WO2011062098A1 - Distance measuring apparatus - Google Patents

Distance measuring apparatus Download PDF

Info

Publication number
WO2011062098A1
WO2011062098A1 PCT/JP2010/069995 JP2010069995W WO2011062098A1 WO 2011062098 A1 WO2011062098 A1 WO 2011062098A1 JP 2010069995 W JP2010069995 W JP 2010069995W WO 2011062098 A1 WO2011062098 A1 WO 2011062098A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
distance
distance measurement
transmitting
transmission
Prior art date
Application number
PCT/JP2010/069995
Other languages
French (fr)
Japanese (ja)
Inventor
実則 河野
保憲 武内
公則 河野
Original Assignee
中国電力株式会社
有限会社 アール・シー・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 有限会社 アール・シー・エス filed Critical 中国電力株式会社
Priority to JP2011541893A priority Critical patent/JP5340414B2/en
Publication of WO2011062098A1 publication Critical patent/WO2011062098A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement

Definitions

  • the first transmitter / receiver and the second transmitter / receiver communicate with each other in a time-sharing manner using a single radio frequency so that the distance between them can be accurately determined. It is related with the distance measuring device which can be measured by.
  • FIG. 10 shows an example of a conventional “distance measuring device” described in Japanese Patent Laid-Open No. 2008-304192.
  • the transmitter 1 at the position B transmits a transmission signal modulated by the reference signal
  • the relay 2 at the position A that receives the signal transmits a relay signal whose frequency has been converted.
  • the distance measuring device 3 at the position C receives both the transmission signal of the transmitter 1 and the relay signal of the relay device 2, demodulates the original reference signal, detects the phase difference, and thereby determines the distance x and the distance y. It is supposed to be calculated.
  • the repeater 2 is a simultaneous transmission / reception method in which the frequency is converted, and it is necessary to install the repeater 2 separately from the transmitter 1, and is not applicable when the repeater 2 is a time division method, or the repeater There is a problem that distance measurement cannot be performed in a place where 2 is not installed.
  • the outgoing radio wave OE is transmitted from the central station 1 to the passive end 2, and the phase modulation circuit 20 at the passive end 2 modulates the synthesized signal SI of the outgoing radio wave OE and has two phase states.
  • the modulated signal SM is transmitted again with the rhythm of the clock signal CL.
  • the modulation signal SM is demodulated into two signals that are out of phase by a quarter period.
  • the increment or decrement of the count value of the bi-directional counter of the digital processing circuit 12 based on the product of the two signals that are out of phase by a quarter period and the sign of the module difference in the rectified quarter period out of phase signal. Minutes are counted, and this count value indicates the distance d from the central station 1 to the passive end 2.
  • the PN code generation unit 11 selects an optimal code sequence based on the approximate distance value of the artificial satellite 17 to generate a transmission PN code of the code sequence.
  • the signal is transmitted to the artificial satellite, the folded signal is received, the received PN code is selected from the optimum code series based on the approximate distance value, and the artificial satellite 17 is determined from the selected received PN code and transmitted PN code. It is said that it is comprised so that the distance of may be measured.
  • a carrier wave having a frequency f1 is QPSK-modulated and transmitted from a first transceiver 1000 to a second transceiver 2000 by a rectangular wave DT having a frequency f1 / MN.
  • the second transceiver 2000 reproduces the carrier wave by the Costas loop and demodulates the rectangular wave D2. Thereafter, a carrier wave having a frequency f2 ( ⁇ f1) is generated, and the carrier wave having the frequency f2 is QPSK-modulated with the demodulated rectangular wave, and transmitted back from the second transceiver 2000 to the first transceiver 1000.
  • the first transmitter / receiver 1000 demodulates the rectangular wave DR having the frequency f1 / MN from here.
  • the rectangular wave DR is multiplied by M to detect a phase difference from the 1 / N frequency divider 14 that is an input of the 1 / M frequency divider 15 that generates the rectangular wave DT.
  • the propagation phase difference is said to be a time difference in which radio waves have passed through twice the distance from the first transceiver 1000 to the second transceiver 2000.
  • the first transmitter / receiver 1000 and the second transmitter / receiver 2000 need to transmit and receive at different frequencies, and cannot be applied when communicating in a time-division manner, resulting in an expensive problem.
  • the present invention has been made to solve the above-described problems, and uses a single radio frequency between the first transmitting / receiving unit and the second transmitting / receiving unit in a time-sharing manner.
  • An object of the present invention is to provide a distance measuring device that can measure the distance between each other with high accuracy and in a short time by performing communication between them.
  • a radio signal including at least an origin signal is transmitted from the first transmitting / receiving unit in a time-division simultaneous transmission / reception and intermittently transmitted as a burst signal, and the second transmitting / receiving unit receives the radio signal. Then, the origin signal is reproduced from the received radio signal, the synchronous oscillation means is synchronized with the reproduced origin signal to generate a distance measurement signal, and the radio signal including the generated distance measurement signal is generated as the first origination / reception means.
  • the second transmitting / receiving means using a clock signal that is synchronized with or orthogonal to the starting signal generated in the first station in the first transmitting / receiving means.
  • the first transmission / reception unit generates a second distance measurement signal by synchronizing the synchronous oscillation unit with the first distance measurement signal received from the second transmission / reception unit, and generates the second distance measurement signal.
  • a radio signal including a distance measurement signal is transmitted to the second transmitter / receiver as a burst signal at a time-division interval, and the second transmitter / receiver synchronizes with the first distance measurement signal.
  • the distance between each other is calculated in a short time and with high accuracy. be able to.
  • the distance measuring device of the present invention by performing communication between the first transmitting / receiving unit and the second transmitting / receiving unit by a burst signal using a single radio frequency, there is an advantage that the distance between each other can be calculated in a short time and with high accuracy by an inexpensive apparatus.
  • the distance measuring apparatus is an ultrasonic signal, a high frequency signal or an optical signal as shown in FIGS. 1, 2, 3 and 1 according to the first to third embodiments of the present invention.
  • a distance measuring apparatus that measures a distance using a certain radio signal, a first transmitting / receiving unit 101a and a second transmitting / receiving unit for simultaneously transmitting and receiving the radio signal using a single radio frequency in a time-division manner 101b, the first transmission / reception means and the second transmission / reception means at least transmit a radio signal having a single frequency intermittently as a burst signal in a time division manner.
  • Receiving means 13a, 13b for receiving the radio signal and converting it directly or into an intermediate frequency signal or baseband signal, and control means 11a for controlling the transmitting means and receiving means, 11b and antenna switching means 14a and 14b for switching or sharing the antenna or the transmitter / receiver in a time division manner between the transmitting means and the receiving means.
  • the control means 11b of the second transmitting / receiving means includes at least a starting point signal reproducing means 50 for reproducing a starting point signal from a radio signal received by the receiving means 13b, and a rising point and a rising point of the reproduced starting point signal.
  • Synchronization detection means 49 for detecting the timing of the descending point or the zero crossing with high accuracy, and establishing the synchronization with the starting signal with high accuracy and in a short time, and after the starting signal disappears
  • Synchronous oscillation means 48 for generating a clock signal while maintaining synchronization for a long time, and a distance measurement signal synchronized with or orthogonal to the generated clock signal is generated and transmitted as a radio signal from the transmission means 12b.
  • a distance measurement signal generation means 47 for controlling the control means 11a of the first transmission / reception means, at least a system synchronization signal, an identification signal, and a starting point signal Starting signal generating means 45 for generating a signal, distance measuring signal reproducing means 44 for reproducing a distance measuring signal from a radio signal received by the receiving means 13a, and reproduction based on the generated starting signal. From the phase measurement unit 43 for measuring the phase of the measured distance measurement signal with high accuracy and the phase of the measured distance measurement signal, the relative distance between the second transmission / reception unit is calculated with high accuracy. And a distance calculating means 42 for
  • the second transmitting / receiving unit includes a distance measurement signal synchronized with the received starting point signal with high accuracy when intermittently transmitting a radio signal including the starting point signal as a burst signal from the first transmitting / receiving unit.
  • a radio signal is transmitted at time-division intervals, and the first transmission / reception unit reproduces a distance measurement signal transmitted from the second transmission / reception unit, and uses the clock signal synchronized with the origin signal.
  • the phase of the reproduced distance measurement signal is measured, and the relative distance between the first transmitting / receiving unit and the second transmitting / receiving unit is increased in a short time in the first transmitting / receiving unit. It can be calculated with accuracy.
  • the distance is measured using a radio signal which is an ultrasonic signal, a high frequency signal or an optical signal.
  • the distance measuring device includes a first transmitting / receiving unit 101a and a second transmitting / receiving unit 101b for simultaneously transmitting and receiving the radio signal using a single radio frequency.
  • the first transmitting / receiving means and the second transmitting / receiving means at least transmit means 12a, 12b for intermittently transmitting a radio signal of a single frequency as a burst signal in a time division manner, and the radio signal Receiving means 13a, 13b for receiving and converting directly or into an intermediate frequency signal or baseband signal, control means 11a, 11b for controlling the transmitting means and receiving means, and the transmitting means and receiving means Antenna switching means 14a and 14b for switching or sharing the antenna or the transmitter / receiver in a time division manner.
  • the synchronous oscillation means 46 for generating the clock signal while maintaining synchronization for a relatively long time, and the generated origin signal, Based on the distance measurement signal or both of them, the phase measurement means 43 for measuring the phase of the reproduced distance measurement signal in real time with high accuracy, and the phase of the measured distance measurement signal, A distance calculating means for calculating a relative distance between the first transmitting / receiving means and the second transmitting / receiving means;
  • the second transmission / reception means when intermittently transmitting at least a radio signal including a start signal as a burst signal from the first transmission / reception means, a first distance measurement synchronized with the received start signal with high accuracy.
  • a radio signal including a signal is transmitted, and the first transmission / reception unit reproduces the first distance measurement signal transmitted from the second transmission / reception unit, and uses a clock signal synchronized with the origin signal.
  • the phase of the reproduced first distance measurement signal is measured to calculate the distance between the first transmission / reception means and the second transmission / reception means, and at least the first distance measurement signal
  • a radio signal including a second distance measurement signal synchronized with high accuracy is transmitted, and the second transmission / reception means reproduces the second distance measurement signal transmitted from the first transmission / reception means, Same as the first distance measurement signal Measuring the phase of the second distance measurement signal using the clock signal thus obtained, and calculating the distance between the second transmission / reception means and the first transmission / reception means.
  • the relative distance between the means and the second transmitter / receiver can be calculated with high accuracy in a short time on both sides of the first transmitter / receiver and the second transmitter / receiver. .
  • the origin signal, the distance measurement signal, or both of them are a single carrier wave, a subcarrier signal, a modulation signal, a spread spectrum code, It is a combination of these.
  • the starting signal, the distance measurement signal, or both of the signals reproduced by the signal reproducing means 44 and 50 are carrier signals or subcarrier signals of radio signals
  • group delay When the signal is passed through a band-pass filter with low distortion, or a modulated signal obtained by modulating a carrier signal or subcarrier signal of a radio signal, an analog demodulator with a small transmission phase error or a transmission phase error using a high-frequency clock signal After being demodulated by a digital demodulator with a small amount, the signal is reproduced through the band-pass filter with a small transmission phase error.
  • the synchronous oscillating means 46 comprises a counter with a set or reset or a numerically controlled oscillator driven by a clock signal generated directly or by converting the output signal of a reference oscillator.
  • the timing of the rising point, the falling point, or the zero crossing point of the starting point signal, the distance measuring signal, or both of them is set to 10 of the frequency of the starting point signal, the distance measuring signal, or both of them.
  • the origin signal, the distance measurement signal, or both Establish synchronization in a short time, and , Distance measurement signal, or even after they are both disappeared to hold a relatively long time period.
  • the synchronization establishment error can be reduced based on the synchronization establishment error function. it can.
  • a seventh aspect of the present invention there are provided a plurality of sets of phase shifting means for shifting the phase of the clock signal, and a plurality of sets of the phase shifting, in order to give a synchronization establishment error function to the synchronization detecting means 49.
  • Timing control means for selecting and outputting to the outside a plurality of sets of origin signals, distance measurement signals, or both of which are shifted to different phases by the means, and the amount of phase shift of the phase shift means By setting the sum larger than the interval of one cycle of the clock signal, the distance calculation accuracy is improved.
  • a plurality of sets of counters or a plurality of sets of numerically controlled oscillators are provided, and the plurality of sets of counters or a plurality of sets of counters
  • the numerically controlled oscillator establishes synchronization at different timings detected by the synchronization detecting means, and selects output signals output from the plural sets of counters or plural sets of numerically controlled oscillators at different timings,
  • the signal processing means of the first transmitting / receiving means a single or a plurality of distance measurement signals synchronized with or orthogonal to the selected output signal are generated and transmitted to the first transmitting / receiving means.
  • the synchronous oscillating means 46 includes an analog or digital delay means and a changeover switch for disconnecting or connecting between the input terminal and the output terminal of the delay means.
  • disconnect the changeover switch When reading the starting signal, disconnect the changeover switch, connect the input terminal and output terminal in a ring shape after reading, and disconnect the changeover switch when reading.
  • the delay time of the delay means required for the time interval for transmission / reception is shortened.
  • the phase measuring unit 43 uses the origin signal, the distance measurement signal, or an integer multiple or a fraction of the frequency of both as a clock signal, and a Sin look-up.
  • the up table is 0, 1, 0, -1, or 1, 1, -1, -1, or a repetition thereof
  • the Cos lookup table is 1, 0, -1, 0 or 1, -1, ⁇ 1, 1 or a repetition of these, and multiplication of ⁇ 1 is performed by a product-sum operation unit for obtaining a complement when performing a product-sum operation of the distance measurement signal and the lookup table.
  • the phase measuring unit 43 measures a phase by dividing a section that is an integer multiple of one cycle of the distance measurement signal, or a plurality of sections that are an integer multiple of one cycle or more.
  • the phase is measured by dividing into sections and the average value is obtained, or the phase is measured by setting a window frame function having a length equal to or larger than an integral multiple of one period.
  • the receiving means 13a of the first transmitting / receiving means, the receiving means 13b of the second transmitting / receiving means, or both of them detects the quality of the propagation path 31.
  • the quality detection means analyzes the line quality from the result of measuring the power or signal-to-noise ratio of the radio signal received by the receiving means 13a and 13b, and the phase measuring means uses the phase or The distance measurement accuracy is analyzed from the phase difference measurement result, or both the line quality analysis and the distance measurement accuracy analysis are performed, and the result of the distance measurement process is corrected or supplemented.
  • the first transmitting / receiving unit, the second transmitting / receiving unit, or both of them are provided with a plurality of antennas or a plurality of transducers while periodically switching them.
  • a signal is transmitted or received, and the quality detection means measures the phase of a plurality of distance measurement signals corresponding to the plurality of antennas or the plurality of transducers, or calculates a plurality of distances from the statistical result. Processing is performed, and the result of the distance measurement process is corrected or complemented by selecting and averaging the results of the phase measurement less than or equal to the predetermined value or the distance being less than or equal to the predetermined value.
  • the transmission and reception is performed continuously, intermittently, or both a plurality of times, The distance is calculated a plurality of times, and an average value is obtained from the calculation results of the plurality of times, thereby calculating the relative distance between each other with high accuracy.
  • the first transmitting / receiving unit, the second transmitting / receiving unit, or both of these antennas or transducers have a circular polarization having a wide directional beam width of 60 ° or more.
  • a wave directivity antenna is provided between the second transmitting / receiving means and the first transmitting / receiving means so as to face each other in the direction of directivity toward the other party of bidirectional communication.
  • FIG. 1 is a configuration diagram of a distance measuring apparatus according to a first embodiment of the present invention.
  • 101a is a first transmission / reception means
  • 101b is a second transmission / reception means
  • 11a and 11b are control means
  • 12a and 12b are transmission means
  • 13a and 13b are reception means
  • 14a and 14b are antenna switching means.
  • 15a and 15b are antennas or transducers
  • 31 is a wireless propagation path.
  • the first transmitting / receiving unit 101a and the second transmitting / receiving unit 101b use a radio signal of a single frequency, perform bidirectional communication via the propagation path 31 by time-division simultaneous communication, and Measure distance.
  • the first transmitting / receiving means, the second transmitting / receiving means, or both of these antennas or transducers are circularly polarized directional antennas having a wide directional beam width of 60 ° or more, and The distance measurement accuracy can be improved by providing the directivity direction between the two transmission / reception means and the first transmission / reception means so as to face each other toward the other party of the bidirectional communication. .
  • FIG. 2 is a block diagram of the control means according to the second embodiment of the present invention.
  • 41 is a reference oscillator
  • 42 is distance calculation means
  • 43 is phase measurement means
  • 44 is distance measurement signal regeneration means
  • 45 is a starting point signal generating means
  • 51a and 52a are connection terminals.
  • the signal generation means 45 causes at least the system synchronization signal 61, the Mac layer 62, and the starting signal 63 of a single frequency or a plurality of frequencies within the frequency range permitted by the law, as shown in FIG. Is generated and supplied to the transmission means 12a of the first transmission / reception means 101a through the connection terminal 51a.
  • the starting point signal is also supplied to the phase measuring means 43 as a clock signal for phase measurement.
  • a radio signal transmitted from the second transmitting / receiving unit 101b and received by the receiving unit 13a of the first transmitting / receiving unit 101a is converted directly or into an intermediate frequency signal or a baseband signal, and connected to the connection terminal 52a.
  • a band-pass filter for example, a Gaussian filter or the like
  • the distance measurement signal is a modulated signal obtained by modulating a carrier signal or subcarrier signal of a radio signal
  • the band pass after being demodulated by an analog demodulator or a digital demodulator using a high frequency clock signal
  • noise generation included in the distance measurement signal is performed. Was removed, it is possible to reduce the phase measurement error.
  • the reproduced distance measurement signal is supplied to the phase measuring means 43, and an integer multiple or a fraction of an integer frequency of the origin signal generated in the own station is used as a clock signal, and the distance is calculated by a product-sum calculator.
  • the phase of the measurement signal is measured with high accuracy in real time, and the measurement result is output to the distance calculation means 42.
  • the distance calculation means 42 is, for example, a standard micro that is operated by a clock signal supplied from the reference oscillator 41.
  • a processor that calculates a relative distance between the first transmitting / receiving unit 101a and the second transmitting / receiving unit 101b with high accuracy;
  • the product-sum calculator uses at least an integer multiple of the origin signal, the distance measurement signal, or both frequencies as a clock signal, and the distance measurement signal is, for example, an analog / digital of 8 bits or more.
  • the digital signal is converted into a digital signal by a converter, and a product-sum operation is performed on the digital signal and the Sin and Cos lookup tables.
  • the Sin lookup table used to detect the phase is 0, 1, 0.
  • the product-sum operation circuit can be simplified, can be realized with only the logic circuit, and can be realized at high speed in real time. Calculation is possible.
  • the phase is measured by dividing a section of an integer multiple of one cycle of the distance measurement signal, or the phase is measured by dividing a section of an integer multiple of one cycle into a plurality of sections, or an average value is obtained, or Measure the phase by setting a window frame function with a length greater than or equal to an integral multiple of one period, and if necessary, determine the average value and / or determine the moving average value during multiple intermittent transmissions
  • the phase can be measured with an accuracy of about ⁇ 0.5 ° and in real time.
  • FIG. 3 is a block diagram of the control means according to the third embodiment of the present invention.
  • 50 is a starting point signal reproducing means
  • 49 is a synchronization detecting means
  • 47 is a distance measurement signal generating means
  • 46 is a synchronous oscillation.
  • Means 41 is a reference oscillator
  • 48 is a phase-locked oscillator
  • 51b and 52b are connection terminals.
  • the starting point signal received by the receiving means 13b of the second transmitting / receiving means 101b is converted directly or into an intermediate frequency signal or a baseband signal and connected to the starting point signal reproducing means 50 via the connection terminal 51b.
  • the origin signal reproducing means 50 when the origin signal is a carrier signal or subcarrier signal of a radio signal, a direct band pass filter (for example, a Gaussian band pass filter or the like) with a small transmission phase error is passed, or
  • a direct band pass filter for example, a Gaussian band pass filter or the like
  • the starting signal is a modulated signal obtained by modulating a carrier signal or subcarrier signal of a radio signal
  • it is demodulated by an analog demodulator with a small transmission phase error or a digital demodulator with a small transmission phase error using a high-frequency clock signal And then regenerate through the bandpass filter.
  • the regenerated starting point signal is directly supplied from the reference oscillator 41 by the synchronization detecting means 49 or sampled by the clock signal supplied after being converted to a high frequency by the phase synchronous oscillator 48, and the rising point of the starting point signal, The timing of the falling point or the zero crossing point is detected and supplied to the synchronous oscillation means 46 as a set or reset signal or an external synchronization signal.
  • the detection accuracy of the synchronization signal is ⁇ 10 nanoseconds
