WO2011040656A1 - System and method for operating a microgrid - Google Patents

System and method for operating a microgrid Download PDF

Info

Publication number
WO2011040656A1
WO2011040656A1 PCT/KR2009/005619 KR2009005619W WO2011040656A1 WO 2011040656 A1 WO2011040656 A1 WO 2011040656A1 KR 2009005619 W KR2009005619 W KR 2009005619W WO 2011040656 A1 WO2011040656 A1 WO 2011040656A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributed power
microgrid
power supply
operating
power generation
Prior art date
Application number
PCT/KR2009/005619
Other languages
French (fr)
Korean (ko)
Inventor
이학주
채우규
추철민
김주용
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2011040656A1 publication Critical patent/WO2011040656A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention provides a microgrid operating system for determining the amount of generation of each distributed power source to maximize the profits of the microgrid operation in consideration of the power and thermal load constraints and the power transaction fee in the microgrid composed of a plurality of distributed power supplies. It is about a method.
  • microgrid a small power supply system consisting of distributed power and load, was introduced to expand and distribute distributed power sources including renewable energy.
  • the development of related technologies is progressing actively.
  • Microgrid is a small power supply system consisting of multiple distributed power supplies and energy storage devices, which can be defined as a cluster of power and loads, and is a new power supply system that can supply power and heat simultaneously.
  • the microgrid operates in conjunction with the upper system, but should be able to operate independently when a fault occurs in the upper system. That is, the microgrid can be classified into i) linked operation mode that can be operated in connection with higher system and ii) independent operation mode that operates separately from higher system using STS.
  • the present invention has been made to solve the above-mentioned problem, and the distributed power source selected by the user using the distributed power equipment information and the related information such as the weather information and the load pattern is composed of the micro grid, and for 24 hours for the plurality of distributed power sources. It is to provide a microgrid operating system and methodology that will determine the optimal development plan for the project to maximize revenue.
  • the present invention obtains the optimum solution of the objective function that maximizes the sum of the power and heat supply price supplied to the load by the distributed power source constituting the microgrid and the power price sold in the upper system to maximize the profit. It is to provide an operating system and method of the grid.
  • an object of the present invention is to effectively participate and expand the micro grid in the power market based on this.
  • a microgrid operating system is provided.
  • the microgrid operating system includes a microgrid system unit for supplying power to the load of the microgrid, including at least one distributed power source, and calculates an output optimized condition of the distributed power source to optimize the distribution of profits. And a microgrid operating system including a distributed power generation planning system section for establishing a power generation plan and an energy management system section for controlling the distributed power generation according to the established distributed power generation plan.
  • a method of operating a microgrid is provided.
  • a method of operating a microgrid comprising: reading at least one of distributed power supply device information, load, power rate, weather, and environment information; and configuring at least one of the microgrids using the information.
  • Calculating an optimum condition capable of maximizing profit according to an operation method by turning on / off one distributed power supply and performing a profit maximization operation of the distributed power supply by controlling an output amount to the distributed power supply according to the calculated optimal condition Includes microgrid operating methods.
  • the present invention obtains the optimal condition of distributed power output by considering the power and heat constraints, the operation mode of the independent operation of the microgrid and the linked system of the upper system, and provides the information to the microgrid operating system to provide the information to the microgrid operating system. Economical operation is possible.
  • the present invention is a system capable of maximizing profits according to the microgrid operation method by enabling the power trading with the commercial system of the power company by using the price information on the power transaction, it is possible to expand and expand the microgrid by inducing market participation voluntarily Do.
  • the implemented system can be configured simply by the user selects only the components for the design of the microgrid, it is possible to provide a user convenience and the microgrid considering the power and thermal load constraints Economical driving strategies can be verified in advance.
  • the present invention can be linked to the power market price, it is possible to analyze the development of the microgrid business model by using it as a preliminary analysis of the operating strategy of the microgrid.
  • 1 to 4 are diagrams for explaining the configuration of a microgrid operating system according to an embodiment of the present invention.
  • FIG. 5 and 6 are views for explaining a microgrid operating method for generating a maximum profit in a microgrid consisting of a plurality of distributed power supply according to an embodiment of the present invention.
  • 1 to 4 are diagrams for explaining the configuration of a microgrid operating system according to an embodiment of the present invention.
  • the microgrid operating system includes a microgrid system unit 100 including a plurality of distributed power supplies and power converters, and a distributed power generation plan that calculates an optimal output condition of a distributed power supply by maximizing revenue.
  • the system unit 200 includes an upper system linking unit 300 connected to a main grid, which is an upper system, and an energy management system unit 400 for controlling and managing distributed power according to an optimized distributed power generation plan.
  • the microgrid system unit 100 supplies power to the load 161 in the microgrid.
  • the microgrid system unit 100 includes a plurality of distributed power sources 101, 102, 103, 104, 111, 112, power converters 131, 141, 142, and 151 and an energy storage device ( 121).
  • the solid line represents a normal distribution line
  • the dotted line represents a communication line
  • the thick bar line represents a heat transfer path
  • the microgrid system unit 100 is a boiler 101, cogeneration generator 102, fuel cell 103, microturbine 104 and power converter 131, solar power generation 112 capable of direct control of the output And a distributed power source of the power converter 142, the wind power generator 111, and the power converter 141.
  • the micro grid system unit 100 may further include an energy storage device 121 and a power converter 151, and may supply power to the load inside the microgrid by an internal system.
  • the distributed power generation planning system unit 200 uses a distributed power supply device information related database 201, a load and power bill database 202, a weather and environmental information related database 203, and a dynamic planning method. It is composed of a plurality of distributed power generation planning unit 211 used.
  • the distributed power generation planning system unit 200 inputs load patterns, electric charges, wind speeds, solar radiation, temperature, and the like recorded in various DBs 201 to 203 into the distributed power generation planning unit 211.
