WO2011052112A1 - System clock monitoring device, and motor control system - Google Patents

System clock monitoring device, and motor control system Download PDF

Info

Publication number
WO2011052112A1
WO2011052112A1 PCT/JP2010/003807 JP2010003807W WO2011052112A1 WO 2011052112 A1 WO2011052112 A1 WO 2011052112A1 JP 2010003807 W JP2010003807 W JP 2010003807W WO 2011052112 A1 WO2011052112 A1 WO 2011052112A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
input
frequency
abnormality
unit
Prior art date
Application number
PCT/JP2010/003807
Other languages
French (fr)
Japanese (ja)
Inventor
田中聖浩
木元勝斗
藤阪孝誠
今村勝幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011052112A1 publication Critical patent/WO2011052112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/19Monitoring patterns of pulse trains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/151Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with two complementary outputs
    • H03K5/1515Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with two complementary outputs non-overlapping

Definitions

  • the present invention relates to a system clock monitoring device that is mounted on a system driven by a system clock and monitors a frequency abnormality of the system clock, and more particularly as a countermeasure when a frequency abnormality occurs in an input clock.
  • the present invention relates to a technology for making it compatible.
  • the present invention also relates to a motor control system equipped with such a system clock monitoring device.
  • the present invention relates to a technology for improving product stability of an information processing apparatus such as a semiconductor integrated circuit.
  • a monitoring clock of a system different from the system clock that drives the system is prepared, and the number of pulses of the system clock is counted within a certain period (monitoring cycle) defined by this monitoring clock
  • this monitoring clock there is known one that determines an abnormal frequency of the system clock by comparing this with an expected value (number of pulses corresponding to normal operation) (see, for example, Patent Document 1).
  • FIG. 15 is a block diagram showing the configuration of a system clock monitoring device in the prior art.
  • the CPU and peripheral circuit 91 operate using the system clock CK11 as a clock source.
  • the monitoring clock CK12 is a clock of a different system from the system clock CK11.
  • the count unit 92 receives the system clock CK11 and the monitoring clock CK12.
  • the count unit 92 counts the number of pulses PN11 of the system clock CK11 in the monitoring period defined by the monitoring clock CK12.
  • the comparison unit 94 compares the number of pulses PN11 of the system clock CK11 output from the count unit 92 with the expected value Ex11 read from the storage unit 93, and an abnormality detection signal Sa indicating a frequency abnormality when the comparison result does not match. Is output to the CPU and peripheral circuit 91. Upon receiving the abnormality detection signal Sa, the CPU and the peripheral circuit 91 perform a predetermined safe operation.
  • FIG. 16 and 17 are timing charts showing the operation of the system clock monitoring device of FIG.
  • the monitoring operation involves a pulse number count of the system clock CK11 and an expected value comparison.
  • the frequency of the system clock CK11 is unexpectedly decreased due to some cause in the middle of the monitoring cycle (timing t21).
  • the pulse of the system clock CK11 is counted five times within one cycle period of the monitoring clock CK12.
  • the CPU and the peripheral circuit 91 bring the system to a safe state by stopping or waiting.
  • the present invention was created in view of such circumstances, and can exhibit a more flexible function as a countermeasure when a frequency abnormality occurs in the input clock, making the system clock frequency normal maintenance more dynamic.
  • the purpose is to do.
  • the present invention solves the above problems by taking the following measures.
  • the basic idea of the present invention is that at least three or more input clocks are used instead of the two clocks of the system clock and the monitoring clock in the case of the prior art, and the input clock group is selected from the group of input clocks.
  • a normal input clock is always adopted as a system clock by selecting a normal frequency input clock.
  • the number of systems of the input clock is N (N is a natural number of 3 or more).
  • the system clock monitoring device has three components having the following functions: a clock abnormality detection unit, a clock determination unit, and a clock switching unit.
  • the clock abnormality detection unit detects abnormality in frequency of each input clock included in the N system input clock groups where N is a natural number of 3 or more, and detects abnormality for identifying the input clock in which the frequency abnormality has occurred. Generate a signal.
  • the clock determination unit determines a frequency abnormal clock included in the input clock group based on the abnormality detection signal, and determines whether the specified frequency abnormal clock is currently adopted as a system clock in the system. If it is determined that the frequency abnormal clock is adopted as the system clock, a clock switching signal for specifying an input clock other than the frequency abnormal clock included in the input clock group is generated.
  • the clock switching unit selects an input clock other than the frequency abnormal clock from the input clock group based on the clock switching signal and supplies the selected clock to the system as the system clock.
  • the probability (probability) that two or more of the N system input clocks simultaneously cause frequency abnormality is low. Even when a certain input clock (s) has a frequency abnormality, there is a high possibility (probability) that the remaining input clocks are normal.
  • a frequency abnormality occurs in the monitored input clock, it naturally leads to a system clock frequency abnormality, and if a frequency abnormality occurs in the monitoring input clock, the comparison reference itself Therefore, even if the input clock to be monitored is normal, it is determined that the frequency is abnormal as a result.
  • N Prepare N input clocks (N ⁇ 3) and select one of them as a system clock when it is normal, and monitor the N input clocks constantly in the clock error detection unit.
  • the clock abnormality detection unit When detecting that a frequency abnormality has occurred in any of the input clocks, the clock abnormality detection unit generates an abnormality detection signal and outputs it to the clock determination unit.
  • the clock determination unit that has received the abnormality detection signal identifies the frequency abnormality clock and then determines whether or not the identified frequency abnormality clock is an input clock that is currently being employed.
  • the clock determination unit regards that there is a possibility of system abnormality if this state is left as it is, and the normal frequency input clock (specifically, A clock switching signal for specifying an input clock other than the frequency abnormal clock included in the input clock group is generated.
  • the clock switching unit that has received the clock switching signal replaces the currently used input clock according to the instruction content of the clock switching signal, and maintains other normal frequencies from the N input clocks that are being input.
  • An input clock (specifically, an input clock other than the frequency abnormal clock) is selected and output as a system clock.
  • the abnormal frequency clock when an abnormal frequency of the input clock is detected, the abnormal frequency clock is specified in the N input clock groups, and it is determined whether or not the abnormal frequency clock is currently being adopted as the system clock. If it is determined that the system clock is being used, the system clock is switched from the N system input clocks to the input clock selection at the normal frequency. Sex is secured.
  • the clock abnormality detection unit includes an N-system count unit and an N-system comparison / determination unit.
  • Each counting unit takes in two input clocks out of the N system input clocks, sets one of the input clocks as a monitoring target clock, and sets the other as a monitoring clock, and with a monitoring cycle defined by the monitoring clock.
  • the number of pulses of the monitoring target clock is counted and sent to the corresponding comparison / determination unit.
  • the comparison / determination unit determines frequency abnormality by comparing the number of pulses of the input clock to be monitored with an expected value (number of pulses corresponding to normal operation).
  • N count units have different combinations of input clocks.
  • the three system input clocks are represented by first to third input clocks CK1, CK2, and CK3, and the three system count units are referred to as first to third count units.
  • the system comparison / determination unit is referred to as first to third comparison / determination units.
  • the first count unit is supplied with the first and third input clocks CK1 and CK3
  • the second count unit is supplied with the second and first input clocks CK2 and CK1.
  • the third count unit is supplied with third and second input clocks CK3 and CK2. That is, the supply form of the input clock is cyclic (cyclic).
  • the first count unit counts the number of pulses PN1 of the first input clock CK1 with reference to the duty cycle of the third input clock CK3, and supplies the count result to the first comparison / determination unit.
  • the second count unit counts the number of pulses PN2 of the second input clock CK2 with reference to the duty cycle of the first input clock CK1, and supplies the count result to the second comparison / determination unit.
  • the third count unit counts the number of pulses PN3 of the third input clock CK3 with reference to the duty cycle of the second input clock CK2, and supplies the count result to the third comparison determination unit.
  • the pulse number PN1 of the first count unit is compared with the expected value Ex1, and if it is different, the abnormality detection signal Sa1 is activated.
  • the pulse number PN2 of the second count unit is compared with the expected value Ex2, and if they are different, the abnormality detection signal Sa2 is activated.
  • the pulse number PN3 of the third count unit is compared with the expected value Ex3, and if it is different, the abnormality detection signal Sa3 is activated.
  • the clock determination unit is one of the first to third input clocks CK1, CK2, and CK3 having three frequency abnormality clocks based on the combination logic of the three abnormality detection signals Sa1, Sa2, and Sa3. Further, it is determined whether or not the specified frequency abnormal clock is an input clock currently being employed. If it is determined that the identified frequency abnormal clock is an input clock that is currently being employed, the clock determination unit generates a clock switching signal and supplies the generated clock switching signal to the clock switching unit. The clock switching signal instructs switching to selection of an input clock having a normal frequency from among three system input clocks as a system clock.
  • the abnormality detection signal Sa1 becomes “H”. If the frequency of the first input clock CK1 is abnormal, the second input clock CK2 using the first input clock CK1 as a duty cycle reference is also pulsed even if the second input clock CK2 itself is not abnormal in frequency. The number PN2 is different from the expected value Ex2, and the abnormality detection signal Sa2 becomes “H”. If the third input clock CK3 and the second input clock CK2 are normal frequencies, the abnormality detection signal Sa3 is “L” for the third input clock CK3.
  • the logic “H” means active, and the logic “L” means inactive.
  • the combination logic of the abnormality detection signals Sa1, Sa2, Sa3 is [HHL], and this combination logic [HHL] means that a frequency abnormality has occurred in the first input clock CK1.
  • the clock determination unit detects the combinational logic [HHL]
  • the clock determination unit specifies that the input clock causing the frequency abnormality is the first input clock CK1.
  • the abnormality detection signal Sa1 in the first input clock CK1 is “L”. Therefore, the combination logic of the abnormality detection signals Sa1, Sa2, Sa3 in this case is [LHH], and this combination logic [LHH] means that a frequency abnormality has occurred in the second input clock CK2.
  • the clock determination unit detects the combinational logic [LHH]
  • the clock determination unit specifies that the input clock causing the frequency abnormality is the second input clock CK2.
  • the combination logic of the abnormality detection signals Sa1, Sa2, Sa3 in this case is [HLH]
  • this combination logic [HLH] means that a frequency abnormality has occurred in the third input clock CK3.
  • the clock determination unit does not need to activate the clock switching signal. However, if the currently used input clock is the first input clock CK1, the clock determination unit activates the clock switching signal Sc.
  • the active clock switching signal Sc in this state serves as an instruction content that the third input clock CK3 or the second input clock CK2 should be selected as the system clock.
  • the clock determination unit 50 does not need to activate the clock switching signal Sc. However, when the currently used input clock is the second input clock CK2, the clock determination unit activates the clock switching signal Sc.
  • the active clock switching signal Sc in this state serves as an instruction content that the first input clock CK1 or the third input clock CK3 should be selected as the system clock.
  • the clock determination unit does not need to activate the clock switching signal Sc. However, if the currently used input clock is the third input clock CK3, the clock determination unit activates the clock switching signal Sc.
  • the active clock switching signal Sc in this state is an instruction content that the second input clock CK2 or the first input clock CK1 should be selected as the system clock.
  • the input clock capturing mode is cyclic, that is, cyclic sampling with periodic exchange, and a detailed description is omitted.
  • the present invention when an abnormal frequency of the input clock is detected, it is specified which input clock is the abnormal frequency input clock. If the input clock is currently employed, the normal frequency is input as the system clock. Since switching to the clock selection is performed, the entire system is not affected by the clock frequency abnormality, and the stability of the system can be ensured.
  • FIG. 1 is an explanatory diagram of combinational logic of three systems of abnormality detection signals in the system clock monitoring apparatus of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the system clock monitoring apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of the clock abnormality detection unit in the first embodiment of the present invention.
  • FIG. 4 shows an operation waveform (part 1) when the system clock monitoring apparatus according to the first embodiment of the present invention is normal.
  • FIG. 5 shows normal operation waveforms (part 2) of the system clock monitoring apparatus according to the first embodiment of the present invention.
  • FIG. 6 is an operation waveform (part 1) when an abnormality is detected in the system clock monitoring apparatus according to the first embodiment of the present invention.
  • FIG. 1 is an explanatory diagram of combinational logic of three systems of abnormality detection signals in the system clock monitoring apparatus of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the system clock monitoring apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is an operation waveform (part 2) when an abnormality is detected in the system clock monitoring apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of the system clock monitoring apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is an operation waveform (part 1) when an abnormality is detected in the system clock monitoring apparatus according to the second embodiment of the present invention.
  • FIG. 10 is an operation waveform (part 2) when the system clock monitoring device according to the second embodiment of the present invention detects an abnormality.
  • FIG. 11 is a block diagram showing a configuration of the system clock monitoring apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a motor control system according to Embodiment 4 of the present invention.
  • FIG. 13 shows operation waveforms at the normal time of the motor control terminal of the inverter control microcomputer according to the fourth embodiment of the present invention.
  • FIG. 14 is an operation waveform when abnormality is detected in the motor control terminal of the inverter control microcomputer according to the fourth embodiment of the present invention.
  • FIG. 15 is a block diagram showing a configuration of a conventional system clock monitoring apparatus.
  • FIG. 16 shows operation waveforms of the conventional system clock monitoring apparatus when it is normal.
  • FIG. 17 shows operation waveforms when an abnormality is detected in the conventional system clock monitoring apparatus.
  • a frequency optimization unit is further provided in the configuration of the present invention.
  • the frequency optimization unit is configured to generate N optimized clock groups by changing the frequency of each of the N input clocks to the same frequency.
  • the clock switching unit is supplied with the N input clocks.
  • the system is configured to switch the optimized clock to be used as the system clock based on the clock switching signal from the clock determination unit after receiving the N optimized clock groups.
  • such an aspect is one aspect in the above configurations (1) and (2), and the aspect is A frequency optimizing unit that changes the frequency of each of the input clocks to the same frequency to generate N optimized clock groups;
  • the clock switching unit is supplied with the optimized clock group instead of the input clock, and the clock switching unit converts the optimized clock generated based on an input clock other than the frequency abnormal clock to the clock switching Selecting from the optimized clock group based on a signal and supplying the system clock as the system clock; It has the configuration.
  • the optimized clocks that are the basis of the system clock all have the same frequency, a stable switching operation is hardly affected even by a minute time before and after switching and is hardly affected by frequency fluctuations. Can be realized.
  • the N system input clocks are those generated outside the apparatus. In this configuration, it is necessary to provide N clock generation circuits outside the apparatus, which increases the cost burden. In contrast, here, it is considered to use one input clock generated from an AC power supply.
  • the zero cross clock is supplied to the clock switching unit or the frequency optimization unit so as to be a system clock selection candidate, and further supplied to the clock abnormality detection unit in order to detect a frequency abnormality.
  • the clock anomaly detection unit is configured to monitor frequency anomalies of a total of N input clocks including (N-1) input clocks and zero cross clocks.
  • this aspect further includes a clock generation unit that generates a zero cross clock by detecting a zero cross point of an AC voltage supplied from the outside in the present invention, At least one input clock constituting the input clock group is the zero cross clock.
  • the clock generation circuit outside the apparatus can be reduced, and a cost reduction effect can be expected.
  • the motor control system includes: The system clock monitoring device of the present invention, The system is a motor; When the system clock monitoring device detects the occurrence of a clock frequency abnormality, the motor is controlled to a safe state.
  • each component of the clock abnormality detection unit, the count unit, the comparison determination unit, the clock determination unit, and the clock switching unit is configured by hardware, or by individual steps or routines in software. Also good. Or you may comprise by the combination of hardware and software.
  • the system clock monitoring device 100 includes a clock abnormality detection unit 20, a clock determination unit 50, and a clock switching unit 70.
  • the clock abnormality detection unit 20 takes in an input clock group composed of three systems of first to third input clocks CK1 to CK3, and determines whether there is a frequency abnormality in the first to third input clocks CK1 to CK3. . Further, the clock abnormality detection unit 20 outputs an abnormality detection signal Sa to the clock determination unit 50 when detecting a frequency abnormality of at least one input clock in the input clock group.
  • the clock determination unit 50 When the clock determination unit 50 receives the abnormality detection signal Sa from the clock abnormality detection unit 20, the clock determination unit 50 specifies the input clocks CK1 to CK3 in which the frequency abnormality has occurred based on the abnormality detection signal Sa. Further, the clock determination unit 50 determines whether or not the identified input clock in the abnormal frequency state is an input clock that is currently being employed. If the clock determination unit 50 determines that the input clock is currently being employed, the clock determination unit 50 generates a clock switching signal Sc Output to the switching unit 70.
  • the clock switching signal Sc is a control signal instructing to select an input clock having a normal frequency as the system clock from the first to third input clocks CK1 to CK3.
  • the clock switching unit 70 selects the normal frequency input clock CKx from the first to third input clocks CK1 to CK3 in accordance with the instruction of the clock switching signal Sc, and outputs the selected input clock CKx as the system clock CKo. .
  • the clock switching unit 70 is configured not to select (delay) the first to third input clocks CK1 to CK3 until the determination result of the clock determination unit 50 is obtained. Therefore, even when the input clock is switched, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock.
  • FIG. 3 is an example of a circuit configuration of the clock abnormality detection unit 20.
  • the clock abnormality detection unit 20 includes three (first to third) counting units 21 to 23, three (first to third) comparison / determination units 31 to 33, and a storage unit 40. Prepare.
  • the first count unit 21 measures the number of pulses of the first input clock CK1 during a period in which pulses in the third input clock CK3 are counted a predetermined number of times (hereinafter referred to as a third monitoring cycle). Furthermore, the first count unit 21 counts the number of pulses of the first input clock CK1 at the end of the third monitoring period (when the specified number of pulses of the third input clock CK3 is counted) (hereinafter, the number of pulses PN1). Output).
  • the second count unit 22 measures the number of pulses of the second input clock CK2 during a period in which the pulses in the first input clock CK1 are counted a predetermined number of times (hereinafter referred to as a first monitoring cycle). Further, the second count unit 22 counts the number of pulses of the second input clock CK2 at the end of the second monitoring period (when the specified number of pulses of the first input clock CK3 is counted) (hereinafter, the number of pulses PN2). Output).
  • the third counting unit 23 measures the number of pulses of the third input clock CK3 in a period during which the pulses in the second input clock CK2 are counted a predetermined number of times (hereinafter referred to as a second monitoring cycle). Further, the third count unit 23 counts the number of pulses of the third input clock CK3 at the end of the second monitoring period (when the specified number of pulses of the second input clock CK2 is counted) (hereinafter, the number of pulses PN3). Output).
  • the storage unit 40 stores expected values Ex1 to Ex3.
  • the expected values Ex1 to Ex3 are expected values for the pulse numbers PN1 to PN3 of the first to third count units 21 to 23, and specifically, the first to third count units 21 to 23 during normal operation. The number of pulses corresponding to the count result of 23.
  • the first comparison / determination unit 31 is configured to compare the pulse number PN1 from the count unit 21 with the expected value Ex1 and to output an abnormality detection signal Sa1 when the comparison results do not match.
  • the second comparison / determination unit 32 is configured to compare the number of pulses PN2 from the count unit 22 with the expected value Ex2 and to output an abnormality detection signal Sa2 when the comparison results do not match.
  • the third comparison determination unit 33 is configured to compare the number of pulses PN3 from the count unit 23 with the expected value Ex3, and output the abnormality detection signal Sa3 when the comparison results do not match.
  • a set of three abnormality detection signals Sa1 to Sa3 corresponds to the abnormality detection signal Sa in FIG.
  • FIG. 4 is a timing chart showing the operation of the first to third count units 21 to 23 and the first to third comparison determination units 31 to 33 when the frequencies of the first to third clocks CK1 to CK3 are normal. It is a chart.
  • the comparison results between the number of pulses PN1 and the expected value Ex1 in the first comparison / determination unit 31 match. Therefore, the abnormality detection signal Sa1 remains inactive.
  • the comparison result between the number of pulses PN2 and the expected value Ex2 in the second comparison / determination unit 32 also matches. Therefore, the abnormality detection signal Sa2 remains inactive.
  • the comparison result between the number of pulses PN3 and the expected value Ex3 in the third comparison determination unit 33 also matches. Therefore, the abnormality detection signal Sa3 remains inactive.
  • FIG. 5 is a timing chart showing operations of the clock determination unit 50 and the clock switching unit 70 corresponding to the state of FIG.
  • the clock switching unit 70 selects the first clock CK1, and the first clock CK1 is output as the system clock CKo. Since the abnormality detection signals Sa1 to Sa3 do not change, the system clock CKo continues to output the first clock CK1.
  • FIG. 6 shows first to third counting units 21 to 23 in a state in which frequency abnormality has occurred in first input clock CK1
  • 10 is a timing chart showing operations of first to third comparison determination units 31 to 33.
  • the first comparison / determination unit 31 monitors the number of pulses PN1 of the first clock CK1 based on the specified number of counts of the third input clock CK3. In this state, the number of pulses PN1 and the expected value Ex1 are different. Upon detecting this, the first comparison / determination unit 31 sets the abnormality detection signal Sa1 to the abnormality detection output state. Specifically, the abnormality detection signal Sa1 is changed to active.
  • the second comparison / determination unit 32 that monitors the number of pulses PN2 of the second input clock CK2 with reference to the specified number of counts of the first input clock CK1, the monitoring period based on the first input clock CK1 Since the fluctuation itself, the pulse number PN2 fluctuates. As a result, the pulse number PN2 does not match the expected value Ex2.
  • the second comparison / determination unit 32 sets the abnormality detection signal Sa2 to the abnormality detection output state. Specifically, the abnormality detection signal Sa2 is changed to active. However, in this state, no frequency abnormality has occurred in the second input clock CK2 itself.
  • the second and third input clocks CK2 and CK3 are Since both are normal, the abnormality detection signal Sa3 remains inactive.
  • This state corresponds to the state shown in FIG. 1A in which the combinational logic of the abnormality detection signals Sa1, Sa2, and Sa3 is [HHL], and this is a frequency abnormality occurring in the first input clock CK1. Means.
  • FIG. 7 shows the operation of the first to third count units 21 to 23, the clock determination unit 50, and the first to third clock switching units 70 in a state where the frequency abnormality occurs in the first input clock CK1. It is a timing chart which shows.
  • the clock determination unit 50 comprehensively determines the abnormality detection signals Sa1 to Sa3 and determines that a frequency abnormality has occurred in the first clock CK1. Based on this determination, the clock determination unit 50 selects to change from the first clock CK1 having an abnormal frequency to the normal third input clock CK3, and changes the output information of the clock switching signal Sc from “1” to “ Switch to 3 ”.
  • the clock switching unit 70 switches the system clock CKo from the first clock CK1 to the third input clock CK3 based on the output information of the clock switching signal Sc.
  • the first to third input clocks CK1 to CK3 input to the clock switching unit 70 are delayed in advance until the determination result of the clock determination unit 50 is obtained, and the first input clock CK1 is output by the clock switching unit 70. Even when switching from 3 to the third input clock CK3, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock.
  • the input clocks CK3 and CK1 are both normal, so that an abnormality is detected.
  • Signal Sa1 remains inactive.
  • This state corresponds to the state (b) of FIG. 1 in which the combination logic [LHH] of the abnormality detection signals Sa1, Sa2 and Sa3 is obtained, which means that a frequency abnormality has occurred in the second input clock CK2.
  • the clock determination unit 50 that has detected this selects to change from the second clock CK2 having an abnormal frequency to the normal first clock CK1. Specifically, the clock determination unit 50 switches the output information of the clock switching signal Sc from “2” to “1”.
  • the clock switching unit 70 switches the system clock CKo from the second clock CK2 to the first clock CK1 based on the output information of the clock switching signal Sc.
  • the third comparison / determination unit 33 that monitors the number of pulses PN3 of the third input clock CK3 based on the specified number of counts of the second clock CK2 activates the abnormality detection signal Sa3.
  • the first comparison / determination unit 31 that monitors the number of pulses PN1 of the first clock CK1 with reference to the specified number of counts of the third input clock CK3 is the monitoring period itself based on the third input clock CK3. Fluctuates, the number of pulses PN1 fluctuates. As a result, the number of pulses PN1 does not match the expected value Ex1.
  • the first comparison / determination unit 31 that has detected this changes the abnormality detection signal Sa1 to be active. However, there is no frequency abnormality in the first input clock CK1 itself.
  • the input clocks CK1 and CK2 are both normal, so an abnormality detection signal Sa2 remains inactive.
  • This state corresponds to the case of FIG. 1C in which the combination logic of the abnormality detection signals Sa1, Sa2 and Sa3 is [HLH], and means that a frequency abnormality has occurred in the third input clock CK3.
  • the clock determination unit 50 that has detected this selects to change from the third input clock CK3 having an abnormal frequency to the normal second clock CK2. Specifically, the clock determination unit 50 switches the output information of the clock switching signal Sc from “3” to “2”.
  • the clock switching unit 70 switches the system clock CKo from the third input clock CK3 to the second clock CK2 based on the output information of the clock switching signal Sc.
  • the system clock monitoring device when the system clock monitoring device detects a clock frequency abnormality, it determines the input clock that is operating normally, and the system clock can be used even when the input clock frequency is abnormal. By switching to the input clock that is operating normally, the effect of ensuring the stability of the system can be obtained without affecting the entire system due to the abnormal clock frequency.
  • the three input clocks CK1, CK2, and CK3 have the same frequency, but in the second embodiment of the present invention, the three input clocks CK1, CK2, and CK3 have different frequencies.
  • the present invention relates to a system clock monitoring device.
  • FIG. 8 is a block diagram showing a configuration of the system clock monitoring apparatus 200 according to the second embodiment of the present invention.
  • the frequency optimizing unit 60 generates optimized clocks CC1 to CC3 having the same frequency set in advance by dividing or multiplying the three input clocks CK1 to CK3 as source clocks, and the generated optimized clocks.
  • CC 1 to CC 3 are configured to be input to the clock switching unit 70.
  • the clock switching unit 70 selects one of the optimized clocks CC1 to CC3 based on the clock switching signal Sc from the clock determination unit 50, and outputs the selected clock as the system clock CKo. Substantially the same as in the first embodiment.
  • the optimized clocks CC1 to CC3 input to the clock switching unit 70 are configured to be delayed in advance until the determination result of the clock determining unit 50 is obtained.
  • the clock switching unit 70 switches the optimized clocks CC1 to CC3. Even in this case, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 9 is a timing chart showing the operation when the first input clock CK1 causes a frequency abnormality.
  • the first input clock CK1 has the lowest frequency
  • the third input clock CK3 has the highest frequency
  • the second input clock CK2 has the highest frequency.
  • the clock abnormality detection unit 20 has the same function as that of the first embodiment, and the abnormality detection signals Sa1 to Sa3 are the same as the abnormality detection signal Sa of FIG.
  • the first comparison / determination unit 31 sets the abnormality detection signal Sa1 to the abnormality detection state. Specifically, the abnormality detection signal Sa1 is changed to active.
  • the second comparison / determination unit 32 that has detected this causes the abnormality detection signal Sa2 to be in an abnormality detection state. Specifically, the abnormality detection signal Sa2 is changed to active. However, in this state, no frequency abnormality has occurred in the second input clock CK2 itself. In the third comparison / determination unit 33, since the second to third input clocks CK2 and CK3 are both normal, the abnormality detection signal Sa3 remains inactive.
  • FIG. 10 is a timing chart showing the operations of the clock determination unit 50 and the clock switching unit 70 when the first input clock CK1 causes a frequency abnormality.
  • the clock determination unit 50 determines whether an abnormality has occurred in the frequency of the first input clock CK1.
  • the clock determination unit 50 that has confirmed that an abnormality has occurred in the frequency of the first input clock CK1 uses the output (system clock CKo) of the clock switching unit 70 as the first optimized clock CC1 in which an abnormality has occurred in the frequency.
  • the clock determination unit 50 switches the output information of the clock switching signal Sc from “1” to “3”.
  • the clock switching unit 70 switches the system clock CKo from the first optimized clock CC1 to the third optimized clock CC3.
  • the optimized clocks CC1 to CC3 input to the clock switching unit 70 are delayed in advance until the determination result of the clock determination unit 50 is obtained, and the clock switching unit 70 outputs the output from the first optimized clock CC1.
  • the system clock CKo output of the clock switching unit 70
  • the optimization clocks CC1 to CC3 that are the inputs of the system clock CKo all have the same frequency, there is no need to be aware of frequency fluctuations even within a minute time before and after switching.
  • the system clock monitoring device detects a clock frequency abnormality
  • the input clock is determined, and the system clock operates normally even when an abnormality occurs in the frequency of the input clock.
  • the optimized clock By switching to the optimized clock, the entire system is not affected by the abnormal clock frequency. Furthermore, since the system clock is switched in a minute time, there is no need to be aware of the influence of frequency fluctuations before and after switching. As described above, high stability of the system can be ensured.
  • Embodiment 3 of the present invention is characterized in that a part of the input clock is an input clock generated from an AC voltage.
  • FIG. 11 is a block diagram showing a configuration of the system clock monitoring apparatus 300 according to the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 8 of the second embodiment indicate the same components, and detailed description thereof will be omitted.
  • a configuration unique to the present embodiment is that a clock generator 10 is added.
  • the clock generator 10 receives the AC voltage Va from the AC power supply 400, generates a zero-cross clock CKz whose logic is inverted at the timing when a zero-cross point crossing the zero level of the AC voltage Va is detected, and the clock abnormality detector 20 It is configured to output to.
  • the clock abnormality detection unit 20 is configured to receive the first input clock CK1, the second input clock CK2, and the zero cross clock CKz from the clock generation unit 10 and monitor the frequency abnormality of these three clocks. Has been. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the clock abnormality detection unit 20 outputs the abnormality detection signal Sa when detecting the frequency abnormality of the first and second input clocks CK1 and CK2 or the zero cross clock CKz. Based on the abnormality detection signal Sa, the clock determination unit 50 identifies the clock that has caused the frequency abnormality, and further outputs the clock switching signal Sc that suggests a normal clock based on the identification of the clock that has caused the frequency abnormality.
  • the frequency optimization unit 60 receives the first and second input clocks CK1 and CK2 and the zero cross clock CKz. The frequency optimizing unit 60 generates the optimized clocks CC1 to CC3 by using the supplied clocks CK1, CK2, and CKz as source clocks and dividing or multiplying the source clocks to the same preset frequency.
  • the generated optimization clocks CC1 to CC3 all have the same frequency.
  • the clock switching unit 70 selects an arbitrary clock from the optimized clocks CC1 to CC3 based on the clock switching signal Sc, and outputs the selected clock as the system clock CKo.
  • the optimized clocks CC1 to CC3 connected to the clock switching unit 70 are configured to be delayed in advance until the determination result of the clock determining unit 50 is obtained. Even when CC3 is switched, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock.
  • the operation of the present embodiment is the same as that of the second embodiment only in the input clock source.
  • FIG. 12 is a block diagram showing the configuration of a motor control system that is widely used in industrial and household appliance applications.
  • 81 is an AC power supply
  • 82 is a converter circuit
  • 83 is an inverter circuit
  • 84 is a switching element (IGBT element) constituting the inverter circuit 83
  • 85 is a microcomputer for inverter control.
  • 86 is a three-phase motor.
  • IGBT Insulated Gate Bipolar Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the inverter control microcomputer 85 is equipped with the system clock monitoring device A having any one of the configurations of the first to third embodiments, and controls the three-phase motor 86.
  • the converter circuit 82 converts the AC power supply 81 into a DC power supply, and supplies the converted DC power supply to the inverter circuit 83.
  • the switching element 84 in the inverter circuit 83 has six output terminals [U-phase output (U1, U2), V-phase output (V1, V2), W-phase output (W1, W2)] of the inverter control microcomputer 85. Based on the control, the current control of the three-phase motor 86 is performed to control the rotation direction and the rotation speed of the three-phase motor 86.
  • FIG. 13 is a timing chart showing the operation of each output terminal of the inverter control microcomputer 85 in a normal state.
  • the U-phase output (U1, U2), the V-phase output (V1, V2), and the W-phase output (W1, W2) each have a pair of outputs, and both the + side and ⁇ side switching elements 84 are active (control signal) Does not become H). This is because if both the + side and ⁇ side switching elements 84 become active, a through current flows through the entire system, which may destroy the system.
  • FIG. 14 is a timing chart showing the operation of each output terminal of the inverter control microcomputer 85 and the abnormality detection signal Sa at the time of abnormality.
  • an abnormality occurs in the command control of the inverter control microcomputer 85 due to an abnormality in the clock frequency, and there is a section in which both U-phase outputs (U1, U2) are active, a through current is generated.
  • the present embodiment operates as follows. That is, the system clock monitoring device A mounted on the inverter control microcomputer 85 outputs an abnormality detection signal Sa to the clock determination unit 50 when detecting an abnormality in the clock frequency.
  • the clock determination unit 50 that has received the abnormality detection signal Sa switches the system clock to a clock having a normal frequency, and forcibly changes the six output terminals of the inverter control microcomputer 85 to a safe state. Thereby, generation
  • the inverter control can be continued safely and the system clock monitoring device can be effectively used in the inverter control system of the three-phase motor.
  • the system clock monitoring device of the present invention is widely useful in fields where safety of semiconductor products is required because it can constantly monitor the system clock that is the backbone of the system.

