WO2011062312A1 - Wafer prober using a touch pad - Google Patents

Wafer prober using a touch pad Download PDF

Info

Publication number
WO2011062312A1
WO2011062312A1 PCT/KR2009/006878 KR2009006878W WO2011062312A1 WO 2011062312 A1 WO2011062312 A1 WO 2011062312A1 KR 2009006878 W KR2009006878 W KR 2009006878W WO 2011062312 A1 WO2011062312 A1 WO 2011062312A1
Authority
WO
WIPO (PCT)
Prior art keywords
chuck plate
wafer
axis
touch pad
wafer prober
Prior art date
Application number
PCT/KR2009/006878
Other languages
French (fr)
Korean (ko)
Inventor
이효선
Original Assignee
주식회사 쎄믹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄믹스 filed Critical 주식회사 쎄믹스
Priority to PCT/KR2009/006878 priority Critical patent/WO2011062312A1/en
Publication of WO2011062312A1 publication Critical patent/WO2011062312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature

Definitions

  • the present invention relates to an apparatus for inspecting electrical characteristics of a semiconductor wafer, and more particularly, to a wafer prober capable of precise and safe probing using a touchpad.
  • a wafer prober is a device that connects chips on a wafer and a tester.
  • the tester is connected to chips on the wafer through the wafer prober to provide an electrical signal to the chips. By providing and inspecting the results, it is determined whether each of the chips is abnormal or defective.
  • the chuck plate 208 is pads of the plurality of chips provided on the wafer by the chuck transfer device 206.
  • a plurality of probes provided in the probe card 210 is moved in the X, Y, and Z directions to align and contact the probes.
  • the tester 100 When the plurality of probes are in contact with pads of the plurality of chips, respectively, the tester 100 provides a test signal according to a predetermined program to the plurality of chips through a tester connection terminal and a plurality of probes, and the plurality of chips. By providing the output signal according to the test signal to the tester 100, it is possible to perform the electrical characteristic test for each chip.
  • a mechanical configuration for transferring the chuck plate 208 to the Z-axis will be described with reference to FIG. 2.
  • a lower surface of the chuck plate 208 is provided with a wedge-shaped support 212 cut in a slanted surface.
  • the wedge-shaped Z-axis feeder 216 having a comb surface corresponding to the comb surface of the support 212 is located.
  • a rolling bearing 214 is positioned between the support 212 and the Z-axis feeder 216 to reduce friction.
  • the Z-axis feeder 216 moves horizontally by a ball screw 218 installed on the bottom surface of the Z-axis feeder 216 and rotated by the Z-axis motor 220.
  • the height of the inclined surface of the support 212 in contact with the Z-axis transfer portion 216 changes as the Z-axis transfer portion 216 moves in the lateral direction.
  • the chuck plate 208 moves in the longitudinal (Z-axis) direction according to the lateral movement of the Z-axis feeder 216.
  • the Z-axis base 222 for supporting the bottom surface of the wafer prober is located.
  • the motor 220 generates a predetermined torque for conveying the Z-axis feeder 216, and may generate excessive torque due to unexpected disturbance.
  • the chuck feeder may move excessively in the Z-axis to move the chuck plate ( Excessive close contact between the wafer and the probe card mounted on the 208 may damage the probe of the probe card as well as the wafer.
  • the probe needle plane is parallel to the wafer, but in general, the needle plane may not be flat from manufacturing the probe card. Due to the inclination which occurs in driving, it is not possible to contact each other in parallel, and also, a slip phenomenon occurs at the time of contact, which causes a problem that the correct point cannot be contacted.
  • the problem to solve the above problem is to more accurately measure the contact point of the probe needle in contact with the wafer, calculate the inclination of the chuck plate according to the distribution of the contact point and readjust the parallelism to enable uniform and precise probing, Not only to control the driving properly, but also to provide a device capable of checking the state of the probe needle by measuring a change in the distribution of contact points due to overdriving.
  • a first aspect of the present invention for solving the above problems is a wafer prober, comprising: a chuck plate for mounting a wafer; A touch pad mounted on an upper surface of the chuck plate and positioned below the seated wafer; Z-axis base for supporting the Z-axis feeder for transferring the chuck plate in the Z-axis direction; An XY stage which is attached to a lower surface of the Z axis base and transfers the chuck plate to the XY axis; And a controller for controlling the driving of the Z-axis feeder and the XY stage feeder by receiving a position signal of the probe needle measured by the touchpad when the probe needle installed in the probe card contacts the wafer.
  • the touch pad is preferably any one of capacitive, resistive, optical sensor and ultrasonic reflection method, and a pressure sensor is provided below the chuck plate to measure the probing pressure of the probe needle. Is preferred.
  • the piezoelectric actuator is tilted by the contact pad of the probe needle measured in the touch pad
  • the measurement may include adjusting the inclination of the chuck plate by receiving a signal from the controller to control the plane of the probe needle and the plane of the chuck plate to be parallel.
  • a second aspect of the present invention provides a wafer prober, comprising: a chuck plate for mounting a wafer; A touch pad mounted on an upper surface of the chuck plate and positioned below the seated wafer; Z-axis base for supporting the Z-axis feeder for feeding the chuck plate in the Z-axis direction; An XY stage which is attached to a lower surface of the Z axis base and transfers the chuck plate to the XY axis; A plurality of sensors installed at predetermined positions between the Z-axis base and the XY stage to sense pressure; And storing the sensing values of the plurality of sensors at the initial installation of the wafer prober as initial setting values, and when the probe needle contacts the wafer, the difference between the sensing values from the plurality of sensors and the initial setting values.
  • the sensor may be any one of a load cell, a piezo sensor, a strain gauge, and a capacitor sensor, and the touch pad may be any one of a capacitive, resistive, optical sensor, and an ultrasonic reflection method.
  • the plurality of sensors may be installed at four edges between the Z-axis base and the XY stage.
  • the plurality of sensors are connected to the support member of the triangular sliding form to the side in the form of a bearing or wedge, and measure the pressure that the vertical downward force is converted into a horizontal force by the piezoelectric element connected to the support member to the outside It is desirable to.
  • At least three piezoelectric actuators capable of adjusting the inclination of the chuck plate are arranged under the chuck plate, and the piezoelectric actuator measures the tilt of the chuck plate through the contact distribution of the probe needles measured by the touch pad.
  • the inclination of the chuck plate is adjusted by receiving a signal from the controller to control the plane of the probe needle and the plane of the chuck plate to be parallel.
  • the present invention it is possible to more accurately measure the contact point of the probe needle in contact with the wafer, and to calculate the inclination of the chuck plate and readjust the parallelism according to the distribution of the contact point, to enable uniform and precise probing,
  • the driving can be properly controlled, and the state of the probe needle can be checked by measuring the change of the contact point distribution according to the overdriving.
  • the front surface of the wedge-shaped member supports the system, and the precise displacement range of the piezoelectric element can be adjusted according to the size and shape of the structure, thereby compensating the rigidity of the entire system and bringing high precision.
  • FIG. 1 is a diagram illustrating a configuration of a conventional wafer prober
  • FIG. 2 is a view illustrating a structure diagram of a conventional wafer prober chuck feeder
  • FIG. 3 is a block diagram illustrating a wafer prober according to the present invention.
  • FIG. 4 is a diagram illustrating a plan view of a wafer prober having an actuator for tilt adjustment below the chuck plate according to an embodiment of the present invention
  • FIG. 5 is a view showing the configuration of a wafer prober as still another embodiment according to the present invention.
  • FIG. 6 is a view illustrating a configuration of a wafer prober using a wedge member pressure sensor as another embodiment according to the present invention.
  • FIG. 7 is a diagram illustrating a switching diagram of probing pressure (FIG. 7A) and an arrangement of sensors (FIG. 7B) according to the invention illustrated in FIG. 6.
  • 500 wedge member pressure sensor
  • 510 wedge member
  • 520 piezoelectric element
  • 530 support
  • the wafer prober according to the present invention includes a chuck plate 20 for seating the wafer; A touch pad 30 mounted on an upper surface of the chuck plate and positioned below the seated wafer 10; Z-axis base 49 for supporting the Z-axis feeder for feeding the chuck plate 20 in the Z-axis direction; An XY stage 55 which is attached to the lower surface of the Z axis base 49 and transfers the chuck plate 20 to the XY axis; And when the probe needle 5 installed on the probe card contacts the wafer 10, receiving the position signal of the probe needle 5 measured by the touch pad 30, and transferring the Z-axis feeder and the XY stage. And a control device 60 for controlling the driving of the device.
  • the Z-axis feeder and the XY stage 55 are represented by the XYZ ⁇ driving unit 50 in FIG. 3.
  • the chuck plate 20 is a support for seating the wafer 10 refers to a wafer 10 support plate that can create a variety of test environments, such as a high temperature environment or a cooling environment during the probe process, the chuck plate 20
  • the lower part is composed of a transfer device capable of moving the chuck plate 20 up and down, that is, in the Z-axis direction, and a Z-axis base 49 supporting the transfer device.
  • the lower portion of the Z-axis base 49 includes an XY stage capable of driving in the XY direction including the Z axis, and a controller 60 for controlling the driving of the Z-axis feeder and the XY stage feeder.
  • the present invention is equipped with a touch pad 30 on the upper surface of the chuck plate 20, the device for mounting the wafer 10 on the touch pad 30 to perform the probing process It is characterized by.
  • the touch pad 30 is a kind of touch panel.
  • the touch panel is a computing input device. By touching the buttons displayed on the display, the touch pad 30 can be operated interactively and intuitively, so that anyone can easily operate the computer. This is how you can do it.
  • a touch panel functioning as an input device is attached to a monitor screen, its structure is called a touch screen, and the structure when the touch panel is used to move a cursor in place of a mouse is called a touch pad 30.
  • the touch pad 30 applied in the present invention is not a general input device such as a touch panel, but is generally used as a measuring device for measuring the contact point of the probe needle 5. It is different from the panel. That is, the general touch panel or the touch pad 30 should use a transparent pad in order to directly contact the display through the transparent conductive film, whereas the touch pad 30 of the present invention accurately measures the position of the contact point regardless of whether it is transparent or not. It just functions as a touch sensor.
  • the term "conductive film” is used instead of the transparent conductive film.
  • the use of such a general conductive film has the advantage of significantly lowering the product cost of the touch pad 30, and also has the advantage of being easily manufactured without the difficulty of manufacturing to maintain transparency as in the conventional touch panel.
  • the wafer prober according to the present invention includes a chuck plate 20 for seating the wafer; A touch pad 30 mounted on an upper surface of the chuck plate and positioned below the seated wafer 10; Z-axis base 49 for supporting the Z-axis feeder for feeding the chuck plate 20 in the Z-axis direction; An XY stage 55 which is attached to the lower surface of the Z axis base 49 and transfers the chuck plate 20 to the XY axis; And when the probe needle 5 installed on the probe card contacts the wafer 10, receiving the position signal of the probe needle 5 measured by the touch pad 30, and transferring the Z-axis feeder and the XY stage. And a control device 60 for controlling the driving of the device.
  • the Z-axis feeder and the XY stage 55 are represented by the XYZ ⁇ driving unit 50 in FIG. 3.
  • the chuck plate 20 is a support for seating the wafer 10 refers to a wafer 10 support plate that can create a variety of test environments, such as a high temperature environment or a cooling environment during the probe process, the chuck plate 20
  • the lower part is composed of a transfer device capable of moving the chuck plate 20 up and down, that is, in the Z-axis direction, and a Z-axis base 49 supporting the transfer device.
  • the lower portion of the Z-axis base 49 includes an XY stage capable of driving in the XY direction including the Z axis, and a controller 60 for controlling the driving of the Z-axis feeder and the XY stage feeder.
  • the present invention is equipped with a touch pad 30 on the upper surface of the chuck plate 20, the device for mounting the wafer 10 on the touch pad 30 to perform the probing process It is characterized by.
  • the touch pad 30 is a kind of touch panel.
  • the touch panel is a computing input device. By touching the buttons displayed on the display, the touch pad 30 can be operated interactively and intuitively, so that anyone can easily operate the computer. This is how you can do it.
  • a touch panel functioning as an input device is attached to a monitor screen, its structure is called a touch screen, and the structure when the touch panel is used to move a cursor in place of a mouse is called a touch pad 30.
  • the touch pad 30 applied in the present invention is not a general input device such as a touch panel, but is generally used as a measuring device for measuring the contact point of the probe needle 5. It is different from the panel. That is, the general touch panel or the touch pad 30 should use a transparent pad in order to directly contact the display through the transparent conductive film, whereas the touch pad 30 of the present invention accurately measures the position of the contact point regardless of whether it is transparent or not. It just functions as a touch sensor.
  • the term "conductive film” is used instead of the transparent conductive film.
  • the use of such a general conductive film has the advantage of significantly lowering the product cost of the touch pad 30, and also has the advantage of being easily manufactured without the difficulty of manufacturing to maintain transparency as in the conventional touch panel.
  • the touch pad 30 is fixed to the lower plate on which the conductive film is deposited and the Flim (top plate), and the upper and lower plates of the touched point are contacted to transmit electrical analog X and Y signals to the controller.
  • the general film does not flow electricity, but the film used for the touch pad 30 is a special coating (conductive film) to serve as a conductor.
  • a conductive film in which conductive films are used instead of a transparent film.
  • the controller refers to a device for converting the electrical analog signal transmitted from the touch pad 30 into a digital signal and transmitting it to the control driver of each operating system.
  • the driver receives the digital signal from the controller and the touch pad 30 receives the digital signal.
  • Software that is implemented by each operating system. From the driver's point of view, the only thing the controller receives is the coordinates.
  • the coordinates are received by the control device 60 to measure the contact distribution of the probe needles 5 and send the corrected drive signals to the transfer device or the drive unit 50 to control them.
  • the control is one device included in the touch pad 30, it may be mounted on the control device 60 of the present invention and used.
  • the touch pad 30 applied to the present invention may use various types of touch pads 30, and more preferably, among capacitive, resistive, optical sensors, and ultrasonic reflection methods. It is preferable that it is either.
  • the characteristics are different according to various kinds of the touch pad 30, and thus may be used according to the characteristics in various environments. Resistive film type, ultrasonic reflection type, light sensor type, capacitive type and the like.
  • the resistive film is composed of a structure in which two substrates on which the transparent electrode layer is coated are bonded to each other so that the transparent electrode layers face each other with a dot space therebetween.
  • a signal for position detection is applied when the upper substrate is contacted with a finger or a pen, and an electrical signal is detected to determine the position when it is in contact with the transparent electrode layer of the lower substrate. It has a working principle.
  • a piezoelectric element using a piezoelectric effect is used as a transducer for surface wave generation.
  • the piezoelectric element is stretched when a voltage is applied from the outside and a voltage is generated when a deformation is applied from the outside.
  • part of the surface wave reflects and returns to the piezoelectric element group to generate voltage.
  • the piezoelectric element can calculate the time from the generation of the surface wave and the return of the reflected wave. Therefore, by generating surface waves alternately in the X and Y directions, the distance to each input point is determined to determine the position.
  • a transparent electrode is formed by coating a material such as a special conductive metal (TAO) on both sides of the substrate constituting the touch screen sensor, and a certain amount of current flows on the glass surface.
  • TAO a special conductive metal
  • Parasitic Capacitance has the principle of detecting the position by calculating the magnitude of the part where the amount of current is changed by using the capacitance in the human body due to the user's touch.
  • the probe needle 5 is in contact with the wafer 10. It is possible to measure the contact point of the more precise, and to calculate the inclination of the chuck plate 20 according to the distribution of the contact point and readjust the parallelism to enable a uniform and precise probing.
  • the touch pad 30 is mounted on the bottom surface of the wafer 10 to measure the contact point, and the measured signal is sent to the control device 60 to distribute the contact and the chuck plate 20. Calculate the slope of.
  • the controller 60 sends a control signal to the driver 50 to adjust the inclination of the chuck plate 20 so that the plane of the probe needle 5 and the chuck plate are parallel through the calculated inclination.
  • a probe signal (i) is sent to a specific point of the wafer 10 for the electrical test by sending a correction signal in the XYZ ⁇ direction. 5) can be controlled to make the vertical contact exactly.
  • the at least one pressure sensor capable of measuring the probing pressure of the probe needle 5 is provided below the chuck plate 20, it is possible to appropriately control overdriving and to change the distribution of the contact point according to the overdriving. By measuring, the state of the probe needle 5 can be checked.
  • the inclination adjustment device includes a control device 60, first to third displacement sensors, ADCs, DACs, first to third actuators 25, and communication modules.
  • the first to third displacement sensors and the first to third actuators 25 are installed between the chuck plate 20 and the base as shown in FIG. 4.
  • the base supports the chuck plate 20 in the vertical direction and is referred to as a Z axis throughout the instruments supporting the vertical direction.
  • the actuator 25 preferably uses a piezoelectric actuator 25.
  • the first to third displacement sensors are respectively installed at three equal positions on the rear surface of the chuck plate 20 in contact with the base.
  • the first to third actuators 25 are installed at three equal positions of the rear surface of the chuck plate 20 in contact with the base. When the positions of the first to third displacement sensors and the first to third actuators 25 do not overlap each other, the first to third displacement sensing values of the first to third displacement sensors and the first to third displacement sensors. An initial setting process is required to match the degree of tilt of the chuck plate 20 according to the driving of the three actuators 25.
  • each of the first to third displacement sensors senses a vertical gap between the base and the chuck plate 20 at its installation position and provides a sensing signal according to the sensing to the ADC.
  • the ADC converts the first to third sensing signals from the first to third displacement sensors into first to third displacement sensing information and provides them to the control device 60.
  • the control device 60 may include a first to third displacement sensor in which the first to third displacement sensing information from the first to third displacement sensors are included in the tilt command from the main control device 60.
  • First to third driving commands are generated for each of the first to third actuators 25 to follow the first to third displacement information, respectively.
  • the first to third drive commands for the first to third actuators 25 are converted into first to third drive signals for the first to third actuators 25 through the DAC and then to the first to third actuators. Are provided at 25.
  • Each of the first to third actuators 25 is disposed between the base and the chuck plate 20 in a vertical direction to a different degree in its installation position according to the first to third driving signals from the control device 60. Push or pull to tilt the chuck plate 20 parallel to the probe card by spacing or adhering the vertical gap between the base and the chuck plate 20.
  • the control device 60 calculates the contact distribution and thus the inclination of the chuck plate 20 and its correction value, When the corrected signal is sent to the inclination adjusting device, three or more actuators 25 installed under the chuck plate 20 operate to adjust the inclination to be parallel to the probe needle 5 plane.
  • the present invention senses the chuck plate 20, the touch pad 30, the Z-axis base 49 for supporting the Z-axis feeder, the XY stage 55 for feeding the XY-axis, and pressure. It comprises a plurality of sensors 53 and a control device 60 for controlling the drive of the Z-axis feeder and XY stage feeder.
  • the Z-axis feeder is preferably configured to include a shaft 43 and a motor 47, but may also be a device for converting horizontal movement to vertical movement using a wedge-shaped member (not shown).
  • the embodiment of the present invention is an invention in which a plurality of pressure sensors or load cells 53 are provided between the Z-axis base 49 and the XY stage 55. 5)
  • measuring load or pressure is an important factor for overdriving control or precise probing. Therefore, in the present invention, when the probe needle 5 contacts, the distribution of the contact point measured by the touch pad 30 is changed according to the load or the pressure, and the measured value may determine the state of the probe needle 5.
  • the arrangement of the plurality of pressure sensors or load cells 53 should be at least three to know the distribution, and in the case of partial contact, instead of collective contact for inspecting the entire surface of the wafer 10, the partial pressure or load must be accurately measured. It is more preferable to arrange at four edges for measurement.
  • the inclination of the chuck plate 20 according to the contact point distribution of the touch pad 30 described above can be known, the inclination of the chuck plate 20 can also be grasped through the pressure distribution or the load distribution by the sensor. Therefore, by measuring the inclination more accurately, it is possible to adjust the parallelism with the probe needle 5 plane to perform a uniform contact.
  • FIG. 6 is a view illustrating the configuration of a wafer prober using the wedge member pressure sensor 500 as another embodiment according to the present invention.
  • this embodiment includes four sensors 500 between the Z-axis base 49 and the XY stage 55 to measure the downward pressure or load upon contact of the probe needle 5.
  • the downward vertical pressure is characterized by converting the horizontal pressure.
  • a triangular sliding support member 510 is connected to the side in the form of a bearing or a wedge at four edges between the Z-axis base 49 and the XY stage 55, and the support 530 is horizontal to the member. It is formed in a structure connected to the piezoelectric element 520 fixed to. In this structure, when the chuck plate 20 is subjected to a single load, at least one edge is formed with a vertical downward pressure, and the vertical downward pressure slides the wedge member 510 connected to the bearing in a horizontal direction. Pushed The wedge member 510 is pushed back to the piezoelectric element 520 fixed to the support 530 is a structure that senses the pressure or load.
  • Such a structure can damage the sensor if the sensor is subjected to the vertical downward force, and the sensor is formed by supporting a certain space in a plurality of places, and the overall rigidity of the test equipment requiring high stability.
  • this weakness as shown in Figure 6, by using the wedge-shaped member pressure sensor 500 when the vertical downward force is converted into a horizontal force, the front of the wedge-shaped member 210 receives the system
  • the precise displacement range of the piezoelectric element 520 can be adjusted according to the size and shape of the structure, thereby bringing high precision.
  • FIG. 7 is a diagram illustrating a switching schematic diagram of probing pressure (FIG. 7A) and an arrangement structure of a sensor (FIG. 7B) according to the invention illustrated in FIG. 6.
  • FIG. 7A when the contact load is applied to one of the sensors in the vertical direction, the wedge-shaped member 510 is pushed out to the side by sliding the bearing, and the piezoelectric element fixed to the support 530 connected thereto is connected. 520 is sensed by receiving the pressure converted in the horizontal direction.
  • the arrangement of the sensor lies between the Z-axis base 49 and the XY stage 55 and is disposed at four edges, which, as described above, accurately measure not only the batch contact but also the partial contact. To measure the contact distribution more precisely.
  • the wedge member 510 is installed at four edges, and the wedge member 510 is connected to the piezoelectric element 520 fixed to the support 530, thereby sensing the pressure by converting the vertical downward pressure into the horizontal pressure. To form a structure. It is possible to supplement the stiffness and to provide more accurate measurement (Fig. 7 (b)).
  • the present invention more accurately measures the contact point of the probe needle in contact with the wafer, calculate the inclination of the chuck plate according to the distribution of the contact point and readjust the parallelism to enable uniform and precise probing, overdriving
  • the present invention has industrial applicability in that it is possible to provide a device that can check the state of the probe needle by measuring the change of contact point distribution due to overdriving as well as appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The present invention relates to a wafer prober for testing a semiconductor device, the wafer prober comprising: a chuck plate for holding a wafer; a touch pad mounted on a top surface of the chuck plate and positioned below the held wafer; a Z-axis base for supporting a Z-axis transfer device that transfers the chuck plate in a Z-axis direction; an XY stage, attached to a bottom surface of the Z-axis base, for transferring the chuck plate along X and Y axes; and a controlling device for receiving a position signal, to be measured by the touch pad, of a probe needle installed on a probe card, and controlling the operation of the Z-axis transfer device and an XY stage transfer device when the probe needle contacts the wafer. When the wafer prober of the present invention is implemented, the contacting point of a probe needle that contacts a wafer can be more accurately measured, the tilt of the chuck plate can be calculated from the distribution of such contacting points to readjust the flatness of the chuck plate and thus enable uniform and precise probing, overdriving can be suitably controlled, and changes in contacting point distribution from overdriving can be measured so as to enable the states of probe needles to be checked.