  • the distributed power generation planning unit 211 calculates the distributed power optimum output 221 and transmits it to the energy management system 400 to maximize the profit of the distributed power.
  • the upper system linkage unit 300 links the microgrid system unit 100 and the distribution system that is the upper system.
  • the upper system linkage unit 300 may trade power with the upper grid with the micro grid system unit 100 when the amount of generation of distributed power is greater than the microgrid load.
  • the upper system linkage unit 300 is connected to the upper system 301 through the microgrid system unit 100 and a static transfer switch (STS) 303.
  • STS static transfer switch
  • the STS 303 separates the upper system 301 and performs independent operation.
  • the energy management system unit 400 is connected to the microgrid system unit 100 through a communication network for efficient energy management.
  • the energy management system 400 commands the output amount to the distributed power supply of the microgrid system unit 100 by reflecting the result of the distributed power generation planning system unit 200 and performs profit maximization operation of the distributed power supply through the control.
  • the distributed power generation plan system unit 200 calculates an optimal condition that can maximize profits according to a driving method by turning on / off a plurality of distributed powers constituting the micro grid for 24 hours.
  • Equation (1) the income from the operation of the microgrid is expressed as the sum of heat, power supplied to the microgrid's load, and power traded with the upper system, and is represented by Equation (1).
  • k is the time period
  • Rk is the gross income at k
  • P e k , P h k, P e k sell Represents the power and heat supply at k and the power sold at higher system, respectively.
  • ⁇ e k , ⁇ h k , ⁇ e k sell Is expressed as power unit price, thermal unit price and electric power unit price.
  • the total cost of the microgrid is the sum of distributed power generation costs, start-up and shutdown costs, power purchase costs from the upper system, and storage life reduction costs, and is represented by Equation 2.
  • the generation cost of the distributed power source can be expressed as follows.
  • i is the distributed power supply
  • P k, i is the output of the distributed power supply i and is represented by [kW]
  • c G, i (P k, i ) is the power generation cost of the power P k, i .
  • the start and stop costs of the distributed power supply are represented by the following equation.
  • S and T are the start and stop costs per hour of the distributed power supply
  • c fix i is the fixed cost per hour of the distributed power supply i.
  • x k, i is a state variable representing on or off accumulated time of distributed power source i in time interval k.
  • the power purchase cost C kbuy from upper system in k is
  • P e kbuy and ⁇ e kbuy are the amount of electricity purchased from the upper system in k and the unit cost.
  • the lifespan shortening cost of the storage device 121 is expressed by Equation 4.
  • Crep bat is the replacement cost of the storage bank
  • N bat is the number of storage devices in the bank
  • Q lifetime is the unit lifetime of one storage device
  • ⁇ rt is the storage efficiency
  • the lifespan of the storage device 121 is represented by Equation 5 below.
  • V nom Rated voltage of the storage device.
  • N is the total number of distributed sources.
  • the objective function is to realize the maximum profit by turning on / off a plurality of distributed power sources constituting the microgrid for 24 hours, as shown in Equation (7).
  • control variables u k, i of the generator designate the operation state as 1 and the stop state as 0 as a constraint on the minimum starting and stopping time of distributed power.
  • Equation (9) the constraint on the state change is represented by Equation (9).
  • 5 and 6 are diagrams for explaining a microgrid operating method for generating a maximum profit in a microgrid composed of a plurality of distributed power sources according to an embodiment of the present invention.
  • the microgrid operating method applied to the present invention is a method of determining the output of a distributed power source for generating maximum profit through valuation of microgrid operation for each time slot.
  • step S510 the distributed power generation planning system unit 200 loads necessary information such as load and climate data from a database.
  • step S520 the distributed power generation planning system unit 200 selects the type and capacity of distributed power, the operation mode of the independent operation and grid connection, storage device, power conversion device, etc.
  • Microgrids are constructed by entering distributed power data or importing data in file form.
  • the distributed power generation planning system unit 200 is a new generation of renewable energy, such as wind power generation 111, photovoltaic power generation 112, for the economic operation of the micro grid, the power generation cost is relatively low, so the capacity and climate Considering such constraints, the maximum output is reduced to reduce the load inside the microgrid.
  • the distributed power generation planning system unit 200 defines an initial operating state of at least one generator except for renewable energy.
  • i starts from 23 to use the backward method.
  • step S560 the distributed power generation planning system unit 200 sets j, which is a variable representing the current state of the generator including the energy storage device, to state 1.
  • step S570 the distributed power generation planning system unit 200 sets k, which is a parameter representing a trimming state of a generator including an energy storage device, to obtain an optimal point of the next state in the current state.
  • the distributed power generation planning system unit 200 determines whether the state of the generator including at least one energy storage device except for renewable energy is changed.
  • J i is an index representing the maximum benefit accumulated from the last time i to N (where N is the final stage) at time i
  • g (xi, ui) is the profit function. It is the profit generated by the state variable xi representing the state of the generator including the energy storage at time i and the variable ui controlling the generator on and off at time i.
  • J 23 (state 1) g (x 23 , u 23 ) + J 24 ego J 23 (state 1) changes all possible states, and when looking for a state in which an optimal revenue is generated, it is possible to know the optimal state for 23 time points from 24 time points.
  • step S600 the distributed power generation planning system unit 200 determines whether Ji> Ji_optimal.
  • the distributed power generation plan system unit 200 will be described in more detail with reference to FIG. 7. For example, the distributed power generation plan system unit 200 returns from the stage 23 to the stage 0 using a backward stage calculation method, and all the states (state 1 to state n). ) To determine the best state of cumulative revenue from the final stage.
  • step S650 the distributed power generation planning system unit 200, i.e., the point where the objective function is minimum for the states j and k is determined by determining the control variable u and the control variable for the total 24 hours is finally determined. Becomes Finally, we enter the initial state and output the best possible conditions for profit.
  • An embodiment of the present invention may include a computer readable medium including program instructions for performing various computer-implemented operations.
  • the computer readable medium may include a program command, a local data file, a local data structure, etc. alone or in combination.
  • the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.

