため、LED1Aから放熱機構2Aまで熱を移送する距離が長くなってしまい、放熱効率が向上させることが難しい。 Further, in the reflective illumination device 100A as shown in FIG. 7, the position adjusting mechanism is provided between the concave mirror 1A and the heat dissipation structure 2A in order to provide a function of adjusting the distance between the LED 3A and the concave mirror 1A. Since 6A is interposed, the distance for transferring heat from the LED 1A to the heat dissipation mechanism 2A becomes long, and it is difficult to improve the heat dissipation efficiency.
 加えて、ヒートパイプ5Aが凹面鏡1Aの中央部12Aを通過して放熱機構2Aに接続される構造となっているため、前記LED3Aから射出されて、前記凹面鏡1Aに到達するまでの光のうち中央部の強い光が、前記ヒートパイプ5Aによって遮られてしまい反射面に到達する事が出来ず無駄になっており、反射型照明装置100A全体の光量が損なわれてしまっている。 In addition, since the heat pipe 5A passes through the central portion 12A of the concave mirror 1A and is connected to the heat dissipation mechanism 2A, the center of the light emitted from the LED 3A and reaching the concave mirror 1A. The intense light of the part is blocked by the heat pipe 5A and cannot reach the reflecting surface, and is wasted, and the light quantity of the entire reflective illumination device 100A is impaired.
特開2008-108721号公報JP 2008-108721 A
 本発明は上述したような問題を鑑みてなされたものであり、熱伝導部材の一端を基板に固着し、他端を反射鏡に直接固着したとしても、LEDの位置や向きを微調整する事を可能とするとともに、LEDで発生した熱の放熱効率をより向上させ、LEDから射出される中央部の強度の高い光を有効に使用することができる反射型照明装置を提供することを目的とする。 The present invention has been made in view of the above-described problems. Even if one end of the heat conducting member is fixed to the substrate and the other end is directly fixed to the reflecting mirror, the position and orientation of the LED can be finely adjusted. It is an object of the present invention to provide a reflective illumination device that can improve the heat dissipation efficiency of heat generated in an LED and can effectively use high intensity light emitted from the LED at the center. To do.
 すなわち、本発明の反射型照明装置は、表側に凹面状をなす反射面が形成された反射鏡と、前記反射面の中央部に対向するように設けられた基板と、前記基板に取り付けられ、前記反射面に向かって光を射出するLEDと、を備えた反射型照明装置であって、一端が前記基板に固着され、他端が前記反射鏡に固着されて、前記基板と前記反射鏡とを熱的に接続する棒状の熱伝導部材が、前記基板から前記反射鏡の外縁部へと放射状に設けられていることを特徴とする。 That is, the reflective illumination device of the present invention is attached to the substrate, a reflecting mirror having a concave reflecting surface formed on the front side, a substrate provided to face the central portion of the reflecting surface, and the substrate. An LED that emits light toward the reflecting surface, one end of which is fixed to the substrate and the other end is fixed to the reflecting mirror, and the substrate and the reflecting mirror A rod-like heat conducting member for thermally connecting the electrodes is provided radially from the substrate to the outer edge of the reflecting mirror.
 このようなものであれば、前記熱伝導部材が棒状のものであり、前記基板から前記反射鏡の外縁部へと放射状に設けられているので、前記熱伝導部材の両端が前記基板及び前記反射鏡に固着されているとしても、前記基板から見て斜めに取り付けられている当該熱伝導部材をたわませることが可能であることから、そのたわみによってLEDの位置や向きを微調整する事が可能となる。 If it is such, since the said heat conductive member is a rod-shaped thing and is provided radially from the said board | substrate to the outer edge part of the said reflective mirror, the both ends of the said heat conductive member are the said board | substrate and the said reflection. Even if it is fixed to the mirror, it is possible to bend the heat conducting member that is attached obliquely when viewed from the substrate, so that the position and orientation of the LED can be finely adjusted by the deflection. It becomes possible.
 また、前記反射鏡自体に前記熱伝導部材が固着されているので、前記反射鏡自体から放熱させることができる。従って、従来のように反射鏡の裏側から光軸に沿って大きく突出させて放熱構造を設ける必要が無く、放熱構造を無くしたり、その大きさを小さく構成したり事が可能となる。この結果、放熱に関する制限が弱くなるので、前記反射鏡の裏面を略平面に形成する等の自由度が大きくなり、この反射型照明装置を天井等の平面に取り付けることが容易になる。 Further, since the heat conducting member is fixed to the reflecting mirror itself, it is possible to dissipate heat from the reflecting mirror itself. Therefore, unlike the conventional case, it is not necessary to provide a heat radiating structure by greatly projecting along the optical axis from the back side of the reflecting mirror, and it is possible to eliminate the heat radiating structure or to reduce its size. As a result, since restrictions on heat dissipation are weakened, the degree of freedom of forming the back surface of the reflecting mirror on a substantially flat surface is increased, and it becomes easy to attach the reflective illumination device to a flat surface such as a ceiling.
 さらに、基板と反射鏡とが直接熱伝導部材で接続されるので、従来に比べて熱を移送する距離を小さくすることができるので、放熱効率をより向上させることが可能となる。 Furthermore, since the substrate and the reflecting mirror are directly connected by the heat conducting member, the distance for transferring heat can be reduced as compared with the conventional case, so that the heat radiation efficiency can be further improved.
 加えて、前記熱伝導部材を反射面の中央部に取り付けたり、挿入するための穴を設けたりする必要がなく、LEDから射出される中央部の強度の強い光を無駄にすることなく反射させることができるようになる。さらに、反射面の中央部を通るように前記伝熱部材が設けられるのではなく、反射鏡の外縁部に一端を設けられるので、前記熱伝導部材により前記LEDから射出された光が遮られることがなく、略全ての光を反射面まで到達させることができるようになる。また、前記熱伝導部材は前記基板から前記反射鏡の外縁部へと放射状に設けられている棒状のものであるので、従来に比べてその径を小さくしても、前記LED及び前記基板を支持させることができるとともに、反射面において反射された光をほとんど遮らないようにすることができる。従って、反射面から照射される反射型照装置から射出される光量をさらに向上させることができるようになる。 In addition, there is no need to attach the heat conducting member to the central part of the reflecting surface or to provide a hole for insertion, and the strong light at the central part emitted from the LED is reflected without wasting it. Will be able to. Further, since the heat transfer member is not provided so as to pass through the central portion of the reflecting surface, one end is provided at the outer edge of the reflecting mirror, so that the light emitted from the LED is blocked by the heat conducting member. And almost all light can reach the reflecting surface. Further, since the heat conducting member is a rod-shaped member that is provided radially from the substrate to the outer edge of the reflecting mirror, the LED and the substrate are supported even if the diameter thereof is smaller than the conventional one. In addition, the light reflected on the reflecting surface can be hardly blocked. Accordingly, it is possible to further improve the amount of light emitted from the reflection type illumination device irradiated from the reflection surface.
 より放熱効果を高めるためには、前記反射鏡の裏側に放熱構造が形成されているものであればよい。このようなものであれば、LEDと放熱構造との距離を非常に短いものにすることができ、例えば、空気を媒介にした熱伝導による放熱効果の寄与も大きくすることができる。 In order to further enhance the heat dissipation effect, it is sufficient if a heat dissipation structure is formed on the back side of the reflecting mirror. If it is such, the distance of LED and a thermal radiation structure can be made very short, for example, the contribution of the thermal radiation effect by the heat conduction which made the air the medium can also be enlarged.
 熱伝導部材の具体的な実施の態様としては、前記熱伝導部材がヒートパイプであるものがあげられる。このようなものであれば、非常に細い径の熱伝導部材とすることができるので、反射面において反射された光が遮られるのを最小限にすることができ、光量を損なわないようにすることができる。 As a specific embodiment of the heat conducting member, the heat conducting member is a heat pipe. If it is such, since it can be set as the heat conductive member of a very thin diameter, it can minimize that the light reflected in the reflective surface is interrupted, and does not impair the light quantity. be able to.
