WO2011027525A1 - Semiconductor element and method for manufacturing same - Google Patents

Semiconductor element and method for manufacturing same Download PDF

Info

Publication number
WO2011027525A1
WO2011027525A1 PCT/JP2010/005292 JP2010005292W WO2011027525A1 WO 2011027525 A1 WO2011027525 A1 WO 2011027525A1 JP 2010005292 W JP2010005292 W JP 2010005292W WO 2011027525 A1 WO2011027525 A1 WO 2011027525A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
layer
carbide layer
region
contact
Prior art date
Application number
PCT/JP2010/005292
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 庭山
正雄 内田
浩一 橋本
千秋 工藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011027525A1 publication Critical patent/WO2011027525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the present invention relates to a semiconductor element using silicon carbide and a method for manufacturing the same.
  • Silicon carbide is a high-hardness semiconductor material having a larger band gap than silicon (Si), such as power elements (also called power devices), environmental elements, high-temperature operating elements, and high-frequency elements. It is applied to various semiconductor devices. Especially, application to power devices, such as a switching element and a rectifier, attracts attention.
  • Typical switching elements of power devices using SiC include metal-insulator-semiconductor field effect transistors (Metal-Insulator-Semiconductors, MISFETs) and metal-semiconductor field-effect transistors (Metal-Semiconductor Field-Effect Transistors: MESFET).
  • MISFETs Metal-Insulator-Semiconductors
  • MESFET Metal-Semiconductor Field-Effect Transistors
  • a typical rectifying element there are a Schottky diode and a pn diode. These are expected as rectifying elements that realize a large current and a high breakdown voltage.
  • SiC power device Since SiC has a higher dielectric breakdown electric field and thermal conductivity than Si, a power device using SiC (SiC power device) can easily achieve higher breakdown voltage and lower loss than Si power devices. For this reason, when realizing the same performance as the Si power device, the area and thickness can be greatly reduced as compared with the Si power device.
  • Patent Document 1 The structure of a vertical metal-oxide-semiconductor field effect transistor (Metal-Oxide-Semiconductor), which is one of switching elements using SiC, is disclosed in, for example, Patent Document 1 and Patent Document 2. Yes.
  • a method for manufacturing a vertical MOSFET having the structure disclosed in these documents will be described with reference to the drawings.
  • FIG. 5 to 8 are schematic process cross-sectional views for explaining a method of manufacturing a planar n-channel vertical power MOSFET.
  • a MOSFET typically includes a plurality of unit cells. These drawings show one unit cell among a plurality of unit cells and a cross section of a part of a unit cell adjacent to the unit cell.
  • a silicon carbide layer 2 having the same crystal structure as that of the n-type SiC substrate 1 is formed on the main surface of the low-resistance n-type SiC substrate 1 by epitaxial growth.
  • a mask layer 31 made of a silicon oxide film is disposed on a predetermined region of the silicon carbide layer 2, and using this as a mask, p-type impurity ions (for example, Al ( Aluminum) ions) are implanted into the silicon carbide layer 2. Thereby, p-type body region (also referred to as well region) 3 is formed in silicon carbide layer 2. The region of silicon carbide layer 2 where p type body region 3 is not formed becomes n type drift region 2d.
  • p-type impurity ions for example, Al ( Aluminum) ions
  • a mask layer 32 made of a silicon oxide film is arranged on a predetermined region of silicon carbide layer 2, and n-type impurity ions are used as a mask.
  • n-type impurity ions are used as a mask.
  • the source region 4 is formed in the p-type body region 3.
  • mask layer 33 made of a silicon oxide film is arranged on a predetermined region of silicon carbide layer 2, and p-type impurity ions are used as a mask.
  • p-type impurity ions are used as a mask.
  • implanting for example, Al ions
  • a p + contact region 5 containing p-type impurities at a higher concentration than the body region 3 is formed.
  • an annealing process is performed in an inert gas atmosphere at a temperature of 1700 ° C. for about 30 minutes.
  • the impurities implanted into p type body region 3, source region 4, and p + contact region 5 are activated.
  • a channel layer 6 made of silicon carbide is formed on the silicon carbide layer 2 by epitaxial growth.
  • a resist layer 41 is formed on a predetermined region of the channel layer 6 as shown in FIG. Thereafter, the portion of the channel layer 6 that is not covered with the resist layer 41 is removed by dry etching. During dry etching, damage may occur on the surface of the source region 4 and the p + contact region 5 exposed from the resist layer 41, resulting in surface roughness. In order to reduce such surface roughness, although not shown, the exposed portion may be thermally oxidized to remove the oxide film formed by thermal oxidation.
  • a gate insulating film 7 and a gate electrode 8 are formed on the channel layer 6 as shown in FIG. Specifically, first, an insulating film and a conductive film are deposited in this order on the channel layer 6 and the silicon carbide layer 2, and a resist layer 42 is formed in a predetermined region on the conductive film. Thereafter, dry etching of the insulating film and the conductive film is performed using the resist layer 42 as a mask. Thereby, the gate insulating film 7 and the gate electrode 8 are obtained.
  • an interlayer insulating film 9 is deposited on the entire surface of the substrate 1, and a resist layer 43 having an opening is formed thereon.
  • dry etching of the interlayer insulating film 9 is performed using the resist layer 43 as a mask. Thereby, a contact hole 10 s reaching a part of the source region 4 and the contact region 5 is formed in the interlayer insulating film 9.
  • a Ni (nickel) film 51 is deposited on the interlayer insulating film 9 and inside the contact hole 10s as shown in FIG.
  • the silicon carbide layer 2 and the Ni film 51 are reacted in the contact hole 10 s by performing an annealing process at a temperature of 950 ° C. for about 1 minute in a nitrogen atmosphere.
  • a part of Ni diffuses into the silicon carbide layer 2 and is alloyed, whereby the Ni silicide layer 11 is formed.
  • a contact hole 10 g reaching the gate electrode 8 is formed in the interlayer insulating film 9.
  • an Al (aluminum) film is deposited as a wiring layer on the interlayer insulating film 9 in the contact hole 10s and in the contact hole 10g, and the Al film is processed into an appropriate pattern.
  • the source wiring 12 connected to the source region 4 and the contact region 5 through the Ni silicide layer 11 in the contact hole 10s, and the gate electrode wiring 13 in contact with the gate electrode 8 in the contact hole 10g Form.
  • a back electrode (drain electrode) 14 is formed on the entire surface opposite to the main surface of the n-type SiC substrate 1. In this way, a planar n-channel vertical power MOSFET is obtained.
  • the MOSFET shown in FIG. 8 has a storage channel structure. In the off state, pinch-off occurs due to the work function difference between the gate electrode 8 and the channel layer 6 and depletion due to the pn junction between the p-type body region 3 and the channel layer 6 (off state).
  • Patent Document 2 discloses a method for forming a Ni silicide layer serving as a source electrode using a channel layer.
  • 10A to 10C are process cross-sectional views showing a part of the MOSFET manufacturing method disclosed in Patent Document 2.
  • FIG. For simplicity, the same components as those in FIG.
  • a channel layer 6 is formed on the silicon carbide layer 2, and a Ni film 51 serving as a source electrode is formed on a part of the silicon carbide layer 6.
  • the heat treatment is performed to cause the channel layer 6 and the Ni film 51 to react to form the Ni silicide layer 11.
  • a gate electrode 8 is provided on the channel layer 6 via a gate insulating film 7.
  • the conventional MOSFET manufacturing method shown in FIGS. 5 to 8 has the following problem (first problem).
  • the portion of the channel layer 6 that is not covered with the resist layer 41 is removed by dry etching.
  • channel layer 6 and underlying silicon carbide layer 2 are made of the same material, and therefore it is not possible to provide a difference in etching rate between these layers. That is, it is impossible to perform etching controlled by detecting the end point during dry etching. For this reason, it is difficult to selectively remove only the channel layer 6 in the upper layer.
  • the thickest portion of the channel layer 6 is removed in order to reliably remove unnecessary portions (portions where no channel is formed) of the channel layer 6.
  • the etching amount must be adjusted. As a result, the surface portions of source region 4 and p + contact region 5 in silicon carbide layer 2 underlying channel layer 6 are necessarily shaved.
  • the material of the interlayer insulating film 9 to be etched is different from the material of the silicon carbide layer 6 therebelow. If the ratio difference is used, the amount of overetching can be reduced.
  • the contact hole 10s penetrating the interlayer insulating film 9 is reliably formed, and then the electrode formed in the contact hole 10s is reliably electrically connected to the source region 4 and the p + contact region 5 of the silicon carbide layer 6. Therefore, it is necessary to etch (over-etch) the surface portion of the silicon carbide layer 6 when the contact hole 10s is formed in the interlayer insulating film 9.
  • the thickness of the source region 4 and the p + contact region 5 in the silicon carbide layer 2 is smaller than the thickness of these regions 4 and 5 formed in the impurity implantation process.
  • FIGS. 9A and 9B are a cross-sectional view and a top view, respectively, illustrating a unit cell in a MOSFET actually obtained by the above method.
  • the thickness of the portion of the source region 4 covered with the channel layer 6 is substantially equal to t1
  • the thickness t2 of the portion of the source region 4 that is not covered with the resist layer 41 becomes smaller than the thickness t1 due to over-etching.
  • the thickness of the portion of the source region 4 that is not covered with the resist layer 43 becomes smaller than the thickness t2 due to over-etching.
  • the source region 4 when the source region 4 is thinned, the resistance of the source region 4 is increased, so that the on-resistance of the MOSFET is increased and the power loss is increased. Further, if the amount of the source region 4 removed during the etching of the channel layer 6 (FIG. 6F) is larger, the source region 4 (and the p + contact region 5) is completely below the contact hole 10s. May disappear. In this case, in the subsequent process (FIG. 7I), the p-type body region 3 in the silicon carbide layer 2 and the Ni film 51 react to form the Ni silicide layer 11, so that the source wiring 12 is replaced with the source region. 4 may not be electrically connected to the MOSFET, and the drain current may not flow through the MOSFET.
  • the source region 4 having a large thickness t1 may be formed in the p-type body region 3 in the n-type impurity implantation step shown in FIG.
  • the punch-through withstand voltage of the source region 4 is deteriorated, so that the withstand voltage of the MOSFET may be lowered. is there.
  • the breakdown voltage of the MOSFET is finally determined by the distance L between the lower end of the p-type body region 3 and the surface of the n-type SiC substrate 1 (FIG. 9) and the impurity concentration of the n-type SiC substrate 1. This is because if the distance L is reduced by increasing the thickness, the breakdown voltage of the MOSFET cannot be secured.
  • the p-type body region 3 is thickened and the silicon carbide layer 2 is thickened, the distance L corresponding to the set withstand voltage value can be obtained. However, if the silicon carbide layer 2 is thickened, the resistance of the drift region 2d is increased, so that the on-resistance of the MOSFET is increased and the device loss may be increased.
  • the method shown in FIGS. 5 to 8 has another problem (second problem).
  • a mask (hereinafter referred to as “mask A”, not shown) used for forming the resist layer 41 and a contact hole 10s shown in FIG. Since a mask (hereinafter referred to as “mask B”, not shown) used when forming the layer 43 has a different pattern, it is necessary to consider misalignment between the mask A and the mask B. Accordingly, an alignment margin having a size expected from the alignment accuracy of the stepper is usually set.
  • the mask A in order to form the contact hole 10 s at a desired location (in the opening of the channel layer 6) even when misalignment occurs in the mask B for forming the contact hole 10 s, It is necessary to design the mask A so that the size of the opening is larger than the contact hole 10s by the alignment margin. That is, the distance from the contact hole 10s to the channel layer 6 is increased by the alignment margin.
  • the positional relationship between the gate electrode 8 and the source region 4 is determined by the characteristics of the power device, the distance between them cannot be increased.
  • the total chip area (here, the unit cell area) increases.
  • the present invention has been made in view of the above circumstances, and its purpose is to form a good contact with a silicon carbide layer without deteriorating element characteristics in a semiconductor element using silicon carbide, The purpose is to keep the chip area small.
  • a semiconductor element of the present invention includes a silicon carbide substrate, a first silicon carbide layer disposed on the surface of the silicon carbide substrate, and a second carbonization disposed on a partial region of the surface of the first silicon carbide layer.
  • a conductive layer disposed in a portion, wherein the metal silicide layer is provided in contact with an inner wall of the opening, and the conductive layer is electrically connected to the first silicon carbide layer via the metal silicide layer.
  • the metal silicide layer is in contact with the second silicon carbide layer.
  • the first silicon carbide layer is in contact with the first region of the first conductivity type disposed in the first silicon carbide layer, and in the first silicon carbide layer.
  • the second region of the second conductivity type is disposed, and the region of the first silicon carbide layer in which neither the first region nor the second region is disposed is the second conductivity type second region.
  • the metal silicide layer is in contact with the second region.
  • the semiconductor device may further include a gate insulating film provided on the second silicon carbide layer and a gate electrode disposed on the gate insulating film.
  • the thickness of the metal silicide layer is greater than twice and less than or equal to four times the thickness of the second silicon carbide layer.
  • the metal silicide layer may be a Ni silicide layer containing carbon.
  • a width w2 of a portion of the metal silicide layer in contact with the first or second silicon carbide layer is not less than a width w1 of the opening.
  • the width difference w2-w1 is 0 or more and 200 nm or less.
  • a side surface of the metal silicide layer is in contact with the second silicon carbide layer, and a lower surface of the metal silicide layer is not in contact with the second silicon carbide layer.
  • the metal silicide layer and the second silicon carbide layer are in contact with each other only on the side surfaces.
  • the first and second regions are disposed on a surface region of the first silicon carbide layer, and the second region is disposed on the surface of the first silicon carbide layer so as to be surrounded by the first region. It may be.
  • the second region is disposed in a surface region of the first silicon carbide layer, the first region is disposed below the second region, penetrates the second region and the first region, and You may have further the trench which reaches 3 area
  • the method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device having a silicon carbide layer, wherein (A) a step of preparing a silicon carbide substrate having a first silicon carbide layer formed on the surface; (B) Forming a second silicon carbide layer on the first silicon carbide layer; and (C) having an opening exposing a part of the surface of the second silicon carbide layer on the second silicon carbide layer. Forming an interlayer insulating film; (D) forming a metal film on the exposed surface of the second silicon carbide layer in the opening of the interlayer insulating film; and (E) the metal film.
  • the first silicon carbide layer is electrically connected to the opening through the metal silicide layer. And forming a connecting conductive layer.
  • the metal contained in the metal film is diffused and silicided into the second silicon carbide layer and the first silicon carbide layer, whereby the metal silicide layer is formed. It is formed.
  • the thickness of the metal film is larger than the thickness of the second silicon carbide layer and twice or less.
  • the step (C) includes a step (C1) of forming the interlayer insulating film on the second silicon carbide layer, and a step (C2) of forming the opening in the interlayer insulating film.
  • the second silicon carbide layer is not etched before the step (C2).
  • the step (C2) includes a step of etching a surface portion of the second silicon carbide layer exposed by the opening.
  • the thickness of the other silicon carbide layer after the etching is 1 ⁇ 2 or less of the thickness of the metal film.
  • the metal film may be a Ni film.
  • the first and second silicon carbide layers are of a second conductivity type, and the first silicon carbide layer has a first conductivity between the step (A) and the step (B).
  • the second silicon carbide layer between the step (G) of forming the body region of the mold and the source region of the second conductivity type in contact with the body region, and between the step (B) and the step (C).
  • the present invention in a semiconductor element using silicon carbide, it is possible to ensure good contact with the silicon carbide layer. In addition, since the margin for mask alignment can be reduced, the chip area can be reduced as compared with the prior art.
  • the present invention when the present invention is applied to a storage channel type MISFET, good ohmic contact is formed between the metal silicide layer serving as the source electrode and the source region while suppressing an increase in on-resistance due to the overetching of the source region. it can. Further, the chip area (unit cell area) can be reduced as compared with the conventional case.
  • (A) And (b) is a typical sectional view and a top view of a semiconductor device of a 1st embodiment by the present invention, respectively.
  • (A)-(c) is process sectional drawing for demonstrating the manufacturing method of the semiconductor element of 1st Embodiment by this invention. It is typical sectional drawing of the other semiconductor element of 1st Embodiment by this invention.
  • (A)-(c) is process sectional drawing for demonstrating the other manufacturing method of the semiconductor element of 1st Embodiment by this invention.
  • (A)-(c) is process sectional drawing for demonstrating the manufacturing method of the conventional vertical MOSFET.
  • (D)-(f) is process sectional drawing for demonstrating the manufacturing method of the conventional vertical MOSFET.
  • FIGS. 7A and 7B are a cross-sectional view and a plan view, respectively, illustrating a conventional vertical MOSFET manufactured by the method of FIGS. (A)-(c) is process sectional drawing for demonstrating the manufacturing method of the vertical MOSFET disclosed by patent document 2.
  • FIG. It is sectional drawing which shows an example of the trench type MISFET of embodiment by this invention.
  • (A) and (b) are schematic diagrams for explaining the concentration profiles in the depth direction of the cross section along the II ′ and II-II ′ lines of the metal silicide layer 11 shown in FIG. 1, respectively. is there.
  • (A) and (b) are schematic diagrams for explaining the concentration profiles in the depth direction of the cross section along the II ′ and II-II ′ lines of the conventional metal silicide layer shown in FIG. 8, respectively. It is.
  • the semiconductor element of this embodiment is a vertical MISFET using silicon carbide, and has a structure in which a plurality of unit cells are arranged.
  • FIG. 1A is a schematic cross-sectional view of a vertical MISFET using silicon carbide of the present embodiment, in which one unit cell among a plurality of unit cells and a part of a unit cell adjacent thereto are shown. A cross section is shown.
  • FIG. 1B is a plan view showing the silicon carbide layer surface of one unit cell in the vertical MISFET.