  • the frequency of the distance measurement signal is 1 MHz.
  • the accuracy is ⁇ 75 cm. If a clock signal of 256 MHz is used for higher accuracy, the distance measurement accuracy is ⁇ 30 cm.
  • the frequency of the clock signal is set to a frequency that is 10 times or more that of the distance measurement signal.
  • the synchronous oscillation means 46 is constituted by a synchronous or asynchronous counter with a set or reset or a numerically controlled oscillator driven by a clock signal supplied from the phase synchronous oscillator 48, and the set or reset signal.
  • the synchronization can be established in an instant within a few microseconds, and even if the starting signal disappears, the advantage that synchronization can be maintained for a relatively long time is obtained. .
  • the clock signal supplied to the synchronization detection means 49 and the synchronization oscillation means 46 is supplied from the reference oscillator 41 directly or after being converted to a high frequency.
  • the output signal from the synchronous oscillating means 46 is output by the distance measurement signal generating means 47 by a single frequency or a plurality of different carrier frequencies, subcarrier signals, modulated signals, spread spectrum codes, or any combination thereof. And is supplied to the transmission means 12b of the second transmission / reception means 101b via the connection terminal 52b.
  • the distance measurement signals are a plurality of distance measurement signals that are synchronized or orthogonal and have at least different frequencies, it is possible to change the range for measuring the distance, from the rough distance measurement to the fine distance measurement. It becomes possible to switch to and measure.
  • FIG. 4 is a block diagram of the control means according to the fourth embodiment of the present invention.
  • 11c is the control means
  • 41 is the reference oscillator
  • 42 is the distance calculation means
  • 43 is the phase measurement means
  • 44 is the distance.
  • Measurement signal reproduction means 45, origin signal generation means 46, synchronization oscillator 46, distance measurement signal generation means 47, phase synchronization oscillator 48, synchronization detection means 50, origin signal regeneration means 51c, 52c are connection terminals It is.
  • control means 11c is configured to have both the control means 11a and the control means 11b, and can be commonly used for the first transmission / reception means and the second transmission / reception means.
  • the origin signal generator 45 synchronizes with the reference oscillator 41, and at least a system synchronization signal 61, a Mac layer 62, and a frequency range allowed by law.
  • Starting signals 63-1 to 63-n having one or a plurality of frequencies are generated and supplied to the transmitting means 12a and 12b shown in FIG. 1 via the connection terminal 51c. Among these, the starting signals are used for phase measurement. As a clock signal for this, it is also supplied to the phase measuring means 43 separately.
  • the radio signals received by the receiving means 14a and 14b are converted directly or into an intermediate frequency signal or a baseband signal and supplied to the origin signal reproducing means 44 or the measurement signal reproducing means 50 via the connection terminal 52c.
  • the origin signal, the distance measurement signal, or both of them are a carrier signal or a subcarrier signal of a radio signal, a band-pass filter with a small transmission phase error (for example, a Gaussian band-pass filter) is passed through.
  • an analog demodulator with a small transmission phase error or a digital demodulator with a small transmission phase error using a high frequency clock signal After demodulating, playback through the bandpass filter And it makes it possible to reduce the calculation error of the distance.
  • the distance measurement signal reproduced by the measurement signal reproduction means 44 is supplied to the phase measurement means 43, and the origin signal generated in the own station, the distance measurement signal, or a frequency that is an integral multiple of both frequencies is clocked.
  • the signal is used as a signal, and the phase of the distance measurement signal is measured with high accuracy in real time by a product-sum calculator, and the measurement result is output to the distance calculation means 42.
  • the distance calculation means 42 is, for example, a standard microprocessor that operates according to a clock signal supplied from the reference oscillator 41, and the first transmission / reception means 101a and the second transmission / reception means 101b. The relative distance between is calculated.
  • the product-sum calculator uses, as a clock signal, a frequency that is at least an integer multiple of the frequency of the starting signal, and converts the distance measurement signal into a digital signal by an analog / digital converter of 8 bits or more, for example. Then, a product-sum operation is performed on the distance measurement signal converted into the digital signal and a lookup table of Sin and Cos.
  • the lookup table of Sin used for the product-sum operation is 0, 1, 0, ⁇ 1. Or 1, 1, -1, -1, or an integer multiple of these, while the Cos lookup table is 1, 0, -1, 0, or 1, -1, -1, 1, Alternatively, the multiplication with 1 when performing multiplication and multiplication is the same value as the digital signal, and the multiplication with -1 is the complement of the digital signal. Since the multiplication with 0 is 0, and by combining these, the product-sum operation circuit can be simplified and realized with a logic circuit, so that real-time operation can be performed at high speed. Become.
  • the phase is measured by dividing a section of an integer multiple of one cycle of the distance measurement signal, or the phase is measured by dividing a section of an integer multiple of one cycle into a plurality of sections, or an average value is obtained, or
  • the phase can be measured with an accuracy of ⁇ 0.5 ° and in real time.
  • the distance measurement signal regenerated by the signal regenerating means 44, the starting signal regenerated by the signal regenerating means 50, or both are directly supplied from the reference oscillator 41 by the synchronization detecting means 59, or are phase-synchronized.
  • the signal is supplied to the synchronous oscillation means 46 as a signal or an external synchronization signal.
  • the detection accuracy of the synchronization signal is ⁇ 10 nanoseconds
  • the frequency of the distance measurement signal is 1 MHz.
  • the accuracy is ⁇ 75 cm. If a clock signal of 256 MHz is used for higher accuracy, the distance measurement accuracy is ⁇ 30 cm.
  • the synchronous oscillating means 46 is constituted by a synchronous or asynchronous counter with a set or reset, or a numerically controlled oscillator, and is set or reset by the set or reset signal or an external synchronous signal for several microseconds. Even if the synchronization is established within an instant, and the origin signal disappears, there is an advantage that the synchronization can be maintained for a relatively long time.
  • a digital synthesizer driven by a reference oscillator 41 is used instead of the synchronous oscillation means 46, synchronization with the starting signal is established, and the synchronization is performed for a relatively long time after the starting signal disappears.
  • it takes several hundreds of microseconds to establish synchronization and there are problems such as a large residual phase error after establishing synchronization.
  • the sampling signal supplied to the synchronization detecting means 49 and the clock signal supplied to the synchronous oscillating means 54 have a high frequency directly from the output signal of the reference oscillator 41 or using a phase synchronous oscillator or a multiplier. Generated by converting to.
  • the output signal of the synchronous oscillating means 46 is generated by the distance measurement signal generating means 47 by a single frequency or a plurality of different carrier frequencies, subcarrier signals, modulation signals, spread spectrum codes, or any combination thereof. It is converted into a distance measurement signal and supplied to the transmitting means 12a and 12b via the connection terminal 51c.
  • the distance measurement signals are a plurality of distance measurement signals that are synchronized or orthogonal and have at least different frequencies, it is possible to change the range for measuring the distance, from the rough distance measurement to the fine distance measurement. It becomes possible to switch to and measure.
  • FIG. 5 is a diagram showing a configuration of a radio signal transmitted from the distance measuring device of the present invention.
  • 61 is a system synchronization signal
  • 62 is a MAC layer
  • 63-1 to 63-n are origin signals, distance measurement signals, or both.
  • the system synchronization signal 61 is a multi-bit unique word, and the control timing between the first transmission / reception means 101a and the second transmission / reception means 101b can be matched with an accuracy of about ⁇ 100 nanoseconds. If the relative distance is calculated with such an accuracy, there is a problem that a measurement error of the relative distance becomes as large as several tens of meters.
  • the MAC layer 62 includes at least a code length, an identification number, a partner number, data information, an error correction code, or a combination thereof, and is generated as a set with the system synchronization signal 61.
  • the origin signal, the distance measurement signal, or both are signals for establishing precise synchronization between the first transmission / reception means 101a and the second transmission / reception means 101b.
  • the duration of the MAC layer 62 is about 1 ms and the duration of the origin signal, the distance measurement signal, or both is about 1 ms, the total one-way duration is about 2 ms. Since the interval of intermittent transmission is controlled by a self-excited oscillator such as a CR oscillator, the intermittent transmission can be performed asynchronously without synchronization between a plurality of transmission / reception means. System operation becomes possible.
  • the distance measurement accuracy can be increased to about 10 times, but interference occurs between a plurality of transmitting and receiving means. In order to avoid this, it is necessary to synchronize between a plurality of transmission / reception means, resulting in a disadvantage that the operation cost increases.
  • the plurality of sets of starting point signals or the plurality of sets of distance measurement signals are supplied to the plurality of sets of starting signals 83a by the phase shift means 82 provided for providing a synchronization detection error function.
  • the phase shift means 82 provided for providing a synchronization detection error function.
  • FIG. 6 is a timing chart of the distance measuring device of the present invention.
  • 71a is a starting signal transmitted from the first transmitting / receiving means 101a
  • 71b is a starting signal reproduced by the second transmitting / receiving means 101b
  • 72 is a second transmitting signal from the first transmitting / receiving means.
  • the distance measurement signal 74 is a propagation path through which the distance measurement signal propagates from the second transmission / reception means to the first transmission / reception means, and 77a is an origin signal transmitted from the first transmission / reception means.
  • the phase difference from the distance measurement signal reproduced by the first transmitter / receiver, 78a is the time axis of the transmitter of the first transmitter / receiver, and 78b is the time axis of the receiver of the first transmitter / receiver.
  • 79a is the above The time axis of the receiving means of the second transmitting / receiving means, 79b is the time axis of the transmitting means of the second transmitting / receiving means, and 80a is the transmission time of the second transmitting / receiving means from the timing of transmission of the first transmitting / receiving means. This is the time division interval until the timing.
  • the starting signal 71a transmitted from the first transmitting / receiving means is ASin (2 ⁇ f1t)
  • the starting signal 71a propagates along a propagation path 72 of a distance L (m), and is transmitted by the second transmitting / receiving means.
  • the phase changes to BSin ⁇ 2 ⁇ f1t + (2 ⁇ Lf1 / C) ⁇ .
  • the generated distance measurement signal 73a is also represented by BSin ⁇ 2 ⁇ f1t + (2 ⁇ Lf1 / C) ⁇ .
  • the generated distance measurement signal 73a is transmitted from the second transmission / reception means, propagates again through the propagation path 74 of the distance L (m), and the first transmission / reception is performed.
  • the distance measurement signal 73b reproduced by the means is represented by CSin ⁇ 2 ⁇ f1t + (4 ⁇ Lf1 / C) ⁇ .
  • C is the speed of light.
  • the phase of the reproduced distance measurement signal 73b is measured using a clock signal that is synchronized with or orthogonal to the starting signal 71a generated by the first transmitting / receiving means and whose frequency is an integral multiple of the starting signal.
  • FIG. 7 is another timing chart of the distance measuring apparatus of the present invention, in which 71a is a starting signal transmitted from the first transmitting / receiving means, 71b is a starting signal reproduced by the second transmitting / receiving means, and 72 is A propagation path 73a through which the origin signal 71a propagates from the first transmitter / receiver to the second transmitter / receiver, and 73a is generated in synchronization with the origin signal 71b reproduced by the second transmitter / receiver.
  • 1 is a distance measurement signal
  • 73b is a first distance measurement signal reproduced by the first transmission / reception means
  • 74 is a first distance measurement from the second transmission / reception means toward the first transmission / reception means.
  • the second distance measurement signal reproduced in It is in, 76 is a propagation path through which the second distance measurement signal 75a propagates from the first transmission / reception means to the second transmission / reception means, and 77a is the origin signal 71a transmitted from the first transmission / reception means.
  • the phase difference from the first distance measurement signal 73b reproduced by one transmission / reception means, 77b is reproduced by the first distance measurement signal 73a generated by the second transmission / reception means and the second transmission / reception means.
  • the phase difference from the second distance measurement signal 75b, 78a to 78c are the time axis of the transmission means and reception means of the first transmission / reception means, and 79a to 79c are the transmission means and transmission of the second transmission / reception means.
  • the time axis of the means, 80a and 80b are time division intervals.
  • the starting signal 71a transmitted from the first transmitting / receiving means is ASin (2 ⁇ f1t)
  • the starting signal 71a propagates along a propagation path 72 of a distance L (m), and is transmitted by the second transmitting / receiving means.
  • the phase changes to BSin ⁇ 2 ⁇ f1t + (2 ⁇ Lf1 / C) ⁇ .
  • the generated first distance measurement signal 73a is similarly BSin ⁇ 2 ⁇ f1t + (2 ⁇ Lf1 / C) ⁇ . It is represented by
  • the generated first distance measurement signal 73a is transmitted from the second transmission / reception means, propagates again through the propagation path 74 of the distance L (m), and the first The first distance measurement signal 73b reproduced by the transmitting / receiving means is expressed by CSin ⁇ 2 ⁇ f1t + (4 ⁇ Lf1 / C) ⁇ .
  • C is the speed of light.
  • the second distance measurement signal 75a generated in synchronization with the reproduced first distance measurement signal 73b is sent to the second transmission / reception means 101b.
  • the distance L (m) can be calculated a plurality of times on the first transmitting / receiving means side and the second transmitting / receiving means side. By calculating, the distance calculation accuracy can be increased.
  • the improvement in the calculation accuracy can be additionally realized by changing the synchronization establishment error in the synchronization detection means 49 at random by adding a synchronization establishment error function.
  • FIG. 8 is a block diagram of the synchronization establishment error function generating means of the distance measuring device of the present invention.
  • 41 is a reference oscillator
  • 48 is a phase-locked oscillator
  • 27 is an error function generating means
  • 82 is a phase shifting means
  • 83a to 83n are switching taps of the phase shifting means 82
  • 84 is a switching control means
  • 85, 86 Reference numeral 87 denotes a connection terminal.
  • the output signal from the reference oscillator 41 at the previous stage is converted to a high frequency by the phase-locked oscillator 48 and input to the phase shift means 82 via the connection terminal 85.
  • the phase shift means 82 is constituted by a plurality of stages of shift registers, a plurality of stages of delay elements, or a plurality of stages of delay circuits, and the signal output of each stage is drawn out by the switching taps 83a to 83n.
  • the signals are sequentially switched and output from the connection terminal 86 to the outside (synchronization detection means, synchronous oscillation means, etc.) as a high frequency clock signal.
  • the phase shift amount of each stage of the phase shift means 82 is desirably as small as possible, and the total of the phase shift amounts needs to be one cycle or more of the clock signal. For example, if the frequency of the clock signal is 256 MHz, the phase shift amount of each stage of the phase shift means 82 is 4 nanoseconds or less (for example, 0.4 nanosecond), and the sum of the phase shift amounts is It is necessary to set it to 4 nanoseconds or more (for example, 6.4 nanoseconds).
  • the synchronization establishment accuracy of the synchronous oscillation means 54 is about ⁇ 2 nanoseconds, and the distance measurement range is 150 m when the frequency of the origin signal is 1 MHz.
  • ⁇ 30 cm is the limit, but the phase shift means 82 is provided, the phase shift amount assigned to each stage is 0.4 nanoseconds, and the average value of the calculated distances is determined. The accuracy can be improved to about ⁇ 15 cm.
  • the phase shift means 82 gives a synchronization establishment error function to the synchronous oscillation means 54, and the sum of the synchronization establishment errors generated for each stage of the plurality of stages of taps 83a to 83n is the synchronization establishment error function. Since the synchronization establishment error function can be expressed by a polynomial, the polynomial is set to converge to 0 or a constant value.
  • FIG. 9 is another configuration diagram of the synchronization establishment error function generating means of the distance measuring device of the present invention.
  • 91 and 93 are changeover switches
  • 92a to 92n are a plurality of sets or counters with resets or a plurality of sets of numerically controlled oscillators
  • 94 to 96 are connection terminals.
  • a set or reset signal or a synchronization detection signal detected from the starting point signal, the distance measurement signal, or both of them supplied to the connection terminal 94 is switched by a changeover switch 91, and the plurality of sets of counters or a plurality of sets of The numerically controlled oscillators 92a to 92n are sequentially set or reset.
  • connection terminal 96 is supplied with a clock signal directly from a reference oscillator 41 (not shown) or converted into a high frequency using a phase-locked oscillator 48, and the plurality of the plurality of the connection terminals 96 are synchronized with the set or reset timing.
  • a set of counters 92a-92n is set or reset and is usually counted down to a lower frequency.
  • the output signals generated by the plural sets of counters or plural sets of numerically controlled oscillators 92a to 92n are sequentially switched by the changeover switch 93 and assigned as signals SIGNAL # 1 to SIGNAL # n. Then, it is supplied to the distance measurement signal generation means 45 (not shown).
  • the detection timing of the set or reset signal detected by the synchronization detection means 46 changes at random in correspondence with the outputs of the plurality of sets of counters or the plurality of sets of numerically controlled oscillators 92a to 92n,
  • the correlation coefficient of synchronization establishment error can be kept low.
  • a plurality of antennas or transducers are connected to the antenna switching means, and the plurality of antennas or transducers are switched in accordance with the timing of switching the plurality of sets of counters or the plurality of sets of numerically controlled oscillators 92a to 92n. Accordingly, the correlation coefficient of the synchronization establishment error can be kept low by utilizing the fact that the phase change of the propagation path of the radio signal is random.
  • the switching timings of the changeover switches 91 and 93 are not the same, and it is necessary to match at least the timing of transmission / reception at the time division interval.
  • the number of counters is about 8 or less per set, so even if about 16 sets of counters are provided, only about 128 stages of counters are required, resulting in an economical scale. .
  • the synchronization establishment error function can be expressed by a polynomial.
  • the polynomial is set to converge to 0 or a constant value.
  • the phase difference ⁇ that can be measured by the phase measuring means 43 is limited to 0 ⁇ ⁇ 2 ⁇ . Since it is necessary to use a plurality of distance measurement signals that are synchronized with or orthogonal to the reproduced starting signal 71b and have at least different frequencies, it is possible to measure the distance in a plurality of ranges, and to set the range to the distance to be measured. By combining them, there is an advantage that a precise distance can be measured.
  • a high-frequency signal is used as the wireless signal
  • an ultrasonic signal, a high-frequency signal, or an optical signal can be used.
  • a transducer is used instead of an antenna.
  • the origin signal, the distance measurement signal, or both of the signals transmitted from the first transmitting / receiving means and the second transmitting / receiving means are multiplexed by frequency division and / or multiplexed by time division and transmitted. Can do.
  • a plurality of antennas or transducers are connected to one or both of the first transmitting / receiving unit and the second transmitting / receiving unit, and direction measurement signals are transmitted / received while periodically switching, and the plurality By measuring the phase difference corresponding to the antenna, it becomes possible to measure the direction between them, and the relative position between the first transmitting / receiving means and the second transmitting / receiving means, or the first transmitting / receiving means. It is possible to measure the three-dimensional position of the transmitting / receiving means.
  • a high-frequency modulated signal or a high chip rate spreading code can be adopted, so that multiple modulated signals or spreading codes that are synchronized or orthogonal can be assigned.
  • a plurality of measurement ranges can be set, the distance measurement accuracy at a relatively short distance can be improved.
  • the frequency assigned to the GPS as the radio frequency for the first and second transmitting / receiving means, or a frequency in the vicinity thereof can be assigned, the occupation time rate of the radio signal can be extremely small, GPS can be made seamless because there is little interference with GPS and high-precision positioning is possible even indoors.
  • the MAC layer includes at least the identification code or identification number of the transmission means, and also includes station information, broadcast information, or voice information, converted into character information or a voice signal by the reception means, and displayed means Can be displayed and announced from the speaker.
  • an optimum ubiquitous mobile network or ad hoc mobile network can be instantaneously configured between any combination of a plurality of adjacent mobile units.
  • the three-dimensional position between each other can be calculated, or the three-dimensional position can be measured. Get higher.
  • the distance and direction between cars traveling on a highway can be calculated instantaneously with high accuracy on each side, and can be applied to cooperative driving or collision prevention devices.
  • the first transmitting / receiving unit is a movable mobile terminal, and a plurality of second transmitting / receiving units fixedly installed are connected by a network so that the exact position of the mobile terminal can be determined between the mobile unit and the network side. Since it can be simultaneously detected in real time, guidance or control of autonomous movement of a pedestrian or robot, and remote control and monitoring from the center can be performed simultaneously.
  • the distance between them can be calculated and the mutual approach can be detected. It can be applied to a device for preventing collision between a child and a vehicle.
  • the first transmitter / receiver is installed on the transit side
  • the second transmitter / receiver is installed on the pole side, and the relative distance between them is measured several times to obtain an average value. The distance can be measured with high accuracy.
  • the distance measurement technology of the present invention is a basic technology and can be expected to be used in various fields other than the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Provided is a low-cost distance measuring apparatus that can measure a distance between first and second transmitting/receiving means with high precision by using a single radio frequency to perform time division communications between the first and second transmitting/receiving means. The first transmitting/receiving means intermittently transmits, as burst signals, radio signals, which include at least a starting point signal, in a time-division simultaneous-transmission/reception manner. When having received the radio signals, the second transmitting/receiving means reproduces the starting point signal from the received radio signals, and synchronizes a synchronous oscillation means with the reproduced starting point signal, thereby generating a distance measurement signal. Then, the second transmitting/receiving means intermittently transmits, as burst signals, radio signals, which include the generated distance measurement signal, toward the first transmitting/receiving means at time-division intervals. Then, the first transmitting/receiving means uses a clock signal, which is synchronous with or orthogonal to the starting point signal generated by the local station including the first transmitting/receiving means, to measure the phase of the distance measurement signal received from the second transmitting/receiving means and calculate the distance from the measured phase.