 前記反射型照明装置の照射範囲を調整できるようにするには、前記基板の前記反射面に対する距離を調節する位置調節機構を更に備えたものであればよい。 In order to be able to adjust the irradiation range of the reflection type illumination device, any position adjustment mechanism that adjusts the distance of the substrate to the reflection surface may be used.
 前記熱伝導部材と、前記反射鏡との固着具合を向上させて熱伝導の効率を向上させるとともに、前記LEDと前記反射面と間の相対位置の調整できる範囲を大きくするには、前記放熱構造が、反射鏡の外側に設けられ、熱伝導部材の他端が固着される固着部と、前記反射面の裏側に接触して接触部と、前記固着部と前記接触部の間に設けられ、らせん状に形成されたフィン部と、から構成されるものであればよい。 In order to improve the heat conduction efficiency by improving the fixing condition between the heat conducting member and the reflecting mirror, and to increase the range in which the relative position between the LED and the reflecting surface can be adjusted, the heat dissipation structure Is provided on the outer side of the reflecting mirror, the fixing part to which the other end of the heat conducting member is fixed, the contact part in contact with the back side of the reflecting surface, and provided between the fixing part and the contact part, What is necessary is just to be comprised from the fin part formed in the spiral.
 複雑な機構を用いずに、熱伝導部材の熱伝導効率を高めるとともに、LEDの反射面に対する可動範囲を大きくするための実施の態様としては、前記熱伝導部材が、前記反射鏡と前記基板との間に曲げて設けられているものであればよい。 As an embodiment for enhancing the heat conduction efficiency of the heat conducting member without using a complicated mechanism and increasing the movable range with respect to the reflective surface of the LED, the heat conducting member comprises the reflector, the substrate, and the like. What is necessary is just to be provided in between.
 前記反射面から反射されて照射対象に到達する光の均一度を向上させるには、前記反射面の表面に複数の円形状の凹面からなるシボ加工が施されていれていればよい。
 前記反射面にほこり等のゴミが付着するのを防ぐために、前記反射鏡の表側をカバーしたとしても、そのカバーを取り外すことなく容易に外部から前記LEDと前記反射面との距離を変更でき、照明範囲を調節できるようにするには、前記反射鏡の表側を覆うように設けられた透明カバーを更に備え、前記位置調節機構が、前記基板と前記透明カバーとの間を接続する接続部材と、前記透明カバーの外側に設けられ、前記接続部材を介して前記基板を前記反射鏡の光軸方向に進退させる調節部と、を備えたものであればよい。
In order to improve the uniformity of the light reflected from the reflecting surface and reaching the irradiation target, the surface of the reflecting surface only needs to be subjected to a textured process including a plurality of circular concave surfaces.
In order to prevent dust and the like from adhering to the reflecting surface, even if the front side of the reflecting mirror is covered, the distance between the LED and the reflecting surface can be easily changed from the outside without removing the cover, In order to be able to adjust the illumination range, a transparent cover provided so as to cover the front side of the reflecting mirror is further provided, and the position adjusting mechanism includes a connecting member that connects between the substrate and the transparent cover; And an adjustment unit that is provided outside the transparent cover and moves the substrate in the optical axis direction of the reflecting mirror via the connection member.
 このように本発明によれば、放熱構造が反射鏡の裏側に形成されているので、熱伝導部材で熱を移送する距離を従来に比べて短くすることができるので、放熱効率を向上させることができる。さらに、基板から反射鏡の外縁部へと放射状に棒状の熱伝導部材が設けられているので、LEDから射出される中央部の強度の強い光を反射面にて無駄なく反射させることができ、反射型照明装置全体から照射対象に対して照射する光量を増加させることができる Thus, according to the present invention, since the heat dissipation structure is formed on the back side of the reflecting mirror, the distance for transferring heat by the heat conducting member can be shortened compared to the conventional case, so that the heat dissipation efficiency is improved. Can do. Furthermore, since the rod-like heat conduction member is provided radially from the substrate to the outer edge of the reflecting mirror, it is possible to reflect the strong light of the central portion emitted from the LED on the reflecting surface without waste, It is possible to increase the amount of light irradiated to the irradiation target from the entire reflective illumination device.
本発明の一実施形態に係る反射型照明装置を示す模式的斜視図。1 is a schematic perspective view showing a reflective illumination device according to an embodiment of the present invention. 同実施形態における反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type lighting device in the embodiment. 同実施形態における反射型照明装置の使用状態の一例を示す模式図。The schematic diagram which shows an example of the use condition of the reflection type illuminating device in the embodiment. 本発明の別の実施形態に係る反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type lighting device concerning another embodiment of the present invention. 本発明のさらに別の実施形態に係る反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type lighting installation concerning another embodiment of the present invention. 本発明の異なる実施形態に係る反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the reflection type lighting installation concerning a different embodiment of the present invention. 本発明のさらに異なる実施形態に係る反射型照明装置を示す模式的斜視図。The typical perspective view which shows the reflection type illuminating device which concerns on further different embodiment of this invention. 本発明のさらに異なる実施形態における反射型照明装置を示す模式的断面図。The typical sectional view showing the reflective illumination device in still another embodiment of the present invention. 本発明のその他の実施形態に係る反射型照明装置を示す模式的断面図。The typical sectional view showing the reflection type lighting installation concerning other embodiments of the present invention. 本発明のその他の実施形態に係る反射型照明装置を示す模式的斜視図。The typical perspective view which shows the reflection type illuminating device which concerns on other embodiment of this invention. 従来の反射型照明装置の構造を示す模式的断面図。The typical sectional view showing the structure of the conventional reflection type lighting installation. 従来の反射型照明装置において、放熱構造を取り外し、凹面鏡に直接ヒートパイプを固定した場合を示す模式的断面図。In the conventional reflection type illuminating device, a typical sectional view showing the case where the heat dissipation structure is removed and the heat pipe is directly fixed to the concave mirror.
100・・・反射型照明装置
1・・・反射鏡
11・・・反射面
2・・・放熱構造
3・・・LED
4・・・基板
5・・・熱伝導部材(ヒートパイプ)
6・・・位置調節機構
61・・・接続部材
62・・・調節部
7・・・透明カバー
DESCRIPTION OF SYMBOLS 100 ... Reflective type illumination device 1 ... Reflective mirror 11 ... Reflecting surface 2 ... Heat radiation structure 3 ... LED
4 ... Substrate 5 ... Heat conduction member (heat pipe)
6 ... Position adjustment mechanism 61 ... Connection member 62 ... Adjustment part 7 ... Transparent cover
 以下、本発明の一実施形態について図面を参照して説明する。
 本実施形態に係る反射型照明装置100は、医療用、特に歯科治療に用いられる反射型の無影照明装置であって、図1及び図2に示すように、表側に凹面状をなす反射面11が形成された反射鏡1と、前記反射面11の中央部12に対向するように設けられた基板4と、前記基板4に取り付けられ、前記反射面11に向かって光を射出するLED3と、を具備し、前記反射鏡1の裏側に放熱構造2が形成されるとともに、前記放熱構造2と、前記基板4とを熱的に接続する熱伝導部材たるヒートパイプ5を備えたものである。そして、この反射型照明装置100は、図3に示すように、LED3からの光を一旦反射面11で内方に向かうように反射させて、所定領域を照明するものであり、LED3及び基板4だけでなく、照射領域及び反射面11の間に介在する歯科医師の指や治療用具Jの影が所定領域に生じないように照明するものである。以下に各部について説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The reflective illumination device 100 according to the present embodiment is a reflective shadowless illumination device used for medical use, particularly for dental treatment, and has a concave surface on the front side as shown in FIGS. 1 and 2. 11, a substrate 4 provided so as to face the central portion 12 of the reflection surface 11, and an LED 3 that is attached to the substrate 4 and emits light toward the reflection surface 11. , And a heat radiating structure 2 is formed on the back side of the reflecting mirror 1, and a heat pipe 5 serving as a heat conducting member for thermally connecting the heat radiating structure 2 and the substrate 4 is provided. . As shown in FIG. 3, the reflective illumination device 100 illuminates a predetermined region by once reflecting the light from the LED 3 so as to be directed inward by the reflecting surface 11, and the LED 3 and the substrate 4. In addition, the illumination is performed so that the shadow of the dentist's finger or the treatment tool J interposed between the irradiation region and the reflecting surface 11 does not occur in the predetermined region. Each part will be described below.