  • Each unit cell of the vertical MISFET has a silicon carbide layer (also referred to as “first silicon carbide layer”) 2 formed by epitaxial growth on the main surface of a SiC substrate (here, n-type SiC substrate) 1 and silicon carbide.
  • Channel layer 6 formed on layer 2, gate electrode 8 provided on channel layer 6 via gate insulating film 7, source electrode 11 in contact with the surface of silicon carbide layer 2, SiC substrate 1 And a drain electrode 14 provided on the back surface of the substrate.
  • Channel layer (also referred to as “second silicon carbide layer”) 6 is an epitaxial layer containing, for example, n-type silicon carbide.
  • the source electrode 11 is a layer containing metal silicide (here, Ni silicide layer).
  • silicon carbide layer 2 is formed in the surface layer portion of silicon carbide layer 2 and has a body region (also referred to as a first region) 3 having a conductivity type (here, p-type) different from that of SiC substrate 1. And an n-type source region (also referred to as a second region) 4 in contact with the body region 3.
  • the source region 4 contains an n-type impurity at a high concentration.
  • body region 3 and source region 4 are arranged in the surface region of silicon carbide layer 2, and source region 4 is surrounded by body region 3 on the surface of silicon carbide layer 2.
  • a p + contact region 5 containing a p-type impurity at a higher concentration than the body region 3 is formed inside the body region 3.
  • a portion of silicon carbide layer 2 where none of body region 3, source region 4, and contact region 5 is formed includes drift region (also referred to as a third region) 2 d.
  • Drift region 2d is, for example, an n ⁇ -type silicon carbide layer containing n-type impurities at a lower concentration than SiC substrate 1.
  • Body region 3, source region 4 and contact region 5 are formed by a step of implanting impurities into silicon carbide layer 2 and a high-temperature heat treatment (activation annealing) step of activating the impurities implanted into silicon carbide layer 2. It is formed.
  • the source region 4 and the drift region 2d are connected via the channel layer 6.
  • Channel layer 6 is, for example, a silicon carbide layer formed on silicon carbide layer 2 by epitaxial growth. Further, the contact region 5 and the source region 4 are in ohmic contact with the Ni silicide layer 11, respectively. Therefore, the body region 3 is electrically connected to the Ni silicide layer 11 through the contact region 5.
  • the gate insulating film 7 is a thermal oxide film (SiO 2 film) formed by, for example, thermally oxidizing the surface of the channel layer 6.
  • the gate electrode 8 is formed using, for example, conductive polysilicon.
  • the gate electrode 8 is covered with an interlayer insulating film 9.
  • an opening (contact hole) 10s for forming a source contact and an opening (contact hole) 10g for forming a gate contact are formed.
  • a conductive layer (source wiring) 12 is provided in the contact hole 10 s and on the interlayer insulating film 9.
  • the Ni silicide layers 11 in each unit cell are connected in parallel by a source wiring 12.
  • a conductive layer (gate wiring) 13 to be a gate wiring is provided in the contact hole 10g and on the interlayer insulating film 9. Thereby, the gate electrode 8 is electrically connected to the gate wiring 13.
  • the Ni silicide layer 11 is formed by reacting the Ni film and the channel layer in the contact hole 10s. Therefore, the Ni silicide layer 11 is in contact with the inner wall of the contact hole 10 s and the channel layer 6. Further, the Ni silicide layer 11 contains carbon (C) contained in the silicon carbide layer 2 and the channel layer 6 in addition to Ni and Si.
  • the Ni silicide layer 11 further includes second conductivity type impurities (for example, n-type impurities such as nitrogen and P) contained in the channel layer 6, and second conductivity type contained in the source region 4 of the silicon carbide layer 2. And a first conductivity type impurity (p-type impurity such as Al) contained in the contact region 5.
  • concentration profiles of these impurities in the depth direction reflect the concentration profiles of the channel layer 6 and the silicon carbide layer 2 before silicidation. A specific profile will be described later.
  • FIGS. 2A to 2C are schematic process cross-sectional views showing a method for manufacturing a semiconductor device of this embodiment.
  • epitaxial growth is performed on the main surface of the low-resistance n-type SiC substrate 1 in the same manner as described above with reference to FIGS. 5 (a) to 5 (c) and FIGS. 6 (d) and (e).
  • Silicon carbide layer 2 is formed, and p-type body region 3, source region 4 and p + contact region 5 are formed in silicon carbide layer 2.
  • annealing is performed at 1700 ° C. for about 30 minutes in an inert gas atmosphere, and the p-type body region 3, the source region 4 and the p + contact region 5 are electrically activated.
  • channel layer 6 containing n-type silicon carbide is formed on silicon carbide layer 2 by epitaxial growth.
  • the thickness of the body region 3 (depth from the surface of the silicon carbide layer 2 to the lower end of the body region 3) is 500 to 2000 nm (for example, 1000 nm), and the thickness of the source region 4 is 150 to 600 nm (for example, 300 nm), and the thickness of the channel layer 6 is 10 to 200 nm (for example, 100 nm). Further, the average impurity concentration (for example, nitrogen concentration) in the channel layer 6 is adjusted to be in the range of 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the channel layer 6 may be a single layer or may have a laminated structure.
  • the gate insulating film 7 and the gate electrode 8 are formed on the channel layer 6 without processing the channel layer 6.
  • a thermal oxide film is formed by thermally oxidizing the surface of the channel layer 6 at a temperature of 1100 ° C.
  • a single-layer or multilayer insulating film may be deposited on the channel layer 16.
  • a conductive film such as a low resistance polysilicon film or a metal film is formed on the thermal oxide film.
  • a resist layer 42 is deposited on the conductive film, and the thermal oxide film and the conductive film are patterned by dry etching using the resist layer 42 as a mask. Thereby, the gate oxide film 7 is obtained from the thermal oxide film, and the gate electrode 8 is obtained from the conductive film.
  • an interlayer insulating film 9 is deposited on the entire surface of the substrate 1 as shown in FIG.
  • a resist layer 43 having an opening is formed on the interlayer insulating film 9.
  • a contact hole 10 s exposing a part of the surface of the channel layer 6 on the surface of the channel layer 6 and a portion located on the contact region 5 is formed in the interlayer insulating film 9 by dry etching.
  • the surface portion of the channel layer 6 may be removed by overetching or the like, but it is preferable to adjust the etching conditions so that the source region 4 and the p + contact region 5 are not etched. This is because if the source region 4 is thin, the on-resistance of the MISFET may be high, and if the p + contact region 5 is thin, the switching speed may be low.
  • Ni (nickel) film 51 is deposited on the interlayer insulating film 9 and inside the contact hole 10s as shown in FIG.
  • the thickness of the Ni film 51 is preferably 10 nm or more and 200 nm or less, for example, 100 nm.
  • Ni silicide layer 11 is formed by diffusion of Ni into the channel layer 6. Therefore, the Ni silicide layer 11 is larger than the thickness of the reacted portion of the Ni film 51. Ni diffuses to the surface portions of the source region 4 and the p + contact region 5 under the channel layer 6 to be silicided. As a result, a good ohmic junction is formed between the Ni silicide layer 11 and the p + contact region 5 and the source region 4.
  • the upper part of the Ni silicide layer 11 in this embodiment is in contact with the inner wall of the contact hole 10s.
  • the shape of the upper surface (the surface in contact with the source wiring) of the Ni silicide layer 11 can be adjusted by the shape of the contact hole 10 s formed in the interlayer insulating film 9.
  • the side wall (side surface) of the Ni silicide layer 11 is in contact with the channel layer 6 (here, the channel layer 6 and the source region 4).
  • the side surface of the Ni silicide layer 11 is in contact with the channel layer 6, and the lower surface is not in contact with the channel layer 6. This is preferable because the entire lower surface of the Ni silicide layer 11 can be brought into contact with the silicon carbide layer 2.
  • the Ni silicide layer 11 and the channel layer 6 may be in contact with each other only on the side surfaces.
  • Ni may diffuse not only in the silicon carbide layer 2 downward but also in the lateral direction.
  • the width w2 of the portion of the Ni silicide layer 11 surrounded by the channel layer 6 and the source region 4 in the cross section perpendicular to the main surface of the SiC substrate 1 is the contact hole.
  • the width is greater than 10s (ie, the width of the upper surface of the Ni silicide layer 11) w1.
  • the width w2 when the widths of the Ni silicide layer 11 that are in contact with the channel layer 6 and the silicon carbide layer 2 are different from each other, the larger one is defined as the width w2.
  • the portion of the Ni film 51 that did not react with silicon carbide is removed.
  • the source wiring 12, the gate wiring 13, and the drain electrode 14 are formed by a known method to obtain the MISFET shown in FIG.
  • the annealing conditions (temperature and time) for forming the Ni silicide layer 11 are not limited to the above conditions, but the annealing temperature was deposited on the channel layer 6 in the contact hole 10s. It is preferable to raise to a temperature at which Ni completely reacts. If the thickness of the Ni film 51 is 10 nm or more and 200 nm or less, the annealing temperature is, for example, 850 ° C. or more and 1150 ° C. or less. When all of the deposited Ni reacts with silicon carbide, silicon carbide having substantially the same thickness as Ni is used for the reaction, so the Ni silicide layer 11 having a thickness approximately twice the thickness of the deposited Ni film 51. Is formed. Therefore, the thickness of the silicon carbide that reacts with Ni and the thickness of the Ni silicide layer 11 after the reaction are more easily controlled by selecting the heat treatment conditions (for example, temperature) so that all of the Ni reacts with silicon carbide. it can.
  • the heat treatment conditions for example, temperature
  • the thickness of the Ni film 51 is preferably larger than the thickness of the channel layer 6.
  • the Ni film 51 is made thicker than 100 nm, the channel layer 6 is reacted with Ni in the thickness direction, and the source region 4 and the p + contact region 5 thereunder are reacted.
  • the surface portion can be reacted with Ni more reliably. Thereby, an ohmic junction can be more reliably formed between the Ni silicide layer 11 and the source region 4 and the p + contact region 5.
  • the source region 4 and the p + contact region 5 react with Ni by an amount corresponding to the difference ⁇ D between the thickness of the Ni film 51 and the thickness of the channel layer 6. It becomes a part of the silicide layer 11. As a result, the thickness of the source region 4 and the p + contact region 5 is reduced by the thickness corresponding to ⁇ D. Therefore, if the Ni film 51 is too thick, the source region 4 and the p + contact region 5 may be thinned to deteriorate the device characteristics.
  • the thickness of the Ni film 51 is preferably less than or equal to twice the thickness of the channel layer 6.
  • the thickness of the source region 4 and the p + contact region 5 that reacts with Ni can be suppressed, so that the thickness of the source region 4 and the p + contact region 5 can be sufficiently ensured.
  • the “thickness of the channel layer 6” here means the thickness of the channel layer 6 when deposited on the silicon carbide layer 2.
  • the thickness of the Ni film 51 is the thickness of the channel layer 6 before being half-etched. It is preferable that it is larger than that and twice or less.
  • the thickness of the Ni silicide layer 11 obtained in this embodiment is approximately twice the thickness of the Ni film 51. As described above, if the thickness of the Ni film 51 is larger than the thickness of the channel layer 6 and not more than twice the thickness of the channel layer 6, the thickness of the Ni silicide layer 11 is the thickness of the channel layer 6. It is larger than 2 times and 4 times or less.
  • the source region 4 and the p + contact region 5 can be prevented from being thinned by overetching.
  • a good ohmic junction can be formed between source region 4 and p + contact region 5 in silicon carbide layer 2 and Ni silicide layer 11.
  • the mask A for etching the channel layer 6 is used. Therefore, it is not necessary to consider the above alignment margin. Therefore, the area of the source region 4 can be made smaller than before, and the chip area can be reduced.
  • the channel layer 6 is silicided in the thickness direction.
  • the obtained metal silicide layer 11 has the following concentration profile in the depth direction, reflecting the concentration profile before silicidation.
  • FIG. 12A shows Ni and p-type impurities (cross-section perpendicular to the substrate 1 in a portion of the metal silicide layer 11 located on the contact region 5) along the line II ′ shown in FIG. It is a figure which shows an example of the density
  • the impurity concentration of the channel layer 6 is reflected and the n-type impurity is contained at a low concentration and the p-type impurity is hardly contained.
  • p-type impurities are contained at a high concentration reflecting the impurity concentration of the contact region 5.
  • the depth dc corresponds to the thickness of the channel layer 6.
  • FIG. 12B shows Ni and n-type cross sections taken along line II-II ′ shown in FIG. 1 (cross sections perpendicular to the substrate 1 in the portion of the metal silicide layer 11 located on the source region 4).
  • N concentration profile of an impurity
  • the concentration profile of the obtained metal silicide layer reflects the concentration profile of the surface portion of the silicon carbide layer.
  • FIG. 4 In the case of the conventional semiconductor device shown in FIG. 8, in the cross section perpendicular to the substrate of the metal silicide layer located on the contact region (cross section taken along the line II ′ of FIG. 8), FIG. As shown in FIG. 4, the metal silicide layer contains p-type impurities at a concentration similar to the impurity concentration of the contact region from the upper surface to the lower surface. Almost no n-type impurities are contained. Further, in the cross section perpendicular to the substrate in the portion of the metal silicide layer located on the source region (the cross section taken along the line II-II ′ in FIG. 8), as shown in FIG.
  • an n-type impurity is contained at a concentration similar to the impurity concentration of the source region.
  • a large step as shown in FIG. 12B does not occur in the concentration profile of the n-type impurity in the thickness direction.
  • 12 and 13 are schematic diagrams for explaining the characteristics of the concentration profile of the metal silicide layer 11 in the present embodiment, and do not show a strict concentration profile.
  • the method of the present embodiment is not limited to the method described above with reference to FIG. 4A to 4C are process cross-sectional views for explaining another method of the present embodiment.
  • the surface portion of the channel layer 6 may also be etched (half etching).
  • the thickness of the channel layer 6 after being etched is, for example, 50 nm. However, as described above, it is preferable to control the etching conditions so as not to etch the silicon carbide layer 2.
  • a Ni (nickel) film 51 is deposited on the interlayer insulating film 9 and inside the contact hole 10s.
  • the thickness of the Ni film 51 is, for example, 50 nm.
  • annealing is performed for about 1 minute at a temperature of 950 ° C. in a nitrogen atmosphere.
  • silicon carbide in the channel layer 6 reacts with Ni at the interface between the channel layer 6 and the Ni film 51 to form the Ni silicide layer 11.
  • the Ni film 51 is silicided almost completely, and the Ni silicide layer 11 having a thickness of, for example, 100 nm is formed.
  • the thickness of the Ni film 51 is set to be larger than the thickness of the channel layer 6 that is thinned by the etching, so that not only the thinned portion of the channel layer 6 is used.
  • Ni can be diffused to the surface portions of the source region 4 and the p + contact region 5. Therefore, a good ohmic junction is formed between the Ni silicide layer 11 and the p + contact region 5 and the source region 4. Further, the sidewall of the Ni silicide layer 11 is in contact with the channel layer 6.
  • the portion of the Ni film 51 that has not reacted with silicon carbide is removed. Further, the source wiring 12, the gate wiring 13, and the drain electrode 14 are formed by a known method to obtain the MISFET shown in FIG.
  • the etching conditions so that the thickness of the channel layer 6 after the surface portion is removed becomes 1/2 or less of the thickness of the Ni film 51. Thereafter, when the heat treatment conditions are adjusted so that substantially all of the deposited Ni is silicided, the Ni silicide layer 11 obtained by the heat treatment and the source region 4 and the p + contact region 5 are more reliably and reliably An ohmic junction can be formed.
  • the thickness of the Ni silicide layer 11 can be made smaller than the method described above with reference to FIG.
  • the level of the upper surface of the Ni silicide layer 11 is lower than when the channel layer 6 is not half-etched.
  • the upper surface of the Ni silicide layer 11 is lower than the upper surface of the channel layer 6 depending on the thickness of the Ni film 51 and the channel layer 6 and the etching amount of the silicon carbide layer 2 in the step shown in FIG. There is.
  • the channel layer 6 and the Ni film 51 are reacted to form the Ni silicide layer 11, but instead, other metal materials that can form an ohmic junction with the silicon carbide layer 11 (for example, Ti, A film composed of Co) and the channel layer 6 may be reacted to form another metal silicide layer. Even in this case, the same effect as described above can be obtained.
  • the p + type contact region 5 having a carrier concentration higher than that of the body region 3 is provided, but the p + contact region 5 is formed. It does not have to be. For example, if the carrier concentration of the body region 3 is sufficiently high, the high concentration p + contact region 5 may not be formed.
  • the SiC substrate Although a 4H-SiC substrate was used as the SiC substrate, other crystal planes or other polytype SiC substrates may be used.
  • the silicon carbide layer 2 may be formed on the Si surface
  • the drain electrode 14 may be formed on the C surface
  • the silicon carbide layer 2 on the C surface
  • the semiconductor element of the above embodiment is an n-channel type, but may be a p-channel type.
  • a p-channel type semiconductor element MISFET
  • the conductivity type of SiC substrate 1, drift region 2d, source region 4 and channel layer 6 is p-type
  • the conductivity type of body region 3 and contact region 5 is n-type.
  • the semiconductor element of the present invention may be a trench type MISFET.
  • FIG. 11 is a cross-sectional view showing an example of a trench type MISFET according to the present invention. For the sake of simplicity, the same components as those in FIG.
  • the source region 4 is disposed in the surface region of the silicon carbide layer 2.
  • the body region 3 is disposed below the source region 4 and in contact with the source region 4.
  • Silicon carbide layer 2 has a trench 2t that penetrates source region 4 and body region 3 and reaches drift region 2d.
  • trench 2 t channel layer 6 is formed so as to cover the side wall of source region 4 and the side wall of body region 3.
  • a gate electrode 8 is provided on the channel layer 6 via a gate insulating film 7 in the trench 2t.
  • Other configurations are the same as those shown in FIG.