Abstract

A clock anomaly detection unit determines whether or not the frequency of each of the input clocks which constitute the N system input clock group is normal, and generates an anomaly detection signal. A clock determination unit identifies the clock with an abnormal frequency on the basis of the anomaly detection signal, determines whether or not said clock is being employed by the system at that moment as the system clock, and, once it is determined that said clock is employed as the system clock, generates a clock switching signal for identifying an input clock other than the clock with the abnormal frequency. A clock switching unit selects an input clock other than the clock with the abnormal frequency on the basis of the clock switching signal, and delivers the input clock thus selected to the system as the system clock.

Description

システムクロック監視装置およびモータ制御システムSystem clock monitoring device and motor control system
 本発明は、システムクロックによって駆動されるシステムに搭載されて、システムクロックの周波数異常を監視するシステムクロック監視装置にかかわり、特には、入力クロックに周波数異常を生じたときの対応策としてより柔軟に対応できるようにするための技術に関する。また、そのようなシステムクロック監視装置を搭載したモータ制御システムに関する。特に、半導体集積回路等の情報処理装置の製品安定性向上の技術に関する。 The present invention relates to a system clock monitoring device that is mounted on a system driven by a system clock and monitors a frequency abnormality of the system clock, and more particularly as a countermeasure when a frequency abnormality occurs in an input clock. The present invention relates to a technology for making it compatible. The present invention also relates to a motor control system equipped with such a system clock monitoring device. In particular, the present invention relates to a technology for improving product stability of an information processing apparatus such as a semiconductor integrated circuit.
 従来技術のシステムクロック監視装置として、システムを駆動するシステムクロックとは別系統の監視用クロックを用意し、この監視用クロックで規定される一定期間(監視周期)内にシステムクロックのパルス数をカウントし、これを期待値(正常動作に対応するパルス数)と比較することによりシステムクロックの周波数異常を判定するものが知られている(例えば特許文献1参照)。 As a system clock monitoring device of the prior art, a monitoring clock of a system different from the system clock that drives the system is prepared, and the number of pulses of the system clock is counted within a certain period (monitoring cycle) defined by this monitoring clock In addition, there is known one that determines an abnormal frequency of the system clock by comparing this with an expected value (number of pulses corresponding to normal operation) (see, for example, Patent Document 1).
 図15は従来技術におけるシステムクロック監視装置の構成を示すブロック図である。CPUおよび周辺回路91はシステムクロックCK11をクロックソースとして動作する。監視用クロックCK12はシステムクロックCK11とは別系統のクロックである。カウント部92には、システムクロックCK11と監視用クロックCK12とが入力される。カウント部92は、監視用クロックCK12で規定される監視周期においてシステムクロックCK11のパルス数PN11をカウントする。比較部94は、カウント部92から出力されるシステムクロックCK11のパルス数PN11を記憶部93から読み出した期待値Ex11と比較し、比較結果が不一致となったときに周波数異常を示す異常検出信号SaをCPUおよび周辺回路91に出力する。異常検出信号Saを受けたCPUおよび周辺回路91は、所定の安全動作を実行する。 FIG. 15 is a block diagram showing the configuration of a system clock monitoring device in the prior art. The CPU and peripheral circuit 91 operate using the system clock CK11 as a clock source. The monitoring clock CK12 is a clock of a different system from the system clock CK11. The count unit 92 receives the system clock CK11 and the monitoring clock CK12. The count unit 92 counts the number of pulses PN11 of the system clock CK11 in the monitoring period defined by the monitoring clock CK12. The comparison unit 94 compares the number of pulses PN11 of the system clock CK11 output from the count unit 92 with the expected value Ex11 read from the storage unit 93, and an abnormality detection signal Sa indicating a frequency abnormality when the comparison result does not match. Is output to the CPU and peripheral circuit 91. Upon receiving the abnormality detection signal Sa, the CPU and the peripheral circuit 91 perform a predetermined safe operation.
 図16、図17は図15のシステムクロック監視装置の動作を示すタイミングチャートである。まず、通常時のシステムクロック監視動作を、図16を参照して説明する。監視動作は、システムクロックCK11のパルス数カウントと期待値比較とを伴うものである。監視動作がオンになると、監視用クロックCK12の1サイクル期間内にシステムクロックCK11のパルスが9回カウントされる。このパルス数PN11(=9)が期待値Ex11(=9)と比較される。正常時では比較結果は同一となるため、異常検出信号Saは出力されず、正常動作が継続される。 16 and 17 are timing charts showing the operation of the system clock monitoring device of FIG. First, the normal system clock monitoring operation will be described with reference to FIG. The monitoring operation involves a pulse number count of the system clock CK11 and an expected value comparison. When the monitoring operation is turned on, the pulse of the system clock CK11 is counted nine times within one cycle period of the monitoring clock CK12. This pulse number PN11 (= 9) is compared with the expected value Ex11 (= 9). Since the comparison results are the same at the normal time, the abnormality detection signal Sa is not output and the normal operation is continued.
 次に、異常時の動作を図17を参照して説明する。監視周期の途中(タイミングt21)で何らかの原因によりシステムクロックCK11の周波数が不測に減少したとする。ここでは、監視用クロックCK12の1サイクル期間内にシステムクロックCK11のパルスが5回カウントされたとする。このパルス数PN11(=5)が期待値Ex11(=9)と比較される。異常時では比較結果は不一致となるため、異常検出信号Saが出力される。CPUおよび周辺回路91は、異常検出信号Saを受けてシステムを停止または待機させることにより安全な状態にする。 Next, the operation at the time of abnormality will be described with reference to FIG. It is assumed that the frequency of the system clock CK11 is unexpectedly decreased due to some cause in the middle of the monitoring cycle (timing t21). Here, it is assumed that the pulse of the system clock CK11 is counted five times within one cycle period of the monitoring clock CK12. This pulse number PN11 (= 5) is compared with the expected value Ex11 (= 9). Since the comparison result does not match at the time of abnormality, the abnormality detection signal Sa is output. In response to the abnormality detection signal Sa, the CPU and the peripheral circuit 91 bring the system to a safe state by stopping or waiting.
特開平4-326410号公報JP-A-4-326410
 システム異常検出時における対策では、システムを停止または待機させることなく、安全な状態に速やかに移行させるのがより好ましい。システムクロックCK11と監視用クロックCK12という2系統のクロックを有する構成では、両クロックともに周波数異常が生じることは少ない。そのため、システムを停止または待機させることなく安全な状態に速やかに移行させるためには、どちらか安全な方のクロックをシステムクロックとして設定し直すことが考えられる。 It is more preferable to take a quick transition to a safe state without stopping or waiting for the system as a countermeasure when a system abnormality is detected. In the configuration having two clocks, that is, the system clock CK11 and the monitoring clock CK12, frequency anomalies rarely occur in both clocks. Therefore, in order to promptly shift to a safe state without stopping or waiting for the system, it is conceivable to reset one of the safe clocks as the system clock.
 しかしながら、上記の従来技術の構成では、監視用クロックCK12に周波数異常が発生すると、システムクロックCK11が正常であってもクロック異常として検出されてしまうことになる。そのため、結局は異常検出時にシステムを安全に保つことができなくなる。 However, in the configuration of the above prior art, when a frequency abnormality occurs in the monitoring clock CK12, even if the system clock CK11 is normal, it is detected as a clock abnormality. As a result, the system cannot be kept safe when an abnormality is detected.
 2系統の入力クロックを有する構成において、一方を監視対象の入力クロックとし、他方を監視用クロックとした場合、監視対象の入力クロックに周波数異常が生じれば、それは当然にシステムクロックの周波数異常につながる。一方、監視用としての入力クロックの方に周波数異常が生じた場合には、比較基準自体が狂うので、監視対象の入力クロックが正常であったとしても、結果的に周波数異常と判定されてしまうことになる。 In a configuration having two input clocks, if one is a monitoring target input clock and the other is a monitoring clock, if a frequency abnormality occurs in the monitoring target input clock, it will naturally cause a system clock frequency abnormality. Connected. On the other hand, when a frequency abnormality occurs in the monitoring input clock, the comparison reference itself is out of order, so that even if the monitoring target input clock is normal, it is determined as a frequency abnormality. It will be.
 本発明は、このような事情に鑑みて創作したものであり、入力クロックに周波数異常を生じたときの対応策としてより柔軟な機能を発現でき、システムクロックの周波数正常維持をよりダイナミックなものにすることを目的としている。 The present invention was created in view of such circumstances, and can exhibit a more flexible function as a countermeasure when a frequency abnormality occurs in the input clock, making the system clock frequency normal maintenance more dynamic. The purpose is to do.
 本発明は、次のような手段を講じることにより上記の課題を解決する。 The present invention solves the above problems by taking the following measures.
 (1)本発明の基本的な考え方は、従来技術の場合のシステムクロックと監視用クロックとの2系統のクロックに代えて、少なくとも3系統以上の入力クロックを用い、その入力クロック群の中から正常周波数の入力クロックの選択処理をもって常に正常な入力クロックをシステムクロックとして採用することとするものである。ここで、入力クロックの系統数をN系統とする(Nは3以上の自然数)。 (1) The basic idea of the present invention is that at least three or more input clocks are used instead of the two clocks of the system clock and the monitoring clock in the case of the prior art, and the input clock group is selected from the group of input clocks. A normal input clock is always adopted as a system clock by selecting a normal frequency input clock. Here, the number of systems of the input clock is N (N is a natural number of 3 or more).
 本発明によるシステムクロック監視装置は、次のような機能を有する3つの構成要素、すなわち、クロック異常検出部とクロック判定部とクロック切替部とを有する。クロック異常検出部は、Nを3以上の自然数とするN系統の入力クロック群に含まれる入力クロックそれぞれの周波数異常の有無を判定して周波数異常が生じている入力クロックを特定するための異常検出信号を生成する。 The system clock monitoring device according to the present invention has three components having the following functions: a clock abnormality detection unit, a clock determination unit, and a clock switching unit. The clock abnormality detection unit detects abnormality in frequency of each input clock included in the N system input clock groups where N is a natural number of 3 or more, and detects abnormality for identifying the input clock in which the frequency abnormality has occurred. Generate a signal.
 クロック判定部は、前記入力クロック群に含まれる周波数異常クロックを、前記異常検出信号に基づいて特定したうえで、特定した前記周波数異常クロックが現在システムクロックとしてシステムで採用されているか否かを判定し、前記周波数異常クロックが前記システムクロックとして採用されていると判定すると、前記入力クロック群に含まれる前記周波数異常クロック以外の入力クロックを特定するためのクロック切替信号を生成する。 The clock determination unit determines a frequency abnormal clock included in the input clock group based on the abnormality detection signal, and determines whether the specified frequency abnormal clock is currently adopted as a system clock in the system. If it is determined that the frequency abnormal clock is adopted as the system clock, a clock switching signal for specifying an input clock other than the frequency abnormal clock included in the input clock group is generated.
 クロック切替部は、前記周波数異常クロック以外の入力クロックを、前記クロック切替信号に基づいて前記入力クロック群から選択して前記システムクロックとして前記システムに供給する。 The clock switching unit selects an input clock other than the frequency abnormal clock from the input clock group based on the clock switching signal and supplies the selected clock to the system as the system clock.
 N系統の入力クロックのうちの2つ以上が同時的に周波数異常を生じる可能性(確率)は低いものである。ある入力クロック(単数または複数)が周波数異常を生じている状況でも、残りの入力クロックは正常である可能性(確率)は高い。比較例として、入力クロックが2つだけの場合で、一方に監視対象の入力クロックとしての役割を与え、他方に監視用クロックとしての役割を与える構成を考える。比較例では、監視対象の入力クロックに周波数異常が生じれば、それは当然にシステムクロックの周波数異常につながり、また監視用としての入力クロックの方に周波数異常が生じた場合には、比較基準自体が狂うので、監視対象の入力クロックが正常でも、結果的に周波数異常と判定してしまうことになる。 The probability (probability) that two or more of the N system input clocks simultaneously cause frequency abnormality is low. Even when a certain input clock (s) has a frequency abnormality, there is a high possibility (probability) that the remaining input clocks are normal. As a comparative example, consider a configuration in which only two input clocks are provided, one of which serves as a monitoring target input clock and the other serves as a monitoring clock. In the comparative example, if a frequency abnormality occurs in the monitored input clock, it naturally leads to a system clock frequency abnormality, and if a frequency abnormality occurs in the monitoring input clock, the comparison reference itself Therefore, even if the input clock to be monitored is normal, it is determined that the frequency is abnormal as a result.
 上述した比較例の状態(2つの入力クロックにおいてともに周波数異常が生じる状態)が生じる可能性に比べると、入力クロックが3つ以上ありそのうち2つ以上において同時に周波数異常が生じる可能性は充分に低いと考えられる。本発明は、このような現象を利用するものである。 Compared to the possibility of the state of the comparative example described above (a state in which a frequency abnormality occurs in both input clocks) occurring, there is a sufficiently low possibility that a frequency abnormality will occur simultaneously in two or more of the input clocks. it is conceivable that. The present invention utilizes such a phenomenon.
 入力クロックをN系統(N≧3)用意しておき、正常時はそのうち適当な1系統をシステムクロックとして選択したうえで、クロック異常検出部においてN系統の入力クロックを常時監視する。クロック異常検出部は、いずれかの入力クロックにおいて周波数異常が発生したことを検出すると、異常検出信号を生成してクロック判定部に出力する。異常検出信号を受け取ったクロック判定部は、周波数異常クロックを特定したうえで、特定した周波数異常クロックが現在採用中の入力クロックであるか否かを判定する。周波数異常クロックが現在採用中の入力クロックであると判定すると、クロック判定部は、この状態を放置しておけばシステム異常を生じるおそれのあると見なして、正常周波数の入力クロック(具体的には入力クロック群に含まれる周波数異常クロック以外の入力クロック)を特定するためのクロック切替信号を生成する。クロック切替信号を受け取ったクロック切替部は、クロック切替信号の指示内容に従って、現在採用している入力クロックに代えて、入力しているN系統の入力クロックの中から正常周波数を保っている他の入力クロック(具体的には、周波数異常クロック以外の入力クロック)を選択してシステムクロックとして出力する。 N Prepare N input clocks (N ≧ 3) and select one of them as a system clock when it is normal, and monitor the N input clocks constantly in the clock error detection unit. When detecting that a frequency abnormality has occurred in any of the input clocks, the clock abnormality detection unit generates an abnormality detection signal and outputs it to the clock determination unit. The clock determination unit that has received the abnormality detection signal identifies the frequency abnormality clock and then determines whether or not the identified frequency abnormality clock is an input clock that is currently being employed. If it is determined that the frequency abnormal clock is an input clock that is currently being used, the clock determination unit regards that there is a possibility of system abnormality if this state is left as it is, and the normal frequency input clock (specifically, A clock switching signal for specifying an input clock other than the frequency abnormal clock included in the input clock group is generated. The clock switching unit that has received the clock switching signal replaces the currently used input clock according to the instruction content of the clock switching signal, and maintains other normal frequencies from the N input clocks that are being input. An input clock (specifically, an input clock other than the frequency abnormal clock) is selected and output as a system clock.
 本発明は、入力クロックの周波数異常を検出すると、その周波数異常クロックをN系統の入力クロック群の中で特定したうえで、その周波数異常クロックが現在システムクロックとして採用中であるか否かを判定し、採用中であると判定すると、システムクロックを、N系統の入力クロックから、正常周波数での入力クロックの選択に切り替えるので、システム全体にクロック周波数異常による影響が及ぶことがなくなり、システムの安定性が確保される。 In the present invention, when an abnormal frequency of the input clock is detected, the abnormal frequency clock is specified in the N input clock groups, and it is determined whether or not the abnormal frequency clock is currently being adopted as the system clock. If it is determined that the system clock is being used, the system clock is switched from the N system input clocks to the input clock selection at the normal frequency. Sex is secured.
 (2)ここで、上記(1)の構成において、クロック異常検出部の下位レベルの構成を検討する。クロック異常検出部がN系統のカウント部とN系統の比較判定部とから構成されているものとする。各カウント部は、N系統の入力クロックのうち2つの入力クロックを取り入れ、取り入れた入力クロックの一方を監視対象クロックとし、他方を監視用クロックとしたうえで、監視クロックで規定される監視周期で前記監視対象クロックのパルス数をカウントし、これを対応する比較判定部に送り込む。比較判定部は監視対象の入力クロックのパルス数を期待値(正常動作に対応するパルス数)と比較することにより周波数異常を判定する。 (2) Here, in the configuration of (1) above, the configuration of the lower level of the clock abnormality detection unit is examined. It is assumed that the clock abnormality detection unit includes an N-system count unit and an N-system comparison / determination unit. Each counting unit takes in two input clocks out of the N system input clocks, sets one of the input clocks as a monitoring target clock, and sets the other as a monitoring clock, and with a monitoring cycle defined by the monitoring clock. The number of pulses of the monitoring target clock is counted and sent to the corresponding comparison / determination unit. The comparison / determination unit determines frequency abnormality by comparing the number of pulses of the input clock to be monitored with an expected value (number of pulses corresponding to normal operation).