Description

터치패드를 이용한 웨이퍼 프로버Wafer Prober with Touchpad
본 발명은 반도체 웨이퍼의 전기적 특성을 검사하는 장치에 관한 것으로, 보다 상세히는 터치패드를 사용하여 정밀하고 안전한 프로빙이 가능한 웨이퍼 프로버에 관한 발명이다.The present invention relates to an apparatus for inspecting electrical characteristics of a semiconductor wafer, and more particularly, to a wafer prober capable of precise and safe probing using a touchpad.
웨이퍼 프로버(Wafer Prober)는 웨이퍼 상의 칩(chip)들과 테스터(tester)를 연결하는 장치로서, 상기 테스터는 상기 웨이퍼 프로버를 통해 상기 웨이퍼 상의 칩들과 연결되어, 상기 칩들에 전기적인 신호를 제공하고 그 결과를 검사함으로써, 상기 칩들 각각의 이상 유무 또는 불량 여부를 판단한다.A wafer prober is a device that connects chips on a wafer and a tester. The tester is connected to chips on the wafer through the wafer prober to provide an electrical signal to the chips. By providing and inspecting the results, it is determined whether each of the chips is abnormal or defective.
상기한 웨이퍼 프로버의 구성 및 동작을 도 1을 참조하여 간략히 설명한다. 다수의 칩이 형성된 웨이퍼가 웨이퍼 이송장치(204)에 의해 척 플레이트(208)로 로딩되면, 상기 척 플레이트(208)는 척 이송장치(206)에 의해 상기 웨이퍼에 구비된 다수의 칩의 패드들에 상기 프로브 카드(210)에 구비된 다수의 탐침이 정렬되어 접촉되도록 X, Y, Z방향으로 움직인다.The configuration and operation of the wafer prober described above will be briefly described with reference to FIG. When the wafer on which the plurality of chips are formed is loaded into the chuck plate 208 by the wafer transfer device 204, the chuck plate 208 is pads of the plurality of chips provided on the wafer by the chuck transfer device 206. A plurality of probes provided in the probe card 210 is moved in the X, Y, and Z directions to align and contact the probes.
상기 다수의 탐침이 상기 다수의 칩의 패드들에 각각 접촉되면, 테스터(100)는 소정 프로그램에 따른 테스트 신호를 테스터 연결단자 및 다수의 탐침을 통해 상기 다수의 칩에 제공하고, 상기 다수의 칩은 상기 테스트 신호에 따른 출력신호를 상기 테스터(100)에 제공함으로써, 각 칩에 대한 전기적인 특성 테스트를 이행할 수 있게 한다.When the plurality of probes are in contact with pads of the plurality of chips, respectively, the tester 100 provides a test signal according to a predetermined program to the plurality of chips through a tester connection terminal and a plurality of probes, and the plurality of chips. By providing the output signal according to the test signal to the tester 100, it is possible to perform the electrical characteristic test for each chip.
여기서, 상기 척 플레이트(208)를 Z축으로 이송하는 기구적인 구성을 도 2를 참조하여 설명한다.상기 척 플레이트(208)의 하면에는 빗면으로 절삭된 쐐기형의 지지대의 (212)가 설치되며, 상기 지지대(212)의 빗면에 대응되는 빗면을 가지는 쐐기형의 Z축 이송부(216)가 위치한다. 상기 지지대(212)와 상기 Z축 이송부(216) 사이에는 마찰을 감소시키기 위해 구름 베어링(214)이 위치한다.Here, a mechanical configuration for transferring the chuck plate 208 to the Z-axis will be described with reference to FIG. 2. A lower surface of the chuck plate 208 is provided with a wedge-shaped support 212 cut in a slanted surface. The wedge-shaped Z-axis feeder 216 having a comb surface corresponding to the comb surface of the support 212 is located. A rolling bearing 214 is positioned between the support 212 and the Z-axis feeder 216 to reduce friction.
상기 Z축 이송부(216)의 저면에 설치되며, Z축 모터(220)에 의해 회전하는 볼 스크류(218)에 의해 상기 Z축 이송부(216)는 횡방향으로 움직인다. 여기서, 상기 Z축 이송부(216)가 횡방향으로 움직임에 따라 상기 Z축 이송부(216)와 맞닿는 지지대(212)의 빗면의 높이가 변화한다. 이에 따라 상기 척 플레이트(208)는 상기 Z축 이송부(216)의 횡방향 움직임에 따라 종(Z축)방향으로 움직인다.The Z-axis feeder 216 moves horizontally by a ball screw 218 installed on the bottom surface of the Z-axis feeder 216 and rotated by the Z-axis motor 220. Here, the height of the inclined surface of the support 212 in contact with the Z-axis transfer portion 216 changes as the Z-axis transfer portion 216 moves in the lateral direction. Accordingly, the chuck plate 208 moves in the longitudinal (Z-axis) direction according to the lateral movement of the Z-axis feeder 216.
또한 상기한 웨이퍼 프로버의 저면을 지지하는 Z축 베이스(222)가 위치한다.In addition, the Z-axis base 222 for supporting the bottom surface of the wafer prober is located.
상기 모터(220)는 Z축 이송부(216)를 이송하는 소정 토크를 발생하는데, 예기치 못한 외란에 의해 과도 토크를 발생할 수 있으며, 이 경우에는 상기 척 이송장치가 Z축으로 과도하게 움직여 척 플레이트(208)상에 올려져 있는 웨이퍼와 프로브 카드간을 과도하게 밀착시켜 웨이퍼는 물론 프로브 카드의 탐침을 손상시킬 수 있었다.The motor 220 generates a predetermined torque for conveying the Z-axis feeder 216, and may generate excessive torque due to unexpected disturbance. In this case, the chuck feeder may move excessively in the Z-axis to move the chuck plate ( Excessive close contact between the wafer and the probe card mounted on the 208 may damage the probe of the probe card as well as the wafer.
이에 종래에는 상기 Z축 이송부(216)에 과도 압력이 가해지는지를 검출하여 과도 압력이 가해질 경우에는 Z축 이송을 중단하게 하는 기술의 개발이 요망되었다. 또한 웨이퍼에 형성된 미세한 패드들과 상기 프로브 카드(210)의 탐침들을 정확하게 접촉시키기 위해서는 상기 척 플레이트(208)의 위치제어가 매우 정밀하게 이루어지므로, 설치 시에도 수평상태를 면밀하게 고려하여 설치된다.Therefore, in the related art, it has been desired to develop a technology for detecting whether the Z-axis transfer unit 216 is subjected to excessive pressure and stopping Z-axis transfer when excessive pressure is applied. In addition, since the position control of the chuck plate 208 is made very precisely in order to accurately contact the fine pads formed on the wafer and the probes of the probe card 210, the chuck plate 208 is installed with careful consideration of a horizontal state.
그런데, 웨이퍼 프로버의 사용 중에 예기치 못한 외란에 의해 상기 Z축 이송부(216)를 지지하는 Z축 베이스(222)의 기울어짐이 야기되는 문제가 있었다. 이에 종래에는 Z축 이송부(216)의 기울어짐을 검출하여 상기 척 플레이트의 기울어짐을 보정할 수 있는 기술의 개발이 요망된다.However, there is a problem that the inclination of the Z-axis base 222 supporting the Z-axis transfer unit 216 is caused by the unexpected disturbance during use of the wafer prober. Therefore, in the related art, it is desirable to develop a technology capable of detecting the inclination of the Z-axis feeder 216 to correct the inclination of the chuck plate.
또한, 프로브 카드가 검사 대상체인 웨이퍼에 프로빙시, 프로브 니들 평면이 웨이퍼와 평행한 상태가 가장 이상적인 상태이지만, 일반적으로 프로브 카드 제조에서부터 니들 평면이 평탄하지 못하는 경우가 있고, 프로브 카드와 척 플레이트의 구동에서 발생하는 기울어짐 때문에 서로 평행하게 접촉하지 못하고, 또한 접촉시 슬립현상이 일어나 정확한 지점에 접촉할 수 없는 문제가 발생한다.In addition, when the probe card is probed onto the wafer, which is the inspection object, the probe needle plane is parallel to the wafer, but in general, the needle plane may not be flat from manufacturing the probe card. Due to the inclination which occurs in driving, it is not possible to contact each other in parallel, and also, a slip phenomenon occurs at the time of contact, which causes a problem that the correct point cannot be contacted.
상술한 문제를 해결하고자 하는 과제는 웨이퍼에 접촉되는 프로브 니들의 접촉점을 보다 정확하게 측정하고, 이러한 접촉점의 분포에 따라 척 플레이트의 기울기를 계산하고 평행도를 재조정하여 균일하고 정밀한 프로빙이 가능하도록 하며, 오버드라이빙을 적절히 제어할 수 있을 뿐만 아니라, 오버드라이빙에 따른 접촉점 분포의 변화를 측정하여 프로브 니들의 상태 등을 체크 할 수 있는 장치를 제공하기 위함이다.The problem to solve the above problem is to more accurately measure the contact point of the probe needle in contact with the wafer, calculate the inclination of the chuck plate according to the distribution of the contact point and readjust the parallelism to enable uniform and precise probing, Not only to control the driving properly, but also to provide a device capable of checking the state of the probe needle by measuring a change in the distribution of contact points due to overdriving.
상술한 문제를 해결하기 위한 본 발명의 제1 특징은 웨이퍼 프로버에 있어서, 웨이퍼를 안착하는 척 플레이트; 상기 척플레이트 상면에 장착되고, 상기 안착되는 웨이퍼 하부에 위치하는 터치패드; 상기 척 플레이트를 Z축으로 방향으로 이송하는 Z축 이송장치를 지지하는 Z축 베이스; 상기 Z축 베이스의 하면에 결착되어 상기 척 플레이트를 XY축으로 이송하는 XY 스테이지; 및 프로브 카드의 설치된 프로브 니들이 상기 웨이퍼를 접촉하는 경우, 상기 터치패드가 측정한 상기 프로브 니들의 위치신호를 받아 상기 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치를 포함한다.A first aspect of the present invention for solving the above problems is a wafer prober, comprising: a chuck plate for mounting a wafer; A touch pad mounted on an upper surface of the chuck plate and positioned below the seated wafer; Z-axis base for supporting the Z-axis feeder for transferring the chuck plate in the Z-axis direction; An XY stage which is attached to a lower surface of the Z axis base and transfers the chuck plate to the XY axis; And a controller for controlling the driving of the Z-axis feeder and the XY stage feeder by receiving a position signal of the probe needle measured by the touchpad when the probe needle installed in the probe card contacts the wafer.
여기서, 상기 터치패드는 용량성(capacitive), 저항성(resistive), 광센서 및 초음파 반사 방식 중 어느 하나인 것이 바람직하고, 상기 척 플레이트 하부에 상기 프로브 니들의 프로빙 압력을 측정하기 위한 압력센서가 구비된 것이 바람직하다.Here, the touch pad is preferably any one of capacitive, resistive, optical sensor and ultrasonic reflection method, and a pressure sensor is provided below the chuck plate to measure the probing pressure of the probe needle. Is preferred.
또한, 바람직하게는 상기 척 플레이트의 경사를 조정할 수 있는 적어도 3개의 압전 엑츄에이터가 상기 척 플레이트 하부에 배열되고, 상기 압전 엑츄에이터는 상기 터치패드에서 측정된 프로브 니들의 접촉분포를 통해 상기 척 플레이트 기울기를 측정하여, 상기 프로브 니들의 평면과 상기 척 플레이트의 평면이 평행하도록 제어하는 신호를 상기 제어장치로부터 받아 상기 척 플레이트의 경사를 조정하는 것일 수 있다.In addition, preferably at least three piezoelectric actuators capable of adjusting the inclination of the chuck plate are arranged under the chuck plate, the piezoelectric actuator is tilted by the contact pad of the probe needle measured in the touch pad The measurement may include adjusting the inclination of the chuck plate by receiving a signal from the controller to control the plane of the probe needle and the plane of the chuck plate to be parallel.