 前記反射鏡1は、例えば熱伝導性のよいアルミや銅等の金属から形成された概略短円筒形状から椀形状を取り除いた形状をなしており、その内面にアルミ蒸着を施すことにより前記反射面11が形成してある。前記反射鏡1の表側に形成してある反射面11は、凹面状をなすものであり、具体的には放物面鏡又は楕円面鏡である。 The reflecting mirror 1 has a shape obtained by removing a bowl shape from a substantially short cylindrical shape formed of a metal such as aluminum or copper having good thermal conductivity, and the reflective surface is obtained by performing aluminum deposition on the inner surface thereof. 11 is formed. The reflecting surface 11 formed on the front side of the reflecting mirror 1 has a concave shape, and is specifically a parabolic mirror or an ellipsoidal mirror.
 前記反射鏡1の裏側に形成してある放熱構造2は、光軸を中心とした円筒体の側面に円環状の溝を一定間隔ごとに設けることにより形成されたフィン21である。このフィン21を形成する溝の深さは、表側の反射面11に到達しない範囲で可能な限り深く形成してある。つまり、この放熱構造2であるフィン21は反射鏡1自体に直設形成してあるものであることから、反射鏡1に伝熱された熱を速やかに放熱することができる。 The heat dissipating structure 2 formed on the back side of the reflecting mirror 1 is a fin 21 formed by providing annular grooves at regular intervals on the side surface of the cylindrical body centered on the optical axis. The depth of the grooves forming the fins 21 is formed as deep as possible within a range not reaching the reflecting surface 11 on the front side. That is, since the fin 21 which is the heat radiating structure 2 is formed directly on the reflecting mirror 1 itself, the heat transferred to the reflecting mirror 1 can be quickly radiated.
 前記基板4は、金属(例えばアルミや銅)等の熱伝導性に富む高熱伝導性材料から形成された切頭円錐形状のものであり、ヒートパイプ5の先端部がその側面に略垂直に入射するように設けられている。そして、その反射面11側には、LED3が設けられ、LED3から射出された光は、直接照明対象物(図示しない)に照射されることなく反射面11に照射されるようにしている。反射面11により反射された光が照明対象物に照射される。 The substrate 4 has a truncated conical shape made of a highly heat conductive material such as metal (for example, aluminum or copper), and the tip of the heat pipe 5 is incident on the side surface substantially perpendicularly. It is provided to do. And LED3 is provided in the reflective surface 11 side, and the light inject | emitted from LED3 is made to irradiate the reflective surface 11 without irradiating to an illumination target object (not shown) directly. The light reflected by the reflecting surface 11 is irradiated onto the illumination object.
 前記LED3は、基板4の反射面11側の表面に設けられ、反射面11に向かって可視光域の光を射出するものである。そして、このLED3は、R(赤)、G(緑)、B(青)の発光素子を含み、それら各色が混ざるように射出する。本実施形態においては、1つのLED3が基板44の反射面側表面の中央部12に設けられている。 The LED 3 is provided on the surface of the substrate 4 on the reflective surface 11 side, and emits light in the visible light range toward the reflective surface 11. The LED 3 includes light emitting elements of R (red), G (green), and B (blue), and emits these colors so as to be mixed. In the present embodiment, one LED 3 is provided in the central portion 12 of the reflective surface side surface of the substrate 44.
 前記ヒートパイプ53は、その先端部が前記基板4に固着し、その基端部が反射鏡1の外縁部13に固着してあるものである。ここで、本実施形態では溶接又は圧入により基板4及び反射鏡1とヒートパイプ5とを固着してあり、十分な熱伝導が行われるように構成してある。このヒートパイプ5は、LED3で発生した熱を前記放熱構造2に移送する機能と、前記基板4及びLED3を所定位置に保持する機能という2つの機能を兼ね備えたものである。本実施形態では、4本のヒートパイプ5を前記基板4から前記反射鏡1の外縁部13へ放射状に、光軸方向から見て90度ずつに設けることにより、前記基板4及び前記LED3を支持及び伝熱するようにしてある。このヒートパイプ5についての具体的な構成について説明すると、例えば銅、アルミニウム又はステンレス鋼等で形成されたパイプであり、その内壁に毛細管構造としての溝構造が形成され、内部に少量の水、フレオン又はアンモニア等の熱媒体が真空封入されたものである。 The heat pipe 53 has a distal end portion fixed to the substrate 4 and a proximal end portion fixed to the outer edge portion 13 of the reflecting mirror 1. Here, in this embodiment, the board | substrate 4, the reflective mirror 1, and the heat pipe 5 are fixed by welding or press fit, and it is comprised so that sufficient heat conduction may be performed. The heat pipe 5 has two functions: a function of transferring heat generated in the LED 3 to the heat dissipation structure 2 and a function of holding the substrate 4 and the LED 3 in a predetermined position. In the present embodiment, the four heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1 at 90 degrees as viewed from the optical axis direction, thereby supporting the substrate 4 and the LEDs 3. And heat transfer. The specific structure of the heat pipe 5 will be described. For example, the heat pipe 5 is a pipe formed of copper, aluminum, stainless steel, or the like. A groove structure as a capillary structure is formed on the inner wall thereof, and a small amount of water and freon are contained therein. Alternatively, a heat medium such as ammonia is sealed in a vacuum.
 このように構成された反射型照明装置100によれば、前記基板4から前記反射鏡1の外縁部13へと放射状にヒートパイプ5が設けてあるので、前記基板4及び前記反射鏡1に前記ヒートパイプ5の両端がそれぞれ溶接又は圧入により完全に固定されているとしても、斜めに設けられたヒートパイプ5は中央部をたわませることが可能であり、前記基板4の位置を微小に変更することができる。従って、ヒートパイプ5を反射鏡1に直接固着し、熱の移送を十分に行うことができるようにしながら、LEDの位置や向きを調整することが可能となる。 According to the reflection type illumination device 100 configured as described above, since the heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflection mirror 1, the substrate 4 and the reflection mirror 1 are provided with the heat pipe 5. Even if both ends of the heat pipe 5 are completely fixed by welding or press-fitting, the heat pipe 5 provided at an angle can bend the central portion, and the position of the substrate 4 can be changed minutely. can do. Therefore, it is possible to adjust the position and orientation of the LED while the heat pipe 5 is directly fixed to the reflecting mirror 1 and the heat can be sufficiently transferred.
 また、前記反射鏡1の裏側に放熱構造2が設けられているので、余計な部材を介することなく、前記LED3で発生した熱を前記基板4、前記ヒートパイプ5によって前記放熱構造2に移送し、放熱することができる。従って、従来に比べて、ヒートパイプ5により熱が移送される距離を大幅に短くすることができるので、放熱効率を向上させることができる。 Moreover, since the heat dissipation structure 2 is provided on the back side of the reflecting mirror 1, the heat generated in the LED 3 is transferred to the heat dissipation structure 2 by the substrate 4 and the heat pipe 5 without using an extra member. , Can dissipate heat. Therefore, compared with the prior art, the distance by which heat is transferred by the heat pipe 5 can be significantly shortened, so that the heat dissipation efficiency can be improved.