  • Such a trench MISFET can also be formed by the same method as described above with reference to FIG. Specifically, trench 2t is formed in silicon carbide layer 2 in which body region 3, source region 4 and contact region 5 are formed. Next, the channel layer 6, the gate insulating film 7, and the gate electrode 8 are formed in this order in the trench 2t. Thereafter, the gate insulating film 7 and the gate electrode 8 are patterned without processing the channel layer 6. At this time, only the surface portion of the channel layer 6 may be etched. Subsequently, an interlayer insulating film 9 is formed on the channel layer 6 and the gate electrode 8. A contact hole that exposes a part of the surface of the channel layer 6 is formed in the interlayer insulating film 9. Thereafter, as in the step shown in FIG. 2C, a Ni film is deposited on the exposed surface of the channel layer 6 and annealed to form the metal silicide layer 11.
  • the semiconductor element of the present invention is not limited to a vertical MISFET, and may be a horizontal MISFET. Further, the semiconductor device may not be a MISFET, and may be various semiconductor devices having an electrode electrically connected to the silicon carbide layer.
  • the MISFET is manufactured using the SiC substrate 1 having the same conductivity type as that of the silicon carbide layer 2, but an insulated gate bipolar transistor (Insulated Gate Gate) is used using a SiC substrate having a conductivity type different from that of the silicon carbide layer 2.
  • Bipolar Transistor IGBT
  • the metal silicide layer is formed using the additional silicon carbide layer formed on the silicon carbide layer in the opening formed in the interlayer insulating film.
  • the present invention can be widely applied to a semiconductor element having an electrode on a silicon carbide layer and an apparatus including the same.
  • the present invention can be suitably used particularly for a storage channel type MISFET.
  • an electrode (metal silicide layer) well bonded to the source region can be formed by reacting the metal deposited on the channel layer with the channel layer.
  • an increase in on-resistance can be suppressed.
  • the margin for mask alignment can be reduced, the chip area can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Disclosed is a semiconductor element which is provided with: a first silicon carbide layer (2) formed on the surface of a silicon carbide substrate (1); a second silicon carbide layer (6) formed on a region of a part of the surface of the first silicon carbide layer (2); a metal silicide layer (11), which is formed on the first silicon carbide layer (2) and is in contact with the first silicon carbide layer (2); an interlayer insulating film (9), which is provided on the second silicon carbide layer (6) and has an opening (10s); and a conductive layer (12) formed in the opening (10s). The metal silicide layer (11) is provided in contact with the inner wall of the opening (10s), the conductive layer (12) is electrically connected with the first silicon carbide layer (2) with the metal silicide layer (11) therebetween, and the metal silicide layer (11) is in contact with the second silicon carbide layer (6). With such configuration, an excellent contact to the silicon carbide layer is formed, and the area of a chip is reduced.

Description

半導体素子およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、炭化珪素を用いた半導体素子およびその製造方法に関する。 The present invention relates to a semiconductor element using silicon carbide and a method for manufacturing the same.
 炭化珪素(シリコンカーバイド:SiC)は、珪素(Si)に比べてバンドギャップの大きな高硬度の半導体材料であり、パワー素子(パワーデバイスともいう)、耐環境素子、高温動作素子、高周波素子等の種々の半導体装置に応用されている。なかでも、スイッチング素子や整流素子などのパワーデバイスへの応用が注目されている。 Silicon carbide (silicon carbide: SiC) is a high-hardness semiconductor material having a larger band gap than silicon (Si), such as power elements (also called power devices), environmental elements, high-temperature operating elements, and high-frequency elements. It is applied to various semiconductor devices. Especially, application to power devices, such as a switching element and a rectifier, attracts attention.
 SiCを用いたパワーデバイスの代表的なスイッチング素子として、金属―絶縁体―半導体電界効果トランジスタ(Metal-Insulator-Semiconductor Field Effect Transistor:MISFET)と金属―半導体電界効果トランジスタ(Metal-Semiconductor Field Effect Transistor:MESFET)がある。このようなスイッチング素子では、ゲート電極に印加する電圧によって、数A(アンペア)以上のドレイン電流が流れるオン状態と、ドレイン電流がゼロとなるオフ状態とを切り替えることができる。また、オフ状態のとき、数百V以上の高耐圧を実現できる。 Typical switching elements of power devices using SiC include metal-insulator-semiconductor field effect transistors (Metal-Insulator-Semiconductors, MISFETs) and metal-semiconductor field-effect transistors (Metal-Semiconductor Field-Effect Transistors: MESFET). In such a switching element, the voltage applied to the gate electrode can be switched between an on state in which a drain current of several A (amperes) or more flows and an off state in which the drain current is zero. Further, a high breakdown voltage of several hundred volts or more can be realized in the off state.
 また、代表的な整流素子として、ショットキーダイオードやpnダイオードなどがある。これらは、大電流、高耐圧を実現する整流素子として期待されている。 Also, as a typical rectifying element, there are a Schottky diode and a pn diode. These are expected as rectifying elements that realize a large current and a high breakdown voltage.
 SiCは、Siよりも高い絶縁破壊電界および熱伝導度を有するので、SiCを用いたパワーデバイス(SiCパワーデバイス)では、Siパワーデバイスよりも高耐圧化、低損失化が容易である。このため、Siパワーデバイスと同一性能を実現させる場合、Siパワーデバイスよりも面積および厚さを大幅に縮小することが可能となる。 Since SiC has a higher dielectric breakdown electric field and thermal conductivity than Si, a power device using SiC (SiC power device) can easily achieve higher breakdown voltage and lower loss than Si power devices. For this reason, when realizing the same performance as the Si power device, the area and thickness can be greatly reduced as compared with the Si power device.
 SiCを用いたスイッチング素子の1つである縦型金属―酸化物―半導体電界効果トランジスタ(Metal-Oxide-Semiconductor Field Effect Transistor:MOSFET)の構造は、例えば特許文献1や特許文献2に開示されている。以下、図面を参照しながら、これらの文献に開示された構造を有する縦型MOSFETの製造方法を説明する。 The structure of a vertical metal-oxide-semiconductor field effect transistor (Metal-Oxide-Semiconductor), which is one of switching elements using SiC, is disclosed in, for example, Patent Document 1 and Patent Document 2. Yes. Hereinafter, a method for manufacturing a vertical MOSFET having the structure disclosed in these documents will be described with reference to the drawings.
 図5~図8は、プレーナ型のnチャネル縦型パワーMOSFETの製造方法を説明するための模式的な工程断面図である。MOSFETは、典型的には複数のユニットセルを備えている。これらの図は、複数のユニットセルのうち1個のユニットセルと、それと隣接するユニットセルの一部の断面とを示している。 5 to 8 are schematic process cross-sectional views for explaining a method of manufacturing a planar n-channel vertical power MOSFET. A MOSFET typically includes a plurality of unit cells. These drawings show one unit cell among a plurality of unit cells and a cross section of a part of a unit cell adjacent to the unit cell.
 まず、図5(a)に示すように、低抵抗のn型SiC基板1の主面上に、エピタキシャル成長によりn型SiC基板1と同様の結晶構造を持つ炭化珪素層2を形成する。 First, as shown in FIG. 5A, a silicon carbide layer 2 having the same crystal structure as that of the n-type SiC substrate 1 is formed on the main surface of the low-resistance n-type SiC substrate 1 by epitaxial growth.
 次に、図5(b)に示すように、炭化珪素層2の所定領域上にシリコン酸化膜により構成されるマスク層31を配置し、これをマスクとして、p型の不純物イオン(例えばAl(アルミニウム)イオン)を炭化珪素層2に注入する。これにより、炭化珪素層2にp型ボディ領域(ウェル領域ともいう。)3が形成される。炭化珪素層2のうちp型ボディ領域3が形成されなかった領域は、n型ドリフト領域2dとなる。 Next, as shown in FIG. 5B, a mask layer 31 made of a silicon oxide film is disposed on a predetermined region of the silicon carbide layer 2, and using this as a mask, p-type impurity ions (for example, Al ( Aluminum) ions) are implanted into the silicon carbide layer 2. Thereby, p-type body region (also referred to as well region) 3 is formed in silicon carbide layer 2. The region of silicon carbide layer 2 where p type body region 3 is not formed becomes n type drift region 2d.
 マスク層31を除去した後、図5(c)に示すように、炭化珪素層2の所定領域上にシリコン酸化膜により構成されるマスク層32を配置し、これをマスクとしてn型の不純物イオン(例えばN(窒素)イオン)を注入することにより、p型ボディ領域3内にソース領域4を形成する。 After removing mask layer 31, as shown in FIG. 5C, a mask layer 32 made of a silicon oxide film is arranged on a predetermined region of silicon carbide layer 2, and n-type impurity ions are used as a mask. By implanting (for example, N (nitrogen) ions), the source region 4 is formed in the p-type body region 3.
 マスク層32を除去した後、図6(d)に示すように、炭化珪素層2の所定領域上にシリコン酸化膜により構成されるマスク層33を配置し、これをマスクとしてp型の不純物イオン(例えばAlイオン)を注入することにより、ボディ領域3よりも高い濃度でp型不純物を含むp+コンタクト領域5を形成する。 After removing mask layer 32, as shown in FIG. 6D, mask layer 33 made of a silicon oxide film is arranged on a predetermined region of silicon carbide layer 2, and p-type impurity ions are used as a mask. By implanting (for example, Al ions), a p + contact region 5 containing p-type impurities at a higher concentration than the body region 3 is formed.
 マスク層33を除去した後、図示しないが、不活性ガス雰囲気中、1700℃の温度で30分程度のアニール処理を行う。アニール処理によって、p型ボディ領域3、ソース領域4およびp+コンタクト領域5に注入された不純物が活性化される。 After removing the mask layer 33, although not shown, an annealing process is performed in an inert gas atmosphere at a temperature of 1700 ° C. for about 30 minutes. By the annealing treatment, the impurities implanted into p type body region 3, source region 4, and p + contact region 5 are activated.
 次に、図6(e)に示すように、炭化珪素層2上に、炭化珪素により構成されるチャネル層6をエピタキシャル成長により形成する。 Next, as shown in FIG. 6E, a channel layer 6 made of silicon carbide is formed on the silicon carbide layer 2 by epitaxial growth.
 続いて、図6(f)に示すように、チャネル層6の所定領域上にレジスト層41を形成する。この後、ドライエッチングにより、チャネル層6のうちレジスト層41で覆われていない部分を除去する。なお、ドライエッチングの際に、ソース領域4及びp+コンタクト領域5の表面のうちレジスト層41から露出した部分にダメージが入り、表面荒れなどが発生する場合がある。このような表面荒れを低減するために、図示しないが、上記露出部分の熱酸化を行い、熱酸化によって形成された酸化膜を除去してもよい。 Subsequently, a resist layer 41 is formed on a predetermined region of the channel layer 6 as shown in FIG. Thereafter, the portion of the channel layer 6 that is not covered with the resist layer 41 is removed by dry etching. During dry etching, damage may occur on the surface of the source region 4 and the p + contact region 5 exposed from the resist layer 41, resulting in surface roughness. In order to reduce such surface roughness, although not shown, the exposed portion may be thermally oxidized to remove the oxide film formed by thermal oxidation.
 レジスト層41を除去した後、図7(g)に示すように、チャネル層6の上にゲート絶縁膜7およびゲート電極8を形成する。具体的には、まず、チャネル層6および炭化珪素層2上に、絶縁膜および導電膜をこの順で堆積し、導電膜上の所定領域にレジスト層42を形成する。この後、レジスト層42をマスクとして、絶縁膜および導電膜のドライエッチングを行う。これにより、ゲート絶縁膜7およびゲート電極8が得られる。 After removing the resist layer 41, a gate insulating film 7 and a gate electrode 8 are formed on the channel layer 6 as shown in FIG. Specifically, first, an insulating film and a conductive film are deposited in this order on the channel layer 6 and the silicon carbide layer 2, and a resist layer 42 is formed in a predetermined region on the conductive film. Thereafter, dry etching of the insulating film and the conductive film is performed using the resist layer 42 as a mask. Thereby, the gate insulating film 7 and the gate electrode 8 are obtained.
 レジスト層42を除去した後、図7(h)に示すように、基板1の全面に層間絶縁膜9を堆積し、その上に、開口部を有するレジスト層43を形成する。次いで、レジスト層43をマスクとして、層間絶縁膜9のドライエッチングを行う。これにより、層間絶縁膜9に、ソース領域4の一部およびコンタクト領域5に達するコンタクトホール10sを形成する。 After removing the resist layer 42, as shown in FIG. 7H, an interlayer insulating film 9 is deposited on the entire surface of the substrate 1, and a resist layer 43 having an opening is formed thereon. Next, dry etching of the interlayer insulating film 9 is performed using the resist layer 43 as a mask. Thereby, a contact hole 10 s reaching a part of the source region 4 and the contact region 5 is formed in the interlayer insulating film 9.
 レジスト層43を除去した後、図7(i)に示すように、層間絶縁膜9上およびコンタクトホール10sの内部にNi(ニッケル)膜51を蒸着する。この状態で、窒素雰囲気中、950℃の温度で1分間程度アニール処理を行うことにより、コンタクトホール10s内において、炭化珪素層2とNi膜51とを反応させる。この結果、Niの一部が炭化珪素層2へ拡散して合金化され、Niシリサイド層11が形成される。 After removing the resist layer 43, a Ni (nickel) film 51 is deposited on the interlayer insulating film 9 and inside the contact hole 10s as shown in FIG. In this state, the silicon carbide layer 2 and the Ni film 51 are reacted in the contact hole 10 s by performing an annealing process at a temperature of 950 ° C. for about 1 minute in a nitrogen atmosphere. As a result, a part of Ni diffuses into the silicon carbide layer 2 and is alloyed, whereby the Ni silicide layer 11 is formed.
 次に、Ni膜51のうち炭化珪素層2と反応しなかった部分を除去する。この後、図8に示すように、層間絶縁膜9に、ゲート電極8に達するコンタクトホール10gを形成する。次いで、層間絶縁膜9の上、コンタクトホール10sの内部およびコンタクトホール10gの内部に配線層としてAl(アルミニウム)膜を堆積し、Al膜を適当なパターンに加工する。これにより、Al膜から、コンタクトホール10s内でNiシリサイド層11を介してソース領域4およびコンタクト領域5に接続されたソース配線12と、コンタクトホール10g内でゲート電極8に接するゲート電極配線13とを形成する。 Next, the portion of the Ni film 51 that has not reacted with the silicon carbide layer 2 is removed. Thereafter, as shown in FIG. 8, a contact hole 10 g reaching the gate electrode 8 is formed in the interlayer insulating film 9. Next, an Al (aluminum) film is deposited as a wiring layer on the interlayer insulating film 9 in the contact hole 10s and in the contact hole 10g, and the Al film is processed into an appropriate pattern. Thereby, from the Al film, the source wiring 12 connected to the source region 4 and the contact region 5 through the Ni silicide layer 11 in the contact hole 10s, and the gate electrode wiring 13 in contact with the gate electrode 8 in the contact hole 10g Form.
 さらに、n型SiC基板1の主面とは反対の面全体に、裏面電極(ドレイン電極)14を形成する。このようにして、プレーナ型のnチャネル縦型パワーMOSFETを得る。 Further, a back electrode (drain electrode) 14 is formed on the entire surface opposite to the main surface of the n-type SiC substrate 1. In this way, a planar n-channel vertical power MOSFET is obtained.
 図8に示すMOSFETは、蓄積チャネル構造を有している。オフ状態では、ゲート電極8とチャネル層6との仕事関数差およびp型ボディ領域3とチャネル層6とのpn接合による空乏化によりピンチオフする(オフ状態)。 The MOSFET shown in FIG. 8 has a storage channel structure. In the off state, pinch-off occurs due to the work function difference between the gate electrode 8 and the channel layer 6 and depletion due to the pn junction between the p-type body region 3 and the channel layer 6 (off state).
 一方、ゲート電極8に電圧を印加することによって、チャネル層6にキャリアが蓄積され、オン状態となる。オン状態では、電子は、ソース領域4からチャネル層6を経由して炭化珪素層2のドリフト領域2dに達する。この後、ドリフト領域2dを垂直に流れて、SiC基板1を経由してドレイン電極14に達する。 On the other hand, when a voltage is applied to the gate electrode 8, carriers are accumulated in the channel layer 6 to be turned on. In the on state, electrons reach the drift region 2 d of the silicon carbide layer 2 from the source region 4 through the channel layer 6. Thereafter, it flows vertically through the drift region 2 d and reaches the drain electrode 14 via the SiC substrate 1.
 また、特許文献2には、チャネル層を利用して、ソース電極となるNiシリサイド層を形成する方法が開示されている。 Further, Patent Document 2 discloses a method for forming a Ni silicide layer serving as a source electrode using a channel layer.
 図10(a)~(c)は、特許文献2に開示されたMOSFETの製造方法の一部を示す工程断面図である。簡単のため、図8と同様の構成要素には同じ参照符号を付して説明を省略する。 10A to 10C are process cross-sectional views showing a part of the MOSFET manufacturing method disclosed in Patent Document 2. FIG. For simplicity, the same components as those in FIG.
 まず、図10(a)に示すように、炭化珪素層2上にチャネル層6を形成し、炭化珪素層6の一部上にソース電極となるNi膜51を形成する。次いで、図10(b)に示すように、熱処理を施すことにより、チャネル層6とNi膜51とを反応させてNiシリサイド層11を形成する。この後、図10(c)に示すように、チャネル層6上に、ゲート絶縁膜7を介してゲート電極8を設ける。 First, as shown in FIG. 10A, a channel layer 6 is formed on the silicon carbide layer 2, and a Ni film 51 serving as a source electrode is formed on a part of the silicon carbide layer 6. Next, as shown in FIG. 10B, the heat treatment is performed to cause the channel layer 6 and the Ni film 51 to react to form the Ni silicide layer 11. Thereafter, as shown in FIG. 10C, a gate electrode 8 is provided on the channel layer 6 via a gate insulating film 7.