그리고, 본 발명의 제2 특징은 웨이퍼 프로버에 있어서, 웨이퍼를 안착하는 척 플레이트; 상기 척플레이트 상면에 장착되고, 상기 안착되는 웨이퍼 하부에 위치하는 터치패드; 상기 척 플레이트를 Z축으로 방향으로 이송하는 Z축 이송장치를 지지하는 Z축 베이스; 상기 Z축 베이스의 하면에 결착되어 상기 척 플레이트를 XY축으로 이송하는 XY 스테이지; 상기 Z축 베이스와 상기 XY 스테이지의 사이에 미리 정해둔 위치들에 설치되어 압력을 센싱하는 복수개의 센서; 및 상기 웨이퍼 프로버의 초기 설치시의 상기 다수의 센서의 센싱값을 초기 설정값으로 저장하고, 상기 프로브 니들이 상기 웨이퍼를 접촉하는 경우, 상기 다수의 센서로부터의 센싱값과 상기 초기 설정값의 차이값을 토대로 상기 Z축에 대한 외부압력을 산출하고, 상기 산출된 외부압력과 상기 터치패드가 측정한 상기 프로브 니들의 위치신호를 받아 상기 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치를 포함한다.In addition, a second aspect of the present invention provides a wafer prober, comprising: a chuck plate for mounting a wafer; A touch pad mounted on an upper surface of the chuck plate and positioned below the seated wafer; Z-axis base for supporting the Z-axis feeder for feeding the chuck plate in the Z-axis direction; An XY stage which is attached to a lower surface of the Z axis base and transfers the chuck plate to the XY axis; A plurality of sensors installed at predetermined positions between the Z-axis base and the XY stage to sense pressure; And storing the sensing values of the plurality of sensors at the initial installation of the wafer prober as initial setting values, and when the probe needle contacts the wafer, the difference between the sensing values from the plurality of sensors and the initial setting values. A control for calculating the external pressure on the Z axis based on the value, and controlling the driving of the Z axis feeder and the XY stage feeder by receiving the calculated external pressure and the position signal of the probe needle measured by the touch pad. Device.
여기서, 상기 센서는 로드셀, 피에조 센서, 스트레인 게이지 및 커패시터 센서 중 어느 하나인 것이 바람직하고, 상기 터치패드는 용량성(capacitive), 저항성(resistive), 광센서 및 초음파 반사 방식 중 어느 하나인 것이 바람직하며, 상기 복수개의 센서는 상기 Z축 베이스와 상기 XY 스테이지 사이 중 네 가장자리에 설치되는 것이 바람직하다.The sensor may be any one of a load cell, a piezo sensor, a strain gauge, and a capacitor sensor, and the touch pad may be any one of a capacitive, resistive, optical sensor, and an ultrasonic reflection method. The plurality of sensors may be installed at four edges between the Z-axis base and the XY stage.
또한, 상기 복수개의 센서는 삼각 미끄럼 형태의 지지부재를 베어링 또는 쐐기 형태로 측면에 연결하고, 상기 지지부재와 외부로 연결된 압전소자에 의해 수직 하방의 힘이 수평 방향의 힘으로 전환되는 압력을 측정하는 것이 바람직하다.In addition, the plurality of sensors are connected to the support member of the triangular sliding form to the side in the form of a bearing or wedge, and measure the pressure that the vertical downward force is converted into a horizontal force by the piezoelectric element connected to the support member to the outside It is desirable to.
더 나아가, 상기 척 플레이트의 경사를 조정할 수 있는 적어도 3개의 압전 엑츄에이터가 상기 척 플레이트 하부에 배열되고, 상기 압전 엑츄에이터는 상기 터치패드에서 측정된 프로브 니들의 접촉분포를 통해 상기 척 플레이트 기울기를 측정하여, 상기 프로브 니들의 평면과 상기 척 플레이트의 평면이 평행하도록 제어하는 신호를 상기 제어장치로부터 받아 상기 척 플레이트의 경사를 조정하는 것이 바람직하다.Furthermore, at least three piezoelectric actuators capable of adjusting the inclination of the chuck plate are arranged under the chuck plate, and the piezoelectric actuator measures the tilt of the chuck plate through the contact distribution of the probe needles measured by the touch pad. Preferably, the inclination of the chuck plate is adjusted by receiving a signal from the controller to control the plane of the probe needle and the plane of the chuck plate to be parallel.
이와 같은 본 발명을 제공하면, 웨이퍼에 접촉되는 프로브 니들의 접촉점을 보다 정확하게 측정할 수 있고, 이러한 접촉점의 분포에 따라 척 플레이트의 기울기를 계산하고 평행도를 재조정하여 균일하고 정밀한 프로빙이 가능하고, 오버드라이빙을 적절히 제어할 수 있게 되고, 오버드라이빙에 따른 접촉점 분포의 변화를 측정하여 프로브 니들의 상태 등을 체크 할 수 있다.By providing the present invention, it is possible to more accurately measure the contact point of the probe needle in contact with the wafer, and to calculate the inclination of the chuck plate and readjust the parallelism according to the distribution of the contact point, to enable uniform and precise probing, The driving can be properly controlled, and the state of the probe needle can be checked by measuring the change of the contact point distribution according to the overdriving.
또한, 쐐기형 부재 전면이 시스템을 받치게 되고, 구조의 크기, 형상에 따라 정밀한 압전소자의 변위 범위를 조정할 수 있다는 점에서 시스템 전체의 강성을 보완하고, 높은 정밀도를 가져올 수 있게 된다.In addition, the front surface of the wedge-shaped member supports the system, and the precise displacement range of the piezoelectric element can be adjusted according to the size and shape of the structure, thereby compensating the rigidity of the entire system and bringing high precision.
도 1은 종래의 웨이퍼 프로버의 구성도를 예시한 도면,1 is a diagram illustrating a configuration of a conventional wafer prober;
도 2는 종래의 웨이퍼 프로버 척 이송장치의 구조도를 예시한 도면,2 is a view illustrating a structure diagram of a conventional wafer prober chuck feeder;
도 3은 본 발명에 따른 웨이퍼 프로버의 블럭 구성도를 예시한 도면,3 is a block diagram illustrating a wafer prober according to the present invention;
도 4는 본 발명에 따른 실시예로서, 척 플레이트 하부에 경사 조정을 위한 엑츄에이터가 설치된 웨이퍼 프로버의 평면도를 예시한 도면,4 is a diagram illustrating a plan view of a wafer prober having an actuator for tilt adjustment below the chuck plate according to an embodiment of the present invention;
도 5는 본 발명에 따른 또 다른 실시예로서, 웨이퍼 프로버의 구성을 나타낸 도면,5 is a view showing the configuration of a wafer prober as still another embodiment according to the present invention;
도 6은 본 발명에 따른 또 다른 실시예로서, 쐐기형 부재 압력센서를 이용한 웨이퍼 프로버의 구성을 예시한 도면,6 is a view illustrating a configuration of a wafer prober using a wedge member pressure sensor as another embodiment according to the present invention;
도 7은 도 6에서 예시된 발명이 프로빙 압력의 전환 모식도와(도 7의 (a)), 센서의 배치구조를 예시한(도 7의 (b)) 도면이다.FIG. 7 is a diagram illustrating a switching diagram of probing pressure (FIG. 7A) and an arrangement of sensors (FIG. 7B) according to the invention illustrated in FIG. 6.
<도면 부호에 대한 상세한 설명><Detailed Description of Drawings>
1: 프로브 카드, 5: 프로브 니들, 10: 웨이퍼, 20: 척 플레이트, 1: probe card, 5: probe needle, 10: wafer, 20: chuck plate,
23: 변위센서, 25: 엑츄에이터, 30: 터치패드, 43: 축, 47: 모터,23: displacement sensor, 25: actuator, 30: touch pad, 43: shaft, 47: motor,
49: Z축 베이스, 53:압력센서 또는 로드셀, 55: XY 스테이지,49: Z axis base, 53: pressure sensor or load cell, 55: XY stage,
500: 쐐기부재 압력센서, 510: 쐐기부재, 520: 압전소자, 530: 지지대500: wedge member pressure sensor, 510: wedge member, 520: piezoelectric element, 530: support
도 3은 본 발명에 따른 웨이퍼 프로버의 블럭 구성도를 예시한 도면이다. 도 3에 나타낸 바와 같이, 본 발명에 따른 웨이퍼 프로버는 웨이퍼를 안착하는 척 플레이트(20); 상기 척플레이트 상면에 장착되고, 상기 안착되는 웨이퍼(10) 하부에 위치하는 터치패드(30); 상기 척 플레이트(20)를 Z축으로 방향으로 이송하는 Z축 이송장치를 지지하는 Z축 베이스(49); 상기 Z축 베이스(49)의 하면에 결착되어 상기 척 플레이트(20)를 XY축으로 이송하는 XY 스테이지(55); 및 프로브 카드의 설치된 프로브 니들(5)이 상기 웨이퍼(10)를 접촉하는 경우, 상기 터치패드(30)가 측정한 상기 프로브 니들(5)의 위치신호를 받아 상기 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치(60)를 포함하여 구성한다. Z축 이송장치와 XY 스테이지(55)는 도 3에서 XYZθ 구동부(50)로 표시한다.3 is a block diagram illustrating a wafer prober according to the present invention. As shown in Figure 3, the wafer prober according to the present invention includes a chuck plate 20 for seating the wafer; A touch pad 30 mounted on an upper surface of the chuck plate and positioned below the seated wafer 10; Z-axis base 49 for supporting the Z-axis feeder for feeding the chuck plate 20 in the Z-axis direction; An XY stage 55 which is attached to the lower surface of the Z axis base 49 and transfers the chuck plate 20 to the XY axis; And when the probe needle 5 installed on the probe card contacts the wafer 10, receiving the position signal of the probe needle 5 measured by the touch pad 30, and transferring the Z-axis feeder and the XY stage. And a control device 60 for controlling the driving of the device. The Z-axis feeder and the XY stage 55 are represented by the XYZθ driving unit 50 in FIG. 3.
여기서, 척 플레이트(20)는 웨이퍼(10)를 안착하는 지지대로서 프로브 공정시 고온의 환경 또는 냉각 환경 등 다양한 시험 환경 등을 조성할 수 있는 웨이퍼(10) 지지 플레이트를 말하고, 척 플레이트(20) 하부에는 척 플레이트(20)를 상하 즉, Z축 방향으로 이동 시킬 수 있는 이송 장치와, 이송장치를 지지하는 Z축 베이스(49)로 구성된다. Z축 베이스(49) 하부에는 Z축을 포함하여 XY방향으로 구동시킬 수 있는 XY스테이지 및 상기 Z축 이송장치와 XY스테이지 이송장치의 구동을 제어하는 제어장치(60)를 포함하여 구성한다. 이와 같이 일반적인 웨이퍼 프로버 구성과는 달리, 본 발명은 척 플레이트(20) 상면에 터치패드(30)를 장착하고, 터치패드(30) 상부에 웨이퍼(10)를 안착시켜 프로빙 공정을 수행하는 장치를 특징으로 한다.Here, the chuck plate 20 is a support for seating the wafer 10 refers to a wafer 10 support plate that can create a variety of test environments, such as a high temperature environment or a cooling environment during the probe process, the chuck plate 20 The lower part is composed of a transfer device capable of moving the chuck plate 20 up and down, that is, in the Z-axis direction, and a Z-axis base 49 supporting the transfer device. The lower portion of the Z-axis base 49 includes an XY stage capable of driving in the XY direction including the Z axis, and a controller 60 for controlling the driving of the Z-axis feeder and the XY stage feeder. Thus, unlike the general wafer prober configuration, the present invention is equipped with a touch pad 30 on the upper surface of the chuck plate 20, the device for mounting the wafer 10 on the touch pad 30 to perform the probing process It is characterized by.
터치패드(30)는 터치패널의 한 종류로, 일반적으로 터치패널은 하나의 컴퓨팅 입력장치로서, 디스플레이에 표시되어 있는 버튼을 접촉함으로써, 대화적, 직감적으로 조작을 가능하게 하여 누구나 손쉽게 컴퓨터를 조작할 수 있는 방법이다. 이러한 입력장치로서의 기능을 하는 터치패널은 모니터 화면에 붙어 있으면 그 구조를 터치스크린이라고 부르며, 터치패널이 마우스를 대신하여 커서를 이동시키는 것에 사용될 때의 구조를 터치패드(30)라고 한다. The touch pad 30 is a kind of touch panel. In general, the touch panel is a computing input device. By touching the buttons displayed on the display, the touch pad 30 can be operated interactively and intuitively, so that anyone can easily operate the computer. This is how you can do it. When a touch panel functioning as an input device is attached to a monitor screen, its structure is called a touch screen, and the structure when the touch panel is used to move a cursor in place of a mouse is called a touch pad 30.
도 3에 나타낸 바와 같이, 본 발명에서 적용되는 터치패드(30)는 터치패널과 같이 일반적으로 적용되는 입력장치가 아니라, 프로브 니들(5)의 접촉점을 측정하기 위한 측정장치로 사용한다는 점에서 일반적인 패널과 차이가 있다. 즉, 일반적인 터치패널 또는 터치패드(30)는 투명전도막을 통하여 디스플레이에 직접 접촉하기 위하여 투명패드를 사용해야 한는 반면에, 본 발명의 터치패드(30)는 투명 여부와 상관없이 접촉점의 위치를 정확히 측정하기만 하면 되는 터치센서의 기능을 수행한다.As shown in FIG. 3, the touch pad 30 applied in the present invention is not a general input device such as a touch panel, but is generally used as a measuring device for measuring the contact point of the probe needle 5. It is different from the panel. That is, the general touch panel or the touch pad 30 should use a transparent pad in order to directly contact the display through the transparent conductive film, whereas the touch pad 30 of the present invention accurately measures the position of the contact point regardless of whether it is transparent or not. It just functions as a touch sensor.