 さらに、前記ヒートパイプ5が前記基板4から前記反射鏡1の外縁部13へと設けられているので、従来のように反射鏡1の中央部12にヒートパイプ5が設けられおり、反射面11の中央部12に穴等が設けられていた場合に比べて、LED3から射出される光のうち中央部12の強度の強いものを全く無駄にすることなく反射させることができる。つまり、反射面11から帰ってくる反射光の光量をより多くすることができ、反射型照明装置100としての光量をより向上させることができる。 Further, since the heat pipe 5 is provided from the substrate 4 to the outer edge portion 13 of the reflecting mirror 1, the heat pipe 5 is provided at the central portion 12 of the reflecting mirror 1 as in the prior art, and the reflecting surface 11. Compared with the case where a hole or the like is provided in the central portion 12, the light emitted from the LED 3 can be reflected without wasting at all the strength of the central portion 12. That is, the amount of reflected light returning from the reflecting surface 11 can be increased, and the amount of light as the reflective illumination device 100 can be further improved.
 また、前記基板4から前記反射光の外縁部13へと複数のヒートパイプ5が放射状に設けてあり、ヒートパイプ5同士が斜めに支え合うような形状となるため、支えられる荷重を垂直に設けた場合に比べて向上させることができる。つまり、ヒートパイプ5の径を小さくしたとしても、前記LED3及び前記基板4を支えることができるとともに、径を小さくすることができるので、反射面11から反射された光がヒートパイプ5により遮られるのを最小限にすることができる。つまり、ヒートパイプ5により照射できる光量が損なわれることがほとんどないようにすることができる。 In addition, since a plurality of heat pipes 5 are provided radially from the substrate 4 to the outer edge portion 13 of the reflected light, and the heat pipes 5 support each other diagonally, a load to be supported is provided vertically. This can be improved compared to the case. That is, even if the diameter of the heat pipe 5 is reduced, the LED 3 and the substrate 4 can be supported and the diameter can be reduced, so that the light reflected from the reflecting surface 11 is blocked by the heat pipe 5. Can be minimized. That is, the amount of light that can be irradiated by the heat pipe 5 can be hardly impaired.
 加えて、前記基板4から反射鏡1の中央部12へと延びるヒートパイプ5が存在しないので、LED3から射出された光が反射面11に到達するまでヒートパイプ5によって遮られることがないので、反射型照明装置100全体としての光量のロスを大幅に改善することができる。 In addition, since there is no heat pipe 5 extending from the substrate 4 to the central portion 12 of the reflecting mirror 1, the light emitted from the LED 3 is not blocked by the heat pipe 5 until it reaches the reflecting surface 11. It is possible to greatly improve the light amount loss of the reflective illumination device 100 as a whole.
 さらに、ヒートパイプ5を前記反射鏡1へと直接固着するようにして反射鏡1自体から放熱させるように構成してあるので、従来のようにフィン等の放熱部材を反射面の裏面から大きく突出させるなどして放熱量を大きくする必要が無い。つまり、放熱構造から来る設計の制限が弱くなり、反射面の裏側の形状を本実施形態のように略平面にすることができる等形状の設計自由度が大きくなる。その結果、本実施形態の反射型照明装置100を例えば天井等の平面に設ける事が容易となり、様々な用途に対して用いることが可能となる。 Further, since the heat pipe 5 is directly fixed to the reflecting mirror 1 so as to dissipate heat from the reflecting mirror 1 itself, the heat dissipating member such as a fin protrudes greatly from the back surface of the reflecting surface as in the prior art. There is no need to increase the heat dissipation amount. That is, the design restriction coming from the heat dissipation structure is weakened, and the degree of freedom in designing an equal shape that can make the shape of the back side of the reflecting surface substantially flat as in this embodiment is increased. As a result, it becomes easy to provide the reflective illumination device 100 of the present embodiment on a plane such as a ceiling, and can be used for various applications.
 その他の実施形態について説明する。なお、前記実施形態に対応する部材には同じ符号を付すこととする。 Other embodiments will be described. In addition, the same code | symbol shall be attached | subjected to the member corresponding to the said embodiment.
 図4に示すように、前記実施形態の反射型照明装置100がさらに、前記基板4の前記反射面11に対する距離を調節する位置調節機構6を備えたものであってもよい。具体的には、前記反射面11から前記基板4に向かって延び、前記基板4に形成された穴に挿入される棒状の案内部61と、前記案内部61に前記基板4を着脱可能に固定する固定部62と、を備えたものであればよい。前記固定部62は、前記基板4の側面に形成された前記案内部61へと向かうねじ穴と止めねじから構成されるものである。このようなものであれば、前記LED3と前記反射面11との距離を調節することができ、反射光による照射範囲を適宜調整することができるようになる。 As shown in FIG. 4, the reflective illumination device 100 of the embodiment may further include a position adjusting mechanism 6 that adjusts the distance of the substrate 4 with respect to the reflective surface 11. Specifically, a rod-shaped guide portion 61 that extends from the reflecting surface 11 toward the substrate 4 and is inserted into a hole formed in the substrate 4, and the substrate 4 is detachably fixed to the guide portion 61. What is necessary is just to be provided with the fixing | fixed part 62 to perform. The fixing part 62 is constituted by a screw hole and a set screw which are formed on the side surface of the substrate 4 and which go to the guide part 61. If it is such, the distance of the said LED3 and the said reflective surface 11 can be adjusted, and the irradiation range by reflected light can be adjusted now appropriately.
 図5に示すように、前記反射鏡1の裏側から曲面に対して垂直に突出するように形成された放熱構造2であってもよい。より具体的には、前記放熱構造2は概略スプリング状に形成されたものであって、反射鏡の外側に設けられ、熱伝導部材たるヒートパイプ5の他端が固着される固着部22と、前記反射面の裏側に接触して接触部23と、前記固着部22と前記接触部23との間に設けられ、らせん状に形成されたフィン部24と、から構成されるものである。この実施形態では、一対のヒートパイプ5と前記放熱構造2が、前記反射鏡1の光軸に対して線対称となるように設けてある。このような放熱構造2であれば、スプリング状に形成されているので、予め縮めておき、前記固着部22と前記基板4との間をヒートパイプ5で対称に取り付けておくことにより、復元力によって前記接触部23が前記反射鏡1の裏側に略隙間なく押しつけることができる。従って、LEDで発生し、ヒートパイプ5によって前記固着部22に移送された熱がフィン部24で放熱させつつ、さらに接触部23を介して反射鏡1に効率よく伝熱させることができ、放熱面積をさらに大きくすることができるので、放熱効率を向上させることができる。また、前記LED3及び前記基板4を前記反射面11に対して前後方向に動かす場合には、前記放熱構造2がスプリング状に形成されていることから、伸び縮みによりその移動量を吸収させることができ、より簡単に照明範囲の設定を行うことができるようになる。 As shown in FIG. 5, the heat dissipation structure 2 may be formed so as to protrude perpendicularly to the curved surface from the back side of the reflecting mirror 1. More specifically, the heat dissipating structure 2 is generally formed in a spring shape, provided on the outside of the reflecting mirror, and a fixing portion 22 to which the other end of the heat pipe 5 as a heat conducting member is fixed, It comprises a contact portion 23 in contact with the back side of the reflecting surface, and a fin portion 24 provided between the fixing portion 22 and the contact portion 23 and formed in a spiral shape. In this embodiment, the pair of heat pipes 5 and the heat dissipation structure 2 are provided so as to be line symmetric with respect to the optical axis of the reflecting mirror 1. Since such a heat dissipation structure 2 is formed in a spring shape, the restoring force is reduced by shrinking in advance and attaching the fixing portion 22 and the substrate 4 symmetrically with the heat pipe 5. Thus, the contact portion 23 can be pressed against the back side of the reflecting mirror 1 without a substantial gap. Therefore, the heat generated in the LED and transferred to the fixing portion 22 by the heat pipe 5 can be efficiently transferred to the reflecting mirror 1 through the contact portion 23 while dissipating the heat in the fin portion 24. Since the area can be further increased, the heat dissipation efficiency can be improved. Further, when the LED 3 and the substrate 4 are moved in the front-rear direction with respect to the reflecting surface 11, the heat dissipation structure 2 is formed in a spring shape, so that the movement amount can be absorbed by expansion and contraction. This makes it possible to set the illumination range more easily.