Abstract

The present invention relates to a system and method for operating a microgrid configured with a plurality of distributed power supplies, in which the power to be generated by each distributed power supply is determined to maximize earnings from the operation of the microgrid, in consideration of power and thermal load constraints and power transaction rates. A system for operating a microgrid according to one embodiment of the present invention comprises: a microgrid system unit, including at least one distributed power supply, and supplying electric power to a load of the microgrid; a distributed power supply generation planning system unit, for generating a distributed power supply generation plan for optimizing earnings, by calculating optimum output conditions of the distributed power supply; and an energy management system unit for controlling the distributed power supply in accordance with the generated distributed power supply generation plan. Efficient and economical operation of the microgrid is made possible according to the present invention.

Description

마이크로그리드 운영 시스템 및 방법Microgrid Operating System and Methods
본 발명은 다수의 분산전원으로 구성된 마이크로그리드에서 전력과 열 부하에 대한 제약조건과 전력거래 요금을 고려해서 마이크로그리드 운전에 따른 수익이 최대화가 되도록 각각의 분산전원 발전량을 결정하는 마이크로그리드 운영 시스템 및 방법에 관한 것이다.The present invention provides a microgrid operating system for determining the amount of generation of each distributed power source to maximize the profits of the microgrid operation in consideration of the power and thermal load constraints and the power transaction fee in the microgrid composed of a plurality of distributed power supplies. It is about a method.
최근 유가의 급등이나 환경에 관련된 규제 등으로 인하여 기존 발전기에 대한 제약이 많으므로 화석연료에 의존한 발전에서 과다한 초기 투자비에 의해 경제성이 상대적으로 낮음에도 불구하고 CO2 저감에 의한 환경보존을 위한 자구적인 노력으로 태양광 및 풍력 등의 신재생 에너지 확대 보급을 위한 세계적인 노력이 증가하고 있다. Recently, due to the regulations, etc. related to the oil prices and the environment, despite the economy by excessive initial investment in the development of relying on fossil fuels so many restrictions on existing generator is relatively low, and domain for the conservation of the CO 2 reduction Global efforts are increasing to expand and disseminate renewable energy such as solar and wind power.
또한 분산전원의 초기 투자비용 및 운전비용 감소로 기존 발전기와의 단가를 비교하면 점차 낮아지는 추세를 보이고 있다. 이러한 이유로 분산전원이 포함된 마이크로그리드의 구성은 경쟁력이 있는 새로운 이슈로 부각되고 있다. In addition, the initial investment cost and operating cost of distributed power generation have been gradually lowered compared to the unit price with the existing generator. For this reason, the construction of microgrids with distributed power supplies is emerging as a competitive new issue.
한편, 2000년대 초반부터 신재생에너지를 포함한 분산전원의 확대보급을 위한 방안으로 분산전원과 부하로 구성되는 소규모 전력공급 시스템인 마이크로그리드를 도입하여 미국, 일본을 중심으로 마이크로그리드 시험장 건설 및 실험실 규모의 관련 기술개발이 활발하게 진행되고 있다.In the early 2000s, microgrid, a small power supply system consisting of distributed power and load, was introduced to expand and distribute distributed power sources including renewable energy. The development of related technologies is progressing actively.
마이크로그리드는 다수의 분산전원과 에너지 저장장치 등으로 구성된 소규모 전력공급 시스템으로 전원과 부하의 클러스터로 정의할 수 있으며 전력과 열을 동시에 공급할 수 있는 새로운 전력공급 시스템이다.Microgrid is a small power supply system consisting of multiple distributed power supplies and energy storage devices, which can be defined as a cluster of power and loads, and is a new power supply system that can supply power and heat simultaneously.
마이크로그리드는 상위 계통과 연계되어 운전되나 상위 계통에서 고장 등이 발생되는 경우 독립운전이 가능하여야 한다. 즉, 마이크로그리드는 ⅰ) 상위계통과 연계하여 운전이 가능한 연계운전 모드와 ⅱ) STS 등을 이용하여 상위 계통과 분리하여 운전하는 독립운전 모드로 구분할 수 있다.The microgrid operates in conjunction with the upper system, but should be able to operate independently when a fault occurs in the upper system. That is, the microgrid can be classified into i) linked operation mode that can be operated in connection with higher system and ii) independent operation mode that operates separately from higher system using STS.
현재 분산전원의 발전단가는 기존의 계통 발전기보다 높고, 전력 또는 열과 같은 수요가 다양하고 저장장치와 같은 저장장치가 존재하기 때문에 이러한 다양한 분산전원을 최적으로 운영 및 경제적 운영에 대한 제안이 없다는 문제점이 있다.Currently, the generation cost of distributed power generation is higher than that of existing grid generators, and the demand for power or heat varies, and storage devices such as storage devices exist, so there is no suggestion for optimal operation and economic operation of these various distributed power generation. have.
본 발명은 상기 문제를 해결하기 위하여 안출된 것으로서, 분산전원 기기정보 및 기상정보와 부하패턴 등의 관련 정보를 이용하여 사용자가 선정한 분산전원을 마이크로그리드로 구성하고 다수의 분산전원에 대한 24시간 동안의 최적 발전계획을 결정하여 수익이 최대화되도록 하는 마이크로그리드 운영 시스템 및 방법을 제공하는 것이다. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and the distributed power source selected by the user using the distributed power equipment information and the related information such as the weather information and the load pattern is composed of the micro grid, and for 24 hours for the plurality of distributed power sources. It is to provide a microgrid operating system and methodology that will determine the optimal development plan for the project to maximize revenue.
또한, 본 발명은 마이크로그리드를 구성하고 있는 분산전원이 부하에 공급하는 전력 및 열 공급가격과 상위계통으로 판매하는 전력가격의 합이 최대화가 되게 하는 목적함수의 최적 해를 구하여 수익이 최대화되는 마이크로그리드의 운영 시스템 및 방법을 제공하는 것이다.In addition, the present invention obtains the optimum solution of the objective function that maximizes the sum of the power and heat supply price supplied to the load by the distributed power source constituting the microgrid and the power price sold in the upper system to maximize the profit. It is to provide an operating system and method of the grid.
또한 본 발명은 이를 기반으로 마이크로 그리드를 전력시장에 효율적으로 참여시키고 확대 보급하는데 그 목적이 있다.In addition, an object of the present invention is to effectively participate and expand the micro grid in the power market based on this.
본 발명의 일 측면에 따르면, 마이크로그리드 운영 시스템이 제공된다. According to one aspect of the invention, a microgrid operating system is provided.
본 발명의 일 실시예에 따른 마이크로그리드 운영 시스템은 적어도 하나의 분산전원을 포함하여 상기 마이크로그리드의 부하에 전력을 공급하는 마이크로그리드 시스템부, 상기 분산전원의 출력 최적 조건을 산출하여 수익 최적화된 분산전원 발전계획을 수립하는 분산전원 발전 계획 시스템부 및 상기 수립된 분산전원 발전계획에 따라 상기 분산전원를 제어하는 에너지 관리 시스템부를 포함하는 마이크로그리드 운영 시스템을 포함한다.The microgrid operating system according to an embodiment of the present invention includes a microgrid system unit for supplying power to the load of the microgrid, including at least one distributed power source, and calculates an output optimized condition of the distributed power source to optimize the distribution of profits. And a microgrid operating system including a distributed power generation planning system section for establishing a power generation plan and an energy management system section for controlling the distributed power generation according to the established distributed power generation plan.
본 발명의 다른 일 측면에 따르면, 마이크로그리드 운영 방법이 제공된다.According to another aspect of the present invention, a method of operating a microgrid is provided.
본 발명의 일 실시예에 따른 마이크로그리드 운영 방법은 분산전원 기기정보, 부하, 전력요금, 기상 및 환경정보 중 적어도 하나의 정보를 독출하는 단계, 상기 정보를 이용하여 상기 마이크로그리드를 구성하는 적어도 하나의 분산전원을 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 단계 및 상기 산출된 최적 조건에 따라 상기 분산전원에 출력량을 제어를 통하여 분산전원의 수익 극대화 운전을 수행하는 단계를 포함하는 마이크로그리드 운영방법을 포함한다.In accordance with another aspect of the present invention, there is provided a method of operating a microgrid, the method comprising: reading at least one of distributed power supply device information, load, power rate, weather, and environment information; and configuring at least one of the microgrids using the information. Calculating an optimum condition capable of maximizing profit according to an operation method by turning on / off one distributed power supply and performing a profit maximization operation of the distributed power supply by controlling an output amount to the distributed power supply according to the calculated optimal condition Includes microgrid operating methods.