特許第3385938号明細書Patent No. 3,385,938 特開2005-39257号公報JP 2005-39257 A
 図5~図8に示す従来のMOSFETの製造方法は、次のような問題(第1の問題)を有している。 The conventional MOSFET manufacturing method shown in FIGS. 5 to 8 has the following problem (first problem).
 図6(f)で示す工程では、チャネル層6のうちレジスト層41で覆われていない部分を、ドライエッチングで除去する。このとき、チャネル層6と、その下の炭化珪素層2とは同じ材料により構成されているので、これらの層の間でエッチングレートに差を設けることができない。つまり、ドライエッチングの際にエンドポイントの検出により制御されたエッチングが出来ない。このため上層にあるチャネル層6のみを選択的に除去することは困難である。さらに、チャネル層6の厚さのばらつきを考慮すると、チャネル層6のうち不要な部分(チャネルが形成されない部分)を確実に除去するためには、チャネル層6の最も厚い部分が除去されるようにエッチング量を調整しなければならない。その結果、チャネル層6の下地の炭化珪素層2におけるソース領域4およびp+コンタクト領域5の表面部分が必ず削られてしまう。 In the step shown in FIG. 6F, the portion of the channel layer 6 that is not covered with the resist layer 41 is removed by dry etching. At this time, channel layer 6 and underlying silicon carbide layer 2 are made of the same material, and therefore it is not possible to provide a difference in etching rate between these layers. That is, it is impossible to perform etching controlled by detecting the end point during dry etching. For this reason, it is difficult to selectively remove only the channel layer 6 in the upper layer. Further, in consideration of the variation in the thickness of the channel layer 6, the thickest portion of the channel layer 6 is removed in order to reliably remove unnecessary portions (portions where no channel is formed) of the channel layer 6. The etching amount must be adjusted. As a result, the surface portions of source region 4 and p + contact region 5 in silicon carbide layer 2 underlying channel layer 6 are necessarily shaved.
 また、図7(h)に示す工程において、層間絶縁膜9にコンタクトホール10sを形成する場合、エッチングされる層間絶縁膜9の材料は、その下の炭化珪素層6の材料と異なるので、選択比の差を利用すれば、オーバーエッチングの量を少なくすることは可能である。しかしながら、層間絶縁膜9を貫通するコンタクトホール10sを確実に形成し、その後にコンタクトホール10s内に形成される電極を、炭化珪素層6のソース領域4およびp+コンタクト領域5に確実に電気的に接続させるためには、層間絶縁膜9にコンタクトホール10sを形成する際に、炭化珪素層6の表面部分までエッチング(オーバーエッチ)する必要がある。 Further, in the step shown in FIG. 7H, when the contact hole 10s is formed in the interlayer insulating film 9, the material of the interlayer insulating film 9 to be etched is different from the material of the silicon carbide layer 6 therebelow. If the ratio difference is used, the amount of overetching can be reduced. However, the contact hole 10s penetrating the interlayer insulating film 9 is reliably formed, and then the electrode formed in the contact hole 10s is reliably electrically connected to the source region 4 and the p + contact region 5 of the silicon carbide layer 6. Therefore, it is necessary to etch (over-etch) the surface portion of the silicon carbide layer 6 when the contact hole 10s is formed in the interlayer insulating film 9.
 この結果、得られるMOSFETでは、炭化珪素層2におけるソース領域4及びp+コンタクト領域5の厚さは、不純物注入工程で形成された際のこれらの領域4、5の厚さよりも小さくなる。 As a result, in the obtained MOSFET, the thickness of the source region 4 and the p + contact region 5 in the silicon carbide layer 2 is smaller than the thickness of these regions 4 and 5 formed in the impurity implantation process.
 図9(a)および(b)は、それぞれ、上記方法で実際に得られるMOSFETにおけるユニットセルを例示する断面図および上面図である。 FIGS. 9A and 9B are a cross-sectional view and a top view, respectively, illustrating a unit cell in a MOSFET actually obtained by the above method.
 図9に示すように、n型不純物注入工程によって形成されたソース領域4の厚さをt1とすると、ソース領域4のうちチャネル層6で覆われた部分の厚さはt1と略等しいが、図6(f)に示す工程において、ソース領域4のうちレジスト層41で覆われていなかった部分の厚さt2は、オーバーエッチングにより厚さt1よりも小さくなる。さらに、図7(h)に示す工程において、ソース領域4のうちレジスト層43で覆われていなかった部分の厚さは、オーバーエッチングにより、上記厚さt2よりも小さくなる。この後、ソース領域4の表面部分にNiシリサイド層11が形成されるので、ソース領域4はさらに薄くなる。 As shown in FIG. 9, when the thickness of the source region 4 formed by the n-type impurity implantation step is t1, the thickness of the portion of the source region 4 covered with the channel layer 6 is substantially equal to t1, In the step shown in FIG. 6F, the thickness t2 of the portion of the source region 4 that is not covered with the resist layer 41 becomes smaller than the thickness t1 due to over-etching. Further, in the step shown in FIG. 7H, the thickness of the portion of the source region 4 that is not covered with the resist layer 43 becomes smaller than the thickness t2 due to over-etching. Thereafter, since the Ni silicide layer 11 is formed on the surface portion of the source region 4, the source region 4 is further thinned.
 このようにソース領域4が薄くなると、ソース領域4の抵抗が高くなるため、MOSFETのオン抵抗が大きくなり、電力損失が大きくなる。また、チャネル層6のエッチングの際(図6(f))に除去されるソース領域4の量がさらに大きいと、コンタクトホール10sの下方において、ソース領域4(およびp+コンタクト領域5)が完全になくなってしまう場合がある。この場合、その後の工程(図7(i))において、炭化珪素層2におけるp型ボディ領域3とNi膜51とが反応してNiシリサイド層11が形成されるので、ソース配線12をソース領域4と電気的に接続できなくなり、MOSFETにドレイン電流が流れなくなる可能性もある。 Thus, when the source region 4 is thinned, the resistance of the source region 4 is increased, so that the on-resistance of the MOSFET is increased and the power loss is increased. Further, if the amount of the source region 4 removed during the etching of the channel layer 6 (FIG. 6F) is larger, the source region 4 (and the p + contact region 5) is completely below the contact hole 10s. May disappear. In this case, in the subsequent process (FIG. 7I), the p-type body region 3 in the silicon carbide layer 2 and the Ni film 51 react to form the Ni silicide layer 11, so that the source wiring 12 is replaced with the source region. 4 may not be electrically connected to the MOSFET, and the drain current may not flow through the MOSFET.
 上記の問題を防ぐためには、図5(c)に示すn型不純物注入工程において、p型ボディ領域3内に、厚さt1の大きいソース領域4を形成すればよい。しかし、炭化珪素層2に形成するp型ボディ領域3の厚さを維持したままソース領域4のみを厚くすれば、ソース領域4のパンチスルー耐圧が劣化するので、MOSFETの耐圧が低くなるおそれがある。 In order to prevent the above problem, the source region 4 having a large thickness t1 may be formed in the p-type body region 3 in the n-type impurity implantation step shown in FIG. However, if only the source region 4 is made thick while maintaining the thickness of the p-type body region 3 formed in the silicon carbide layer 2, the punch-through withstand voltage of the source region 4 is deteriorated, so that the withstand voltage of the MOSFET may be lowered. is there.
 ソース領域4を厚くするとともにp型ボディ領域3も厚くすると、十分なパンチスルー耐圧を確保できるが、MOSFETの耐圧が低下するおそれがある。MOSFETの耐圧は、p型ボディ領域3の下端とn型SiC基板1の表面との距離L(図9)およびn型SiC基板1の不純物濃度によって最終的に決まるが、p型ボディ領域3を厚くすることによって上記距離Lが小さくなると、MOSFETの耐圧を確保できなくなるからである。一方、p型ボディ領域3を厚くするとともに、炭化珪素層2を厚くすれば、設定された耐圧値に応じた距離Lを得ることができる。しかし、炭化珪素層2を厚くすると、ドリフト領域2dの抵抗が高くなるので、MOSFETのオン抵抗が高くなり、デバイスの損失が増大する可能性がある。 When the source region 4 is made thick and the p-type body region 3 is also made thick, a sufficient punch-through withstand voltage can be secured, but the withstand voltage of the MOSFET may be lowered. The breakdown voltage of the MOSFET is finally determined by the distance L between the lower end of the p-type body region 3 and the surface of the n-type SiC substrate 1 (FIG. 9) and the impurity concentration of the n-type SiC substrate 1. This is because if the distance L is reduced by increasing the thickness, the breakdown voltage of the MOSFET cannot be secured. On the other hand, if the p-type body region 3 is thickened and the silicon carbide layer 2 is thickened, the distance L corresponding to the set withstand voltage value can be obtained. However, if the silicon carbide layer 2 is thickened, the resistance of the drift region 2d is increased, so that the on-resistance of the MOSFET is increased and the device loss may be increased.
 図5~図8に示す方法は、さらに別の問題(第2の問題)も有している。 The method shown in FIGS. 5 to 8 has another problem (second problem).
 図6(f)で示す工程において、レジスト層41を形成する際に用いるマスク(以下、「マスクA」、図示せず)と、図7(h)で示すコンタクトホール10sの形成工程において、レジスト層43を形成する際に用いるマスク(以下、「マスクB」、図示せず)とは、互いに異なるパターンを有するため、マスクAとマスクBとの合わせずれを考慮する必要がある。従って、通常、ステッパーの合わせ精度から見込まれる大きさの合わせマージンが設定される。具体的には、コンタクトホール10sの形成のためのマスクBに合わせずれが発生しても、所望の場所(チャネル層6の開口部内)にコンタクトホール10sを形成するためには、チャネル層6の開口部のサイズが、合わせマージンの分だけコンタクトホール10sよりも大きくなるように、マスクAを設計する必要がある。すなわち、コンタクトホール10sからチャネル層6までの距離を、合わせマージンの分だけ大きくしておく。ここで、ゲート電極8とソース領域4との位置関係は、パワーデバイスの特性によって決まるので、これらの間の距離を大きくすることはできない。従って、合わせずれによる特性の低下を抑制するためには、マスクAとマスクBとの合わせマージン分だけソース領域4を横方向に大きくする必要があり、ソース領域4の面積が増大する。この結果、トータルチップ面積(ここではユニットセル面積)が増大する。 In the step shown in FIG. 6F, a mask (hereinafter referred to as “mask A”, not shown) used for forming the resist layer 41 and a contact hole 10s shown in FIG. Since a mask (hereinafter referred to as “mask B”, not shown) used when forming the layer 43 has a different pattern, it is necessary to consider misalignment between the mask A and the mask B. Accordingly, an alignment margin having a size expected from the alignment accuracy of the stepper is usually set. Specifically, in order to form the contact hole 10 s at a desired location (in the opening of the channel layer 6) even when misalignment occurs in the mask B for forming the contact hole 10 s, It is necessary to design the mask A so that the size of the opening is larger than the contact hole 10s by the alignment margin. That is, the distance from the contact hole 10s to the channel layer 6 is increased by the alignment margin. Here, since the positional relationship between the gate electrode 8 and the source region 4 is determined by the characteristics of the power device, the distance between them cannot be increased. Therefore, in order to suppress deterioration of characteristics due to misalignment, it is necessary to enlarge the source region 4 in the lateral direction by the alignment margin between the mask A and the mask B, and the area of the source region 4 increases. As a result, the total chip area (here, the unit cell area) increases.
 これに対し、特許文献2に開示された方法(図10)によると、チャネル層6にエッチングで開口部を設ける必要がない。このため、チャネル層6をエッチングする際にソース領域4がオーバーエッチングされることに起因する問題(第1の問題)を防ぐことができる。この結果、ソース配線とソース領域4との間で、良好なオーミック接触を形成できる。 On the other hand, according to the method disclosed in Patent Document 2 (FIG. 10), it is not necessary to provide an opening in the channel layer 6 by etching. Therefore, it is possible to prevent a problem (first problem) caused by overetching of the source region 4 when the channel layer 6 is etched. As a result, a good ohmic contact can be formed between the source wiring and the source region 4.
 しかしながら、特許文献2の製造方法によって、上述した第2の問題を解決することは困難である。特許文献2の製造方法では、Niシリサイド層11およびゲート電極8を設けた後、層間絶縁膜を形成し、これにコンタクトホールを形成する(不図示)。コンタクトホールを形成する際には、Ni膜をパターニングする際に用いたマスク(「マスクC」とする。)とは異なるマスク(「マスクD」とする。)を使用する。したがって、マスクCおよびマスクDのそれぞれについて、ステッパーの合わせ精度から見込まれる合わせマージンを設定する必要がある。具体的には、マスクCおよびマスクDそれぞれに合わせずれが発生しても、所望の位置にソースコンタクトが形成されるようにするためには、ソース領域4を、本来の設計位置よりも合わせずれが見込まれる分だけ大きくする必要がある。このように、マスク合わせのずれを考慮してソース領域の面積を設計するので、トータルチップ面積をより低減することは難しい。 However, it is difficult to solve the second problem described above by the manufacturing method of Patent Document 2. In the manufacturing method of Patent Document 2, after providing the Ni silicide layer 11 and the gate electrode 8, an interlayer insulating film is formed, and a contact hole is formed in this (not shown). In forming the contact hole, a mask (referred to as “mask D”) different from the mask used for patterning the Ni film (referred to as “mask C”) is used. Therefore, for each of the mask C and the mask D, it is necessary to set an alignment margin expected from the alignment accuracy of the stepper. Specifically, in order to form a source contact at a desired position even when misalignment occurs in the mask C and the mask D, the source region 4 is misaligned from the original design position. It is necessary to increase it as much as possible. Thus, since the area of the source region is designed in consideration of the mask alignment deviation, it is difficult to further reduce the total chip area.
 本発明は、上記事情を鑑みてなされたものであり、その目的は、炭化珪素を用いた半導体素子において、素子特性を低下させることなく、炭化珪素層に対して良好なコンタクトを形成するとともに、チップ面積を小さく抑えることにある。 The present invention has been made in view of the above circumstances, and its purpose is to form a good contact with a silicon carbide layer without deteriorating element characteristics in a semiconductor element using silicon carbide, The purpose is to keep the chip area small.
 本発明の半導体素子は、炭化珪素基板と、前記炭化珪素基板の表面に配置された第1炭化珪素層と、前記第1炭化珪素層の表面の一部の領域上に配置された第2炭化珪素層と、前記第1炭化珪素層上に設けられ、前記第1炭化珪素層と接する金属シリサイド層と、前記第2炭化珪素層上に設けられ、開口部を有する層間絶縁膜と、前記開口部内に配置された導電層とを備え、前記金属シリサイド層は前記開口部の内壁と接するように設けられ、前記導電層は、前記金属シリサイド層を介して前記第1炭化珪素層と電気的に接続されており、前記金属シリサイド層は前記第2炭化珪素層と接している。 A semiconductor element of the present invention includes a silicon carbide substrate, a first silicon carbide layer disposed on the surface of the silicon carbide substrate, and a second carbonization disposed on a partial region of the surface of the first silicon carbide layer. A silicon layer, a metal silicide layer provided on the first silicon carbide layer and in contact with the first silicon carbide layer, an interlayer insulating film provided on the second silicon carbide layer and having an opening; and the opening A conductive layer disposed in a portion, wherein the metal silicide layer is provided in contact with an inner wall of the opening, and the conductive layer is electrically connected to the first silicon carbide layer via the metal silicide layer. The metal silicide layer is in contact with the second silicon carbide layer.
 ある好ましい実施形態において、前記第1炭化珪素層は、前記第1炭化珪素層内に配置された第1導電型の第1領域と、前記第1炭化珪素層内に、前記第1領域と接するように配置された、第2導電型の第2領域とを有しており、前記第1炭化珪素層のうち前記第1領域も第2領域も配置されていない領域は第2導電型の第3領域を含み、前記金属シリサイド層は前記第2領域と接している。 In a preferred embodiment, the first silicon carbide layer is in contact with the first region of the first conductivity type disposed in the first silicon carbide layer, and in the first silicon carbide layer. The second region of the second conductivity type is disposed, and the region of the first silicon carbide layer in which neither the first region nor the second region is disposed is the second conductivity type second region. The metal silicide layer is in contact with the second region.
 前記第2炭化珪素層上に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に配置されたゲート電極とをさらに備えていてもよい。 The semiconductor device may further include a gate insulating film provided on the second silicon carbide layer and a gate electrode disposed on the gate insulating film.
 ある好ましい実施形態において、前記金属シリサイド層の厚さは、前記第2炭化珪素層の厚さの2倍より大きく、4倍以下である。 In a preferred embodiment, the thickness of the metal silicide layer is greater than twice and less than or equal to four times the thickness of the second silicon carbide layer.
 前記金属シリサイド層は、カーボンを含むNiシリサイド層であってもよい。 The metal silicide layer may be a Ni silicide layer containing carbon.
 ある好ましい実施形態において、前記第1炭化珪素層の上方から見て、前記金属シリサイド層のうち前記第1または第2炭化珪素層と接する部分の幅w2は、前記開口部の幅w1以上であり、これらの幅の差w2-w1は0以上200nm以下である。 In a preferred embodiment, when viewed from above the first silicon carbide layer, a width w2 of a portion of the metal silicide layer in contact with the first or second silicon carbide layer is not less than a width w1 of the opening. The width difference w2-w1 is 0 or more and 200 nm or less.
 ある好ましい実施形態において、前記金属シリサイド層の側面は前記第2炭化珪素層と接し、前記金属シリサイド層の下面は前記第2炭化珪素層と接していない。 In a preferred embodiment, a side surface of the metal silicide layer is in contact with the second silicon carbide layer, and a lower surface of the metal silicide layer is not in contact with the second silicon carbide layer.
 ある好ましい実施形態において、前記金属シリサイド層および前記第2炭化珪素層は、互いの側面においてのみ接している。 In a preferred embodiment, the metal silicide layer and the second silicon carbide layer are in contact with each other only on the side surfaces.