Description

距離測定装置Distance measuring device
 この発明は、第1の発受信手段と第2の発受信手段との間で、単一の無線周波数を用いて、時分割で相互間の通信を行うことで、相互間の距離を高精度で測定できる距離測定装置に関するものである。 According to the present invention, the first transmitter / receiver and the second transmitter / receiver communicate with each other in a time-sharing manner using a single radio frequency so that the distance between them can be accurately determined. It is related with the distance measuring device which can be measured by.
 従来から、発信手段から発信される無線信号を、受信手段で受信することによって、発信手段と受信手段との間の距離を測定する装置が提案されている。(例えば、特許文献1~5参照)
特開H11-211818号公報 特開H7-244157号公報 特開H8-233937号公報 特開H10-268028号公報 特開2008-304192号公報 図10は、特許文献1に記載されている従来の「距離測定機」の実施例である。
2. Description of the Related Art Conventionally, there has been proposed an apparatus for measuring a distance between a transmission unit and a reception unit by receiving a radio signal transmitted from the transmission unit by a reception unit. (For example, see Patent Documents 1 to 5)
JP H11-21118A JP H7-244157 A JP H8-233937 Japanese Patent Laid-Open No. H10-268028 FIG. 10 shows an example of a conventional “distance measuring device” described in Japanese Patent Laid-Open No. 2008-304192.
 図10において、位置Bの送信機1は基準信号で変調された送信信号を送信し、これを受信した位置Aの中継機2は周波数を変換した中継信号を送信する。位置Cの距離測定機3は、送信機1の送信信号と、中継機2の中継信号をともに受信し、元の基準信号を復調して位相差を検出し、これにより距離x、距離yを算出するとされている。 In FIG. 10, the transmitter 1 at the position B transmits a transmission signal modulated by the reference signal, and the relay 2 at the position A that receives the signal transmits a relay signal whose frequency has been converted. The distance measuring device 3 at the position C receives both the transmission signal of the transmitter 1 and the relay signal of the relay device 2, demodulates the original reference signal, detects the phase difference, and thereby determines the distance x and the distance y. It is supposed to be calculated.
 しかしながら、中継機2が周波数を変換した同時送受信方式であり、送信機1とは別に中継機2を設置する必要があり、中継機2が時分割方式の場合には適用できず、あるいは中継機2が設置されていない場所では距離測定ができない問題点がある。 However, the repeater 2 is a simultaneous transmission / reception method in which the frequency is converted, and it is necessary to install the repeater 2 separately from the transmitter 1, and is not applicable when the repeater 2 is a time division method, or the repeater There is a problem that distance measurement cannot be performed in a place where 2 is not installed.
 また、特許文献2では、発信電波OEは中央ステーション1から受動端2に伝送され、受動端2の位相変調回路20が発信電波OEの合成信号SIを変調し、これを2つの位相状態をもつ変調された信号SMとして、クロック信号CLのリズムで再度伝送する。 In Patent Document 2, the outgoing radio wave OE is transmitted from the central station 1 to the passive end 2, and the phase modulation circuit 20 at the passive end 2 modulates the synthesized signal SI of the outgoing radio wave OE and has two phase states. The modulated signal SM is transmitted again with the rhythm of the clock signal CL.
 中央ステーションでは、変調信号SMは、4分の1周期だけ位相ずれした2つの信号に復調される。4分の1周期位相ずれした2つの信号の積及び整流された4分の1周期位相ずれした信号のモジュール差の正負符号に基づいて、デジタル処理回路12の両方向カウンタの計数値の増分又は減分が行なわれ、この計数値により中央ステーション1から受動端2までの距離dを表示するとされている。 At the central station, the modulation signal SM is demodulated into two signals that are out of phase by a quarter period. The increment or decrement of the count value of the bi-directional counter of the digital processing circuit 12 based on the product of the two signals that are out of phase by a quarter period and the sign of the module difference in the rectified quarter period out of phase signal. Minutes are counted, and this count value indicates the distance d from the central station 1 to the passive end 2.
 しかしながら、距離を測定するための変調信号の処理が複雑であり、高価となる問題点がある。 However, there is a problem that the processing of the modulation signal for measuring the distance is complicated and expensive.
 また、特許文献3では、ゴルフコースの各ホール毎のグリーン8上に配設されたカップ3に立設されているピン7に装着された設置側機器1へ向けて、持運側機器2から所定のパルス符号列の電波4を送信し、前記設置側機器1から折返し持運側機器2方向に向けて送信される別のパルス符号列の電波4を受信して、前記送信電波4と受信電波5との時間差を基に設置側機器1とプレイヤーまたはキャディーとの間の距離を測定し持運側機器2の表示器6に表示するとされている。 Moreover, in patent document 3, from the carrying side apparatus 2 toward the installation side apparatus 1 with which the pin 7 standingly arranged by the cup 3 arrange | positioned on the green 8 for every hole of a golf course is mounted | worn. The radio wave 4 of a predetermined pulse code string is transmitted, the radio wave 4 of another pulse code string transmitted from the installation side device 1 toward the return carrying side device 2 is received, and the transmission radio wave 4 and the reception The distance between the installation side device 1 and the player or caddy is measured based on the time difference from the radio wave 5 and is displayed on the display 6 of the carrying side device 2.
 しかしながら、距離を測定するのに、パルス符号列を用いて時間差を測定しているため、マルチパスに影響され、距離の測定に誤差を生じ高精度で測定できない問題点がある。 However, since the time difference is measured using a pulse code string to measure the distance, there is a problem that it is affected by multipath, and an error occurs in the distance measurement, so that it cannot be measured with high accuracy.
 また、特許文献4では、人工衛星17の概算距離値に基づいてPNコード発生部11で最適なコード系列を選択して、該コード系列の送信PNコードを発生し、この送信PNコードの信号を人工衛星に送信して、その折返した信号を受信し、その受信PNコードを上記概算距離値に基づいた最適なコード系列から選択し、選択した受信PNコードと送信PNコードとより、人工衛星17の距離を測定するように構成したものであるとされている。 Further, in Patent Document 4, the PN code generation unit 11 selects an optimal code sequence based on the approximate distance value of the artificial satellite 17 to generate a transmission PN code of the code sequence. The signal is transmitted to the artificial satellite, the folded signal is received, the received PN code is selected from the optimum code series based on the approximate distance value, and the artificial satellite 17 is determined from the selected received PN code and transmitted PN code. It is said that it is comprised so that the distance of may be measured.
 しかしながら、人工衛星でPNコードを時分割で折り返す場合に、短時間でかつ高精度で同期を確立し、前記PNコードが消滅した後も、長時間に渡り同期を維持するのが難しく、回路が複雑となり、高価となる問題点がある。 However, when a PN code is turned back in time division by an artificial satellite, synchronization is established in a short time and with high accuracy, and it is difficult to maintain synchronization for a long time even after the PN code disappears. There is a problem that it becomes complicated and expensive.
 また、特許文献5では、第1の送受信機1000から第2の送受信機2000へ、周波数f1/MNの矩形波DTで周波数f1の搬送波をQPSK変調し、送信する。第2の送受信機2000は、コスタスループにより搬送波を再生し、矩形波D2を復調する。この後周波数f2(≠f1)の搬送波を生成して、復調した矩形波で周波数f2の搬送波をQPSK変調し、第2の送受信機2000から第1の送受信機1000へ逆送信する。 Also, in Patent Document 5, a carrier wave having a frequency f1 is QPSK-modulated and transmitted from a first transceiver 1000 to a second transceiver 2000 by a rectangular wave DT having a frequency f1 / MN. The second transceiver 2000 reproduces the carrier wave by the Costas loop and demodulates the rectangular wave D2. Thereafter, a carrier wave having a frequency f2 (≠ f1) is generated, and the carrier wave having the frequency f2 is QPSK-modulated with the demodulated rectangular wave, and transmitted back from the second transceiver 2000 to the first transceiver 1000.
 第1の送受信機1000はここから周波数f1/MNの矩形波DRを復調する。矩形波DRをM逓倍し、矩形波DTを生成する1/M分周器15の入力である1/N分周器14との位相差を検出する。 The first transmitter / receiver 1000 demodulates the rectangular wave DR having the frequency f1 / MN from here. The rectangular wave DR is multiplied by M to detect a phase difference from the 1 / N frequency divider 14 that is an input of the 1 / M frequency divider 15 that generates the rectangular wave DT.
 伝搬位相差は、第1の送受信機1000から第2の送受信機2000までの距離の2倍を電波が通過した時間差であるとされている。 The propagation phase difference is said to be a time difference in which radio waves have passed through twice the distance from the first transceiver 1000 to the second transceiver 2000.
 しかしながら、第1の送受信機1000と第2の送受信機2000は、異なる周波数で送受信する必要があり、時分割で通信する場合には適用できず、高価となる問題点がある。 However, the first transmitter / receiver 1000 and the second transmitter / receiver 2000 need to transmit and receive at different frequencies, and cannot be applied when communicating in a time-division manner, resulting in an expensive problem.
 この発明は、上記の問題点を解決するためになされたものであり、第1の発受信手段と第2の発受信手段との間で、単一の無線周波数を用いて、時分割で、相互間の通信を行うことで、相互間の距離を高精度でしかも短時間で測定できる距離測定装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and uses a single radio frequency between the first transmitting / receiving unit and the second transmitting / receiving unit in a time-sharing manner. An object of the present invention is to provide a distance measuring device that can measure the distance between each other with high accuracy and in a short time by performing communication between them.
 この発明に係わる距離測定装置では、第1の発受信手段から少なくとも起点信号を含む無線信号を時分割同時送受信でありかつバースト信号として間欠発信し、第2の発受信手段で前記無線信号を受信すると、受信した無線信号から前記起点信号を再生し、再生した起点信号に同期発振手段を同期させて距離測定信号を生成し、生成した距離測定信号を含む無線信号を前記第1の発受信手段に向けて時分割の間隔でかつバースト信号として発信し、前記第1の発受信手段において、自局で生成した前記起点信号に同期しあるいは直交したクロック信号を用い、前記第2の発受信手段から受信した距離測定信号の位相を高精度で測定することによって、相互間の距離を、短時間でしかも高精度で算出することができる。 In the distance measuring apparatus according to the present invention, a radio signal including at least an origin signal is transmitted from the first transmitting / receiving unit in a time-division simultaneous transmission / reception and intermittently transmitted as a burst signal, and the second transmitting / receiving unit receives the radio signal. Then, the origin signal is reproduced from the received radio signal, the synchronous oscillation means is synchronized with the reproduced origin signal to generate a distance measurement signal, and the radio signal including the generated distance measurement signal is generated as the first origination / reception means. The second transmitting / receiving means using a clock signal that is synchronized with or orthogonal to the starting signal generated in the first station in the first transmitting / receiving means. By measuring the phase of the distance measurement signal received from 1 with high accuracy, the distance between each other can be calculated in a short time and with high accuracy.
 更に、前記第1の発受信手段において、前記第2の発受信手段から受信した第1の距離測定信号に同期発振手段を同期させて第2の距離測定信号を生成し、前記生成した第2の距離測定信号を含む無線信号を前記第2の発受信手段に向けて時分割の間隔でかつバースト信号として発信し、前記第2の発受信手段において、前記第1の距離測定信号に同期しあるいは直交したクロック信号を用い、前記第1の発受信手段から受信した第2の距離測定信号の位相を高精度で測定することによって、相互間の距離を、短時間でしかも高精度で算出することができる。 Further, the first transmission / reception unit generates a second distance measurement signal by synchronizing the synchronous oscillation unit with the first distance measurement signal received from the second transmission / reception unit, and generates the second distance measurement signal. A radio signal including a distance measurement signal is transmitted to the second transmitter / receiver as a burst signal at a time-division interval, and the second transmitter / receiver synchronizes with the first distance measurement signal. Alternatively, by using an orthogonal clock signal and measuring the phase of the second distance measurement signal received from the first transmitting / receiving unit with high accuracy, the distance between each other is calculated in a short time and with high accuracy. be able to.
 このように、本発明の距離測定装置では、第1の発受信手段と第2の発受信手段との間で、単一の無線周波数を用いたバースト信号によって相互間の通信を行うことで、安価な装置によって、相互間の距離を短時間でしかも高精度に算出できる利点がある。 Thus, in the distance measuring device of the present invention, by performing communication between the first transmitting / receiving unit and the second transmitting / receiving unit by a burst signal using a single radio frequency, There is an advantage that the distance between each other can be calculated in a short time and with high accuracy by an inexpensive apparatus.
関連文献とのクロスリファレンス
 本願は、2009年11月18日付けで出願した日本国特願2009-262737号及び2010年1月21付けで出願した日本国特願2010-11212号に基づく優先権を主張する。この文献を本明細書に援用する。
This application is based on Japanese Patent Application No. 2009-262737 filed on Nov. 18, 2009 and Japanese Patent Application No. 2010-11212 filed on Jan. 21, 2010. Insist. This document is incorporated herein by reference.
本発明の第1の実施の形態による距離測定装置の構成図である。It is a block diagram of the distance measuring device by the 1st Embodiment of this invention. 本発明の第2の実施の形態による制御手段の構成図である。It is a block diagram of the control means by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による制御手段の構成図である。It is a block diagram of the control means by the 3rd Embodiment of this invention. 本発明の第4の実施の形態による制御手段の構成図である。It is a block diagram of the control means by the 4th Embodiment of this invention. 本発明の距離測定装置から発信される無線信号の構成図である。It is a block diagram of the radio signal transmitted from the distance measuring device of the present invention. 本発明の距離測定装置のタイミングチャートである。It is a timing chart of the distance measuring device of the present invention. 本発明の距離測定装置の他のタイミングチャートである。It is another timing chart of the distance measuring device of the present invention. 本発明の距離測定装置の同期確立誤差関数生成手段の構成図である。It is a block diagram of the synchronization establishment error function production | generation means of the distance measuring device of this invention. 本発明の距離測定装置の同期確立誤差関数生成手段の他の構成図である。It is another block diagram of the synchronization establishment error function production | generation means of the distance measuring device of this invention. 従来の実施例を示す構成図である。It is a block diagram which shows the conventional Example.
 この発明に係わる距離測定装置は、図1、図2、図3、および請求項1に本発明の第1~第3の実施の形態を示すように、超音波信号あるいは高周波信号あるいは光信号である無線信号を用いて距離を測定する距離測定装置において、前記無線信号を単一の無線周波数を用いて時分割同時送受信するための、第1の発受信手段101aと、第2の発受信手段101bとから構成される
 前記第1の発受信手段と第2の発受信手段とが、少なくとも、単一の周波数の無線信号を、時分割でバースト信号として間欠発信するための発信手段12a、12bと、前記無線信号を受信して、直接もしくは中間周波信号もしくはベースバンド信号に変換するための受信手段13a、13bと、前記発信手段と受信手段とを制御するための制御手段11a、11bと、前記発信手段と受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するためのアンテナ切替手段14a、14bとを有する。
The distance measuring apparatus according to the present invention is an ultrasonic signal, a high frequency signal or an optical signal as shown in FIGS. 1, 2, 3 and 1 according to the first to third embodiments of the present invention. In a distance measuring apparatus that measures a distance using a certain radio signal, a first transmitting / receiving unit 101a and a second transmitting / receiving unit for simultaneously transmitting and receiving the radio signal using a single radio frequency in a time-division manner 101b, the first transmission / reception means and the second transmission / reception means at least transmit a radio signal having a single frequency intermittently as a burst signal in a time division manner. Receiving means 13a, 13b for receiving the radio signal and converting it directly or into an intermediate frequency signal or baseband signal, and control means 11a for controlling the transmitting means and receiving means, 11b and antenna switching means 14a and 14b for switching or sharing the antenna or the transmitter / receiver in a time division manner between the transmitting means and the receiving means.
 前記第2の発受信手段の制御手段11bが、少なくとも、前記受信手段13bが受信した無線信号から起点信号を再生するための起点信号再生手段50と、前記再生された起点信号の立上がり点、立下がり点、もしくはゼロ交差点のタイミングを高精度で検出するための同期検出手段49と、前記起点信号と高精度でかつ短時間に同期を確立し、かつ前記起点信号が消滅した後も、比較的に長時間、同期を保持してクロック信号を生成するための同期発振手段48と、前記生成したクロック信号に同期しあるいは直交した距離測定信号を生成して、前記発信手段12bから無線信号として発信するための距離測定信号生成手段47とを有する
 前記第1の発受信手段の制御手段11aが、少なくとも、システム同期信号と、識別信号と、起点信号とを生成するための起点信号生成手段45と、前記受信手段13aが受信した無線信号から距離測定信号を再生するための距離測定信号再生手段44と、前記生成した起点信号を基準として、再生された距離測定信号の位相を高精度で測定するための位相測定手段43と、前記測定された距離測定信号の位相から、前記第2の発受信手段との相対的な距離を高精度で算出するための距離算出手段42とを有する。
The control means 11b of the second transmitting / receiving means includes at least a starting point signal reproducing means 50 for reproducing a starting point signal from a radio signal received by the receiving means 13b, and a rising point and a rising point of the reproduced starting point signal. Synchronization detection means 49 for detecting the timing of the descending point or the zero crossing with high accuracy, and establishing the synchronization with the starting signal with high accuracy and in a short time, and after the starting signal disappears, Synchronous oscillation means 48 for generating a clock signal while maintaining synchronization for a long time, and a distance measurement signal synchronized with or orthogonal to the generated clock signal is generated and transmitted as a radio signal from the transmission means 12b. And a distance measurement signal generation means 47 for controlling the control means 11a of the first transmission / reception means, at least a system synchronization signal, an identification signal, and a starting point signal Starting signal generating means 45 for generating a signal, distance measuring signal reproducing means 44 for reproducing a distance measuring signal from a radio signal received by the receiving means 13a, and reproduction based on the generated starting signal. From the phase measurement unit 43 for measuring the phase of the measured distance measurement signal with high accuracy and the phase of the measured distance measurement signal, the relative distance between the second transmission / reception unit is calculated with high accuracy. And a distance calculating means 42 for
 前記第2の発受信手段は、前記第1の発受信手段から、少なくとも、起点信号を含む無線信号をバースト信号として間欠発信すると、前記受信した起点信号と高精度で同期した距離測定信号を含む無線信号を時分割の間隔で発信し、前記第1の発受信手段において、前記第2の発受信手段から発信された距離測定信号を再生し、前記起点信号と同期したクロック信号を用いて前記再生した距離測定信号の位相を測定して、前記第1の発受信手段と第2の発受信手段との間の相対的な距離を、前記第1の発受信手段において、短時間に、高精度で算出することができる。 The second transmitting / receiving unit includes a distance measurement signal synchronized with the received starting point signal with high accuracy when intermittently transmitting a radio signal including the starting point signal as a burst signal from the first transmitting / receiving unit. A radio signal is transmitted at time-division intervals, and the first transmission / reception unit reproduces a distance measurement signal transmitted from the second transmission / reception unit, and uses the clock signal synchronized with the origin signal. The phase of the reproduced distance measurement signal is measured, and the relative distance between the first transmitting / receiving unit and the second transmitting / receiving unit is increased in a short time in the first transmitting / receiving unit. It can be calculated with accuracy.
 また、図1、図4、および請求項2に本発明の第1および第4の実施の形態を示すように、超音波信号あるいは高周波信号あるいは光信号である無線信号を用いて距離を測定する距離測定装置において、前記無線信号を単一の無線周波数を用いて時分割同時送受信するための、第1の発受信手段101aと、第2の発受信手段101bとから構成される。 In addition, as shown in FIGS. 1, 4 and 2 of the first and fourth embodiments of the present invention, the distance is measured using a radio signal which is an ultrasonic signal, a high frequency signal or an optical signal. The distance measuring device includes a first transmitting / receiving unit 101a and a second transmitting / receiving unit 101b for simultaneously transmitting and receiving the radio signal using a single radio frequency.
 前記第1の発受信手段と第2の発受信手段とが、少なくとも、単一の周波数の無線信号を、時分割でバースト信号として間欠発信するための発信手段12a、12bと、前記無線信号を受信して、直接もしくは中間周波信号もしくはベースバンド信号に変換するための受信手段13a、13bと、前記発信手段と受信手段とを制御するための制御手段11a、11bと、前記発信手段と受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するためのアンテナ切替手段14a、14bとを有する。 The first transmitting / receiving means and the second transmitting / receiving means at least transmit means 12a, 12b for intermittently transmitting a radio signal of a single frequency as a burst signal in a time division manner, and the radio signal Receiving means 13a, 13b for receiving and converting directly or into an intermediate frequency signal or baseband signal, control means 11a, 11b for controlling the transmitting means and receiving means, and the transmitting means and receiving means Antenna switching means 14a and 14b for switching or sharing the antenna or the transmitter / receiver in a time division manner.
 前記第1の発受信手段と第2の発受信手段の制御手段11a、11bが、少なくとも、システム同期信号と、識別信号と、起点信号、距離測定信号、もしくはこれらの両方を生成するための信号生成手段45、47と、前記受信手段13a、13bが受信した無線信号から、起点信号、距離測定信号、もしくはこれらの両方を再生するための信号再生手段44、50と、前記再生された起点信号、距離測定信号、もしくはこれらの両方の立上がり点、立下がり点、もしくはゼロ交差点のタイミングを高精度で検出するための同期検出手段49と、前記検出されたタイミングで、前記起点信号、距離測定信号、もしくはこれらの両方と高精度でかつ短時間に同期を確立する。 Signals for the control means 11a, 11b of the first transmitting / receiving means and the second transmitting / receiving means to generate at least a system synchronization signal, an identification signal, an origin signal, a distance measurement signal, or both Generation means 45, 47, signal reproduction means 44, 50 for reproducing the origin signal, distance measurement signal, or both from the radio signals received by the reception means 13a, 13b, and the reproduced origin signal , Distance measurement signal, or both of them, synchronization detection means 49 for detecting the timing of the rising point, falling point, or zero crossing with high accuracy, and at the detected timing, the origin signal and the distance measurement signal Or synchronize with both of them with high accuracy and in a short time.
 かつ前記起点信号、距離測定信号、もしくはこれらの両方が消滅した後も、比較的に長時間、同期を保持してクロック信号を生成するための同期発振手段46と、前記生成された起点信号、距離測定信号、もしくはこれらの両方を基準として、前記再生された距離測定信号の位相を、高精度でリアルタイムに測定するための位相測定手段43と、前記測定された距離測定信号の位相から、前記第1の発受信手段と第2の発受信手段との間の相対的な距離を算出するための距離算出手段42とを有する。 And, even after the origin signal, the distance measurement signal, or both of them disappear, the synchronous oscillation means 46 for generating the clock signal while maintaining synchronization for a relatively long time, and the generated origin signal, Based on the distance measurement signal or both of them, the phase measurement means 43 for measuring the phase of the reproduced distance measurement signal in real time with high accuracy, and the phase of the measured distance measurement signal, A distance calculating means for calculating a relative distance between the first transmitting / receiving means and the second transmitting / receiving means;