 N個のカウント部は、それぞれの入力クロックの組み合わせがすべて異なるものとする。ちなみに3系統の場合は、3系統の入力クロックは第1~第3の入力クロックCK1,CK2,CK3で表され、3系統のカウント部は、第1~第3のカウント部と称され、3系統の比較判定部は、第1~第3の比較判定部と称される。このような態様においては、第1のカウント部には第1、第3の入力クロックCK1,CK3が供給され、第2のカウント部には第2、第1の入力クロックCK2,CK1が供給され、第3のカウント部には第3、第2の入力クロックCK3,CK2が供給される。つまり入力クロックの供給形態はサイクリック(循環的)になっている。第1のカウント部では、第3の入力クロックCK3のデューティサイクルを基準にして第1の入力クロックCK1のパルス数PN1がカウントされてそのカウント結果が第1の比較判定部に供給される。第2のカウント部では、第1の入力クロックCK1のデューティサイクルを基準にして第2の入力クロックCK2のパルス数PN2がカウントされてそのカウント結果が第2の比較判定部に供給される。第3のカウント部では、第2の入力クロックCK2のデューティサイクルを基準にして第3の入力クロックCK3のパルス数PN3がカウントされてそのカウント結果が第3の比較判定部に供給される。第1の比較判定部では、第1のカウント部のパルス数PN1が期待値Ex1と比較され、相違しておれば異常検出信号Sa1がアクティブにされる。第2の比較判定部では、第2のカウント部のパルス数PN2が期待値Ex2と比較され、相違しておれば異常検出信号Sa2がアクティブにされる。第3の比較判定部では、第3のカウント部のパルス数PN3が期待値Ex3と比較され、相違しておれば異常検出信号Sa3がアクティブにされる。 Suppose that N count units have different combinations of input clocks. Incidentally, in the case of three systems, the three system input clocks are represented by first to third input clocks CK1, CK2, and CK3, and the three system count units are referred to as first to third count units. The system comparison / determination unit is referred to as first to third comparison / determination units. In such an aspect, the first count unit is supplied with the first and third input clocks CK1 and CK3, and the second count unit is supplied with the second and first input clocks CK2 and CK1. The third count unit is supplied with third and second input clocks CK3 and CK2. That is, the supply form of the input clock is cyclic (cyclic). The first count unit counts the number of pulses PN1 of the first input clock CK1 with reference to the duty cycle of the third input clock CK3, and supplies the count result to the first comparison / determination unit. The second count unit counts the number of pulses PN2 of the second input clock CK2 with reference to the duty cycle of the first input clock CK1, and supplies the count result to the second comparison / determination unit. The third count unit counts the number of pulses PN3 of the third input clock CK3 with reference to the duty cycle of the second input clock CK2, and supplies the count result to the third comparison determination unit. In the first comparison / determination unit, the pulse number PN1 of the first count unit is compared with the expected value Ex1, and if it is different, the abnormality detection signal Sa1 is activated. In the second comparison / determination unit, the pulse number PN2 of the second count unit is compared with the expected value Ex2, and if they are different, the abnormality detection signal Sa2 is activated. In the third comparison / determination unit, the pulse number PN3 of the third count unit is compared with the expected value Ex3, and if it is different, the abnormality detection signal Sa3 is activated.
 クロック判定部は、上記の3系統の異常検出信号Sa1,Sa2,Sa3の組み合わせ論理に基づいて、周波数異常クロックが3系統の第1~第3の入力クロックCK1,CK2,CK3のうちどれであるのかを特定し、さらに特定した周波数異常クロックが現在採用中の入力クロックであるか否かを判定する。特定した周波数異常クロックが現在採用中の入力クロックであると判定するとクロック判定部は、クロック切替信号を生成し、生成したクロック切替信号をクロック切替部に供給する。クロック切替信号は、システムクロックとして3系統の入力クロックの中から正常周波数の入力クロックの選択に切り替えることを指示するものである。 The clock determination unit is one of the first to third input clocks CK1, CK2, and CK3 having three frequency abnormality clocks based on the combination logic of the three abnormality detection signals Sa1, Sa2, and Sa3. Further, it is determined whether or not the specified frequency abnormal clock is an input clock currently being employed. If it is determined that the identified frequency abnormal clock is an input clock that is currently being employed, the clock determination unit generates a clock switching signal and supplies the generated clock switching signal to the clock switching unit. The clock switching signal instructs switching to selection of an input clock having a normal frequency from among three system input clocks as a system clock.
 3系統の異常検出信号Sa1,Sa2,Sa3の組み合わせ論理について図1を参照して説明する。 The combination logic of the three systems of abnormality detection signals Sa1, Sa2, Sa3 will be described with reference to FIG.
 〔1〕図1における(a)に示すように、第1の入力クロックCK1に周波数異常が生じているとする。この場合、第1の入力クロックCK1のパルス数PN1は期待値Ex1と相違するため、異常検出信号Sa1は“H”となる。第1の入力クロックCK1が周波数異常であると、第1の入力クロックCK1をデューティサイクル基準とする第2の入力クロックCK2も、たとえ第2の入力クロックCK2自身が周波数異常でなくてもそのパルス数PN2は期待値Ex2と相違してしまうことになり、異常検出信号Sa2は“H”となる。第3の入力クロックCK3,第2の入力クロックCK2が正常周波数であれば、第3の入力クロックCK3については異常検出信号Sa3は“L”となる。ここで、論理“H”はアクティブであることを、論理“L”はインアクティブであることを意味する。異常検出信号Sa1,Sa2,Sa3の組み合わせ論理は、[HHL]となり、この組み合わせ論理[HHL]は第1の入力クロックCK1に周波数異常が生じていることを意味する。クロック判定部は、組み合わせ論理[HHL]を検出すると、周波数異常を起こした入力クロックは第1の入力クロックCK1であると特定する。 [1] As shown in FIG. 1A, it is assumed that a frequency abnormality has occurred in the first input clock CK1. In this case, since the pulse number PN1 of the first input clock CK1 is different from the expected value Ex1, the abnormality detection signal Sa1 becomes “H”. If the frequency of the first input clock CK1 is abnormal, the second input clock CK2 using the first input clock CK1 as a duty cycle reference is also pulsed even if the second input clock CK2 itself is not abnormal in frequency. The number PN2 is different from the expected value Ex2, and the abnormality detection signal Sa2 becomes “H”. If the third input clock CK3 and the second input clock CK2 are normal frequencies, the abnormality detection signal Sa3 is “L” for the third input clock CK3. Here, the logic “H” means active, and the logic “L” means inactive. The combination logic of the abnormality detection signals Sa1, Sa2, Sa3 is [HHL], and this combination logic [HHL] means that a frequency abnormality has occurred in the first input clock CK1. When the clock determination unit detects the combinational logic [HHL], the clock determination unit specifies that the input clock causing the frequency abnormality is the first input clock CK1.
 〔2〕次に、図1における(b)に示すように、第2の入力クロックCK2に周波数異常が生じているとする。この場合、第2の入力クロックCK2のパルス数PN2は期待値Ex2と相違するため、異常検出信号Sa2は“H”となる。第2の入力クロックCK2が周波数異常であると、第2の入力クロックCK2をデューティサイクル基準とする第3の入力クロックCK3のパルス数PN3は、たとえ第3の入力クロックCK3自身に周波数異常が生じていなくても、期待値Ex3と相違してしまうことになり、異常検出信号Sa3は“H”となる。第1、第3の入力クロックCK1,CK3が正常周波数であれば、第1の入力クロックCK1における異常検出信号Sa1は“L”となる。したがって、この場合における異常検出信号Sa1,Sa2,Sa3の組み合わせ論理は、[LHH]となり、この組み合わせ論理[LHH]は第2の入力クロックCK2に周波数異常が生じていることを意味する。クロック判定部は、組み合わせ論理[LHH]を検出すると、周波数異常を起こした入力クロックは第2の入力クロックCK2であると特定する。 [2] Next, as shown in FIG. 1B, it is assumed that a frequency abnormality has occurred in the second input clock CK2. In this case, since the pulse number PN2 of the second input clock CK2 is different from the expected value Ex2, the abnormality detection signal Sa2 becomes “H”. If the frequency of the second input clock CK2 is abnormal, the number of pulses PN3 of the third input clock CK3 using the second input clock CK2 as a reference for the duty cycle causes a frequency abnormality even in the third input clock CK3 itself. Even if not, it will be different from the expected value Ex3, and the abnormality detection signal Sa3 becomes "H". If the first and third input clocks CK1 and CK3 have normal frequencies, the abnormality detection signal Sa1 in the first input clock CK1 is “L”. Therefore, the combination logic of the abnormality detection signals Sa1, Sa2, Sa3 in this case is [LHH], and this combination logic [LHH] means that a frequency abnormality has occurred in the second input clock CK2. When the clock determination unit detects the combinational logic [LHH], the clock determination unit specifies that the input clock causing the frequency abnormality is the second input clock CK2.
 〔3〕次に、図1における(c)に示すように、第3の入力クロックCK3に周波数異常が生じているとする。この場合、第3の入力クロックCK3のパルス数PN3は期待値Ex3と相違するため、異常検出信号Sa3は“H”となる。第3の入力クロックCK3が周波数異常であると、第3の入力クロックCK3をデューティサイクル基準とする第1の入力クロックCK1のパルス数PN1は、たとえ第1の入力クロックCK1自身に周波数異常が生じていなくても、期待値Ex1と相違してしまうことになり、異常検出信号Sa1は“H”となる。第2、第1の入力クロックCK2,CK1が正常周波数であれば、第2の入力クロックCK2における異常検出信号Sa2は“L”となる。したがって、この場合における異常検出信号Sa1,Sa2,Sa3の組み合わせ論理は、[HLH]となり、この組み合わせ論理[HLH]は第3の入力クロックCK3に周波数異常が生じていることを意味する。クロック判定部は、組み合わせ論理[HLH]を検出すると、周波数異常を起こした入力クロックは第3の入力クロックCK3であると特定する。 [3] Next, as shown in FIG. 1C, it is assumed that a frequency abnormality has occurred in the third input clock CK3. In this case, since the pulse number PN3 of the third input clock CK3 is different from the expected value Ex3, the abnormality detection signal Sa3 becomes “H”. If the frequency of the third input clock CK3 is abnormal, the number of pulses PN1 of the first input clock CK1 based on the duty cycle of the third input clock CK3 causes the frequency abnormality in the first input clock CK1 itself. Even if not, it will be different from the expected value Ex1, and the abnormality detection signal Sa1 becomes "H". If the second and first input clocks CK2 and CK1 have normal frequencies, the abnormality detection signal Sa2 in the second input clock CK2 is “L”. Therefore, the combination logic of the abnormality detection signals Sa1, Sa2, Sa3 in this case is [HLH], and this combination logic [HLH] means that a frequency abnormality has occurred in the third input clock CK3. When detecting the combinational logic [HLH], the clock determination unit specifies that the input clock causing the frequency abnormality is the third input clock CK3.
 さて、上記〔1〕の第1の入力クロックCK1に周波数異常が生じている状態において現在システムクロックとして採用されている入力クロックが第2の入力クロックCK2や第3の入力クロックCK3であれば、クロック判定部はクロック切替信号をアクティブにする必要はない。しかしながら、現在採用中の入力クロックが第1の入力クロックCK1であれば、クロック判定部はクロック切替信号Scをアクティブにする。この状態におけるアクティブなクロック切替信号Scは、第3の入力クロックCK3または第2の入力クロックCK2を、システムクロックに選択すべきである、との指示内容となる。 If the input clock currently used as the system clock in the state where the frequency abnormality occurs in the first input clock CK1 of [1] is the second input clock CK2 or the third input clock CK3, The clock determination unit does not need to activate the clock switching signal. However, if the currently used input clock is the first input clock CK1, the clock determination unit activates the clock switching signal Sc. The active clock switching signal Sc in this state serves as an instruction content that the third input clock CK3 or the second input clock CK2 should be selected as the system clock.
 同様に、上記〔2〕の第2の入力クロックCK2に周波数異常が生じている状態において現在システムクロックとして採用されている入力クロックが第3の入力クロックCK3や第1の入力クロックCK1であれば、クロック判定部50はクロック切替信号Scをアクティブにする必要はない。しかしながら、現在採用中の入力クロックが第2の入力クロックCK2であれば、クロック判定部はクロック切替信号Scをアクティブにする。この状態におけるアクティブなクロック切替信号Scは、第1の入力クロックCK1または第3の入力クロックCK3を、システムクロックに選択すべきである、との指示内容になる。 Similarly, if the input clock currently used as the system clock is the third input clock CK3 or the first input clock CK1 in the state where the frequency abnormality has occurred in the second input clock CK2 in [2] above. The clock determination unit 50 does not need to activate the clock switching signal Sc. However, when the currently used input clock is the second input clock CK2, the clock determination unit activates the clock switching signal Sc. The active clock switching signal Sc in this state serves as an instruction content that the first input clock CK1 or the third input clock CK3 should be selected as the system clock.
 同様に、上記〔3〕の第3の入力クロックCK3に周波数異常が生じている状態において現在システムクロックとして採用されている入力クロックが第1の入力クロックCK1や第2の入力クロックCK2であれば、クロック判定部はクロック切替信号Scをアクティブにする必要はない。しかしながら、現在採用中の入力クロックが第3の入力クロックCK3であれば、クロック判定部はクロック切替信号Scをアクティブにする。この状態におけるアクティブなクロック切替信号Scは、第2の入力クロックCK2または第1の入力クロックCK1を、システムクロックに選択すべきである、との指示内容になる。 Similarly, when the frequency of the third input clock CK3 in [3] is abnormal and the input clock currently used as the system clock is the first input clock CK1 or the second input clock CK2. The clock determination unit does not need to activate the clock switching signal Sc. However, if the currently used input clock is the third input clock CK3, the clock determination unit activates the clock switching signal Sc. The active clock switching signal Sc in this state is an instruction content that the second input clock CK2 or the first input clock CK1 should be selected as the system clock.
 上述した説明は、入力クロックが3系統の場合の説明であるが、一般的にN系統の入力クロックの場合も上述と同様の論理を敷衍することが可能である。したがって、ここでは、入力クロックの取り込み形態がサイクリックである、すなわち、周期的な交換を伴う循環採取であることに言及するにとどめ、詳しい説明は割愛する。 The above description is for the case where there are three input clocks, but in general, the same logic as described above can be used for N input clocks. Therefore, here, it is only mentioned that the input clock capturing mode is cyclic, that is, cyclic sampling with periodic exchange, and a detailed description is omitted.
 この態様によれば、システムクロックの元として利用するN系統の入力クロックのいずれかに周波数異常が発生しても、そのことが直ちにはシステムクロックの周波数異常になることはなく、周波数異常の対応に余裕が生まれる。さらにはシステムクロックの周波数異常につながる周波数異常が入力クロックに生じていたとしても、入力クロックが、正常周波数を有する他の入力クロックに自動的に切り替えられることにより、システムクロックにおける周波数の正常状態が維持されてシステムの安定性が確保される。 According to this aspect, even if a frequency abnormality occurs in any of the N system input clocks used as the source of the system clock, this does not immediately cause a system clock frequency abnormality, and the frequency abnormality can be dealt with. Can afford. Furthermore, even if a frequency abnormality that leads to a system clock frequency abnormality has occurred in the input clock, the input clock is automatically switched to another input clock having a normal frequency, so that the normal state of the frequency in the system clock is restored. Maintained to ensure system stability.
 図1における(a)で説明したように第1の入力クロックCK1に周波数異常が生じて、システムクロックCKoが第3の入力クロックCK3に切り替えられたとする。この状態でさらに第1の入力クロックCK1が正常周波数に戻ったものの、図1における(c)に示すように第3の入力クロックCK3に周波数異常が生じたとする。この状態でシステムクロックCKoは、第2の入力クロックCK2に切り替えられる。さらにこの状態で、第3の入力クロックCK3が正常周波数に戻ったものの図1における(b)に示すように第2の入力クロックCK2に周波数異常が生じたとする。この状態でシステムクロックCKoは、第1の入力クロックCK1に切り替えられる。このように、入力クロックに周波数異常を生じたときの対応が柔軟で、ダイナミックにシステムクロックの周波数正常維持を実現することが可能となる。 Suppose that a frequency abnormality has occurred in the first input clock CK1 as described in FIG. 1A, and the system clock CKo has been switched to the third input clock CK3. In this state, it is assumed that although the first input clock CK1 has returned to the normal frequency, a frequency abnormality has occurred in the third input clock CK3 as shown in FIG. In this state, the system clock CKo is switched to the second input clock CK2. Further, in this state, it is assumed that although the third input clock CK3 has returned to the normal frequency, a frequency abnormality has occurred in the second input clock CK2 as shown in FIG. In this state, the system clock CKo is switched to the first input clock CK1. As described above, it is possible to flexibly cope with the occurrence of frequency abnormality in the input clock, and to dynamically maintain the normal frequency of the system clock.
 本発明によれば、入力クロックの周波数異常を検出したときは、周波数異常の入力クロックがどの入力クロックかを特定し、それが現在採用中の入力クロックであれば、システムクロックとして正常周波数の入力クロックの選択に切り替えるので、システム全体にはクロック周波数異常による影響を与えることはなく、システムの安定性を確保することができる。 According to the present invention, when an abnormal frequency of the input clock is detected, it is specified which input clock is the abnormal frequency input clock. If the input clock is currently employed, the normal frequency is input as the system clock. Since switching to the clock selection is performed, the entire system is not affected by the clock frequency abnormality, and the stability of the system can be ensured.
図1は、本発明のシステムクロック監視装置における3系統の異常検出信号の組み合わせ論理についての説明図である。FIG. 1 is an explanatory diagram of combinational logic of three systems of abnormality detection signals in the system clock monitoring apparatus of the present invention. 図2は、本発明の実施の形態1におけるシステムクロック監視装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the system clock monitoring apparatus according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1におけるクロック異常検出部の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of the clock abnormality detection unit in the first embodiment of the present invention. 図4は、本発明の実施の形態1におけるシステムクロック監視装置の正常時の動作波形(その1)である。FIG. 4 shows an operation waveform (part 1) when the system clock monitoring apparatus according to the first embodiment of the present invention is normal. 図5は、本発明の実施の形態1におけるシステムクロック監視装置の正常時の動作波形(その2)である。FIG. 5 shows normal operation waveforms (part 2) of the system clock monitoring apparatus according to the first embodiment of the present invention. 図6は、本発明の実施の形態1におけるシステムクロック監視装置の異常検出時の動作波形(その1)である。FIG. 6 is an operation waveform (part 1) when an abnormality is detected in the system clock monitoring apparatus according to the first embodiment of the present invention. 図7は、本発明の実施の形態1におけるシステムクロック監視装置の異常検出時の動作波形(その2)である。FIG. 7 is an operation waveform (part 2) when an abnormality is detected in the system clock monitoring apparatus according to the first embodiment of the present invention. 図8は、本発明の実施の形態2におけるシステムクロック監視装置の構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of the system clock monitoring apparatus according to Embodiment 2 of the present invention. 図9は、本発明の実施の形態2におけるシステムクロック監視装置の異常検出時の動作波形(その1)である。FIG. 9 is an operation waveform (part 1) when an abnormality is detected in the system clock monitoring apparatus according to the second embodiment of the present invention. 図10は、本発明の実施の形態2におけるシステムクロック監視装置の異常検出時の動作波形(その2)である。FIG. 10 is an operation waveform (part 2) when the system clock monitoring device according to the second embodiment of the present invention detects an abnormality. 図11は、本発明の実施の形態3におけるシステムクロック監視装置の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of the system clock monitoring apparatus according to Embodiment 3 of the present invention. 図12は、本発明の実施の形態4におけるモータ制御システムの構成を示すブロック図である。FIG. 12 is a block diagram showing a configuration of a motor control system according to Embodiment 4 of the present invention. 図13は、本発明の実施の形態4におけるインバータ制御用マイクロコンピュータのモータ制御端子の正常時の動作波形である。FIG. 13 shows operation waveforms at the normal time of the motor control terminal of the inverter control microcomputer according to the fourth embodiment of the present invention. 図14は、本発明の実施の形態4におけるインバータ制御用マイクロコンピュータのモータ制御端子の異常検出時の動作波形である。FIG. 14 is an operation waveform when abnormality is detected in the motor control terminal of the inverter control microcomputer according to the fourth embodiment of the present invention. 図15は、従来のシステムクロック監視装置の構成を示すブロック図である。FIG. 15 is a block diagram showing a configuration of a conventional system clock monitoring apparatus. 図16は、従来のシステムクロック監視装置の正常時の動作波形である。FIG. 16 shows operation waveforms of the conventional system clock monitoring apparatus when it is normal. 図17は、従来のシステムクロック監視装置の異常検出時の動作波形である。FIG. 17 shows operation waveforms when an abnormality is detected in the conventional system clock monitoring apparatus.
 上記の〔課題を解決するための手段〕の項で述べた(1),(2)の構成の本発明のシステムクロック監視装置は、次のような実施の形態においてさらに有利に展開することが可能である。 The system clock monitoring apparatus according to the present invention having the configurations (1) and (2) described in the above [Means for Solving the Problems] can be further advantageously developed in the following embodiments. Is possible.
 (3)上記(1),(2)の構成においては、そのN系統の入力クロックにつき、周波数の大小(高低)関係は特に問うものではなかった。ここでは、N系統の入力クロックが互いに異なる周波数をもっている場合のシステムクロック監視装置について検討する。 (3) In the configurations of (1) and (2) above, there is no particular question about the magnitude (high or low) relationship of the frequencies for the N input clocks. Here, a system clock monitoring device in the case where N input clocks have different frequencies will be considered.
 互いに周波数を異にしているN系統の入力クロックを取り込み、それに基づいてシステムクロックを生成するには、本発明の構成にさらに周波数最適化部を設ける。この態様では、周波数最適化部は、N系統の入力クロックそれぞれの周波数を同一の周波数に変更することでN系統の最適化クロック群を生成するものとして構成される。クロック切替部は、上記(1),(2)の構成の場合、N系統の入力クロックの供給を受けるものであったが、この態様では、N系統の入力クロックの供給を受けることに代えて、N系統の最適化クロック群の供給を受けたうえで、クロック判定部からのクロック切替信号に基づいてシステムクロックに採用すべき最適化クロックを切り替えるように構成される。 In order to take in N input clocks having different frequencies and generate a system clock based on the input clocks, a frequency optimization unit is further provided in the configuration of the present invention. In this aspect, the frequency optimization unit is configured to generate N optimized clock groups by changing the frequency of each of the N input clocks to the same frequency. In the case of the configurations (1) and (2), the clock switching unit is supplied with the N input clocks. In this embodiment, instead of receiving the N input clocks, The system is configured to switch the optimized clock to be used as the system clock based on the clock switching signal from the clock determination unit after receiving the N optimized clock groups.
 このような態様は、要するに、上記(1),(2)の構成における一つの態様であって、その態様は、
 前記入力クロックそれぞれの周波数を同一の周波数に変更してN系統の最適化クロック群を生成する周波数最適化部を、さらに備え、
 前記クロック切替部には、前記入力クロックに代えて前記最適化クロック群が供給され、前記クロック切替部は、前記周波数異常クロック以外の入力クロックに基づいて生成される最適化クロックを、前記クロック切替信号に基づいて前記最適化クロック群から選択して前記システムクロックとして前記システムに供給する、
 という構成を備える。
In short, such an aspect is one aspect in the above configurations (1) and (2), and the aspect is
A frequency optimizing unit that changes the frequency of each of the input clocks to the same frequency to generate N optimized clock groups;
The clock switching unit is supplied with the optimized clock group instead of the input clock, and the clock switching unit converts the optimized clock generated based on an input clock other than the frequency abnormal clock to the clock switching Selecting from the optimized clock group based on a signal and supplying the system clock as the system clock;
It has the configuration.
 この態様によれば、システムクロックの元になる最適化クロックはすべて同一周波数となるため、切り替え前後の微小な時間内であっても周波数変動に起因する影響をほとんど受けることなく、安定した切り替え動作を実現することが可能となる。 According to this aspect, since the optimized clocks that are the basis of the system clock all have the same frequency, a stable switching operation is hardly affected even by a minute time before and after switching and is hardly affected by frequency fluctuations. Can be realized.
 (4)上記(1)~(3)の構成においてN系統の入力クロックは装置外部で生成されたものを利用するものであった。この構成では、装置外部にN系統のクロック発生回路を設ける必要があり、コスト負担が大きくなる。これに対して、ここでは、1つの入力クロックは交流電源から生成したものを利用することを検討する。 (4) In the configurations (1) to (3) above, the N system input clocks are those generated outside the apparatus. In this configuration, it is necessary to provide N clock generation circuits outside the apparatus, which increases the cost burden. In contrast, here, it is considered to use one input clock generated from an AC power supply.
 簡易な構成のクロック生成部として、交流電源からの交流電圧の零レベルを横切るゼロクロス点を検出したタイミングで論理が反転するゼロクロスクロックを生成するように構成されたものがある。本発明には、このような構成を備えるクロック生成部をさらに備える態様がある。この構成では、ゼロクロスクロックは、システムクロックの選択候補となるようクロック切替部または周波数最適化部に供給され、さらには周波数異常を検出するためにクロック異常検出部に供給される。クロック異常検出部は、(N-1)系統の入力クロックとゼロクロスクロックとからなる合計N系統の入力クロックの周波数異常を監視するものとして構成される。 As a simple clock generation unit, there is one configured to generate a zero cross clock whose logic is inverted at the timing when a zero cross point crossing the zero level of the AC voltage from the AC power source is detected. In the present invention, there is an aspect further including a clock generation unit having such a configuration. In this configuration, the zero cross clock is supplied to the clock switching unit or the frequency optimization unit so as to be a system clock selection candidate, and further supplied to the clock abnormality detection unit in order to detect a frequency abnormality. The clock anomaly detection unit is configured to monitor frequency anomalies of a total of N input clocks including (N-1) input clocks and zero cross clocks.
 要するに、この態様は、本発明において、外部から供給される交流電圧のゼロクロス点を検出することによりゼロクロスクロックを生成するクロック生成部をさらに備え、
 前記入力クロック群を構成する少なくとも1つの入力クロックは、前記ゼロクロスクロックである。
In short, this aspect further includes a clock generation unit that generates a zero cross clock by detecting a zero cross point of an AC voltage supplied from the outside in the present invention,
At least one input clock constituting the input clock group is the zero cross clock.
 この態様によれば、ゼロクロスクロックを周波数異常判定に使用することで、装置外部でのクロック発生回路を削減し、コスト低減効果が期待できる。 According to this aspect, by using the zero cross clock for frequency abnormality determination, the clock generation circuit outside the apparatus can be reduced, and a cost reduction effect can be expected.
 さらに本発明によるモータ制御システムは、
 本発明のシステムクロック監視装置を備え、
 前記システムはモータであり、
 前記システムクロック監視装置がクロック周波数の異常の発生を検知すると、前記モータを安全な状態に制御する。
Furthermore, the motor control system according to the present invention includes:
The system clock monitoring device of the present invention,
The system is a motor;
When the system clock monitoring device detects the occurrence of a clock frequency abnormality, the motor is controlled to a safe state.
 なお、本明細書において、クロック異常検出部、カウント部、比較判定部、クロック判定部およびクロック切替部の各構成要素は、ハードウェアで構成するほか、ソフトウェアにおける個々のステップまたはルーチンで構成してもよい。あるいは、ハードウェアとソフトウェアの組み合わせで構成してもよい。 In this specification, each component of the clock abnormality detection unit, the count unit, the comparison determination unit, the clock determination unit, and the clock switching unit is configured by hardware, or by individual steps or routines in software. Also good. Or you may comprise by the combination of hardware and software.
 以下、本発明にかかわるシステムクロック監視装置の実施の形態を、図面を参照して詳細に説明する。なお、以下で説明する実施の形態はあくまで一例であり、様々な改変を行うことが可能である。 Hereinafter, an embodiment of a system clock monitoring apparatus according to the present invention will be described in detail with reference to the drawings. The embodiment described below is merely an example, and various modifications can be made.
 (実施の形態1)
 本発明の実施の形態1について、図2~図7を参照して説明する。図2は3系統(N=3)のクロックを備えるシステムクロック監視装置100の構成を示す。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows a configuration of a system clock monitoring apparatus 100 having three (N = 3) clocks.
 システムクロック監視装置100は、クロック異常検出部20と、クロック判定部50と、クロック切替部70とを備える。 The system clock monitoring device 100 includes a clock abnormality detection unit 20, a clock determination unit 50, and a clock switching unit 70.
 クロック異常検出部20は3系統の第1~第3の入力クロックCK1~CK3からなる入力クロック群を取り入れたうえで、第1~第3の入力クロックCK1~CK3の周波数異常の有無を判定する。さらにクロック異常検出部20は、入力クロック群のうち少なくとも1つの入力クロックの周波数異常を検出するとクロック判定部50に異常検出信号Saを出力する。 The clock abnormality detection unit 20 takes in an input clock group composed of three systems of first to third input clocks CK1 to CK3, and determines whether there is a frequency abnormality in the first to third input clocks CK1 to CK3. . Further, the clock abnormality detection unit 20 outputs an abnormality detection signal Sa to the clock determination unit 50 when detecting a frequency abnormality of at least one input clock in the input clock group.
 クロック判定部50は、クロック異常検出部20から異常検出信号Saを受け取ると、その異常検出信号Saに基づいて、周波数異常が生じている入力クロックCK1~CK3を特定する。さらにクロック判定部50は、特定した周波数異常状態の入力クロックが現在採用中の入力クロックであるか否かを判定し、採用中の入力クロックであると判定するとクロック切替信号Scを生成してクロック切替部70に出力する。クロック切替信号Scは、第1~第3の入力クロックCK1~CK3の中から正常周波数の入力クロックをシステムクロックとして選択することを指示する制御信号である。 When the clock determination unit 50 receives the abnormality detection signal Sa from the clock abnormality detection unit 20, the clock determination unit 50 specifies the input clocks CK1 to CK3 in which the frequency abnormality has occurred based on the abnormality detection signal Sa. Further, the clock determination unit 50 determines whether or not the identified input clock in the abnormal frequency state is an input clock that is currently being employed. If the clock determination unit 50 determines that the input clock is currently being employed, the clock determination unit 50 generates a clock switching signal Sc Output to the switching unit 70. The clock switching signal Sc is a control signal instructing to select an input clock having a normal frequency as the system clock from the first to third input clocks CK1 to CK3.
 クロック切替部70は、クロック切替信号Scの指示に従って、第1~第3の入力クロックCK1~CK3の中から正常周波数の入力クロックCKxを選択し、選択した入力クロックCKxをシステムクロックCKoとして出力する。クロック切替部70は、クロック判定部50の判定結果が出るまでは第1~第3の入力クロックCK1~CK3の選択を行わない(遅延させる)ように構成されている。そのため、入力クロックを切り替えた場合でも、システムクロックCKoは異常入力クロックの影響を受けずに正常な周波数を出力し続けることができるようになっている。 The clock switching unit 70 selects the normal frequency input clock CKx from the first to third input clocks CK1 to CK3 in accordance with the instruction of the clock switching signal Sc, and outputs the selected input clock CKx as the system clock CKo. . The clock switching unit 70 is configured not to select (delay) the first to third input clocks CK1 to CK3 until the determination result of the clock determination unit 50 is obtained. Therefore, even when the input clock is switched, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock.
 図3はクロック異常検出部20の回路構成の一例である。このクロック異常検出部20は、3系統の(第1~第3の)カウント部21~23と、3系統の(第1~第3の)比較判定部31~33と、記憶部40とを備える。 FIG. 3 is an example of a circuit configuration of the clock abnormality detection unit 20. The clock abnormality detection unit 20 includes three (first to third) counting units 21 to 23, three (first to third) comparison / determination units 31 to 33, and a storage unit 40. Prepare.
 第1のカウント部21は、第3の入力クロックCK3におけるパルスが規定回数カウントされる期間(以下、第3の監視周期という)において、第1の入力クロックCK1のパルス数を計測する。さらに第1のカウント部21は、第3の監視周期終端時(第3の入力クロックCK3のパルスの規定回数カウントが完了した時点)における第1の入力クロックCK1のパルス数(以下、パルス数PN1という)を出力する。 The first count unit 21 measures the number of pulses of the first input clock CK1 during a period in which pulses in the third input clock CK3 are counted a predetermined number of times (hereinafter referred to as a third monitoring cycle). Furthermore, the first count unit 21 counts the number of pulses of the first input clock CK1 at the end of the third monitoring period (when the specified number of pulses of the third input clock CK3 is counted) (hereinafter, the number of pulses PN1). Output).
 第2のカウント部22は、第1の入力クロックCK1におけるパルスが規定回数カウントされる期間(以下、第1の監視周期という)において、第2の入力クロックCK2のパルス数を計測する。さらに第2のカウント部22は、第2の監視周期終端時(第1の入力クロックCK3のパルスの規定回数カウントが完了した時点)における第2の入力クロックCK2のパルス数(以下、パルス数PN2という)を出力する。 The second count unit 22 measures the number of pulses of the second input clock CK2 during a period in which the pulses in the first input clock CK1 are counted a predetermined number of times (hereinafter referred to as a first monitoring cycle). Further, the second count unit 22 counts the number of pulses of the second input clock CK2 at the end of the second monitoring period (when the specified number of pulses of the first input clock CK3 is counted) (hereinafter, the number of pulses PN2). Output).
 第3のカウント部23は、第2の入力クロックCK2におけるパルスが規定回数カウントされる期間(以下、第2の監視周期という)において、第3の入力クロックCK3のパルス数を計測する。さらに第3のカウント部23は、第2の監視周期終端時(第2の入力クロックCK2のパルスの規定回数カウントが完了した時点)における第3の入力クロックCK3のパルス数(以下、パルス数PN3という)を出力する。 The third counting unit 23 measures the number of pulses of the third input clock CK3 in a period during which the pulses in the second input clock CK2 are counted a predetermined number of times (hereinafter referred to as a second monitoring cycle). Further, the third count unit 23 counts the number of pulses of the third input clock CK3 at the end of the second monitoring period (when the specified number of pulses of the second input clock CK2 is counted) (hereinafter, the number of pulses PN3). Output).
 記憶部40は、期待値Ex1~Ex3を格納している。期待値Ex1~Ex3は、第1~第3のカウント部21~23のパルス数PN1~PN3に対する期待値であって、具体的には、正常動作時における第1~第3のカウント部21~23のカウント結果に対応するパルス数である。 The storage unit 40 stores expected values Ex1 to Ex3. The expected values Ex1 to Ex3 are expected values for the pulse numbers PN1 to PN3 of the first to third count units 21 to 23, and specifically, the first to third count units 21 to 23 during normal operation. The number of pulses corresponding to the count result of 23.
 第1の比較判定部31は、カウント部21からのパルス数PN1を期待値Ex1と比較し、比較結果が一致しない場合に異常検出信号Sa1を出力するように構成されている。同様に、第2の比較判定部32は、カウント部22からのパルス数PN2を期待値Ex2と比較し、比較結果が一致しない場合に異常検出信号Sa2を出力するように構成されている。同様に、第3の比較判定部33は、カウント部23からのパルス数PN3を期待値Ex3と比較し、比較結果が一致しない場合に異常検出信号Sa3を出力するように構成されている。3つの異常検出信号Sa1~Sa3の集合が図2の異常検出信号Saに相当する。 The first comparison / determination unit 31 is configured to compare the pulse number PN1 from the count unit 21 with the expected value Ex1 and to output an abnormality detection signal Sa1 when the comparison results do not match. Similarly, the second comparison / determination unit 32 is configured to compare the number of pulses PN2 from the count unit 22 with the expected value Ex2 and to output an abnormality detection signal Sa2 when the comparison results do not match. Similarly, the third comparison determination unit 33 is configured to compare the number of pulses PN3 from the count unit 23 with the expected value Ex3, and output the abnormality detection signal Sa3 when the comparison results do not match. A set of three abnormality detection signals Sa1 to Sa3 corresponds to the abnormality detection signal Sa in FIG.
 図4は第1~第3のクロックCK1~CK3の周波数が正常な状態での第1~第3のカウント部21~23および第1~第3の比較判定部31~33の動作を示すタイミングチャートである。第1の比較判定部31におけるパルス数PN1と期待値Ex1との比較結果は一致している。そのため、異常検出信号Sa1はインアクティブのままである。第2の比較判定部32におけるパルス数PN2と期待値Ex2との比較結果も一致している。そのため、異常検出信号Sa2もインアクティブのままである。第3の比較判定部33におけるパルス数PN3と期待値Ex3との比較結果も一致している。そのため、異常検出信号Sa3もインアクティブのままである。 FIG. 4 is a timing chart showing the operation of the first to third count units 21 to 23 and the first to third comparison determination units 31 to 33 when the frequencies of the first to third clocks CK1 to CK3 are normal. It is a chart. The comparison results between the number of pulses PN1 and the expected value Ex1 in the first comparison / determination unit 31 match. Therefore, the abnormality detection signal Sa1 remains inactive. The comparison result between the number of pulses PN2 and the expected value Ex2 in the second comparison / determination unit 32 also matches. Therefore, the abnormality detection signal Sa2 remains inactive. The comparison result between the number of pulses PN3 and the expected value Ex3 in the third comparison determination unit 33 also matches. Therefore, the abnormality detection signal Sa3 remains inactive.