 図6に示すように、反射鏡1の反射面11にヒートパイプ5の端部を固着してあるのではなく、外縁部13にある放熱構造2へと直接固着してあり、前記ヒートパイプ5が反射面11とは反対側へと曲げてあり、前記基板4に固着してあるものであってもよい。さらに、図6に示すようにヒートパイプ5の一端は前記基板4の斜めに形成されている側面へと略垂直に入射し、他端は前記反射鏡1に対して若干傾いて入射するように構成してある。 As shown in FIG. 6, the end portion of the heat pipe 5 is not fixed to the reflecting surface 11 of the reflecting mirror 1, but is directly fixed to the heat dissipation structure 2 in the outer edge portion 13. May be bent to the opposite side of the reflecting surface 11 and fixed to the substrate 4. Further, as shown in FIG. 6, one end of the heat pipe 5 is incident on the side surface of the substrate 4 that is formed obliquely, and the other end is incident on the reflecting mirror 1 with a slight inclination. It is configured.
 このようなものであれば、予めヒートパイプ5を曲げてあるので、前記基板4及びLED3と反射面11との位置関係を調節する場合において、ヒートパイプ5の軸方向の伸び縮みだけでなく、曲げでもその変化量を吸収することができ、前記基板4及びLED3の可動範囲をより大きくすることができる。 In such a case, since the heat pipe 5 is bent in advance, when adjusting the positional relationship between the substrate 4 and the LED 3 and the reflecting surface 11, not only the expansion and contraction of the heat pipe 5 in the axial direction, The amount of change can be absorbed even by bending, and the movable range of the substrate 4 and the LED 3 can be further increased.
 また、例えば、反射鏡の光照射方向が鉛直下向きになっている場合であれば、前記ヒートパイプ5が反射鏡1に対して鉛直に固着されているので、斜めに入射させて固着させてある場合に比べて、放熱構造2の近傍で液化し、再び冷媒を発熱部であるLED3の近傍に返しやすくなるので放熱効率を更に向上させることができる。 Further, for example, if the light irradiation direction of the reflecting mirror is vertically downward, the heat pipe 5 is fixed vertically to the reflecting mirror 1, and thus is incident and fixed obliquely. Compared to the case, it is easy to return to the vicinity of the LED 3 that is the heat generating portion and liquefy in the vicinity of the heat radiating structure 2, so that the heat dissipation efficiency can be further improved.
 加えて、図6に示されるように反射面11とは反対側へヒートパイプ5を曲げて設ける以外にも、例えば、反射面側へヒートパイプ5を曲げて設けても構わない。 In addition, as shown in FIG. 6, the heat pipe 5 may be bent to the reflective surface side, for example, in addition to the heat pipe 5 bent to the opposite side of the reflective surface 11.
 前記実施形態において、放熱構造は、反射鏡において半径方向に伸びるフィンであったが、他の方向、例えば、軸方向等に伸びるものであっても構わない。要するに、反射鏡自体に放熱構造が形成されているものであればよい。 In the embodiment, the heat dissipation structure is a fin extending in the radial direction in the reflecting mirror, but may be extending in another direction, for example, the axial direction. In short, what is necessary is just to have the heat dissipation structure formed in the reflecting mirror itself.
 前記実施形態では4本のヒートパイプにより、前記LED及び前記基板を支持するとともに、放熱構造へ熱を移動させるようにしていたが、2本又は3本であっても構わない。また、4本より多くの複数のヒートパイプを用いても構わない。また、熱伝導部材はヒートパイプのみに限られるものではなく、その他の伝熱部材であっても構わない。加えて、前記実施形態では、ヒートパイプの基板部は反射鏡の外縁部、特に反射面の外縁部に設けられるものであったが、例えば、放熱構造であるフィンに直接取り付けられるようにしてあってもかまわない。 In the embodiment, the LED and the substrate are supported by the four heat pipes and the heat is transferred to the heat dissipation structure. However, the number may be two or three. A plurality of heat pipes greater than four may be used. Further, the heat conducting member is not limited to the heat pipe, and may be another heat conducting member. In addition, in the above-described embodiment, the substrate portion of the heat pipe is provided at the outer edge portion of the reflecting mirror, particularly the outer edge portion of the reflecting surface. For example, the heat pipe substrate portion may be directly attached to the fin that is a heat dissipation structure. It doesn't matter.
 本発明のさらに異なる実施形態について図7及び図8を参照しながら説明する。この実施形態では、図7の斜視図に示すようにLED3が反射面11へ光が射出されるように設けられた前記基板4から十字状に反射面11の外縁部13に向かって4本のヒートパイプ5を延ばしてある。前記ヒートパイプ5は、前記基板4の側面に対して垂直に入射させてあり、前記反射鏡1の外縁部13により形成される仮想円を含む平面と略平行となるようにしてある。そして、前記ヒートパイプ5は、前記反射鏡1の裏側において十字状に形成された放熱構造である放熱ブロック2に接続してあり、前記LED3で発生した熱が、基板4、ヒートパイプ5、放熱ブロック2の順に伝達されて、効率よく放熱されるようにしてある。 Further different embodiments of the present invention will be described with reference to FIGS. In this embodiment, as shown in the perspective view of FIG. 7, four LEDs 3 are formed in a cross shape from the substrate 4 provided so that light is emitted to the reflecting surface 11 toward the outer edge portion 13 of the reflecting surface 11. The heat pipe 5 is extended. The heat pipe 5 is incident perpendicularly to the side surface of the substrate 4 and is substantially parallel to a plane including a virtual circle formed by the outer edge portion 13 of the reflecting mirror 1. The heat pipe 5 is connected to a heat radiating block 2 which is a heat radiating structure formed in a cross shape on the back side of the reflecting mirror 1, and the heat generated by the LED 3 is transmitted to the substrate 4, the heat pipe 5, and the heat radiated. It is transmitted in the order of block 2 so as to dissipate heat efficiently.
 前記放熱ブロックは、図7及び図8に示すように概略直方体形状の2つのブロックを縦と横に十字に組み合わせて前記反射鏡1の裏側に沿わして設けてあり、前記反射鏡1の反射面11側から視て先端部分が前記反射鏡1の外縁部13から突出するようにしてある。その放熱ブロックが前記反射鏡1から外側へ突出している部分に、前記ヒートパイプ5の一端を曲げて接続してある。このように構成してあっても、ヒートパイプ5の弾性によりLED3及び基板4の位置を位置調節機構6により前後に移動させて反射面11からの反射光の照射範囲を調整することができる。 As shown in FIGS. 7 and 8, the heat dissipating block is provided along the back side of the reflecting mirror 1 by combining two blocks having a substantially rectangular parallelepiped shape in the vertical and horizontal directions. The tip portion protrudes from the outer edge portion 13 of the reflecting mirror 1 when viewed from the surface 11 side. One end of the heat pipe 5 is bent and connected to a portion where the heat dissipation block protrudes outward from the reflecting mirror 1. Even in this configuration, the irradiation range of the reflected light from the reflecting surface 11 can be adjusted by moving the positions of the LED 3 and the substrate 4 back and forth by the position adjusting mechanism 6 by the elasticity of the heat pipe 5.