 前記第2の発受信手段は、前記第1の発受信手段から、少なくとも、起点信号を含む無線信号をバースト信号として間欠発信すると、前記受信した起点信号と高精度で同期した第1の距離測定信号を含む無線信号を発信し、前記第1の発受信手段において、前記第2の発受信手段から発信された第1の距離測定信号を再生し、前記起点信号と同期したクロック信号を用いて前記再生した第1の距離測定信号の位相を測定して、前記第1の発受信手段と第2の発受信手段との間の距離を算出するとともに、少なくとも、前記第1の距離測定信号と高精度で同期した第2の距離測定信号を含む無線信号を発信し、前記第2の発受信手段において、前記第1の発受信手段から発信された第2の距離測定信号を再生し、前記第1の距離測定信号と同期したクロック信号を用いて第2の距離測定信号の位相を測定して、前記第2の発受信手段と第1の発受信手段との間の距離を算出することによって、前記第1の発受信手段と第2の発受信手段との間の相対的な距離を、前記第1の発受信手段と第2の発受信手段との両側において、短時間内に、高精度で算出することができる。 The second transmission / reception means, when intermittently transmitting at least a radio signal including a start signal as a burst signal from the first transmission / reception means, a first distance measurement synchronized with the received start signal with high accuracy. A radio signal including a signal is transmitted, and the first transmission / reception unit reproduces the first distance measurement signal transmitted from the second transmission / reception unit, and uses a clock signal synchronized with the origin signal. The phase of the reproduced first distance measurement signal is measured to calculate the distance between the first transmission / reception means and the second transmission / reception means, and at least the first distance measurement signal A radio signal including a second distance measurement signal synchronized with high accuracy is transmitted, and the second transmission / reception means reproduces the second distance measurement signal transmitted from the first transmission / reception means, Same as the first distance measurement signal Measuring the phase of the second distance measurement signal using the clock signal thus obtained, and calculating the distance between the second transmission / reception means and the first transmission / reception means. The relative distance between the means and the second transmitter / receiver can be calculated with high accuracy in a short time on both sides of the first transmitter / receiver and the second transmitter / receiver. .
 また、請求項3に示すように、前記起点信号、距離測定信号、もしくはこれらの両方が、単一もしくは同期しあるいは直交する複数の、搬送波信号、副搬送波信号、変調信号、スペクトル拡散符号、もしくはこれらの組合せである。 In addition, as shown in claim 3, the origin signal, the distance measurement signal, or both of them are a single carrier wave, a subcarrier signal, a modulation signal, a spread spectrum code, It is a combination of these.
 また、請求項4に示すように、前記信号再生手段44、50において再生する起点信号、距離測定信号、もしくはこれらの両方が、無線信号の搬送波信号あるいは副搬送波信号である場合には、群遅延歪みの少ない帯域通過フイルタを通し、あるいは無線信号の搬送波信号あるいは副搬送波信号を変調した変調信号である場合には、伝達位相誤差の少ないアナログ復調器もしくは高い周波数のクロック信号を用いた伝達位相誤差の少ないデジタル復調器によって復調した後に、前記伝達位相誤差の少ない帯域通過フイルタを通して再生する。 According to a fourth aspect of the present invention, when the starting signal, the distance measurement signal, or both of the signals reproduced by the signal reproducing means 44 and 50 are carrier signals or subcarrier signals of radio signals, group delay When the signal is passed through a band-pass filter with low distortion, or a modulated signal obtained by modulating a carrier signal or subcarrier signal of a radio signal, an analog demodulator with a small transmission phase error or a transmission phase error using a high-frequency clock signal After being demodulated by a digital demodulator with a small amount, the signal is reproduced through the band-pass filter with a small transmission phase error.
 また、請求項5に示すように、前記同期発振手段46が、基準発振器の出力信号を直接あるいは周波数を変換して生成したクロック信号によって駆動されるセットあるいはリセット付きのカウンタあるいは数値制御発振器によって構成され、前記同期検出手段によって、起点信号、距離測定信号、もしくはこれらの両方の立上がり点、立下がり点、もしくはゼロ交差点のタイミングを、前記起点信号、距離測定信号、もしくはこれらの両方の周波数の10倍以上のサンプリング周波数を用いて検出し、前記検出したタイミングで、前記セットあるいはリセット付きのカウンタあるいは数値制御発振器をセットしあるいはリセットすることによって、前記起点信号、距離測定信号、もしくはこれらの両方と短時間で同期を確立し、前記起点信号、距離測定信号、もしくはこれらの両方が消滅した後も、比較的に長時間同期を保持する。 According to a fifth aspect of the present invention, the synchronous oscillating means 46 comprises a counter with a set or reset or a numerically controlled oscillator driven by a clock signal generated directly or by converting the output signal of a reference oscillator. The timing of the rising point, the falling point, or the zero crossing point of the starting point signal, the distance measuring signal, or both of them is set to 10 of the frequency of the starting point signal, the distance measuring signal, or both of them. By detecting using a sampling frequency more than twice, and by setting or resetting the counter or numerically controlled oscillator with the set or reset at the detected timing, the origin signal, the distance measurement signal, or both Establish synchronization in a short time, and , Distance measurement signal, or even after they are both disappeared to hold a relatively long time period.
 また、請求項6に示すように、前記同期発振手段46と前記起点信号、距離測定信号、もしくはこれらの両方との間の同期確立誤差を低減し、高精度で同期を確立させるために、前記第1の発受信手段101a、前記第2の発受信手段101b、あるいはこれらの両方に同期確立誤差関数を付与することで、この同期確立誤差関数に基づいて、前記同期確立誤差を軽減することができる。 Further, as shown in claim 6, in order to reduce synchronization establishment error between the synchronous oscillation means 46 and the origin signal, the distance measurement signal, or both, and to establish synchronization with high accuracy, By providing a synchronization establishment error function to the first transmission / reception unit 101a, the second transmission / reception unit 101b, or both, the synchronization establishment error can be reduced based on the synchronization establishment error function. it can.
 また、請求項7に示すように、前記同期検出手段49に同期確立誤差関数を付与するために、前記クロック信号の位相をシフトさせるための複数組の移相手段と、前記複数組の移相手段によって各々異なった位相にシフトされた複数組の起点信号、距離測定信号、もしくはこれらの両方を選択して外部に出力するためのタイミング制御手段とを設け、前記移相手段の移相量の合計を、前記クロック信号の一周期の間隔よりも大きく設定することによって、距離の算出精度を向上させる。 According to a seventh aspect of the present invention, there are provided a plurality of sets of phase shifting means for shifting the phase of the clock signal, and a plurality of sets of the phase shifting, in order to give a synchronization establishment error function to the synchronization detecting means 49. Timing control means for selecting and outputting to the outside a plurality of sets of origin signals, distance measurement signals, or both of which are shifted to different phases by the means, and the amount of phase shift of the phase shift means By setting the sum larger than the interval of one cycle of the clock signal, the distance calculation accuracy is improved.
 また、請求項8に示すように、前記同期発振手段46に前記同期確立誤差関数を付与するために、複数組のカウンタあるいは複数組の数値制御発振器を設け、前記複数組のカウンタあるいは複数組の数値制御発振器が、前記同期検出手段によって検出された各々異なったタイミングで同期を確立し、前記複数組のカウンタあるいは複数組の数値制御発振器から出力される出力信号を異なったタイミングで選択し、前記選択された出力信号に同期しあるいは直交した単一もしくは複数の距離測定信号を生成して前記第1の発受信手段に向けて発信し、前記第1の発受信手段の信号処理手段において、前記複数のタイミングに対応して算出した距離の平均値を求めることによって、距離の算出精度を向上させる。 Further, as shown in claim 8, in order to provide the synchronization establishment error function to the synchronous oscillation means 46, a plurality of sets of counters or a plurality of sets of numerically controlled oscillators are provided, and the plurality of sets of counters or a plurality of sets of counters The numerically controlled oscillator establishes synchronization at different timings detected by the synchronization detecting means, and selects output signals output from the plural sets of counters or plural sets of numerically controlled oscillators at different timings, In the signal processing means of the first transmitting / receiving means, a single or a plurality of distance measurement signals synchronized with or orthogonal to the selected output signal are generated and transmitted to the first transmitting / receiving means. By calculating the average value of distances calculated corresponding to a plurality of timings, the distance calculation accuracy is improved.
 また、請求項9に示すように、前記同期発振手段46が、アナログ式もしくはデジタル式の遅延手段と、前記遅延手段の入力端子と出力端子の間を切り離しあるいは接続するための切替スイッチとを有し、前記起点信号を読み込む場合には前記切替スイッチを切り離し、読み込み完了後には前記入力端子と出力端子の間をリング状に接続し、読み出す場合には前記切替スイッチを切り離すことで、時分割で受発信する場合の時間間隔分に必要な前記遅延手段の遅延時間を短縮する。 According to a ninth aspect of the present invention, the synchronous oscillating means 46 includes an analog or digital delay means and a changeover switch for disconnecting or connecting between the input terminal and the output terminal of the delay means. When reading the starting signal, disconnect the changeover switch, connect the input terminal and output terminal in a ring shape after reading, and disconnect the changeover switch when reading. The delay time of the delay means required for the time interval for transmission / reception is shortened.
 また、請求項10に示すように、前記位相測定手段43が、前記起点信号、距離測定信号、もしくはこれらの両方の周波数の整数倍もしくは整数分の1の周波数をクロック信号として用い、Sinのルックアップテーブルが0、1、0、-1、あるいは1、1、-1、-1、あるいはこれらの繰り返しであり、Cosのルックアップテーブルが1、0、-1、0あるいは1、-1、-1、1、あるいはこれらの繰り返しであり、前記距離測定信号と前記ルックアップテーブルとの積和演算を行う際に-1の乗算は補数を求める積和演算器によって構成される。 Further, according to a tenth aspect of the present invention, the phase measuring unit 43 uses the origin signal, the distance measurement signal, or an integer multiple or a fraction of the frequency of both as a clock signal, and a Sin look-up. The up table is 0, 1, 0, -1, or 1, 1, -1, -1, or a repetition thereof, and the Cos lookup table is 1, 0, -1, 0 or 1, -1, −1, 1 or a repetition of these, and multiplication of −1 is performed by a product-sum operation unit for obtaining a complement when performing a product-sum operation of the distance measurement signal and the lookup table.
 また、請求項11に示すように、前記位相測定手段43が、前記距離測定信号の1周期の整数倍以上の区間を区切って位相を測定し、もしくは1周期の整数倍以上の区間を更に複数区間に区切って位相を測定して平均値を求め、あるいは1周期の整数倍以上の長さの窓枠関数を設定して位相を測定する。 In addition, as shown in claim 11, the phase measuring unit 43 measures a phase by dividing a section that is an integer multiple of one cycle of the distance measurement signal, or a plurality of sections that are an integer multiple of one cycle or more. The phase is measured by dividing into sections and the average value is obtained, or the phase is measured by setting a window frame function having a length equal to or larger than an integral multiple of one period.
 また、請求項12に示すように、前記第1の発受信手段の受信手段13a、第2の発受信手段の受信手段13b、あるいはこれらの両方が、伝搬経路31の品質を検知する品質検知手段を有し、前記品質検知手段が、前記受信手段13a、13bにおいて受信した無線信号の電力あるいは信号対雑音比を測定した結果から回線品質を分析し、前記位相測定手段で距離測定信号の位相あるいは位相差を測定した結果から距離測定精度を分析し、あるいは前記回線品質の分析と距離測定精度の分析の両方を行い、前記距離測定処理の結果を補正しあるいは補完する。 In addition, as shown in claim 12, the receiving means 13a of the first transmitting / receiving means, the receiving means 13b of the second transmitting / receiving means, or both of them detects the quality of the propagation path 31. And the quality detection means analyzes the line quality from the result of measuring the power or signal-to-noise ratio of the radio signal received by the receiving means 13a and 13b, and the phase measuring means uses the phase or The distance measurement accuracy is analyzed from the phase difference measurement result, or both the line quality analysis and the distance measurement accuracy analysis are performed, and the result of the distance measurement process is corrected or supplemented.
 また、請求項13に示すように、前記第1の発受信手段、第2の発受信手段、あるいはこれらの両方が、複数のアンテナ又は複数の送受波器を設けて周期的に切替えながら、無線信号を発信しあるいは受信し、前記品質検知手段において、前記複数のアンテナもしくは複数の送受波器に対応して、複数の距離測定信号の位相を測定し、あるいは複数の距離を算出した結果から統計処理を行い、位相の測定結果が所定値以下であり、あるいは距離が所定値以下であるもの選択して平均しあるいは荷重平均を行なうことによって、前記距離測定処理の結果を補正しあるいは補完する。 Further, as shown in claim 13, the first transmitting / receiving unit, the second transmitting / receiving unit, or both of them are provided with a plurality of antennas or a plurality of transducers while periodically switching them. A signal is transmitted or received, and the quality detection means measures the phase of a plurality of distance measurement signals corresponding to the plurality of antennas or the plurality of transducers, or calculates a plurality of distances from the statistical result. Processing is performed, and the result of the distance measurement process is corrected or complemented by selecting and averaging the results of the phase measurement less than or equal to the predetermined value or the distance being less than or equal to the predetermined value.
 また、請求項14に示すように、前記第1の発受信手段と第2の発受信手段との間で、前記発受信を連続、間欠的、もしくはこれらの両方を複数回行い、相互間の距離の算出を複数回実施し、前記複数回の算出結果から平均値を求めることで、お互いの相対的な距離を高精度で算出する。 In addition, as shown in claim 14, between the first transmission and reception means and the second transmission and reception means, the transmission and reception is performed continuously, intermittently, or both a plurality of times, The distance is calculated a plurality of times, and an average value is obtained from the calculation results of the plurality of times, thereby calculating the relative distance between each other with high accuracy.
 また、請求項15に示すように、前記第1の発受信手段と第2の発受信手段との間でお互いが算出した距離情報を相互に交換することで、お互いの相対的な距離を高精度で算出する。 In addition, as described in claim 15, by exchanging distance information calculated by each other between the first transmitting / receiving unit and the second transmitting / receiving unit, the relative distance between each other is increased. Calculate with accuracy.
 また、請求項16に示すように、前記第1の発受信手段、第2の発受信手段、もしくはこれらの両方のアンテナ又は送受波器が、60°以上の広い指向性ビーム幅を有する円偏波指向性アンテナであり、前記第2の発受信手段と第1の発受信手段との間で、指向性の方向が双方向通信の相手方に向けて、お互いに対向して設けられている。 According to a sixteenth aspect of the present invention, the first transmitting / receiving unit, the second transmitting / receiving unit, or both of these antennas or transducers have a circular polarization having a wide directional beam width of 60 ° or more. A wave directivity antenna is provided between the second transmitting / receiving means and the first transmitting / receiving means so as to face each other in the direction of directivity toward the other party of bidirectional communication.
  (実施の形態1)
 図1は、本発明の第1の実施の形態による距離測定装置の構成図である。図1において、101aは第1の発受信手段、101bは第2の発受信手段、11a、11bは制御手段、12a、12bは発信手段、13a、13bは受信手段、14a、14bはアンテナ切替手段、15a、15bはアンテナもしくは送受波器、31は無線の伝搬路である。前記第1の発受信手段101aと第2の発受信手段101bは、単一の周波数の無線信号を用い、時分割同時通信により、伝搬路31を介して双方向通信を行い、相互間の相対距離を測定する。
(Embodiment 1)
FIG. 1 is a configuration diagram of a distance measuring apparatus according to a first embodiment of the present invention. In FIG. 1, 101a is a first transmission / reception means, 101b is a second transmission / reception means, 11a and 11b are control means, 12a and 12b are transmission means, 13a and 13b are reception means, and 14a and 14b are antenna switching means. , 15a and 15b are antennas or transducers, and 31 is a wireless propagation path. The first transmitting / receiving unit 101a and the second transmitting / receiving unit 101b use a radio signal of a single frequency, perform bidirectional communication via the propagation path 31 by time-division simultaneous communication, and Measure distance.
 なお、第1の発受信手段、第2の発受信手段、もしくはこれらの両方のアンテナ又は送受波器が、60°以上の広い指向性ビーム幅を有する円偏波指向性アンテナであり、前記第2の発受信手段と第1の発受信手段との間で、指向性の方向が双方向通信の相手方に向けて、お互いに対向して設けることで、距離の測定精度を改善することができる。 The first transmitting / receiving means, the second transmitting / receiving means, or both of these antennas or transducers are circularly polarized directional antennas having a wide directional beam width of 60 ° or more, and The distance measurement accuracy can be improved by providing the directivity direction between the two transmission / reception means and the first transmission / reception means so as to face each other toward the other party of the bidirectional communication. .
  (実施の形態2)
 図2は本発明の第2の実施の形態による制御手段の構成図であり、図2において、41は基準発振器、42は距離算出手段、43は位相測定手段、44は距離測定信号再生手段、45は起点信号生成手段、51a、52aは接続端子である。
(Embodiment 2)
FIG. 2 is a block diagram of the control means according to the second embodiment of the present invention. In FIG. 2, 41 is a reference oscillator, 42 is distance calculation means, 43 is phase measurement means, 44 is distance measurement signal regeneration means, 45 is a starting point signal generating means, and 51a and 52a are connection terminals.
 前記基準発振器41に同期し、信号生成手段45によって、少なくとも図5に示す、システム同期信号61と、マックレイヤ62と、法規により許容される周波数範囲の単一もしくは複数の周波数の起点信号63とが生成され、接続端子51aを介して前記第1の発受信手段101aの発信手段12aに供給される。 In synchronization with the reference oscillator 41, the signal generation means 45 causes at least the system synchronization signal 61, the Mac layer 62, and the starting signal 63 of a single frequency or a plurality of frequencies within the frequency range permitted by the law, as shown in FIG. Is generated and supplied to the transmission means 12a of the first transmission / reception means 101a through the connection terminal 51a.
 なお、前記起点信号は、前記位相測定手段43にも、位相測定のためのクロック信号として供給される。 The starting point signal is also supplied to the phase measuring means 43 as a clock signal for phase measurement.
 一方、前記第2の発受信手段101bから発信され、前記第1の発受信手段101aの受信手段13aによって受信される無線信号は、直接もしくは中間周波信号もしくはベースバンド信号に変換され、接続端子52aを介して距離測定信号再生手段44に供給され、前記距離測定信号が無線信号の搬送波信号あるいは副搬送波信号である場合には、直接伝達位相誤差の少ない帯域通過フイルタ(例えばガウシャンフイルタなど)を通し、あるいは前記距離測定信号が無線信号の搬送波信号あるいは副搬送波信号を変調した変調信号である場合には、アナログ復調器もしくは高い周波数のクロック信号を用いたデジタル復調器によって復調した後に前記帯域通過フイルタを通して再生することによって、前記距離測定信号に含まれる雑音成分を除去し、位相測定誤差を軽減することができる。 On the other hand, a radio signal transmitted from the second transmitting / receiving unit 101b and received by the receiving unit 13a of the first transmitting / receiving unit 101a is converted directly or into an intermediate frequency signal or a baseband signal, and connected to the connection terminal 52a. When the distance measurement signal is a carrier signal or subcarrier signal of a radio signal, a band-pass filter (for example, a Gaussian filter or the like) with a small direct transmission phase error is supplied to the distance measurement signal reproducing means 44 via Or when the distance measurement signal is a modulated signal obtained by modulating a carrier signal or subcarrier signal of a radio signal, the band pass after being demodulated by an analog demodulator or a digital demodulator using a high frequency clock signal By reproducing through a filter, noise generation included in the distance measurement signal is performed. Was removed, it is possible to reduce the phase measurement error.
 前記再生された距離測定信号は前記位相測定手段43に供給され、前記自局内で生成した起点信号の周波数の整数倍もしくは整数分の1の周波数をクロック信号として用い、積和演算器によって前記距離測定信号の位相を高精度でリアルタイムで測定し、測定結果を距離算出手段42に出力し、前記距離算出手段42は、例えば、基準発振器41からの供給されるクロック信号によって動作する標準的なマイクロプロセッサであり、前記第1の発受信手段101aと前記第2の発受信手段101bとの間の相対距離を高精度で算出する。 The reproduced distance measurement signal is supplied to the phase measuring means 43, and an integer multiple or a fraction of an integer frequency of the origin signal generated in the own station is used as a clock signal, and the distance is calculated by a product-sum calculator. The phase of the measurement signal is measured with high accuracy in real time, and the measurement result is output to the distance calculation means 42. The distance calculation means 42 is, for example, a standard micro that is operated by a clock signal supplied from the reference oscillator 41. A processor that calculates a relative distance between the first transmitting / receiving unit 101a and the second transmitting / receiving unit 101b with high accuracy;
 ここで、前記積和演算器は、少なくとも、前記起点信号、距離測定信号、もしくはこれらの両方の周波数の整数倍をクロック信号として用い、前記距離測定信号を、例えば、8ビット以上のアナログ/デジタル変換器によってデジタル信号に変換し、前記デジタル信号とSinおよびCosのルックアップテーブルとの積和演算を行うものであり、前記位相を検出するために用いるSinのルックアップテーブルは0、1、0、-1、もしくは1、1、-1、-1、もしくはこれらの整数倍の繰り返しであり、一方、Cosのルックアップテーブルは1、0、-1、0、もしくは1、-1、-1、1、もしくはこれらの整数倍の繰り返しであり、かつ積和演算を行う際の1との乗算は当該デジタル信号と同じ値であり、-1との乗算は当該デジタル信号の補数を求めることであり、0との剰算は0であり、これらを組合わせることで、前記積和演算回路を単純化でき、ロジック回路のみで実現でき、しかも高速で、リアルタイムの演算が可能となる。 Here, the product-sum calculator uses at least an integer multiple of the origin signal, the distance measurement signal, or both frequencies as a clock signal, and the distance measurement signal is, for example, an analog / digital of 8 bits or more. The digital signal is converted into a digital signal by a converter, and a product-sum operation is performed on the digital signal and the Sin and Cos lookup tables. The Sin lookup table used to detect the phase is 0, 1, 0. -1, -1, or 1, 1, -1, -1 or an integer multiple of these, while the Cos lookup table is 1, 0, -1, 0, or 1, -1, -1 1 or an integer multiple of these, and multiplication with 1 when performing a product-sum operation is the same value as the digital signal, and multiplication with -1 This is to calculate the complement of the digital signal, and the remainder with 0 is 0. By combining these, the product-sum operation circuit can be simplified, can be realized with only the logic circuit, and can be realized at high speed in real time. Calculation is possible.
 また、前記距離測定信号の1周期の整数倍以上の区間を区切って位相を測定し、もしくは1周期の整数倍以上の区間を更に複数区間に区切って位相を測定して平均値を求め、もしくは1周期の整数倍以上の長さの窓枠関数を設定して位相を測定し、必要に応じて、平均値を求め、かつ/又は複数回の間欠発受信の間に移動平均値を求めることで、±0.5°程度の精度でしかもリアルタイムで、位相を測定することができる。 Further, the phase is measured by dividing a section of an integer multiple of one cycle of the distance measurement signal, or the phase is measured by dividing a section of an integer multiple of one cycle into a plurality of sections, or an average value is obtained, or Measure the phase by setting a window frame function with a length greater than or equal to an integral multiple of one period, and if necessary, determine the average value and / or determine the moving average value during multiple intermittent transmissions Thus, the phase can be measured with an accuracy of about ± 0.5 ° and in real time.
  (実施の形態3)
 図3は本発明の第3の実施の形態による制御手段の構成図であり、図3において、50は起点信号再生手段、49は同期検出手段、47は距離測定信号生成手段、46は同期発振手段、41は基準発振器、48は位相同期発振器、51b、52bは接続端子である。
(Embodiment 3)
FIG. 3 is a block diagram of the control means according to the third embodiment of the present invention. In FIG. 3, 50 is a starting point signal reproducing means, 49 is a synchronization detecting means, 47 is a distance measurement signal generating means, and 46 is a synchronous oscillation. Means, 41 is a reference oscillator, 48 is a phase-locked oscillator, and 51b and 52b are connection terminals.
 前記第2の発受信手段101bの受信手段13bによって受信される起点信号が、直接もしくは中間周波信号もしくはベースバンド信号に変換され、接続端子51bを経由して起点信号再生手段50に接続される。 The starting point signal received by the receiving means 13b of the second transmitting / receiving means 101b is converted directly or into an intermediate frequency signal or a baseband signal and connected to the starting point signal reproducing means 50 via the connection terminal 51b.
 前記起点信号再生手段50では、前記起点信号が無線信号の搬送波信号あるいは副搬送波信号である場合には、直接伝達位相誤差の少ない帯域通過フイルタ(例えばガウシャンバンドパスフイルタなど)を通し、あるいは前記起点信号が無線信号の搬送波信号あるいは副搬送波信号を変調した変調信号である場合には、伝達位相誤差の少ないアナログ復調器もしくは高い周波数のクロック信号を用いた伝達位相誤差の少ないデジタル復調器によって復調した後に前記帯域通過フイルタを通して再生する。 In the origin signal reproducing means 50, when the origin signal is a carrier signal or subcarrier signal of a radio signal, a direct band pass filter (for example, a Gaussian band pass filter or the like) with a small transmission phase error is passed, or When the starting signal is a modulated signal obtained by modulating a carrier signal or subcarrier signal of a radio signal, it is demodulated by an analog demodulator with a small transmission phase error or a digital demodulator with a small transmission phase error using a high-frequency clock signal And then regenerate through the bandpass filter.
 前記再生された起点信号は、同期検出手段49によって、基準発振器41から直接供給され、あるいは位相同期発振器48によって高い周波数に変換されて供給されるクロック信号によってサンプリングされ、前記起点信号の立上り点、立下り点、もしくはゼロ交差点のタイミングが検出され、セットあるいはリセット信号あるいは外部同期信号として同期発振手段46に供給される。 The regenerated starting point signal is directly supplied from the reference oscillator 41 by the synchronization detecting means 49 or sampled by the clock signal supplied after being converted to a high frequency by the phase synchronous oscillator 48, and the rising point of the starting point signal, The timing of the falling point or the zero crossing point is detected and supplied to the synchronous oscillation means 46 as a set or reset signal or an external synchronization signal.