 図5は、図4の状態に対応するクロック判定部50およびクロック切替部70の動作を示すタイミングチャートである。ここでクロック切替部70は第1のクロックCK1を選択しているものとし、システムクロックCKoには第1のクロックCK1が出力されているとする。異常検出信号Sa1~Sa3は変化しないため、システムクロックCKoは第1のクロックCK1を出力し続ける。 FIG. 5 is a timing chart showing operations of the clock determination unit 50 and the clock switching unit 70 corresponding to the state of FIG. Here, it is assumed that the clock switching unit 70 selects the first clock CK1, and the first clock CK1 is output as the system clock CKo. Since the abnormality detection signals Sa1 to Sa3 do not change, the system clock CKo continues to output the first clock CK1.
 (a)第1の入力クロックCK1に周波数異常が生じている状態
 図6は第1の入力クロックCK1に周波数異常が生じている状態での第1~第3のカウント部21~23、および第1~第3の比較判定部31~33の動作を示すタイミングチャートである。第1の比較判定部31は、第3の入力クロックCK3の規定回数カウントを基準に第1のクロックCK1のパルス数PN1を監視している。この状態では、パルス数PN1と期待値Ex1とが異なる。このことを検知した第1の比較判定部31は、異常検出信号Sa1を異常検出出力状態にする。具体的には異常検出信号Sa1をアクティブに変化させる。
(A) State in which frequency abnormality has occurred in first input clock CK1 FIG. 6 shows first to third counting units 21 to 23 in a state in which frequency abnormality has occurred in first input clock CK1, 10 is a timing chart showing operations of first to third comparison determination units 31 to 33. The first comparison / determination unit 31 monitors the number of pulses PN1 of the first clock CK1 based on the specified number of counts of the third input clock CK3. In this state, the number of pulses PN1 and the expected value Ex1 are different. Upon detecting this, the first comparison / determination unit 31 sets the abnormality detection signal Sa1 to the abnormality detection output state. Specifically, the abnormality detection signal Sa1 is changed to active.
 第1の入力クロックCK1の規定回数カウントを基準にして第2の入力クロックCK2のパルス数PN2を監視している第2の比較判定部32では、第1の入力クロックCK1を基準とする監視周期そのものが変動するため、パルス数PN2が変動してしまう。これにより、パルス数PN2が期待値Ex2と一致しなくなる。このことを検知した第2の比較判定部32は、異常検出信号Sa2を異常検出出力状態にする。具体的には異常検出信号Sa2をアクティブに変化させる。ただし、この状態では第2の入力クロックCK2自体に周波数異常が生じていない。 In the second comparison / determination unit 32 that monitors the number of pulses PN2 of the second input clock CK2 with reference to the specified number of counts of the first input clock CK1, the monitoring period based on the first input clock CK1 Since the fluctuation itself, the pulse number PN2 fluctuates. As a result, the pulse number PN2 does not match the expected value Ex2. Upon detecting this, the second comparison / determination unit 32 sets the abnormality detection signal Sa2 to the abnormality detection output state. Specifically, the abnormality detection signal Sa2 is changed to active. However, in this state, no frequency abnormality has occurred in the second input clock CK2 itself.
 第2の入力クロックCK2の規定回数カウントを基準にして第3の入力クロックCK3のパルス数PN3を監視している第3の比較判定部33では、第2,第3の入力クロックCK2,CK3はともに正常であるため、異常検出信号Sa3はインアクティブのままである。 In the third comparison / determination unit 33 that monitors the number of pulses PN3 of the third input clock CK3 with reference to the specified number of counts of the second input clock CK2, the second and third input clocks CK2 and CK3 are Since both are normal, the abnormality detection signal Sa3 remains inactive.
 この状態は、異常検出信号Sa1,Sa2,Sa3の組み合わせ論理が[HHL]となった図1の(a)の状態に相当し、これは第1の入力クロックCK1に周波数異常が生じていることを意味する。 This state corresponds to the state shown in FIG. 1A in which the combinational logic of the abnormality detection signals Sa1, Sa2, and Sa3 is [HHL], and this is a frequency abnormality occurring in the first input clock CK1. Means.
 図7は第1の入力クロックCK1に周波数異常が生じている状態での第1~第3のカウント部21~23、クロック判定部50、および第1~第3のクロック切替部70の動作を示すタイミングチャートである。クロック判定部50は、異常検出信号Sa1~Sa3を総合判断して第1のクロックCK1に周波数異常が生じていると判定する。この判定に基づいてクロック判定部50は、周波数が異常な第1のクロックCK1から正常な第3の入力クロックCK3に変更することを選択し、クロック切替信号Scの出力情報を“1”から“3”に切り替える。クロック切替部70は、クロック切替信号Scの出力情報に基づいて、システムクロックCKoを第1のクロックCK1から第3の入力クロックCK3に切り替える。このときクロック切替部70に入力されている第1~第3の入力クロックCK1~CK3はあらかじめクロック判定部50の判定結果が出るまで遅延されており、クロック切替部70で第1の入力クロックCK1から第3の入力クロックCK3へ切り替えた場合でも、システムクロックCKoは異常入力クロックの影響を受けることなく正常な周波数を出力し続けることができる。 FIG. 7 shows the operation of the first to third count units 21 to 23, the clock determination unit 50, and the first to third clock switching units 70 in a state where the frequency abnormality occurs in the first input clock CK1. It is a timing chart which shows. The clock determination unit 50 comprehensively determines the abnormality detection signals Sa1 to Sa3 and determines that a frequency abnormality has occurred in the first clock CK1. Based on this determination, the clock determination unit 50 selects to change from the first clock CK1 having an abnormal frequency to the normal third input clock CK3, and changes the output information of the clock switching signal Sc from “1” to “ Switch to 3 ”. The clock switching unit 70 switches the system clock CKo from the first clock CK1 to the third input clock CK3 based on the output information of the clock switching signal Sc. At this time, the first to third input clocks CK1 to CK3 input to the clock switching unit 70 are delayed in advance until the determination result of the clock determination unit 50 is obtained, and the first input clock CK1 is output by the clock switching unit 70. Even when switching from 3 to the third input clock CK3, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock.
 なお、第1の入力クロックCK1をシステムクロックCKoとして選択している状態において、第2の入力クロックCK2に周波数異常が生じた場合および第3の入力クロックCK3に周波数異常が生じた場合には、クロック切替信号Scはアクティブとはならず、システムクロックCKoの選択状態は変わらない。 In the state where the first input clock CK1 is selected as the system clock CKo, when a frequency abnormality occurs in the second input clock CK2 and when a frequency abnormality occurs in the third input clock CK3, The clock switching signal Sc does not become active, and the selection state of the system clock CKo does not change.
 (b)第2の入力クロックCK2に周波数異常が生じている状態
 タイミングチャートは省略するが、第2の入力クロックCK2をシステムクロックCKoとして選択している状態において、この第2の入力クロックCK2が周波数異常を起こした場合には、第1のクロックCK1の規定回数カウントを基準に第2のクロックCK2のパルス数PN2を監視している第2の比較判定部32では、異常検出信号Sa2がアクティブになる。第2のクロックCK2の規定回数カウントを基準に第3の入力クロックCK3のパルス数PN3を監視している第3の比較判定部33では、第2の入力クロックCK2を基準とする監視周期そのものが変動し、そのことに起因してパルス数PN3が変動してしまい、パルス数PN3が期待値Ex3と一致しなくなるため、異常検出信号Sa3はアクティブになる。ただし、第3の入力クロックCK3自体は周波数異常ではない。
(B) State in which frequency abnormality has occurred in second input clock CK2 Although a timing chart is omitted, in a state in which second input clock CK2 is selected as system clock CKo, second input clock CK2 is When a frequency abnormality occurs, the abnormality detection signal Sa2 is active in the second comparison / determination unit 32 that monitors the number of pulses PN2 of the second clock CK2 based on the specified number of counts of the first clock CK1. become. In the third comparison / determination unit 33 that monitors the number of pulses PN3 of the third input clock CK3 on the basis of the specified number of counts of the second clock CK2, the monitoring cycle itself based on the second input clock CK2 is the same. As a result, the pulse number PN3 fluctuates and the pulse number PN3 does not coincide with the expected value Ex3. Therefore, the abnormality detection signal Sa3 becomes active. However, the third input clock CK3 itself is not abnormal in frequency.
 第3の入力クロックCK3の規定回数カウントを基準に第1のクロックCK1のパルス数PN1を監視している第1の比較判定部31では、入力クロックCK3,CK1はともに正常であるため、異常検出信号Sa1はインアクティブのままである。 In the first comparison / determination unit 31 that monitors the number of pulses PN1 of the first clock CK1 on the basis of the specified number of counts of the third input clock CK3, the input clocks CK3 and CK1 are both normal, so that an abnormality is detected. Signal Sa1 remains inactive.
 この状態は、異常検出信号Sa1,Sa2,Sa3の組み合わせ論理[LHH]となった図1の(b)状態に相当し、これは第2の入力クロックCK2に周波数異常が生じていることを意味する。このことを検知したクロック判定部50は、周波数が異常な第2のクロックCK2から正常な第1のクロックCK1に変更することを選択する。具体的には、クロック判定部50は、クロック切替信号Scの出力情報を“2”から“1”に切り替える。クロック切替部70は、クロック切替信号Scの出力情報に基づいて、システムクロックCKoを第2のクロックCK2から第1のクロックCK1に切り替える。 This state corresponds to the state (b) of FIG. 1 in which the combination logic [LHH] of the abnormality detection signals Sa1, Sa2 and Sa3 is obtained, which means that a frequency abnormality has occurred in the second input clock CK2. To do. The clock determination unit 50 that has detected this selects to change from the second clock CK2 having an abnormal frequency to the normal first clock CK1. Specifically, the clock determination unit 50 switches the output information of the clock switching signal Sc from “2” to “1”. The clock switching unit 70 switches the system clock CKo from the second clock CK2 to the first clock CK1 based on the output information of the clock switching signal Sc.
 なお、第2の入力クロックCK2をシステムクロックCKoとして選択している状態において、第3の入力クロックCK3に周波数異常が生じた場合および第1の入力クロックCK1に周波数異常が生じた場合には、クロック切替信号Scはアクティブとはならず、システムクロックCKoの選択状態は変わらない。 In the state where the second input clock CK2 is selected as the system clock CKo, when a frequency abnormality occurs in the third input clock CK3 and when a frequency abnormality occurs in the first input clock CK1, The clock switching signal Sc does not become active, and the selection state of the system clock CKo does not change.
 (c)第3の入力クロックCK3に周波数異常が生じている状態
 タイミングチャートは省略するが、第3の入力クロックCK3をシステムクロックCKoとして選択している状態において、この第3の入力クロックCK3が周波数異常を起こした場合、第2のクロックCK2の規定回数カウントを基準にして第3の入力クロックCK3のパルス数PN3を監視している第3の比較判定部33は、異常検出信号Sa3をアクティブにする。第3の入力クロックCK3の規定回数カウントを基準にして第1のクロックCK1のパルス数PN1を監視している第1の比較判定部31は、第3の入力クロックCK3を基準とする監視周期そのものが変動するため、パルス数PN1が変動してしまう。これにより、パルス数PN1が期待値Ex1と一致しなくなる。このことを検知した第1の比較判定部31は、異常検出信号Sa1をアクティブに変化させる。ただし、第1の入力クロックCK1自体に周波数異常が生じていない。
(C) State in which frequency abnormality has occurred in the third input clock CK3 Although the timing chart is omitted, in the state in which the third input clock CK3 is selected as the system clock CKo, the third input clock CK3 is When the frequency abnormality occurs, the third comparison / determination unit 33 that monitors the number of pulses PN3 of the third input clock CK3 based on the specified number of counts of the second clock CK2 activates the abnormality detection signal Sa3. To. The first comparison / determination unit 31 that monitors the number of pulses PN1 of the first clock CK1 with reference to the specified number of counts of the third input clock CK3 is the monitoring period itself based on the third input clock CK3. Fluctuates, the number of pulses PN1 fluctuates. As a result, the number of pulses PN1 does not match the expected value Ex1. The first comparison / determination unit 31 that has detected this changes the abnormality detection signal Sa1 to be active. However, there is no frequency abnormality in the first input clock CK1 itself.
 第1のクロックCK1の規定回数カウントを基準に第2のクロックCK2のパルス数PN2を監視している第2の比較判定部32では、入力クロックCK1,CK2はともに正常であるため、異常検出信号Sa2はインアクティブのままである。 In the second comparison / determination unit 32 that monitors the number of pulses PN2 of the second clock CK2 with reference to the specified number of counts of the first clock CK1, the input clocks CK1 and CK2 are both normal, so an abnormality detection signal Sa2 remains inactive.
 この状態は、異常検出信号Sa1,Sa2,Sa3の組み合わせ論理が[HLH]となった図1の(c)の場合に相当し、第3の入力クロックCK3に周波数異常が生じていることを意味する。このことを検知したクロック判定部50は、周波数が異常な第3の入力クロックCK3から正常な第2のクロックCK2に変更することを選択する。具体的にはクロック判定部50は、クロック切替信号Scの出力情報を“3”から“2”に切り替える。クロック切替部70は、クロック切替信号Scの出力情報に基づいて、システムクロックCKoを第3の入力クロックCK3から第2のクロックCK2に切り替える。 This state corresponds to the case of FIG. 1C in which the combination logic of the abnormality detection signals Sa1, Sa2 and Sa3 is [HLH], and means that a frequency abnormality has occurred in the third input clock CK3. To do. The clock determination unit 50 that has detected this selects to change from the third input clock CK3 having an abnormal frequency to the normal second clock CK2. Specifically, the clock determination unit 50 switches the output information of the clock switching signal Sc from “3” to “2”. The clock switching unit 70 switches the system clock CKo from the third input clock CK3 to the second clock CK2 based on the output information of the clock switching signal Sc.
 なお、第3の入力クロックCK3をシステムクロックCKoとして選択している状態において、第1の入力クロックCK1に周波数異常が生じた場合および第2の入力クロックCK2に周波数異常が生じた場合には、クロック切替信号Scはアクティブとはならず、システムクロックCKoの選択状態は変わらない。また上記の(a),(b),(c)は柔軟に切り替わり、ダイナミックにシステムクロックの周波数正常維持を実現することが可能である。 In the state where the third input clock CK3 is selected as the system clock CKo, when a frequency abnormality occurs in the first input clock CK1 and when a frequency abnormality occurs in the second input clock CK2, The clock switching signal Sc does not become active, and the selection state of the system clock CKo does not change. In addition, the above (a), (b), and (c) can be flexibly switched to dynamically maintain the normal frequency of the system clock.
 以上のように本実施の形態によれば、システムクロック監視装置がクロックの周波数異常を検出した場合に、正常動作している入力クロックを判定し、入力クロックの周波数異常時であってもシステムクロックを正常動作している入力クロックに切り替えることで、システム全体にクロック周波数異常による影響を与えず、システムの安定性を確保する効果を得ることができる。 As described above, according to the present embodiment, when the system clock monitoring device detects a clock frequency abnormality, it determines the input clock that is operating normally, and the system clock can be used even when the input clock frequency is abnormal. By switching to the input clock that is operating normally, the effect of ensuring the stability of the system can be obtained without affecting the entire system due to the abnormal clock frequency.
 なお、N=4系統以上の入力に対しても上述した説明と同様の効果が期待できる。 Note that the same effect as described above can be expected for inputs of N = 4 or more systems.
 (実施の形態2)
 実施の形態1においては、3つの入力クロックCK1,CK2,CK3は同一の周波数であるが、本発明の実施の形態2は、3つの入力クロックCK1,CK2,CK3が互いに異なる周波数をもっている場合のシステムクロック監視装置に関するものである。
(Embodiment 2)
In the first embodiment, the three input clocks CK1, CK2, and CK3 have the same frequency, but in the second embodiment of the present invention, the three input clocks CK1, CK2, and CK3 have different frequencies. The present invention relates to a system clock monitoring device.
 図8は本発明の実施の形態2のシステムクロック監視装置200の構成を示すブロック図である。図8において、実施の形態1の図2におけるのと同じ符号は同一構成要素を指しているので、詳しい説明は省略する。本実施の形態に特有の構成は、周波数最適化部60が追加されていることである。この周波数最適化部60は、3系統の入力クロックCK1~CK3それぞれをソースクロックとして分周または逓倍することによりあらかじめ設定された同一周波数の最適化クロックCC1~CC3を生成し、生成した最適化クロックCC1~CC3をクロック切替部70に入力するように構成されている。クロック切替部70は、クロック判定部50からのクロック切替信号Scに基づいて最適化クロックCC1~CC3の中から一つを選択したうえで、選択したクロックをシステムクロックCKoとして出力するもので、その実質は実施の形態1と変わらない。 FIG. 8 is a block diagram showing a configuration of the system clock monitoring apparatus 200 according to the second embodiment of the present invention. In FIG. 8, the same reference numerals as those in FIG. 2 of the first embodiment indicate the same components, and thus detailed description thereof is omitted. A configuration unique to the present embodiment is that a frequency optimization unit 60 is added. The frequency optimizing unit 60 generates optimized clocks CC1 to CC3 having the same frequency set in advance by dividing or multiplying the three input clocks CK1 to CK3 as source clocks, and the generated optimized clocks. CC 1 to CC 3 are configured to be input to the clock switching unit 70. The clock switching unit 70 selects one of the optimized clocks CC1 to CC3 based on the clock switching signal Sc from the clock determination unit 50, and outputs the selected clock as the system clock CKo. Substantially the same as in the first embodiment.
 クロック切替部70に入力されている最適化クロックCC1~CC3はあらかじめクロック判定部50の判定結果が出るまで遅延されるように構成されており、クロック切替部70で最適化クロックCC1~CC3を切り替えた場合でも、システムクロックCKoは異常入力クロックの影響を受けずに正常な周波数を出力し続けることができるようになっている。その他の構成については、実施の形態1の場合と同様であるので、説明を省略する。 The optimized clocks CC1 to CC3 input to the clock switching unit 70 are configured to be delayed in advance until the determination result of the clock determining unit 50 is obtained. The clock switching unit 70 switches the optimized clocks CC1 to CC3. Even in this case, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 図9は第1の入力クロックCK1が周波数異常を起こした時の動作を示すタイミングチャートである。第1の入力クロックCK1は周波数が最も低く、次いで第3の入力クロックCK3の周波数が高く、第2の入力クロックCK2の周波数が最も高くなっている。クロック異常検出部20は実施の形態1のものと同一機能を有し、異常検出信号Sa1~Sa3は図8の異常検出信号Saと同一である。 FIG. 9 is a timing chart showing the operation when the first input clock CK1 causes a frequency abnormality. The first input clock CK1 has the lowest frequency, then the third input clock CK3 has the highest frequency, and the second input clock CK2 has the highest frequency. The clock abnormality detection unit 20 has the same function as that of the first embodiment, and the abnormality detection signals Sa1 to Sa3 are the same as the abnormality detection signal Sa of FIG.