그러므로, 이하에서 터치패드(30)의 기본 구성을 설명하면서, 디스플레이에 직접 적용하기 위한 투명전도막의 구성은 일반적인 전도막으로 사용해도 되기 때문에, 투명전도막이 아닌 전도막이라는 용어를 사용하기로 한다. 이와 같은 일반적인 전도막을 사용하게 되면 터치패드(30)의 제품단가를 상당부분 낮출 수 있는 장점이 있고, 종래의 터치패널 처럼 투명성을 유지하도록 제조해야 하는 어려움 없이 용이하게 제조할 수 있다는 장점도 있다. 물론 투명한 터치패드(30)를 사용하는 것도 가능하다.Therefore, while the basic configuration of the touch pad 30 will be described below, since the configuration of the transparent conductive film for directly applying to the display may be used as a general conductive film, the term "conductive film" is used instead of the transparent conductive film. The use of such a general conductive film has the advantage of significantly lowering the product cost of the touch pad 30, and also has the advantage of being easily manufactured without the difficulty of manufacturing to maintain transparency as in the conventional touch panel. Of course, it is also possible to use a transparent touch pad 30.
이하 도면을 참조하여 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.
도 3은 본 발명에 따른 웨이퍼 프로버의 블럭 구성도를 예시한 도면이다. 도 3에 나타낸 바와 같이, 본 발명에 따른 웨이퍼 프로버는 웨이퍼를 안착하는 척 플레이트(20); 상기 척플레이트 상면에 장착되고, 상기 안착되는 웨이퍼(10) 하부에 위치하는 터치패드(30); 상기 척 플레이트(20)를 Z축으로 방향으로 이송하는 Z축 이송장치를 지지하는 Z축 베이스(49); 상기 Z축 베이스(49)의 하면에 결착되어 상기 척 플레이트(20)를 XY축으로 이송하는 XY 스테이지(55); 및 프로브 카드의 설치된 프로브 니들(5)이 상기 웨이퍼(10)를 접촉하는 경우, 상기 터치패드(30)가 측정한 상기 프로브 니들(5)의 위치신호를 받아 상기 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치(60)를 포함하여 구성한다. Z축 이송장치와 XY 스테이지(55)는 도 3에서 XYZθ 구동부(50)로 표시한다.3 is a block diagram illustrating a wafer prober according to the present invention. As shown in Figure 3, the wafer prober according to the present invention includes a chuck plate 20 for seating the wafer; A touch pad 30 mounted on an upper surface of the chuck plate and positioned below the seated wafer 10; Z-axis base 49 for supporting the Z-axis feeder for feeding the chuck plate 20 in the Z-axis direction; An XY stage 55 which is attached to the lower surface of the Z axis base 49 and transfers the chuck plate 20 to the XY axis; And when the probe needle 5 installed on the probe card contacts the wafer 10, receiving the position signal of the probe needle 5 measured by the touch pad 30, and transferring the Z-axis feeder and the XY stage. And a control device 60 for controlling the driving of the device. The Z-axis feeder and the XY stage 55 are represented by the XYZθ driving unit 50 in FIG. 3.
여기서, 척 플레이트(20)는 웨이퍼(10)를 안착하는 지지대로서 프로브 공정시 고온의 환경 또는 냉각 환경 등 다양한 시험 환경 등을 조성할 수 있는 웨이퍼(10) 지지 플레이트를 말하고, 척 플레이트(20) 하부에는 척 플레이트(20)를 상하 즉, Z축 방향으로 이동 시킬 수 있는 이송 장치와, 이송장치를 지지하는 Z축 베이스(49)로 구성된다. Z축 베이스(49) 하부에는 Z축을 포함하여 XY방향으로 구동시킬 수 있는 XY스테이지 및 상기 Z축 이송장치와 XY스테이지 이송장치의 구동을 제어하는 제어장치(60)를 포함하여 구성한다. 이와 같이 일반적인 웨이퍼 프로버 구성과는 달리, 본 발명은 척 플레이트(20) 상면에 터치패드(30)를 장착하고, 터치패드(30) 상부에 웨이퍼(10)를 안착시켜 프로빙 공정을 수행하는 장치를 특징으로 한다.Here, the chuck plate 20 is a support for seating the wafer 10 refers to a wafer 10 support plate that can create a variety of test environments, such as a high temperature environment or a cooling environment during the probe process, the chuck plate 20 The lower part is composed of a transfer device capable of moving the chuck plate 20 up and down, that is, in the Z-axis direction, and a Z-axis base 49 supporting the transfer device. The lower portion of the Z-axis base 49 includes an XY stage capable of driving in the XY direction including the Z axis, and a controller 60 for controlling the driving of the Z-axis feeder and the XY stage feeder. Thus, unlike the general wafer prober configuration, the present invention is equipped with a touch pad 30 on the upper surface of the chuck plate 20, the device for mounting the wafer 10 on the touch pad 30 to perform the probing process It is characterized by.
터치패드(30)는 터치패널의 한 종류로, 일반적으로 터치패널은 하나의 컴퓨팅 입력장치로서, 디스플레이에 표시되어 있는 버튼을 접촉함으로써, 대화적, 직감적으로 조작을 가능하게 하여 누구나 손쉽게 컴퓨터를 조작할 수 있는 방법이다. 이러한 입력장치로서의 기능을 하는 터치패널은 모니터 화면에 붙어 있으면 그 구조를 터치스크린이라고 부르며, 터치패널이 마우스를 대신하여 커서를 이동시키는 것에 사용될 때의 구조를 터치패드(30)라고 한다. The touch pad 30 is a kind of touch panel. In general, the touch panel is a computing input device. By touching the buttons displayed on the display, the touch pad 30 can be operated interactively and intuitively, so that anyone can easily operate the computer. This is how you can do it. When a touch panel functioning as an input device is attached to a monitor screen, its structure is called a touch screen, and the structure when the touch panel is used to move a cursor in place of a mouse is called a touch pad 30.
도 3에 나타낸 바와 같이, 본 발명에서 적용되는 터치패드(30)는 터치패널과 같이 일반적으로 적용되는 입력장치가 아니라, 프로브 니들(5)의 접촉점을 측정하기 위한 측정장치로 사용한다는 점에서 일반적인 패널과 차이가 있다. 즉, 일반적인 터치패널 또는 터치패드(30)는 투명전도막을 통하여 디스플레이에 직접 접촉하기 위하여 투명패드를 사용해야 한는 반면에, 본 발명의 터치패드(30)는 투명 여부와 상관없이 접촉점의 위치를 정확히 측정하기만 하면 되는 터치센서의 기능을 수행한다.As shown in FIG. 3, the touch pad 30 applied in the present invention is not a general input device such as a touch panel, but is generally used as a measuring device for measuring the contact point of the probe needle 5. It is different from the panel. That is, the general touch panel or the touch pad 30 should use a transparent pad in order to directly contact the display through the transparent conductive film, whereas the touch pad 30 of the present invention accurately measures the position of the contact point regardless of whether it is transparent or not. It just functions as a touch sensor.
그러므로, 이하에서 터치패드(30)의 기본 구성을 설명하면서, 디스플레이에 직접 적용하기 위한 투명전도막의 구성은 일반적인 전도막으로 사용해도 되기 때문에, 투명전도막이 아닌 전도막이라는 용어를 사용하기로 한다. 이와 같은 일반적인 전도막을 사용하게 되면 터치패드(30)의 제품단가를 상당부분 낮출 수 있는 장점이 있고, 종래의 터치패널 처럼 투명성을 유지하도록 제조해야 하는 어려움 없이 용이하게 제조할 수 있다는 장점도 있다. 물론 투명한 터치패드(30)를 사용하는 것도 가능하다.Therefore, while the basic configuration of the touch pad 30 will be described below, since the configuration of the transparent conductive film for directly applying to the display may be used as a general conductive film, the term "conductive film" is used instead of the transparent conductive film. The use of such a general conductive film has the advantage of significantly lowering the product cost of the touch pad 30, and also has the advantage of being easily manufactured without the difficulty of manufacturing to maintain transparency as in the conventional touch panel. Of course, it is also possible to use a transparent touch pad 30.
터치패드(30)는 전도막이 증착된 하판과 Flim(상판)으로 고정되어, 터치한 지점의 상하판이 접촉되어 전기적인 아날로그 X, Y신호가 컨트롤러(Controller)로 전송되는 것이다. 일반적인 필름은 전기가 흐르지 않지만, 터치패드(30)에 사용되는 필름은 특수코팅(도전막)이 되어 있어 전도체 역할을 하는 것이다. 또한 본 발명에서는 필름 또한 투명한 필름을 사용하지 도전성 패터닝을 한 전도막을 사용해도 가능함은 물론이다.The touch pad 30 is fixed to the lower plate on which the conductive film is deposited and the Flim (top plate), and the upper and lower plates of the touched point are contacted to transmit electrical analog X and Y signals to the controller. The general film does not flow electricity, but the film used for the touch pad 30 is a special coating (conductive film) to serve as a conductor. Furthermore, in the present invention, it is also possible to use a conductive film in which conductive films are used instead of a transparent film.
여기서, 컨트롤러는 터치패드(30)로부터 전송된 전기적인 아날로그 신호가 디지털 신호로 수치화되어 각 운영 시스템의 컨트롤 드라이버로 전송하는 장치를 말하고, 드라이버는 컨트롤러에서 들어오는 디지털 신호를 받아 터치패드(30)가 각 운영시스템에서 구현하도록 하는 소프트웨어로서, 드라이버 입장에서 보면 컨트롤러에게 받는 것은 좌표뿐이다. 이 좌표를 제어장치(60)에서 받아 프로브 니들(5)의 접촉분포를 측정하고 다시 이송장치 나 구동부(50)에 보정된 구동신호를 보내어 제어하게 된다. 컨트롤로는 터치패드(30)에 포함되는 하나의 장치이지만, 본 발명의 제어장치(60)에 장착되어 사용될 수 있음은 물론이다.Here, the controller refers to a device for converting the electrical analog signal transmitted from the touch pad 30 into a digital signal and transmitting it to the control driver of each operating system. The driver receives the digital signal from the controller and the touch pad 30 receives the digital signal. Software that is implemented by each operating system. From the driver's point of view, the only thing the controller receives is the coordinates. The coordinates are received by the control device 60 to measure the contact distribution of the probe needles 5 and send the corrected drive signals to the transfer device or the drive unit 50 to control them. Although the control is one device included in the touch pad 30, it may be mounted on the control device 60 of the present invention and used.
그리고, 본 발명에 적용되는 터치패드(30)는 다양한 종류의 터치패드(30)를 사용하는 것이 가능하고, 보다 바람직하게는 용량성(capacitive), 저항성(resistive), 광센서 및 초음파 반사 방식 중 어느 하나인 것이 바람직하다. 터치패드(30)의 다양한 종류에 따라 특성이 각각 다르며 이에 따라 다양한 환경에서 각각의 특성에 맞게 사용될 수 있다. 저항막 방식, 초음파 반사 방식, 광센서 방식, 정전용량 방식 등이 있다. 저항막 방식은 투명전극 층이 코팅되어 있는 두장의 기판을 Dot Space를 사이에 두고 투명 전극 층이 서로 마주보도록 합착시키는 구조로 이루어져 있다. 특수 필름의 안쪽에 투명전극이 코팅되어 있기 때문에 손가락이나 펜에 의해 상부 기판을 접촉하였을 경우 위치 검출을 위한 신호가 인가되며, 하부 기판의 투명 전극층과 접촉되었을 때 전기적 신호를 검출하여 위치를 결정하게 되는 동작 원리를 가지고 있다.In addition, the touch pad 30 applied to the present invention may use various types of touch pads 30, and more preferably, among capacitive, resistive, optical sensors, and ultrasonic reflection methods. It is preferable that it is either. The characteristics are different according to various kinds of the touch pad 30, and thus may be used according to the characteristics in various environments. Resistive film type, ultrasonic reflection type, light sensor type, capacitive type and the like. The resistive film is composed of a structure in which two substrates on which the transparent electrode layer is coated are bonded to each other so that the transparent electrode layers face each other with a dot space therebetween. Since the transparent electrode is coated on the inside of the special film, a signal for position detection is applied when the upper substrate is contacted with a finger or a pen, and an electrical signal is detected to determine the position when it is in contact with the transparent electrode layer of the lower substrate. It has a working principle.