 加えて、前記反射面11の表面を覆うように円形状の凹面111を多数設けるシボ加工が施してあり、前記反射面11からの反射光が均一となるようにしている。
 また前記各実施形態の反射型照明装置が、反射鏡の表側を覆うように透明カバーを設けても構わない。このようなものを用いれば、反射面にほこりなどが付着して、照明光率が落ちてしまうのを防ぐことができる。より具体的には、図9(a)の断面図、図10(a)の前方斜視図、図10(b)の後方斜視図に示すように、前記透明カバー7は例えば透明樹脂等で概略平円筒状に形成したものであって、その上面側が外側へ部分球形状に若干膨出するとともに、その側周壁が前記ヒートパイプ5の反射鏡1に取り付けられている箇所よりも外側を通るように取り付けられ、その底面側は、各放熱ブロック2間の半径方法の空間を埋めるように4つの部分円環形状の平板状に形成してある。更にこの実施形態では、前記透明カバーと前記基板4との間において、前記LED3の反射面11までの距離を調節するための位置調節機構6が設けてある。
In addition, embossing is performed to provide a large number of circular concave surfaces 111 so as to cover the surface of the reflective surface 11 so that the reflected light from the reflective surface 11 is uniform.
Moreover, you may provide a transparent cover so that the reflective illumination apparatus of each said embodiment may cover the front side of a reflective mirror. If such a thing is used, it can prevent that dust etc. adhere to a reflective surface and an illumination light rate falls. More specifically, as shown in the sectional view of FIG. 9A, the front perspective view of FIG. 10A, and the rear perspective view of FIG. 10B, the transparent cover 7 is schematically made of, for example, a transparent resin. It is formed in a flat cylindrical shape, and its upper surface side slightly bulges outward in a partial spherical shape, and its side peripheral wall passes outside the portion attached to the reflecting mirror 1 of the heat pipe 5. The bottom surface side is formed in four partial annular plate shapes so as to fill the space of the radial method between the heat dissipating blocks 2. Furthermore, in this embodiment, a position adjusting mechanism 6 for adjusting the distance to the reflecting surface 11 of the LED 3 is provided between the transparent cover and the substrate 4.
 すなわち、前記位置調節機構6は、前記基板4と前記透明カバー7との間を接続する接続部材61と、前記透明カバー7の外側に設けられ、前記接続部材61を介して前記基板4を前記反射鏡の光軸方向に進退させる調節部62と、を備えている。 That is, the position adjusting mechanism 6 is provided on the outside of the transparent cover 7 and the connection member 61 that connects the substrate 4 and the transparent cover 7, and the substrate 4 is moved through the connection member 61. And an adjusting unit 62 for moving back and forth in the optical axis direction of the reflecting mirror.
 前記接続部材61は、基板4の底面中心から前記透明カバー7の上面中心に形成した貫通穴から透明カバーの外側へと延びる棒状の部材であり、反射鏡1の表側から視て、前記接続部材61の輪郭が前記基板4の内部にあるように配置してある。接続部材61の一端は前記基板4の底面に固着してあるとともに、他端は前記透明カバー7に設けられた貫通穴を摺動可能に挿入してある。 The connection member 61 is a rod-shaped member that extends from a through hole formed in the center of the bottom surface of the substrate 4 to the center of the top surface of the transparent cover 7 and extends to the outside of the transparent cover. 61 are arranged so that the outline of 61 is inside the substrate 4. One end of the connecting member 61 is fixed to the bottom surface of the substrate 4, and the other end is slidably inserted into a through hole provided in the transparent cover 7.
 前記調節部62は、前記接続部材61が前記透明カバーの外側へと所定長さだけ出ている状態で固定するものである。前記調節部61は、前記接続部材61の他端側に形成したねじ溝と、前記透明カバーの外側において前記ねじ溝と螺合させてあるナットにより構成してある。すなわち、透明カバー7の外側表面でナットを反射鏡1側へと進行するように回していくと、前記ナットは透明カバー7により押しつけられて、前記ねじ溝の切られている接続部材61側が移動することになる。その結果、図9(b)に示すようにヒートパイプ5をたわませて、LED3の位置を反射鏡1から離すことができる。逆に、前記ナットを反射鏡1から離れる方向へ進行するように回していくと、前記ヒートパイプ5のたわみが戻ることにより、図9(a)の位置に戻ることになる。このような位置調節機構6であれば、調節部62が透明カバー7の外側に設けてあるので、いちいち透明カバー7を取り外してLED3の位置を調節する必要がなく、透明カバー7を反射鏡1に対して接着剤等で固着してしまっても外側からLED3の位置を調節することができる。なお、接続部材61は棒状のものに限られず、透明カバー7の中心部以外と前記基板4とを接続するものであっても構わない。調節部62は透明カバー7の外側に設けてあればよく、例えば、接続部材の側面に複数の小穴を光軸方向に並べて形成しておき、任意の小穴に対して止めピンを挿入する等して基板4及びLED3の位置を調節するものであってもよい。 The adjusting portion 62 is fixed in a state where the connecting member 61 protrudes to the outside of the transparent cover by a predetermined length. The adjusting portion 61 is constituted by a thread groove formed on the other end side of the connection member 61 and a nut screwed with the thread groove on the outside of the transparent cover. That is, when the nut is rotated on the outer surface of the transparent cover 7 so as to advance toward the reflecting mirror 1, the nut is pressed by the transparent cover 7 and the connecting member 61 side where the thread groove is cut moves. Will do. As a result, as shown in FIG. 9B, the heat pipe 5 can be bent and the position of the LED 3 can be separated from the reflecting mirror 1. On the other hand, when the nut is rotated so as to move away from the reflecting mirror 1, the deflection of the heat pipe 5 returns to the position shown in FIG. 9A. In such a position adjusting mechanism 6, since the adjusting unit 62 is provided outside the transparent cover 7, there is no need to remove the transparent cover 7 and adjust the position of the LED 3. On the other hand, even if it is fixed with an adhesive or the like, the position of the LED 3 can be adjusted from the outside. The connecting member 61 is not limited to a rod-shaped member, and may be one that connects the substrate 4 other than the central portion of the transparent cover 7. The adjustment unit 62 may be provided outside the transparent cover 7. For example, a plurality of small holes are arranged in the side surface of the connection member in the optical axis direction, and a stop pin is inserted into any small hole. The position of the substrate 4 and the LED 3 may be adjusted.
 前記LEDと電源を接続するには、電池等の電源を反射鏡の裏側等に設けておき、前記ヒートパイプに沿わして配線を設けるようにしても構わない。 In order to connect the LED and the power source, a power source such as a battery may be provided on the back side of the reflecting mirror, and wiring may be provided along the heat pipe.
 前記実施形態では医療用、歯科用に用いられるものであったが、例えば、自動車のライト等にも上述した反射型照明装置を用いても構わない。 In the above-described embodiment, it is used for medical use and dental use. However, for example, the above-described reflective illumination device may be used for a car light or the like.
 その他、本発明の趣旨に反しない限りにおいて、様々な変形や実施形態の組み合わせを行っても構わない。 Besides, various modifications and combinations of embodiments may be performed as long as they do not contradict the gist of the present invention.
 本発明の反射型照明装置により、熱伝導部材の一端を基板に固着し、他端を反射鏡に直接固着したとしても、LEDの位置や向きを微調整する事を可能とするとともに、LEDで発生した熱の放熱効率をより向上させ、LEDから射出される中央部の強度の高い光を有効に使用することができる。 Even if one end of the heat conducting member is fixed to the substrate and the other end is directly fixed to the reflecting mirror, the position and orientation of the LED can be finely adjusted with the reflective illumination device of the present invention. The heat radiation efficiency of the generated heat can be further improved, and light having high intensity in the central part emitted from the LED can be used effectively.

Claims (8)

  1.  表側に凹面状をなす反射面が形成された反射鏡と、前記反射面の中央部に対向するように設けられた基板と、前記基板に取り付けられ、前記反射面に向かって光を射出するLEDと、を備えた反射型照明装置であって、
     一端が前記基板に固着され、他端が前記反射鏡に固着されて、前記基板と前記反射鏡とを熱的に接続する棒状の熱伝導部材が、前記基板から前記反射鏡の外縁部へ向かって放射状に設けられていることを特徴とする反射型照明装置。
    A reflecting mirror having a concave reflecting surface formed on the front side, a substrate provided to face the central portion of the reflecting surface, and an LED that is attached to the substrate and emits light toward the reflecting surface A reflective illumination device comprising:
    One end is fixed to the substrate, the other end is fixed to the reflecting mirror, and a rod-shaped heat conducting member that thermally connects the substrate and the reflecting mirror is directed from the substrate toward the outer edge of the reflecting mirror. The reflection type illumination device is provided radially.
  2.  前記反射鏡の裏側に放熱構造が形成されている請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, wherein a heat dissipation structure is formed on the back side of the reflecting mirror.
  3.  前記熱伝導部材がヒートパイプである請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, wherein the heat conducting member is a heat pipe.
  4.  前記基板の前記反射面に対する距離を調節する位置調節機構を更に備えた請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, further comprising a position adjusting mechanism that adjusts a distance of the substrate to the reflective surface.
  5.  前記放熱構造が、反射鏡の外側に設けられ、熱伝導部材の他端が固着される固着部と、前記反射面の裏側に接触して接触部と、前記固着部と前記接触部の間に設けられ、らせん状に形成されたフィン部と、から構成される請求項1記載の反射型照明装置。 The heat dissipating structure is provided on the outer side of the reflecting mirror, the fixing part to which the other end of the heat conducting member is fixed, the contact part in contact with the back side of the reflecting surface, and between the fixing part and the contact part The reflective illumination device according to claim 1, further comprising: a fin portion provided in a spiral shape.
  6.  前記熱伝導部材が、前記反射鏡と前記基板との間に曲げて設けられている請求項1記載の反射型照明装置。 The reflection type lighting device according to claim 1, wherein the heat conducting member is bent between the reflecting mirror and the substrate.
  7.  前記反射面の表面に複数の円形状の凹面からなるシボ加工が施されている請求項1記載の反射型照明装置。 The reflective illumination device according to claim 1, wherein the surface of the reflective surface is subjected to a textured process comprising a plurality of circular concave surfaces.
  8.  前記反射鏡の表側を覆うように設けられた透明カバーを更に備え、
     前記位置調節機構が、前記基板と前記透明カバーとの間を接続する接続部材と、前記透明カバーの外側に設けられ、前記接続部材を介して前記基板を前記反射鏡の光軸方向に進退させる調節部と、を備えた請求項4記載の反射型照明装置。
    A transparent cover provided to cover the front side of the reflecting mirror;
    The position adjusting mechanism is provided on the outside of the transparent cover and a connecting member that connects the substrate and the transparent cover, and advances and retracts the substrate in the optical axis direction of the reflecting mirror via the connecting member. The reflective illumination device according to claim 4, further comprising an adjustment unit.
PCT/JP2010/071596 2009-12-18 2010-12-02 Reflective illumination device WO2011074424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527115A JPWO2011074424A1 (en) 2009-12-18 2010-12-02 Reflective lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-287936 2009-12-18
JP2009287936 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074424A1 true WO2011074424A1 (en) 2011-06-23

Family

ID=44167180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071596 WO2011074424A1 (en) 2009-12-18 2010-12-02 Reflective illumination device

Country Status (3)

Country Link
JP (1) JPWO2011074424A1 (en)
TW (1) TW201135146A (en)
WO (1) WO2011074424A1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013101922A1 (en) * 2011-12-30 2013-07-04 Cree, Inc. Led fixture with heat pipe
JP2013235768A (en) * 2012-05-10 2013-11-21 J Morita Tokyo Mfg Corp Dental lighting apparatus
JP2014053164A (en) * 2012-09-07 2014-03-20 Yoshida Dental Mfg Co Ltd Light source part for operating light
US8905575B2 (en) 2012-02-09 2014-12-09 Cree, Inc. Troffer-style lighting fixture with specular reflector
US8931929B2 (en) 2012-07-09 2015-01-13 Cree, Inc. Light emitting diode primary optic for beam shaping
US9052075B2 (en) 2013-03-15 2015-06-09 Cree, Inc. Standardized troffer fixture
KR20150080768A (en) * 2014-01-02 2015-07-10 윤성노 LED headlight
USD749768S1 (en) 2014-02-06 2016-02-16 Cree, Inc. Troffer-style light fixture with sensors
US9285099B2 (en) 2012-04-23 2016-03-15 Cree, Inc. Parabolic troffer-style light fixture
US9291316B2 (en) 2012-11-08 2016-03-22 Cree, Inc. Integrated linear light engine
US9310038B2 (en) 2012-03-23 2016-04-12 Cree, Inc. LED fixture with integrated driver circuitry
US9360185B2 (en) 2012-04-09 2016-06-07 Cree, Inc. Variable beam angle directional lighting fixture assembly
US9423104B2 (en) 2013-03-14 2016-08-23 Cree, Inc. Linear solid state lighting fixture with asymmetric light distribution
US9441818B2 (en) 2012-11-08 2016-09-13 Cree, Inc. Uplight with suspended fixture
US9494304B2 (en) 2012-11-08 2016-11-15 Cree, Inc. Recessed light fixture retrofit kit
US9494293B2 (en) 2010-12-06 2016-11-15 Cree, Inc. Troffer-style optical assembly
US9494294B2 (en) 2012-03-23 2016-11-15 Cree, Inc. Modular indirect troffer
USD772465S1 (en) 2014-02-02 2016-11-22 Cree Hong Kong Limited Troffer-style fixture
US9581312B2 (en) 2010-12-06 2017-02-28 Cree, Inc. LED light fixtures having elongated prismatic lenses
USD786471S1 (en) 2013-09-06 2017-05-09 Cree, Inc. Troffer-style light fixture
US9777897B2 (en) 2012-02-07 2017-10-03 Cree, Inc. Multiple panel troffer-style fixture
US9822951B2 (en) 2010-12-06 2017-11-21 Cree, Inc. LED retrofit lens for fluorescent tube
USD807556S1 (en) 2014-02-02 2018-01-09 Cree Hong Kong Limited Troffer-style fixture
US9874322B2 (en) 2012-04-10 2018-01-23 Cree, Inc. Lensed troffer-style light fixture
US9989213B2 (en) 2012-06-04 2018-06-05 Philips Lighting Holding B.V. Lighting device with optical reflector, luminaire having such lighting device and method of manufacturing a compact optical reflector
US10012354B2 (en) 2015-06-26 2018-07-03 Cree, Inc. Adjustable retrofit LED troffer
US10054274B2 (en) 2012-03-23 2018-08-21 Cree, Inc. Direct attach ceiling-mounted solid state downlights
US10309627B2 (en) 2012-11-08 2019-06-04 Cree, Inc. Light fixture retrofit kit with integrated light bar
US10527225B2 (en) 2014-03-25 2020-01-07 Ideal Industries, Llc Frame and lens upgrade kits for lighting fixtures
US10544925B2 (en) 2012-01-06 2020-01-28 Ideal Industries Lighting Llc Mounting system for retrofit light installation into existing light fixtures
US10648643B2 (en) 2013-03-14 2020-05-12 Ideal Industries Lighting Llc Door frame troffer
US10823347B2 (en) 2011-07-24 2020-11-03 Ideal Industries Lighting Llc Modular indirect suspended/ceiling mount fixture