 ここで、例えば、前記位相同期発振器48から供給されるクロック信号の周波数が100MHzの場合、前記同期信号の検出精度は±10ナノ秒となり、前記距離測定信号の周波数を1MHzとすると、距離の測定精度は±75cmとなる。更に高精度にするために256MHzのクロック信号とすると、距離の測定精度は±30cmとなる。一般的に、クロック信号の周波数は、前記距離測定信号の10倍以上の周波数に設定される。 Here, for example, when the frequency of the clock signal supplied from the phase-locked oscillator 48 is 100 MHz, the detection accuracy of the synchronization signal is ± 10 nanoseconds, and the frequency of the distance measurement signal is 1 MHz. The accuracy is ± 75 cm. If a clock signal of 256 MHz is used for higher accuracy, the distance measurement accuracy is ± 30 cm. Generally, the frequency of the clock signal is set to a frequency that is 10 times or more that of the distance measurement signal.
 一方、前記同期発振手段46は、前記位相同期発振器48から供給されるクロック信号によって駆動される、セットあるいはリセット付きの同期式あるいは非同期式のカウンタあるいは数値制御発振器によって構成され、前記セットあるいはリセット信号あるいは外部同期信号によって、セットしあるいはリセットすることで、数マイクロ秒以内の瞬時にして同期を確立し、前記起点信号が消滅しても、比較的に長時間、同期を保持できるメリットが得られる。 On the other hand, the synchronous oscillation means 46 is constituted by a synchronous or asynchronous counter with a set or reset or a numerically controlled oscillator driven by a clock signal supplied from the phase synchronous oscillator 48, and the set or reset signal. Alternatively, by setting or resetting with an external synchronization signal, the synchronization can be established in an instant within a few microseconds, and even if the starting signal disappears, the advantage that synchronization can be maintained for a relatively long time is obtained. .
 なお、前記同期検出手段49および同期発振手段46に供給されるクロック信号は、前記基準発振器41から直接あるいは高い周波数に変換して供給される。 The clock signal supplied to the synchronization detection means 49 and the synchronization oscillation means 46 is supplied from the reference oscillator 41 directly or after being converted to a high frequency.
 前記同期発振手段46からの出力信号は、距離測定信号生成手段47によって、単一の周波数あるいは周波数の異なる複数の、搬送波信号、副搬送波信号、変調信号、スペクトル拡散符号、もしくはこれらの任意の組み合わせによる距離測定信号に変換され、接続端子52bを介して前記第2の発受信手段101bの発信手段12bに供給される。 The output signal from the synchronous oscillating means 46 is output by the distance measurement signal generating means 47 by a single frequency or a plurality of different carrier frequencies, subcarrier signals, modulated signals, spread spectrum codes, or any combination thereof. And is supplied to the transmission means 12b of the second transmission / reception means 101b via the connection terminal 52b.
 前記距離測定信号が同期しあるいは直交し少なくとも周波数が異なる複数の距離測定信号である場合には、距離を測定するレンジを変化させることが可能であり、大まかな距離の測定から精細な距離の測定に切替えて測定することが可能となる。 When the distance measurement signals are a plurality of distance measurement signals that are synchronized or orthogonal and have at least different frequencies, it is possible to change the range for measuring the distance, from the rough distance measurement to the fine distance measurement. It becomes possible to switch to and measure.
  (実施の形態4)
 図4は本発明の第4の実施の形態による制御手段の構成図であり、図4において、11cは制御手段、41は基準発振器、42は距離算出手段、43は位相測定手段、44は距離測定信号再生手段、45は起点信号生成手段、46は同期発振器、47は距離測定信号生成手段、48は位相同期発振器、49は同期検出手段、50は起点信号再生手段、51c、52cは接続端子である。
(Embodiment 4)
FIG. 4 is a block diagram of the control means according to the fourth embodiment of the present invention. In FIG. 4, 11c is the control means, 41 is the reference oscillator, 42 is the distance calculation means, 43 is the phase measurement means, and 44 is the distance. Measurement signal reproduction means 45, origin signal generation means 46, synchronization oscillator 46, distance measurement signal generation means 47, phase synchronization oscillator 48, synchronization detection means 50, origin signal regeneration means 51c, 52c are connection terminals It is.
 ここで、前記制御手段11cは、前記制御手段11aと制御手段11bを併せ持った構成であり、前記第1の発受信手段と第2発受信手段に共通して用いることができる。 Here, the control means 11c is configured to have both the control means 11a and the control means 11b, and can be commonly used for the first transmission / reception means and the second transmission / reception means.
 前記起点信号生成手段45によって、図5に無線信号の構成を示すように、前記基準発振器41に同期し、少なくとも、システム同期信号61と、マックレイヤ62と、法規により許容される周波数範囲の単一もしくは複数の周波数の起点信号63-1~63-nとが生成され、接続端子51cを介して図1に示す発信手段12a、12bに供給され、その内、前記起点信号は、位相測定のためのクロック信号として、別途、前記位相測定手段43にも供給される。 As shown in FIG. 5, the origin signal generator 45 synchronizes with the reference oscillator 41, and at least a system synchronization signal 61, a Mac layer 62, and a frequency range allowed by law. Starting signals 63-1 to 63-n having one or a plurality of frequencies are generated and supplied to the transmitting means 12a and 12b shown in FIG. 1 via the connection terminal 51c. Among these, the starting signals are used for phase measurement. As a clock signal for this, it is also supplied to the phase measuring means 43 separately.
 一方、前記受信手段14a、14bによって受信される無線信号は、直接もしくは中間周波信号もしくはベースバンド信号に変換され、接続端子52cを介して前記起点信号再生手段44もしくは測定信号再生手段50に供給され、前記起点信号、距離測定信号、もしくはこれらの両方が、無線信号の搬送波信号あるいは副搬送波信号である場合には、伝達位相誤差の少ない帯域通過フイルタ(例えば、ガウシャンバンドパスフイルタ)を通し、あるいは無線信号の搬送波信号あるいは副搬送波信号を変調した変調信号あるいは拡散符号である場合には、伝達位相誤差の少ないアナログ復調器もしくは高い周波数のクロック信号を用いた伝達位相誤差の少ないデジタル復調器によって復調した後に、前記帯域通過フイルタを通して再生することによって、前記距離の算出誤差を軽減することができる。 On the other hand, the radio signals received by the receiving means 14a and 14b are converted directly or into an intermediate frequency signal or a baseband signal and supplied to the origin signal reproducing means 44 or the measurement signal reproducing means 50 via the connection terminal 52c. When the origin signal, the distance measurement signal, or both of them are a carrier signal or a subcarrier signal of a radio signal, a band-pass filter with a small transmission phase error (for example, a Gaussian band-pass filter) is passed through. Alternatively, in the case of a modulated signal or spreading code obtained by modulating a carrier signal or subcarrier signal of a radio signal, an analog demodulator with a small transmission phase error or a digital demodulator with a small transmission phase error using a high frequency clock signal After demodulating, playback through the bandpass filter And it makes it possible to reduce the calculation error of the distance.
 また、前記測定信号再生手段44によって再生された距離測定信号は位相測定手段43に供給され、前記自局内で生成した起点信号、距離測定信号、もしくはこれらの両方の周波数の整数倍の周波数をクロック信号として用い、積和演算器によって前記距離測定信号の位相を高精度でリアルタイムで測定し、測定結果を距離算出手段42に出力する。 The distance measurement signal reproduced by the measurement signal reproduction means 44 is supplied to the phase measurement means 43, and the origin signal generated in the own station, the distance measurement signal, or a frequency that is an integral multiple of both frequencies is clocked. The signal is used as a signal, and the phase of the distance measurement signal is measured with high accuracy in real time by a product-sum calculator, and the measurement result is output to the distance calculation means 42.
 また、前記距離算出手段42は、例えば、基準発振器41からの供給されるクロック信号によって動作する標準的なマイクロプロセッサであり、前記第1の発受信手段101aと前記第2の発受信手段101bとの間の相対距離を算出する。 The distance calculation means 42 is, for example, a standard microprocessor that operates according to a clock signal supplied from the reference oscillator 41, and the first transmission / reception means 101a and the second transmission / reception means 101b. The relative distance between is calculated.
 ここで、前記積和演算器は、少なくとも、前記起点信号の周波数の整数倍の周波数をクロック信号として用い、前記距離測定信号を、例えば、8ビット以上のアナログ/デジタル変換器によってデジタル信号に変換し、前記デジタル信号に変換した距離測定信号とSinおよびCosのルックアップテーブルとの積和演算を行うものであり、前記積和演算に用いるSinのルックアップテーブルは0、1、0、-1、もしくは1、1、-1、-1、もしくはこれらの整数倍の繰り返しであり、一方、Cosのルックアップテーブルは1、0、-1、0、もしくは1、-1、-1、1、もしくはこれらの整数倍の繰り返しであり、かつ積和演算を行う際の1との乗算は当該デジタル信号と同じ値であり、-1との乗算は当該デジタル信号の補数を求めることであり、0との剰算は0であり、これらを組合わせることで、前記積和演算回路を単純化でき、しかもロジック回路で実現できるため、高速で、リアルタイムの演算が可能となる。 Here, the product-sum calculator uses, as a clock signal, a frequency that is at least an integer multiple of the frequency of the starting signal, and converts the distance measurement signal into a digital signal by an analog / digital converter of 8 bits or more, for example. Then, a product-sum operation is performed on the distance measurement signal converted into the digital signal and a lookup table of Sin and Cos. The lookup table of Sin used for the product-sum operation is 0, 1, 0, −1. Or 1, 1, -1, -1, or an integer multiple of these, while the Cos lookup table is 1, 0, -1, 0, or 1, -1, -1, 1, Alternatively, the multiplication with 1 when performing multiplication and multiplication is the same value as the digital signal, and the multiplication with -1 is the complement of the digital signal. Since the multiplication with 0 is 0, and by combining these, the product-sum operation circuit can be simplified and realized with a logic circuit, so that real-time operation can be performed at high speed. Become.
 また、前記距離測定信号の1周期の整数倍以上の区間を区切って位相を測定し、もしくは1周期の整数倍以上の区間を更に複数区間に区切って位相を測定して平均値を求め、もしくは1周期の整数倍以上の長さの窓枠関数を設定して位相を測定し、必要に応じて、平均値を求め、又は複数回の間欠発受信の間に移動平均値を求めることで、±0.5°の精度でしかもリアルタイムで、位相を測定することができる。 Further, the phase is measured by dividing a section of an integer multiple of one cycle of the distance measurement signal, or the phase is measured by dividing a section of an integer multiple of one cycle into a plurality of sections, or an average value is obtained, or By measuring a phase by setting a window frame function having a length of an integer multiple of one cycle, and obtaining an average value as necessary, or obtaining a moving average value during multiple intermittent transmissions, The phase can be measured with an accuracy of ± 0.5 ° and in real time.
 一方、前記信号再生手段44によって再生された距離測定信号、前記信号再生手段50によって再生された起点信号、あるいはこれらの両方は、同期検出手段59によって、基準発振器41から直接供給され、あるいは位相同期発振器48によって高い周波数に変換されて供給されるクロック信号によってサンプリングされ、前記起点信号、距離測定信号、もしくはこれらの両方の立上り点、立下り点、もしくはゼロ交差点のタイミングが検出され、セットあるいはリセット信号あるいは外部同期信号として同期発振手段46に供給される。 On the other hand, the distance measurement signal regenerated by the signal regenerating means 44, the starting signal regenerated by the signal regenerating means 50, or both are directly supplied from the reference oscillator 41 by the synchronization detecting means 59, or are phase-synchronized. Sampled by a clock signal converted to a high frequency by an oscillator 48 and supplied, the timing of the rising point, falling point, or zero crossing point of the origin signal, the distance measurement signal, or both of them is detected and set or reset The signal is supplied to the synchronous oscillation means 46 as a signal or an external synchronization signal.
 ここで、例えば、前記位相同期発振器48から供給されるクロック信号の周波数が100MHzの場合、前記同期信号の検出精度は±10ナノ秒となり、前記距離測定信号の周波数を1MHzとすると、距離の測定精度は±75cmとなる。更に高精度にするために256MHzのクロック信号とすると、距離の測定精度は±30cmとなる。 Here, for example, when the frequency of the clock signal supplied from the phase-locked oscillator 48 is 100 MHz, the detection accuracy of the synchronization signal is ± 10 nanoseconds, and the frequency of the distance measurement signal is 1 MHz. The accuracy is ± 75 cm. If a clock signal of 256 MHz is used for higher accuracy, the distance measurement accuracy is ± 30 cm.
 また、前記同期発振手段46はセットあるいはリセット付きの同期式あるいは非同期式のカウンタあるいは数値制御発振器によって構成され、前記セットあるいはリセット信号あるいは外部同期信号によって、セットしあるいはリセットすることで、数マイクロ秒以内の瞬時にして同期を確立し、前記起点信号が消滅しても、比較的に長時間、同期を保持できるメリットが得られる。 The synchronous oscillating means 46 is constituted by a synchronous or asynchronous counter with a set or reset, or a numerically controlled oscillator, and is set or reset by the set or reset signal or an external synchronous signal for several microseconds. Even if the synchronization is established within an instant, and the origin signal disappears, there is an advantage that the synchronization can be maintained for a relatively long time.
 なお、前記同期発振手段46の代わりに、基準発振器41によって駆動されるデジタルシンセサイザを用いると、前記起点信号との同期を確立し、前記起点信号が消滅した後も、比較的に長時間、同期を保持できるよう構成することができるが、この場合には、同期確立までに数百マイクロ秒がかかり、また同期確立後の残留位相誤差が大きいなどの問題点がある。 If a digital synthesizer driven by a reference oscillator 41 is used instead of the synchronous oscillation means 46, synchronization with the starting signal is established, and the synchronization is performed for a relatively long time after the starting signal disappears. However, in this case, it takes several hundreds of microseconds to establish synchronization, and there are problems such as a large residual phase error after establishing synchronization.
 また、前記同期検出手段49に供給されるサンプリング信号と、前記同期発振手段54に供給されるクロック信号とは、前記基準発振器41の出力信号を直接あるいは位相同期発振器もしくは逓倍器を用いて高い周波数に変換して生成される。 The sampling signal supplied to the synchronization detecting means 49 and the clock signal supplied to the synchronous oscillating means 54 have a high frequency directly from the output signal of the reference oscillator 41 or using a phase synchronous oscillator or a multiplier. Generated by converting to.
 前記同期発振手段46の出力信号は、距離測定信号生成手段47によって、単一の周波数あるいは周波数の異なる複数の、搬送波信号、副搬送波信号、変調信号、スペクトル拡散符号、もしくはこれらの任意の組み合わせによる距離測定信号に変換され、接続端子51cを介して前記発信手段12a、12bに供給される。 The output signal of the synchronous oscillating means 46 is generated by the distance measurement signal generating means 47 by a single frequency or a plurality of different carrier frequencies, subcarrier signals, modulation signals, spread spectrum codes, or any combination thereof. It is converted into a distance measurement signal and supplied to the transmitting means 12a and 12b via the connection terminal 51c.
 前記距離測定信号が同期しあるいは直交し少なくとも周波数が異なる複数の距離測定信号である場合には、距離を測定するレンジを変化させることが可能であり、大まかな距離の測定から精細な距離の測定に切替えて測定することが可能となる。 When the distance measurement signals are a plurality of distance measurement signals that are synchronized or orthogonal and have at least different frequencies, it is possible to change the range for measuring the distance, from the rough distance measurement to the fine distance measurement. It becomes possible to switch to and measure.
 図5は、本発明の距離測定装置から発信される無線信号の構成を示す図である。図5において、61はシステム同期信号、62はMACレイヤ、63-1~63-nは起点信号、距離測定信号、もしくはこれらの両方である。 FIG. 5 is a diagram showing a configuration of a radio signal transmitted from the distance measuring device of the present invention. In FIG. 5, 61 is a system synchronization signal, 62 is a MAC layer, 63-1 to 63-n are origin signals, distance measurement signals, or both.
 前記システム同期信号61は複数ビットのユニークワードであり、±100ナノ秒程度の精度で前記第1の発受信手段101aと第2の発受信手段101bとの間の制御タイミングを合わせることができるが、この程度の精度で前記相対距離を算出すると、相対距離の測定誤差が数十mと大きくなる問題点がある。 The system synchronization signal 61 is a multi-bit unique word, and the control timing between the first transmission / reception means 101a and the second transmission / reception means 101b can be matched with an accuracy of about ± 100 nanoseconds. If the relative distance is calculated with such an accuracy, there is a problem that a measurement error of the relative distance becomes as large as several tens of meters.
 前記MACレイヤ62は、少なくとも、符号長、識別番号、相手先番号、データ情報、誤り訂正符号、もしくはこれらの組合せから構成され、前記システム同期信号61とセットになって生成される。 The MAC layer 62 includes at least a code length, an identification number, a partner number, data information, an error correction code, or a combination thereof, and is generated as a set with the system synchronization signal 61.
 前記起点信号、距離測定信号、もしくはこれらの両方は、前記第1の発受信手段101aと第2の発受信手段101bとの間で精密な同期を確立するための信号であり、通常比較的に低い周波数の単一もしくは同期しあるいは直交する複数の、搬送波信号、副搬送波信号、変調信号、スペクトル拡散符号、もしくはこれらの任意の組合せによる信号が用いられる。 The origin signal, the distance measurement signal, or both are signals for establishing precise synchronization between the first transmission / reception means 101a and the second transmission / reception means 101b. A low frequency single signal or a plurality of signals synchronized with or orthogonal to each other, that is, a carrier signal, a subcarrier signal, a modulation signal, a spread spectrum code, or any combination thereof is used.
 また、前記MACレイヤ62の継続時間を1ms程度とし、前記起点信号、距離測定信号、もしくはこれらの両方の継続時間を1ms程度とすると、片道の合計で2ms程度の継続時間となり、往復の合計で5ms程度となるので、前記間欠発信の間隔をCR発振器などの自励発振器で制御することで、複数の発受信手段の間で相互間の同期を取らず非同期で間欠発信できることから、経済的なシステム運用が可能となる。 If the duration of the MAC layer 62 is about 1 ms and the duration of the origin signal, the distance measurement signal, or both is about 1 ms, the total one-way duration is about 2 ms. Since the interval of intermittent transmission is controlled by a self-excited oscillator such as a CR oscillator, the intermittent transmission can be performed asynchronously without synchronization between a plurality of transmission / reception means. System operation becomes possible.
 一方、前記距離測定信号の継続時間を100ms程度に延長することで、距離の測定精度を10倍程度に高くすることができるが、複数の発受信手段の間で混信が生じるようになり、これを避けるために複数の発受信手段の間で同期をとる必要が生じ、運用コストが上昇する欠点が生じることとなる。 On the other hand, by extending the duration of the distance measurement signal to about 100 ms, the distance measurement accuracy can be increased to about 10 times, but interference occurs between a plurality of transmitting and receiving means. In order to avoid this, it is necessary to synchronize between a plurality of transmission / reception means, resulting in a disadvantage that the operation cost increases.
 また、前記複数組の起点信号あるいは複数組の距離測定信号は、図8および9に示すように、同期検出誤差関数を付与するために設けられた、移相手段82によって複数組の起点信号83a~83nを生成し、あるいは複数組の同期発振手段92a~92nによって複数組の距離測定信号を生成する場合を含んでいる。 Further, as shown in FIGS. 8 and 9, the plurality of sets of starting point signals or the plurality of sets of distance measurement signals are supplied to the plurality of sets of starting signals 83a by the phase shift means 82 provided for providing a synchronization detection error function. To 83n, or a plurality of sets of distance measurement signals by a plurality of sets of synchronous oscillation means 92a to 92n.
 図6は、本発明の距離測定装置のタイミングチャートである。図6において、71aは第1の発受信手段101aから発信される起点信号、71bは第2の発受信手段101bよって再生される起点信号、72は前記第1の発受信手段から第2の発受信手段に向けて起点信号が伝搬する伝搬経路、73aは前記第2の発受信手段によって再生された起点信号に同期して生成される距離測定信号、73bは前記第1の発受信手段によって再生された距離測定信号、74は前記第2の発受信手段から第1の発受信手段に向けて距離測定信号が伝搬する伝搬経路、77aは前記第1の発受信手段から発信される起点信号と前記第1の発受信手段によって再生される距離測定信号との位相差、78aは前記第1の発受信手段の発信手段の時間軸、78bは前記第1の発受信手段の受信手段の時間軸、79aは前記第2の発受信手段の受信手段の時間軸、79bは前記第2の発受信手段の発信手段の時間軸、80aは前記第1の発受信手段の発信のタイミングから第2発受信手段の発信のタイミングまでの時分割の間隔である。 FIG. 6 is a timing chart of the distance measuring device of the present invention. In FIG. 6, 71a is a starting signal transmitted from the first transmitting / receiving means 101a, 71b is a starting signal reproduced by the second transmitting / receiving means 101b, and 72 is a second transmitting signal from the first transmitting / receiving means. A propagation path through which the origin signal propagates toward the reception means, 73a is a distance measurement signal generated in synchronization with the origin signal reproduced by the second origination / reception means, and 73b is reproduced by the first origination / reception means The distance measurement signal 74 is a propagation path through which the distance measurement signal propagates from the second transmission / reception means to the first transmission / reception means, and 77a is an origin signal transmitted from the first transmission / reception means. The phase difference from the distance measurement signal reproduced by the first transmitter / receiver, 78a is the time axis of the transmitter of the first transmitter / receiver, and 78b is the time axis of the receiver of the first transmitter / receiver. 79a is the above The time axis of the receiving means of the second transmitting / receiving means, 79b is the time axis of the transmitting means of the second transmitting / receiving means, and 80a is the transmission time of the second transmitting / receiving means from the timing of transmission of the first transmitting / receiving means. This is the time division interval until the timing.
 前記第1の発受信手段から発信される前記起点信号71aをASin(2πf1t)とすると、前記起点信号71aが、距離L(m)の伝搬経路72を伝搬し、前記第2の発受信手段によって受信され、起点信号71bとして再生されると、BSin{2πf1t+(2πLf1/C)}に位相が変化する。 Assuming that the starting signal 71a transmitted from the first transmitting / receiving means is ASin (2πf1t), the starting signal 71a propagates along a propagation path 72 of a distance L (m), and is transmitted by the second transmitting / receiving means. When received and reproduced as the origin signal 71b, the phase changes to BSin {2πf1t + (2πLf1 / C)}.
 前記再生された起点信号71bと、同期確立誤差がゼロで同期した距離測定信号73aを生成すると、生成された距離測定信号73aは、同じくBSin{2πf1t+(2πLf1/C)}で表される。 When generating the distance measurement signal 73a synchronized with the reproduced starting signal 71b and the synchronization establishment error being zero, the generated distance measurement signal 73a is also represented by BSin {2πf1t + (2πLf1 / C)}.
 前記時分割の間隔80後に、前記生成された距離測定信号73aが、前記第2の発受信手段から発信され、再び、距離L(m)の伝搬経路74を伝搬し、前記第1の発受信手段で再生される距離測定信号73bは、CSin{2πf1t+(4πLf1/C)}で表わされる。ここで、Cは光の速度とする。 After the time division interval 80, the generated distance measurement signal 73a is transmitted from the second transmission / reception means, propagates again through the propagation path 74 of the distance L (m), and the first transmission / reception is performed. The distance measurement signal 73b reproduced by the means is represented by CSin {2πf1t + (4πLf1 / C)}. Here, C is the speed of light.
 そこで、前記第1の発受信手段で生成された起点信号71aと同期しあるいは直交し、周波数が前記起点信号の整数倍のクロック信号を用い、前記再生された距離測定信号73bの位相を測定すると、前記第1の発受信手段で生成された起点信号71aと前記第1の発受信手段で再生された距離測定信号73bとの位相差77aが測定され、ΔΦ={4πLf1/C}となることから、L={CΔΦ/4πf1}から、距離L(m)が算出できる。 Therefore, when the phase of the reproduced distance measurement signal 73b is measured using a clock signal that is synchronized with or orthogonal to the starting signal 71a generated by the first transmitting / receiving means and whose frequency is an integral multiple of the starting signal. The phase difference 77a between the starting point signal 71a generated by the first transmitter / receiver and the distance measurement signal 73b reproduced by the first transmitter / receiver is measured, and ΔΦ = {4πLf1 / C}. From L = {CΔΦ / 4πf1}, the distance L (m) can be calculated.
 図7は、本発明の距離測定装置の他のタイミングチャートであり、71aは第1の発受信手段から発信される起点信号、71bは第2の発受信手段によって再生される起点信号、72は前記第1の発受信手段から第2の発受信手段に向けて起点信号71aが伝搬する伝搬経路、73aは前記第2の発受信手段よって再生された起点信号71bに同期して生成される第1の距離測定信号、73bは前記第1の発受信手段によって再生された第1の距離測定信号、74は前記第2の発受信手段から第1の発受信手段に向けて第1の距離測定信号73aが伝搬する伝搬経路、75aは前記第1の発受信手段で再生される第1の距離測定信号73bに同期して生成された第2の距離測定信号、75bは第2の発受信手段で再生された第2の距離測定信号であり、
 76は前記第1の発受信手段から第2の発受信手段に向けて第2の距離測定信号75aが伝搬する伝搬経路、77aは第1の発受信手段から発信される起点信号71aと前記第1の発受信手段によって再生される第1の距離測定信号73bとの位相差、77bは第2の発受信手段で生成される第1の距離測定信号73aと第2の発受信手段で再生される第2の距離測定信号75bとの位相差、78a~78cは前記第1の発受信手段の発信手段と受信手段の時間軸、79a~79cは前記第2の発受信手段の受信手段と発信手段の時間軸、80a、80bは時分割の間隔である。