초음파 반사 방식은 표면파 발생의 Transducer는 압압효과를 응용한 압전소자가 사용되는데 이러한 압전소자는 외부에서 전압을 인가하면 형태가 신축하고 반대로 외부에서 변형을 가하면 전압이 발생하는 특징을 이용하여 Glass 표면에 접촉하면 표면파의 일부는 반사해 압전소자군으로 되돌아오면서 전압이 발생하게 된다. 이 전압을 이용하면 표면파를 발생시키고 반사파가 되돌아오기까지의 시간을 압전소자로 계산이 가능하게 되는 것이다. 따라서 표면파를 X와 Y방향으로 교대로 발생시킴으로 인해서 각각의 입력점까지의 거리를 파악하게 되어 위치를 결정하는 원리를 가지고 있다.In the ultrasonic reflection method, a piezoelectric element using a piezoelectric effect is used as a transducer for surface wave generation. The piezoelectric element is stretched when a voltage is applied from the outside and a voltage is generated when a deformation is applied from the outside. When contacted, part of the surface wave reflects and returns to the piezoelectric element group to generate voltage. By using this voltage, the piezoelectric element can calculate the time from the generation of the surface wave and the return of the reflected wave. Therefore, by generating surface waves alternately in the X and Y directions, the distance to each input point is determined to determine the position.
정전용량 방식은 터치화면 센서를 구성하는 기판의 양면에 특수 전도성 금속(Tin Antimony Oxide: TAO)와 같은 물질을 코팅하여 투명전극 형성하며, 일정량의 전류를 유리표면에 흐르게 한다. Parasitic Capacitance를 통해 사용자가 터치를 함으로 인해서 사람의 몸에 있는 정전용량을 이용하여 전류의 양이 변경된 부분을 인식하고 크기를 계산하여 위치를 검출하는 원리를 가지고 있다.In the capacitive method, a transparent electrode is formed by coating a material such as a special conductive metal (TAO) on both sides of the substrate constituting the touch screen sensor, and a certain amount of current flows on the glass surface. Parasitic Capacitance has the principle of detecting the position by calculating the magnitude of the part where the amount of current is changed by using the capacitance in the human body due to the user's touch.
이처럼, 본발명에서는 웨이퍼(10)를 안착하는 척플레이트 상면에 터치패드(30)를 장착하고, 그 위에 웨이퍼(10)를 안착하여 프로빙하게 되면, 웨이퍼(10)에 접촉되는 프로브 니들(5)의 접촉점을 보다 정확하게 측정할 수 있고, 이러한 접촉점의 분포에 따라 척 플레이트(20)의 기울기를 계산하고 평행도를 재조정하여 균일하고 정밀한 프로빙을 할 수 있도록 한다.As such, in the present invention, when the touch pad 30 is mounted on the upper surface of the chuck plate on which the wafer 10 is seated, and the wafer 10 is seated and probed, the probe needle 5 is in contact with the wafer 10. It is possible to measure the contact point of the more precise, and to calculate the inclination of the chuck plate 20 according to the distribution of the contact point and readjust the parallelism to enable a uniform and precise probing.
보다 상세히 설명하면, 도 3에 나타낸 바와 같이, 척 플레이트(20)와 평행하지 않은 니들 플레인을 갖는 프로브 니들(5)이 웨이퍼(10)에 접촉하게 되면, 불평행으로 인하여 니들의 일부만 접촉하게 되고, 접촉점은 특정부분에서만 나타나게 된다. 이러한 접촉점의 위치를 정확히 측정하기 위해서 본 발명에서는 웨이퍼(10) 하면에 터치패드(30)를 장착하여 접촉점을 측정하고, 측정된 신호를 제어장치(60)로 보내어 접촉분포 및 척 플레이트(20)의 기울기를 산출한다.In more detail, as shown in FIG. 3, when the probe needle 5 having a needle plane not parallel to the chuck plate 20 comes into contact with the wafer 10, only a part of the needle comes into contact due to misalignment. In this case, the contact point appears only in certain parts. In order to accurately measure the position of the contact point, in the present invention, the touch pad 30 is mounted on the bottom surface of the wafer 10 to measure the contact point, and the measured signal is sent to the control device 60 to distribute the contact and the chuck plate 20. Calculate the slope of.
여기서 제어장치(60)는 산출된 기울기를 통하여 프로브 니들(5) 플레인과 척플레이트가 평행하도록 제어 신호를 구동부(50)로 보내어 척 플레이트(20)의 기울기를 조정한다. 뿐만 아니라, 프로브 니들(5)의 접촉점을 정확히 측정할 수 있기 때문에, 프로빙 압력에 의해 접촉점 슬립이 발생하더라도, XYZθ 방향으로 보정신호를 보내어 전기적 테스트를 위한 웨이퍼(10)의 특정포인트에 프로브 니들(5)이 수직으로 정확히 접촉할 수 있도록 제어할 수 있다. 또한, 척 플레이트(20) 하부에 프로브 니들(5)의 프로빙 압력을 측정할 수 있는 적어도 하나의 압력센서를 구비하면, 오버드라이빙을 적절히 제어할 수 있게 되고, 오버드라이빙에 따른 접촉점 분포의 변화를 측정하여 프로브 니들(5)의 상태 등을 체크 할 수 있다.Here, the controller 60 sends a control signal to the driver 50 to adjust the inclination of the chuck plate 20 so that the plane of the probe needle 5 and the chuck plate are parallel through the calculated inclination. In addition, since the contact point of the probe needle 5 can be accurately measured, even if a contact point slip occurs due to the probing pressure, a probe signal (i) is sent to a specific point of the wafer 10 for the electrical test by sending a correction signal in the XYZθ direction. 5) can be controlled to make the vertical contact exactly. In addition, when the at least one pressure sensor capable of measuring the probing pressure of the probe needle 5 is provided below the chuck plate 20, it is possible to appropriately control overdriving and to change the distribution of the contact point according to the overdriving. By measuring, the state of the probe needle 5 can be checked.
도 4는 본 발명에 따른 실시예로서, 척 플레이트(20) 하부에 경사 조정을 위한 엑츄에이터(25)가 설치된 웨이퍼 프로버의 평면도를 예시한 도면이다. 도 4에 나타낸 바와 같이, 경사 조정장치는 제어장치(60), 제1 내지 제3변위센서, ADC, DAC, 제1 내지 제3엑츄에이터(25), 통신모듈로 구성된다. 상기 제1 내지 제3변위센서 및 상기 제1 내지 제3엑츄에이터(25)는 도 4에 나타낸 바와 같이 척 플레이트(20)와 베이스 사이에 설치된다. 상기 베이스는 상기 척 플레이트(20)를 수직방향으로 지지하며, 수직방향으로 지지하는 기구물들을 통틀어 Z축이라 일컫는다. 여기서 엑츄에이터(25)는 압전 엑츄에이터(25)를 사용하는 것이 바람직하다.4 is a diagram illustrating a plan view of a wafer prober in which an actuator 25 for tilt adjustment is installed below the chuck plate 20 as an embodiment according to the present invention. As shown in FIG. 4, the inclination adjustment device includes a control device 60, first to third displacement sensors, ADCs, DACs, first to third actuators 25, and communication modules. The first to third displacement sensors and the first to third actuators 25 are installed between the chuck plate 20 and the base as shown in FIG. 4. The base supports the chuck plate 20 in the vertical direction and is referred to as a Z axis throughout the instruments supporting the vertical direction. In this case, the actuator 25 preferably uses a piezoelectric actuator 25.
제1 내지 제3변위센서는 상기 베이스와 맞닿는 상기 척 플레이트(20)의 배면의 3등분한 위치들에 각각 설치된다. 그리고 상기 제1 내지 제3엑츄에이터(25)는 상기 베이스와 맞닿는 상기 척 플레이트(20)의 배면의 3등분한 위치들에 각각 설치된다. 제1 내지 제3변위센서와 상기 제1 내지 제3엑츄에이터(25)의 위치가 서로 겹쳐지지 않는 경우에는 상기 제1 내지 제3변위센서의 제1 내지 제3변위센싱값과 상기 제1 내지 제3엑츄에이터(25) 구동에 따른 척 플레이트(20)의 기울임 정도를 매칭하기 위한 초기 설정과정이 요구된다.The first to third displacement sensors are respectively installed at three equal positions on the rear surface of the chuck plate 20 in contact with the base. The first to third actuators 25 are installed at three equal positions of the rear surface of the chuck plate 20 in contact with the base. When the positions of the first to third displacement sensors and the first to third actuators 25 do not overlap each other, the first to third displacement sensing values of the first to third displacement sensors and the first to third displacement sensors. An initial setting process is required to match the degree of tilt of the chuck plate 20 according to the driving of the three actuators 25.
또한, 제1 내지 제3변위센서 각각은 자신의 설치위치에서 베이스와 척 플레이트(20)간의 수직 방향의 간격을 센싱하고, 상기 센싱에 따른 센싱신호를 ADC에 제공한다. 상기 ADC는 상기 제1 내지 제3변위센서로부터의 제1 내지 제3센싱신호를 제1 내지 제3변위센싱정보로 변환하여 제어장치(60)로 제공한다.In addition, each of the first to third displacement sensors senses a vertical gap between the base and the chuck plate 20 at its installation position and provides a sensing signal according to the sensing to the ADC. The ADC converts the first to third sensing signals from the first to third displacement sensors into first to third displacement sensing information and provides them to the control device 60.
상기 제어장치(60)는 상기 제1 내지 제3변위센서로부터의 제1 내지 제3변위센싱정보가 상기 메인 제어장치(60)로부터의 기울임 명령에 포함된 제1내지 제3변위센서에 대한 제1 내지 제3변위정보를 각각 추종하도록 하는제1 내지 제3엑츄에이터(25) 각각에 대한 제1 내지 제3구동명령을 생성한다.The control device 60 may include a first to third displacement sensor in which the first to third displacement sensing information from the first to third displacement sensors are included in the tilt command from the main control device 60. First to third driving commands are generated for each of the first to third actuators 25 to follow the first to third displacement information, respectively.
상기 제1 내지 제3엑츄에이터(25)에 대한 제1 내지 제3구동명령은 DAC를 통해 제1 내지 제3엑츄에이터(25)에 대한 제1 내지 제3구동신호로 변환되어 제1 내지 제3엑츄에이터(25)에 제공된다. 상기 제1 내지 제3엑츄에이터(25) 각각은 상기 제어장치(60)로부터의 제1 내지 제3구동신호에 따라 자신의 설치위치에서 각기 다른 정도로 수직방향으로 상기 베이스와 상기 척 플레이트(20) 사이를 밀거나 당겨, 상기 베이스와 상기 척 플레이트(20) 사이의 수직방향 간격을 이격시키거나 밀착시킴으로써, 상기 척 플레이트(20)를 프로브 카드와 평행하게 하도록 기울인다.The first to third drive commands for the first to third actuators 25 are converted into first to third drive signals for the first to third actuators 25 through the DAC and then to the first to third actuators. Are provided at 25. Each of the first to third actuators 25 is disposed between the base and the chuck plate 20 in a vertical direction to a different degree in its installation position according to the first to third driving signals from the control device 60. Push or pull to tilt the chuck plate 20 parallel to the probe card by spacing or adhering the vertical gap between the base and the chuck plate 20.