본 발명은 전력과 열 제약조건, 마이크로그리드의 독립운전 및 상위계통 연계운전의 운전모드를 고려하여 분산전원의 출력 최적 조건을 구하고 이에 대한 정보를 마이크로그리드 운영시스템에 제공함으로써 마이크로그리드의 효율적 운전과 경제적 운전이 가능하다.The present invention obtains the optimal condition of distributed power output by considering the power and heat constraints, the operation mode of the independent operation of the microgrid and the linked system of the upper system, and provides the information to the microgrid operating system to provide the information to the microgrid operating system. Economical operation is possible.
또한, 본 발명은 전력거래에 대한 가격 정보를 이용함으로써 전력회사의 상용계통과 전력거래가 가능하여 마이크로그리드 운전방법에 따라 수익 최대화가 가능한 시스템으로 자율적인 시장참여 유도에 의한 마이크로그리드의 확대보급이 가능하다.In addition, the present invention is a system capable of maximizing profits according to the microgrid operation method by enabling the power trading with the commercial system of the power company by using the price information on the power transaction, it is possible to expand and expand the microgrid by inducing market participation voluntarily Do.
또한, 본 발명은 구현한 시스템은 사용자가 직접 마이크로그리드 설계를 위해 구성요소만 선택하게 되면 간단하게 시스템을 구성할 수 있어 사용자의 편의성 제공이 가능하고 전력 및 열 부하의 제약조건을 고려한 마이크로그리드의 경제적인 운전 전략을 사전에 검증할 수 있다.In addition, the implemented system can be configured simply by the user selects only the components for the design of the microgrid, it is possible to provide a user convenience and the microgrid considering the power and thermal load constraints Economical driving strategies can be verified in advance.
또한, 본 발명은 전력시장 가격과 연동이 가능하여 마이크로그리드의 운전 전략에 대한 사전 분석으로 이를 이용하여 마이크로그리드 사업모델 개발을 위한 분석이 가능하다.In addition, the present invention can be linked to the power market price, it is possible to analyze the development of the microgrid business model by using it as a preliminary analysis of the operating strategy of the microgrid.
도 1 내지 도 4는 본 발명의 일실시예에 따른 마이크로그리드 운영시스템의 구성을 설명하기 위한 도면.1 to 4 are diagrams for explaining the configuration of a microgrid operating system according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 일 실시예에 따른 다수의 분산전원으로 구성된 마이크로그리드에서 최대 수익 발생을 위한 마이크로그리드 운영방법을 설명하기 위한 도면.5 and 6 are views for explaining a microgrid operating method for generating a maximum profit in a microgrid consisting of a plurality of distributed power supply according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 4는 본 발명의 일실시예에 따른 마이크로그리드 운영시스템의 구성을 설명하기 위한 도면이다.1 to 4 are diagrams for explaining the configuration of a microgrid operating system according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 마이크로그리드 운영시스템은 다수의 분산전원과 전력변환장치를 구성요소로 하는 마이크로그리드 시스템부(100), 수익최대화를 분산전원의 출력 최적 조건을 산출하는 분산전원 발전 계획 시스템부(200), 상위계통인 메인 그리드와 연계되는 상위계통 연계부(300) 및 최적화된 분산전원 발전 계획에 따라 분산전원을 제어하고 관리하는 에너지관리 시스템부(400)를 포함한다. As shown in FIG. 1, the microgrid operating system includes a microgrid system unit 100 including a plurality of distributed power supplies and power converters, and a distributed power generation plan that calculates an optimal output condition of a distributed power supply by maximizing revenue. The system unit 200 includes an upper system linking unit 300 connected to a main grid, which is an upper system, and an energy management system unit 400 for controlling and managing distributed power according to an optimized distributed power generation plan.
마이크로그리드 시스템부(100)는 마이크로그리드 내의 부하(161)에 전력을 공급한다.The microgrid system unit 100 supplies power to the load 161 in the microgrid.
마이크로그리드 시스템부(100)는 도 2에 도시된 바와 같이 다수의 분산전원(101, 102, 103, 104, 111, 112)과 전력변환장치(131, 141, 142, 151) 및 에너지 저장장치(121) 등으로 구성된다.As shown in FIG. 2, the microgrid system unit 100 includes a plurality of distributed power sources 101, 102, 103, 104, 111, 112, power converters 131, 141, 142, and 151 and an energy storage device ( 121).
도 2를 참조하면, 실선은 통상의 배전선을 나타내며, 점선은 통신선을 나타내며, 굵은 막대선은 열전달 경로를 나타낸다. Referring to FIG. 2, the solid line represents a normal distribution line, the dotted line represents a communication line, and the thick bar line represents a heat transfer path.
마이크로그리드 시스템부(100)는 출력의 직접적인 제어가 가능한 보일러(101), 열병합 발전기(102), 연료전지(103), 마이크로터빈(104)과 전력변환장치(131), 태양광 발전(112)과 그 전력변환장치(142), 풍력발전(111)과 그 전력변환장치(141) 중 적어도 하나의 분산전원을 포함할 수 있다.The microgrid system unit 100 is a boiler 101, cogeneration generator 102, fuel cell 103, microturbine 104 and power converter 131, solar power generation 112 capable of direct control of the output And a distributed power source of the power converter 142, the wind power generator 111, and the power converter 141.
또한, 마이크로 그리드 시스템부(100)는 에너지저장장치(121) 및 전력변환장치(151)를 더 포함할 수 있으며, 내부계통에 의해 마이크로그리드 내부의 부하에 전력을 공급할 수 있다.In addition, the micro grid system unit 100 may further include an energy storage device 121 and a power converter 151, and may supply power to the load inside the microgrid by an internal system.
분산전원 발전계획 시스템부(200)는 도 3에 도시된 바와 같이, 분산전원 기기정보 관련 데이터베이스(201), 부하 및 전력요금 데이터베이스(202)와 기상 및 환경정보 관련 데이터베이스(203), 동적계획법을 이용한 다수의 분산전원 발전계획부(211)로 구성된다. As shown in FIG. 3, the distributed power generation planning system unit 200 uses a distributed power supply device information related database 201, a load and power bill database 202, a weather and environmental information related database 203, and a dynamic planning method. It is composed of a plurality of distributed power generation planning unit 211 used.
분산전원 발전계획 시스템부(200)는 각종 DB(201~203)에 기록되어 있는 부하패턴, 전기요금 및 풍속, 일사량, 기온 등을 분산전원 발전계획부(211)에 입력한다. 분산전원 발전계획부(211)은 분산전원의 수익 최대화를 위해 분산전원 최적 출력(221)을 산정하고 이를 에너지 관리시스템부(400)로 전송한다.The distributed power generation planning system unit 200 inputs load patterns, electric charges, wind speeds, solar radiation, temperature, and the like recorded in various DBs 201 to 203 into the distributed power generation planning unit 211. The distributed power generation planning unit 211 calculates the distributed power optimum output 221 and transmits it to the energy management system 400 to maximize the profit of the distributed power.
한편, 상위계통 연계부(300)는 마이크로그리드 시스템부(100)와 상위계통인 배전계통를 연계한다.On the other hand, the upper system linkage unit 300 links the microgrid system unit 100 and the distribution system that is the upper system.
상위계통 연계부(300)는 분산전원의 발전량이 마이크로그리드 부하보다 클 경우에는 마이크로 그리드 시스템부(100)와 상위계통과 전력거래가 가능하다.The upper system linkage unit 300 may trade power with the upper grid with the micro grid system unit 100 when the amount of generation of distributed power is greater than the microgrid load.
상위계통 연계부(300)는 마이크로그리드 시스템부(100)와 정지형 개폐기(Static Transfer Switch, 이하 STS라 함)(303)에 통하여 상위계통(301)과 연계된다. 또한, 상위계통의 고장이 발생하게 되면 STS(303)에 의해 상위 계통(301)과 분리하여 독립운전을 하게 된다.The upper system linkage unit 300 is connected to the upper system 301 through the microgrid system unit 100 and a static transfer switch (STS) 303. In addition, when a failure of the upper system occurs, the STS 303 separates the upper system 301 and performs independent operation.
에너지관리 시스템부(400)는 효율적인 에너지관리를 위하여 마이크로그리드 시스템부(100)와 통신망을 통하여 연결된다.The energy management system unit 400 is connected to the microgrid system unit 100 through a communication network for efficient energy management.
에너지관리 시스템부(400)는 분산전원 발전계획 시스템부(200)의 결과를 반영하여 마이크로그리드 시스템부(100)의 분산전원에 출력량을 지령하고 제어를 통하여 분산전원의 수익 극대화 운전을 수행한다.The energy management system 400 commands the output amount to the distributed power supply of the microgrid system unit 100 by reflecting the result of the distributed power generation planning system unit 200 and performs profit maximization operation of the distributed power supply through the control.
다음은 마이크로그리드의 경제적 운전을 위한 목적함수를 설명하기로 한다.The following describes the objective function for economical operation of microgrids.
분산전원 발전계획 시스템부(200)는 24시간 동안 마이크로그리드를 구성하는 다수의 분산전원을 On/Off하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출한다.The distributed power generation plan system unit 200 calculates an optimal condition that can maximize profits according to a driving method by turning on / off a plurality of distributed powers constituting the micro grid for 24 hours.
우선, 마이크로그리드의 운전에 의한 수입은 마이크로그리드의 부하에 공급한 열, 전력 및 상위 계통과 거래한 전력의 합으로 나타내며 수학식1과 같이 나타낸다.First, the income from the operation of the microgrid is expressed as the sum of heat, power supplied to the microgrid's load, and power traded with the upper system, and is represented by Equation (1).
[규칙 제26조에 의한 보정 16.10.2009] 
Figure WO-DOC-1
[Revision 16.10.2009 under Rule 26]
Figure WO-DOC-1
여기서, k는 시간구간, Rk는 k에서의 총수입이며 Pe k, Ph k, Pe k,sell 는 각각 k에서의 전력 및 열 공급량 및 상위계통으로 판매한 전력량을 나타낸 것이다. 또한, ρe k, ρh k, ρe k,sell 은 전력단가, 열 단가와 전력판매단가로 표시된다.Where k is the time period, Rk is the gross income at k, and Pe                 k, Ph                 k,Pe                 k, sell Represents the power and heat supply at k and the power sold at higher system, respectively. Also, ρe                 k, ρh                 k, ρe                 k, sell Is expressed as power unit price, thermal unit price and electric power unit price.
한편, 마이크로그리드의 총비용은 분산전원 발전비용, 기동 및 정지비용, 상위계통으로부터의 전력구매 비용 및 저장장치 수명단축 비용의 합이며 수학식 2와 같이 나타낸다.On the other hand, the total cost of the microgrid is the sum of distributed power generation costs, start-up and shutdown costs, power purchase costs from the upper system, and storage life reduction costs, and is represented by Equation 2.
Figure PCTKR2009005619-appb-I000002
Figure PCTKR2009005619-appb-I000002
여기서 분산전원의 발전비용은 다음과 같이 나타낼 수 있다.Here, the generation cost of the distributed power source can be expressed as follows.
Figure PCTKR2009005619-appb-I000003
Figure PCTKR2009005619-appb-I000003
여기서, i 는 분산전원, Pk,i 는 분산전원 i의 출력이며 [kW]로 나타내고, cG,i (Pk,i)는 전력Pk,i의 발전비용이다.Where i is the distributed power supply, P k, i is the output of the distributed power supply i and is represented by [kW], and c G, i (P k, i ) is the power generation cost of the power P k, i .
분산전원의 기동 및 정지비용은 다음 수학식 3로 나타낸다.The start and stop costs of the distributed power supply are represented by the following equation.
Figure PCTKR2009005619-appb-I000004
Figure PCTKR2009005619-appb-I000004
여기서, S, T는 분산전원의 시간당 기동 및 정지 비용이며, cfix i 는 분산전원 i의 시간당 고정비용이다. Here, S and T are the start and stop costs per hour of the distributed power supply, and c fix i is the fixed cost per hour of the distributed power supply i.
uk,i는 시간구간 k에서의 발전기 운전 상태로 uk,i = 0 이면 오프상태, uk,i= 1 은 온 상태를 나타낸다. u k, i is the operating state of the generator in time interval k. When u k, i = 0, it is off, and u k, i = 1 is on.
xk,i는 시간구간 k에서 분산전원 i의 온 또는 오프 누적시간을 나타내는 상태변수이다. x k, i is a state variable representing on or off accumulated time of distributed power source i in time interval k.
k에서 상위계통으로부터 전력 구매비용 Ckbuy
Figure PCTKR2009005619-appb-I000005
The power purchase cost C kbuy from upper system in k is
Figure PCTKR2009005619-appb-I000005
로 나타내며 Pe kbuy와 ρe kbuy는 k에서 각각 상위계통으로부터 구매한 전력량과 구매단가이다.P e kbuy and ρ e kbuy are the amount of electricity purchased from the upper system in k and the unit cost.
저장장치(121)의 수명단축비용은 수학식 4와 같이 나타낸다.The lifespan shortening cost of the storage device 121 is expressed by Equation 4.
Figure PCTKR2009005619-appb-I000006
Figure PCTKR2009005619-appb-I000006
여기서, Crepbat는 저장장치 뱅크의 교체비용, Nbat는 뱅크 내의 저장장치 수, Qlifetime은 저장장치 1개의 단위수명이고, ηrt는 저장장치의 효율이다.Where Crep bat is the replacement cost of the storage bank, N bat is the number of storage devices in the bank, Q lifetime is the unit lifetime of one storage device, and η rt is the storage efficiency.
저장장치(121)의 수명은 다음의 수학식5와 같이 나타낸다.The lifespan of the storage device 121 is represented by Equation 5 below.
Figure PCTKR2009005619-appb-I000007
Figure PCTKR2009005619-appb-I000007
f i : 실패 싸이클 수f i: number of failed cycles
d i : 방전율[%]d i: discharge rate [%]
q max : 저장장치의 최대 용량 [kWh]q max: Maximum capacity of the storage device [kWh]
V nom : 저장장치 정격전압 [V] 이다.V nom: Rated voltage of the storage device.
결과적으로 마이크로그리드의 수익은 다음 수학식 6과 같이 나타낸다.As a result, the profit of the microgrid is expressed as in Equation 6 below.
Figure PCTKR2009005619-appb-I000008
Figure PCTKR2009005619-appb-I000008
여기서 N은 분산전원의 총 대수이다.Where N is the total number of distributed sources.
본 발명에서 목적함수는 24시간 동안 마이크로그리드를 구성하는 다수의 분산전원을 On/Off하여 최대 수익을 실현할 수 있도록 하는 것이며, 수학식7과 같이 나타낸다.In the present invention, the objective function is to realize the maximum profit by turning on / off a plurality of distributed power sources constituting the microgrid for 24 hours, as shown in Equation (7).
Figure PCTKR2009005619-appb-I000009
Figure PCTKR2009005619-appb-I000009
다음은 마이크로그리드의 수익 최대화가 가능한 목적함수의 최적 해를 구하기 위한 분산전원 운전 및 정지 상태, 상태변화, 출력 및 부하, 저장장치 방전조건, 전력변환장치의 용량과 송전용량에 대한 제약조건에 관한 것이다.The following are the constraints on distributed power supply operation and shutdown status, state change, output and load, storage device discharge condition, power converter capacity and transmission capacity to find the optimal solution of the objective function to maximize profit of microgrid. will be.
첫째, 분산전원의 기동 및 정지 최소시간에 대한 제약조건으로 발전기의 제어변수 uk,i 는 운전상태를 1로 정지상태는 0으로 지정한다.First, the control variables u k, i of the generator designate the operation state as 1 and the stop state as 0 as a constraint on the minimum starting and stopping time of distributed power.
Figure PCTKR2009005619-appb-I000010
Figure PCTKR2009005619-appb-I000010
둘째, 본 발명에 있어서 상태변화에 대한 제약조건은 수학식 9와 같다.Second, in the present invention, the constraint on the state change is represented by Equation (9).
Figure PCTKR2009005619-appb-I000011
Figure PCTKR2009005619-appb-I000011
셋째, 출력에 대한 제약조건은 다음과 같이 나타낸다.Third, the constraint on the output is expressed as follows.
Figure PCTKR2009005619-appb-I000012
Figure PCTKR2009005619-appb-I000012
넷째, 전력 및 열에 대한 부하의 제약조건은 다음과 같이 나타낸다.Fourth, load and heat constraints are expressed as follows.
Figure PCTKR2009005619-appb-I000013
Figure PCTKR2009005619-appb-I000013
다섯째, 저장장치의 충, 방전 제약조건은 다음과 같이 나타낸다.Fifth, the charge and discharge constraints of the storage device are shown as follows.
Figure PCTKR2009005619-appb-I000014
Figure PCTKR2009005619-appb-I000014
여섯째, 분산전원에 대한 전력변환장치의 용량에 대한 제약조건은 다음과 같이 나타낸다.Sixth, the constraint on the capacity of the power converter for the distributed power source is expressed as follows.
Figure PCTKR2009005619-appb-I000015
Figure PCTKR2009005619-appb-I000015
일곱째, 송전용량에 대한 제약조건은 다음과 같다.Seventh, constraints on transmission capacity are as follows.
Figure PCTKR2009005619-appb-I000016
Figure PCTKR2009005619-appb-I000016
도 5 및 도 6은 본 발명의 일 실시예에 따른 다수의 분산전원으로 구성된 마이크로그리드에서 최대 수익 발생을 위한 마이크로그리드 운영방법을 설명하기 위한 도면이다.5 and 6 are diagrams for explaining a microgrid operating method for generating a maximum profit in a microgrid composed of a plurality of distributed power sources according to an embodiment of the present invention.
본 발명에 적용한 마이크로그리드 운영방법은 각 시간대별 마이크로그리드 운전에 대한 가치평가를 통해 최대 이윤을 발생하기 위한 분산전원의 출력 결정방법이다.The microgrid operating method applied to the present invention is a method of determining the output of a distributed power source for generating maximum profit through valuation of microgrid operation for each time slot.
단계 S510에서, 분산전원 발전계획 시스템부(200)는 부하 및 기후데이터 등의 필요정보를 데이터베이스로부터 로딩 한다. In step S510, the distributed power generation planning system unit 200 loads necessary information such as load and climate data from a database.
단계 S520에서, 분산전원 발전계획 시스템부(200)는 분산전원의 종류 및 용량, 독립운전 및 계통연계의 운전모드, 저장장치, 전력변환장치 등을 선택하고 풍속, 일사량 등의 기후 데이터 및 부하와 분산전원 데이터를 입력하거나 파일형태의 자료를 불러와서 마이크로그리드를 구성한다. In step S520, the distributed power generation planning system unit 200 selects the type and capacity of distributed power, the operation mode of the independent operation and grid connection, storage device, power conversion device, etc. Microgrids are constructed by entering distributed power data or importing data in file form.
단계 S530에서, 분산전원 발전계획 시스템부(200)는 마이크로그리드의 경제적 운전을 위하여 풍력발전(111), 태양광발전(112) 등의 신재생 에너지는 발전단가가 상대적으로 매우 저렴하므로 용량 및 기후 등의 제약조건을 고려하여 최대출력을 내서 마이크로그리드 내부의 부하를 줄인다.In step S530, the distributed power generation planning system unit 200 is a new generation of renewable energy, such as wind power generation 111, photovoltaic power generation 112, for the economic operation of the micro grid, the power generation cost is relatively low, so the capacity and climate Considering such constraints, the maximum output is reduced to reduce the load inside the microgrid.
단계 S540에서, 분산전원 발전계획 시스템부(200)는 신재생 에너지를 제외한 적어도 하나의 발전기의 초기 운전 상태를 정의한다.In operation S540, the distributed power generation planning system unit 200 defines an initial operating state of at least one generator except for renewable energy.
단계 S550에서, 분산전원 발전계획 시스템부(200)는 하루 24시간을 시뮬레이션 하기 위하여 i=0부터 23까지 지정하고 우선 Stage i=23으로 설정하고, i시점 이후의 총 수익인 Ji+1=0로 설정한다. 여기서, i가 23부터 시작하는 것은 백워드 방식을 사용하기 위함이다.In step S550, the distributed power generation planning system unit 200 designates i = 0 to 23 and first sets Stage i = 23 to simulate 24 hours a day, and then, i i = 1 , which is the total revenue after the point in time i. Set to 0. Here, i starts from 23 to use the backward method.
단계 S560에서, 분산전원 발전계획 시스템부(200)는 에너지 저장장치를 포함한 발전기의 현재 상태를 나타내는 변수인 j를 state 1로 설정한다.In step S560, the distributed power generation planning system unit 200 sets j, which is a variable representing the current state of the generator including the energy storage device, to state 1.
단계 S570에서, 분산전원 발전계획 시스템부(200)는 현재 상태에서 다음 상태의 최적점을 구하기 위한 에너지 저장장치를 포함한 발전기의 다듬 상태를 나타내는 변수인 k를 state 1로 설정한다.In step S570, the distributed power generation planning system unit 200 sets k, which is a parameter representing a trimming state of a generator including an energy storage device, to obtain an optimal point of the next state in the current state.
단계 S580에서, 분산전원 발전계획 시스템부(200)는 신재생 에너지를 제외한 적어도 하나의 에너지 저장장치를 포함한 발전기의 상태가 변화되었는지 판단한다.In operation S580, the distributed power generation planning system unit 200 determines whether the state of the generator including at least one energy storage device except for renewable energy is changed.
단계 S590에서, 분산전원 발전계획 시스템부(200)는 판단결과 에너지 저장장치를 포함한 발전기의 상태가 변화가 없다면 Ji = g(xi, ui) + Ji+1 로 설정한다. 여기서, Ji는 i시점에서 현재의 상태 xi에 종속적이고 최종적인 i시점부터 N(여기서 N은 최종적인 스테이지)시점간의 축적된 최대 이익을 나타내는 지표이며, g(xi, ui)는 이익함수로 i시점에서 에너지 저장장치를 포함한 발전기의 상태를 나타낸 상태변수 xi 및 i시점에서 발전기 온, 오프를 제어하는 변수 ui에 따라 발생하는 수익이다. In step S590, the distributed power generation planning system unit 200 sets J i = g (xi, ui) + J i + 1 if the state of the generator including the energy storage device is unchanged as a result of the determination. Where J i is an index representing the maximum benefit accumulated from the last time i to N (where N is the final stage) at time i, where g (xi, ui) is the profit function. It is the profit generated by the state variable xi representing the state of the generator including the energy storage at time i and the variable ui controlling the generator on and off at time i.
예를 들면, 처음에는 i=23이므로 J23 (state 1)=g(x23,u23) + J24 이고 J23 (state 1)는 모든 가능한 상태(state)를 변경하며, 최적의 수익이 발생하는 상태를 찾는 경우, 23 시점에서 24시점을 위한 최적 상태를 알 수 있다. For example, initially i = 23, so J23 (state 1) = g (x23, u23) + J24ego J23 (state 1) changes all possible states, and when looking for a state in which an optimal revenue is generated, it is possible to know the optimal state for 23 time points from 24 time points.
단계 S600에서, 분산전원 발전계획 시스템부(200)는 Ji>Ji_optimal인지 판단한다.In step S600, the distributed power generation planning system unit 200 determines whether Ji> Ji_optimal.
단계 S610에서, 분산전원 발전계획 시스템부(200)는 Ji>Ji_optimal인 경우, Ji가 기존에 검출되었던 Ji_optimal보다 더 큰 수익을 내기 때문에 Ji_optimal=Ji, Optimal next state=k로 설정한다.In step S610, the distributed power generation plan system unit 200 sets Ji_optimal = Ji and Optimal next state = k since Ji yields a greater profit than Ji_optimal that was previously detected when Ji> Ji_optimal.
단계 S620에서, 분산전원 발전계획 시스템부(200)는 각 발전기 및 에너지 저장장치의 상태 k에 대한 연산을 시행하며 가능한 모든 state의 연산이 시행되지 않았을 경우 k=k+1로 궤환한다. In step S620, the distributed power generation planning system unit 200 performs calculation on the state k of each generator and energy storage device, and returns to k = k + 1 when no calculation of all possible states is performed.
단계 S630에서, 분산전원 발전계획 시스템부(200)는 시간 i에서의 발전기(신재생에너지 제외) 및 저장장치의 상태 j가 지정된 모든 state에 대한 j=j+1로의 궤환에 의해 최적화를 연산하여 모든 연산이 완료되면 종료한다. In step S630, the distributed power generation planning system unit 200 calculates the optimization by feedback to j = j + 1 for all the states in which the generator (except renewable energy) and storage device state j at time i is specified. Exit when all operations are complete.
단계 S640에서, 분산전원 발전계획 시스템부(200)는 i=0 인 최초 스테이까지 각 발전기 및 에너지 저장장치의 state를 변화시켜 가면서 Ji_optimal의 최대가 되는 점을 검출한다.In step S640, the distributed power generation planning system unit 200 detects that the maximum of Ji_optimal is changed while changing the state of each generator and energy storage device to the first stay of i = 0.
분산전원 발전계획 시스템부(200)는 도 7을 참조하여 이를 더욱 상세히 설명하면, 백워드(backward) 스테이지 계산법으로 예를 들면, 스테이지 23에서 스테이지 0까지 궤환하며, 모든 상태(state 1부터 state n)를 분석하여 최종 스테이지부터 누적 수익이 최적인 상태를 파악할 수 있다.The distributed power generation plan system unit 200 will be described in more detail with reference to FIG. 7. For example, the distributed power generation plan system unit 200 returns from the stage 23 to the stage 0 using a backward stage calculation method, and all the states (state 1 to state n). ) To determine the best state of cumulative revenue from the final stage.
단계 S650에서, 분산전원 발전계획 시스템부(200)는 즉, 상태 j와 k에 대하여 목적함수가 최소가 되는 지점은 제어변수 u를 결정함으로써 결정이 되고 총 24시간에 대한 제어변수가 최종적으로 결정이 된다. 그 후 마지막으로 초기상태를 입력하고, 수익이 최대 가능한 최적 조건을 출력한다. In step S650, the distributed power generation planning system unit 200, i.e., the point where the objective function is minimum for the states j and k is determined by determining the control variable u and the control variable for the total 24 hours is finally determined. Becomes Finally, we enter the initial state and output the best possible conditions for profit.
본 발명의 실시 예는 다양한 컴퓨터로 구현되는 동작을 수행하기 위한 프로그램 명령을 포함하는 컴퓨터 판독 가능 매체를 포함할 수 있다. 상기 컴퓨터판독 가능 매체는 프로그램 명령, 로컬 데이터 파일, 로컬 데이터구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.An embodiment of the present invention may include a computer readable medium including program instructions for performing various computer-implemented operations. The computer readable medium may include a program command, a local data file, a local data structure, etc. alone or in combination. The media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art to which the present invention pertains without departing from the spirit and scope of the present invention as set forth in the claims below It will be appreciated that modifications and variations can be made.

Claims (15)

  1. 마이크로그리드의 운영 시스템에 있어서,In the microgrid operating system,
    적어도 하나의 분산전원을 포함하여 상기 마이크로그리드의 부하에 전력을 공급하는 마이크로그리드 시스템부;A microgrid system unit for supplying power to the load of the microgrid, including at least one distributed power supply;
    상기 분산전원의 출력 최적 조건을 산출하여 수익 최적화된 분산전원 발전계획을 수립하는 분산전원 발전 계획 시스템부; 및A distributed power generation planning system unit configured to calculate an optimized output condition of the distributed power generation and establish a revenue optimized distributed power generation plan; And
    상기 수립된 분산전원 발전계획에 따라 상기 분산전원를 제어하는 에너지 관리 시스템부를 포함하는 마이크로그리드 운영 시스템.Microgrid operating system including an energy management system for controlling the distributed power source in accordance with the established distributed power generation plan.
  2. 제1항에 있어서,The method of claim 1,
    상기 마이크로그리드와 상위계통인 메인 그리드를 연계하여 상기 상위계통과 전력을 거래하는 상위계통 연계부를 더 포함하는 마이크로그리드 운영 시스템.And an upper system linking unit that connects the micro grid with a main grid that is a higher system to trade power with the upper system.
  3. 제1항에 있어서,The method of claim 1,
    상기 분산전원은 보일러, 열병합 발전기, 연료전지, 마이크로터빈 중 적어도 하나의 발전원, 태양광 발전과 풍력발전 중 적어도 하나의 신재생 에너지원 및 에너지 저장장치 중 적어도 하나의 분산전원을 포함하는 마이크로그리드 운영 시스템.The distributed power source includes a microgrid including at least one distributed power source among at least one power source of a boiler, a cogeneration generator, a fuel cell, and a microturbine, at least one renewable energy source of solar power and wind power, and an energy storage device. Operating system.
  4. 제3항에 있어서,The method of claim 3,
    상기 분산전원 발전 계획 시스템부는The distributed power generation planning system unit
    상기 분산전원 중 상기 신재생 에너지원은 용량 및 기후를 포함하는 제약조건을 고려하여 최대출력으로 설정하고, 상기 발전원과 상기 저장장치의 출력 최적 조건을 산출하는 것을 특징으로 하는 마이크로그리드 운영 시스템.The renewable energy source of the distributed power source is set to the maximum output in consideration of constraints including capacity and climate, and calculates the optimum conditions for output of the power generation source and the storage device.
  5. 제1항에 있어서,The method of claim 1,
    상기 분산전원 발전계획 시스템부는The distributed power generation plan system unit
    분산전원 기기정보, 부하, 전력요금, 기상 및 환경정보 중 적어도 하나의 정보가 저장되는 데이터베이스; 및A database storing at least one of distributed power supply device information, load, power rate, weather and environmental information; And
    상기 데이터베이스에 저장된 정보를 이용하여 상기 마이크로그리드의 수익 최대화를 위해 상기 분산전원의 최적 출력을 선정하고 상기 에너지 관리시스템부로 전송하는 분산전원 발전계획부를 포함하는 것을 특징으로 하는 마이크로그리드 운영 시스템.And a distributed power generation planner configured to select an optimum output of the distributed power supplies and transmit them to the energy management system to maximize the profit of the microgrid using the information stored in the database.
  6. 제5항에 있어서,The method of claim 5,
    상기 분산전원의 최적 출력은 상기 마이크로그리드를 구성하는 적어도 하나의 분산전원을 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 것을 특징으로 하는 마이크로그리드 운영 시스템.The optimum output of the distributed power supply micro-grid operating system, characterized in that to calculate the optimum conditions that can maximize the profit according to the operating method by turning on or off at least one distributed power constituting the micro grid.
  7. 제5항에 있어서,The method of claim 5,
    상기 에너지 관리 시스템부는 상기 선정된 분산전원 최적 출력에 따라 상기 분산전원에 출력량을 제어를 통하여 분산전원의 수익 극대화 운전을 수행하는 것을 특징으로 하는 마이크로그리드 운영 시스템.The energy management system unit micro-grid operating system characterized in that for performing the maximum operation of the distributed power supply by controlling the output amount to the distributed power source in accordance with the selected distributed power optimum output.
  8. 마이크로그리드 운영 방법에 있어서,In the microgrid operating method,
    분산전원 기기정보, 부하, 전력요금, 기상 및 환경정보 중 적어도 하나의 정보를 독출하는 단계;Reading at least one of distributed power supply device information, load, power rate, weather and environmental information;
    상기 정보를 이용하여 상기 마이크로그리드를 구성하는 적어도 하나의 분산전원을 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 단계; 및Calculating an optimal condition capable of maximizing profit according to a driving method by turning on / off at least one distributed power supply constituting the microgrid using the information; And
    상기 산출된 최적 조건에 따라 상기 분산전원에 출력량을 제어를 통하여 분산전원의 수익 극대화 운전을 수행하는 단계를 포함하는 마이크로그리드 운영방법.And performing profit maximization operation of the distributed power supply by controlling the output amount to the distributed power supply according to the calculated optimal condition.
  9. 제8항에 있어서,The method of claim 8,
    상기 정보를 이용하여 상기 마이크로그리드를 구성하는 적어도 하나의 분산전원을 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 단계는Using the information to calculate at least one distributed power source constituting the micro grid on and off to calculate the optimum conditions that can maximize the profit according to the operating method
    시간에 상응하는 복수의 스테이지(stage)를 설정하는 단계;Setting a plurality of stages corresponding to time;
    각 스테이지에 상응하여 상기 복수의 분산전원의 각각의 상태를 천이하며 발생하는 최적의 누적 수익을 산출하는 단계;Calculating an optimal cumulative revenue generated by transitioning each state of the plurality of distributed power supplies corresponding to each stage;
    상기 각 스테이지에 상응하여 산출된 누적 수익 중 최대 수익이 가능한 상기 분산전원의 최적 조건을 산출하는 단계를 포함하는 마이크로그리드 운영 방법.And calculating an optimum condition of the distributed power supply that is capable of maximum profit among the cumulative revenues calculated corresponding to the stages.
  10. 제9항에 있어서,The method of claim 9,
    상기 각 스테이지에 상응하여 최적의 누적수익을 산출하는 단계는 최종 스테이지부터 최초 스테이지로 천이하는 백워드(backward) 방법에 의한 누적 수익을 산출하는 것을 특징으로 하는 마이크로그리드 운영 방법.The calculating of the optimal cumulative revenue corresponding to each stage is a microgrid operating method, characterized in that for calculating the cumulative revenue by a backward method (transition) from the final stage to the first stage.
  11. 제8항에 있어서,The method of claim 8,
    상기 분산전원은 보일러, 열병합 발전기, 연료전지, 마이크로터빈 중 적어도 하나의 발전원, 태양광 발전과 풍력발전 중 적어도 하나의 신재생 에너지원 및 에너지 저장장치 중 적어도 하나의 분산전원을 포함하는 마이크로그리드 운영 방법.The distributed power source may include a microgrid including at least one distributed power source among at least one power source among a boiler, a cogeneration generator, a fuel cell, and a microturbine, at least one renewable energy source among photovoltaic power generation and wind power generation, and an energy storage device. Operating method.
  12. 제11항에 있어서,The method of claim 11,
    상기 정보를 이용하여 상기 마이크로그리드를 구성하는 적어도 하나의 분산전원을 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 단계는Using the information to calculate at least one distributed power source constituting the micro grid on and off to calculate the optimum conditions that can maximize the profit according to the operating method
    상기 분산전원 중 상기 신재생 에너지원은 용량 및 기후를 포함하는 제약조건을 고려하여 최대출력으로 설정하는 단계; 및Setting the renewable energy source of the distributed power supply to a maximum output in consideration of constraints including capacity and climate; And
    상기 발전원과 상기 저장장치를 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 단계를 포함하는 마이크로그리드 운영 방법.Comprising a step of calculating the optimum conditions that can maximize the return according to the operating method by turning on and off the power source and the storage device.
  13. 제12항에 있어서,The method of claim 12,
    상기 저장장치는 특정 시간대의 전력시장 가격과 연동하여 최적 조건을 도출하는 것을 특징으로 하는 마이크로그리드 운영 방법.The storage device is a microgrid operating method, characterized in that to derive an optimal condition in conjunction with the power market price in a specific time period.
  14. 제12항에 있어서,The method of claim 12,
    상기 발전원은 최소 운전 시간, 최소 정지 시간 및 발전단가 중 적어도 하나의 조건에 따라 최적 조건을 도출하는 것을 특징으로 하는 마이크로그리드 운영 방법.The power generation source is a microgrid operating method, characterized in that for deriving the optimum conditions according to at least one of the minimum operating time, the minimum stop time and the power generation cost.
  15. 마이크로그리드 운영 방법을 구현하기 위한 프로그램이 기록된 기록매체에 있어서,In a recording medium having a program recorded thereon for implementing a method of operating a microgrid,
    분산전원 기기정보, 부하, 전력요금, 기상 및 환경정보 중 적어도 하나의 정보를 독출하는 단계;Reading at least one of distributed power supply device information, load, power rate, weather and environmental information;
    상기 정보를 이용하여 상기 마이크로그리드를 구성하는 적어도 하나의 분산전원을 온오프하여 운전방법에 따라 수익 최대화가 가능한 최적 조건을 산출하는 단계; 및Calculating an optimal condition capable of maximizing profit according to a driving method by turning on / off at least one distributed power supply constituting the microgrid using the information; And
    상기 산출된 최적 조건에 따라 상기 분산전원에 출력량을 제어를 통하여 분산전원의 수익 극대화 운전을 수행하는 단계를 포함하는 마이크로그리드 운영방법을 구현하기 위한 프로그램이 기록된 기록매체.And recording a program for implementing a method of operating a microgrid according to the calculated optimum condition, the method comprising maximizing a profit of a distributed power supply by controlling an output amount to the distributed power supply.
PCT/KR2009/005619 2009-09-29 2009-09-30 System and method for operating a microgrid WO2011040656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0092365 2009-09-29
KR1020090092365A KR101045326B1 (en) 2009-09-29 2009-09-29 The System and Planning Method for Maximizing the Operation Benefit of Microgrid

Publications (1)

Publication Number Publication Date
WO2011040656A1 true WO2011040656A1 (en) 2011-04-07

Family

ID=43826445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005619 WO2011040656A1 (en) 2009-09-29 2009-09-30 System and method for operating a microgrid

Country Status (2)

Country Link
KR (1) KR101045326B1 (en)
WO (1) WO2011040656A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040837A1 (en) * 2011-09-25 2013-03-28 国网电力科学研究院 Computer monitoring method for microgrid system
WO2014116185A1 (en) * 2013-01-25 2014-07-31 Tmt Pte. Ltd. Offshore facility
US9244446B2 (en) 2012-11-29 2016-01-26 International Business Machines Corporation Configuring, optimizing and managing micro-grids
US9455577B2 (en) 2013-07-25 2016-09-27 Globalfoundries Inc. Managing devices within micro-grids
US9515491B2 (en) 2013-09-18 2016-12-06 International Business Machines Corporation Managing devices within micro-grids
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101224992B1 (en) 2011-10-14 2013-01-25 이승철 The panel controlling
WO2013067428A1 (en) * 2011-11-04 2013-05-10 Kaplan David L Modular energy storage system
KR101367686B1 (en) 2011-12-12 2014-02-28 한국전기연구원 Capacity Estimation Method of Plural Energy Storage Devices for Grid Connection of Intermittent Generation
KR101296806B1 (en) 2011-12-12 2013-08-14 한국전기연구원 Active Power Control Method of Plural Energy Storage Devices for Grid Connection of Intermittent Generation
KR101500304B1 (en) 2011-12-26 2015-03-11 주식회사 케이티 A control method of charging and discharging of energy storage and system for it
WO2013126463A1 (en) * 2012-02-20 2013-08-29 Engineered Electric Company Power grid remote access
US9552029B2 (en) 2012-02-20 2017-01-24 Engineered Electric Company Micro grid power distribution unit
KR101439614B1 (en) * 2012-07-24 2014-09-12 주식회사 효성 Agent based energy management system and method
KR20140014763A (en) * 2012-07-26 2014-02-06 한국전력공사 Integrated supply apparatus for energy and fresh water used microgrid
KR101929587B1 (en) * 2012-09-19 2018-12-17 한국전력공사 Apparatus and method for managing scheduled dispatch process of smart distribution management system
US20160218505A1 (en) * 2013-08-28 2016-07-28 Robert Bosch Gmbh System and Method for Energy Asset Sizing and Optimal Dispatch
KR101636411B1 (en) * 2013-09-09 2016-07-06 한국전기연구원 Device for generating optimal scheduling model about virtual power plant, and method of generating optimal management model using the same
KR101512639B1 (en) * 2013-12-30 2015-04-16 전자부품연구원 Economic Operation Method for Floating Wave-Offshore Wind Hybrid Power Generation System
CN103854070A (en) * 2014-03-07 2014-06-11 天津大学 Random optimization planning method for independent micro-grid system
KR101887347B1 (en) 2017-01-13 2018-09-10 전남대학교산학협력단 Method for virtual electric power trading between microgrids based on bidding way and agent apparatus for the same
KR20180083605A (en) 2017-01-13 2018-07-23 전남대학교산학협력단 Method for virtual electric power trading between microgrids and agent apparatus for the same
KR101957797B1 (en) 2017-01-13 2019-03-13 전남대학교산학협력단 Method for virtual electric power trading between microgrids based on bidding way and agent apparatus for the same
KR102374719B1 (en) * 2017-03-14 2022-03-14 엘에스일렉트릭(주) United electronic power management system
KR101975175B1 (en) * 2017-10-18 2019-05-07 한국전력공사 Appartus for scheduling of power demand-supply operation and method thereof
DE102018213862A1 (en) 2018-08-31 2020-03-05 Siemens Aktiengesellschaft Methods of controlling an exchange of energy between energy subsystems on equal terms; Control center; Energy system; Computer program and storage medium
KR102178447B1 (en) 2018-12-13 2020-11-13 주식회사 포스코 An micro-grid system with un-interrutable power supply
KR102210909B1 (en) * 2018-12-19 2021-02-02 한국지역난방공사 Energy management device between electric power system and district heating system, and energy management method using the same
KR102210598B1 (en) * 2018-12-19 2021-02-02 한국지역난방공사 Thermal energy production device of district heating system and thermal energy production contol method using the same
KR102643132B1 (en) * 2019-04-11 2024-03-04 한국전기연구원 Method for evaluating islanding operation sustainability of small scaled power system and apparatus thereof
KR102229900B1 (en) * 2020-04-13 2021-03-22 주식회사 에이투엠 Integrated data service platform apparatus based on bigdata in multiplex microgrid circumstance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455565B1 (en) * 2004-07-29 2004-11-09 한국중부발전(주) Electric Power Demand and Supply System And Predicting Method thereof
JP2005130550A (en) * 2003-10-21 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> Method and system for generating distributed energy system operation plan
KR20070025096A (en) * 2005-08-31 2007-03-08 한국동서발전(주) System and method for forecasting economical utility of power supply by using method for minimizing generation cost
WO2008073476A2 (en) * 2006-12-11 2008-06-19 V2Green, Inc. Scheduling and control in a power aggregation system for distributed electric resources
WO2008141246A2 (en) * 2007-05-09 2008-11-20 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130550A (en) * 2003-10-21 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> Method and system for generating distributed energy system operation plan
KR100455565B1 (en) * 2004-07-29 2004-11-09 한국중부발전(주) Electric Power Demand and Supply System And Predicting Method thereof
KR20070025096A (en) * 2005-08-31 2007-03-08 한국동서발전(주) System and method for forecasting economical utility of power supply by using method for minimizing generation cost
WO2008073476A2 (en) * 2006-12-11 2008-06-19 V2Green, Inc. Scheduling and control in a power aggregation system for distributed electric resources
WO2008141246A2 (en) * 2007-05-09 2008-11-20 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040837A1 (en) * 2011-09-25 2013-03-28 国网电力科学研究院 Computer monitoring method for microgrid system
US9244446B2 (en) 2012-11-29 2016-01-26 International Business Machines Corporation Configuring, optimizing and managing micro-grids
US9923416B2 (en) 2012-11-29 2018-03-20 International Business Machines Corporation Configuring, optimizing, and managing micro-grids
US10720794B2 (en) 2012-11-29 2020-07-21 Daedalus Blue Llc Configuring, optimizing, and managing micro-grids
WO2014116185A1 (en) * 2013-01-25 2014-07-31 Tmt Pte. Ltd. Offshore facility
US10279871B2 (en) 2013-01-25 2019-05-07 Tmt Pte. Ltd. Offshore facility with metal processing apparatus and power generation system
US9455577B2 (en) 2013-07-25 2016-09-27 Globalfoundries Inc. Managing devices within micro-grids
US9515491B2 (en) 2013-09-18 2016-12-06 International Business Machines Corporation Managing devices within micro-grids
US10268224B2 (en) 2013-09-18 2019-04-23 International Business Machines Corporation Managing devices within micro-grids
US10915130B2 (en) 2013-09-18 2021-02-09 International Business Machines Corporation Managing devices within micro-grids
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system

Also Published As

Publication number Publication date
KR101045326B1 (en) 2011-06-30
KR20110034888A (en) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2011040656A1 (en) System and method for operating a microgrid
CN110378058B (en) Method for establishing optimal response model of electrothermal coupling micro-grid by comprehensively considering reliability and economy
WO2017142241A1 (en) Power management method for ess connected with new and renewable energy
CN103346562A (en) Multi-time scale microgrid energy control method considering demand response
JP2010098793A (en) Power demand and supply system
US20060010867A1 (en) Individual cogeneration plant
CN110007600A (en) A kind of constrained multipotency stream coordinated scheduling aid decision-making system of tool
Lopez et al. Commitment of combined cycle plants using a dual optimization–dynamic programming approach
Alramlawi et al. Optimal operation strategy of a hybrid PV-battery system under grid scheduled blackouts
CN102460886B (en) Method of controlling network computing cluster providing it-services
CN112332450A (en) Little electric wire netting control device based on photovoltaic energy storage and street lamp illumination
Xu et al. Optimal dispatching strategy of an electric-thermal-gas coupling microgrid considering consumer satisfaction
Wang et al. Robust survivability-oriented scheduling of separable mobile energy storage and demand response for isolated distribution systems
Eladl et al. Energy management system for smart microgrids considering energy theft
CN115296348A (en) Optimization scheduling method and system for alternating current-direct current hybrid micro-grid system
CN103219791B (en) Energy switching device and method
Chedid et al. A Techno-economic feasibility study of a green energy initiative for a university campus
Asgharzadeh et al. Stochastic bi-level allocation of electric vehicle charging stations in the presence of wind turbines, crypto-currency loads and demand side management
WO2020075907A1 (en) Compensation method of aggregator for securing distributed energy resources
Gonzalez-Castellanos et al. Congestion management via increasing integration of electric and thermal energy infrastructures
CN114529070B (en) Comprehensive energy microgrid optimal control method considering random power failure energy supply reliability
WO2023153551A1 (en) Power transaction mediation method and apparatus thereof
Hendriyanto et al. Technology Scheme and Business Model of RES Integration on Isolated Micro-grid System
EP4312340A1 (en) Battery energy stations and charging management methods thereof
EP4312339A1 (en) Battery energy stations and charging management methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850088

Country of ref document: EP

Kind code of ref document: A1