FIG. 7 is another timing chart of the distance measuring apparatus of the present invention, in which 71a is a starting signal transmitted from the first transmitting / receiving means, 71b is a starting signal reproduced by the second transmitting / receiving means, and 72 is A propagation path 73a through which the origin signal 71a propagates from the first transmitter / receiver to the second transmitter / receiver, and 73a is generated in synchronization with the origin signal 71b reproduced by the second transmitter / receiver. 1 is a distance measurement signal, 73b is a first distance measurement signal reproduced by the first transmission / reception means, and 74 is a first distance measurement from the second transmission / reception means toward the first transmission / reception means. A propagation path through which the signal 73a propagates; 75a, a second distance measurement signal generated in synchronization with the first distance measurement signal 73b reproduced by the first transmission / reception means; and 75b, second transmission / reception means. The second distance measurement signal reproduced in It is in,
76 is a propagation path through which the second distance measurement signal 75a propagates from the first transmission / reception means to the second transmission / reception means, and 77a is the origin signal 71a transmitted from the first transmission / reception means. The phase difference from the first distance measurement signal 73b reproduced by one transmission / reception means, 77b is reproduced by the first distance measurement signal 73a generated by the second transmission / reception means and the second transmission / reception means. The phase difference from the second distance measurement signal 75b, 78a to 78c are the time axis of the transmission means and reception means of the first transmission / reception means, and 79a to 79c are the transmission means and transmission of the second transmission / reception means. The time axis of the means, 80a and 80b are time division intervals.
 前記第1の発受信手段から発信される前記起点信号71aをASin(2πf1t)とすると、前記起点信号71aが、距離L(m)の伝搬経路72を伝搬し、前記第2の発受信手段によって受信され、起点信号71bとして再生されると、BSin{2πf1t+(2πLf1/C)}に位相が変化する。 Assuming that the starting signal 71a transmitted from the first transmitting / receiving means is ASin (2πf1t), the starting signal 71a propagates along a propagation path 72 of a distance L (m), and is transmitted by the second transmitting / receiving means. When received and reproduced as the origin signal 71b, the phase changes to BSin {2πf1t + (2πLf1 / C)}.
 前記再生された起点信号71bと、同期確立誤差がゼロで同期した第1の距離測定信号73aを生成すると、生成された第1の距離測定信号73aは、同じくBSin{2πf1t+(2πLf1/C)}で表される。 When the first distance measurement signal 73a synchronized with the reproduced origin signal 71b and the synchronization establishment error is zero, the generated first distance measurement signal 73a is similarly BSin {2πf1t + (2πLf1 / C)}. It is represented by
 前記時分割の間隔78a後に、前記生成された第1の距離測定信号73aが、前記第2の発受信手段から発信され、再び、距離L(m)の伝搬経路74を伝搬し、前記第1の発受信手段で再生される第1の距離測定信号73bは、CSin{2πf1t+(4πLf1/C)}で表わされる。ここで、Cは光の速度とする。 After the time division interval 78a, the generated first distance measurement signal 73a is transmitted from the second transmission / reception means, propagates again through the propagation path 74 of the distance L (m), and the first The first distance measurement signal 73b reproduced by the transmitting / receiving means is expressed by CSin {2πf1t + (4πLf1 / C)}. Here, C is the speed of light.
 そこで、前記第1の発受信手段で生成された起点信号71aと同期しあるいは直交し、周波数が前記起点信号の整数倍のクロック信号を用い、前記再生された第1の距離測定信号73bの位相を測定すると、前記第1の発受信手段で生成された起点信号71aと前記第1の発受信手段で再生された第1の距離測定信号73bとの位相差77aが測定され、ΔΦ={4πLf1/C}となることから、L={CΔΦ/4πf1}から、距離L(m)が前記第1の発受信手段の側で算出できる。 Therefore, the phase of the reproduced first distance measurement signal 73b is synchronized with or orthogonal to the origin signal 71a generated by the first transmission / reception means and uses a clock signal whose frequency is an integral multiple of the origin signal. Is measured, a phase difference 77a between the starting point signal 71a generated by the first transmitting / receiving unit and the first distance measurement signal 73b reproduced by the first transmitting / receiving unit is measured, and ΔΦ = {4πLf1 / C}, the distance L (m) can be calculated on the first transmitting / receiving unit side from L = {CΔΦ / 4πf1}.
 前記に続けて、前記第1の発受信手段101aにおいて、前記再生された第1の距離測定信号73bと同期して生成された第2の距離測定信号75aを前記第2の発受信手段101bに向けて発信し、前記第2の発受信手段101bで再生された第2の距離測定信号75bと、前記第1の発受信手段に向けて発信した第1の距離測定信号との位相差77bを測定すると、ΔΦ={4πLf1/C}となることから、L={CΔΦ/4πf1}から、距離L(m)が前記第2の発受信手段側でも算出できる。 Following the above, in the first transmission / reception means 101a, the second distance measurement signal 75a generated in synchronization with the reproduced first distance measurement signal 73b is sent to the second transmission / reception means 101b. A phase difference 77b between the second distance measurement signal 75b transmitted to the second transmission / reception means 101b and the first distance measurement signal transmitted to the first transmission / reception means is obtained. Since ΔΦ = {4πLf1 / C} is measured, the distance L (m) can be calculated from the second transmitting / receiving unit side from L = {CΔΦ / 4πf1}.
 更に、同様なシーケンスを繰返すことによって、前記第1の発受信手段側と前記第2の発受信手段側とで、複数回距離L(m)が算出できることから、それぞれの側で、平均値を求めることで、距離の算出精度を高めることができる。 Further, by repeating the same sequence, the distance L (m) can be calculated a plurality of times on the first transmitting / receiving means side and the second transmitting / receiving means side. By calculating, the distance calculation accuracy can be increased.
 なお、前記算出精度の改善は、同期確立誤差関数の付与によって、前記同期検出手段49における同期確立誤差がランダムに変化することでも追加的に実現できる。 Note that the improvement in the calculation accuracy can be additionally realized by changing the synchronization establishment error in the synchronization detection means 49 at random by adding a synchronization establishment error function.
 図8は、本発明の距離測定装置の同期確立誤差関数生成手段の構成図である。図8において、41は基準発振器、48は位相同期発振器、27は誤差関数生成手段、82は移相手段、83a~83nは移相手段82の切替タップ、84は切替制御手段、85、86、87は接続端子である。 FIG. 8 is a block diagram of the synchronization establishment error function generating means of the distance measuring device of the present invention. 8, 41 is a reference oscillator, 48 is a phase-locked oscillator, 27 is an error function generating means, 82 is a phase shifting means, 83a to 83n are switching taps of the phase shifting means 82, 84 is a switching control means, 85, 86, Reference numeral 87 denotes a connection terminal.
 前段の基準発振器41からの出力信号を位相同期発振器48によって高い周波数に変換し、接続端子85を介して移相手段82に入力する。 The output signal from the reference oscillator 41 at the previous stage is converted to a high frequency by the phase-locked oscillator 48 and input to the phase shift means 82 via the connection terminal 85.
 移相手段82は、複数段のシフトレジスタ、あるいは複数段の遅延素子、あるいは複数段の遅延回路などによって構成され、各段の信号出力は切替タップ83a~83nによって引き出され、切替制御手段84によって順次切替えられ、高い周波数のクロック信号として接続端子86から外部(同期検出手段、同期発振手段など)に出力される。 The phase shift means 82 is constituted by a plurality of stages of shift registers, a plurality of stages of delay elements, or a plurality of stages of delay circuits, and the signal output of each stage is drawn out by the switching taps 83a to 83n. The signals are sequentially switched and output from the connection terminal 86 to the outside (synchronization detection means, synchronous oscillation means, etc.) as a high frequency clock signal.
 前記移相手段82の各段の移相量は極力小さいことが望ましく、かつ移相量の合計は、前記クロック信号の1周期以上であることが必要である。例えば、前記クロック信号の周波数が256MHzであるとすると、移相手段82の各段の移相量は4ナノ秒以下(例えば、0.4ナノ秒など)であり、かつ移相量の合計は4ナノ秒以上(例えば、6.4ナノ秒など)とする必要がある。 The phase shift amount of each stage of the phase shift means 82 is desirably as small as possible, and the total of the phase shift amounts needs to be one cycle or more of the clock signal. For example, if the frequency of the clock signal is 256 MHz, the phase shift amount of each stage of the phase shift means 82 is 4 nanoseconds or less (for example, 0.4 nanosecond), and the sum of the phase shift amounts is It is necessary to set it to 4 nanoseconds or more (for example, 6.4 nanoseconds).
 上記の移相手段82が無い場合に、同期発振手段54の同期確立精度が±2ナノ秒程度であり、起点信号の周波数を1MHzとすると、距離の測定精度は、距離測定レンジが150mであるのに対して、±30cmが限界となるが、上記の移相手段82を設け、各段に割付けられた移相量を0.4ナノ秒とし、算出した距離の平均値を求めると、測位精度を±15cm程度に改善することができる。 When the phase shift means 82 is not provided, the synchronization establishment accuracy of the synchronous oscillation means 54 is about ± 2 nanoseconds, and the distance measurement range is 150 m when the frequency of the origin signal is 1 MHz. On the other hand, ± 30 cm is the limit, but the phase shift means 82 is provided, the phase shift amount assigned to each stage is 0.4 nanoseconds, and the average value of the calculated distances is determined. The accuracy can be improved to about ± 15 cm.
 なお、前記移相手段82は前記同期発振手段54に対して同期確立誤差関数を付与することになり、複数段のタップ83a~83nの各段ごとに生じる同期確立誤差の合計を同期確立誤差関数として表現すれば、同期確立誤差関数は多項式によって表現できるので、しかも前記多項式が0もしくは一定値に収斂するように設定することになる。 The phase shift means 82 gives a synchronization establishment error function to the synchronous oscillation means 54, and the sum of the synchronization establishment errors generated for each stage of the plurality of stages of taps 83a to 83n is the synchronization establishment error function. Since the synchronization establishment error function can be expressed by a polynomial, the polynomial is set to converge to 0 or a constant value.
 図9は、本発明の距離測定装置の同期確立誤差関数生成手段の他の構成図である。図9において、91、93は切替スイッチ、92a~92nは複数組のセットあるいはリセット付きのカウンタあるいは複数組の数値制御発振器、94~96は接続端子である。 FIG. 9 is another configuration diagram of the synchronization establishment error function generating means of the distance measuring device of the present invention. In FIG. 9, 91 and 93 are changeover switches, 92a to 92n are a plurality of sets or counters with resets or a plurality of sets of numerically controlled oscillators, and 94 to 96 are connection terminals.
 接続端子94に供給される前記起点信号、距離測定信号、もしくはこれらの両方から検出されたセットあるいはリセット信号、もしくは同期検出信号は、切替スイッチ91によって切替えられ、前記複数組のカウンタあるいは複数組の数値制御発振器92a~92nを順次セットしあるいはリセットする。 A set or reset signal or a synchronization detection signal detected from the starting point signal, the distance measurement signal, or both of them supplied to the connection terminal 94 is switched by a changeover switch 91, and the plurality of sets of counters or a plurality of sets of The numerically controlled oscillators 92a to 92n are sequentially set or reset.
 一方、接続端子96には基準発振器41(記載せず)から直接あるいは位相同期発振器48を用いて高い周波数に変換してクロック信号が供給され、前記セットあるいはリセットのタイミングに同期して、前記複数組のカウンタ92a~92nがセットされあるいはリセットされて、通常、低い周波数へカウントダウンされる。 On the other hand, the connection terminal 96 is supplied with a clock signal directly from a reference oscillator 41 (not shown) or converted into a high frequency using a phase-locked oscillator 48, and the plurality of the plurality of the connection terminals 96 are synchronized with the set or reset timing. A set of counters 92a-92n is set or reset and is usually counted down to a lower frequency.
 前記複数組のカウンタあるいは複数組の数値制御発振器92a~92nによって生成された出力信号は、切替スイッチ93により順次切替えられてSIGNAL#1~SIGNAL#nの各信号として割付けられ、接続端子95を経由して、前記距離測定信号生成手段45(記載せず)に供給される。 The output signals generated by the plural sets of counters or plural sets of numerically controlled oscillators 92a to 92n are sequentially switched by the changeover switch 93 and assigned as signals SIGNAL # 1 to SIGNAL # n. Then, it is supplied to the distance measurement signal generation means 45 (not shown).
 ここで、前記基準発振器41(記載せず)から直接あるいは位相同期発振器48を介して前記同期検出手段46(記載せず)に供給されるクロック信号の周波数もしくは位相と、前記起点信号の周波数もしくは位相とは非相関であることが望ましく、かつ/又は両者間の周波数もしくは位相の関係を前記起点信号を受信している時間内にランダムに変化させることができれば、前記複数組のカウンタあるいは複数組の数値制御発振器92a~92nの間の同期確立誤差の相関係数を低く抑えられるので、前記距離測定信号の位相を測定して距離を算出した結果から平均値を求めることで、距離測定精度を改善できるメリットが得られる。 Here, the frequency or phase of the clock signal supplied from the reference oscillator 41 (not shown) directly or via the phase-locked oscillator 48 to the synchronization detecting means 46 (not shown), and the frequency or the phase of the starting signal or If it is desirable that the phase is uncorrelated and / or the frequency or phase relationship between the two can be changed randomly within the time when the starting signal is received, the plurality of counters or the plurality of sets Since the correlation coefficient of the synchronization establishment error between the numerically controlled oscillators 92a to 92n can be kept low, the distance measurement accuracy can be improved by calculating the distance from the result of measuring the phase of the distance measurement signal and calculating the distance. Benefits that can be improved.
 言い換えれば、前記複数組のカウンタあるいは複数組の数値制御発振器92a~92nの各出力に対応して、前記同期検出手段46によって検出されるセットあるいはリセット信号の検出タイミングがランダムに変化すれば、前記同期確立誤差の相関係数を低く抑えられる。 In other words, if the detection timing of the set or reset signal detected by the synchronization detection means 46 changes at random in correspondence with the outputs of the plurality of sets of counters or the plurality of sets of numerically controlled oscillators 92a to 92n, The correlation coefficient of synchronization establishment error can be kept low.
 一例として、前記アンテナ切替手段に複数のアンテナもしくは送受波器を接続し、前記複数組のカウンタあるいは複数組の数値制御発振器92a~92nを切替えるタイミングに合わせて前記複数のアンテナもしくは送受波器を切替えることによって、無線信号の伝搬経路の位相変化がランダムであることを利用して、前記同期確立誤差の相関係数を低く抑えることができる。 As an example, a plurality of antennas or transducers are connected to the antenna switching means, and the plurality of antennas or transducers are switched in accordance with the timing of switching the plurality of sets of counters or the plurality of sets of numerically controlled oscillators 92a to 92n. Accordingly, the correlation coefficient of the synchronization establishment error can be kept low by utilizing the fact that the phase change of the propagation path of the radio signal is random.
 なお、切替スイッチ91と93の切替タイミングは同一でなく、少なくとも、前記時分割の間隔で受発信を行うタイミングに合わせる必要がある。 It should be noted that the switching timings of the changeover switches 91 and 93 are not the same, and it is necessary to match at least the timing of transmission / reception at the time division interval.
 また、前記複数組のカウンタを用いると、1組当たり8段程度以下のカウンタで済むことから、16組程度のカウンタを設けても、128段程度のカウンタで済むことから経済的な規模となる。 In addition, when a plurality of sets of counters are used, the number of counters is about 8 or less per set, so even if about 16 sets of counters are provided, only about 128 stages of counters are required, resulting in an economical scale. .
 また、前記複数組のカウンタあるいは複数組の数値制御発振器92a~92nの各組ごとに生じる同期確立誤差の合計を同期確立誤差関数として表現すれば、同期確立誤差関数は多項式によって表現でき、しかも前記多項式は0もしくは一定値に収斂するように設定することになる。 Further, if the total synchronization establishment error generated for each of the plurality of sets of counters or the plurality of sets of numerically controlled oscillators 92a to 92n is expressed as a synchronization establishment error function, the synchronization establishment error function can be expressed by a polynomial. The polynomial is set to converge to 0 or a constant value.
 以上の説明では、前記第2の受発信手段101bから発信される距離測定信号として単一の距離測定信号を用いると、位相測定手段43で測定できる位相差ΔΦを0<ΔΦ<2πに制限する必要があることから、再生された起点信号71bに同期しあるいは直交し少なくとも周波数が異なる複数の距離測定信号を用いると、複数のレンジで距離を測定することが可能となり、測定したい距離にレンジを合わせることで、精密な距離の測定が可能となるメリットが得られる。 In the above description, when a single distance measurement signal is used as the distance measurement signal transmitted from the second receiving / transmitting means 101b, the phase difference ΔΦ that can be measured by the phase measuring means 43 is limited to 0 <ΔΦ <2π. Since it is necessary to use a plurality of distance measurement signals that are synchronized with or orthogonal to the reproduced starting signal 71b and have at least different frequencies, it is possible to measure the distance in a plurality of ranges, and to set the range to the distance to be measured. By combining them, there is an advantage that a precise distance can be measured.
 また、前記無線信号として高周波信号を用いる場合について説明したが、超音波信号、高周波信号、もしくは光信号を用いることができる。なお、超音波信号もしくは光信号の場合には、アンテナの代わりに、送受波器を用いる。 In addition, although the case where a high-frequency signal is used as the wireless signal has been described, an ultrasonic signal, a high-frequency signal, or an optical signal can be used. In the case of an ultrasonic signal or an optical signal, a transducer is used instead of an antenna.
 また、前記第1の発受信手段と第2の発受信手段とから発信する起点信号、距離測定信号、もしくはこれらの両方は、周波数分割で多重化しかつ/又は時分割で多重化して発信することができる。 Further, the origin signal, the distance measurement signal, or both of the signals transmitted from the first transmitting / receiving means and the second transmitting / receiving means are multiplexed by frequency division and / or multiplexed by time division and transmitted. Can do.
 また、前記第1の発受信手段と第2の発受信手段のいずれか一方あるいは両方に複数のアンテナあるいは送受波器を接続し、周期的に切替えながら方向測定信号を発受信して前記複数のアンテナに対応する位相差を測定することで、相互間の方向を測定することが可能となり、前記第1の発受信手段と第2の発受信手段との間の相対位置、あるいは前記第1の発受信手段の3次元の位置の測位が可能となる。 In addition, a plurality of antennas or transducers are connected to one or both of the first transmitting / receiving unit and the second transmitting / receiving unit, and direction measurement signals are transmitted / received while periodically switching, and the plurality By measuring the phase difference corresponding to the antenna, it becomes possible to measure the direction between them, and the relative position between the first transmitting / receiving means and the second transmitting / receiving means, or the first transmitting / receiving means. It is possible to measure the three-dimensional position of the transmitting / receiving means.
 また、超広帯域通信方式(ウルトラワイドバンド)を用いることで、高い周波数の変調信号あるいは高いチップレートの拡散符号を採用できるので、同期しあるいは直交する複数の変調信号あるいは拡散符号を割り当てることが可能となり、複数の測定レンジを設定できることから、比較的に近距離での距離測定精度を向上させることができる。 In addition, by using an ultra-wideband communication method (ultra-wide band), a high-frequency modulated signal or a high chip rate spreading code can be adopted, so that multiple modulated signals or spreading codes that are synchronized or orthogonal can be assigned. Thus, since a plurality of measurement ranges can be set, the distance measurement accuracy at a relatively short distance can be improved.
 また、前記第1および第2の発受信手段のための無線周波数としてGPSに割当てられた周波数、あるいはその近傍の周波数を割当てることが出来れば、無線信号の占有時間率が極端に少なくて済み、GPSへの妨害が少なくしかも屋内でも高精度の測位が可能となることから、GPSのシームレス化が可能となる。 In addition, if the frequency assigned to the GPS as the radio frequency for the first and second transmitting / receiving means, or a frequency in the vicinity thereof can be assigned, the occupation time rate of the radio signal can be extremely small, GPS can be made seamless because there is little interference with GPS and high-precision positioning is possible even indoors.
 また、方向の測定信号を特別に設けず、コスタスループを用いて前記無線信号から無変調の搬送波信号あるいは副搬送波信号を再生することが可能となる。 Further, it is possible to reproduce an unmodulated carrier signal or subcarrier signal from the wireless signal using a Costas loop without providing a direction measurement signal.
 また、前記MACレイヤには、少なくとも前記発信手段の識別符号あるいは識別番号が含まれる他に、局情報、報知情報、あるいは音声情報を含み、受信手段において文字情報あるいは音声信号に変換し、表示手段に表示をし、スピーカからアナウンスすることができる。 Further, the MAC layer includes at least the identification code or identification number of the transmission means, and also includes station information, broadcast information, or voice information, converted into character information or a voice signal by the reception means, and displayed means Can be displayed and announced from the speaker.
 本発明によれば、複数の発受信手段の間で、時分割による相互通信を行うことによって、短時間に、高精度で、しかも安価な装置を用いて、相互間の距離を測定することが可能となることから、近接する複数の移動体の任意の組合せ間で、最適なユビキタスモーバイルネットワークあるいはアドホックモーバイルネットワークを瞬時に構成することができる。 According to the present invention, it is possible to measure the distance between a plurality of transmission / reception means by using time-division mutual communication using a highly accurate and inexpensive device in a short time. Therefore, an optimum ubiquitous mobile network or ad hoc mobile network can be instantaneously configured between any combination of a plurality of adjacent mobile units.
 また、前記距離を算出する手段に加え、方向を測定する手段を追加することによって、相互間の3次元の位置を算出し、あるいは3次元の位置を測位できるので、利便性あるいは利用価値が更に高くなる。 In addition to the means for calculating the distance, by adding a means for measuring the direction, the three-dimensional position between each other can be calculated, or the three-dimensional position can be measured. Get higher.
 例えば、高速道路を走行中の車と車の間の距離と方向が瞬時に高精度で各々の側で算出可能となり、協調運転あるいは衝突防止装置などに応用することができる。 For example, the distance and direction between cars traveling on a highway can be calculated instantaneously with high accuracy on each side, and can be applied to cooperative driving or collision prevention devices.
 また、前記第1の発受信手段を移動可能な移動端末とし、固定して設置される複数の第2の発受信手段をネットワークで結ぶことで、移動端末の正確な位置を移動体側とネットワーク側で同時にリアルタイムで検知できることから、歩行者あるいはロボットなどの自律移動の誘導あるいは制御と、センターからのリモコンおよび監視などとが、同時に可能となる。 In addition, the first transmitting / receiving unit is a movable mobile terminal, and a plurality of second transmitting / receiving units fixedly installed are connected by a network so that the exact position of the mobile terminal can be determined between the mobile unit and the network side. Since it can be simultaneously detected in real time, guidance or control of autonomous movement of a pedestrian or robot, and remote control and monitoring from the center can be performed simultaneously.
 また、第2の発受信手段を児童が携帯し、第1の発受信手段を車両に搭載することで、相互間の距離を算出してお互いの接近を検知できるので、交差点あるいは横断歩道での児童と車両との出会い頭の衝突を防止するための装置に応用できる。 Moreover, since the child carries the second transmission / reception means and the first transmission / reception means is mounted on the vehicle, the distance between them can be calculated and the mutual approach can be detected. It can be applied to a device for preventing collision between a child and a vehicle.
 また、第1の発受信手段をトランジット側に設置し、第2の発受信手段をポール側に設置し、相互間の相対的距離を複数回測定して平均値を求めることで、相互間の距離を高精度で測量することができる。 In addition, the first transmitter / receiver is installed on the transit side, the second transmitter / receiver is installed on the pole side, and the relative distance between them is measured several times to obtain an average value. The distance can be measured with high accuracy.
 なお、本発明の距離測定技術は基盤技術であり、上記以外に多分野での利用が期待できる。 Note that the distance measurement technology of the present invention is a basic technology and can be expected to be used in various fields other than the above.
1           送信機
2           中継機
3           距離測定機
101a        第1の発受信手段
101b        第2の発受信手段
11a、11b、11c 制御手段
12a、12b     発信手段
13a、13b     受信手段
14a、14b     アンテナ切替手段
15a、16b     アンテナ
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Relay machine 3 Distance measuring device 101a 1st transmission / reception means 101b 2nd transmission / reception means 11a, 11b, 11c Control means 12a, 12b Transmission means 13a, 13b Reception means 14a, 14b Antenna switching means 15a, 16b antenna

Claims (16)

  1.  超音波信号あるいは高周波信号あるいは光信号である無線信号を用いて距離を測定する距離測定装置において、
     単一の無線周波数を用いて時分割で双方向通信を行うための、第1の発受信手段と、第2の発受信手段と
     から構成され、
     前記第1の発受信手段と第2の発受信手段とが、少なくとも、
     単一の周波数の無線信号を、時分割でバースト信号として間欠発信するための発信手段と、
     前記無線信号を受信して、直接もしくは中間周波信号もしくはベースバンド信号に変換するための受信手段と、
     前記発信手段と受信手段とを制御するための制御手段と、
     前記発信手段と受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するためのアンテナ切替手段と
    を有し、
     前記第2の発受信手段の制御手段が、少なくとも、
     前記受信手段が受信した無線信号から起点信号を再生するための起点信号再生手段と、
     前記再生された起点信号の立上がり点、立下がり点、もしくはゼロ交差点のタイミングを検出するための同期検出手段と、
     前記検出されたタイミングで、起点信号と同期を確立し、かつ前記起点信号が消滅した後も、所定期間、同期を保持してクロック信号を生成するための同期発振手段と、
     前記生成したクロック信号に同期しあるいは直交した距離測定信号を生成して、前記発信手段から無線信号として発信するための距離測定信号生成手段と
    を有し、
     前記第1の発受信手段の制御手段が、少なくとも、
     システム同期信号と、識別信号と、起点信号とを生成するための起点信号生成手段と、
     前記受信手段が受信した無線信号から距離測定信号を再生するための距離測定信号再生手段と、
     前記生成した起点信号を基準として、再生された距離測定信号の位相を測定するための位相測定手段と、
     前記測定された距離測定信号の位相から、前記第2の発受信手段との相対的な距離を算出するための距離算出手段と
    を有し、
     前記第2の発受信手段は、前記第1の発受信手段から、少なくとも、起点信号を含む無線信号をバースト信号として間欠発信すると、前記受信した起点信号と同期した距離測定信号を含む無線信号を発信し、
     前記第1の発受信手段において、前記第2の発受信手段から発信された距離測定信号を再生し、前記起点信号と同期したクロック信号を用いて前記再生した距離測定信号の位相を測定して、前記第1の発受信手段と第2の発受信手段との間の相対的な距離を算出する
     ことを特徴とする距離測定装置。
    In a distance measuring device that measures a distance using a radio signal that is an ultrasonic signal, a high-frequency signal, or an optical signal,
    A first transmitter / receiver and a second transmitter / receiver for performing bidirectional communication in a time-sharing manner using a single radio frequency,
    The first transmission / reception means and the second transmission / reception means are at least:
    A transmission means for intermittently transmitting a radio signal of a single frequency as a burst signal in a time division manner,
    Receiving means for receiving the radio signal and converting it directly or into an intermediate frequency signal or baseband signal;
    Control means for controlling the transmitting means and the receiving means;
    An antenna switching means for switching or sharing an antenna or a transmitter / receiver in a time-sharing manner between the transmitting means and the receiving means;
    The control means of the second transmitting / receiving means is at least:
    Starting point signal reproducing means for reproducing the starting point signal from the radio signal received by the receiving means;
    Synchronization detection means for detecting the timing of the rising point, falling point, or zero crossing of the regenerated starting point signal;
    Synchronous oscillation means for establishing a synchronization with a starting signal at the detected timing and generating a clock signal while maintaining synchronization for a predetermined period after the starting signal disappears,
    A distance measurement signal generating means for generating a distance measurement signal in synchronization with or orthogonal to the generated clock signal and transmitting the distance measurement signal as a radio signal from the transmission means;
    The control means of the first transmitting / receiving means is at least
    A starting point signal generating means for generating a system synchronization signal, an identification signal, and a starting point signal;
    A distance measurement signal reproducing means for reproducing a distance measurement signal from a radio signal received by the receiving means;
    Phase measurement means for measuring the phase of the reproduced distance measurement signal with reference to the generated origin signal;
    A distance calculating means for calculating a relative distance from the second transmitting / receiving means from the phase of the measured distance measuring signal;
    When the second transmitting / receiving unit intermittently transmits a radio signal including at least a starting signal as a burst signal from the first transmitting / receiving unit, the second transmitting / receiving unit receives a radio signal including a distance measurement signal synchronized with the received starting signal. Outgoing,
    In the first transmission / reception means, the distance measurement signal transmitted from the second transmission / reception means is reproduced, and the phase of the reproduced distance measurement signal is measured using a clock signal synchronized with the origin signal. A relative distance between the first transmitter / receiver and the second transmitter / receiver is calculated.
  2.  超音波信号あるいは高周波信号あるいは光信号である無線信号を用いて距離を測定する距離測定装置において、
     単一の無線周波数を用いて時分割で双方向通信を行うめの、第1の発受信手段と、第2の発受信手段と
     から構成され、
     前記第1の発受信手段と第2の発受信手段とが、少なくとも、
     単一の周波数の無線信号を、時分割でバースト信号として間欠発信するための発信手段と、
     前記無線信号を受信して、直接もしくは中間周波信号もしくはベースバンド信号に変換するための受信手段と、
     前記発信手段と受信手段とを制御するための制御手段と、
     前記発信手段と受信手段との間で、アンテナあるいは送受波器を時分割で切替えあるいは共有するためのアンテナ切替手段と
    を有し、
     前記第1の発受信手段と第2の発受信手段の制御手段が、少なくとも、
     システム同期信号と、識別信号と、起点信号、距離測定信号、もしくはこれらの両方とを生成するための信号生成手段と、
     前記受信手段が受信した無線信号から、起点信号、距離測定信号、もしくはこれらの両方を再生するための信号再生手段と、
     前記再生された起点信号、距離測定信号、もしくはこれらの両方の立上がり点、立下がり点、もしくはゼロ交差点のタイミングを高精度で検出するための同期検出手段と、
     前記検出されたタイミングで、起点信号、距離測定信号、もしくはこれらの両方と同期を確立し、かつ起点信号、距離測定信号、もしくはこれらの両方が消滅した後も、所定期間、同期を保持してクロック信号を生成するための同期発振手段と、
     前記生成された起点信号、距離測定信号、もしくはこれらの両方を基準として、前記再生された距離測定信号の位相を、リアルタイムに測定するための位相測定手段と、
     前記測定された距離測定信号の位相から、前記第1の発受信手段と第2の発受信手段との間の相対的な距離を算出するための距離算出手段と
    を有し、
     前記第2の発受信手段は、前記第1の発受信手段から、少なくとも、起点信号を含む無線信号をバースト信号として間欠発信すると、前記受信した起点信号と同期した第1の距離測定信号を含む無線信号を発信し、
     前記第1の発受信手段において、前記第2の発受信手段から発信された第1の距離測定信号を再生し、前記起点信号と同期したクロック信号を用いて前記再生した第1の距離測定信号の位相を測定して、前記第1の発受信手段と第2の発受信手段との間の距離を算出するとともに、
     少なくとも、前記第1の距離測定信号と同期した第2の距離測定信号を含む無線信号を発信し、
     前記第2の発受信手段において、前記第1の発受信手段から発信された第2の距離測定信号を再生し、前記第1の距離測定信号と同期したクロック信号を用いて第2の距離測定信号の位相を測定して、前記第2の発受信手段と第1の発受信手段との間の距離を算出することによって、前記第1の発受信手段と第2の発受信手段との間の相対的な距離を、前記第1の発受信手段と第2の発受信手段との両方において、算出する
     ことを特徴とする距離測定装置。
    In a distance measuring device that measures a distance using a radio signal that is an ultrasonic signal, a high-frequency signal, or an optical signal,
    A first transmitting / receiving unit and a second transmitting / receiving unit for performing bidirectional communication in a time-sharing manner using a single radio frequency;
    The first transmission / reception means and the second transmission / reception means are at least:
    A transmission means for intermittently transmitting a radio signal of a single frequency as a burst signal in a time division manner,
    Receiving means for receiving the radio signal and converting it directly or into an intermediate frequency signal or baseband signal;
    Control means for controlling the transmitting means and the receiving means;
    An antenna switching means for switching or sharing an antenna or a transmitter / receiver in a time-sharing manner between the transmitting means and the receiving means;
    The control means of the first transmission / reception means and the second transmission / reception means is at least:
    Signal generating means for generating a system synchronization signal, an identification signal, an origin signal, a distance measurement signal, or both;
    From the radio signal received by the receiving means, signal reproduction means for reproducing the origin signal, the distance measurement signal, or both, and
    Synchronization detection means for detecting the timing of the rising point, falling point, or zero crossing of the reproduced starting point signal, distance measurement signal, or both of them with high accuracy;
    At the detected timing, synchronization is established with the origin signal, the distance measurement signal, or both, and the synchronization is maintained for a predetermined period after the origin signal, the distance measurement signal, or both disappear. Synchronous oscillation means for generating a clock signal;
    Phase measurement means for measuring the phase of the reproduced distance measurement signal in real time with reference to the generated origin signal, distance measurement signal, or both,
    Distance calculating means for calculating a relative distance between the first transmitting / receiving means and the second transmitting / receiving means from the phase of the measured distance measurement signal;
    The second transmitting / receiving unit includes a first distance measurement signal synchronized with the received starting signal when at least a radio signal including the starting signal is intermittently transmitted as a burst signal from the first transmitting / receiving unit. Send a radio signal,
    The first transmission / reception means reproduces the first distance measurement signal transmitted from the second transmission / reception means, and uses the clock signal synchronized with the start signal to reproduce the first distance measurement signal. And calculating the distance between the first transmission / reception means and the second transmission / reception means,
    Transmitting a radio signal including at least a second distance measurement signal synchronized with the first distance measurement signal;
    In the second transmission / reception means, the second distance measurement signal transmitted from the first transmission / reception means is reproduced, and a second distance measurement is performed using a clock signal synchronized with the first distance measurement signal. By measuring the phase of the signal and calculating the distance between the second transmission / reception means and the first transmission / reception means, between the first transmission / reception means and the second transmission / reception means. The relative distance is calculated by both the first transmission / reception means and the second transmission / reception means.
  3.  前記起点信号、距離測定信号、もしくはこれらの両方が、単一もしくは同期しあるいは直交する複数の、搬送波信号、副搬送波信号、変調信号、スペクトル拡散符号、もしくはこれらの組合せであることを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 The origin signal, the distance measurement signal, or both of them are a single carrier wave, a sub-carrier signal, a modulation signal, a spread spectrum code, or a combination thereof, which are single or synchronized or orthogonal to each other. The distance measuring device according to claim 1 or 2.
  4.  前記信号再生手段において再生する起点信号、距離測定信号、もしくはこれらの両方が、無線信号の搬送波信号あるいは副搬送波信号である場合には、伝達位相誤差の少ない帯域通過フイルタを通し、あるいは無線信号の搬送波信号あるいは副搬送波信号を変調した変調信号である場合には、伝達位相誤差の少ないアナログ復調器もしくは高い周波数のクロック信号を用いた伝達位相誤差の少ないデジタル復調器によって復調した後に、前記帯域通過フイルタを通して再生することを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 When the origin signal, the distance measurement signal, or both of the signals to be reproduced by the signal reproducing means are a carrier signal or subcarrier signal of a radio signal, a band pass filter with a small transmission phase error is passed, or In the case of a modulated signal obtained by modulating a carrier signal or a subcarrier signal, the signal is demodulated by an analog demodulator with a small transmission phase error or a digital demodulator with a small transmission phase error using a high frequency clock signal, and then the band pass 3. The distance measuring apparatus according to claim 1, wherein the distance measuring device reproduces through a filter.
  5.  前記同期発振手段が、基準発振器の出力信号を直接あるいは周波数を変換して生成したクロック信号によって駆動されるセットあるいはリセット付きのカウンタあるいは数値制御発振器によって構成され、前記同期検出手段によって、起点信号、距離測定信号、もしくはこれらの両方の立上がり点、立下がり点、もしくはゼロ交差点のタイミングを、前記起点信号、距離測定信号、もしくはこれらの両方の周波数の10倍以上のサンプリング周波数を用いて検出し、前記検出したタイミングで、前記セットあるいはリセット付きのカウンタあるいは数値制御発振器をセットしあるいはリセットすることによって、前記起点信号、距離測定信号、もしくはこれらの両方と短時間で同期を確立し、前記起点信号、距離測定信号、もしくはこれらの両方が消滅した後も、所定期間、同期を保持することを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 The synchronous oscillating means is constituted by a counter or a numerically controlled oscillator driven by a clock signal generated directly or by converting the output signal of a reference oscillator, or a numerically controlled oscillator. Detecting the distance measurement signal, or the timing of the rising point, falling point, or zero crossing of both of them using a sampling frequency that is 10 times or more of the frequency of the origin signal, the distance measurement signal, or both, By setting or resetting the counter or numerically controlled oscillator with the set or reset at the detected timing, synchronization is established in a short time with the origin signal, the distance measurement signal, or both, and the origin signal , Distance measurement signal, or these After both disappeared even a predetermined period, the distance measuring apparatus according to paragraph 1 or paragraph 2 claims, characterized in that to maintain synchronization.
  6.  前記第1の発受信手段、前記第2の発受信手段、あるいはこれらの両方に同期確立誤差関数を付与し、前記同期確立誤差関数に基づいて、前記同期発振手段と前記起点信号、距離測定信号、もしくはこれらの両方との間の同期確立誤差を低減することを特徴とする請求項第5項に記載の距離測定装置。 A synchronization establishment error function is given to the first transmission / reception means, the second transmission / reception means, or both, and based on the synchronization establishment error function, the synchronous oscillation means, the origin signal, and the distance measurement signal 6. The distance measuring device according to claim 5, wherein an error in establishing synchronization with both of them is reduced.
  7.  前記同期検出手段に同期確立誤差関数を付与するために、前記クロック信号の位相をシフトさせるための複数組の移相手段と、前記複数組の移相手段によって各々異なった位相にシフトされた複数組の起点信号、距離測定信号、もしくはこれらの両方を選択して外部に出力するためのタイミング制御手段とを設け、前記移相手段の移相量の合計を、前記クロック信号の一周期の間隔よりも大きく設定することによって、距離の算出精度を向上させることを特徴とする請求項第6項に記載の距離測定装置。 A plurality of sets of phase shifting means for shifting the phase of the clock signal and a plurality of phases shifted to different phases by the plurality of sets of phase shifting means in order to give a synchronization establishment error function to the synchronization detecting means. And a timing control means for selecting and outputting the starting signal of the set, the distance measurement signal, or both of them to the outside, and the sum of the phase shift amounts of the phase shift means is set as an interval of one cycle of the clock signal. The distance measuring device according to claim 6, wherein the distance calculation accuracy is improved by setting the distance to a larger value.
  8.  前記同期発振手段に前記同期確立誤差関数を付与するために、複数組のカウンタあるいは複数組の数値制御発振器を設け、前記複数組のカウンタあるいは複数組の数値制御発振器が、前記同期検出手段によって検出されたタイミングで同期を確立し、前記複数組のカウンタあるいは複数組の数値制御発振器から出力される出力信号を選択し、前記選択された出力信号に同期しあるいは直交した単一もしくは複数の距離測定信号を生成して前記第1の発受信手段に向けて発信し、前記第1の発受信手段の信号処理手段において、前記複数のタイミングに対応して算出した距離の平均値を求めることによって、距離の算出精度を向上させることを特徴とする請求項第6項に記載の距離測定装置。 In order to give the synchronization establishment error function to the synchronous oscillation means, a plurality of sets of counters or a plurality of sets of numerically controlled oscillators are provided, and the plurality of sets of counters or a plurality of sets of numerically controlled oscillators are detected by the synchronization detection means Synchronization is established at the specified timing, and output signals output from the plural sets of counters or plural sets of numerically controlled oscillators are selected, and single or plural distance measurements are performed in synchronization with or orthogonal to the selected output signals A signal is generated and transmitted to the first transmitting / receiving unit, and the signal processing unit of the first transmitting / receiving unit obtains an average value of distances calculated corresponding to the plurality of timings, The distance measuring device according to claim 6, wherein the distance calculation accuracy is improved.
  9.  前記同期発振手段が、アナログ式もしくはデジタル式の遅延手段と、前記遅延手段の入力端子と出力端子の間を切り離しあるいは接続するための切替スイッチとを有し、前記起点信号を読み込む場合には前記切替スイッチを切り離し、読み込み完了後には前記入力端子と出力端子の間をリング状に接続し、読み出す場合には前記切替スイッチを切り離すことで、時分割で受発信する場合の時間間隔分に必要な前記遅延手段の遅延時間を短縮することを特徴とする請求項第8項に記載の距離測定装置。 The synchronous oscillating means has an analog or digital delay means and a changeover switch for disconnecting or connecting between the input terminal and the output terminal of the delay means, and when reading the origin signal, Disconnect the change-over switch, connect the input terminal and output terminal in a ring shape after reading is complete, and disconnect the change-over switch when reading, which is necessary for the time interval when receiving and transmitting in time division 9. The distance measuring device according to claim 8, wherein a delay time of the delay means is shortened.
  10.  前記位相測定手段が、前記起点信号、距離測定信号、もしくはこれらの両方の周波数の整数倍もしくは整数分の1の周波数をクロック信号として用い、Sinのルックアップテーブルが0、1、0、-1、あるいは1、1、-1、-1、あるいはこれらの繰り返しであり、Cosのルックアップテーブルが1、0、-1、0あるいは1、-1、-1、1、あるいはこれらの繰り返しであり、前記距離測定信号と前記ルックアップテーブルとの積和演算を行う際に-1の乗算は補数を求める積和演算器によって構成されることを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 The phase measuring means uses the origin signal, the distance measurement signal, or an integer multiple or a fraction of the frequency of both as a clock signal, and the Sin look-up table is 0, 1, 0, −1 Or 1, 1, -1, -1, or repetition thereof, and the Cos lookup table is 1, 0, -1, 0 or 1, -1, -1, 1, or repetition thereof 3. A product-sum operation unit for obtaining a complement for multiplying by -1 when performing a product-sum operation between the distance measurement signal and the look-up table according to claim 1 or 2, The described distance measuring device.
  11.  前記位相測定手段が、前記距離測定信号の1周期の整数倍以上の区間を区切って位相を測定し、もしくは1周期の整数倍以上の区間を更に複数区間に区切って位相を測定して平均値を求め、あるいは1周期の整数倍以上の長さの窓枠関数を設定して位相を測定することを特徴とする請求項第10項に記載の距離測定装置。 The phase measurement means measures a phase by dividing a section of the distance measurement signal that is an integer multiple of one cycle or an average value by measuring a phase by further dividing a section of an integer multiple of one cycle into a plurality of sections. The distance measuring device according to claim 10, wherein the phase is measured by setting a window frame function having a length equal to or greater than an integral multiple of one period.
  12.  前記第1の発受信手段の受信手段、第2の発受信手段の受信手段、あるいはこれらの両方が、伝搬経路の品質を検知する品質検知手段を有し、前記品質検知手段が、前記受信手段において受信した無線信号の電力あるいは信号対雑音比を測定した結果から回線品質を分析し、前記位相測定手段で距離測定信号の位相あるいは位相差を測定した結果から距離測定精度を分析し、あるいは前記回線品質の分析と距離測定精度の分析の両方を行い、前記距離測定処理の結果を補正しあるいは補完することを特徴とする請求項第1項から第11項までのいずれかに該当する距離測定装置。 The reception means of the first transmission / reception means, the reception means of the second transmission / reception means, or both have quality detection means for detecting the quality of the propagation path, and the quality detection means is the reception means. Analyzing the channel quality from the result of measuring the power or signal-to-noise ratio of the radio signal received in the above, and analyzing the distance measurement accuracy from the result of measuring the phase or phase difference of the distance measurement signal by the phase measuring means, or The distance measurement according to any one of claims 1 to 11, wherein both the analysis of the line quality and the analysis of the distance measurement accuracy are performed, and the result of the distance measurement process is corrected or supplemented. apparatus.
  13. 前記第1の発受信手段、第2の発受信手段、あるいはこれらの両方が、複数のアンテナ又は複数の送受波器を設けて周期的に切替えながら、無線信号を発信しあるいは受信し、前記品質検知手段において、前記複数のアンテナもしくは複数の送受波器に対応して、複数の距離測定信号の位相を測定し、あるいは複数の距離を算出した結果から統計処理を行い、位相の測定結果が所定値以下であり、あるいは距離が所定値以下であるもの選択して平均しあるいは荷重平均を行なうことによって、前記距離測定処理の結果を補正しあるいは補完することを特徴とする請求項第12項に記載の距離測定装置。 The first transmission / reception means, the second transmission / reception means, or both of them transmit or receive radio signals while periodically switching by providing a plurality of antennas or a plurality of transducers, and the quality In the detection means, corresponding to the plurality of antennas or the plurality of transducers, the phase of a plurality of distance measurement signals is measured, or statistical processing is performed from the result of calculating the plurality of distances, and the phase measurement result is predetermined. 13. The distance measurement processing result is corrected or complemented by selecting a value that is equal to or less than a value or a distance that is equal to or less than a predetermined value and averaging or performing a load average. The described distance measuring device.
  14.  前記第1の発受信手段と第2の発受信手段との間で、前記発受信を複数回行い、相互間の距離の算出を複数回実施し、前記複数回の算出結果から平均値を求めることで、お互いの相対的な距離を算出することを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 The transmission / reception is performed a plurality of times between the first transmission / reception means and the second transmission / reception means, the mutual distance is calculated a plurality of times, and an average value is obtained from the calculation results of the plurality of times. The distance measuring device according to claim 1 or 2, wherein the relative distance between each other is calculated.
  15.  前記第1の発受信手段と第2の発受信手段との間でお互いが算出した距離情報を相互に交換することで、お互いの相対的な距離を算出することを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 The relative distance between the first transmitting / receiving unit and the second transmitting / receiving unit is calculated by mutually exchanging distance information calculated by each other. Or the distance measuring device according to item 2.
  16.  前記第1の発受信手段、第2の発受信手段、もしくはこれらの両方のアンテナ又は送受波器が、60°以上の広い指向性ビーム幅を有する円偏波指向性アンテナであり、前記第2の発受信手段と第1の発受信手段との間で、指向性の方向が双方向通信の相手方に向けて、お互いに対向して設けられていることを特徴とする請求項第1項あるいは第2項に記載の距離測定装置。 The first transmitting / receiving unit, the second transmitting / receiving unit, or both of these antennas or transducers are circularly polarized directional antennas having a wide directional beam width of 60 ° or more, and the second The directivity direction is provided between the first transmitting / receiving means and the first transmitting / receiving means so as to face each other toward the other party of the two-way communication. The distance measuring device according to item 2.
PCT/JP2010/069995 2009-11-18 2010-11-10 Distance measuring apparatus WO2011062098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011541893A JP5340414B2 (en) 2009-11-18 2010-11-10 Distance measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009262737 2009-11-18
JP2009-262737 2009-11-18
JP2010011212 2010-01-21
JP2010-011212 2010-01-21

Publications (1)

Publication Number Publication Date
WO2011062098A1 true WO2011062098A1 (en) 2011-05-26

Family

ID=44059577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069995 WO2011062098A1 (en) 2009-11-18 2010-11-10 Distance measuring apparatus

Country Status (2)

Country Link
JP (1) JP5340414B2 (en)
WO (1) WO2011062098A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117955A (en) * 2009-11-04 2011-06-16 Chugoku Electric Power Co Inc:The Position specification system
JP2022502668A (en) * 2018-10-12 2022-01-11 デンソー インターナショナル アメリカ インコーポレーテッド Passive entry / passive start communication system with selected antennas with multiple axes of polarization
US11287519B2 (en) 2018-09-19 2022-03-29 Kabushiki Kaisha Toshiba Distance measurement system, distance measurement device, and distance measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126491A (en) * 1974-08-29 1976-03-04 Mitsubishi Electric Corp SOKUKYOSOCHI
JPS51126851A (en) * 1975-03-21 1976-11-05 Cubic Ind Corp Distance measuring equipment
JPS5255493A (en) * 1975-10-31 1977-05-06 Boeicho Gijutsu Kenkyu Honbuch System for measuring distance by half duplex communication system
JP2001339373A (en) * 2000-05-25 2001-12-07 Nec Corp Clock synchronization method and clock synchronization device
JP2005265412A (en) * 2004-01-28 2005-09-29 Rcs:Kk Obstacle detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126491A (en) * 1974-08-29 1976-03-04 Mitsubishi Electric Corp SOKUKYOSOCHI
JPS51126851A (en) * 1975-03-21 1976-11-05 Cubic Ind Corp Distance measuring equipment
JPS5255493A (en) * 1975-10-31 1977-05-06 Boeicho Gijutsu Kenkyu Honbuch System for measuring distance by half duplex communication system
JP2001339373A (en) * 2000-05-25 2001-12-07 Nec Corp Clock synchronization method and clock synchronization device
JP2005265412A (en) * 2004-01-28 2005-09-29 Rcs:Kk Obstacle detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117955A (en) * 2009-11-04 2011-06-16 Chugoku Electric Power Co Inc:The Position specification system
US11287519B2 (en) 2018-09-19 2022-03-29 Kabushiki Kaisha Toshiba Distance measurement system, distance measurement device, and distance measurement method
JP2022502668A (en) * 2018-10-12 2022-01-11 デンソー インターナショナル アメリカ インコーポレーテッド Passive entry / passive start communication system with selected antennas with multiple axes of polarization
JP2022502667A (en) * 2018-10-12 2022-01-11 デンソー インターナショナル アメリカ インコーポレーテッド Passive entry / passive start access system with bidirectional tone exchange
JP7095806B2 (en) 2018-10-12 2022-07-05 デンソー インターナショナル アメリカ インコーポレーテッド Passive entry / passive start communication system with selected antennas with multiple axes of polarization
JP7265695B2 (en) 2018-10-12 2023-04-27 デンソー インターナショナル アメリカ インコーポレーテッド Passive entry/passive start access system with bidirectional tone exchange

Also Published As

Publication number Publication date
JP5340414B2 (en) 2013-11-13
JPWO2011062098A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US9551786B2 (en) Ranging and positioning system
US7881684B2 (en) Receiver, frequency deviation measuring unit and positioning and ranging system
JP4853218B2 (en) Positioning system
EP2244098B1 (en) A master transceiver apparatus and a slave transceiver apparatus for determining a range information
US7295159B1 (en) Method for measuring time of arrival of signals in a communications network
JP2011149809A (en) Cellular mobile phone positioning system
JP5683805B2 (en) Positioning device
CA3038591A1 (en) Localization based on telegram splitting
JP2011149808A (en) Cellular mobile radio positioning system
US7822159B2 (en) Master side communication apparatus and slave side communication apparatus
JP4952387B2 (en) Distance measuring device
JP5696312B2 (en) Wide area location system
JP5340414B2 (en) Distance measuring device
JP2011039020A (en) Distance measuring apparatus
JP2019174416A (en) Distance measuring system
JP2011128144A (en) Radio positioning device
JP2013250731A (en) Automatic meter-reading system, portable terminal and radio communication method for portable terminal
JP2011117955A (en) Position specification system
JP2014115225A (en) Inter-distance measuring device using radio signal of relatively narrow band
JP2011242179A (en) Mobile radio positioning device
JPH0723467A (en) Spread spectrum communication system
JP2011191070A (en) Pseudo-satellite positioning system
JP5121969B2 (en) Receiver and positioning distance measuring system
JPH10303857A (en) Spread spectrum multiplexing communication equipment
KR100888460B1 (en) Apparatus for pulse duration modulation and method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011541893

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831493

Country of ref document: EP

Kind code of ref document: A1