 前記第1および第2領域は、前記第1炭化珪素層の表面領域に配置され、前記第2領域は、前記第1炭化珪素層の表面において、前記第1領域に包囲されるように配置されていてもよい。 The first and second regions are disposed on a surface region of the first silicon carbide layer, and the second region is disposed on the surface of the first silicon carbide layer so as to be surrounded by the first region. It may be.
 前記第2領域は、前記第1炭化珪素層の表面領域に配置され、前記第1領域は、前記第2領域の下方に配置され、前記第2領域および前記第1領域を貫通し、前記第3領域に達するトレンチをさらに有していてもよい。 The second region is disposed in a surface region of the first silicon carbide layer, the first region is disposed below the second region, penetrates the second region and the first region, and You may have further the trench which reaches 3 area | regions.
 本発明の半導体素子の製造方法は、炭化珪素層を有する半導体素子の製造方法であって、(A)表面に第1炭化珪素層が形成された炭化珪素基板を用意する工程と、(B)前記第1炭化珪素層上に、第2炭化珪素層を形成する工程と、(C)前記第2炭化珪素層上に、前記第2炭化珪素層の表面の一部を露出する開口部を有する層間絶縁膜を形成する工程と、(D)前記層間絶縁膜の前記開口部内において、前記第2炭化珪素層の前記露出された表面上に金属膜を形成する工程と、(E)前記金属膜と前記第2炭化珪素層の一部および第1炭化珪素層の一部とを反応させて、前記第1炭化珪素層に接する金属シリサイド層を形成する工程と、(F)前記層間絶縁膜の前記開口部内に、前記金属シリサイド層を介して前記第1炭化珪素層と電気的に接続された導電層を形成する工程とを含む。 The method for manufacturing a semiconductor device of the present invention is a method for manufacturing a semiconductor device having a silicon carbide layer, wherein (A) a step of preparing a silicon carbide substrate having a first silicon carbide layer formed on the surface; (B) Forming a second silicon carbide layer on the first silicon carbide layer; and (C) having an opening exposing a part of the surface of the second silicon carbide layer on the second silicon carbide layer. Forming an interlayer insulating film; (D) forming a metal film on the exposed surface of the second silicon carbide layer in the opening of the interlayer insulating film; and (E) the metal film. And a part of the second silicon carbide layer and a part of the first silicon carbide layer are reacted to form a metal silicide layer in contact with the first silicon carbide layer; and (F) the interlayer insulating film The first silicon carbide layer is electrically connected to the opening through the metal silicide layer. And forming a connecting conductive layer.
 ある好ましい実施形態において、前記工程(E)において、前記金属膜に含まれる金属は、前記第2炭化珪素層および前記第1炭化珪素層に拡散してシリサイド化され、これによって前記金属シリサイド層が形成される。 In a preferred embodiment, in the step (E), the metal contained in the metal film is diffused and silicided into the second silicon carbide layer and the first silicon carbide layer, whereby the metal silicide layer is formed. It is formed.
 ある好ましい実施形態において、前記工程(D)において、前記金属膜の厚さは、前記第2炭化珪素層の厚さより大きく、かつ、その2倍以下である。 In a preferred embodiment, in the step (D), the thickness of the metal film is larger than the thickness of the second silicon carbide layer and twice or less.
 ある好ましい実施形態において、前記工程(C)は、前記第2炭化珪素層上に前記層間絶縁膜を形成する工程(C1)と、前記層間絶縁膜に前記開口部を形成する工程(C2)とを含み、前記工程(C2)の前に、前記第2炭化珪素層のエッチングを行わない。 In a preferred embodiment, the step (C) includes a step (C1) of forming the interlayer insulating film on the second silicon carbide layer, and a step (C2) of forming the opening in the interlayer insulating film. The second silicon carbide layer is not etched before the step (C2).
 ある好ましい実施形態において、前記工程(C2)は、前記開口部によって露出された前記第2炭化珪素層の表面部分をエッチングする工程を含む。 In a preferred embodiment, the step (C2) includes a step of etching a surface portion of the second silicon carbide layer exposed by the opening.
 ある好ましい実施形態において、前記工程(C2)において、前記エッチングされた後の前記他の炭化珪素層の厚さは、前記金属膜の厚さの1/2以下である。 In a preferred embodiment, in the step (C2), the thickness of the other silicon carbide layer after the etching is ½ or less of the thickness of the metal film.
 前記金属膜はNi膜であってもよい。 The metal film may be a Ni film.
 ある好ましい実施形態において、前記第1および第2炭化珪素層は第2導電型であり、前記工程(A)と前記工程(B)との間に、前記第1炭化珪素層に、第1導電型のボディ領域と、前記ボディ領域と接する第2導電型のソース領域とを形成する工程(G)と、前記工程(B)と前記工程(C)との間に、前記第2炭化珪素層上にゲート絶縁膜およびゲート電極を形成する工程(H)とをさらに含み、前記工程(C)は、前記第2炭化珪素層上に、前記第2炭化珪素層の表面のうち前記ソース領域上に位置する部分を露出する開口部を有する層間絶縁膜を形成する工程であり、前記工程(E)は、前記金属膜と前記第2炭化珪素層の一部および前記ソース領域の一部とを反応させて、前記ソース領域と接する金属シリサイド層を形成する工程である。 In a preferred embodiment, the first and second silicon carbide layers are of a second conductivity type, and the first silicon carbide layer has a first conductivity between the step (A) and the step (B). The second silicon carbide layer between the step (G) of forming the body region of the mold and the source region of the second conductivity type in contact with the body region, and between the step (B) and the step (C). A step (H) of forming a gate insulating film and a gate electrode thereon, wherein the step (C) is performed on the source region of the surface of the second silicon carbide layer on the second silicon carbide layer. A step of forming an interlayer insulating film having an opening exposing a portion located at a portion, wherein the step (E) includes the metal film, a part of the second silicon carbide layer, and a part of the source region. React to form a metal silicide layer in contact with the source region It is a degree.
 本発明によると、炭化珪素を用いた半導体素子において、炭化珪素層に対して良好なコンタクトを確保できる。また、マスク合わせのためのマージンを小さくすることができるので、チップ面積を従来よりも低減することが可能になる。 According to the present invention, in a semiconductor element using silicon carbide, it is possible to ensure good contact with the silicon carbide layer. In addition, since the margin for mask alignment can be reduced, the chip area can be reduced as compared with the prior art.
 特に、本発明を蓄積チャネル型MISFETに適用すると、ソース領域がオーバーエッチングされることによるオン抵抗の増大を抑えつつ、ソース電極となる金属シリサイド層とソース領域との間で良好なオーミック接触を形成できる。また、チップ面積(ユニットセルの面積)を従来よりも低減できる。 In particular, when the present invention is applied to a storage channel type MISFET, good ohmic contact is formed between the metal silicide layer serving as the source electrode and the source region while suppressing an increase in on-resistance due to the overetching of the source region. it can. Further, the chip area (unit cell area) can be reduced as compared with the conventional case.
(a)および(b)は、それぞれ、本発明による第1の実施形態の半導体素子の模式的な断面図および平面図である。(A) And (b) is a typical sectional view and a top view of a semiconductor device of a 1st embodiment by the present invention, respectively. (a)~(c)は、本発明による第1の実施形態の半導体素子の製造方法を説明するための工程断面図である。(A)-(c) is process sectional drawing for demonstrating the manufacturing method of the semiconductor element of 1st Embodiment by this invention. 本発明による第1の実施形態の他の半導体素子の模式的な断面図である。It is typical sectional drawing of the other semiconductor element of 1st Embodiment by this invention. (a)~(c)は、本発明による第1の実施形態の半導体素子の他の製造方法を説明するための工程断面図である。(A)-(c) is process sectional drawing for demonstrating the other manufacturing method of the semiconductor element of 1st Embodiment by this invention. (a)~(c)は、従来の縦型MOSFETの製造方法を説明するための工程断面図である。(A)-(c) is process sectional drawing for demonstrating the manufacturing method of the conventional vertical MOSFET. (d)~(f)は、従来の縦型MOSFETの製造方法を説明するための工程断面図である。(D)-(f) is process sectional drawing for demonstrating the manufacturing method of the conventional vertical MOSFET. (g)~(i)は、従来の縦型MOSFETの製造方法を説明するための工程断面図である。(G)-(i) is process sectional drawing for demonstrating the manufacturing method of the conventional vertical MOSFET. 従来の縦型MOSFETの製造方法を説明するための工程断面図である。It is process sectional drawing for demonstrating the manufacturing method of the conventional vertical MOSFET. (a)および(b)は、それぞれ、図5~図8の方法で製造された従来の縦型MOSFETを例示する断面図および平面図である。FIGS. 7A and 7B are a cross-sectional view and a plan view, respectively, illustrating a conventional vertical MOSFET manufactured by the method of FIGS. (a)~(c)は、特許文献2に開示された縦型MOSFETの製造方法を説明するための工程断面図である。(A)-(c) is process sectional drawing for demonstrating the manufacturing method of the vertical MOSFET disclosed by patent document 2. FIG. 本発明による実施形態のトレンチ型MISFETの一例を示す断面図である。It is sectional drawing which shows an example of the trench type MISFET of embodiment by this invention. (a)および(b)は、それぞれ、図1に示す金属シリサイド層11のI-I’線およびII-II’線に沿った断面の深さ方向の濃度プロファイルを説明するための模式図である。(A) and (b) are schematic diagrams for explaining the concentration profiles in the depth direction of the cross section along the II ′ and II-II ′ lines of the metal silicide layer 11 shown in FIG. 1, respectively. is there. (a)および(b)は、それぞれ、図8に示す従来の金属シリサイド層のI-I’線およびII-II’線に沿った断面の深さ方向の濃度プロファイルを説明するための模式図である。(A) and (b) are schematic diagrams for explaining the concentration profiles in the depth direction of the cross section along the II ′ and II-II ′ lines of the conventional metal silicide layer shown in FIG. 8, respectively. It is.
(第1の実施形態)
 以下、図面を参照しながら、本発明による半導体素子の第1の実施形態を説明する。本実施形態の半導体素子は、炭化珪素を用いた縦型MISFETであり、複数のユニットセルが配列された構造を有している。
(First embodiment)
Hereinafter, a first embodiment of a semiconductor device according to the present invention will be described with reference to the drawings. The semiconductor element of this embodiment is a vertical MISFET using silicon carbide, and has a structure in which a plurality of unit cells are arranged.
 図1(a)は、本実施形態の炭化珪素を用いた縦型MISFETの模式的な断面図であり、複数のユニットセルのうち1個のユニットセルと、それに隣接するユニットセルの一部の断面とを示している。図1(b)は、縦型MISFETにおける1個のユニットセルの炭化珪素層表面を示す平面図である。 FIG. 1A is a schematic cross-sectional view of a vertical MISFET using silicon carbide of the present embodiment, in which one unit cell among a plurality of unit cells and a part of a unit cell adjacent thereto are shown. A cross section is shown. FIG. 1B is a plan view showing the silicon carbide layer surface of one unit cell in the vertical MISFET.
 縦型MISFETの各ユニットセルは、SiC基板(ここではn型SiC基板)1の主面上にエピタキシャル成長により形成された炭化珪素層(「第1炭化珪素層」ともいう。)2と、炭化珪素層2の上に形成されたチャネル層6と、チャネル層6の上にゲート絶縁膜7を介して設けられたゲート電極8と、炭化珪素層2の表面に接するソース電極11と、SiC基板1の裏面上に設けられたドレイン電極14とを備えている。チャネル層(「第2炭化珪素層」ともいう。)6は、例えばn型の炭化珪素を含むエピタキシャル層である。ソース電極11は、金属シリサイドを含む層(ここではNiシリサイド層)である。 Each unit cell of the vertical MISFET has a silicon carbide layer (also referred to as “first silicon carbide layer”) 2 formed by epitaxial growth on the main surface of a SiC substrate (here, n-type SiC substrate) 1 and silicon carbide. Channel layer 6 formed on layer 2, gate electrode 8 provided on channel layer 6 via gate insulating film 7, source electrode 11 in contact with the surface of silicon carbide layer 2, SiC substrate 1 And a drain electrode 14 provided on the back surface of the substrate. Channel layer (also referred to as “second silicon carbide layer”) 6 is an epitaxial layer containing, for example, n-type silicon carbide. The source electrode 11 is a layer containing metal silicide (here, Ni silicide layer).
 各ユニットセルにおいて、炭化珪素層2は、炭化珪素層2の表層部に形成され、SiC基板1の導電型と異なる導電型(ここではp型)を有するボディ領域(第1領域ともいう)3と、ボディ領域3と接するn型ソース領域(第2領域ともいう)4とを有している。ソース領域4は、高濃度でn型不純物を含んでいる。本実施形態では、ボディ領域3およびソース領域4は炭化珪素層2の表面領域に配置され、炭化珪素層2の表面において、ソース領域4はボディ領域3に包囲されている。ボディ領域3の内部には、ボディ領域3よりも高い濃度でp型不純物を含むp+コンタクト領域5が形成されている。炭化珪素層2のうちボディ領域3、ソース領域4およびコンタクト領域5の何れも形成されていない部分は、ドリフト領域(第3領域ともいう)2dを含んでいる。ドリフト領域2dは、例えば、SiC基板1よりも低濃度でn型不純物を含むn-型の炭化珪素層である。ボディ領域3、ソース領域4およびコンタクト領域5は、炭化珪素層2に対して不純物を注入する工程と、炭化珪素層2に注入された不純物を活性化させる高温熱処理(活性化アニール)工程とによって形成される。 In each unit cell, silicon carbide layer 2 is formed in the surface layer portion of silicon carbide layer 2 and has a body region (also referred to as a first region) 3 having a conductivity type (here, p-type) different from that of SiC substrate 1. And an n-type source region (also referred to as a second region) 4 in contact with the body region 3. The source region 4 contains an n-type impurity at a high concentration. In the present embodiment, body region 3 and source region 4 are arranged in the surface region of silicon carbide layer 2, and source region 4 is surrounded by body region 3 on the surface of silicon carbide layer 2. A p + contact region 5 containing a p-type impurity at a higher concentration than the body region 3 is formed inside the body region 3. A portion of silicon carbide layer 2 where none of body region 3, source region 4, and contact region 5 is formed includes drift region (also referred to as a third region) 2 d. Drift region 2d is, for example, an n -type silicon carbide layer containing n-type impurities at a lower concentration than SiC substrate 1. Body region 3, source region 4 and contact region 5 are formed by a step of implanting impurities into silicon carbide layer 2 and a high-temperature heat treatment (activation annealing) step of activating the impurities implanted into silicon carbide layer 2. It is formed.
 ソース領域4とドリフト領域2dとは、チャネル層6を介して接続されている。チャネル層6は、例えば、エピタキシャル成長によって炭化珪素層2の上に形成された炭化珪素層である。また、コンタクト領域5およびソース領域4は、それぞれ、Niシリサイド層11とオーミック接触を形成している。従って、ボディ領域3は、コンタクト領域5を介してNiシリサイド層11と電気的に接続される。 The source region 4 and the drift region 2d are connected via the channel layer 6. Channel layer 6 is, for example, a silicon carbide layer formed on silicon carbide layer 2 by epitaxial growth. Further, the contact region 5 and the source region 4 are in ohmic contact with the Ni silicide layer 11, respectively. Therefore, the body region 3 is electrically connected to the Ni silicide layer 11 through the contact region 5.
 ゲート絶縁膜7は、例えばチャネル層6の表面を熱酸化することによって形成された熱酸化膜(SiO2膜)である。ゲート電極8は、例えば導電性のポリシリコンを用いて形成されている。 The gate insulating film 7 is a thermal oxide film (SiO 2 film) formed by, for example, thermally oxidizing the surface of the channel layer 6. The gate electrode 8 is formed using, for example, conductive polysilicon.
 ゲート電極8は層間絶縁膜9によって覆われている。層間絶縁膜9にはソースコンタクトを形成するための開口部(コンタクトホール)10sと、ゲートコンタクトを形成するための開口部(コンタクトホール)10gとが形成されている。コンタクトホール10sの内部および層間絶縁膜9上には、導電層(ソース配線)12が設けられている。各ユニットセルにおけるNiシリサイド層11は、ソース配線12により並列に接続されている。また、コンタクトホール10gの内部および層間絶縁膜9上には、ゲート配線となる導電層(ゲート配線)13が設けられている。これにより、ゲート電極8はゲート配線13に電気的に接続されている。 The gate electrode 8 is covered with an interlayer insulating film 9. In the interlayer insulating film 9, an opening (contact hole) 10s for forming a source contact and an opening (contact hole) 10g for forming a gate contact are formed. A conductive layer (source wiring) 12 is provided in the contact hole 10 s and on the interlayer insulating film 9. The Ni silicide layers 11 in each unit cell are connected in parallel by a source wiring 12. Further, a conductive layer (gate wiring) 13 to be a gate wiring is provided in the contact hole 10g and on the interlayer insulating film 9. Thereby, the gate electrode 8 is electrically connected to the gate wiring 13.
 本実施形態では、後述するように、コンタクトホール10s内において、Ni膜とチャネル層とを反応させてNiシリサイド層11を形成している。従って、Niシリサイド層11は、コンタクトホール10sの内壁およびチャネル層6に接している。また、Niシリサイド層11は、Ni、Siの他に、炭化珪素層2およびチャネル層6に含有されていたカーボン(C)を含んでいる。Niシリサイド層11は、さらに、チャネル層6に含有されていた第2導電型の不純物(例えば窒素,Pなどのn型不純物)、炭化珪素層2のソース領域4に含有されていた第2導電型の不純物、およびコンタクト領域5に含有されていた第1導電型の不純物(Alなどのp型不純物)を含んでいる。これらの不純物の深さ方向の濃度プロファイルは、シリサイド化を行う前のチャネル層6および炭化珪素層2の濃度プロファイルを反映したものとなる。具体的なプロファイルについては後述する。 In this embodiment, as described later, the Ni silicide layer 11 is formed by reacting the Ni film and the channel layer in the contact hole 10s. Therefore, the Ni silicide layer 11 is in contact with the inner wall of the contact hole 10 s and the channel layer 6. Further, the Ni silicide layer 11 contains carbon (C) contained in the silicon carbide layer 2 and the channel layer 6 in addition to Ni and Si. The Ni silicide layer 11 further includes second conductivity type impurities (for example, n-type impurities such as nitrogen and P) contained in the channel layer 6, and second conductivity type contained in the source region 4 of the silicon carbide layer 2. And a first conductivity type impurity (p-type impurity such as Al) contained in the contact region 5. The concentration profiles of these impurities in the depth direction reflect the concentration profiles of the channel layer 6 and the silicon carbide layer 2 before silicidation. A specific profile will be described later.