즉, 이와 같은 구성을 갖는 경사조정장치를 이용하여, 도 4에 나타난 전체 웨이퍼 프로버 구성의 작용을 살펴보면, Z축을 상방향으로 구동하여 프로브 니들(5)과 접촉하게 되면, 터치패드(30)에서 프로브 니들(5)의 접촉점을 측정하고, 측정된 신호를 제어장치(60)로 보내면, 제어장치(60)에서 접촉분포 및 이에 따른 척 플레이트(20)의 기울기와 그 보정값을 산출하고, 다시 보정된 신호를 경사조정장치에 보내면, 척 플레이트(20) 하부에 설치된 3개 이상의 엑츄에이터(25)가 작동하여 프로브 니들(5) 평면과 평행하도록 경사를 조정하게 된다. That is, using the inclination adjusting device having such a configuration, looking at the operation of the entire wafer prober configuration shown in Figure 4, when the Z-axis is driven upward to come into contact with the probe needle (5), the touch pad 30 Measure the contact point of the probe needle (5), and send the measured signal to the control device 60, the control device 60 calculates the contact distribution and thus the inclination of the chuck plate 20 and its correction value, When the corrected signal is sent to the inclination adjusting device, three or more actuators 25 installed under the chuck plate 20 operate to adjust the inclination to be parallel to the probe needle 5 plane.
도 5는 본 발명에 따른 또 다른 실시예로서, 웨이퍼 프로버의 구성을 나타낸 도면이다. 도 5에 나타낸 바와 같이, 본 발명은 척 플레이트(20), 터치패드(30), Z축 이송장치를 지지하는 Z축 베이스(49), XY축으로 이송하는 XY 스테이지(55), 압력을 센싱하는 복수개의 센서(53) 및 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치(60)를 포함하여 구성한다. Z축 이송장치는 축(43)과 모터(47)를 포함하여 구성하는 것이 바람직하지만, 쐐기형 부재를 이용하여 수평이동을 수직이동으로 변환하는 장치로도 가능하다.(도시하지 않음)5 is a view showing the configuration of a wafer prober as still another embodiment according to the present invention. As shown in FIG. 5, the present invention senses the chuck plate 20, the touch pad 30, the Z-axis base 49 for supporting the Z-axis feeder, the XY stage 55 for feeding the XY-axis, and pressure. It comprises a plurality of sensors 53 and a control device 60 for controlling the drive of the Z-axis feeder and XY stage feeder. The Z-axis feeder is preferably configured to include a shaft 43 and a motor 47, but may also be a device for converting horizontal movement to vertical movement using a wedge-shaped member (not shown).
본 발명의 실시예는 도 3 및 도 4에 예시된 발명과 달리, Z축 베이스(49)와 XY 스테이지(55) 사이에 복수개의 압력센서 또는 로드셀(53)이 구비된 발명으로서, 프로브 니들(5)이 웨이퍼(10)에 접촉시, 하중 또는 압력을 측정하는 것은 오버드라이빙 제어나 정밀한 프로빙을 위해 중요한 요소이다. 그러므로, 본 발명에서는 프로브 니들(5)이 접촉하는 경우 하중 또는 압력에 따라 터치패드(30)에서 측정된 접촉점의 분포가 변화하게 되고, 이러한 측정값은 프로브 니들(5)의 상태를 파악할 수 있을 뿐만 아니라, 접촉점의 위치 보정에도 프로브 니들(5)의 손상 없이 안전하게 작업할 수 있는 장점이 있다.Unlike the invention illustrated in FIGS. 3 and 4, the embodiment of the present invention is an invention in which a plurality of pressure sensors or load cells 53 are provided between the Z-axis base 49 and the XY stage 55. 5) When contacting the wafer 10, measuring load or pressure is an important factor for overdriving control or precise probing. Therefore, in the present invention, when the probe needle 5 contacts, the distribution of the contact point measured by the touch pad 30 is changed according to the load or the pressure, and the measured value may determine the state of the probe needle 5. In addition, there is an advantage that can work safely without damaging the probe needle (5) even in the position correction of the contact point.
복수개의 압력센서 또는 로드셀(53)의 배열은 최소한 분포를 알 수 있는 3개 이상이어야 하고, 웨이퍼(10) 전면을 검사하는 일괄 접촉이 아니라, 부분 접촉을 하는 경우에, 부분 압력 또는 하중을 정확하게 측정하기 위해 4개의 가장자리에 배치하는 것이 보다 바람직하다. 또한, 상술한 터치패드(30)의 접촉점 분포에 따란 척 플레이트(20)의 기울기를 알 수 있지만, 상기 센서에 의한 압력분포 또는 하중분포를 통하여도 척 플레이트(20)의 기울기를 파악할 수 있다. 그러므로, 더욱 정확하게 기울기를 측정하여 프로브 니들(5) 평면과의 평행도를 조정하여 균일한 접촉을 수행할 수 있게 된다.The arrangement of the plurality of pressure sensors or load cells 53 should be at least three to know the distribution, and in the case of partial contact, instead of collective contact for inspecting the entire surface of the wafer 10, the partial pressure or load must be accurately measured. It is more preferable to arrange at four edges for measurement. In addition, although the inclination of the chuck plate 20 according to the contact point distribution of the touch pad 30 described above can be known, the inclination of the chuck plate 20 can also be grasped through the pressure distribution or the load distribution by the sensor. Therefore, by measuring the inclination more accurately, it is possible to adjust the parallelism with the probe needle 5 plane to perform a uniform contact.
도 6은 본 발명에 따른 또 다른 실시예로서, 쐐기형 부재 압력센서(500)를 이용한 웨이퍼 프로버의 구성을 예시한 도면이다. 도 5에 나타낸 바와 같이, 본 실시예는 프로브 니들(5)의 접촉시 하방 압력 또는 하중을 측정하기 위해 Z축 베이스(49)와 XY 스테이지(55) 사이에 4개의 센서(500)를 구비하는 구성으로, 하방 수직압력을 수평압력으로 변환하여 측정하는 것을 특징으로 한다.6 is a view illustrating the configuration of a wafer prober using the wedge member pressure sensor 500 as another embodiment according to the present invention. As shown in FIG. 5, this embodiment includes four sensors 500 between the Z-axis base 49 and the XY stage 55 to measure the downward pressure or load upon contact of the probe needle 5. In the configuration, the downward vertical pressure is characterized by converting the horizontal pressure.
즉, Z축 베이스(49)와 XY 스테이지(55) 사이에 4개의 가장자리에 삼각 미끄럼 형태의 지지부재(510)를 베어링 또는 쐐기 형태로 측면에 연결하고, 상기 부재와 수평방향으로 지지대(530)에 고정된 압전소자(520)와 연결된 구조로 형성한다. 이와 같은 구조는 척 플레이트(20)가 편 하중을 받을 때, 적어도 어느 하나의 가장 자리에 수직하방의 압력이 형성되고, 수직하방의 압력은 베어링으로 연결된 쐐기부재(510)를 수평방형으로 미끄러져 밀게된다. 밀려나간 쐐기부재(510)는 다시 지지대(530)에 고정된 압전소자(520)를 누르게 되어 압력 또는 하중을 센싱하게 되는 구조이다.That is, a triangular sliding support member 510 is connected to the side in the form of a bearing or a wedge at four edges between the Z-axis base 49 and the XY stage 55, and the support 530 is horizontal to the member. It is formed in a structure connected to the piezoelectric element 520 fixed to. In this structure, when the chuck plate 20 is subjected to a single load, at least one edge is formed with a vertical downward pressure, and the vertical downward pressure slides the wedge member 510 connected to the bearing in a horizontal direction. Pushed The wedge member 510 is pushed back to the piezoelectric element 520 fixed to the support 530 is a structure that senses the pressure or load.
이와 같은 구조는 센서가 수직 하방의 힘을 그대로 받게 되면, 센서에 손상을 가져올 수 있게 되고, 복수개의 자리에 센서가 특정 공간을 형성하여 받치고 있는 구조로서, 높은 안정성을 요구하는 테스트 장비의 전체적 강성이 취약해지는 단점이 있지만, 도 6에 나타낸 바와 같이, 쐐기형 부재 압력센서(500)을 이용하여 수직하방의 힘을 수평방향의 힘으로 전환하게 되면, 쐐기형 부재(210) 전면이 시스템을 받치게 되고, 구조의 크기, 형상에 따라 정밀한 압전소자(520)의 변위 범위를 조정할 수 있다는 점에서 높은 정밀도를 가져올 수 있게 된다.Such a structure can damage the sensor if the sensor is subjected to the vertical downward force, and the sensor is formed by supporting a certain space in a plurality of places, and the overall rigidity of the test equipment requiring high stability. Although there is a disadvantage in that this weakness, as shown in Figure 6, by using the wedge-shaped member pressure sensor 500 when the vertical downward force is converted into a horizontal force, the front of the wedge-shaped member 210 receives the system In this regard, the precise displacement range of the piezoelectric element 520 can be adjusted according to the size and shape of the structure, thereby bringing high precision.
도 7은 도 6에서 예시된 발명이 프로빙 압력의 전환 모식도와(도 7의 (a)), 센서의 배치구조를 예시한(도 7의 (b)) 도면이다. 도 7에 나타낸 바와 같이, 접촉하중이 수직방향을 어느 하나의 센서에 가하게 되면, 쐐기형 부재(510)가 베어링에 미끌림에 의해 측면으로 밀려나가게 되고, 이와 연결된 지지대(530)에 고정된 압전소자(520)가 수평방향으로 전환된 압력을 받아 센싱하게 된다. (도 7의 (a))FIG. 7 is a diagram illustrating a switching schematic diagram of probing pressure (FIG. 7A) and an arrangement structure of a sensor (FIG. 7B) according to the invention illustrated in FIG. 6. As shown in FIG. 7, when the contact load is applied to one of the sensors in the vertical direction, the wedge-shaped member 510 is pushed out to the side by sliding the bearing, and the piezoelectric element fixed to the support 530 connected thereto is connected. 520 is sensed by receiving the pressure converted in the horizontal direction. (FIG. 7A)
그리고, 센서의 배치구조는 Z축 베이스(49)와 XY 스테이지(55) 사이에 놓이고, 4개의 가장자리에 배치하는데, 이는 상술한 것처럼, 일괄 접촉뿐만 아니라, 부분 접촉을 하는 경우에도 정확하게 측정하기 위한 것이고, 접촉분포를 보다 정밀하게 측정하기 위한 것이다. 4개의 가장자리에 쐐기부재(510)가 설치되고, 쐐기부재(510)가 지지대(530)에 고정된 압전소자(520)와 연결함으로써, 수직하방의 압력을 수평방향의 압력으로 전환하여 측정하는 센싱 구조를 형성하게 된다. 강성을 보완하고, 보다 정밀한 측정을 제공할 수 있게 된다.(도 7의 (b))In addition, the arrangement of the sensor lies between the Z-axis base 49 and the XY stage 55 and is disposed at four edges, which, as described above, accurately measure not only the batch contact but also the partial contact. To measure the contact distribution more precisely. The wedge member 510 is installed at four edges, and the wedge member 510 is connected to the piezoelectric element 520 fixed to the support 530, thereby sensing the pressure by converting the vertical downward pressure into the horizontal pressure. To form a structure. It is possible to supplement the stiffness and to provide more accurate measurement (Fig. 7 (b)).
이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.While the invention has been shown and described in connection with specific embodiments thereof, it will be understood that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims. Anyone who owns it can easily find out.
상술한 바와 같이, 본 발명은 웨이퍼에 접촉되는 프로브 니들의 접촉점을 보다 정확하게 측정하고, 이러한 접촉점의 분포에 따라 척 플레이트의 기울기를 계산하고 평행도를 재조정하여 균일하고 정밀한 프로빙이 가능하도록 하며, 오버드라이빙을 적절히 제어할 수 있을 뿐만 아니라, 오버드라이빙에 따른 접촉점 분포의 변화를 측정하여 프로브 니들의 상태 등을 체크 할 수 있는 장치를 제공하고자 한다는 점에서 산업상 이용가능성이 있다.As described above, the present invention more accurately measures the contact point of the probe needle in contact with the wafer, calculate the inclination of the chuck plate according to the distribution of the contact point and readjust the parallelism to enable uniform and precise probing, overdriving In addition, the present invention has industrial applicability in that it is possible to provide a device that can check the state of the probe needle by measuring the change of contact point distribution due to overdriving as well as appropriately.

Claims (10)

  1. 웨이퍼 프로버에 있어서,In wafer prober,
    웨이퍼를 안착하는 척 플레이트;A chuck plate for seating a wafer;
    상기 척플레이트 상면에 장착되고, 상기 안착되는 웨이퍼 하부에 위치하는 터치패드;A touch pad mounted on an upper surface of the chuck plate and positioned below the seated wafer;
    상기 척 플레이트를 Z축으로 방향으로 이송하는 Z축 이송장치를 지지하는 Z축 베이스; Z-axis base for supporting the Z-axis feeder for transferring the chuck plate in the Z-axis direction;
    상기 Z축 베이스의 하면에 결착되어 상기 척 플레이트를 XY축으로 이송하는 XY 스테이지; 및An XY stage which is attached to a lower surface of the Z axis base and transfers the chuck plate to the XY axis; And
    프로브 카드의 설치된 프로브 니들이 상기 웨이퍼를 접촉하는 경우, 상기 터치패드가 측정한 상기 프로브 니들의 위치신호를 받아 상기 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치를 포함하는 것을 특징으로 하는 웨이퍼 프로버.And a control device for controlling the driving of the Z-axis feeder and the XY stage feeder by receiving a position signal of the probe needle measured by the touch pad when the probe needle installed on the probe card contacts the wafer. Wafer prober.
  2. 제1항에 있어서,The method of claim 1,
    상기 터치패드는 용량성(capacitive), 저항성(resistive), 광센서 및 초음파 반사 방식 중 어느 하나인 것을 특징으로 하는 웨이퍼 프로버.The touch pad is a wafer prober, characterized in that any one of capacitive, resistive, optical sensor and ultrasonic reflection method.
  3. 제1항에 있어서,The method of claim 1,
    상기 척 플레이트 하부에 상기 프로브 니들의 프로빙 압력을 측정하기 위한 압력센서 또는 로드셀이 구비된 것을 특징으로 하는 웨이퍼 프로버.And a pressure sensor or a load cell for measuring the probing pressure of the probe needle under the chuck plate.
  4. 제1항에 있어서,The method of claim 1,
    상기 척 플레이트의 경사를 조정할 수 있는 적어도 3개의 압전 엑츄에이터가 상기 척 플레이트 하부에 배열되고, 상기 압전 엑츄에이터는 상기 터치패드에서 측정된 프로브 니들의 접촉분포를 통해 상기 척 플레이트 기울기를 측정하여, 상기 프로브 니들의 평면과 상기 척 플레이트의 평면이 평행하도록 제어하는 신호를 상기 제어장치로부터 받아 상기 척 플레이트의 경사를 조정하는 것을 특징으로 하는 웨이퍼 프로버.At least three piezoelectric actuators capable of adjusting the inclination of the chuck plate are arranged under the chuck plate, and the piezoelectric actuator measures the tilt of the chuck plate through the contact distribution of the probe needles measured by the touchpad, And a signal for controlling the plane of the needle and the plane of the chuck plate to be parallel to the wafer prober, wherein the inclination of the chuck plate is adjusted.
  5. 웨이퍼 프로버에 있어서,In wafer prober,
    웨이퍼를 안착하는 척 플레이트;A chuck plate for seating a wafer;
    상기 척플레이트 상면에 장착되고, 상기 안착되는 웨이퍼 하부에 위치하는 터치패드;A touch pad mounted on an upper surface of the chuck plate and positioned below the seated wafer;
    상기 척 플레이트를 Z축으로 방향으로 이송하는 Z축 이송장치를 지지하는 Z축 베이스; Z-axis base for supporting the Z-axis feeder for transferring the chuck plate in the Z-axis direction;
    상기 Z축 베이스의 하면에 결착되어 상기 척 플레이트를 XY축으로 이송하는 XY 스테이지; An XY stage which is attached to a lower surface of the Z axis base and transfers the chuck plate to the XY axis;
    상기 Z축 베이스와 상기 XY 스테이지의 사이에 미리 정해둔 위치들에 설치되어 압력을 센싱하는 복수개의 센서;A plurality of sensors installed at predetermined positions between the Z-axis base and the XY stage to sense pressure;
    상기 웨이퍼 프로버의 초기 설치시의 상기 다수의 센서의 센싱값을 초기 설Initially set the sensing values of the plurality of sensors when the wafer prober is initially installed.
    정값으로 저장하고, 상기 프로브 니들이 상기 웨이퍼를 접촉하는 경우, 상기 다수의 센서로부터의 센싱값과 상기 초기 설정값의 차이값을 토대로 상기 Z축에 대한 외부압력을 산출하고, 상기 산출된 외부압력과 상기 터치패드가 측정한 상기 프로브 니들의 위치신호를 받아 상기 Z축 이송장치 및 XY스테이지 이송장치의 구동을 제어하는 제어장치를 포함하는 것을 특징으로 하는 웨이퍼 프로버.When the probe needle contacts the wafer when the probe needle contacts the wafer, an external pressure on the Z axis is calculated based on a difference between the sensing values from the plurality of sensors and the initial set value, and the calculated external pressure And a controller for receiving the position signal of the probe needle measured by the touch pad to control driving of the Z axis feeder and the XY stage feeder.
  6. 제5항에 있어서,The method of claim 5,
    상기 센서는 로드셀, 피에조 센서, 스트레인 게이지 및 커패시터 센서 중 어느 하나인 것을 특징으로 하는 웨이퍼 프로버.The sensor is a wafer prober, characterized in that any one of the load cell, piezo sensor, strain gauge and capacitor sensor.
  7. 제5항에 있어서,The method of claim 5,
    상기 복수개의 센서는 상기 Z축 베이스와 상기 XY 스테이지 사이 중 네 가장자리에 설치되는 것을 특징으로 하는 웨이퍼 프로버.And the plurality of sensors are installed at four edges between the Z axis base and the XY stage.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 복수개의 센서는 삼각 미끄럼 형태의 지지부재를 베어링 또는 쐐기 형태로 측면에 연결하고, 상기 지지부재와 외부로 연결된 압전소자에 의해 수직 하방의 힘이 수평 방향의 힘으로 전환되는 압력을 측정하는 것을 특징으로 하는 웨이퍼 프로버.The plurality of sensors are connected to the support member of the triangular sliding form to the side in the form of a bearing or wedge, and measuring the pressure that the vertical downward force is converted into a horizontal force by the piezoelectric element connected to the support member to the outside Wafer prober characterized by the above-mentioned.
  9. 제5항에 있어서,The method of claim 5,
    상기 터치패드는 용량성(capacitive), 저항성(resistive), 광센서 및 초음파 반사 방식 중 어느 하나인 것을 특징으로 하는 웨이퍼 프로버.The touch pad is a wafer prober, characterized in that any one of capacitive, resistive, optical sensor and ultrasonic reflection method.
  10. 제6항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 6 to 9,
    상기 척 플레이트의 경사를 조정할 수 있는 적어도 3개의 압전 엑츄에이터가 상기 척 플레이트 하부에 배열되고, 상기 압전 엑츄에이터는 상기 터치패드에서 측정된 프로브 니들의 접촉분포를 통해 상기 척 플레이트 기울기를 측정하여, 상기 프로브 니들의 평면과 상기 척 플레이트의 평면이 평행하도록 제어하는 신호를 상기 제어장치로부터 받아 상기 척 플레이트의 경사를 조정하는 것을 특징으로 하는 웨이퍼 프로버.At least three piezoelectric actuators capable of adjusting the inclination of the chuck plate are arranged under the chuck plate, and the piezoelectric actuator measures the tilt of the chuck plate through the contact distribution of the probe needles measured by the touchpad, And a signal for controlling the plane of the needle and the plane of the chuck plate to be parallel to the wafer prober, wherein the inclination of the chuck plate is adjusted.
PCT/KR2009/006878 2009-11-23 2009-11-23 Wafer prober using a touch pad WO2011062312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/006878 WO2011062312A1 (en) 2009-11-23 2009-11-23 Wafer prober using a touch pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/006878 WO2011062312A1 (en) 2009-11-23 2009-11-23 Wafer prober using a touch pad

Publications (1)

Publication Number Publication Date
WO2011062312A1 true WO2011062312A1 (en) 2011-05-26

Family

ID=44059777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006878 WO2011062312A1 (en) 2009-11-23 2009-11-23 Wafer prober using a touch pad

Country Status (1)

Country Link
WO (1) WO2011062312A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435928A (en) * 2011-10-28 2012-05-02 上海宏力半导体制造有限公司 Wafer testing device and corresponding wafer testing method
US10082526B1 (en) 2017-07-14 2018-09-25 International Business Machines Corporation Probe card alignment
US10082419B1 (en) 2017-07-14 2018-09-25 International Business Machines Corporation Adjustable load transmitter
CN109425813A (en) * 2017-08-18 2019-03-05 中华精测科技股份有限公司 Detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231018A (en) * 1993-08-25 1995-08-29 Tokyo Electron Ltd Probe apparatus
JPH10150081A (en) * 1996-11-15 1998-06-02 Tokyo Seimitsu Co Ltd Probing method and prober
KR100495847B1 (en) * 2000-05-31 2005-06-17 가부시키가이샤 어드밴티스트 Probe contact system having planarity adjustment mechanism
KR20070085122A (en) * 2004-05-20 2007-08-27 나노넥서스, 인코포레이티드 High density interconnect system having rapid fabrication cycle
KR100754543B1 (en) * 2002-08-23 2007-09-04 동경 엘렉트론 주식회사 Probe apparatus
KR20080093408A (en) * 2006-01-18 2008-10-21 일렉트로글라스, 인코포레이티드 Methods and apparatuses for improved positioning in a probing system
KR20090053737A (en) * 2007-11-22 2009-05-27 도쿄엘렉트론가부시키가이샤 Inspection apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231018A (en) * 1993-08-25 1995-08-29 Tokyo Electron Ltd Probe apparatus
JPH10150081A (en) * 1996-11-15 1998-06-02 Tokyo Seimitsu Co Ltd Probing method and prober
KR100495847B1 (en) * 2000-05-31 2005-06-17 가부시키가이샤 어드밴티스트 Probe contact system having planarity adjustment mechanism
KR100754543B1 (en) * 2002-08-23 2007-09-04 동경 엘렉트론 주식회사 Probe apparatus
KR20070085122A (en) * 2004-05-20 2007-08-27 나노넥서스, 인코포레이티드 High density interconnect system having rapid fabrication cycle
KR20080093408A (en) * 2006-01-18 2008-10-21 일렉트로글라스, 인코포레이티드 Methods and apparatuses for improved positioning in a probing system
KR20090053737A (en) * 2007-11-22 2009-05-27 도쿄엘렉트론가부시키가이샤 Inspection apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435928A (en) * 2011-10-28 2012-05-02 上海宏力半导体制造有限公司 Wafer testing device and corresponding wafer testing method
US10082526B1 (en) 2017-07-14 2018-09-25 International Business Machines Corporation Probe card alignment
US10082419B1 (en) 2017-07-14 2018-09-25 International Business Machines Corporation Adjustable load transmitter
US10146144B1 (en) 2017-07-14 2018-12-04 International Business Machines Corporation Adjustable load transmitter
US10345136B2 (en) 2017-07-14 2019-07-09 International Business Machines Corporation Adjustable load transmitter
US10422817B2 (en) 2017-07-14 2019-09-24 International Business Machines Corporation Probe card alignment
US10527649B2 (en) 2017-07-14 2020-01-07 International Business Machines Corporation Probe card alignment
US10605649B2 (en) 2017-07-14 2020-03-31 International Business Machines Corporation Adjustable load transmitter
US10955440B2 (en) 2017-07-14 2021-03-23 International Business Machines Corporation Probe card alignment
CN109425813A (en) * 2017-08-18 2019-03-05 中华精测科技股份有限公司 Detection device

Similar Documents

Publication Publication Date Title
CN101151540B (en) Microstructure probe card, and microstructure inspecting device and method
WO2010082795A2 (en) Input device
US7196694B2 (en) Force sensors and touch panels using same
KR101691278B1 (en) Moment compensated bending beam sensor for load measurement on platform supported by bending beams
CN101271145B (en) Inspection apparatus and method
US20120247226A1 (en) Sheet-like tactile sensor system
WO2017146312A1 (en) Force sensor using displacement amplification mechanism and weighing device comprising same
WO2011062312A1 (en) Wafer prober using a touch pad
KR20070071345A (en) A testing apparatus of touch screen panel and testing method thereof
CN101655539A (en) Method and device for forming a temporary electrical contact to a solar cell
KR20040111634A (en) Calibration of force based touch panel systems
KR20110083196A (en) Inspection apparatus of touch panel
CN104823138A (en) Pressure-sensitive touch screen and touch display screen and electronic device
KR20020001708A (en) Sensor and circuit architecture for three axis strain gauge pointing device and force transducer
KR20100095189A (en) Inspection apparatus of touch panel
KR20130131901A (en) Touch sensing apparatus using identifying group and method thereof
WO2016090654A1 (en) Terminal, touch detection method, and embedded display screen having touch function
WO2011145877A2 (en) Touch sensor testing apparatus
WO2018155775A1 (en) Thickness meter for battery material
KR20080098087A (en) Inspection apparatus of a circuit substrate
JP5752001B2 (en) Touch panel inspection device
KR101089225B1 (en) Wafer prober station being capable of measuring and controlling pressure of upper plate
CN103033719A (en) Non-contact type probe
WO2009136777A2 (en) Resilient body for measuring loads, and a non-contact load-measuring device employing the same
WO2011105779A2 (en) Touch sensor testing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851497

Country of ref document: EP

Kind code of ref document: A1