US10883702B2 (en) 2010-08-31 2021-01-05 Ideal Industries Lighting Llc Troffer-style fixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317527A (en) * 2002-04-23 2003-11-07 Nichia Chem Ind Ltd Lighting device
JP2007053065A (en) * 2005-08-19 2007-03-01 Daiichi Shomei Kk Medical lighting device
JP2008016314A (en) * 2006-07-06 2008-01-24 Fukushima Ship Seisakusho:Kk Light source using light-emitting diode and lighting system using the same
JP2008108721A (en) * 2006-09-27 2008-05-08 Ccs Inc Reflection type illuminator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317527A (en) * 2002-04-23 2003-11-07 Nichia Chem Ind Ltd Lighting device
JP2007053065A (en) * 2005-08-19 2007-03-01 Daiichi Shomei Kk Medical lighting device
JP2008016314A (en) * 2006-07-06 2008-01-24 Fukushima Ship Seisakusho:Kk Light source using light-emitting diode and lighting system using the same
JP2008108721A (en) * 2006-09-27 2008-05-08 Ccs Inc Reflection type illuminator

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883702B2 (en) 2010-08-31 2021-01-05 Ideal Industries Lighting Llc Troffer-style fixture
US11306895B2 (en) 2010-08-31 2022-04-19 Ideal Industries Lighting Llc Troffer-style fixture
US9494293B2 (en) 2010-12-06 2016-11-15 Cree, Inc. Troffer-style optical assembly
US9581312B2 (en) 2010-12-06 2017-02-28 Cree, Inc. LED light fixtures having elongated prismatic lenses
US9822951B2 (en) 2010-12-06 2017-11-21 Cree, Inc. LED retrofit lens for fluorescent tube
US11209135B2 (en) 2011-07-24 2021-12-28 Ideal Industries Lighting Llc Modular indirect suspended/ceiling mount fixture
US10823347B2 (en) 2011-07-24 2020-11-03 Ideal Industries Lighting Llc Modular indirect suspended/ceiling mount fixture
US9423117B2 (en) 2011-12-30 2016-08-23 Cree, Inc. LED fixture with heat pipe
WO2013101922A1 (en) * 2011-12-30 2013-07-04 Cree, Inc. Led fixture with heat pipe
US10544925B2 (en) 2012-01-06 2020-01-28 Ideal Industries Lighting Llc Mounting system for retrofit light installation into existing light fixtures
US11408569B2 (en) 2012-01-06 2022-08-09 Ideal Industries Lighting Llc Mounting system for retrofit light installation into existing light fixtures
US9777897B2 (en) 2012-02-07 2017-10-03 Cree, Inc. Multiple panel troffer-style fixture
US8905575B2 (en) 2012-02-09 2014-12-09 Cree, Inc. Troffer-style lighting fixture with specular reflector
US9494294B2 (en) 2012-03-23 2016-11-15 Cree, Inc. Modular indirect troffer
US9310038B2 (en) 2012-03-23 2016-04-12 Cree, Inc. LED fixture with integrated driver circuitry
US10054274B2 (en) 2012-03-23 2018-08-21 Cree, Inc. Direct attach ceiling-mounted solid state downlights
US10514139B2 (en) 2012-03-23 2019-12-24 Ideal Industries, Llc LED fixture with integrated driver circuitry
US9360185B2 (en) 2012-04-09 2016-06-07 Cree, Inc. Variable beam angle directional lighting fixture assembly
US9874322B2 (en) 2012-04-10 2018-01-23 Cree, Inc. Lensed troffer-style light fixture
US9285099B2 (en) 2012-04-23 2016-03-15 Cree, Inc. Parabolic troffer-style light fixture
JP2013235768A (en) * 2012-05-10 2013-11-21 J Morita Tokyo Mfg Corp Dental lighting apparatus
US9989213B2 (en) 2012-06-04 2018-06-05 Philips Lighting Holding B.V. Lighting device with optical reflector, luminaire having such lighting device and method of manufacturing a compact optical reflector
US8931929B2 (en) 2012-07-09 2015-01-13 Cree, Inc. Light emitting diode primary optic for beam shaping
JP2014053164A (en) * 2012-09-07 2014-03-20 Yoshida Dental Mfg Co Ltd Light source part for operating light
US9441818B2 (en) 2012-11-08 2016-09-13 Cree, Inc. Uplight with suspended fixture
US9291316B2 (en) 2012-11-08 2016-03-22 Cree, Inc. Integrated linear light engine
US9494304B2 (en) 2012-11-08 2016-11-15 Cree, Inc. Recessed light fixture retrofit kit
US10309627B2 (en) 2012-11-08 2019-06-04 Cree, Inc. Light fixture retrofit kit with integrated light bar
US9482396B2 (en) 2012-11-08 2016-11-01 Cree, Inc. Integrated linear light engine
US9423104B2 (en) 2013-03-14 2016-08-23 Cree, Inc. Linear solid state lighting fixture with asymmetric light distribution
US10648643B2 (en) 2013-03-14 2020-05-12 Ideal Industries Lighting Llc Door frame troffer
US9052075B2 (en) 2013-03-15 2015-06-09 Cree, Inc. Standardized troffer fixture
US10228111B2 (en) 2013-03-15 2019-03-12 Cree, Inc. Standardized troffer fixture
USD786471S1 (en) 2013-09-06 2017-05-09 Cree, Inc. Troffer-style light fixture
KR101606841B1 (en) 2014-01-02 2016-03-28 윤성노 LED headlight
KR20150080768A (en) * 2014-01-02 2015-07-10 윤성노 LED headlight
USD807556S1 (en) 2014-02-02 2018-01-09 Cree Hong Kong Limited Troffer-style fixture
USRE48620E1 (en) 2014-02-02 2021-07-06 Ideal Industries Lighting Llc Troffer-style fixture
USD772465S1 (en) 2014-02-02 2016-11-22 Cree Hong Kong Limited Troffer-style fixture
USRE49228E1 (en) 2014-02-02 2022-10-04 Ideal Industries Lighting Llc Troffer-style fixture
USD749768S1 (en) 2014-02-06 2016-02-16 Cree, Inc. Troffer-style light fixture with sensors
US10527225B2 (en) 2014-03-25 2020-01-07 Ideal Industries, Llc Frame and lens upgrade kits for lighting fixtures
US10012354B2 (en) 2015-06-26 2018-07-03 Cree, Inc. Adjustable retrofit LED troffer

Also Published As

Publication number Publication date
JPWO2011074424A1 (en) 2013-04-25
TW201135146A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
WO2011074424A1 (en) Reflective illumination device
JP4726872B2 (en) Reflective lighting device
JP4497073B2 (en) Vehicle lighting
JP2007053065A (en) Medical lighting device
JP4735333B2 (en) LED lighting fixtures
WO2012141036A1 (en) Reflective type lighting device
TW201408952A (en) Low-profile LED heat management system
TWM334262U (en) Light-emitting diode (LED) lighting fixture having light beam adjustment
JP6154373B2 (en) LED illuminating device having upper heat dissipation structure
JP2007173034A (en) Light-emitting device of vehicular lighting tool
JP2008117558A (en) Reflector for illumination and light source device
JP4674269B1 (en) Light bulb shaped LED lamp and lighting apparatus
JP2005129354A (en) Led lighting device
JP2012074248A (en) Lighting device
JP2007179906A (en) Illumination device
JP2009087733A (en) Vehicle lighting device
JP2010102891A (en) Luminaire
KR20140074515A (en) Light guiding plate module for side emitting type of LED lighting device
TWI579495B (en) Surgical light and LED lighting module thereof
JP2010108859A (en) Glareless luminaire
WO2010045763A1 (en) Light collimating device
KR101055523B1 (en) Lighting equipment
CN201437946U (en) Adjustable four-embedded LED lamp with radiating function
JP2004182071A (en) Lighting equipment for illumination
JP2019033061A (en) Vehicle lamp fitting

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011527115

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837453

Country of ref document: EP

Kind code of ref document: A1