 以下、図面を参照しながら、本実施形態の半導体素子の製造方法を説明する。 Hereinafter, a method for manufacturing a semiconductor device of this embodiment will be described with reference to the drawings.
 図2(a)~(c)は、本実施形態の半導体素子の製造方法を示す模式的な工程断面図である。 2A to 2C are schematic process cross-sectional views showing a method for manufacturing a semiconductor device of this embodiment.
 まず、図5(a)~(c)および図6(d)および(e)を参照しながら前述した方法と同様の方法で、低抵抗のn型SiC基板1の主面上に、エピタキシャル成長により炭化珪素層2を形成し、炭化珪素層2にp型ボディ領域3、ソース領域4およびp+コンタクト領域5を形成する。次いで、不活性ガス雰囲気で1700℃、30分程度のアニール処理を行い、p型ボディ領域3、ソース領域4およびp+コンタクト領域5を電気的に活性化させる。この後、炭化珪素層2上に、n型の炭化珪素を含むチャネル層6をエピタキシャル成長によって形成する。 First, epitaxial growth is performed on the main surface of the low-resistance n-type SiC substrate 1 in the same manner as described above with reference to FIGS. 5 (a) to 5 (c) and FIGS. 6 (d) and (e). Silicon carbide layer 2 is formed, and p-type body region 3, source region 4 and p + contact region 5 are formed in silicon carbide layer 2. Next, annealing is performed at 1700 ° C. for about 30 minutes in an inert gas atmosphere, and the p-type body region 3, the source region 4 and the p + contact region 5 are electrically activated. Thereafter, channel layer 6 containing n-type silicon carbide is formed on silicon carbide layer 2 by epitaxial growth.
 本実施形態では、ボディ領域3の厚さ(炭化珪素層2の表面からボディ領域3の下端までの深さ)を500~2000nm(例えば1000nm)、ソース領域4の厚さを150~600nm(例えば300nm)、チャネル層6の厚さを10~200nm(例えば100nm)とする。また、チャネル層6における平均の不純物濃度(例えば窒素濃度)を1×1015~1×1018cm-3の範囲内となるように調整する。チャネル層6は単層であってもよいし、積層構造を有していてもよい。 In the present embodiment, the thickness of the body region 3 (depth from the surface of the silicon carbide layer 2 to the lower end of the body region 3) is 500 to 2000 nm (for example, 1000 nm), and the thickness of the source region 4 is 150 to 600 nm (for example, 300 nm), and the thickness of the channel layer 6 is 10 to 200 nm (for example, 100 nm). Further, the average impurity concentration (for example, nitrogen concentration) in the channel layer 6 is adjusted to be in the range of 1 × 10 15 to 1 × 10 18 cm −3 . The channel layer 6 may be a single layer or may have a laminated structure.
 次いで、図2(a)に示すように、チャネル層6を加工することなく、チャネル層6上にゲート絶縁膜7およびゲート電極8を形成する。具体的には、まず、チャネル層6の表面を1100℃の温度で熱酸化することによって熱酸化膜を形成する。代わりに、単層あるいは多層の絶縁膜をチャネル層16の上に堆積してもよい。次いで、熱酸化膜上に、低抵抗のポリシリコン膜や金属膜などの導電膜を形成する。導電膜上に、レジスト層42を堆積し、レジスト層42をマスクとして、ドライエッチングにより、熱酸化膜および導電膜のパターニングを行う。これにより、熱酸化膜からゲート酸化膜7、導電膜からゲート電極8が得られる。 Next, as shown in FIG. 2A, the gate insulating film 7 and the gate electrode 8 are formed on the channel layer 6 without processing the channel layer 6. Specifically, first, a thermal oxide film is formed by thermally oxidizing the surface of the channel layer 6 at a temperature of 1100 ° C. Instead, a single-layer or multilayer insulating film may be deposited on the channel layer 16. Next, a conductive film such as a low resistance polysilicon film or a metal film is formed on the thermal oxide film. A resist layer 42 is deposited on the conductive film, and the thermal oxide film and the conductive film are patterned by dry etching using the resist layer 42 as a mask. Thereby, the gate oxide film 7 is obtained from the thermal oxide film, and the gate electrode 8 is obtained from the conductive film.
 レジスト層42を除去した後、図2(b)に示すように、基板1の全面に層間絶縁膜9を堆積する。次に、層間絶縁膜9の上に開口部を有するレジスト層43を形成する。レジスト層43をマスクとして、ドライエッチングにより、チャネル層6表面のうちソース領域4の一部およびコンタクト領域5上に位置する部分を露出するコンタクトホール10sを層間絶縁膜9に形成する。 After removing the resist layer 42, an interlayer insulating film 9 is deposited on the entire surface of the substrate 1 as shown in FIG. Next, a resist layer 43 having an opening is formed on the interlayer insulating film 9. Using the resist layer 43 as a mask, a contact hole 10 s exposing a part of the surface of the channel layer 6 on the surface of the channel layer 6 and a portion located on the contact region 5 is formed in the interlayer insulating film 9 by dry etching.
 このとき、オーバーエッチなどにより、チャネル層6の表面部分が削れてもよいが、ソース領域4およびp+コンタクト領域5がエッチングされないように、エッチング条件を調整することが好ましい。ソース領域4が薄くなると、MISFETのオン抵抗が高くなるおそれがあり、p+コンタクト領域5が薄くなると、スイッチングスピードが低下するおそれがあるからである。 At this time, the surface portion of the channel layer 6 may be removed by overetching or the like, but it is preferable to adjust the etching conditions so that the source region 4 and the p + contact region 5 are not etched. This is because if the source region 4 is thin, the on-resistance of the MISFET may be high, and if the p + contact region 5 is thin, the switching speed may be low.
 レジスト層43を除去した後、図2(c)に示すように、層間絶縁膜9の上およびコンタクトホール10sの内部に、Ni(ニッケル)膜51を蒸着する。Ni膜51の厚さは、10nm以上200nm以下であることが好ましく、例えば100nmである。 After removing the resist layer 43, a Ni (nickel) film 51 is deposited on the interlayer insulating film 9 and inside the contact hole 10s as shown in FIG. The thickness of the Ni film 51 is preferably 10 nm or more and 200 nm or less, for example, 100 nm.
 続いて、窒素雰囲気中、950℃の温度で1分間程度のアニール処理を行う。この熱処理により、Ni膜51に含まれるNiと、チャネル層6およびその下の炭化珪素層2における炭化珪素とが反応して、Niシリサイド層11が形成される。Niシリサイド層11は、Niがチャネル層6に拡散することにより形成される。したがって、Niシリサイド層11は、Ni膜51のうち反応した部分の厚さよりも大きくなる。また、Niは、チャネル層6の下にあるソース領域4およびp+コンタクト領域5の表面部分まで拡散してシリサイド化される。この結果、Niシリサイド層11と、p+コンタクト領域5およびソース領域4との間に良好なオーミック接合が形成される。 Subsequently, annealing is performed for about 1 minute at a temperature of 950 ° C. in a nitrogen atmosphere. By this heat treatment, Ni contained in the Ni film 51 reacts with the silicon carbide in the channel layer 6 and the silicon carbide layer 2 therebelow to form the Ni silicide layer 11. The Ni silicide layer 11 is formed by diffusion of Ni into the channel layer 6. Therefore, the Ni silicide layer 11 is larger than the thickness of the reacted portion of the Ni film 51. Ni diffuses to the surface portions of the source region 4 and the p + contact region 5 under the channel layer 6 to be silicided. As a result, a good ohmic junction is formed between the Ni silicide layer 11 and the p + contact region 5 and the source region 4.
 本実施形態におけるNiシリサイド層11の上部は、コンタクトホール10sの内壁に接している。Niシリサイド層11の上面(ソース配線と接する面)の形状は、層間絶縁膜9に形成するコンタクトホール10sの形状によって調整できる。また、Niシリサイド層11の側壁(側面)はチャネル層6(ここではチャネル層6およびソース領域4)と接している。図示する例では、Niシリサイド層11の側面がチャネル層6と接し、下面がチャネル層6と接していない。これにより、Niシリサイド層11の下面全体を炭化珪素層2と接触させることが可能となるので好ましい。Niシリサイド層11とチャネル層6とは、互いの側面でのみ接していてもよい。 The upper part of the Ni silicide layer 11 in this embodiment is in contact with the inner wall of the contact hole 10s. The shape of the upper surface (the surface in contact with the source wiring) of the Ni silicide layer 11 can be adjusted by the shape of the contact hole 10 s formed in the interlayer insulating film 9. Further, the side wall (side surface) of the Ni silicide layer 11 is in contact with the channel layer 6 (here, the channel layer 6 and the source region 4). In the illustrated example, the side surface of the Ni silicide layer 11 is in contact with the channel layer 6, and the lower surface is not in contact with the channel layer 6. This is preferable because the entire lower surface of the Ni silicide layer 11 can be brought into contact with the silicon carbide layer 2. The Ni silicide layer 11 and the channel layer 6 may be in contact with each other only on the side surfaces.
 なお、熱処理において、Niは、炭化珪素層2を下方に拡散するだけでなく、横方向にも拡散する場合がある。その場合には、図3に示すように、SiC基板1の主面に垂直な断面において、Niシリサイド層11のうちチャネル層6およびソース領域4によって包囲されている部分の幅w2は、コンタクトホール10sの幅(すなわちNiシリサイド層11の上面の幅)w1よりも大きくなる。本明細書では、Niシリサイド層11のうちチャネル層6および炭化珪素層2と接する部分の幅がそれぞれ異なる場合には、その大きい方を幅w2とする。これらの幅の差Δw(=w2-w1)は、例えば200nm以下である。なお、Niの横方向への拡散が極めて小さいと、幅w2と幅w1とは略等しくなる(Δw=0)。 In the heat treatment, Ni may diffuse not only in the silicon carbide layer 2 downward but also in the lateral direction. In that case, as shown in FIG. 3, the width w2 of the portion of the Ni silicide layer 11 surrounded by the channel layer 6 and the source region 4 in the cross section perpendicular to the main surface of the SiC substrate 1 is the contact hole. The width is greater than 10s (ie, the width of the upper surface of the Ni silicide layer 11) w1. In this specification, when the widths of the Ni silicide layer 11 that are in contact with the channel layer 6 and the silicon carbide layer 2 are different from each other, the larger one is defined as the width w2. The difference Δw (= w2−w1) between these widths is, for example, 200 nm or less. Note that when the lateral diffusion of Ni is extremely small, the width w2 and the width w1 are substantially equal (Δw = 0).
 この後、図示しないが、Ni膜51のうち炭化珪素と反応しなかった部分を除去する。次いで、公知の方法で、ソース配線12、ゲート配線13およびドレイン電極14を形成し、図1に示すMISFETを得る。 Thereafter, although not shown, the portion of the Ni film 51 that did not react with silicon carbide is removed. Next, the source wiring 12, the gate wiring 13, and the drain electrode 14 are formed by a known method to obtain the MISFET shown in FIG.
 なお、Niシリサイド層11を形成するためのアニール処理の条件(温度および時間)は、上記の条件に限定されないが、アニール処理の温度は、コンタクトホール10s内において、チャネル層6上に堆積させたNiが全反応する温度まで上げることが好ましい。Ni膜51の厚さが10nm以上200nm以下であれば、アニール処理の温度は例えば850℃以上1150℃以下である。堆積させたNiが全て炭化珪素と反応する場合、Niと略同じ厚さの炭化珪素が反応に用いられるので、堆積させたNi膜51の厚さの略2倍の厚さのNiシリサイド層11が形成される。従って、Niが全て炭化珪素と反応するように、熱処理条件(例えば温度)を選択することによって、Niと反応する炭化珪素の厚さおよび反応後のNiシリサイド層11の厚さをより容易に制御できる。 The annealing conditions (temperature and time) for forming the Ni silicide layer 11 are not limited to the above conditions, but the annealing temperature was deposited on the channel layer 6 in the contact hole 10s. It is preferable to raise to a temperature at which Ni completely reacts. If the thickness of the Ni film 51 is 10 nm or more and 200 nm or less, the annealing temperature is, for example, 850 ° C. or more and 1150 ° C. or less. When all of the deposited Ni reacts with silicon carbide, silicon carbide having substantially the same thickness as Ni is used for the reaction, so the Ni silicide layer 11 having a thickness approximately twice the thickness of the deposited Ni film 51. Is formed. Therefore, the thickness of the silicon carbide that reacts with Ni and the thickness of the Ni silicide layer 11 after the reaction are more easily controlled by selecting the heat treatment conditions (for example, temperature) so that all of the Ni reacts with silicon carbide. it can.
 Ni膜51の厚さは、チャネル層6の厚さより大きいことが好ましい。例えばチャネル層6の厚さを100nmとすると、Ni膜51を100nmより厚くすれば、チャネル層6を厚さ方向に亘ってNiと反応させるとともに、その下のソース領域4およびp+コンタクト領域5の表面部分をより確実にNiと反応させることができる。これにより、Niシリサイド層11とソース領域4およびp+コンタクト領域5との間に、より確実にオーミック接合を形成できる。 The thickness of the Ni film 51 is preferably larger than the thickness of the channel layer 6. For example, if the thickness of the channel layer 6 is 100 nm, the Ni film 51 is made thicker than 100 nm, the channel layer 6 is reacted with Ni in the thickness direction, and the source region 4 and the p + contact region 5 thereunder are reacted. The surface portion can be reacted with Ni more reliably. Thereby, an ohmic junction can be more reliably formed between the Ni silicide layer 11 and the source region 4 and the p + contact region 5.
 Ni膜51をチャネル層6よりも厚くする場合、Ni膜51の厚さとチャネル層6の厚さの差ΔDに相当する分だけ、ソース領域4およびp+コンタクト領域5がNiと反応してNiシリサイド層11の一部となる。この結果、ソース領域4およびp+コンタクト領域5の厚さは、ΔDに対応する厚さ分だけ小さくなる。従って、Ni膜51が厚すぎると、ソース領域4およびp+コンタクト領域5が薄膜化されて、素子特性を低下させる場合がある。本実施形態では、Ni膜51の厚さは、チャネル層6の厚さの2倍以下であることが好ましい。これにより、ソース領域4およびp+コンタクト領域5のうちNiと反応する部分の厚さを抑えることができるので、ソース領域4およびp+コンタクト領域5の厚さを十分に確保できる。この結果、ソース領域4が薄膜化されることによるオン抵抗の増大やp+コンタクト領域5が薄膜化されることによるスイッチング特性の低下を抑制できる。 When the Ni film 51 is made thicker than the channel layer 6, the source region 4 and the p + contact region 5 react with Ni by an amount corresponding to the difference ΔD between the thickness of the Ni film 51 and the thickness of the channel layer 6. It becomes a part of the silicide layer 11. As a result, the thickness of the source region 4 and the p + contact region 5 is reduced by the thickness corresponding to ΔD. Therefore, if the Ni film 51 is too thick, the source region 4 and the p + contact region 5 may be thinned to deteriorate the device characteristics. In the present embodiment, the thickness of the Ni film 51 is preferably less than or equal to twice the thickness of the channel layer 6. As a result, the thickness of the source region 4 and the p + contact region 5 that reacts with Ni can be suppressed, so that the thickness of the source region 4 and the p + contact region 5 can be sufficiently ensured. As a result, it is possible to suppress an increase in on-resistance due to the thinning of the source region 4 and a decrease in switching characteristics due to the thinning of the p + contact region 5.
 なお、ここでいう「チャネル層6の厚さ」は、炭化珪素層2上に堆積された際のチャネル層6の厚さを意味する。例えば後述するように、コンタクトホール10sを形成する際にチャネル層6の表面部分がエッチング(ハーフエッチ)される場合でも、Ni膜51の厚さは、ハーフエッチされる前のチャネル層6の厚さよりも大きく、かつ、その2倍以下であることが好ましい。 In addition, the “thickness of the channel layer 6” here means the thickness of the channel layer 6 when deposited on the silicon carbide layer 2. For example, as described later, even when the surface portion of the channel layer 6 is etched (half-etched) when forming the contact hole 10s, the thickness of the Ni film 51 is the thickness of the channel layer 6 before being half-etched. It is preferable that it is larger than that and twice or less.
 本実施形態で得られるNiシリサイド層11の厚さは、Ni膜51の厚さの略2倍となる。上述したように、Ni膜51の厚さがチャネル層6の厚さより大きく、かつ、チャネル層6の厚さの2倍以下であれば、Niシリサイド層11の厚さは、チャネル層6の厚さの2倍より大きく、かつ、4倍以下となる。 The thickness of the Ni silicide layer 11 obtained in this embodiment is approximately twice the thickness of the Ni film 51. As described above, if the thickness of the Ni film 51 is larger than the thickness of the channel layer 6 and not more than twice the thickness of the channel layer 6, the thickness of the Ni silicide layer 11 is the thickness of the channel layer 6. It is larger than 2 times and 4 times or less.
 上記方法によると、チャネル層6をエッチングする必要がないので、ソース領域4及びp+コンタクト領域5がオーバーエッチによって薄膜化されることを防止できる。また、炭化珪素層2におけるソース領域4およびp+コンタクト領域5と、Niシリサイド層11との間に、良好なオーミック接合を形成できる。 According to the above method, since it is not necessary to etch the channel layer 6, the source region 4 and the p + contact region 5 can be prevented from being thinned by overetching. In addition, a good ohmic junction can be formed between source region 4 and p + contact region 5 in silicon carbide layer 2 and Ni silicide layer 11.
 さらに、図5~8を参照しながら前述した従来の方法では、マスクAとマスクBとの合わせマージンを考慮する必要があったが、上記方法によると、チャネル層6をエッチングするためのマスクAを形成しないので、上記の合わせマージンを考慮する必要がない。このため、従来よりも、ソース領域4の面積を小さくでき、チップ面積を縮小することが可能となる。 Further, in the conventional method described above with reference to FIGS. 5 to 8, it is necessary to consider the alignment margin between the mask A and the mask B. According to the above method, the mask A for etching the channel layer 6 is used. Therefore, it is not necessary to consider the above alignment margin. Therefore, the area of the source region 4 can be made smaller than before, and the chip area can be reduced.
 上述したように、本実施形態では、チャネル層6が、その厚さ方向に亘ってシリサイド化される。この結果、得られた金属シリサイド層11は、シリサイド化を行う前の濃度プロファイルを反映して、深さ方向に次のような濃度プロファイルを有する。 As described above, in the present embodiment, the channel layer 6 is silicided in the thickness direction. As a result, the obtained metal silicide layer 11 has the following concentration profile in the depth direction, reflecting the concentration profile before silicidation.
 図12(a)は、図1に示すI-I’線に沿った断面(金属シリサイド層11のうちコンタクト領域5上に位置する部分の基板1に垂直な断面)のNiおよびp型不純物(Al)の濃度プロファイルの一例を模式的に示す図である。図示するように、Niシリサイド層11の上面から所定の深さdcまでは、チャネル層6の不純物濃度を反映して、n型不純物を低濃度で含み、p型不純物はほとんど含まない。深さdcよりも深い位置では、コンタクト領域5の不純物濃度を反映してp型不純物を高濃度で含む。深さdcは、チャネル層6の厚さに対応している。 FIG. 12A shows Ni and p-type impurities (cross-section perpendicular to the substrate 1 in a portion of the metal silicide layer 11 located on the contact region 5) along the line II ′ shown in FIG. It is a figure which shows an example of the density | concentration profile of Al) typically. As shown in the figure, from the upper surface of the Ni silicide layer 11 to a predetermined depth dc, the impurity concentration of the channel layer 6 is reflected and the n-type impurity is contained at a low concentration and the p-type impurity is hardly contained. At a position deeper than the depth dc, p-type impurities are contained at a high concentration reflecting the impurity concentration of the contact region 5. The depth dc corresponds to the thickness of the channel layer 6.
 また、図12(b)は、図1に示すII-II’線に沿った断面(金属シリサイド層11のうちソース領域4上に位置する部分の基板1に垂直な断面)のNiおよびn型不純物(N)の濃度プロファイルの一例を模式的に示す図である。図示するように、金属シリサイド層11の上面から所定の深さdcまでは、チャネル層6の不純物濃度を反映して、n型不純物を低濃度で含む。深さdcよりも深くなると、ソース領域4の不純物濃度を反映して、n型不純物の濃度が大幅に高くなる。従って、n型不純物のプロファイルには深さdcの近傍で段差が生じる。 FIG. 12B shows Ni and n-type cross sections taken along line II-II ′ shown in FIG. 1 (cross sections perpendicular to the substrate 1 in the portion of the metal silicide layer 11 located on the source region 4). It is a figure which shows typically an example of the density | concentration profile of an impurity (N). As shown in the figure, from the upper surface of the metal silicide layer 11 to a predetermined depth dc, n-type impurities are contained at a low concentration reflecting the impurity concentration of the channel layer 6. When the depth is greater than the depth dc, the concentration of the n-type impurity is significantly increased to reflect the impurity concentration of the source region 4. Therefore, the n-type impurity profile has a step near the depth dc.
 これに対し、従来の半導体素子では、チャネル層をパターニングして炭化珪素層の表面を露出させた後、炭化珪素層の表面と接するようにNi膜を形成してシリサイド化を行う。従って、得られる金属シリサイド層の濃度プロファイルは、炭化珪素層の表面部分の濃度プロファイルを反映したものとなる。 On the other hand, in the conventional semiconductor element, after the channel layer is patterned to expose the surface of the silicon carbide layer, a Ni film is formed so as to be in contact with the surface of the silicon carbide layer to be silicided. Therefore, the concentration profile of the obtained metal silicide layer reflects the concentration profile of the surface portion of the silicon carbide layer.
 図8に示す従来の半導体素子の場合、金属シリサイド層のうちコンタクト領域上に位置する部分の基板に垂直な断面(図8のI-I’線に沿った断面)では、図13(a)に示すように、金属シリサイド層の上面から下面まで、コンタクト領域の不純物濃度と同程度の濃度でp型不純物を含む。n型不純物はほとんど含まれていない。また、金属シリサイド層のうちソース領域上に位置する部分の基板に垂直な断面(図8のII-II’線に沿った断面)では、図13(b)に示すように、金属シリサイド層の上面から下面まで、ソース領域の不純物濃度と同程度の濃度でn型不純物を含む。n型不純物の厚さ方向の濃度プロファイルには、図12(b)に示すような大きな段差は生じない。 In the case of the conventional semiconductor device shown in FIG. 8, in the cross section perpendicular to the substrate of the metal silicide layer located on the contact region (cross section taken along the line II ′ of FIG. 8), FIG. As shown in FIG. 4, the metal silicide layer contains p-type impurities at a concentration similar to the impurity concentration of the contact region from the upper surface to the lower surface. Almost no n-type impurities are contained. Further, in the cross section perpendicular to the substrate in the portion of the metal silicide layer located on the source region (the cross section taken along the line II-II ′ in FIG. 8), as shown in FIG. From the upper surface to the lower surface, an n-type impurity is contained at a concentration similar to the impurity concentration of the source region. A large step as shown in FIG. 12B does not occur in the concentration profile of the n-type impurity in the thickness direction.
 なお、図12および図13は、本実施形態における金属シリサイド層11の濃度プロファイルの特徴を説明するための模式図であり、厳密な濃度プロファイルを示すものではない。 12 and 13 are schematic diagrams for explaining the characteristics of the concentration profile of the metal silicide layer 11 in the present embodiment, and do not show a strict concentration profile.
 本実施形態の方法は図2を参照しながら前述した方法に限定されない。図4(a)~(c)は、本実施形態の他の方法を説明するための工程断面図である。 The method of the present embodiment is not limited to the method described above with reference to FIG. 4A to 4C are process cross-sectional views for explaining another method of the present embodiment.
 図4(a)に示すように、層間絶縁膜9にコンタクトホール10sを形成する際に、チャネル層6の表面部分もエッチングしてもよい(ハーフエッチ)。エッチングされた後のチャネル層6の厚さは例えば50nmである。ただし、前述したように、炭化珪素層2をエッチングしないように、エッチング条件を制御することが好ましい。 As shown in FIG. 4A, when the contact hole 10s is formed in the interlayer insulating film 9, the surface portion of the channel layer 6 may also be etched (half etching). The thickness of the channel layer 6 after being etched is, for example, 50 nm. However, as described above, it is preferable to control the etching conditions so as not to etch the silicon carbide layer 2.
 この後、図4(b)に示すように、層間絶縁膜9の上およびコンタクトホール10sの内部に、Ni(ニッケル)膜51を蒸着する。Ni膜51の厚さは例えば50nmである。この状態で、窒素雰囲気中、950℃の温度で1分間程度のアニール処理を行う。この熱処理により、チャネル層6とNi膜51との界面ではチャネル層6における炭化珪素とNiとが反応して、Niシリサイド層11が形成される。ここでは、Ni膜51が略完全にシリサイド化されて、厚さが例えば100nmのNiシリサイド層11が形成される。なお、この場合には、Ni膜51の厚さを、チャネル層6のうち上記エッチングによって薄膜化された部分の厚さよりも大きくすることにより、チャネル層6のうち薄膜化された部分だけでなく、ソース領域4およびp+コンタクト領域5の表面部分までNiを拡散させることができる。したがって、Niシリサイド層11と、p+コンタクト領域5およびソース領域4との間に良好なオーミック接合が形成される。また、Niシリサイド層11の側壁は、チャネル層6と接している。 Thereafter, as shown in FIG. 4B, a Ni (nickel) film 51 is deposited on the interlayer insulating film 9 and inside the contact hole 10s. The thickness of the Ni film 51 is, for example, 50 nm. In this state, annealing is performed for about 1 minute at a temperature of 950 ° C. in a nitrogen atmosphere. By this heat treatment, silicon carbide in the channel layer 6 reacts with Ni at the interface between the channel layer 6 and the Ni film 51 to form the Ni silicide layer 11. Here, the Ni film 51 is silicided almost completely, and the Ni silicide layer 11 having a thickness of, for example, 100 nm is formed. In this case, the thickness of the Ni film 51 is set to be larger than the thickness of the channel layer 6 that is thinned by the etching, so that not only the thinned portion of the channel layer 6 is used. Ni can be diffused to the surface portions of the source region 4 and the p + contact region 5. Therefore, a good ohmic junction is formed between the Ni silicide layer 11 and the p + contact region 5 and the source region 4. Further, the sidewall of the Ni silicide layer 11 is in contact with the channel layer 6.
 次いで、Ni膜51のうち炭化珪素と反応しなかった部分を除去する。さらに、公知の方法で、ソース配線12、ゲート配線13およびドレイン電極14を形成し、図4(c)に示すMISFETを得る。 Next, the portion of the Ni film 51 that has not reacted with silicon carbide is removed. Further, the source wiring 12, the gate wiring 13, and the drain electrode 14 are formed by a known method to obtain the MISFET shown in FIG.
 図4(a)に示す工程において、表面部分が除去された後のチャネル層6の厚さが、Ni膜51の厚さの1/2以下となるようにエッチング条件を調整することが好ましい。この後、堆積されたNiの略全てがシリサイド化されるように熱処理条件を調整すると、熱処理によって得られるNiシリサイド層11とソース領域4およびp+コンタクト領域5との間に、より確実に良好なオーミック接合を形成できる。 In the step shown in FIG. 4A, it is preferable to adjust the etching conditions so that the thickness of the channel layer 6 after the surface portion is removed becomes 1/2 or less of the thickness of the Ni film 51. Thereafter, when the heat treatment conditions are adjusted so that substantially all of the deposited Ni is silicided, the Ni silicide layer 11 obtained by the heat treatment and the source region 4 and the p + contact region 5 are more reliably and reliably An ohmic junction can be formed.
 図4に示す方法によると、図2を参照しながら前述した方法よりも、Niシリサイド層11の厚さを小さくできる。Niシリサイド層11の上面のレベルは、チャネル層6のハーフエッチを行わない場合よりも低くなる。Ni膜51やチャネル層6の厚さ、図4(a)に示す工程における炭化珪素層2のエッチング量にもよるが、Niシリサイド層11の上面は、チャネル層6の上面よりも低くなる場合がある。 According to the method shown in FIG. 4, the thickness of the Ni silicide layer 11 can be made smaller than the method described above with reference to FIG. The level of the upper surface of the Ni silicide layer 11 is lower than when the channel layer 6 is not half-etched. The upper surface of the Ni silicide layer 11 is lower than the upper surface of the channel layer 6 depending on the thickness of the Ni film 51 and the channel layer 6 and the etching amount of the silicon carbide layer 2 in the step shown in FIG. There is.
 本実施形態では、チャネル層6とNi膜51とを反応させて、Niシリサイド層11を形成したが、代わりに、炭化珪素層11に対してオーミック接合を形成できる他の金属材料(例えばTi、Co)により構成される膜とチャネル層6とを反応させて、他の金属シリサイド層を形成してもよい。この場合でも、上記と同様の効果が得られる。 In this embodiment, the channel layer 6 and the Ni film 51 are reacted to form the Ni silicide layer 11, but instead, other metal materials that can form an ohmic junction with the silicon carbide layer 11 (for example, Ti, A film composed of Co) and the channel layer 6 may be reacted to form another metal silicide layer. Even in this case, the same effect as described above can be obtained.
 上記では、ボディ領域3とソース配線12との間の抵抗を低くするために、ボディ領域3よりもキャリア濃度の高いp+型コンタクト領域5を設けているが、p+コンタクト領域5が形成されていなくてもよい。例えばボディ領域3のキャリア濃度が十分に高ければ、高濃度のp+コンタクト領域5を形成しなくてもよい。 In the above, in order to reduce the resistance between the body region 3 and the source wiring 12, the p + type contact region 5 having a carrier concentration higher than that of the body region 3 is provided, but the p + contact region 5 is formed. It does not have to be. For example, if the carrier concentration of the body region 3 is sufficiently high, the high concentration p + contact region 5 may not be formed.
 SiC基板として、4H-SiC基板を用いたが、他の結晶面や他のポリタイプのSiC基板を用いてもよい。また、4H-SiC基板を用いる場合、そのSi面に炭化珪素層2を形成し、C面にドレイン電極14を形成してもよいし、C面に炭化珪素層2、Si面にドレイン電極14を形成してもよい。 Although a 4H-SiC substrate was used as the SiC substrate, other crystal planes or other polytype SiC substrates may be used. When a 4H—SiC substrate is used, the silicon carbide layer 2 may be formed on the Si surface, the drain electrode 14 may be formed on the C surface, the silicon carbide layer 2 on the C surface, and the drain electrode 14 on the Si surface. May be formed.
 上記実施形態の半導体素子はnチャネル型であるが、pチャネル型であってもよい。pチャネル型の半導体素子(MISFET)では、SiC基板1、ドリフト領域2d、ソース領域4およびチャネル層6の導電型はp型、ボディ領域3およびコンタクト領域5の導電型はn型となる。 The semiconductor element of the above embodiment is an n-channel type, but may be a p-channel type. In a p-channel type semiconductor element (MISFET), the conductivity type of SiC substrate 1, drift region 2d, source region 4 and channel layer 6 is p-type, and the conductivity type of body region 3 and contact region 5 is n-type.
 本発明の半導体素子は、トレンチ型のMISFETであってもよい。 The semiconductor element of the present invention may be a trench type MISFET.
 図11は、本発明によるトレンチ型MISFETの一例を示す断面図である。簡単のため、図1と同様の構成要素には、同じ参照符号を付し、説明を省略する。 FIG. 11 is a cross-sectional view showing an example of a trench type MISFET according to the present invention. For the sake of simplicity, the same components as those in FIG.
 図11に示すMISFETでは、炭化珪素層2の表面領域にソース領域4が配置されている。ボディ領域3はソース領域4の下方に、ソース領域4と接して配置されている。また、炭化珪素層2には、ソース領域4およびボディ領域3を貫通し、ドリフト領域2dに達するトレンチ2tが形成されている。トレンチ2t内では、ソース領域4の側壁およびボディ領域3の側壁を覆うようにチャネル層6が形成されている。トレンチ2t内において、チャネル層6上にはゲート絶縁膜7を介して、ゲート電極8が設けられている。その他の構成は、図1に示す構成と同様である。 In the MISFET shown in FIG. 11, the source region 4 is disposed in the surface region of the silicon carbide layer 2. The body region 3 is disposed below the source region 4 and in contact with the source region 4. Silicon carbide layer 2 has a trench 2t that penetrates source region 4 and body region 3 and reaches drift region 2d. In trench 2 t, channel layer 6 is formed so as to cover the side wall of source region 4 and the side wall of body region 3. A gate electrode 8 is provided on the channel layer 6 via a gate insulating film 7 in the trench 2t. Other configurations are the same as those shown in FIG.
 このようなトレンチ型MISFETも、図2を参照しながら前述した方法と同様の方法で形成できる。具体的には、ボディ領域3、ソース領域4およびコンタクト領域5が形成された炭化珪素層2にトレンチ2tを形成する。次いで、トレンチ2t内にチャネル層6、ゲート絶縁膜7およびゲート電極8をこの順で形成する。この後、チャネル層6を加工することなく、ゲート絶縁膜7およびゲート電極8をパターニングする。このとき、チャネル層6の表面部分のみエッチングされる場合もある。続いて、チャネル層6およびゲート電極8上に、層間絶縁膜9を形成する。層間絶縁膜9には、チャネル層6の表面の一部を露出するコンタクトホールを形成する。この後は、図2(c)に示す工程と同様に、チャネル層6の露出表面にNi膜を堆積してアニール処理を行い、金属シリサイド層11を形成する。 Such a trench MISFET can also be formed by the same method as described above with reference to FIG. Specifically, trench 2t is formed in silicon carbide layer 2 in which body region 3, source region 4 and contact region 5 are formed. Next, the channel layer 6, the gate insulating film 7, and the gate electrode 8 are formed in this order in the trench 2t. Thereafter, the gate insulating film 7 and the gate electrode 8 are patterned without processing the channel layer 6. At this time, only the surface portion of the channel layer 6 may be etched. Subsequently, an interlayer insulating film 9 is formed on the channel layer 6 and the gate electrode 8. A contact hole that exposes a part of the surface of the channel layer 6 is formed in the interlayer insulating film 9. Thereafter, as in the step shown in FIG. 2C, a Ni film is deposited on the exposed surface of the channel layer 6 and annealed to form the metal silicide layer 11.
 図11に示すトレンチ型MISFETでも、上述した実施形態と同様に、炭化珪素層2に対して良好なコンタクトを確保でき、かつ、マスク合わせのためのマージンを小さくすることが可能になる。 In the trench type MISFET shown in FIG. 11 as well, as in the above-described embodiment, it is possible to secure a good contact with the silicon carbide layer 2 and reduce the margin for mask alignment.
 本発明の半導体素子は縦型MISFETに限定されず、横型MISFETであってもよい。また、MISFETでなくてもよく、炭化珪素層と電気的に接続された電極とを有する種々の半導体装置であってもよい。例えば上記実施形態では、炭化珪素層2と同じ導電型のSiC基板1を用いてMISFETを製造しているが、炭化珪素層2と異なる導電型のSiC基板を用いて絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を製造することもできる。 The semiconductor element of the present invention is not limited to a vertical MISFET, and may be a horizontal MISFET. Further, the semiconductor device may not be a MISFET, and may be various semiconductor devices having an electrode electrically connected to the silicon carbide layer. For example, in the above embodiment, the MISFET is manufactured using the SiC substrate 1 having the same conductivity type as that of the silicon carbide layer 2, but an insulated gate bipolar transistor (Insulated Gate Gate) is used using a SiC substrate having a conductivity type different from that of the silicon carbide layer 2. Bipolar Transistor (IGBT) can also be manufactured.
 本発明によると、層間絶縁膜に形成された開口部内において、炭化珪素層上に形成された追加の炭化珪素層を用いて金属シリサイド層を形成する。これにより、炭化珪素層における所定の領域と金属シリサイド層との間で良好なコンタクトを確保するとともに、マスク合わせを考慮したマージンを小さくできるので、チップ面積の増大を抑えることが可能になる。 According to the present invention, the metal silicide layer is formed using the additional silicon carbide layer formed on the silicon carbide layer in the opening formed in the interlayer insulating film. As a result, a good contact can be ensured between a predetermined region in the silicon carbide layer and the metal silicide layer, and a margin in consideration of mask alignment can be reduced, so that an increase in chip area can be suppressed.
 本発明は、炭化珪素層上に電極を有する半導体素子、およびそれらを備えた装置に広く適用できる。本発明は、特に、蓄積チャネル型のMISFETに好適に用いられ得る。蓄積チャネル型のMISFETに適用すると、チャネル層上に堆積させた金属とチャネル層とを反応させることによって、ソース領域に良好に接合された電極(金属シリサイド層)を形成できる。また、ソース領域の厚さを確保することができるので、オン抵抗の増大を抑制できる。さらに、マスク合わせのためのマージンを小さくできるので、チップ面積を小さくすることが可能になる。 The present invention can be widely applied to a semiconductor element having an electrode on a silicon carbide layer and an apparatus including the same. The present invention can be suitably used particularly for a storage channel type MISFET. When applied to a storage channel type MISFET, an electrode (metal silicide layer) well bonded to the source region can be formed by reacting the metal deposited on the channel layer with the channel layer. In addition, since the thickness of the source region can be ensured, an increase in on-resistance can be suppressed. Further, since the margin for mask alignment can be reduced, the chip area can be reduced.
  1   n型SiC基板
  2   炭化珪素層
  2d  n型ドリフト領域
  3   p型ボディ領域
  4   ソース領域
  5   p+コンタクト領域
  6   チャネル層
  7   ゲート絶縁膜
  8   ゲート電極
  9   層間絶縁膜
  10s  ソースコンタクト形成用のコンタクトホール
  10g  ゲートコンタクト形成用のコンタクトホール
  11   金属シリサイド層(Niシリサイド、ソース電極)
  12   ソース配線
  13   ゲート電極配線
  14   裏面電極(ドレイン電極)
  31、32、33  シリコン酸化膜マスク層
  41、42、43  レジスト層
  51   Ni膜
1 n-type SiC substrate 2 silicon carbide layer 2d n-type drift region 3 p-type body region 4 source region 5 p + contact region 6 channel layer 7 gate insulating film 8 gate electrode 9 interlayer insulating film 10s contact hole for source contact formation 10g Contact hole for forming a gate contact 11 Metal silicide layer (Ni silicide, source electrode)
12 Source wiring 13 Gate electrode wiring 14 Back electrode (drain electrode)
31, 32, 33 Silicon oxide film mask layer 41, 42, 43 Resist layer 51 Ni film

Claims (18)

  1.  炭化珪素基板と、
     前記炭化珪素基板の表面に配置された第1炭化珪素層と、
     前記第1炭化珪素層の表面の一部の領域上に配置された第2炭化珪素層と、
     前記第1炭化珪素層上に設けられ、前記第1炭化珪素層と接する金属シリサイド層と、
     前記第2炭化珪素層上に設けられ、開口部を有する層間絶縁膜と、
     前記開口部内に配置された導電層と
    を備え、
     前記金属シリサイド層は前記開口部の内壁と接するように設けられ、
     前記導電層は、前記金属シリサイド層を介して前記第1炭化珪素層と電気的に接続されており、
     前記金属シリサイド層は前記第2炭化珪素層と接している半導体素子。
    A silicon carbide substrate;
    A first silicon carbide layer disposed on a surface of the silicon carbide substrate;
    A second silicon carbide layer disposed on a partial region of the surface of the first silicon carbide layer;
    A metal silicide layer provided on the first silicon carbide layer and in contact with the first silicon carbide layer;
    An interlayer insulating film provided on the second silicon carbide layer and having an opening;
    A conductive layer disposed in the opening,
    The metal silicide layer is provided in contact with the inner wall of the opening;
    The conductive layer is electrically connected to the first silicon carbide layer via the metal silicide layer;
    The semiconductor element wherein the metal silicide layer is in contact with the second silicon carbide layer.
  2.  前記第1炭化珪素層は、
      前記第1炭化珪素層内に配置された第1導電型の第1領域と、
      前記第1炭化珪素層内に、前記第1領域と接するように配置された、第2導電型の第2領域と
    を有しており、
     前記第1炭化珪素層のうち前記第1領域も第2領域も配置されていない領域は第2導電型の第3領域を含み、
     前記金属シリサイド層は前記第2領域と接している請求項1に記載の半導体素子。
    The first silicon carbide layer includes
    A first region of a first conductivity type disposed in the first silicon carbide layer;
    A second region of a second conductivity type disposed in contact with the first region in the first silicon carbide layer;
    A region of the first silicon carbide layer in which neither the first region nor the second region is disposed includes a third region of a second conductivity type,
    The semiconductor element according to claim 1, wherein the metal silicide layer is in contact with the second region.
  3.  前記第2炭化珪素層上に設けられたゲート絶縁膜と、
     前記ゲート絶縁膜上に配置されたゲート電極と
    をさらに備えた請求項1または2に記載の半導体素子。
    A gate insulating film provided on the second silicon carbide layer;
    The semiconductor element according to claim 1, further comprising a gate electrode disposed on the gate insulating film.
  4.  前記金属シリサイド層の厚さは、前記第2炭化珪素層の厚さの2倍より大きく、4倍以下である請求項1から3のいずれかに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 3, wherein the thickness of the metal silicide layer is greater than twice the thickness of the second silicon carbide layer and less than or equal to four times.
  5.  前記金属シリサイド層は、カーボンを含むNiシリサイド層である請求項1から4のいずれかに記載の半導体素子。 5. The semiconductor element according to claim 1, wherein the metal silicide layer is a Ni silicide layer containing carbon.
  6.  前記第1炭化珪素層の上方から見て、前記金属シリサイド層のうち前記第1または第2炭化珪素層と接する部分の幅w2は、前記開口部の幅w1以上であり、これらの幅の差w2-w1は0以上200nm以下である請求項1から5のいずれかに記載の半導体素子。 When viewed from above the first silicon carbide layer, the width w2 of the metal silicide layer in contact with the first or second silicon carbide layer is not less than the width w1 of the opening, and the difference between these widths 6. The semiconductor element according to claim 1, wherein w2-w1 is 0 or more and 200 nm or less.
  7.  前記金属シリサイド層の側面は前記第2炭化珪素層と接し、前記金属シリサイド層の下面は前記第2炭化珪素層と接していない請求項1から6のいずれかに記載の半導体素子。 The semiconductor element according to claim 1, wherein a side surface of the metal silicide layer is in contact with the second silicon carbide layer, and a lower surface of the metal silicide layer is not in contact with the second silicon carbide layer.
  8.  前記金属シリサイド層および前記第2炭化珪素層は、互いの側面においてのみ接している請求項7に記載の半導体素子。 The semiconductor element according to claim 7, wherein the metal silicide layer and the second silicon carbide layer are in contact with each other only on side surfaces.
  9.  前記第1および第2領域は、前記第1炭化珪素層の表面領域に配置され、前記第2領域は、前記第1炭化珪素層の表面において、前記第1領域に包囲されるように配置されている請求項2に記載の半導体素子。 The first and second regions are disposed on a surface region of the first silicon carbide layer, and the second region is disposed on the surface of the first silicon carbide layer so as to be surrounded by the first region. The semiconductor device according to claim 2.
  10.  前記第2領域は、前記第1炭化珪素層の表面領域に配置され、前記第1領域は、前記第2領域の下方に配置され、
     前記第2領域および前記第1領域を貫通し、前記第3領域に達するトレンチをさらに有する請求項2に記載の半導体素子。
    The second region is disposed in a surface region of the first silicon carbide layer, the first region is disposed below the second region,
    The semiconductor element according to claim 2, further comprising a trench that penetrates through the second region and the first region and reaches the third region.
  11.  炭化珪素層を有する半導体素子の製造方法であって、
     (A)表面に第1炭化珪素層が形成された炭化珪素基板を用意する工程と、
     (B)前記第1炭化珪素層上に、第2炭化珪素層を形成する工程と、
     (C)前記第2炭化珪素層上に、前記第2炭化珪素層の表面の一部を露出する開口部を有する層間絶縁膜を形成する工程と、
     (D)前記層間絶縁膜の前記開口部内において、前記第2炭化珪素層の前記露出された表面上に金属膜を形成する工程と、
     (E)前記金属膜と前記第2炭化珪素層の一部および第1炭化珪素層の一部とを反応させて、前記第1炭化珪素層に接する金属シリサイド層を形成する工程と、
     (F)前記層間絶縁膜の前記開口部内に、前記金属シリサイド層を介して前記第1炭化珪素層と電気的に接続された導電層を形成する工程と
    を含む半導体素子の製造方法。
    A method for manufacturing a semiconductor element having a silicon carbide layer,
    (A) preparing a silicon carbide substrate having a first silicon carbide layer formed on the surface;
    (B) forming a second silicon carbide layer on the first silicon carbide layer;
    (C) forming an interlayer insulating film having an opening exposing a part of the surface of the second silicon carbide layer on the second silicon carbide layer;
    (D) forming a metal film on the exposed surface of the second silicon carbide layer in the opening of the interlayer insulating film;
    (E) reacting the metal film with a part of the second silicon carbide layer and a part of the first silicon carbide layer to form a metal silicide layer in contact with the first silicon carbide layer;
    (F) forming a conductive layer electrically connected to the first silicon carbide layer through the metal silicide layer in the opening of the interlayer insulating film.
  12.  前記工程(E)において、前記金属膜に含まれる金属は、前記第2炭化珪素層および前記第1炭化珪素層に拡散してシリサイド化され、これによって前記金属シリサイド層が形成される請求項11に記載の半導体素子の製造方法。 12. The metal contained in the metal film in the step (E) is diffused and silicided into the second silicon carbide layer and the first silicon carbide layer, thereby forming the metal silicide layer. The manufacturing method of the semiconductor element of description.
  13.  前記工程(D)において、前記金属膜の厚さは、前記第2炭化珪素層の厚さより大きく、かつ、その2倍以下である請求項11または12に記載の半導体素子の製造方法。 The method of manufacturing a semiconductor element according to claim 11 or 12, wherein, in the step (D), the thickness of the metal film is larger than the thickness of the second silicon carbide layer and twice or less.
  14.  前記工程(C)は、
      前記第2炭化珪素層上に前記層間絶縁膜を形成する工程(C1)と、
      前記層間絶縁膜に前記開口部を形成する工程(C2)と
    を含み、
     前記工程(C2)の前に、前記第2炭化珪素層のエッチングを行わない請求項11から13のいずれかに記載の半導体素子の製造方法。
    The step (C)
    Forming the interlayer insulating film on the second silicon carbide layer (C1);
    Forming the opening in the interlayer insulating film (C2),
    The method of manufacturing a semiconductor element according to claim 11, wherein the second silicon carbide layer is not etched before the step (C2).
  15.  前記工程(C2)は、前記開口部によって露出された前記第2炭化珪素層の表面部分をエッチングする工程を含む請求項14に記載の半導体素子の製造方法。 15. The method of manufacturing a semiconductor element according to claim 14, wherein the step (C2) includes a step of etching a surface portion of the second silicon carbide layer exposed by the opening.
  16.  前記工程(C2)において、前記エッチングされた後の前記他の炭化珪素層の厚さは、前記金属膜の厚さの1/2以下である請求項15に記載の半導体素子の製造方法。 The method of manufacturing a semiconductor element according to claim 15, wherein in the step (C2), the thickness of the other silicon carbide layer after the etching is ½ or less of the thickness of the metal film.
  17.  前記金属膜はNi膜である請求項11から16のいずれかに記載の半導体素子の製造方法。 The method of manufacturing a semiconductor element according to claim 11, wherein the metal film is a Ni film.
  18.  前記第1および第2炭化珪素層は第2導電型であり、
     前記工程(A)と前記工程(B)との間に、前記第1炭化珪素層に、第1導電型のボディ領域と、前記ボディ領域と接する第2導電型のソース領域とを形成する工程(G)と、
     前記工程(B)と前記工程(C)との間に、前記第2炭化珪素層上にゲート絶縁膜およびゲート電極を形成する工程(H)と
    をさらに含み、
     前記工程(C)は、前記第2炭化珪素層上に、前記第2炭化珪素層の表面のうち前記ソース領域上に位置する部分を露出する開口部を有する層間絶縁膜を形成する工程であり、
     前記工程(E)は、前記金属膜と前記第2炭化珪素層の一部および前記ソース領域の一部とを反応させて、前記ソース領域と接する金属シリサイド層を形成する工程である請求項11から17のいずれかに記載の半導体素子の製造方法。
    The first and second silicon carbide layers are of a second conductivity type;
    A step of forming a first conductivity type body region and a second conductivity type source region in contact with the body region in the first silicon carbide layer between the step (A) and the step (B). (G) and
    A step (H) of forming a gate insulating film and a gate electrode on the second silicon carbide layer between the step (B) and the step (C);
    The step (C) is a step of forming, on the second silicon carbide layer, an interlayer insulating film having an opening that exposes a portion of the surface of the second silicon carbide layer located on the source region. ,
    The step (E) is a step of reacting the metal film with a part of the second silicon carbide layer and a part of the source region to form a metal silicide layer in contact with the source region. 18. A method for manufacturing a semiconductor device according to any one of items 1 to 17.
PCT/JP2010/005292 2009-09-02 2010-08-27 Semiconductor element and method for manufacturing same WO2011027525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009202895 2009-09-02
JP2009-202895 2009-09-02

Publications (1)

Publication Number Publication Date
WO2011027525A1 true WO2011027525A1 (en) 2011-03-10

Family

ID=43649082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005292 WO2011027525A1 (en) 2009-09-02 2010-08-27 Semiconductor element and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2011027525A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102411B2 (en) * 2010-09-06 2012-12-19 パナソニック株式会社 Semiconductor device and manufacturing method thereof
WO2014068813A1 (en) * 2012-10-30 2014-05-08 パナソニック株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008512A1 (en) * 2002-07-11 2004-01-22 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing same
JP2005039257A (en) * 2003-07-02 2005-02-10 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JP2006066438A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
WO2009054140A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Semiconductor device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008512A1 (en) * 2002-07-11 2004-01-22 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing same
JP2005039257A (en) * 2003-07-02 2005-02-10 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JP2006066438A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
WO2009054140A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Semiconductor device and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102411B2 (en) * 2010-09-06 2012-12-19 パナソニック株式会社 Semiconductor device and manufacturing method thereof
WO2014068813A1 (en) * 2012-10-30 2014-05-08 パナソニック株式会社 Semiconductor device
JP5577478B1 (en) * 2012-10-30 2014-08-20 パナソニック株式会社 Semiconductor device
CN105051868A (en) * 2012-10-30 2015-11-11 松下电器产业株式会社 Semiconductor device
US9362370B2 (en) 2012-10-30 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor device having nitrogen-containing silicon alloy for ohmic contact to P-type impurity region
CN105051868B (en) * 2012-10-30 2016-06-08 松下知识产权经营株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US9559188B2 (en) Trench gate type semiconductor device and method of producing the same
WO2011027540A1 (en) Semiconductor element and method for manufacturing same
US8658503B2 (en) Semiconductor device and method of fabricating the same
JP5075280B2 (en) Semiconductor device and manufacturing method thereof
JP4340757B2 (en) Semiconductor device
US8772788B2 (en) Semiconductor element and method of manufacturing thereof
JP5102411B2 (en) Semiconductor device and manufacturing method thereof
JP2018182235A (en) Semiconductor device and semiconductor device manufacturing method
JP7103444B2 (en) Silicon carbide semiconductor device
WO2010143376A1 (en) Semiconductor device and process for manufacture thereof
US7772613B2 (en) Semiconductor device with large blocking voltage and method of manufacturing the same
JP2018182032A (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP4842527B2 (en) Manufacturing method of semiconductor device
WO2011013364A1 (en) Method for producing semiconductor element
JP5636752B2 (en) Semiconductor device and manufacturing method thereof
WO2012105170A1 (en) Semiconductor device and manufacturing method thereof
JP2010027833A (en) Silicon carbide semiconductor device and its manufacturing method
WO2011027525A1 (en) Semiconductor element and method for manufacturing same
JPH03227562A (en) Insulated-gate field-effect transistor and its manufacturing method
JP5108408B2 (en) Semiconductor device and manufacturing method thereof
WO2015111177A1 (en) Semiconductor device, power module, power conversion device, and railway vehicle
JP2022163580A (en) Method for manufacturing switching device
CN116646400A (en) Silicon carbide MOSFET device and manufacturing method
JP3664147B2 (en) Silicon carbide semiconductor device
JP5098206B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813478

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP