WO2011032300A1 - Lighting device for obtaining a uniformly illuminated field - Google Patents

Lighting device for obtaining a uniformly illuminated field Download PDF

Info

Publication number
WO2011032300A1
WO2011032300A1 PCT/CH2010/000221 CH2010000221W WO2011032300A1 WO 2011032300 A1 WO2011032300 A1 WO 2011032300A1 CH 2010000221 W CH2010000221 W CH 2010000221W WO 2011032300 A1 WO2011032300 A1 WO 2011032300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light sources
lobe
light
sources
emission
Prior art date
Application number
PCT/CH2010/000221
Other languages
French (fr)
Inventor
Jean Roux
Nicolas Bassi
Original Assignee
Pasan Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasan Sa filed Critical Pasan Sa
Publication of WO2011032300A1 publication Critical patent/WO2011032300A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/12Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to the field of lighting devices intended to obtain a uniformly illuminated field, and in particular to devices intended to verify the efficiency of cells constituting a photovoltaic panel, to the lighting devices used in photography or to devices intended to to the detection of objects by cameras.
  • One of these methods is to use light sources as punctual as possible and arranged as far as possible from the target to be tested.
  • the difficulty lies mainly in the realization of a source sufficiently intense and sufficiently small dimensions so that the intensity of the radiation is similar to that of the sun and that the uniformity is sufficient on the target.
  • Another method consists in the use of multiple light sources, broad emission beam and arranged in front of the modules to be tested, so that the irradiation is uniform in the center of the area.
  • the difficulty is mainly to obtain equal intensities of each of the sources, as well as overlapping emission lobes and are sufficiently constant to ensure sufficient uniformity in the useful area.
  • Yet another method consists in using complex optical means, and more particularly a point source and a parabolic mirror. In this case, the difficulty is not only to obtain a sufficiently small and intense source, but also to make mirrors of large dimensions, of the order of two meters in diameter, which is difficult.
  • the emission lobe of each source is often different from the intended theoretical lobe: instead of the lobe being symmetrical with respect to the axis passing through the center of the light source and perpendicular to the plane on which the source is fixed. it is frequently asymmetrical and its axis is inclined with respect to the theoretical perpendicular axis.
  • the lobes are generally similar for parts from the same series of manufacture. Their faults tend to be substantially the same. If, therefore, these light sources of the same series are arranged on a plane according to a regular grid, with the same orientation, their defects will tend to be added to each other and to give to the illuminated field irradiated zones with more of intensity than others.
  • the invention aims to provide a simple and inexpensive device for obtaining a uniformity of the illuminated field from several light sources.
  • the lighting device comprises several light sources placed on the same plane and able to send light rays in a direction not parallel to said plane; each light source has at least one mark, or an asymmetrical shape, able to show its orientation; said light sources are arranged in one or more groups, each light source having a different orientation to the orientation of each of the other light sources of the same group.
  • each light source has a light emitting lobe which is not symmetrical with respect to the axis passing through the center of said light source perpendicular to the plane, each light source of a same group being placed so that the central axis of its light emission lobe is oriented in a direction different from that of the central axes of the lobes light emission from other light sources of the same group.
  • angles formed between them by the orientations of the light sources of the same group are equal and have a sum of 360 °.
  • angles formed by the projections of the central axes of the emission lobes of the light sources of the same group on the plane and forming a series of sources. consecutive are equal and have a sum of 360 °.
  • the device comprises at least one group comprising at least four light sources each of which is placed at one of the vertices of a rectangle quadrilateral.
  • the device comprises at least one group comprising six light sources each of which is placed at one of the vertices of a hexagon.
  • the hexagon is regular.
  • the device comprises several groups arranged in a grid pattern.
  • the device comprises several groups arranged in a honeycomb grid.
  • FIG. 1 schematically shows a light source that emits light upward, the theoretical transmission lobe in dotted line and the actual lobe in solid line.
  • FIG. 2 diagrammatically represents a first embodiment of the device according to the invention, in which the light sources are arranged in groups of four.
  • Figure 3 shows the emission lobe resulting from the addition of two different lobes, the two lobes being little divergent.
  • FIG. 5 diagrammatically represents a second embodiment of the device according to the invention, in which the light sources are arranged in groups of eight.
  • Figure 6 shows the embodiment of Figure 2, showing the grid grid according to which are disposed the light sources.
  • the device according to the invention has the light sources 1 on the plane 2 to which they are fixed by varying their orientation with respect to the other, so as to compensate for the defects and to improve the general uniformity of the light received by the module or the cell to be tested.
  • the orientation is easy to achieve: in practice, all light sources on the market have a mark or asymmetrical shape that can guide them. Of course, it is the central axis 6 of the emission lobe 3 of each source 1 that is to orient relative to the central axis of the next source. Since the marking or shape asymmetry of the light sources is in practice defined and realized during the manufacturing process, and the light source does not undergo angular displacement during this process before the marking or the definition of its shape, the shape or the mark has a defined and constant angle with respect to the central axis of the emission lobe. It is therefore possible to rely on this form or this mark to adorn the light sources relative to each other.
  • the asymmetrical shape of the source or the mark it bears will be referred to below as "mark 11".
  • the sources must be divided into groups 5.
  • group is used to denote a set of several light sources which form a series according to the invention. . It is not essential that groups be arranged separately from other groups. Multiple groups may overlap. Different groups can be arranged differently. In each group, the angle between the direction of one and the direction of the next must be constant. In order to make easier the comprehension and the measurement of the angles of these directions, we will speak here of the projections of the central axes 6 of the emission lobes on the plane 2 which carries the light sources 1.
  • the direction 7 of each of these projections makes with the following direction a certain angle.
  • we speak of the following direction or of the following source because the light sources of each group 5 are assigned a predetermined rank in a series of consecutive elements, each source constituting one of these elements.
  • Figure 2 shows groups 5 each comprising four light sources 1, these four sources are respectively labeled la, lb, and ld ld.
  • the direction 7 of the projection of the central axis 6 of the lobe of the source is with the direction 7 of the next source lb of the series at an angle of 90 °.
  • the direction of the source lb is at a 90 ° angle with that of the next source
  • the direction of the source is at a 90 ° angle with that of the source ld
  • the direction of the source ld a angle of 90 ° with that of the first source of the series. Note that the sum of the angles is equal to 360 °, which is essential if we want to obtain a uniformly illuminated field.
  • it has the disadvantage of expanding the base from which compensation is made. This disadvantage is obviously even more marked in the embodiment shown in FIG. 5, in which the light sources are 8 in number, the angle between the direction of each source and the direction of the next source being 45 °. .
  • Figure 2 shows a set of four groups of four light sources 1 each.
  • the groups are distributed in a grid pattern 8, as shown in FIGS. 2 and 6.
  • grids having a mesh of another form for example a honeycomb grid.
  • groups arranged in a grid for example groups of four sources arranged in a square, the groups being placed in a non-grid grid, for example in honeycomb. In this case, each group is placed at the corner of a hexagon.
  • the sources incorporated in the same group must have substantially the same defects. It is therefore necessary in practice that the sources inserted in the same group come from the same batch of manufacture. This does not preclude that the same illuminator is composed of light sources from different lots, provided that the sources of the same group belong to the same batch.
  • Figures 3 and 4 show how compensation works.
  • the actual emission lobes 3 each emanate from one source oriented at 180 ° to the other, this is for example the case of the sources 1a and 2c in FIGS. 2 and 6. These two sources are placed one in front of the other. the other.
  • the central axes 6 of the real lobes 3 deviate symmetrically from the theoretical axis 4 which is perpendicular to the plane 2 which carries the source 1.
  • the resulting emission lobe 9, shown in bold lines, is wider than the theoretical lobe 10 shown in dashed lines in FIG. 1, but its axis of symmetry coincides with the axis theoretical 4.
  • the first application of the device according to the invention is the measurement of modules and photovoltaic cells, for which it is important that the illumination over the entire surface is as constant as possible, the accuracy of the measurement of the characteristics of these modules or cells being directly influenced by this more or less constant.
  • the device that is the subject of the invention can also be used in photography. In the latter area, it is also important that the illumination be constant so that the reproduction, especially of documents or plans of all kinds, is as faithful as possible.
  • a third area of application is the detection of objects by a camera system, the uniformity of the illuminated field improving the location of the object by avoiding ambiguities.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The invention relates to a lighting device essentially for checking the operation of photovoltaic cells, including groups (5) of four light sources (1) of the emission lobe, from which the central axis (6) is inclined relative to the axis of the theoretical emission lobe due to slight manufacturing defects. The sources of a same group form a series of consecutively numbered elements (1a, 1b, 1c, 1d). The direction (7) of the projection of each of the central axes of the emission lobes on the plane (2) having the light sources (1) forms an angle of 90° with the direction of the following source in the series. The sum of the angles is 360°. The addition of the lobes oriented differently from each other results in a compensation for defects, the resulting lobe substantially having a symmetry corresponding to the desired theoretical lobe. Each source practically includes a mark (11), applied during the manufacture thereof, which has a defined angle relative to the central axis of the emission lobe.

Description

DISPOSITIF D'ECLAIRAGE POUR L'OBTENTION D'UN CHAMP UNIFORMEMENT ECLAIRE  LIGHTING DEVICE FOR OBTAINING A UNIFORMLY LIGHT FIELD
Domaine technique Technical area
La présente invention se rapporte au domaine des dispositifs d'éclairage destinés à obtenir un champ uniformément éclairé, et notamment aux dispositifs destinés à vérifier l'efficacité de cellules constituant un panneau photovoltaïque, aux dispositifs d'éclairage utilisés en photographie ou encore aux dispositifs destinés à la détection d'objets par des caméras. The present invention relates to the field of lighting devices intended to obtain a uniformly illuminated field, and in particular to devices intended to verify the efficiency of cells constituting a photovoltaic panel, to the lighting devices used in photography or to devices intended to to the detection of objects by cameras.
Technique antérieure Prior art
Dans le domaine du test de cellules et modules photovoltaïques, une des tâches les plus difficiles consiste à obtenir un champ uniformément illuminé, de façon à rendre possible la caractérisation du rendement des cellules et modules en termes d'énergie produite par rapport à l'énergie re?ue- In the field of testing photovoltaic cells and modules, one of the most difficult tasks is to obtain a uniformly illuminated field, so as to make it possible to characterize the efficiency of the cells and modules in terms of the energy produced with respect to the energy re ? ue -
A cette fin, diverses méthodes sont appliquées. To this end, various methods are applied.
L'une de ces méthodes consiste à utiliser des sources lumineuses aussi ponctuelles que possible et disposées le plus loin possible de la cible à tester. La difficulté réside principalement dans la réalisation d'une source suffisamment intense et de dimensions suffisamment réduites pour que l'intensité du rayonnement soit semblable à celle du soleil et que l'uniformité soit suffisante sur la cible. One of these methods is to use light sources as punctual as possible and arranged as far as possible from the target to be tested. The difficulty lies mainly in the realization of a source sufficiently intense and sufficiently small dimensions so that the intensity of the radiation is similar to that of the sun and that the uniformity is sufficient on the target.
Une autre méthode consiste dans l'utilisation de sources lumineuses multiples, à large faisceau d'émission et disposées en face des modules à tester, de façon que l'irradiation soit uniforme au centre de la zone. Dans ce cas, la difficulté est principalement d'obtenir des intensités égales de chacune des sources, ainsi que des lobes d'émission qui se recouvrent et sont suffisamment constants pour assurer une uniformité suffisante dans la zone utile. Une autre méthode encore consiste dans l'utilisation de moyens optiques complexes, et plus particulièrement d'une source ponctuelle et d'un miroir parabolique. Dans ce cas, la difficulté est non seulement d'obtenir une source suffisamment petite et intense, mais encore de fabriquer des miroirs de grandes dimensions, de l'ordre de deux mètres de diamètre, ce qui est malaisé. Another method consists in the use of multiple light sources, broad emission beam and arranged in front of the modules to be tested, so that the irradiation is uniform in the center of the area. In this case, the difficulty is mainly to obtain equal intensities of each of the sources, as well as overlapping emission lobes and are sufficiently constant to ensure sufficient uniformity in the useful area. Yet another method consists in using complex optical means, and more particularly a point source and a parabolic mirror. In this case, the difficulty is not only to obtain a sufficiently small and intense source, but also to make mirrors of large dimensions, of the order of two meters in diameter, which is difficult.
Dans le cas d'une utilisation de sources lumineuses multiples, on constate que ces différentes sources lumineuses, notamment des diodes luminescentes (LEDs) ou des lampes à incandescence associées à un réflecteur, émettent leur lumière selon un. lobe dont la forme et l'inclinaison varient en fonction des paramètres de fabrication. Autrement dit, le lobe d'émission de chaque source est souvent différent du lobe théorique visé : au lieu que le lobe soit symétrique par rapport à l'axe passant par le centre de la source lumineuse et perpendiculaire au plan sur lequel est fixée la source, il est fréquemment asymétrique et son axe est incliné par rapport à l'axe perpendiculaire théorique. En pratique, les lobes sont en général similaires pour les pièces provenant d'une même série de fabrication. Leurs défauts tendent à être sensiblement les mêmes. Si donc l'on dispose ces sources lumineuses d'une même série sur un plan selon une grille régulière, avec la même orientation, leurs défauts auront tendance à s'ajouter les uns aux autres et à donner au champ illuminé des zones irradiées avec plus d'intensité que d'autres. In the case of a use of multiple light sources, it is found that these different light sources, including light emitting diodes (LEDs) or incandescent lamps associated with a reflector, emit their light according to a. lobe whose shape and inclination vary according to the manufacturing parameters. In other words, the emission lobe of each source is often different from the intended theoretical lobe: instead of the lobe being symmetrical with respect to the axis passing through the center of the light source and perpendicular to the plane on which the source is fixed. it is frequently asymmetrical and its axis is inclined with respect to the theoretical perpendicular axis. In practice, the lobes are generally similar for parts from the same series of manufacture. Their faults tend to be substantially the same. If, therefore, these light sources of the same series are arranged on a plane according to a regular grid, with the same orientation, their defects will tend to be added to each other and to give to the illuminated field irradiated zones with more of intensity than others.
L'invention vise à fournir un dispositif simple et peu onéreux permettant d'obtenir une uniformité du champ éclairé à partir de plusieurs sources lumineuses. The invention aims to provide a simple and inexpensive device for obtaining a uniformity of the illuminated field from several light sources.
Exposé de l'invention Presentation of the invention
Dans sa forme générale, le dispositif d'éclairage selon l'invention comprend plusieurs sources lumineuses placées sur un même plan et aptes à envoyer des rayons lumineux dans une direction non parallèle audit plan ; chaque source lumineuse a au moins une marque, ou une forme asymétrique, apte à montrer son orientation ; lesdites sources lumineuses sont disposées en un ou plusieurs groupes, chaque source lumineuse présentant une orientation différente de l'orientation de chacune des autres sources lumineuses du même groupe. In its general form, the lighting device according to the invention comprises several light sources placed on the same plane and able to send light rays in a direction not parallel to said plane; each light source has at least one mark, or an asymmetrical shape, able to show its orientation; said light sources are arranged in one or more groups, each light source having a different orientation to the orientation of each of the other light sources of the same group.
Dans une première forme d'exécution particulière du dispositif selon la forme générale décrite ci-dessus, le dispositif d'éclairage selon l'invention, chaque source lumineuse a un lobe d'émission lumineuse qui n'est pas symétrique par rapport à l'axe passant par le centre de ladite source lumineuse perpendiculairement au plan, chaque source lumineuse d'un même groupe étant placée de façon que l'axe central de son lobe d'émission lumineuse soit orienté dans une direction différente de celles des axes centraux des lobes d'émission lumineuse des autres sources lumineuses du même groupe. In a first particular embodiment of the device according to the general form described above, the lighting device according to the invention, each light source has a light emitting lobe which is not symmetrical with respect to the axis passing through the center of said light source perpendicular to the plane, each light source of a same group being placed so that the central axis of its light emission lobe is oriented in a direction different from that of the central axes of the lobes light emission from other light sources of the same group.
Dans une deuxième forme d'exécution particulière du dispositif selon la forme générale décrite ci-dessus, les angles formés entre elles par les orientations des sources lumineuses d'un même groupe sont égaux et ont une somme de 360°. In a second particular embodiment of the device according to the general form described above, the angles formed between them by the orientations of the light sources of the same group are equal and have a sum of 360 °.
Dans une troisième forme d'exécution particulière applicable à la deuxième forme particulière décrite ci-dessus, les angles formés par les projections des axes centraux des lobes d'émission des sources lumineuses d'un même groupe sur le plan et formant une série de sources consécutives sont égaux et ont une somme de 360°. In a third particular embodiment applicable to the second particular form described above, the angles formed by the projections of the central axes of the emission lobes of the light sources of the same group on the plane and forming a series of sources. consecutive are equal and have a sum of 360 °.
Dans une quatrième forme d'exécution particulière applicable aux formes décrites ci-dessus, le dispositif comprend au moins un groupe comprenant au moins quatre sources lumineuses dont chacune est placée à l'un des sommets d'un quadrilatère rectangle. In a fourth particular embodiment applicable to the forms described above, the device comprises at least one group comprising at least four light sources each of which is placed at one of the vertices of a rectangle quadrilateral.
Dans une cinquième forme d'exécution particulière du dispositif selon la forme générale ou l'une des première à troisième formes d'exécution particulières décrites ci-dessus, le dispositif comprend au moins un groupe comprenant six sources lumineuses dont chacune est placée à l'un des sommets d'un hexagone. In a fifth particular embodiment of the device according to the general form or one of the first to third particular embodiments described above, the device comprises at least one group comprising six light sources each of which is placed at one of the vertices of a hexagon.
Dans une sixième forme d'exécution, applicable à la quatrième forme d'exécution particulière décrite ci-dessus, l'hexagone est régulier. In a sixth embodiment, applicable to the fourth particular embodiment described above, the hexagon is regular.
Dans une septième forme d'exécution particulière du dispositif, applicable à la quatrième forme d'exécution particulière décrite ci-dessus, le dispositif comprend plusieurs groupes disposés selon une grille quadrillée. In a seventh particular embodiment of the device, applicable to the fourth particular embodiment described above, the device comprises several groups arranged in a grid pattern.
Dans une huitième forme d'exécution particulière du dispositif, applicable à la cinquième forme d'exécution particulière décrite ci-dessus, le dispositif comprend plusieurs groupes disposés selon une grille en nid d'abeilles. Description sommaire des dessins In an eighth particular embodiment of the device, applicable to the fifth particular embodiment described above, the device comprises several groups arranged in a honeycomb grid. Brief description of the drawings
Les dessins représentent, à titre d'exemples et schématiquement, deux formes d'exécution de l'invention, et les lobes d'émission lumineuse de plusieurs sources. The drawings show, by way of examples and schematically, two embodiments of the invention, and the light emission lobes of several sources.
La figure 1 représente schématiquement une source lumineuse qui émet de la lumière vers le haut, le lobe d'émission théorique figurant en pointillé et le lobe réel en trait continu. La figure 2 représente schématiquement une première forme d'exécution du dispositif selon l'invention, dans lequel les sources lumineuses sont disposées par groupes de quatre. Figure 1 schematically shows a light source that emits light upward, the theoretical transmission lobe in dotted line and the actual lobe in solid line. FIG. 2 diagrammatically represents a first embodiment of the device according to the invention, in which the light sources are arranged in groups of four.
La figure 3 montre le lobe d'émission résultant de l'addition de deux lobes différents, les deux lobes étant peu divergents. Figure 3 shows the emission lobe resulting from the addition of two different lobes, the two lobes being little divergent.
La figure 4 montre le lobe d'émission résultant de l'addition de deux lobes différents, les deux lobes étant nettement divergents La figure 5 représente schématiquement une seconde forme d'exécution du dispositif selon l'invention, dans lequel les sources lumineuses sont disposées par groupes de huit. La figure 6 reprend la forme d'exécution de la figure 2, en montrant la grille quadrillée selon laquelle sont disposées les sources lumineuses. Figure 4 shows the emission lobe resulting from the addition of two different lobes, the two lobes being clearly divergent FIG. 5 diagrammatically represents a second embodiment of the device according to the invention, in which the light sources are arranged in groups of eight. Figure 6 shows the embodiment of Figure 2, showing the grid grid according to which are disposed the light sources.
Meilleure manière de réaliser l'invention Best way to realize the invention
En vue d'éviter les inconvénients de la technique actuelle liés à l'utilisation de sources lumineuses multiples, le dispositif selon l'invention dispose les sources lumineuses 1 sur le plan 2 auquel elles sont fixées en variant leur orientation l'une par rapport à l'autre, de manière à compenser les défauts et à améliorer l'uniformité générale de la lumière reçue par le module ou la cellule à tester. In order to avoid the drawbacks of the current technique related to the use of multiple light sources, the device according to the invention has the light sources 1 on the plane 2 to which they are fixed by varying their orientation with respect to the other, so as to compensate for the defects and to improve the general uniformity of the light received by the module or the cell to be tested.
L'orientation est facile à réaliser : en pratique, toutes les sources lumineuses sur le marché présentent une marque ou une forme asymétrique qui permet de les orienter. Bien entendu, c'est l'axe central 6 du lobe d'émission 3 de chaque source 1 qu'il s'agit d'orienter par rapport à l'axe central de la source suivante. Comme le marquage ou l'asymétrie de forme des sources lumineuses est en pratique défini et réalisé pendant le processus de fabrication, et que la source lumineuse ne subit pas de déplacement angulaire pendant ce processus avant le marquage ou la définition de sa forme, la forme ou la marque présente un angle défini et constant par rapport à l'axe central du lobe d'émission. Il est donc possible de se fier à cette forme ou à cette marque pour oriènter les sources lumineuses les unes par rapport aux autres. The orientation is easy to achieve: in practice, all light sources on the market have a mark or asymmetrical shape that can guide them. Of course, it is the central axis 6 of the emission lobe 3 of each source 1 that is to orient relative to the central axis of the next source. Since the marking or shape asymmetry of the light sources is in practice defined and realized during the manufacturing process, and the light source does not undergo angular displacement during this process before the marking or the definition of its shape, the shape or the mark has a defined and constant angle with respect to the central axis of the emission lobe. It is therefore possible to rely on this form or this mark to adorn the light sources relative to each other.
Pour des raisons de simplification, la forme asymétrique de la source ou la marque qu'elle porte seront désignées ci-après par la mention « marque 11 ». Pour obtenir une surface aussi uniformément éclairée que possible, il est nécessaire que les sources soient réparties en groupes 5. Dans le présent texte, le terme « groupe » est utilisé pour désigner un ensemble de plusieurs sources lumineuses qui forment une série selon l'invention. Il n'est pas indispensable les groupes soient disposés séparément des autres groupes. Des groupes multiples peuvent se chevaucher. Des groupes différents peuvent être disposés de manière différente. Dans chaque groupe, l'angle existant entre la direction d'une et la direction de la suivante doit être constant. Afin de rendre plus aisée la compréhension et la mesure des angles de ces directions, on parlera ici des projections des axes centraux 6 des lobes d'émission sur le plan 2 qui porte les sources lumineuses 1. La direction 7 de chacune de ces projections fait avec la direction suivante un angle déterminé. On parle ici de direction suivante ou de source suivante du fait que l'on attribue aux sources lumineuses de chaque groupe 5 un rang déterminé dans une série d'éléments consécutifs, chaque source constituant l'un de ces éléments. For the sake of simplicity, the asymmetrical shape of the source or the mark it bears will be referred to below as "mark 11". To obtain a surface as uniformly illuminated as possible, the sources must be divided into groups 5. In the present text, the term "group" is used to denote a set of several light sources which form a series according to the invention. . It is not essential that groups be arranged separately from other groups. Multiple groups may overlap. Different groups can be arranged differently. In each group, the angle between the direction of one and the direction of the next must be constant. In order to make easier the comprehension and the measurement of the angles of these directions, we will speak here of the projections of the central axes 6 of the emission lobes on the plane 2 which carries the light sources 1. The direction 7 of each of these projections makes with the following direction a certain angle. Here, we speak of the following direction or of the following source because the light sources of each group 5 are assigned a predetermined rank in a series of consecutive elements, each source constituting one of these elements.
Pour que la compensation soir réalisée sur l'entier de la surface visée, il faut disposer d'au moins quatre sources. Ainsi, la figure 2 montre des groupes 5 comprenant chacun quatre sources lumineuses 1, ces quatre sources sont numérotées respectivement la, lb, le et ld. In order for evening compensation to be performed on the whole of the target area, at least four sources must be available. Thus, Figure 2 shows groups 5 each comprising four light sources 1, these four sources are respectively labeled la, lb, and ld ld.
La direction 7 de la projection de l'axe central 6 du lobe de la source la fait avec la direction 7 de la source suivante lb de la série un angle de 90°. De même, la direction de la source lb fait un angle de 90° avec celle de la source suivante le, la direction de la source le fait un angle de 90°avec celle de la source ld, et la direction de la source ld un angle de 90° avec celle de la source la, première de la série. On note que la somme des angles est égale à 360°, ce qui est indispensable si l'on veut obtenir un champ uniformément éclairé. The direction 7 of the projection of the central axis 6 of the lobe of the source is with the direction 7 of the next source lb of the series at an angle of 90 °. Similarly, the direction of the source lb is at a 90 ° angle with that of the next source, the direction of the source is at a 90 ° angle with that of the source ld, and the direction of the source ld a angle of 90 ° with that of the first source of the series. Note that the sum of the angles is equal to 360 °, which is essential if we want to obtain a uniformly illuminated field.
Une configuration de plus de quatre sources par groupe, par exemple de six sources, dont chacune a une direction 7 qui s'écarte de 60° de la direction de la source suivante, est aussi possible. Elle a cependant l'inconvénient d'élargir la base à partir de laquelle la compensation est effectuée. Cet inconvénient est évidemment encore plus marqué dans la forme d'exécution montrée à la figure 5, dans laquelle les sources lumineuses sont au nombre de 8, l'angle entre la direction de chaque source avec la direction de la source suivante étant de 45°. A configuration of more than four sources per group, for example six sources, each of which has a direction 7 which deviates 60 ° from the direction of the next source, is also possible. However, it has the disadvantage of expanding the base from which compensation is made. This disadvantage is obviously even more marked in the embodiment shown in FIG. 5, in which the light sources are 8 in number, the angle between the direction of each source and the direction of the next source being 45 °. .
Les groupes 5 de quatre sources ou plus peuvent théoriquement être multipliés à l'infini, la figure 2 montre ainsi un ensemble de quatre groupes 5 de quatre source lumineuses 1 chacun. De préférence, dans le dispositif comprenant des groupes 5 de quatre sources chacun, qui est la forme préférée d'exécution de l'invention, on répartit les groupes selon une grille 8 quadrillée, comme le montrent les figures 2 et 6. II est également possible de recourir à des grilles présentant un maillage d'une autre forme, par exemple une grille en nid d'abeille. Il est aussi possible de superposer deux grilles différentes, ou plus de deux grilles. Enfin, on peut disposer des groupes organisés selon une grille, par exemple des groupes de quatre sources disposées en carré, les groupes étant placés selon une grille non quadrillée, par exemple en nid d'abeille. Dans ce cas, chaque groupe est placé à l'angle d'un hexagone. Groups of four or more sources can theoretically be multiplied to infinity, thus Figure 2 shows a set of four groups of four light sources 1 each. Preferably, in the device comprising groups of four sources each, which is the preferred embodiment of the invention, the groups are distributed in a grid pattern 8, as shown in FIGS. 2 and 6. It is also possible to use grids having a mesh of another form, for example a honeycomb grid. It is also possible to superimpose two different grids, or more than two grids. Finally, it is possible to arrange groups arranged in a grid, for example groups of four sources arranged in a square, the groups being placed in a non-grid grid, for example in honeycomb. In this case, each group is placed at the corner of a hexagon.
Pour que la compensation fonctionne, il faut que les sources incorporées dans un même groupe présentent substantiellement les mêmes défauts. Il faut donc en pratique que les sources insérées dans un même groupe proviennent d'un même lot de fabrication. Cela n'empêche pas que le même illuminateur soit composé de sources lumineuses provenant de lots différents, pourvu que les sources d'un même groupe appartiennent au même lot de fabrication. For the compensation to work, the sources incorporated in the same group must have substantially the same defects. It is therefore necessary in practice that the sources inserted in the same group come from the same batch of manufacture. This does not preclude that the same illuminator is composed of light sources from different lots, provided that the sources of the same group belong to the same batch.
Les figures 3 et 4 montrent comment s'opère la compensation. Les lobes d'émission réels 3 émanent chacun d'une source orientés à 180° de l'autre, c'est par exemple le cas des sources la et le dans les figures 2 et 6. Ces deux sources sont placées l'une devant l'autre. Les axes centraux 6 des lobes réels 3 s'écartent symétriquement de l'axe théorique 4 qui est perpendiculaire au plan 2 qui porte la source 1. Le lobe d'émission résultant 9, représenté en trait gras, est plus large que le lobe théorique 10 montré en pointillés à la figure 1 , mais son axe de symétrie se confond avec l'axe théorique 4. Figures 3 and 4 show how compensation works. The actual emission lobes 3 each emanate from one source oriented at 180 ° to the other, this is for example the case of the sources 1a and 2c in FIGS. 2 and 6. These two sources are placed one in front of the other. the other. The central axes 6 of the real lobes 3 deviate symmetrically from the theoretical axis 4 which is perpendicular to the plane 2 which carries the source 1. The resulting emission lobe 9, shown in bold lines, is wider than the theoretical lobe 10 shown in dashed lines in FIG. 1, but its axis of symmetry coincides with the axis theoretical 4.
Dans le cas représenté à la figure 4, les lobes individuels 3 sont très écartés l'un de l'autre, de sorte que le lobe résultant présente une dépression centrale. Cela n'affecte cependant pas la symétrie et la perpendicularité du lobe résultant, qui sont des facteurs déterminants pour l'uniformité de l'ensemble. In the case shown in Figure 4, the individual lobes 3 are widely spaced from each other, so that the resulting lobe has a central depression. However, this does not affect the symmetry and the perpendicularity of the resulting lobe, which are determining factors for the uniformity of the whole.
Il convient de souligner que ce n'est en pratique qu'en fonction des marques 11 des sources lumineuses qu'est choisie l'orientation des sources les unes par rapport aux autres. Il est inutile de vérifier la direction exacte du lobe de chaque source. It should be emphasized that it is in practice only according to the marks 11 of the light sources that the orientation of the sources with respect to each other is chosen. There is no need to check the exact direction of the lobe of each source.
Possibilités d'application industrielle Possibilities of industrial application
La première application du dispositif selon l'invention est la mesure de modules et de cellules photovoltaïques, pour laquelle il est important que l'illumination sur l'ensemble de la surface soit aussi constante que possible, la précision de la mesure des caractéristiques des ces modules ou cellules étant directement influencée par cette plus ou moins grande constance. Comme cela a été indiqué plus haut, le dispositif objet de l'invention peut aussi être utilisé en photographie. Dans ce dernier domaine, il est également important que l'illumination soit constante pour que la reproduction, notamment de documents ou plans de toutes sortes, soit aussi fidèle que possible. The first application of the device according to the invention is the measurement of modules and photovoltaic cells, for which it is important that the illumination over the entire surface is as constant as possible, the accuracy of the measurement of the characteristics of these modules or cells being directly influenced by this more or less constant. As indicated above, the device that is the subject of the invention can also be used in photography. In the latter area, it is also important that the illumination be constant so that the reproduction, especially of documents or plans of all kinds, is as faithful as possible.
Un troisième domaine d'application est la détection d'objets par un système de caméras, l'uniformité du champ éclairé améliorant la localisation de l'objet en évitant des ambiguïtés. A third area of application is the detection of objects by a camera system, the uniformity of the illuminated field improving the location of the object by avoiding ambiguities.

Claims

REVENDICATIONS
Dispositif d'éclairage comprenant plusieurs sources lumineuses (1) placées sur un même plan Lighting device comprising several light sources (1) placed on the same plane
(2) et aptes à envoyer des rayons lumineux dans une direction non parallèle audit plan, caractérisé en ce qu'au moins une marque (11) apte à montrer son orientation est placée sur chaque source lumineuse, en ce que lesdites sources lumineuses sont disposées en un ou plusieurs groupes (5), chaque source lumineuse présentant une orientation différente de l'orientation de chacune des autres sources lumineuses du même groupe. (2) and capable of sending light rays in a direction not parallel to said plane, characterized in that at least one mark (11) capable of showing its orientation is placed on each light source, in that said light sources are arranged into one or more groups (5), each light source having an orientation different from the orientation of each of the other light sources of the same group.
Dispositif d'éclairage selon la revendication 1, caractérisé en ce que chaque source lumineuse a un lobe d'émission lumineuse Lighting device according to claim 1, characterized in that each light source has a light emission lobe
(3) qui n'est pas symétrique par rapport à l'axe (3) which is not symmetrical about the axis
(4) passant par le centre de ladite source lumineuse perpendiculairement au plan (2), et en ce que chaque source lumineuse d'un même groupe est placée de façon que l'axe central (6) de son lobe d'émission lumineuse (3) soit orienté dans une direction différente de celles des axes centraux des lobes d'émission lumineuse des autres sources lumineuses du même groupe. (4) passing through the center of said light source perpendicular to the plane (2), and in that each light source of the same group is placed so that the central axis (6) of its light emission lobe ( 3) is oriented in a direction different from those of the central axes of the light emission lobes of other light sources in the same group.
Dispositif d'éclairage selon la revendication 1, caractérisé en ce que les angles formés entre elles par les orientations des sources lumineuses d'un même groupe sont égaux et ont une somme de 360°. Lighting device according to claim 1, characterized in that the angles formed between them by the orientations of the light sources of the same group are equal and have a sum of 360°.
Dispositif selon la revendication 2, caractérisé en ce que les angles formés par les projections (7) des axes centraux (6) des lobes d'émission des sources lumineuses d'un même groupe sur le plan (2) et formant une série de sources consécutives sont égaux et ont une somme de 360°. Device according to claim 2, characterized in that the angles formed by the projections (7) of the central axes (6) of the emission lobes of the light sources of the same group on the plane (2) and forming a series of sources consecutive are equal and have a sum of 360°.
5. Dispositif selon l'une des revendications 3 ou 4, caractérisé en ce qu'il comprend au moins un groupe (5) comprenant au moins quatre sources lumineuses dont chacune est placée à l'un des sommets d'un quadrilatère rectangle. 5. Device according to one of claims 3 or 4, characterized in that it comprises at least one group (5) comprising at least four light sources, each of which is placed at one of the vertices of a rectangular quadrilateral.
6. Dispositif selon l'une des revendication 1 à 4, caractérisé en ce qu'il comprend au moins un groupe (5) comprenant six sources lumineuses dont chacune est placée à l'un des sommets d'un hexagone. 6. Device according to one of claims 1 to 4, characterized in that it comprises at least one group (5) comprising six light sources each of which is placed at one of the vertices of a hexagon.
7. Dispositif selon la revendication 6, caractérisé en ce que l'hexagone est régulier. 7. Device according to claim 6, characterized in that the hexagon is regular.
8. Dispositif selon la revendication 5, caractérisé en ce qu'il comprend plusieurs groupes (5) disposés selon une grille (8) quadrillée. 8. Device according to claim 5, characterized in that it comprises several groups (5) arranged in a grid (8).
9. Dispositif selon la revendication 7, caractérisé en ce qu'il comprend plusieurs groupes (5) disposés selon une grille (8) en nid d'abeilles. 9. Device according to claim 7, characterized in that it comprises several groups (5) arranged in a honeycomb grid (8).
PCT/CH2010/000221 2009-09-17 2010-09-15 Lighting device for obtaining a uniformly illuminated field WO2011032300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1442/09 2009-09-17
CH01442/09A CH701854A1 (en) 2009-09-17 2009-09-17 A lighting device for obtaining a uniformly illuminated field.

Publications (1)

Publication Number Publication Date
WO2011032300A1 true WO2011032300A1 (en) 2011-03-24

Family

ID=43304178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2010/000221 WO2011032300A1 (en) 2009-09-17 2010-09-15 Lighting device for obtaining a uniformly illuminated field

Country Status (2)

Country Link
CH (1) CH701854A1 (en)
WO (1) WO2011032300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016184844A1 (en) * 2015-05-18 2016-11-24 Terabee S.A.S. Device and method for uniform far-field illumination with leds
WO2020167401A1 (en) * 2019-02-12 2020-08-20 Corning Incorporated Uniformizing an array of leds having asymmetric optical characteristics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002275A1 (en) * 2005-01-19 2006-07-20 Osram Opto Semiconductors Gmbh lighting device
WO2007025538A2 (en) * 2005-09-03 2007-03-08 Osram Opto Semiconductors Gmbh Backlighting arrangement with semiconductor light sources arranged in illumination groups and illumination device
US20070291485A1 (en) * 2006-06-16 2007-12-20 Chung Peng Light source
WO2008010130A2 (en) * 2006-07-18 2008-01-24 Koninklijke Philips Electronics N.V. Composite light source
WO2008066785A2 (en) * 2006-11-27 2008-06-05 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for providing uniform projection lighting
WO2008110142A1 (en) * 2007-03-09 2008-09-18 Osram Opto Semiconductors Gmbh Led module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935404A1 (en) * 1999-07-30 2001-02-01 Zeiss Carl Fa Lighting system with multiple light sources
DE10034594B4 (en) * 2000-07-14 2006-03-16 Sirona Dental Systems Gmbh Dental treatment light
EP1568938B1 (en) * 2004-02-28 2006-09-27 TRUMPF Kreuzer Medizin Systeme GmbH + Co. KG Surgical lamp and method of illumination of an operating theatre
US7500764B2 (en) * 2005-04-19 2009-03-10 Musco Corporation Method, apparatus, and system of aiming lighting fixtures
DE202007015823U1 (en) * 2006-11-24 2008-03-27 Karl Leibinger Medizintechnik Gmbh & Co. Kg Operating or examination light

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002275A1 (en) * 2005-01-19 2006-07-20 Osram Opto Semiconductors Gmbh lighting device
WO2007025538A2 (en) * 2005-09-03 2007-03-08 Osram Opto Semiconductors Gmbh Backlighting arrangement with semiconductor light sources arranged in illumination groups and illumination device
US20070291485A1 (en) * 2006-06-16 2007-12-20 Chung Peng Light source
WO2008010130A2 (en) * 2006-07-18 2008-01-24 Koninklijke Philips Electronics N.V. Composite light source
WO2008066785A2 (en) * 2006-11-27 2008-06-05 Philips Solid-State Lighting Solutions, Inc. Methods and apparatus for providing uniform projection lighting
WO2008110142A1 (en) * 2007-03-09 2008-09-18 Osram Opto Semiconductors Gmbh Led module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016184844A1 (en) * 2015-05-18 2016-11-24 Terabee S.A.S. Device and method for uniform far-field illumination with leds
CN107624151A (en) * 2015-05-18 2018-01-23 特雷比公司 The apparatus and method illuminated with the uniform far fields of LED
US10802114B2 (en) 2015-05-18 2020-10-13 Terabee Sas Device and method for uniform far-field illumination with LEDs
WO2020167401A1 (en) * 2019-02-12 2020-08-20 Corning Incorporated Uniformizing an array of leds having asymmetric optical characteristics
US11114420B2 (en) 2019-02-12 2021-09-07 Corning Incorporated Uniforming an array of LEDs having asymmetric optical characteristics

Also Published As

Publication number Publication date
CH701854A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
FR2524162A1 (en) APPARATUS AND METHOD FOR CONTROLLING NEGATIVES AND DEVICE FOR MASKING MASKS
EP3049795B1 (en) Image acquisition device for the visual inspection of the inner surface of a tyre, and associated method
WO2009073995A1 (en) Lighting device for checking photovoltaic panels
FR2591329A1 (en) APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
KR20110124354A (en) High speed quantum efficiency measurement apparatus utilizing solid state lightsource
Gevorgyan et al. Accurate characterization of OPVs: Device masking and different solar simulators
FR2640040A1 (en) METHOD AND DEVICE FOR OPTICAL MEASUREMENT
CN107076663A (en) Double refraction detection device and double refraction detecting method
CA2925491A1 (en) Modular laser apparatus
WO2011032300A1 (en) Lighting device for obtaining a uniformly illuminated field
TW201416660A (en) Method for analyzing the crystalline structure of a poly-crystalline semi-conductor material
JP5509414B2 (en) Solar cell evaluation apparatus and solar cell evaluation method
EP3599717B1 (en) Optical characterisation of a coefficient of bi-faciality of a bifacial solar module
JP5692193B2 (en) Simulated solar irradiation device
FR3020473A1 (en) INTEGRATED PHOTOVOLTAIC CELL DISPLAY DEVICE WITH IMPROVED BRIGHTNESS AND REFLECTIVITY
FR3062217A1 (en) ABOUT PIXELIZED LIGHT SOURCES
WO2019123057A1 (en) Three-dimensional target with dual structure, device and method for optical measurement with such a target
EP3069156B1 (en) Device and method for testing a concentrated photovoltaic module
JP2011049474A (en) Solar battery evaluation apparatus
EP1123619A1 (en) High resolution device for digitizing large size documents
EP0997729A1 (en) Apparatus for determining the concentration of a substance mixed with a fluorophore, and procedure for using the apparatus
EP2187112A1 (en) Method to select LEDs in order to obtain a predetermined spectral distribution and panel with such LEDs
EP3194915A1 (en) Device and method for wavelength variation of at least one light source for derivative spectroscopy
EP3069155B1 (en) Method for testing a concentrated photovoltaic module
WO2012072914A2 (en) Machine for exposing panels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10760579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10760579

Country of ref document: EP

Kind code of ref document: A1