 この場合、第1の入力クロックCK1が周波数異常を起こしているので、パルス数PN1は期待値Ex1と異なる。このことを検知した第1の比較判定部31は、異常検出信号Sa1を異常検出状態にする。具体的には異常検出信号Sa1をアクティブに変化させる。 In this case, since the frequency of the first input clock CK1 is abnormal, the number of pulses PN1 is different from the expected value Ex1. Upon detecting this, the first comparison / determination unit 31 sets the abnormality detection signal Sa1 to the abnormality detection state. Specifically, the abnormality detection signal Sa1 is changed to active.
 第1の入力クロックCK1を基準とする監視周期そのものが変動するため、第2の比較判定部32は、パルス数PN2が変動してしまう。これによりパルス数PN2が期待値Ex2と一致しなくなる。このことを検知した第2の比較判定部32は、異常検出信号Sa2を異常検出状態にする。具体的には異常検出信号Sa2をアクティブに変化させる。ただし、この状態では第2の入力クロックCK2自体に周波数異常が生じていない。第3の比較判定部33では、第2~第3の入力クロックCK2,CK3はともに正常であるため、異常検出信号Sa3はインアクティブのままである。 Since the monitoring cycle itself based on the first input clock CK1 varies, the number of pulses PN2 varies in the second comparison / determination unit 32. As a result, the number of pulses PN2 does not match the expected value Ex2. The second comparison / determination unit 32 that has detected this causes the abnormality detection signal Sa2 to be in an abnormality detection state. Specifically, the abnormality detection signal Sa2 is changed to active. However, in this state, no frequency abnormality has occurred in the second input clock CK2 itself. In the third comparison / determination unit 33, since the second to third input clocks CK2 and CK3 are both normal, the abnormality detection signal Sa3 remains inactive.
 図10は、第1の入力クロックCK1が周波数異常を起こしたときのクロック判定部50およびクロック切替部70の動作を示すタイミングチャートである。クロック判定部50は異常検出信号Sa1~Sa3に基づいて、第1の入力クロックCK1の周波数に異常が生じているか否かを判定する。第1の入力クロックCK1の周波数に異常が生じていることを確認したクロック判定部50は、クロック切替部70の出力(システムクロックCKo)を、周波数に異常が生じた第1の最適化クロックCC1から周波数が正常な第3の最適化クロックCC3に変更することを選択する。この選択に基づいてクロック判定部50は、クロック切替信号Scの出力情報を“1”から“3”に切り替える。クロック切替部70は、クロック判定部50から供給されたクロック切替信号Scに基づいて、システムクロックCKoを第1の最適化クロックCC1から第3の最適化クロックCC3に切り替える。このときクロック切替部70に入力されている最適化クロックCC1~CC3はあらかじめクロック判定部50の判定結果が出るまで遅延されており、クロック切替部70が出力を第1の最適化クロックCC1から第3の最適化クロックCC3に切り替えても、システムクロックCKo(クロック切替部70の出力)は異常入力クロックの影響を受けずに正常な周波数を出力し続けることができる。 FIG. 10 is a timing chart showing the operations of the clock determination unit 50 and the clock switching unit 70 when the first input clock CK1 causes a frequency abnormality. Based on the abnormality detection signals Sa1 to Sa3, the clock determination unit 50 determines whether an abnormality has occurred in the frequency of the first input clock CK1. The clock determination unit 50 that has confirmed that an abnormality has occurred in the frequency of the first input clock CK1 uses the output (system clock CKo) of the clock switching unit 70 as the first optimized clock CC1 in which an abnormality has occurred in the frequency. To change to the third optimized clock CC3 having a normal frequency. Based on this selection, the clock determination unit 50 switches the output information of the clock switching signal Sc from “1” to “3”. Based on the clock switching signal Sc supplied from the clock determination unit 50, the clock switching unit 70 switches the system clock CKo from the first optimized clock CC1 to the third optimized clock CC3. At this time, the optimized clocks CC1 to CC3 input to the clock switching unit 70 are delayed in advance until the determination result of the clock determination unit 50 is obtained, and the clock switching unit 70 outputs the output from the first optimized clock CC1. Even when the optimization clock CC3 is switched to 3, the system clock CKo (output of the clock switching unit 70) can continue to output a normal frequency without being affected by the abnormal input clock.
 本実施の形態によれば、システムクロックCKoの入力である最適化クロックCC1~CC3はすべて同一周波数であるため、切り替え前後の微小な時間内でも周波数変動を意識する必要がない。 According to the present embodiment, since the optimization clocks CC1 to CC3 that are the inputs of the system clock CKo all have the same frequency, there is no need to be aware of frequency fluctuations even within a minute time before and after switching.
 以上のような構成により、システムクロック監視装置がクロックの周波数異常を検出した場合に、入力クロックを判定し、入力クロックの周波数に異常が生じた場合であってもシステムクロックを正常動作している最適化クロックに切り替えることで、クロック周波数異常による影響をシステム全体に与えることない。さらには、微小な時間でシステムクロックを切り替えるために切り替え前後で周波数変動による影響を意識する必要がない。以上のことにより、システムの高い安定性を確保することができる。 With the configuration as described above, when the system clock monitoring device detects a clock frequency abnormality, the input clock is determined, and the system clock operates normally even when an abnormality occurs in the frequency of the input clock. By switching to the optimized clock, the entire system is not affected by the abnormal clock frequency. Furthermore, since the system clock is switched in a minute time, there is no need to be aware of the influence of frequency fluctuations before and after switching. As described above, high stability of the system can be ensured.
 その他の動作については、実施の形態1と同様であるので説明を省略する。なお、本実施の形態は、N=4系統以上の入力に対しても実施の形態1と同様の効果が期待できる。 Other operations are the same as those in the first embodiment, and a description thereof will be omitted. Note that the present embodiment can be expected to have the same effect as that of the first embodiment for inputs of N = 4 systems or more.
 (実施の形態3)
 本発明の実施の形態3は、入力クロックの一部を交流電圧から生成する入力クロックとした点に特徴がある。図11は本発明の実施の形態3のシステムクロック監視装置300の構成を示すブロック図である。図11において、実施の形態2の図8におけるのと同じ符号は同一構成要素を指しているので、詳しい説明は省略する。本実施の形態に特有の構成は、クロック生成部10が追加されていることである。このクロック生成部10は、交流電源400からの交流電圧Vaを入力とし、交流電圧Vaの零レベルを横切るゼロクロス点を検出したタイミングで論理が反転するゼロクロスクロックCKzを生成し、クロック異常検出部20に出力するものとして構成されている。クロック異常検出部20は、第1の入力クロックCK1と、第2の入力クロックCK2と、クロック生成部10からのゼロクロスクロックCKzとを入力とし、これら3つのクロックの周波数異常を監視するものとして構成されている。その他の構成については、実施の形態1の場合と同様であるので、説明を省略する。
(Embodiment 3)
Embodiment 3 of the present invention is characterized in that a part of the input clock is an input clock generated from an AC voltage. FIG. 11 is a block diagram showing a configuration of the system clock monitoring apparatus 300 according to the third embodiment of the present invention. In FIG. 11, the same reference numerals as those in FIG. 8 of the second embodiment indicate the same components, and detailed description thereof will be omitted. A configuration unique to the present embodiment is that a clock generator 10 is added. The clock generator 10 receives the AC voltage Va from the AC power supply 400, generates a zero-cross clock CKz whose logic is inverted at the timing when a zero-cross point crossing the zero level of the AC voltage Va is detected, and the clock abnormality detector 20 It is configured to output to. The clock abnormality detection unit 20 is configured to receive the first input clock CK1, the second input clock CK2, and the zero cross clock CKz from the clock generation unit 10 and monitor the frequency abnormality of these three clocks. Has been. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 クロック異常検出部20は、第1、第2の入力クロックCK1,CK2またはゼロクロスクロックCKzの周波数異常を検出した際に、異常検出信号Saを出力する。クロック判定部50は、異常検出信号Saに基づいて周波数異常を起こしたクロックを特定し、さらに周波数異常を起こしたクロックの特定に基づいて正常なクロックを示唆するクロック切替信号Scを出力する。周波数最適化部60には、第1、第2の入力クロックCK1,CK2とゼロクロスクロックCKzとが入力される。周波数最適化部60は、供給されたクロックCK1,CK2,CKzそれぞれをソースクロックとして、それらソースクロックをあらかじめ設定された同一周波数に分周または逓倍することで最適化クロックCC1~CC3を生成する。生成された最適化クロックCC1~CC3はすべて同一周波数になる。クロック切替部70は、クロック切替信号Scに基づいて最適化クロックCC1~CC3から任意のクロックを選択し、選択したクロックをシステムクロックCKoとして出力する。 The clock abnormality detection unit 20 outputs the abnormality detection signal Sa when detecting the frequency abnormality of the first and second input clocks CK1 and CK2 or the zero cross clock CKz. Based on the abnormality detection signal Sa, the clock determination unit 50 identifies the clock that has caused the frequency abnormality, and further outputs the clock switching signal Sc that suggests a normal clock based on the identification of the clock that has caused the frequency abnormality. The frequency optimization unit 60 receives the first and second input clocks CK1 and CK2 and the zero cross clock CKz. The frequency optimizing unit 60 generates the optimized clocks CC1 to CC3 by using the supplied clocks CK1, CK2, and CKz as source clocks and dividing or multiplying the source clocks to the same preset frequency. The generated optimization clocks CC1 to CC3 all have the same frequency. The clock switching unit 70 selects an arbitrary clock from the optimized clocks CC1 to CC3 based on the clock switching signal Sc, and outputs the selected clock as the system clock CKo.
 このとき、クロック切替部70に接続されている最適化クロックCC1~CC3はあらかじめクロック判定部50の判定結果が出るまで遅延されるように構成されており、クロック切替部70で最適化クロックCC1~CC3を切り替えた場合でも、システムクロックCKoは異常入力クロックの影響を受けずに正常な周波数を出力し続けることができるようになっている。本実施の形態の動作は、入力しているクロックソースの違いだけで実施の形態2と同一である。 At this time, the optimized clocks CC1 to CC3 connected to the clock switching unit 70 are configured to be delayed in advance until the determination result of the clock determining unit 50 is obtained. Even when CC3 is switched, the system clock CKo can continue to output a normal frequency without being affected by the abnormal input clock. The operation of the present embodiment is the same as that of the second embodiment only in the input clock source.
 本実施の形態の構成では、ゼロクロスクロックCKzを周波数異常判定に使用することで、装置外部でのクロック発生回路を削減し、コスト低減効果が期待できる。 In the configuration of the present embodiment, by using the zero cross clock CKz for frequency abnormality determination, it is possible to reduce the clock generation circuit outside the apparatus and to expect a cost reduction effect.
 (実施の形態4)
 本実施の形態はモータ制御システムに関するものである。図12は産業用途、家電用途に幅広く採用されているモータ制御システムの構成を示すブロック図である。図12において、81はAC電源であり、82はコンバータ回路であり、83はインバータ回路であり、84はインバータ回路83を構成するスイッチング素子(IGBT素子)であり、85はインバータ制御用マイクロコンピュータであり、86は3相モータである。IGBT(Insulated Gate Bipolar Transistor)は絶縁ゲート型バイポーラトランジスタのことである。
(Embodiment 4)
The present embodiment relates to a motor control system. FIG. 12 is a block diagram showing the configuration of a motor control system that is widely used in industrial and household appliance applications. In FIG. 12, 81 is an AC power supply, 82 is a converter circuit, 83 is an inverter circuit, 84 is a switching element (IGBT element) constituting the inverter circuit 83, and 85 is a microcomputer for inverter control. Yes, 86 is a three-phase motor. IGBT (Insulated Gate Bipolar Transistor) is an insulated gate bipolar transistor.
 インバータ制御用マイクロコンピュータ85は、実施の形態1~3のいずれかの構成のシステムクロック監視装置Aを搭載し、3相モータ86のコントロールを行う。コンバータ回路82がAC電源81を直流電源に変換し、変換した直流電源をインバータ回路83に供給する。インバータ回路83におけるスイッチング素子84は、インバータ制御用マイクロコンピュータ85の6本の出力端子[U相出力(U1,U2)、V相出力(V1,V2)、W相出力(W1,W2)]に基づいて制御されることで、3相モータ86の電流制御を行って3相モータ86の回転方向及び回転スピードを制御する。 The inverter control microcomputer 85 is equipped with the system clock monitoring device A having any one of the configurations of the first to third embodiments, and controls the three-phase motor 86. The converter circuit 82 converts the AC power supply 81 into a DC power supply, and supplies the converted DC power supply to the inverter circuit 83. The switching element 84 in the inverter circuit 83 has six output terminals [U-phase output (U1, U2), V-phase output (V1, V2), W-phase output (W1, W2)] of the inverter control microcomputer 85. Based on the control, the current control of the three-phase motor 86 is performed to control the rotation direction and the rotation speed of the three-phase motor 86.
 図13は正常時のインバータ制御用マイクロコンピュータ85の各出力端子の動作を示すタイミングチャートである。U相出力(U1,U2)、V相出力(V1,V2)、W相出力(W1,W2)はそれぞれ対になる出力をもち、+側と-側のスイッチング素子84がともにアクティブ(制御信号がH)になることがないように動作している。それは、+側と-側のスイッチング素子84がともにアクティブになると、システム全体に貫通電流が流れシステムを破壊しかねないからである。 FIG. 13 is a timing chart showing the operation of each output terminal of the inverter control microcomputer 85 in a normal state. The U-phase output (U1, U2), the V-phase output (V1, V2), and the W-phase output (W1, W2) each have a pair of outputs, and both the + side and − side switching elements 84 are active (control signal) Does not become H). This is because if both the + side and − side switching elements 84 become active, a through current flows through the entire system, which may destroy the system.
 図14は異常時のインバータ制御用マイクロコンピュータ85の各出力端子及び異常検出信号Saの動作を示すタイミングチャートである。クロック周波数の異常によりインバータ制御用マイクロコンピュータ85の命令制御に異常が生じ、U相出力(U1,U2)がともにアクティブになる区間が生じた場合、貫通電流が発生してしまう。このような不具合を解消するために、本実施の形態では次のように動作する。すなわち、インバータ制御用マイクロコンピュータ85に搭載しているシステムクロック監視装置Aは、クロックの周波数の異常を検知すると異常検出信号Saをクロック判定部50に出力する。異常検出信号Saを受け取ったクロック判定部50はシステムクロックを正常な周波数を有するクロックに切り替え、インバータ制御用マイクロコンピュータ85の6本の出力端子を強制的に安全な状態に変更する。これにより、貫通電流の発生を防止することができる。 FIG. 14 is a timing chart showing the operation of each output terminal of the inverter control microcomputer 85 and the abnormality detection signal Sa at the time of abnormality. When an abnormality occurs in the command control of the inverter control microcomputer 85 due to an abnormality in the clock frequency, and there is a section in which both U-phase outputs (U1, U2) are active, a through current is generated. In order to eliminate such a problem, the present embodiment operates as follows. That is, the system clock monitoring device A mounted on the inverter control microcomputer 85 outputs an abnormality detection signal Sa to the clock determination unit 50 when detecting an abnormality in the clock frequency. The clock determination unit 50 that has received the abnormality detection signal Sa switches the system clock to a clock having a normal frequency, and forcibly changes the six output terminals of the inverter control microcomputer 85 to a safe state. Thereby, generation | occurrence | production of a through current can be prevented.
 以上のように本実施の形態によれば、インバータ制御を安全に継続して続けることができ、3相モータのインバータ制御のシステムにてシステムクロック監視装置を有効に使用できる。 As described above, according to this embodiment, the inverter control can be continued safely and the system clock monitoring device can be effectively used in the inverter control system of the three-phase motor.
 なお、本発明は、以上の実施の形態に限定されることはなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。 Note that the present invention is not limited to the above-described embodiment, and various modifications are possible, and it goes without saying that these are also included in the scope of the present invention.
 これまで実施の形態1~4を説明してきたが、これら実施の形態はあくまで一例に過ぎず、様々な改変が可能であることは言うまでもない。 Although Embodiments 1 to 4 have been described so far, these embodiments are merely examples, and it goes without saying that various modifications are possible.
 なお、上記において複数の実施の形態、実施の形態について説明したが、本発明の趣旨を逸脱しない範囲で、複数の実施の形態、実施の形態における各構成要素を任意に組み合わせてもよい。 In addition, although several embodiment and embodiment were described in the above, you may combine each component in several embodiment and embodiment arbitrarily in the range which does not deviate from the meaning of this invention.
 本発明のシステムクロック監視装置は、システムの基幹部であるシステムクロックを常時的に監視可能であるため、半導体製品の安全性が求められる分野に広く有用である。 The system clock monitoring device of the present invention is widely useful in fields where safety of semiconductor products is required because it can constantly monitor the system clock that is the backbone of the system.
 10 クロック生成部
 20 クロック異常検出部
 21~23 カウント部
 31~33 比較判定部
 40 記憶部
 50 クロック判定部
 60 周波数最適化部
 70 クロック切替部
 81 AC電源
 82 コンバータ回路
 83 インバータ回路
 84 スイッチング素子(IGBT素子)
 85 インバータ制御用マイクロコンピュータ
 86 3相モータ
 100,200,300 システムクロック監視装置
 400 交流電源
 A システムクロック監視装置
 CK1~CK3 入力クロック
 CKz ゼロクロスクロック
 CKo システムクロック
 CC1~CC3 最適化クロック
 Ex1~Ex3 期待値
 PN1~PN3 パルス数
 Sa 異常検出信号
 Sa1~Sa3 異常検出信号
 Sc クロック切替信号
 Va 交流電圧
 U1 U相出力+
 U2 U相出力-
 V1 V相出力+
 V2 V相出力-
 W1 W相出力+
 W2 W相出力-
DESCRIPTION OF SYMBOLS 10 Clock generation part 20 Clock abnormality detection part 21-23 Count part 31-33 Comparison determination part 40 Memory | storage part 50 Clock determination part 60 Frequency optimization part 70 Clock switching part 81 AC power supply 82 Converter circuit 83 Inverter circuit 84 Switching element (IGBT) element)
85 Inverter control microcomputer 86 Three- phase motor 100, 200, 300 System clock monitoring device 400 AC power supply A System clock monitoring device CK1 to CK3 Input clock CKz Zero cross clock CKo System clock CC1 to CC3 Optimization clock Ex1 to Ex3 Expected value PN1 ~ PN3 Number of pulses Sa Abnormality detection signal Sa1 ~ Sa3 Abnormality detection signal Sc Clock switching signal Va AC voltage U1 U phase output +
U2 U phase output-
V1 V phase output +
V2 V phase output-
W1 W phase output +
W2 W phase output-

Claims (6)

  1.  Nを3以上の自然数とするN系統の入力クロック群に含まれる入力クロックそれぞれの周波数異常の有無を判定して周波数異常が生じている入力クロックを特定するための異常検出信号を生成するクロック異常検出部と、
     前記入力クロック群に含まれる周波数異常クロックを、前記異常検出信号に基づいて特定したうえで、特定した前記周波数異常クロックが現在システムクロックとしてシステムで採用されているか否かを判定し、前記周波数異常クロックが前記システムクロックとして採用されていると判定すると、前記入力クロック群に含まれる前記周波数異常クロック以外の入力クロックを特定するためのクロック切替信号を生成するクロック判定部と、
     前記周波数異常クロック以外の入力クロックを、前記クロック切替信号に基づいて前記入力クロック群から選択して前記システムクロックとして前記システムに供給するクロック切替部と、
     を備えるシステムクロック監視装置。
    A clock abnormality that generates an abnormality detection signal for determining an input clock in which a frequency abnormality has occurred by determining whether or not there is a frequency abnormality in each of the input clocks included in the N system input clock groups in which N is a natural number of 3 or more A detection unit;
    The frequency abnormal clock included in the input clock group is specified based on the abnormality detection signal, and then it is determined whether the specified frequency abnormal clock is currently used as a system clock in the system, and the frequency abnormal clock When determining that a clock is employed as the system clock, a clock determination unit that generates a clock switching signal for specifying an input clock other than the frequency abnormal clock included in the input clock group;
    A clock switching unit that selects an input clock other than the frequency abnormal clock from the input clock group based on the clock switching signal and supplies the selected clock to the system as the system clock;
    A system clock monitoring device comprising:
  2.  前記クロック異常検出部は、N系統のカウント部と、N系統の比較判定部とを備え、
     前記カウント部は、前記入力クロック群から2つの入力クロックを取り入れ、取り入れた前記入力クロックの一方を監視対象クロックとし、他方を監視用クロックとしたうえで、前記監視クロックで規定される監視周期で前記監視対象クロックのパルス数をカウントするものとして構成され、
     前記比較判定部は、前記カウント部でカウントされた前記パルス数を期待値と比較し、その比較結果が不一致を示すと前記異常検出信号を生成するものとして構成されている、
     請求項1のシステムクロック監視装置。
    The clock abnormality detection unit includes an N system count unit and an N system comparison determination unit,
    The counting unit takes two input clocks from the input clock group, sets one of the input clocks to be a monitoring target clock, and sets the other as a monitoring clock, and has a monitoring cycle defined by the monitoring clock. It is configured to count the number of pulses of the monitoring target clock,
    The comparison determination unit is configured to compare the number of pulses counted by the counting unit with an expected value and generate the abnormality detection signal when the comparison result indicates a mismatch.
    The system clock monitoring device according to claim 1.
  3.  前記カウント部は、前記入力クロック群から前記2つの入力クロックを周期的に取り替えて循環採取する、
     請求項2のシステムクロック監視装置。
    The counting unit cyclically collects the two input clocks by periodically replacing the two input clocks,
    The system clock monitoring device according to claim 2.
  4.  前記入力クロックそれぞれの周波数を同一の周波数に変更してN系統の最適化クロック群を生成する周波数最適化部を、さらに備え、
     前記クロック切替部には、前記入力クロックに代えて前記最適化クロック群が供給され、前記クロック切替部は、前記周波数異常クロック以外の入力クロックに基づいて生成される最適化クロックを、前記クロック切替信号に基づいて前記最適化クロック群から選択して前記システムクロックとして前記システムに供給する、
     請求項1のシステムクロック監視装置。
    A frequency optimizing unit that changes the frequency of each of the input clocks to the same frequency to generate N optimized clock groups;
    The clock switching unit is supplied with the optimized clock group instead of the input clock, and the clock switching unit converts the optimized clock generated based on an input clock other than the frequency abnormal clock to the clock switching Selecting from the optimized clock group based on a signal and supplying the system clock as the system clock;
    The system clock monitoring device according to claim 1.
  5.  外部から供給される交流電圧のゼロクロス点を検出することによりゼロクロスクロックを生成するクロック生成部をさらに備え、
     前記入力クロック群を構成する少なくとも1つの入力クロックは、前記ゼロクロスクロックである、
     請求項1のシステムクロック監視装置。
    A clock generation unit that generates a zero cross clock by detecting a zero cross point of an AC voltage supplied from the outside;
    At least one input clock constituting the input clock group is the zero cross clock.
    The system clock monitoring device according to claim 1.
  6.  請求項1のシステムクロック監視装置を備え、
     前記システムはモータであり、
     前記システムクロック監視装置がクロック周波数の異常の発生を検知すると、前記モータを安全な状態に制御するマイクロコンピュータと、
     を備える、
     モータ制御システム。
    The system clock monitoring device according to claim 1,
    The system is a motor;
    A microcomputer that controls the motor to a safe state when the system clock monitoring device detects the occurrence of a clock frequency abnormality;
    Comprising
    Motor control system.
PCT/JP2010/003807 2009-10-29 2010-06-08 System clock monitoring device, and motor control system WO2011052112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009248750 2009-10-29
JP2009-248750 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052112A1 true WO2011052112A1 (en) 2011-05-05

Family

ID=43921551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003807 WO2011052112A1 (en) 2009-10-29 2010-06-08 System clock monitoring device, and motor control system

Country Status (1)

Country Link
WO (1) WO2011052112A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156155A (en) * 2014-02-20 2015-08-27 株式会社日立製作所 Abnormal transmission detector and method
CN111757023A (en) * 2020-07-01 2020-10-09 成都傅立叶电子科技有限公司 FPGA-based video interface diagnosis method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319325A (en) * 1988-06-21 1989-12-25 Hitachi Commun Syst Inc Clock disconnection monitoring circuit
JPH08181580A (en) * 1994-12-21 1996-07-12 Nec Eng Ltd Clock changeover circuit
JPH09292928A (en) * 1996-04-26 1997-11-11 Toyo Commun Equip Co Ltd Clock signal source monitoring device
WO1999059051A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Device and apparatus for detecting clock failure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319325A (en) * 1988-06-21 1989-12-25 Hitachi Commun Syst Inc Clock disconnection monitoring circuit
JPH08181580A (en) * 1994-12-21 1996-07-12 Nec Eng Ltd Clock changeover circuit
JPH09292928A (en) * 1996-04-26 1997-11-11 Toyo Commun Equip Co Ltd Clock signal source monitoring device
WO1999059051A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Device and apparatus for detecting clock failure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156155A (en) * 2014-02-20 2015-08-27 株式会社日立製作所 Abnormal transmission detector and method
CN111757023A (en) * 2020-07-01 2020-10-09 成都傅立叶电子科技有限公司 FPGA-based video interface diagnosis method and system
CN111757023B (en) * 2020-07-01 2023-04-11 成都傅立叶电子科技有限公司 FPGA-based video interface diagnosis method and system

Similar Documents

Publication Publication Date Title
US8476860B2 (en) Electric power converter
EP2733807B1 (en) Protective Circuit for Multilevel Inverter
JP6050841B2 (en) Motor drive device with current detection mode changing function
JP2007082360A (en) Drive control unit for electric motor
EP2830206B1 (en) Power conversion device
JP2008118834A (en) Surge reduction circuit and inverter device equipped with surge reduction circuit
CN106558578B (en) Semiconductor power module and drive system for electric motor
WO2011052112A1 (en) System clock monitoring device, and motor control system
CN106066817B (en) Clock monitoring circuit and method thereof
JP6595275B2 (en) Control device for power converter
JP6405978B2 (en) Inverter device
JP5199392B2 (en) System clock monitoring device and motor control system
JP6093555B2 (en) Control system and duplex control method
JP6270987B2 (en) Monitoring device for power converter
JP2013077921A (en) Clock diagnosis circuit
US10075123B2 (en) Semiconductor device, motor control system, and control method for semiconductor device
WO2014054332A1 (en) Power conversion device
JP4575876B2 (en) Inverter device and inverter system
JP6462206B2 (en) Power converter and control method
JP6589493B2 (en) Three-phase inverter device
EP3131193B1 (en) Power conversion device and power conversion control method
JP7338418B2 (en) Inverter shutdown device
JP6536801B2 (en) Power converter
WO2023144923A1 (en) Control device and processing equipment
JP2011151957A (en) Device for driving brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP