WO2011024838A1 - Method for thermal displacement correction in machine tool and thermal displacement correction device - Google Patents

Method for thermal displacement correction in machine tool and thermal displacement correction device Download PDF

Info

Publication number
WO2011024838A1
WO2011024838A1 PCT/JP2010/064341 JP2010064341W WO2011024838A1 WO 2011024838 A1 WO2011024838 A1 WO 2011024838A1 JP 2010064341 W JP2010064341 W JP 2010064341W WO 2011024838 A1 WO2011024838 A1 WO 2011024838A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculation
correction
thermal displacement
amount
shaft
Prior art date
Application number
PCT/JP2010/064341
Other languages
French (fr)
Japanese (ja)
Inventor
治夫 小林
初 倉橋
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to CN201080037054.5A priority Critical patent/CN102481675B/en
Publication of WO2011024838A1 publication Critical patent/WO2011024838A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49212Using lookup table, map, position error, temperature and position

Definitions

  • the present invention relates to a thermal displacement correction method and a thermal displacement correction device for a machine tool. More particularly, the present invention relates to a method and apparatus for correcting an error caused by thermal displacement of a ball screw mechanism that occurs during operation of a machine tool.
  • the ball screw mechanism is widely used as a positioning mechanism for machine tools.
  • the ball screw mechanism causes a pitch error between the amount of rotation of the ball screw shaft and the amount of movement of the nut due to manufacturing tolerances and the like.
  • the thermal displacement correction device of the machine tool corrects the pitch error of the ball screw mechanism based on a preset pitch error correction amount table.
  • the temperature of the ball screw mechanism rises due to the frictional resistance between the ball screw shaft and the nut and the heat generated by the frictional resistance between the ball screw shaft and each bearing.
  • the ball screw mechanism causes thermal expansion based on the above-described temperature rise, and generates thermal displacement (elongation).
  • the thermal displacement of the ball screw shaft causes a positioning error of the machine tool.
  • the pre-tension method applies pre-tension to the ball screw shaft and absorbs thermal expansion.
  • the machine tool uses a thick ball screw shaft and the feed speed is very fast. Therefore, since the amount of heat generation increases, when using the pre-tension method, the machine tool must apply a very large tension to the ball screw shaft. When a very large tension is applied to the machine tool, there is a problem that the ball screw mechanism is deformed. In the above case, there is a problem that an excessive force is applied to the thrust bearing and the ball screw mechanism is seized.
  • the methods for correcting the thermal displacement of the ball screw shaft proposed by Patent Documents 1 to 3 do not apply excessive tension to the ball screw shaft and do not require a special measuring device.
  • the method corrects for thermal displacement during machine tool operation. Specifically, in the first step, the amount of heat generated in each section of the ball screw shaft is calculated based on the rotation speed of the servo motor. In the second step, the temperature distribution of the ball screw shaft is calculated based on the amount of heat generated using a model in which the nut movement range of the ball screw shaft is divided into a plurality of correction sections. The third step predicts the amount of thermal displacement of the ball screw shaft from time to time based on the temperature distribution. In the fourth step, the thermal displacement amount is given to the numerical control device (control unit) as a correction amount for correcting the pitch error correction amount. This method can approximate the calculated correction amount to the actual elongation of the ball screw shaft.
  • the correction section of the ball screw mechanism is a section in which the nut portion movement range (between X0 and X300 in the machine coordinates) 81b of the ball screw shaft 81 is equally divided by a length of 20 mm. Pitch error correction is performed for each correction section. The correction amount of the thermal displacement amount is calculated for each calculation section divided by the same set length as the correction section for pitch error correction. When the calculation interval is short, the number of calculation intervals increases. Therefore, the thermal displacement amount correction apparatus increases the processing load, and may not be able to calculate the thermal displacement correction amount within a predetermined time (calculation cycle). Since the above-mentioned length of 20 mm is short as the length of the calculation section, there is a case where the correction amount of the thermal displacement amount cannot be calculated.
  • the number of calculation sections decreases when the length of the calculation section is increased compared to when the set length of the calculation section is short. Therefore, the problem that the correction amount of the thermal displacement amount cannot be calculated does not occur.
  • the set length of the calculation section is increased, the calculation accuracy of the thermal displacement amount is lower than that when the set length of the calculation section is short. Therefore, in the case described above, there is a problem that the processing accuracy is lowered. Therefore, the thermal displacement amount correcting device needs to set the length of the calculation section to an appropriate length in order to suppress the load of the calculation process and achieve the target machining accuracy.
  • the conventional thermal displacement correction method sets the calculation interval as follows.
  • the division position of the calculation section of the thermal shift correction amount is a position that coincides with the machine coordinate origin (X0).
  • the length of the calculation section in the nut portion moving range 81b of the ball screw shaft 81 is an integral multiple of the length of the correction section for pitch error correction.
  • the length of the front shaft portion 81a is 100 mm.
  • the length of the nut portion moving range 81b is 300 mm.
  • the length of the rear shaft portion 81c is 100 mm.
  • the length of the calculation section 1 is 80 mm.
  • the length of the calculation section 2 is 20 mm.
  • the length of the calculation section 3 to the calculation section 5 is 80 mm.
  • the length of the calculation section 6 is 60 mm.
  • the length of the calculation section 7 is 80 mm.
  • the length of the calculation section 8 is 20 mm.
  • the remainder that cannot be divided by the section length (80 mm) of the calculation section is in calculation section 2, calculation section 6, and calculation section 8.
  • the pitch error correction amount is corrected by the following method using the thermal displacement amount calculated for each calculation section.
  • the thermal displacement correction device corrects the pitch error correction amount of X0 using the sum of the thermal displacement amounts of calculation interval 1 and calculation interval 2 as the thermal displacement amount at position X0.
  • the thermal displacement correction device calculates the thermal displacement amounts at the positions X20, X40, X60, and X80 based on the fact that the length of the calculation section 3 is four times the length of the correction section as follows.
  • the thermal displacement correction device equally divides 1 ⁇ 4 of the thermal displacement amount in the calculation section 3 to the positions X20, X40, X60, and X80, and calculates the thermal displacement amount at each position.
  • the thermal displacement correction device corrects the pitch error correction amount at each position using the thermal displacement amount. For other calculation sections, the pitch error correction amount is corrected in the same manner as described above.
  • the lengths of the calculation section 2, the calculation section 6, and the calculation section 8 are shorter than the section length (80 mm) of the calculation section.
  • the number of computation sections increases due to computation sections 2 and 8 having the minimum length (20 mm) among the remainders that cannot be divided by the section length of the computation sections. Therefore, the calculation cycle for calculating the amount of thermal displacement must be set small according to the number of calculation sections. Therefore, the calculation processing load of the thermal displacement correction device increases.
  • calculation interval 2 in FIG. 12 is added to calculation interval 1
  • calculation interval 6 is added to calculation interval 5
  • calculation interval 8 is added to calculation interval 7.
  • the lengths (80 mm) of the calculation section 2 and the calculation section 3 are lengths for determining a calculation cycle for calculating the thermal displacement amount. Therefore, the method shown in FIG. 13 can suppress the processing load of the thermal displacement correction device.
  • the range from the front shaft portion 81a of the ball screw shaft 81 to the nut portion moving range 81b affects the calculation accuracy of the thermal displacement amount.
  • Each of the calculation section 1 and the calculation section 4 is longer than the length of the calculation section. Therefore, since the calculation accuracy of the thermal displacement amount is lowered, the target machining accuracy may not be achieved.
  • An object of the present invention is to provide a thermal displacement correction method for a machine tool and a thermal displacement correction device for the same that can suppress the calculation processing load of the numerical control device and perform highly accurate thermal displacement correction. is there.
  • a method of correcting a thermal displacement amount of a machine tool comprises: a feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and the servo motor.
  • a thermal displacement correction method for a machine tool having a control unit controlled based on control data, a fixed side end connected to the shaft and the servo motor, a movable side end opposite to the fixed side end,
  • a plurality of calculation sections obtained by dividing the total length of the shaft by a fixed length from the fixed side end and the movable side end And a heat generation amount and a temperature distribution in each calculation section are calculated.
  • the thermal displacement amount correction method divides the entire length of the shaft into a fixed length calculation section from the fixed side end, and sets the length of the calculation section including the movable side end to a certain length or more. Calculate calorific value and temperature distribution for each calculation section.
  • the delimitation position of the thermal displacement amount correction calculation section does not need to coincide with the delimitation position of the pitch error correction correction section. Therefore, the thermal displacement amount correction method can lengthen the calculation cycle for calculating the thermal displacement amount by setting the section length of the calculation section to be longer, and can reduce the processing load on the thermal displacement amount correction apparatus.
  • the thermal displacement correction method can perform highly accurate thermal displacement correction by setting the length of the calculation section so as not to become unnecessarily long.
  • the thermal displacement correction method by setting the section length of the calculation section to an appropriate size, it is possible to achieve the target machining accuracy while suppressing the calculation processing load in the thermal displacement correction device. .
  • the thermal displacement correction method for a machine tool divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections shorter than the calculation section.
  • a pitch error correction amount for correcting a pitch error for each correction section is corrected using the thermal displacement amount.
  • the calculation cycle for calculating the thermal displacement can be lengthened, and the calculation processing load in the thermal displacement correction device can be reduced.
  • a method for correcting a thermal displacement amount of a machine tool includes: a feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and the servo motor.
  • a control unit that controls based on the control data, and divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections, and a pitch error for each of the plurality of correction sections
  • a fixed side end connected to the servo motor on the shaft and a movable side end opposite to the fixed side end are provided in advance, and the total length of the shaft is increased.
  • the thermal displacement correction method can lengthen the calculation cycle for calculating the thermal displacement, and can reduce the calculation processing load in the numerical controller.
  • the thermal displacement correction method by setting the section length of the calculation section to an appropriate size, it becomes possible to achieve the target machining accuracy while suppressing the calculation processing load in the thermal displacement correction device. .
  • a thermal displacement correction device for a machine tool comprises: a feed driving ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and the servo motor.
  • a control unit that controls based on the control data, and divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections, and a pitch error for each of the plurality of correction sections
  • the shaft has a fixed side end connected to the servo motor and a movable side end opposite to the fixed side end, and the rotation of the servo motor
  • a calculation section that includes the movable side end and is equal to or longer than the predetermined length is set, and for each calculation section, a heat generation amount for each calculation section is determined based on a rotation speed of the servo motor and control data.
  • a calorific value computation unit that computes every time, a total calorific value obtained by accumulating the calorific value for each computation interval for a predetermined period, and an unsteady heat conduction equation, a temperature distribution for each computation interval is calculated for the predetermined period.
  • a correction amount calculation unit that calculates a correction amount for correcting the pitch error correction amount for each correction section for each predetermined period.
  • the thermal displacement correction device of claim 4 the same effect as that of claim 1 is obtained. Since the thermal displacement correction device includes the speed detection device, the calorific value calculation device, the temperature distribution calculation device, the thermal displacement amount calculation device, and the correction amount calculation device, the same effect as in the third aspect is obtained.
  • FIG. 1 is an overall perspective view of a machine tool.
  • FIG. 5 is a diagram corresponding to FIG.
  • FIG. 5 is a view corresponding to FIG. 5 of another prior art.
  • the configuration of the machine tool M will be described with reference to FIGS.
  • the lower right of FIG. 1 is the front of the machine tool M.
  • the workpiece (not shown) and the tool 6 move relative to each other in the XYZ rectangular coordinate system independently, so that a desired machining (for example, “milling”, “drilling”, Etc.) can be applied.
  • the X-axis direction, Y-axis direction, and Z-axis direction of the machine tool M (machine main body 2) are the left-right direction, front-rear direction, and vertical direction of the machine tool M (machine main body 2), respectively.
  • the machine tool M includes a base 1, a machine body 2, and a cover (not shown) as main components.
  • the base 1 is a substantially rectangular parallelepiped casting that is long in the Y-axis direction.
  • the machine body 2 is provided on the upper part of the base 1.
  • the machine body 2 cuts the workpiece.
  • the cover is fixed to the upper part of the base 1.
  • the cover has a box shape covering the machine body 2 and the upper part of the base 1.
  • the machine body 2 will be described.
  • the machine body 2 includes a column 4, a spindle head 5, a spindle 5A, a tool changer (ATC) 7, and a table 8 as main components.
  • the column 4 has a substantially prismatic shape and is fixed to a column seat portion 3 provided at the rear portion of the base 1.
  • the spindle head 5 can be moved up and down along the column 4.
  • the spindle head 5 rotatably supports the spindle 5A.
  • the tool changer 7 is provided on the right side of the spindle head 5.
  • the tool changer 7 exchanges the tool holder on which the tool 6 at the tip of the spindle 5A is mounted and the tool holder accommodated in the tool magazine 14.
  • the table 8 is provided on the upper part of the base 1.
  • the table 8 fixes the work so as to be detachable.
  • the control box 9 is box-shaped.
  • the control box 9 is provided on the back side of the column 4.
  • the numerical control device 50 (see FIG. 4) is provided inside the control box 9.
  • the numerical controller 50 controls the operation of the machine tool M.
  • the numerical control device 50 has a function as a thermal displacement correction device.
  • An X-axis motor 71 that is a servomotor drives the table 8 to move in the X-axis direction.
  • a Y-axis motor 72 which is a servo motor, drives the table 8 to move in the Y-axis direction.
  • the X-axis motor 71 is provided on the support base 10.
  • the Y-axis motor 72 is provided on the base 1.
  • the support base 10 is provided below the table 8.
  • the support base 10 includes a pair of X-axis feed guides (not shown) extending along the X-axis direction on the upper surface thereof.
  • a pair of X-axis feed guides movably support the table 8 thereon.
  • the nut portion 8 a is arranged on the lower surface of the table 8.
  • the nut portion 8a is screwed with the X-axis ball screw shaft 81 to constitute an X-axis ball screw mechanism.
  • the X-axis ball screw shaft 81 is connected to the X-axis motor 71 via the coupling 17.
  • the fixed bearing 18 is fixed to the support base 10.
  • the fixed bearing 18 supports a fixed-side end portion 81e of the X-axis ball screw shaft 81 on the X-axis motor 71 side (fixed side).
  • the movable bearing 19 supports the movable side end 81f.
  • the movable end 81f is on the opposite side (movable side) of the fixed end 81e.
  • the movable bearing 19 is movable along the axial direction of the X-axis ball screw shaft 81.
  • a pair of Y-axis feed guides (not shown) are provided on the upper side of the base 1.
  • the pair of Y-axis feed guides extends along the Y-axis direction of the base 1.
  • the Y-axis feed guide supports the support 10 so as to be movable.
  • the table 8 moves in the X-axis direction along the X-axis feed guide when the X-axis motor 71 is driven.
  • the support base 10 is moved in the Y-axis direction along the Y-axis feed guide when the Y-axis motor 72 is driven.
  • the Y-axis moving mechanism is a ball screw mechanism, similar to the X-axis moving mechanism.
  • Covers 11 and 12 cover the X-axis feed guide on the left and right sides of the table 8.
  • the covers 11 and 12 can be expanded and contracted.
  • the cover 13 and the Y-axis rear cover (not shown) cover the Y-axis feed guide on both the front and rear sides of the support base 10, respectively.
  • the covers 11, 12, 13 and the Y-axis rear cover always cover the X-axis feed guide and the Y-axis feed guide regardless of whether the table 8 moves in either the X-axis direction or the Y-axis direction.
  • the covers 11, 12, 13 and the Y-axis rear cover prevent chips and coolant liquid scattered from the machining area from falling on the rails of the respective feed guides.
  • the lifting mechanism of the spindle head 5 will be described with reference to FIG. 1 and FIG.
  • the column 4 supports a Z-axis ball screw shaft (not shown) extending in the vertical direction.
  • a nut portion (not shown) is screwed with the Z-axis ball screw shaft.
  • the nut portion supports the spindle head 5.
  • a Z-axis motor 73 (see FIG. 4) rotates the Z-axis ball screw shaft in forward and reverse directions.
  • the spindle head 5 is driven up and down in the Z-axis direction by a Z-axis motor 73 (see FIGS. 2 and 4) that rotates the Z-axis ball screw shaft in the forward and reverse directions.
  • the axis control unit 63a drives the Z-axis motor 73 based on a control signal from the CPU 51 (see FIG. 4) of the numerical controller 50.
  • the spindle head 5 is driven up and down by driving a Z-axis motor 73.
  • the tool changer 7 includes a tool magazine 14 and a tool change arm 15.
  • the tool magazine 14 stores a plurality of tool holders (not shown) that support the tool 6.
  • the tool exchange arm 15 grasps a tool holder attached to the main shaft 5A and another tool holder, and conveys and exchanges them.
  • the tool magazine 14 includes a plurality of tool pots (not shown) and a transport mechanism (not shown) inside.
  • the tool pot supports the tool holder.
  • the transport mechanism transports the tool pot in the tool magazine 14.
  • the numerical controller 50 as a control unit of the machine tool M includes a microcomputer.
  • the numerical controller 50 includes an input / output interface 54, a CPU 51, a ROM 52, a flash memory 53, axis controllers 61a to 64a and 75a, servo amplifiers 61 to 64, differentiators 71b to 74b, and the like.
  • the axis controllers 61a to 64a are connected to the servo amplifiers 61 to 64, respectively.
  • the servo amplifiers 61 to 64 are connected to an X-axis motor 71, a Y-axis motor 72, a Z-axis motor 73, and a main shaft motor 74, respectively.
  • the shaft control unit 75 a is connected to the magazine motor 75.
  • the X-axis motor 71 and the Y-axis motor 72 are motors for moving the table 8 in the X-axis direction and the Y-axis direction, respectively.
  • the Z-axis motor 73 is a motor for driving the spindle head 5 up and down in the Z-axis direction.
  • the magazine motor 75 is a motor for rotating the tool magazine 14.
  • the main shaft motor 74 is a motor for rotating the main shaft 5A.
  • the X-axis motor 71, Y-axis motor 72, Z-axis motor 73, and main shaft motor 74 are provided with encoders 71a to 74a, respectively.
  • the axis controllers 61a to 64a receive the movement command amount from the CPU 51 and output a current command (motor torque command value) to the servo amplifiers 61 to 64.
  • the servo amplifiers 61 to 64 receive a current command and output a drive current to the motors 71 to 74.
  • the axis controllers 61a to 64a receive position feedback signals from the encoders 71a to 74a and perform position feedback control. Differentiators 71b to 74b differentiate the position feedback signals output from the encoders 71a to 74a and convert them into speed feedback signals. Differentiators 71b to 74b output speed feedback signals to the axis controllers 61a to 64a.
  • the axis controllers 61a to 64a receive the speed feedback signals from the differentiators 71b to 74b and control the speed feedback.
  • Current detectors 61b to 64b detect drive currents output from servo amplifiers 61 to 64 to motors 71 to 74, respectively.
  • the current detectors 61b to 64b feed back the detected drive current to the axis controllers 61a to 64a.
  • the shaft controllers 61a to 64a perform current (torque) control based on the drive current fed back by the current detectors 61b to 64b.
  • the shaft control unit 75 a receives the movement command amount from the CPU 51 and drives the magazine motor 75.
  • the ROM 52 is a main control program for executing a machining program for the machine tool M, a control program for thermal displacement correction control (see FIG. 10), and a control program for correction amount calculation processing for calculating the correction amount of the pitch error correction amount ( (See FIG. 11).
  • Stores the parameters related to the flash memory 53 is a mechanical structure, and parameters related to the physical properties, heat distribution coefficient (ratio) eta N, and eta F, and eta B, the pitch error correction amount table or the like.
  • the parameter relating to the mechanical structure is, for example, the length and diameter of the ball screw shaft 81. Parameters relating to physical properties are, for example, density and specific heat.
  • the flash memory 53 also appropriately stores a plurality of machining programs for machining various workpieces.
  • the flash memory 53 stores the calculation result of the CPU 51.
  • the pitch error correction amount table is a table for correcting pitch errors of the ball screw mechanisms of the X axis, the Y axis, and the Z axis.
  • the pitch error of the ball screw mechanism is caused by manufacturing tolerances.
  • the pitch error between the rotation amount of the ball screw shaft 81 and the movement amount of the nut portion 8a is corrected based on a preset pitch error correction amount table.
  • the thermal displacement correction method of the present embodiment corrects the thermal displacement
  • the pitch error correction amount is corrected using the calculated thermal displacement.
  • the present embodiment is an example in which the thermal displacement of the X-axis ball screw shaft 81 is corrected. However, the same applies to the Y-axis ball screw mechanism and the Z-axis ball screw mechanism.
  • the nut portion 8 a is movable in the nut portion moving range 81 b within the entire length of the X-axis ball screw shaft 81. Pitch error correction is performed for each correction section.
  • the correction sections set in the nut portion movement range 81b are a plurality of sections that are shorter than a calculation section described later. Specifically, the plurality of correction sections are 15 sections with a set length of 20 mm.
  • the pitch error correction amount for correcting the pitch error is a value obtained by the following procedure in the adjustment stage after the machine tool M is manufactured.
  • the nut portion 8a moves from the position X0 to the position X300 for each correction section at intervals of 20 mm in the X-axis direction according to the command value.
  • an error with respect to the movement command value that is, an error which is (target value ⁇ actual movement amount) is accurately measured.
  • a table of pitch error correction amounts is created based on the measurement results.
  • the created table is stored in advance in the flash memory 53 and shipped.
  • a table of pitch error correction amounts is similarly created for the Y-axis and Z-axis directions.
  • the amount of thermal displacement is generated along with the numerical control during the operation of the machine tool M.
  • the present embodiment calculates the amount of heat generated in three regions of the front shaft portion 81a of the ball screw shaft 81, the nut portion movement range 81b, and the rear shaft portion 81c of the ball screw shaft 81.
  • the heat generation amount of six calculation sections obtained by dividing the ball screw shaft 81 over the entire length in the length direction is calculated based on the heat generation amount of the three regions.
  • the lengths of the front shaft portion 81a and the rear shaft portion 81c of the ball screw shaft 81 shown in FIG. 5 are each 100 mm.
  • the length of the nut portion moving range 81b is 300 mm.
  • the overall length of the ball screw shaft 81 is 500 mm.
  • the length of the calculation section is 80 mm. Therefore, when the end of the nut portion moving range 81b on the movable bearing 19 side is divided at equal intervals from the fixed side end 81e by the length of the calculation section, it coincides with the calculation section 5.
  • the rear shaft portion 81c is divided into two sections of 80 mm and 20 mm when divided by calculation sections.
  • the calculation section including the movable side end 81f is set to be equal to or greater than the calculation section of 80 mm. Therefore, the length of the calculation section 6 is 100 mm.
  • the calorific value is calculated according to the following equation based on the feed speed of the table 8.
  • the feed speed of the table 8 is determined based on the actual rotational speed of the X-axis motor 71.
  • the actual rotational speed of the X-axis motor 71 is determined based on the detection signal of the encoder 71a.
  • the data area of the flash memory 53 stores the calculated heat generation amount.
  • the calorific value is calculated according to the following equation.
  • Q K 1 ⁇ F T
  • Q is a calorific value.
  • F is the feed speed of the table 8.
  • K 1 and T are respectively predetermined constants.
  • the amount of heat generated by the movement of the nut portion 8a in each calculation section is calculated 128 times every 50 ms for a predetermined period (for example, 6400 ms) using the above formula.
  • the calorific values calculated during a predetermined period are totaled for each computation interval, and calorific values Q 1 to Q 6 for each computation interval are calculated.
  • the heat generation amounts Q 1 to Q 6 are stored in the flash memory 53 in association with the calculation sections 1 to 6.
  • the total calorific value Q T is calculated and stored in the flash memory 53.
  • the total heat generation amount Q T is a heat generation amount obtained by adding the heat generation amounts Q 1 to Q 6 .
  • the distribution method of the total calorific value Q T shown below is based on the same method as that of Japanese Patent Publication No. 1992-240045. That is, it is considered that the nut portion movement range 81b, the front shaft portion 81a, and the rear shaft portion 81c of the ball screw shaft 81 do not conduct heat to other portions, and are thermally independent.
  • the ratio of each heat generating portion to the total heat generation amount Q T is substantially constant regardless of the change in the feed rate.
  • the CPU 51 calculates the distributed heat generation amount of each heat generating part according to the following equation.
  • Q F ⁇ F ⁇ Q T
  • Q N ⁇ N ⁇ Q T
  • Q B ⁇ B ⁇ Q T
  • the calorific value Q F is the calorific value of the front shaft portion 81 a due to the rotation of the fixed bearing 18.
  • the heat generation amount Q N is the heat generation amount of the nut portion moving range 81b.
  • the heat generation amount Q B is the heat generation amount of the rear shaft portion 81 c due to the rotation of the movable bearing 19.
  • Ratio eta F is the ratio of the calorific value Q F with respect to the total heat generation amount Q T.
  • Ratio eta N is the ratio of the calorific value Q N to the total heat generation amount Q T.
  • Ratio eta B is the ratio of the calorific value Q B to the total heat generation amount Q T.
  • the ratios ⁇ F , ⁇ N , and ⁇ B are constant as shown in the method. Therefore, the ratios ⁇ F , ⁇ N, and ⁇ B are values calculated in advance by measuring Q F , Q N , and Q B using an actual machine.
  • the heat generation amount Q N of the nut portion movement range 81b is distributed to six calculation sections.
  • the distribution ratios X 1 to X 6 are calculated according to the following equation based on the calorific values Q 1 to Q 6 and the total calorific value Q T.
  • the distribution ratios X 1 to X 6 are ratios for distributing the calorific value Q N to the calorific values of the six calculation sections.
  • the heat generation amounts Q 1 to Q 6 and the total heat generation amount Q T are respectively stored in the data area.
  • X 1 calorific value Q 1 / Q T of calculation section 1
  • X 6 calorific value Q 6 / Q T in calculation section 6
  • the distribution heat generation amount of the six calculation sections is calculated according to the following equation using the distribution ratio and the heat generation amount Q N of the nut movement range 81b.
  • Q N1 to Q N6 are calculated.
  • the temperature distribution is calculated based on the heat generation amounts of the respective calculation sections.
  • the temperature distribution can be calculated by solving the following unsteady heat conduction equation.
  • [C] d ⁇ / dt + [H] ⁇ + ⁇ Q ⁇ 0
  • [C] is a heat capacity matrix.
  • [H] is a heat conduction matrix.
  • is a temperature distribution.
  • ⁇ Q ⁇ is the calorific value.
  • t is time.
  • the present embodiment calculates temperatures ⁇ 1 to ⁇ 6 in six calculation sections of the ball screw shaft 81.
  • the thermal displacement amounts at the six calculation section break positions of the ball screw shaft 81 are calculated.
  • the amount of thermal displacement at the six calculation section break positions is calculated according to the following equation.
  • ⁇ L ⁇ L 0 ⁇ ⁇ ⁇ (L) dL
  • ⁇ L is the amount of thermal displacement.
  • is the coefficient of linear expansion of the ball screw shaft material.
  • the integration symbol indicates integration over a range of 0 to L.
  • L shows the length to the calculation section delimitation position regarding six calculation sections. Specifically, the above equation shows the integration over a range of 0 to 80, 0 to 160, 0 to 240,.
  • the nut portion movement range 81b of the present embodiment is a section of X0 to X300 (300 mm range). The length of each correction section is 20 mm. Therefore, in this embodiment, correction amounts at 16 positions of X0, X20, X40,..., X300 are calculated.
  • the correction amounts at the 16 correction section break positions can be calculated in accordance with FIG. 9 and the [correction amount calculation formula] described later.
  • the vertical axis of the upper graph in FIG. 9 indicates the amount of thermal displacement based on the position of the fixed bearing 18.
  • the horizontal axis of the graph on the upper side of the drawing indicates the position of each part of the ball screw shaft 81 with respect to the fixed bearing 18.
  • the horizontal axis on the lower side of the drawing indicates the delimiting positions (X0, X20..., X300) of the 16 correction sections.
  • D F1 is a thermal displacement amount in the calculation section 1.
  • D F2 is the total amount of thermal displacement in the calculation section 1 and the calculation section 2.
  • D F6 is the total amount of thermal displacement in the calculation interval 1 to the calculation interval 6.
  • the present embodiment calculates the correction amount at the delimiter positions (X0, X20,..., X300) of the 16 correction sections according to the following equation.
  • X0 correction amount (thermal displacement amount in computation section 1) + (thermal displacement amount in computation section 2) ⁇ ⁇ (length between the left break position in computation section 2 and X0) / (length of computation section 2)
  • Correction amount of X20 (thermal displacement amount in calculation section 1) + (thermal displacement amount in calculation section 2) ⁇ ⁇ (length between left separation position of calculation section 2 and X20) / (length of calculation section 2)
  • Correction amount of X40 (thermal displacement amount of computation section 1) + (thermal displacement amount of computation section 2) ⁇ ⁇ (length between left delimiter position of computation section 2 and X40) / (length of computation section 2)
  • Correction amount of X60 (thermal displacement amount of calculation section 1) + (thermal displacement amount of calculation section 1) + (thermal displacement amount of calculation section 1) + (thermal displacement amount in computation section 2) ⁇ ⁇
  • step S1 the CPU 51 sets a matrix necessary for calculation according to the finite element method based on setting data such as parameters.
  • the CPU 51 sets an initial temperature in step S1.
  • the CPU 51 executes processing such as clearing the related memory area of the flash memory 53 in step S1.
  • the CPU 51 divides the extended range of the ball screw shaft 81 into six calculation sections 1 to 6 in step S2.
  • the CPU 51 sets 0 to the counter I in step S3.
  • the CPU 51 reads the X-axis feed data and the detection signal of the encoder 71a.
  • the CPU 51 calculates the amount of heat generated every 50 ms in the calculation sections 1 to 6, and stores the calculated amount of heat generated in the flash memory 53.
  • the CPU 51 adds “1” to the counter I.
  • the CPU 51 determines whether or not the counter value of the counter I is larger than “127”. When the determination in step S7 is No, the CPU 51 returns to step S4 and repeats the processing from step S4 to step S6.
  • the determination at Step S7 is Yes, the CPU 51 proceeds to the process at Step S8.
  • CPU51 calculates a total heat generation amount Q T of the calorific value Q 1 to Q 6, the calorific value Q 1 to Q 6 between 6,400ms arithmetic section 1 every 6 in step S8, the result of computation is stored into the flash memory 53 To do.
  • step S ⁇ b > 9 the CPU 51 calculates the calorific values Q F , Q N , and Q B of each unit described above and stores the calculation results in the flash memory 53.
  • the CPU 51 calculates the calorific values Q N1 to Q N6 distributed to the calculation sections 1 to 6 and stores the calculation results in the flash memory 53.
  • the CPU 51 calculates the heat generation amount for the calculation sections 1 to 6 shown in FIG. 7 and stores the calculation result in the flash memory 53.
  • step S 10 the CPU 51 calculates the temperatures ⁇ 1 to ⁇ 6 in the calculation sections 1 to 6 based on the heat generation amounts of the respective parts shown in FIG. 7 and stores the calculation results in the flash memory 53.
  • step S11 the CPU 51 calculates the amount of thermal displacement at the calculation section break positions for the six calculation sections based on the equation (1), and stores the calculation results in the flash memory 53.
  • step S12 the CPU 51 calculates the correction amounts at the 16 correction section break positions as described above based on the correction amount calculation formula described above.
  • step S13 the CPU 51 executes a correction process for the pitch error correction amount set in advance for the 16 correction section break positions using the correction amount calculated in step S12.
  • the CPU 51 executes a feed amount correction process using the corrected pitch error correction amount.
  • step S14 the CPU 51 determines whether or not to end the thermal displacement amount correction process. When the determination result is No, the CPU 51 returns to step S3 and repeatedly executes step S3 and subsequent steps.
  • the thermal displacement correction control ends when the determination result in step S14 is Yes.
  • the correction amount calculation process is a process of calculating a correction amount for correcting the pitch error correction amount in step S12.
  • the CPU 51 sets the counter n to 0 (S20).
  • the CPU 51 calculates the correction amount ⁇ M n of the position Xn according to the following equation (S21).
  • the above expression is a simple expression of the above-described correction amount calculation expression.
  • DF is the total amount of thermal displacement generated in the calculation section on the fixed side with respect to the position Xn.
  • ⁇ D n is the amount of thermal displacement generated in the calculation interval including the position Xn.
  • X F is the left delimiter position of the calculation section including the position Xn.
  • L n is the length of the calculation interval including the position Xn.
  • ⁇ M ⁇ 20 used when calculating ⁇ M 0 is set to 0.
  • the CPU 51 adds 20 to n in step S22.
  • step S23 the CPU 51 determines whether n is 320 or not. If n is not 320 (S23: No), the CPU 51 determines that the calculation for the correction amount up to the position X300 has not ended, returns to step S21, and calculates the correction amount ⁇ M n for the position Xn.
  • CPU51 is until calculates a correction amount .DELTA.M 300 position X300 to run repeatedly to S23 S21.
  • the determination in step S23 is Yes.
  • Encoder 71a corresponds to “speed detection device”.
  • the CPU 51 that executes Steps S3 to S7 corresponds to a “heat generation amount calculation unit”.
  • the CPU 51 that executes Steps S8 to S10 corresponds to a “temperature distribution calculation unit”.
  • the CPU 51 that executes step S11 corresponds to a “thermal displacement amount calculation unit”.
  • the CPU 51 executing step S12 corresponds to a “correction amount calculation unit”.
  • the calculation section is a section obtained by dividing the entire length of the ball screw shaft 81 of the ball screw mechanism by a fixed length longer than the correction section from the fixed side end portion 81e.
  • the length of the calculation section including the movable side end portion 81f is not less than a certain length.
  • CPU51 calculates the emitted-heat amount and temperature distribution of several calculation area.
  • the CPU 51 calculates the thermal displacement amount at the break position of the plurality of calculation sections based on the calculation result.
  • the CPU 51 calculates a correction amount for correcting the pitch error correction amount. Therefore, the thermal displacement correction method and the thermal displacement correction device (numerical control device 50) have the following effects.
  • the numerical controller 50 does not require that the calculation section break position and the correction section break position match. Therefore, the numerical controller 50 can lengthen the calculation cycle for calculating the thermal displacement amount by setting the length of the calculation section to be long.
  • the numerical control device 50 can reduce the processing load on the numerical control device 50.
  • the numerical control device 50 can perform highly accurate thermal displacement correction by setting the section length of the computation section so as not to become unnecessarily long.
  • the numerical control device 50 can suppress the calculation processing load in the numerical control device 50 and achieve the target machining accuracy by setting the section length of the calculation section to an appropriate size.
  • the numerical controller 50 divides the front shaft portion 81a of the ball screw shaft 81 and the nut portion moving range 81b into five calculation sections at intervals of 80 mm (four times the set length of the correction section).
  • the calculation interval may be longer than the correction interval.
  • the calculation section may have a length other than four times, such as 1.5 times and 3 times the set length of the correction section.
  • the machine tool M includes the X-axis motor 71 on the front shaft portion 81 a side of the ball screw shaft 81.
  • the numerical control device 50 performs thermal displacement of the six calculation sections of the ball screw shaft 81 in the same manner as in the above embodiment.
  • the amount can be calculated.
  • the calculation cycle for calculating the heat generation amount is 50 ms as an example, but the calculation cycle is not limited to 50 ms.
  • the predetermined period of 6400 ms is an example.
  • the predetermined period is not limited to 6400 ms.
  • the predetermined period may be in seconds instead of ms.

Abstract

The anterior shaft section and the nut-part mobile range of a ball screw shaft are segmented into five 80mm computation intervals, and the posterior shaft portion is treated as one computation interval. The amount of generated heat arising in the six computation intervals is computed every 50 ms on the basis of feed data and feed speed of a table. The temperature distribution of the six computation intervals is calculated every 6400 ms on the basis of amounts of generated heat (Q1-Q6) that are the cumulative values of 6400 ms of the computed amounts of generated heat, the total amount of generated heat (QT) that is the total of the amounts of generated heat (Q1-Q6), and an unsteady heat conduction equation. The magnitude of thermal displacement of the six computation intervals is computed every 6400 ms from the temperature distribution, and on the basis of the computed magnitudes of thermal displacement, correction amounts that correct the pitch error correction amount for the location of the break between each of fifteen correction intervals are computed every 6400 ms.

Description

工作機械の熱変位量補正方法及び熱変位量補正装置Thermal displacement correction method and thermal displacement correction device for machine tool
 本発明は工作機械の熱変位量補正方法及び熱変位量補正装置に関する。より詳細には、工作機械の稼働中に生じるボールネジ機構の熱変位に起因する誤差を補正する方法及び装置に関する。 The present invention relates to a thermal displacement correction method and a thermal displacement correction device for a machine tool. More particularly, the present invention relates to a method and apparatus for correcting an error caused by thermal displacement of a ball screw mechanism that occurs during operation of a machine tool.
 ボールネジ機構は工作機械の位置決め機構として普及している。ボールネジ機構は製造公差等に起因してボールネジシャフトの回転量とナットの移動量とのピッチ誤差を生じる。工作機械の熱変位量補正装置は予め設定したピッチ誤差補正量のテーブルに基づいてボールネジ機構のピッチ誤差を補正する。 The ball screw mechanism is widely used as a positioning mechanism for machine tools. The ball screw mechanism causes a pitch error between the amount of rotation of the ball screw shaft and the amount of movement of the nut due to manufacturing tolerances and the like. The thermal displacement correction device of the machine tool corrects the pitch error of the ball screw mechanism based on a preset pitch error correction amount table.
 ボールネジ機構はボールネジシャフトとナットとの摩擦抵抗、及びボールネジシャフトと各軸受部との摩擦抵抗の発熱に起因して温度が上昇する。ボールネジ機構は前述した温度上昇に基づいて熱膨張を起こし、熱変位(伸び)を生じる。ボールネジシャフトの熱変位は工作機械の位置決め誤差となる。前述の対策として、予張力方式がある。予張力方式はボールネジシャフトに予張力を与え、熱膨張を吸収する。 The temperature of the ball screw mechanism rises due to the frictional resistance between the ball screw shaft and the nut and the heat generated by the frictional resistance between the ball screw shaft and each bearing. The ball screw mechanism causes thermal expansion based on the above-described temperature rise, and generates thermal displacement (elongation). The thermal displacement of the ball screw shaft causes a positioning error of the machine tool. As a measure against the above, there is a pre-tension method. The pre-tension method applies pre-tension to the ball screw shaft and absorbs thermal expansion.
 工作機械は太いボールネジシャフトを使用し、且つ送り速度が非常に速くなっている。故に、発熱量が増大するので、予張力方式を用いる場合、工作機械はボールネジシャフトに非常に大きな張力を加えなければならない。工作機械に非常に大きな張力を加える場合、ボールネジ機構は変形するという問題がある。前述の場合、スラスト軸受に無理な力が加わり、ボールネジ機構は焼き付くという問題がある。 The machine tool uses a thick ball screw shaft and the feed speed is very fast. Therefore, since the amount of heat generation increases, when using the pre-tension method, the machine tool must apply a very large tension to the ball screw shaft. When a very large tension is applied to the machine tool, there is a problem that the ball screw mechanism is deformed. In the above case, there is a problem that an excessive force is applied to the thrust bearing and the ball screw mechanism is seized.
 特許文献1から3が提案するボールネジシャフトの熱変位量補正方法はボールネジシャフトに無理な張力を与えず、且つ、特別な測定装置を必要としない。該方法は工作機械稼働中に熱変位を補正する。具体的には、第1工程はサーボモータの回転速度に基づき、ボールネジシャフトの各区間の発熱量を演算する。第2工程はボールネジシャフトのうちのナット移動範囲を複数の補正区間に分割したモデルを使用して、発熱量に基づきボールネジシャフトの温度分布を演算する。第3工程は温度分布に基づいて、ボールネジシャフトの熱変位量を時々刻々に予想する。第4工程は熱変位量を数値制御装置(制御部)に、ピッチ誤差補正量を補正する補正量として与える。該方法は演算した補正量をボールネジシャフトの実際の伸びに近似することができる。 The methods for correcting the thermal displacement of the ball screw shaft proposed by Patent Documents 1 to 3 do not apply excessive tension to the ball screw shaft and do not require a special measuring device. The method corrects for thermal displacement during machine tool operation. Specifically, in the first step, the amount of heat generated in each section of the ball screw shaft is calculated based on the rotation speed of the servo motor. In the second step, the temperature distribution of the ball screw shaft is calculated based on the amount of heat generated using a model in which the nut movement range of the ball screw shaft is divided into a plurality of correction sections. The third step predicts the amount of thermal displacement of the ball screw shaft from time to time based on the temperature distribution. In the fourth step, the thermal displacement amount is given to the numerical control device (control unit) as a correction amount for correcting the pitch error correction amount. This method can approximate the calculated correction amount to the actual elongation of the ball screw shaft.
 図8に示すように、例えば、ボールネジ機構の補正区間はボールネジシャフト81のナット部移動範囲(機械座標におけるX0とX300との間)81bを20mmの長さで等分割した区間である。ピッチ誤差補正は補正区間毎に行う。熱変位量の補正量はピッチ誤差補正の補正区間と同じ設定長で分割した演算区間毎に演算する。演算区間が短い場合、該演算区間数が増大する。故に、熱変位量補正装置は演算処理の負荷が増大し、予め定めた時間(演算周期)内に熱変位量の補正量を演算できないことがある。前述の長さ20mmは演算区間の長さとしては短いので、熱変位量の補正量を演算することができないことがあった。 As shown in FIG. 8, for example, the correction section of the ball screw mechanism is a section in which the nut portion movement range (between X0 and X300 in the machine coordinates) 81b of the ball screw shaft 81 is equally divided by a length of 20 mm. Pitch error correction is performed for each correction section. The correction amount of the thermal displacement amount is calculated for each calculation section divided by the same set length as the correction section for pitch error correction. When the calculation interval is short, the number of calculation intervals increases. Therefore, the thermal displacement amount correction apparatus increases the processing load, and may not be able to calculate the thermal displacement correction amount within a predetermined time (calculation cycle). Since the above-mentioned length of 20 mm is short as the length of the calculation section, there is a case where the correction amount of the thermal displacement amount cannot be calculated.
 演算区間数は演算区間の長さを長くすると、演算区間の設定長さが短い場合に比べ減少する。故に、熱変位量の補正量を演算できないという問題は発生しない。しかし、熱変位量の演算精度は演算区間の設定長さを長くすると、演算区間の設定長さが短い場合に比べ低下する。故に、前述の場合、加工精度が低下するという問題がある。故に、熱変位量補正装置は演算処理の負荷を抑制し、且つ目標とする加工精度を達成する為に演算区間の長さを適切な長さに設定する必要がある。 The number of calculation sections decreases when the length of the calculation section is increased compared to when the set length of the calculation section is short. Therefore, the problem that the correction amount of the thermal displacement amount cannot be calculated does not occur. However, when the set length of the calculation section is increased, the calculation accuracy of the thermal displacement amount is lower than that when the set length of the calculation section is short. Therefore, in the case described above, there is a problem that the processing accuracy is lowered. Therefore, the thermal displacement amount correcting device needs to set the length of the calculation section to an appropriate length in order to suppress the load of the calculation process and achieve the target machining accuracy.
 従来の熱変位量補正方法は演算区間を以下のように設定する。熱変移補正量の演算区間の区切り位置は機械座標の原点(X0)と一致する位置とする。ボールネジシャフト81のナット部移動範囲81bにおける演算区間の長さはピッチ誤差補正の補正区間の長さの整数倍とする。図12は例えば、演算区間の長さが20mm×4=80mmであり、且つ機械座標の原点X0は演算区間の区切り位置と一致する例である。 The conventional thermal displacement correction method sets the calculation interval as follows. The division position of the calculation section of the thermal shift correction amount is a position that coincides with the machine coordinate origin (X0). The length of the calculation section in the nut portion moving range 81b of the ball screw shaft 81 is an integral multiple of the length of the correction section for pitch error correction. FIG. 12 shows an example in which the length of the calculation section is 20 mm × 4 = 80 mm, and the origin X0 of the machine coordinates coincides with the break position of the calculation section.
 図12では、前側軸部81aの長さは100mmである。ナット部移動範囲81bの長さは300mmである。後側軸部81cの長さは100mmである。上述の場合、演算区間1の長さは80mmである。演算区間2の長さは20mmである。演算区間3から演算区間5の長さは夫々80mmである。演算区間6の長さは60mmである。演算区間7の長さは80mmである。演算区間8の長さは20mmである。演算区間の区間長(80mm)で分割できない余りは演算区間2、演算区間6、演算区間8にある。 In FIG. 12, the length of the front shaft portion 81a is 100 mm. The length of the nut portion moving range 81b is 300 mm. The length of the rear shaft portion 81c is 100 mm. In the above case, the length of the calculation section 1 is 80 mm. The length of the calculation section 2 is 20 mm. The length of the calculation section 3 to the calculation section 5 is 80 mm. The length of the calculation section 6 is 60 mm. The length of the calculation section 7 is 80 mm. The length of the calculation section 8 is 20 mm. The remainder that cannot be divided by the section length (80 mm) of the calculation section is in calculation section 2, calculation section 6, and calculation section 8.
 ピッチ誤差補正量の補正は演算区間毎に演算した熱変位量を用いて次の方法で行う。熱変位量補正装置は演算区間1、演算区間2の熱変位量の合計を位置X0の熱変位量とし、X0のピッチ誤差補正量を補正する。熱変位量補正装置は位置X20、X40、X60、X80の熱変位量を演算区間3の長さが補正区間の長さの4倍であることに基づいて以下のように演算する。熱変位量補正装置は演算区間3の熱変位量の1/4を位置X20、X40、X60、X80に等分配して、夫々の位置の熱変位量を演算する。熱変位量補正装置は該熱変位量を用いて夫々の位置のピッチ誤差補正量を補正する。他の演算区間については上記と同様にしてピッチ誤差補正量を補正する。 The pitch error correction amount is corrected by the following method using the thermal displacement amount calculated for each calculation section. The thermal displacement correction device corrects the pitch error correction amount of X0 using the sum of the thermal displacement amounts of calculation interval 1 and calculation interval 2 as the thermal displacement amount at position X0. The thermal displacement correction device calculates the thermal displacement amounts at the positions X20, X40, X60, and X80 based on the fact that the length of the calculation section 3 is four times the length of the correction section as follows. The thermal displacement correction device equally divides ¼ of the thermal displacement amount in the calculation section 3 to the positions X20, X40, X60, and X80, and calculates the thermal displacement amount at each position. The thermal displacement correction device corrects the pitch error correction amount at each position using the thermal displacement amount. For other calculation sections, the pitch error correction amount is corrected in the same manner as described above.
特開昭63-256336号公報JP 63-256336 A 特開平4-240045号公報JP-A-4-240045 特開平7-299701号公報JP 7-299701 A
 前記の分割方法では、演算区間2、演算区間6、演算区間8の長さは夫々演算区間の区間長(80mm)に比べ短い。前記分割方法では、演算区間数は演算区間の区間長で分割できない余りのうちの最小の長さ(20mm)の演算区間2、演算区間8に起因して増える。故に、熱変位量を演算する演算周期は演算区間数に応じて小さく設定しなければならない。故に、熱変位量補正装置の演算処理の負荷は高くなる。 In the above division method, the lengths of the calculation section 2, the calculation section 6, and the calculation section 8 are shorter than the section length (80 mm) of the calculation section. In the division method, the number of computation sections increases due to computation sections 2 and 8 having the minimum length (20 mm) among the remainders that cannot be divided by the section length of the computation sections. Therefore, the calculation cycle for calculating the amount of thermal displacement must be set small according to the number of calculation sections. Therefore, the calculation processing load of the thermal displacement correction device increases.
 図13に示す方法は図12における演算区間2を演算区間1に加え、演算区間6を演算区間5に加え、演算区間8を演算区間7に加えている。図13に示す方法では、演算区間2、演算区間3の長さ(80mm)は熱変位量を演算する演算周期を決める長さとなる。故に、図13に示す方法は熱変位量補正装置の演算処理の負荷を抑制することができる。ボールネジシャフト81の前側軸部81aからナット部移動範囲81bまでの範囲は熱変位量の演算精度に影響を及ぼす。演算区間1、演算区間4の夫々は演算区間の長さよりも長くなる。故に、熱変位量の演算精度は低下するので、目標とする加工精度を達成できない可能性がある。 In the method shown in FIG. 13, calculation interval 2 in FIG. 12 is added to calculation interval 1, calculation interval 6 is added to calculation interval 5, and calculation interval 8 is added to calculation interval 7. In the method shown in FIG. 13, the lengths (80 mm) of the calculation section 2 and the calculation section 3 are lengths for determining a calculation cycle for calculating the thermal displacement amount. Therefore, the method shown in FIG. 13 can suppress the processing load of the thermal displacement correction device. The range from the front shaft portion 81a of the ball screw shaft 81 to the nut portion moving range 81b affects the calculation accuracy of the thermal displacement amount. Each of the calculation section 1 and the calculation section 4 is longer than the length of the calculation section. Therefore, since the calculation accuracy of the thermal displacement amount is lowered, the target machining accuracy may not be achieved.
 本発明の目的は数値制御装置の演算処理の負荷を抑制し、且つ高精度な熱変位量補正を行うことができる工作機械の熱変位量補正方法及びその熱変位量補正装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal displacement correction method for a machine tool and a thermal displacement correction device for the same that can suppress the calculation processing load of the numerical control device and perform highly accurate thermal displacement correction. is there.
 請求項1の工作機械の熱変位量補正方法はシャフトとナットとを備える送り駆動用ボールネジ機構と、前記ボールネジ機構の前記ナットが螺合した前記シャフトを回転駆動するサーボモータと、前記サーボモータを制御データに基づき制御する制御部とを有する工作機械の熱変位量補正方法において、前記シャフトに前記サーボモータと連結する固定側端部と、前記固定側端部と反対側の可動側端部とを予め設け、前記工作機械の稼働中に前記シャフトの熱変位量を演算する場合に、前記シャフトの全長を、前記固定側端部から一定長さで分割した複数の演算区間及び前記可動側端部を含み且つ前記一定長さ以上の演算区間に設定し、前記夫々の演算区間の発熱量と温度分布を演算する。 A method of correcting a thermal displacement amount of a machine tool according to claim 1 comprises: a feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and the servo motor. In a thermal displacement correction method for a machine tool having a control unit controlled based on control data, a fixed side end connected to the shaft and the servo motor, a movable side end opposite to the fixed side end, When calculating the amount of thermal displacement of the shaft during operation of the machine tool, a plurality of calculation sections obtained by dividing the total length of the shaft by a fixed length from the fixed side end and the movable side end And a heat generation amount and a temperature distribution in each calculation section are calculated.
 請求項1の熱変位量補正方法はシャフトの全長を固定側端部から一定長さの演算区間で分割すると共に、可動側端部を含む演算区間の長さを一定長さ以上に設定し、演算区間毎の発熱量と温度分布を演算する。熱変位量補正方法は熱変位量補正の演算区間の区切り位置とピッチ誤差補正の補正区間の区切り位置とが一致する必要がない。故に、熱変位量補正方法は演算区間の区間長を長く設定することで熱変位量を演算する演算周期を長くすることができ、熱変位量補正装置における演算処理の負荷を低減できる。又、可動側端部を含む演算区間が、他の演算区間よりも長くなった場合、温度分布を演算する場合に他の演算区間に比べ誤差が生じる可能性が高まる。可動側端部は熱源であるサーボモータから離れている。故に、可動側端部を含む演算区間の温度分布の誤差は他の演算区間に比べて影響度が少ないので問題ない。 The thermal displacement amount correction method according to claim 1 divides the entire length of the shaft into a fixed length calculation section from the fixed side end, and sets the length of the calculation section including the movable side end to a certain length or more. Calculate calorific value and temperature distribution for each calculation section. In the thermal displacement amount correction method, the delimitation position of the thermal displacement amount correction calculation section does not need to coincide with the delimitation position of the pitch error correction correction section. Therefore, the thermal displacement amount correction method can lengthen the calculation cycle for calculating the thermal displacement amount by setting the section length of the calculation section to be longer, and can reduce the processing load on the thermal displacement amount correction apparatus. In addition, when the calculation section including the movable side end portion is longer than the other calculation sections, there is a higher possibility that an error occurs when the temperature distribution is calculated compared to the other calculation sections. The movable side end is away from the servo motor which is a heat source. Therefore, there is no problem because the error in the temperature distribution of the calculation section including the movable side end portion has less influence than the other calculation sections.
 熱変位量補正方法は演算区間の区間長を不必要に長くならないように設定することで、高精度な熱変位量補正を行うことができる。熱変位量補正方法は演算区間の区間長を適切な大きさに設定することで、熱変位量補正装置における演算処理の負荷を抑制しつつ、目標とする加工精度を達成することが可能である。 The thermal displacement correction method can perform highly accurate thermal displacement correction by setting the length of the calculation section so as not to become unnecessarily long. In the thermal displacement correction method, by setting the section length of the calculation section to an appropriate size, it is possible to achieve the target machining accuracy while suppressing the calculation processing load in the thermal displacement correction device. .
 請求項2の工作機械の熱変位量補正方法は前記シャフトの全長のうちの前記ナットが移動可能な範囲であるナット移動範囲を前記演算区間よりも短い複数の補正区間に分割し、前記複数の補正区間毎にピッチ誤差補正するピッチ誤差補正量を、前記熱変位量を用いて補正する。 The thermal displacement correction method for a machine tool according to claim 2 divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections shorter than the calculation section. A pitch error correction amount for correcting a pitch error for each correction section is corrected using the thermal displacement amount.
 請求項2の熱変位量補正方法によれば、熱変位量を演算する演算周期を長くすることができ、熱変位量補正装置における演算処理の負荷を低減できる。 According to the thermal displacement correction method of claim 2, the calculation cycle for calculating the thermal displacement can be lengthened, and the calculation processing load in the thermal displacement correction device can be reduced.
 請求項3の工作機械の熱変位量補正方法はシャフトとナットとを備える送り駆動用ボールネジ機構と、前記ボールネジ機構の前記ナットが螺合した前記シャフトを回転駆動するサーボモータと、前記サーボモータを制御データに基づき制御する制御部とを有し、前記シャフトの全長のうちの前記ナットが移動可能な範囲であるナット移動範囲を複数の補正区間に分割し、前記複数の補正区間毎にピッチ誤差補正する工作機械の熱変位量補正方法において、前記シャフトに前記サーボモータと連結する固定側端部と、前記固定側端部と反対側の可動側端部とを予め設け、前記シャフトの全長を、前記固定側端部から前記補正区間よりも長い一定長さの演算区間に分割した複数の演算区間及び前記可動側端部を含み且つ前記一定長さ以上の演算区間に設定し、前記夫々の演算区間について、前記演算区間毎の発熱量を、前記サーボモータの回転速度と制御データとに基づいて所定時間毎に演算する第1ステップと、前記演算区間毎の前記発熱量を所定期間分累積した合計発熱量と非定常熱伝導方程式とに基づいて、前記演算区間毎の温度分布を前記所定期間毎に演算する第2ステップと、前記温度分布に基づき、前記演算区間毎の熱変位量を前記所定期間毎に演算する第3ステップと、前記演算区間毎の前記熱変位量に基づいて、前記補正区間毎のピッチ誤差補正量を夫々補正する補正量を前記所定期間毎に演算する第4ステップと、を備える。 A method for correcting a thermal displacement amount of a machine tool according to claim 3 includes: a feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and the servo motor. A control unit that controls based on the control data, and divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections, and a pitch error for each of the plurality of correction sections In the method of correcting a thermal displacement amount of a machine tool to be corrected, a fixed side end connected to the servo motor on the shaft and a movable side end opposite to the fixed side end are provided in advance, and the total length of the shaft is increased. , Including a plurality of calculation sections divided into a fixed length calculation section longer than the correction section from the fixed side end section and the movable side end section, and a calculation greater than the fixed length A first step for calculating the heat generation amount for each calculation section at predetermined time intervals based on the rotation speed of the servo motor and control data for each of the calculation sections; Based on the total calorific value accumulated for a predetermined period of time and the unsteady heat conduction equation, a second step of calculating a temperature distribution for each calculation interval for each predetermined period, and based on the temperature distribution, Based on the third step of calculating the thermal displacement amount for each calculation interval for each predetermined period, and the correction amount for correcting the pitch error correction amount for each correction interval based on the thermal displacement amount for each calculation interval, And a fourth step for calculating every predetermined period.
 請求項3の熱変位量補正方法によれば、請求項1と同様の作用を奏する。熱変位量補正方法は熱変位量を演算する演算周期を長くすることができ、数値制御装置における演算処理の負荷を低減できる。熱変位量補正方法は演算区間の区間長を適切な大きさに設定することで、熱変位量補正装置における演算処理の負荷を抑制しつつ、目標とする加工精度を達成することが可能となる。 According to the thermal displacement correction method of claim 3, the same effect as that of claim 1 is obtained. The thermal displacement correction method can lengthen the calculation cycle for calculating the thermal displacement, and can reduce the calculation processing load in the numerical controller. In the thermal displacement correction method, by setting the section length of the calculation section to an appropriate size, it becomes possible to achieve the target machining accuracy while suppressing the calculation processing load in the thermal displacement correction device. .
 請求項4の工作機械の熱変位量補正装置はシャフトとナットとを備える送り駆動用ボールネジ機構と、前記ボールネジ機構の前記ナットが螺合した前記シャフトを回転駆動するサーボモータと、前記サーボモータを制御データに基づき制御する制御部とを有し、前記シャフトの全長のうちの前記ナットが移動可能な範囲であるナット移動範囲を複数の補正区間に分割し、前記複数の補正区間毎にピッチ誤差補正する工作機械の熱変位量補正装置において、前記シャフトは前記サーボモータと連結する固定側端部と、前記固定側端部と反対側の可動側端部とを有し、前記サーボモータの回転速度を検出する速度検出機器と、前記シャフトの全長を、前記固定側端部から前記補正区間よりも長い一定長さの演算区間に分割した複数の演算区間及び前記可動側端部を含み且つ前記一定長さ以上の演算区間に設定し、前記夫々の演算区間について、前記演算区間毎の発熱量を、前記サーボモータの回転速度と制御データとに基づいて所定時間毎に演算する発熱量演算部と、前記演算区間毎の前記発熱量を所定期間分累積した合計発熱量と非定常熱伝導方程式とに基づいて、前記演算区間毎の温度分布を前記所定期間毎に演算する温度分布演算部と、前記温度分布に基づき、前記演算区間毎の熱変位量を前記所定期間毎に演算する熱変位量演算部と、前記演算区間毎の前記熱変位量に基づいて、前記補正区間毎のピッチ誤差補正量を夫々補正する補正量を前記所定期間毎に演算する補正量演算部とを備える。 A thermal displacement correction device for a machine tool according to claim 4 comprises: a feed driving ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and the servo motor. A control unit that controls based on the control data, and divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections, and a pitch error for each of the plurality of correction sections In the thermal displacement correction device for a machine tool to be corrected, the shaft has a fixed side end connected to the servo motor and a movable side end opposite to the fixed side end, and the rotation of the servo motor A speed detection device for detecting speed, and a plurality of calculation sections and a plurality of calculation sections obtained by dividing the entire length of the shaft into calculation sections having a fixed length longer than the correction section from the fixed side end. A calculation section that includes the movable side end and is equal to or longer than the predetermined length is set, and for each calculation section, a heat generation amount for each calculation section is determined based on a rotation speed of the servo motor and control data. Based on a calorific value computation unit that computes every time, a total calorific value obtained by accumulating the calorific value for each computation interval for a predetermined period, and an unsteady heat conduction equation, a temperature distribution for each computation interval is calculated for the predetermined period. A temperature distribution calculation unit that calculates each time, a thermal displacement amount calculation unit that calculates a thermal displacement amount for each of the calculation intervals for each predetermined period based on the temperature distribution, and a thermal displacement amount for each of the calculation intervals. A correction amount calculation unit that calculates a correction amount for correcting the pitch error correction amount for each correction section for each predetermined period.
 請求項4の熱変位量補正装置によれば、請求項1と同様の作用を奏する。熱変位量補正装置は速度検出機器と、発熱量演算機器と、温度分布演算機器と、熱変位量演算機器と、補正量演算機器とを備えたので、請求項3と同様の効果を奏する。 According to the thermal displacement correction device of claim 4, the same effect as that of claim 1 is obtained. Since the thermal displacement correction device includes the speed detection device, the calorific value calculation device, the temperature distribution calculation device, the thermal displacement amount calculation device, and the correction amount calculation device, the same effect as in the third aspect is obtained.
工作機械の全体斜視図。1 is an overall perspective view of a machine tool. 工作機械の主軸ヘッド及び工具交換装置を中心とした正面図。The front view centering on the spindle head and tool changer of a machine tool. X軸ボールネジ機構の構成図。The block diagram of an X-axis ball screw mechanism. 工作機械の制御系のブロック図。The block diagram of the control system of a machine tool. ボールネジシャフトの全長を分割した複数の演算区間の説明図。Explanatory drawing of the several calculation area which divided | segmented the full length of the ball screw shaft. 複数の演算区間の合計の発熱量等の記憶データの説明図。Explanatory drawing of memory | storage data, such as the total emitted-heat amount of several calculation area. 複数の演算区間に分配した分配発熱量と温度との説明図。Explanatory drawing of the distribution calorific value and temperature distributed to the some calculation area. ピッチ誤差補正量の為の補正区間の説明図。Explanatory drawing of the correction area for pitch error correction amount. 固定軸受からの各区間区切り位置における熱変位量を示す説明図。Explanatory drawing which shows the thermal displacement amount in each section division position from a fixed bearing. 熱変位量補正制御プログラムのフローチャート。The flowchart of the thermal displacement amount correction control program. 補正量演算処理プログラムのフローチャート。The flowchart of a correction amount calculation processing program. 従来技術の図5相当図。FIG. 5 is a diagram corresponding to FIG. 別の従来技術の図5相当図。FIG. 5 is a view corresponding to FIG. 5 of another prior art.
 以下、本発明を実施する為の形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 図1から図4に基づいて、工作機械Mの構成について説明する。図1の右下は工作機械Mの前方である。工作機械Mはワーク(図示省略)と工具6とがXYZ直交座標系における各軸方向へ独立に相対移動することで、ワークに所望の機械加工(例えば、「フライス削り」、「穴空け」、「切削」等)を施すことができる。工作機械M(機械本体2)のX軸方向、Y軸方向、Z軸方向は夫々工作機械M(機械本体2)の左右方向、前後方向、上下方向である。
 図1に示すように、工作機械Mはベース1と、機械本体2と、カバー(図示省略)とを構成の主体とする。ベース1はY軸方向に長い略直方体状の鋳造品である。機械本体2はベース1の上部に設けてある。機械本体2はワークに切削加工を行う。カバーはベース1上部に固定してある。カバーは機械本体2とベース1上部とを覆う箱状である。
The configuration of the machine tool M will be described with reference to FIGS. The lower right of FIG. 1 is the front of the machine tool M. In the machine tool M, the workpiece (not shown) and the tool 6 move relative to each other in the XYZ rectangular coordinate system independently, so that a desired machining (for example, “milling”, “drilling”, Etc.) can be applied. The X-axis direction, Y-axis direction, and Z-axis direction of the machine tool M (machine main body 2) are the left-right direction, front-rear direction, and vertical direction of the machine tool M (machine main body 2), respectively.
As shown in FIG. 1, the machine tool M includes a base 1, a machine body 2, and a cover (not shown) as main components. The base 1 is a substantially rectangular parallelepiped casting that is long in the Y-axis direction. The machine body 2 is provided on the upper part of the base 1. The machine body 2 cuts the workpiece. The cover is fixed to the upper part of the base 1. The cover has a box shape covering the machine body 2 and the upper part of the base 1.
 機械本体2について説明する。機械本体2はコラム4と、主軸ヘッド5と、主軸5Aと、工具交換装置(ATC)7と、テーブル8とを構成の主体とする。コラム4は略角柱形状であり、ベース1後部に設けたコラム座部3に固定してある。主軸ヘッド5はコラム4に沿って昇降可能である。主軸ヘッド5はその内部に主軸5Aを回転可能に支持する。工具交換装置7は主軸ヘッド5の右側に設けてある。工具交換装置7は主軸5Aの先端にある工具6を装着した工具ホルダと、工具マガジン14が収納した工具ホルダとを交換する。テーブル8はベース1の上部に設けてある。テーブル8はワークを着脱可能に固定する。制御ボックス9は箱状である。制御ボックス9はコラム4の背面側に設けてある。数値制御装置50(図4参照)は制御ボックス9の内側に設けてある。数値制御装置50は工作機械Mの動作を制御する。数値制御装置50は熱変位量補正装置としての機能を備える。 The machine body 2 will be described. The machine body 2 includes a column 4, a spindle head 5, a spindle 5A, a tool changer (ATC) 7, and a table 8 as main components. The column 4 has a substantially prismatic shape and is fixed to a column seat portion 3 provided at the rear portion of the base 1. The spindle head 5 can be moved up and down along the column 4. The spindle head 5 rotatably supports the spindle 5A. The tool changer 7 is provided on the right side of the spindle head 5. The tool changer 7 exchanges the tool holder on which the tool 6 at the tip of the spindle 5A is mounted and the tool holder accommodated in the tool magazine 14. The table 8 is provided on the upper part of the base 1. The table 8 fixes the work so as to be detachable. The control box 9 is box-shaped. The control box 9 is provided on the back side of the column 4. The numerical control device 50 (see FIG. 4) is provided inside the control box 9. The numerical controller 50 controls the operation of the machine tool M. The numerical control device 50 has a function as a thermal displacement correction device.
 図1と、図4とを参照して、テーブル8の移動機構について説明する。サーボモータであるX軸モータ71はテーブル8をX軸方向に移動駆動する。サーボモータであるY軸モータ72はテーブル8をY軸方向に移動駆動する。X軸モータ71は支持台10上に設けてある。Y軸モータ72はベース1上に設けてある。支持台10はテーブル8の下側に設けてある。支持台10はその上面に、X軸方向に沿って延びる1対のX軸送りガイド(図示省略)を備える。1対のX軸送りガイドはその上にテーブル8を移動可能に支持する。 The moving mechanism of the table 8 will be described with reference to FIG. 1 and FIG. An X-axis motor 71 that is a servomotor drives the table 8 to move in the X-axis direction. A Y-axis motor 72, which is a servo motor, drives the table 8 to move in the Y-axis direction. The X-axis motor 71 is provided on the support base 10. The Y-axis motor 72 is provided on the base 1. The support base 10 is provided below the table 8. The support base 10 includes a pair of X-axis feed guides (not shown) extending along the X-axis direction on the upper surface thereof. A pair of X-axis feed guides movably support the table 8 thereon.
 図3に示すように、ナット部8aはテーブル8の下面に配置してある。ナット部8aはX軸ボールネジシャフト81と螺合することで、X軸ボールネジ機構を構成する。X軸ボールネジシャフト81はカップリング17を介してX軸モータ71と接続している。固定軸受18は支持台10に固定してある。固定軸受18はX軸ボールネジシャフト81のX軸モータ71側(固定側)の固定側端部81eを支持する。可動軸受19は可動側端部81fを支持する。可動側端部81fは固定側端部81eの反対側(可動側)にある。可動軸受19はX軸ボールネジシャフト81の軸方向に沿って移動可能である。 As shown in FIG. 3, the nut portion 8 a is arranged on the lower surface of the table 8. The nut portion 8a is screwed with the X-axis ball screw shaft 81 to constitute an X-axis ball screw mechanism. The X-axis ball screw shaft 81 is connected to the X-axis motor 71 via the coupling 17. The fixed bearing 18 is fixed to the support base 10. The fixed bearing 18 supports a fixed-side end portion 81e of the X-axis ball screw shaft 81 on the X-axis motor 71 side (fixed side). The movable bearing 19 supports the movable side end 81f. The movable end 81f is on the opposite side (movable side) of the fixed end 81e. The movable bearing 19 is movable along the axial direction of the X-axis ball screw shaft 81.
 1対のY軸送りガイド(図示省略)はベース1の上側に設けてある。1対のY軸送りガイドはベース1のY軸方向に沿って延びる。Y軸送りガイドは支持台10を移動可能に支持する。テーブル8はX軸モータ71が駆動することで、X軸送りガイドに沿ってX軸方向に移動する。支持台10はY軸モータ72が駆動することで、Y軸送りガイドに沿ってY軸方向に移動する。Y軸の移動機構はX軸の移動機構と同様にボールネジ機構である。 A pair of Y-axis feed guides (not shown) are provided on the upper side of the base 1. The pair of Y-axis feed guides extends along the Y-axis direction of the base 1. The Y-axis feed guide supports the support 10 so as to be movable. The table 8 moves in the X-axis direction along the X-axis feed guide when the X-axis motor 71 is driven. The support base 10 is moved in the Y-axis direction along the Y-axis feed guide when the Y-axis motor 72 is driven. The Y-axis moving mechanism is a ball screw mechanism, similar to the X-axis moving mechanism.
 カバー11、12はテーブル8の左右両側でX軸送りガイドを覆う。カバー11、12は伸縮可能である。カバー13とY軸後カバー(図示省略)は夫々、支持台10の前後両側でY軸送りガイドを覆う。カバー11、12、13とY軸後カバーはテーブル8がX軸方向とY軸方向の何れの方向に移動した場合でも、常にX軸送りガイドとY軸送りガイドとを覆う。カバー11、12、13とY軸後カバーは加工領域から飛散する切粉及びクーラント液が各送りガイドのレール上に落下するのを防止する。 Covers 11 and 12 cover the X-axis feed guide on the left and right sides of the table 8. The covers 11 and 12 can be expanded and contracted. The cover 13 and the Y-axis rear cover (not shown) cover the Y-axis feed guide on both the front and rear sides of the support base 10, respectively. The covers 11, 12, 13 and the Y-axis rear cover always cover the X-axis feed guide and the Y-axis feed guide regardless of whether the table 8 moves in either the X-axis direction or the Y-axis direction. The covers 11, 12, 13 and the Y-axis rear cover prevent chips and coolant liquid scattered from the machining area from falling on the rails of the respective feed guides.
 図1と、図2とを参照して、主軸ヘッド5の昇降機構について説明する。コラム4は上下方向に延びるZ軸ボールネジシャフト(図示省略)を支持する。ナット部(図示省略)はZ軸ボールネジシャフトと螺合する。ナット部は主軸ヘッド5を支持する。Z軸モータ73(図4参照)はZ軸ボールネジシャフトを正逆方向に回転駆動する。主軸ヘッド5はZ軸モータ73(図2及び図4参照)がZ軸ボールネジシャフトを正逆方向に回転駆動することで、Z軸方向に昇降駆動する。軸制御部63a(図4参照)は数値制御装置50のCPU51(図4参照)からの制御信号に基づいて、Z軸モータ73を駆動する。主軸ヘッド5はZ軸モータ73が駆動することで、昇降駆動する。 The lifting mechanism of the spindle head 5 will be described with reference to FIG. 1 and FIG. The column 4 supports a Z-axis ball screw shaft (not shown) extending in the vertical direction. A nut portion (not shown) is screwed with the Z-axis ball screw shaft. The nut portion supports the spindle head 5. A Z-axis motor 73 (see FIG. 4) rotates the Z-axis ball screw shaft in forward and reverse directions. The spindle head 5 is driven up and down in the Z-axis direction by a Z-axis motor 73 (see FIGS. 2 and 4) that rotates the Z-axis ball screw shaft in the forward and reverse directions. The axis control unit 63a (see FIG. 4) drives the Z-axis motor 73 based on a control signal from the CPU 51 (see FIG. 4) of the numerical controller 50. The spindle head 5 is driven up and down by driving a Z-axis motor 73.
 図1、図2に示すように、工具交換装置7は工具マガジン14と、工具交換アーム15とを備える。工具マガジン14は工具6を支持する工具ホルダ(図示省略)を複数格納する。工具交換アーム15は主軸5Aに取付けた工具ホルダと他の工具ホルダを掴み、且つ搬送して交換する。工具マガジン14はその内側に複数の工具ポット(図示省略)と、搬送機構(図示省略)を備える。工具ポットは工具ホルダを支持する。搬送機構は工具ポットを工具マガジン14内で搬送する。 1 and 2, the tool changer 7 includes a tool magazine 14 and a tool change arm 15. The tool magazine 14 stores a plurality of tool holders (not shown) that support the tool 6. The tool exchange arm 15 grasps a tool holder attached to the main shaft 5A and another tool holder, and conveys and exchanges them. The tool magazine 14 includes a plurality of tool pots (not shown) and a transport mechanism (not shown) inside. The tool pot supports the tool holder. The transport mechanism transports the tool pot in the tool magazine 14.
 図4を参照して、数値制御装置50の電気的構成について説明する。工作機械Mの制御部としての数値制御装置50はマイクロコンピュータを含む。数値制御装置50は入出力インタフェース54と、CPU51と、ROM52と、フラッシュメモリ53と、軸制御部61a~64a及び75aと、サーボアンプ61~64と、微分器71b~74b等を備える。軸制御部61a~64aは夫々サーボアンプ61~64に接続している。サーボアンプ61~64は夫々X軸モータ71、Y軸モータ72、Z軸モータ73、主軸モータ74に接続している。軸制御部75aはマガジンモータ75に接続している。 The electrical configuration of the numerical control device 50 will be described with reference to FIG. The numerical controller 50 as a control unit of the machine tool M includes a microcomputer. The numerical controller 50 includes an input / output interface 54, a CPU 51, a ROM 52, a flash memory 53, axis controllers 61a to 64a and 75a, servo amplifiers 61 to 64, differentiators 71b to 74b, and the like. The axis controllers 61a to 64a are connected to the servo amplifiers 61 to 64, respectively. The servo amplifiers 61 to 64 are connected to an X-axis motor 71, a Y-axis motor 72, a Z-axis motor 73, and a main shaft motor 74, respectively. The shaft control unit 75 a is connected to the magazine motor 75.
 X軸モータ71及びY軸モータ72は夫々テーブル8をX軸方向、Y軸方向に移動する為のモータである。Z軸モータ73は主軸ヘッド5をZ軸方向に昇降駆動する為のモータである。マガジンモータ75は工具マガジン14を回転移動する為のモータである。主軸モータ74は主軸5Aを回転する為のモータである。X軸モータ71、Y軸モータ72、Z軸モータ73、主軸モータ74は夫々エンコーダ71a~74aを備えている。 The X-axis motor 71 and the Y-axis motor 72 are motors for moving the table 8 in the X-axis direction and the Y-axis direction, respectively. The Z-axis motor 73 is a motor for driving the spindle head 5 up and down in the Z-axis direction. The magazine motor 75 is a motor for rotating the tool magazine 14. The main shaft motor 74 is a motor for rotating the main shaft 5A. The X-axis motor 71, Y-axis motor 72, Z-axis motor 73, and main shaft motor 74 are provided with encoders 71a to 74a, respectively.
 軸制御部61a~64aはCPU51からの移動指令量を受けて、電流指令(モータトルク指令値)をサーボアンプ61~64に出力する。サーボアンプ61~64は電流指令を受けてモータ71~74に駆動電流を出力する。軸制御部61a~64aはエンコーダ71a~74aからの位置フィードバック信号を受けて、位置のフィードバック制御を行う。微分器71b~74bはエンコーダ71a~74aが出力した位置フィードバック信号を微分して速度フィードバック信号に変換する。微分器71b~74bは軸制御部61a~64aに速度フィードバック信号を出力する。 The axis controllers 61a to 64a receive the movement command amount from the CPU 51 and output a current command (motor torque command value) to the servo amplifiers 61 to 64. The servo amplifiers 61 to 64 receive a current command and output a drive current to the motors 71 to 74. The axis controllers 61a to 64a receive position feedback signals from the encoders 71a to 74a and perform position feedback control. Differentiators 71b to 74b differentiate the position feedback signals output from the encoders 71a to 74a and convert them into speed feedback signals. Differentiators 71b to 74b output speed feedback signals to the axis controllers 61a to 64a.
 軸制御部61a~64aは微分器71b~74bの速度フィードバック信号を受けて、速度フィードバックの制御を行う。電流検出器61b~64bはサーボアンプ61~64がモータ71~74に出力した駆動電流を検出する。電流検出器61b~64bは検出した駆動電流を、軸制御部61a~64aにフィードバックする。軸制御部61a~64aは電流検出器61b~64bがフィードバックした駆動電流に基づいて電流(トルク)制御を行う。軸制御部75aはCPU51からの移動指令量を受けて、マガジンモータ75を駆動する。 The axis controllers 61a to 64a receive the speed feedback signals from the differentiators 71b to 74b and control the speed feedback. Current detectors 61b to 64b detect drive currents output from servo amplifiers 61 to 64 to motors 71 to 74, respectively. The current detectors 61b to 64b feed back the detected drive current to the axis controllers 61a to 64a. The shaft controllers 61a to 64a perform current (torque) control based on the drive current fed back by the current detectors 61b to 64b. The shaft control unit 75 a receives the movement command amount from the CPU 51 and drives the magazine motor 75.
 ROM52は工作機械Mの加工プログラムを実行するメインの制御プログラムと、熱変位量補正制御の制御プログラム(図10参照)と、ピッチ誤差補正量の補正量を演算する補正量演算処理の制御プログラム(図11参照)を記憶している。フラッシュメモリ53は機械構造に関するパラメータと、物理的性質に関するパラメータと、熱分配係数(比率)ηN 、ηF 、及びηBと、ピッチ誤差補正量のテーブル等を記憶する。機械構造に関するパラメータは例えば、ボールネジシャフト81の長さ及び直径である。物理的性質に関するパラメータは例えば、密度及び比熱である。フラッシュメモリ53は種々のワークを機械加工する為の複数の加工プログラムも適宜記憶する。フラッシュメモリ53はCPU51の演算結果を記憶する。 The ROM 52 is a main control program for executing a machining program for the machine tool M, a control program for thermal displacement correction control (see FIG. 10), and a control program for correction amount calculation processing for calculating the correction amount of the pitch error correction amount ( (See FIG. 11). Stores the parameters related to the flash memory 53 is a mechanical structure, and parameters related to the physical properties, heat distribution coefficient (ratio) eta N, and eta F, and eta B, the pitch error correction amount table or the like. The parameter relating to the mechanical structure is, for example, the length and diameter of the ball screw shaft 81. Parameters relating to physical properties are, for example, density and specific heat. The flash memory 53 also appropriately stores a plurality of machining programs for machining various workpieces. The flash memory 53 stores the calculation result of the CPU 51.
 ピッチ誤差補正量のテーブルはX軸と、Y軸と、Z軸の各軸ボールネジ機構のピッチ誤差を夫々補正する為のテーブルである。ボールネジ機構のピッチ誤差は製造公差等に起因して生じる。本実施例はボールネジシャフト81の回転量とナット部8aの移動量とのピッチ誤差を、予め設定したピッチ誤差補正量のテーブルに基づいて補正する。本実施例の熱変位量補正方法は熱変位を補正する場合、演算した熱変位を用いて前記ピッチ誤差補正量を補正する。本実施例はX軸ボールネジシャフト81の熱変位を補正する例であるが、Y軸のボールネジ機構、Z軸のボールネジ機構についても基本的に同様である。 The pitch error correction amount table is a table for correcting pitch errors of the ball screw mechanisms of the X axis, the Y axis, and the Z axis. The pitch error of the ball screw mechanism is caused by manufacturing tolerances. In this embodiment, the pitch error between the rotation amount of the ball screw shaft 81 and the movement amount of the nut portion 8a is corrected based on a preset pitch error correction amount table. When the thermal displacement correction method of the present embodiment corrects the thermal displacement, the pitch error correction amount is corrected using the calculated thermal displacement. The present embodiment is an example in which the thermal displacement of the X-axis ball screw shaft 81 is corrected. However, the same applies to the Y-axis ball screw mechanism and the Z-axis ball screw mechanism.
 図8に示すように、ナット部8aはX軸ボールネジシャフト81の全長の内の、ナット部移動範囲81bを移動可能である。ピッチ誤差補正は補正区間毎に行う。ナット部移動範囲81bに設定した補正区間は後述する演算区間に比べて短い複数の区間である。複数の補正区間は具体的には、20mmの設定長で15個の区間である。ピッチ誤差を補正する為のピッチ誤差補正量は工作機械M製作後の調整段階に以下の手順で取得した値である。ナット部8aは指令値に応じて、位置X0から位置X300までX軸方向へ20mm間隔にて補正区間毎に移動する。本実施例は移動指令値に対する誤差、即ち(目標値-実移動量)である誤差を精密に測定する。本実施例は測定結果に基づき、ピッチ誤差補正量のテーブルを作成する。本実施例は作成したテーブルをフラッシュメモリ53に予め記憶して出荷する。本実施例はY軸及びZ軸方向についても同様にピッチ誤差補正量のテーブルを作成する。 As shown in FIG. 8, the nut portion 8 a is movable in the nut portion moving range 81 b within the entire length of the X-axis ball screw shaft 81. Pitch error correction is performed for each correction section. The correction sections set in the nut portion movement range 81b are a plurality of sections that are shorter than a calculation section described later. Specifically, the plurality of correction sections are 15 sections with a set length of 20 mm. The pitch error correction amount for correcting the pitch error is a value obtained by the following procedure in the adjustment stage after the machine tool M is manufactured. The nut portion 8a moves from the position X0 to the position X300 for each correction section at intervals of 20 mm in the X-axis direction according to the command value. In this embodiment, an error with respect to the movement command value, that is, an error which is (target value−actual movement amount) is accurately measured. In this embodiment, a table of pitch error correction amounts is created based on the measurement results. In this embodiment, the created table is stored in advance in the flash memory 53 and shipped. In the present embodiment, a table of pitch error correction amounts is similarly created for the Y-axis and Z-axis directions.
 熱変位量の演算方法について説明する。熱変位量は工作機械Mの稼働中に数値制御に付随して発生する。図5に示すように、本実施例はボールネジシャフト81の前側軸部81aと、ナット部移動範囲81bと、ボールネジシャフト81の後側軸部81cの3領域の発熱量を演算する。本実施例は3領域の発熱量に基づいて、ボールネジシャフト81を長さ方向に全長に亙って分割した6つの演算区間の発熱量を演算する。 熱 Explain how to calculate thermal displacement. The amount of thermal displacement is generated along with the numerical control during the operation of the machine tool M. As shown in FIG. 5, the present embodiment calculates the amount of heat generated in three regions of the front shaft portion 81a of the ball screw shaft 81, the nut portion movement range 81b, and the rear shaft portion 81c of the ball screw shaft 81. In the present embodiment, the heat generation amount of six calculation sections obtained by dividing the ball screw shaft 81 over the entire length in the length direction is calculated based on the heat generation amount of the three regions.
[合計発熱量の演算]
 図5に示すボールネジシャフト81の前側軸部81a、及び後側軸部81cの長さは夫々100mmである。ナット部移動範囲81bの長さは300mmである。ボールネジシャフト81の全長は500mmである。演算区間の長さは80mmとする。故に、ナット部移動範囲81bの可動軸受19側の終端は固定側端部81eから演算区間の長さで等間隔に区切ると、演算区間5の区切りと一致する。後側軸部81cは演算区間で区切ると、80mmと20mmとの2つの区間に分かれる。本実施例では可動側端部81fを含む演算区間は80mmの演算区間以上に設定する。故に、演算区間6の長さは100mmである。
[Calculation of total calorific value]
The lengths of the front shaft portion 81a and the rear shaft portion 81c of the ball screw shaft 81 shown in FIG. 5 are each 100 mm. The length of the nut portion moving range 81b is 300 mm. The overall length of the ball screw shaft 81 is 500 mm. The length of the calculation section is 80 mm. Therefore, when the end of the nut portion moving range 81b on the movable bearing 19 side is divided at equal intervals from the fixed side end 81e by the length of the calculation section, it coincides with the calculation section 5. The rear shaft portion 81c is divided into two sections of 80 mm and 20 mm when divided by calculation sections. In the present embodiment, the calculation section including the movable side end 81f is set to be equal to or greater than the calculation section of 80 mm. Therefore, the length of the calculation section 6 is 100 mm.
 本実施例は所定時間(例えば、50ms)毎に、加工プログラムのX軸送りデータ(制御データ)に基づいて、ナット部8aがどの演算区間に存在するかを判別する。本実施例はテーブル8の送り速度に基づいて、次式に従って発熱量を演算する。テーブル8の送り速度はX軸モータ71の実回転数に基づき決まる。X軸モータ71の実回転数はエンコーダ71aの検出信号に基づいて決まる。フラッシュメモリ53のデータエリアは演算した発熱量を記憶する。発熱量は次式に従って演算する。 In the present embodiment, at every predetermined time (for example, 50 ms), based on the X-axis feed data (control data) of the machining program, it is determined in which calculation section the nut portion 8a exists. In this embodiment, the calorific value is calculated according to the following equation based on the feed speed of the table 8. The feed speed of the table 8 is determined based on the actual rotational speed of the X-axis motor 71. The actual rotational speed of the X-axis motor 71 is determined based on the detection signal of the encoder 71a. The data area of the flash memory 53 stores the calculated heat generation amount. The calorific value is calculated according to the following equation.
    Q=K1 ×FT
 Qは発熱量である。Fはテーブル8の送り速度である。K及びTは夫々所定の定数である。
Q = K 1 × F T
Q is a calorific value. F is the feed speed of the table 8. K 1 and T are respectively predetermined constants.
 本実施例は上記の式を用いて、各演算区間でのナット部8aの移動による発熱量を所定期間(例えば、6400ms)の間、50ms毎に128回演算する。本実施例は所定期間に演算した発熱量を演算区間毎に合計して、演算区間毎の発熱量Q1~Q6を演算する。図6に示すように、本実施例は発熱量Q1~Q6を演算区間1~6に対応付けてフラッシュメモリ53に記憶する。本実施例は合計発熱量QTを演算し、フラッシュメモリ53に記憶する。合計発熱量QTは発熱量Q1~Q6を合計した発熱量である。 In the present embodiment, the amount of heat generated by the movement of the nut portion 8a in each calculation section is calculated 128 times every 50 ms for a predetermined period (for example, 6400 ms) using the above formula. In the present embodiment, the calorific values calculated during a predetermined period are totaled for each computation interval, and calorific values Q 1 to Q 6 for each computation interval are calculated. As shown in FIG. 6, in this embodiment, the heat generation amounts Q 1 to Q 6 are stored in the flash memory 53 in association with the calculation sections 1 to 6. In this embodiment, the total calorific value Q T is calculated and stored in the flash memory 53. The total heat generation amount Q T is a heat generation amount obtained by adding the heat generation amounts Q 1 to Q 6 .
[合計発熱量の分配]
 以下に示す合計発熱量QTの分配方法は日本国特許公開1992年第240045号公報と同様の方法に基づいている。即ち、ボールネジシャフト81のナット部移動範囲81bと前側軸部81aと後側軸部81cにおいて互いに他の部分への熱伝導が生じず、熱的には近似的に独立しているとみなす。合計発熱量QTに対する各発熱部の比率は送り速度の変化に関係なく、ほぼ一定である。
[Distribution of total calorific value]
The distribution method of the total calorific value Q T shown below is based on the same method as that of Japanese Patent Publication No. 1992-240045. That is, it is considered that the nut portion movement range 81b, the front shaft portion 81a, and the rear shaft portion 81c of the ball screw shaft 81 do not conduct heat to other portions, and are thermally independent. The ratio of each heat generating portion to the total heat generation amount Q T is substantially constant regardless of the change in the feed rate.
 CPU51は各発熱部の分配発熱量を、次式に従って演算する。
    QF=ηF ×QT
    QN=ηN ×QT
    QB=ηB ×QT
 発熱量QFは固定軸受18の回転に起因する前側軸部81aの発熱量である。発熱量QNはナット部移動範囲81bの発熱量である。発熱量QBは可動軸受19の回転に起因する後側軸部81cの発熱量である。比率ηFは合計発熱量QTに対する発熱量QFの比率である。比率ηNは合計発熱量QTに対する発熱量QNの比率である。比率ηBは合計発熱量QTに対する発熱量QBの比率である。比率ηF 、ηN 、及びηBは前記方法に示すように、一定である。故に、比率ηF 、ηN 及びηBは実機を用いてQF 、QN 、QBを測定して予め演算した値とする。
The CPU 51 calculates the distributed heat generation amount of each heat generating part according to the following equation.
Q F = η F × Q T
Q N = η N × Q T
Q B = η B × Q T
The calorific value Q F is the calorific value of the front shaft portion 81 a due to the rotation of the fixed bearing 18. The heat generation amount Q N is the heat generation amount of the nut portion moving range 81b. The heat generation amount Q B is the heat generation amount of the rear shaft portion 81 c due to the rotation of the movable bearing 19. Ratio eta F is the ratio of the calorific value Q F with respect to the total heat generation amount Q T. Ratio eta N is the ratio of the calorific value Q N to the total heat generation amount Q T. Ratio eta B is the ratio of the calorific value Q B to the total heat generation amount Q T. The ratios η F , η N , and η B are constant as shown in the method. Therefore, the ratios η F , η N, and η B are values calculated in advance by measuring Q F , Q N , and Q B using an actual machine.
[ナット部移動範囲発熱量の分配]
 本実施例はナット部移動範囲81bの発熱量QNを6つの演算区間に分配する。本実施例は発熱量Q1~Q6と合計発熱量QTとに基づいて、次式に従って分配比率X1~X6 を演算する。分配比率X1~X6は夫々発熱量QNを6つの演算区間の発熱量に分配する比率である。発熱量Q1~Q6と合計発熱量QTは夫々データエリアに記憶してある。
[Nut movement range calorific value distribution]
In the present embodiment, the heat generation amount Q N of the nut portion movement range 81b is distributed to six calculation sections. In the present embodiment, the distribution ratios X 1 to X 6 are calculated according to the following equation based on the calorific values Q 1 to Q 6 and the total calorific value Q T. The distribution ratios X 1 to X 6 are ratios for distributing the calorific value Q N to the calorific values of the six calculation sections. The heat generation amounts Q 1 to Q 6 and the total heat generation amount Q T are respectively stored in the data area.
    X1 =演算区間1の発熱量Q1/ QT
             :
    X6 =演算区間6の発熱量Q6/ QT
 本実施例は6つの演算区間の分配比率X1~X6を演算した後、分配比率とナット部移動範囲81bの発熱量QNとを用いて、次式に従って6つの演算区間の分配発熱量QN1~QN6を演算する。
X 1 = calorific value Q 1 / Q T of calculation section 1
:
X 6 = calorific value Q 6 / Q T in calculation section 6
In this embodiment, after calculating the distribution ratios X 1 to X 6 of the six calculation sections, the distribution heat generation amount of the six calculation sections is calculated according to the following equation using the distribution ratio and the heat generation amount Q N of the nut movement range 81b. Q N1 to Q N6 are calculated.
    QN1=X1 ×QN
       :
    QN6=X6 ×QN
 図5に基づき各部の温度と各演算区間の発熱量は図7のように表すことができる。
Q N1 = X 1 × Q N
:
Q N6 = X 6 × Q N
Based on FIG. 5, the temperature of each part and the calorific value of each calculation section can be expressed as shown in FIG.
[温度分布の演算]
 本実施例は6つの演算区間の発熱量を演算した後、各演算区間の発熱量に基づいて温度分布を演算する。温度分布は次の非定常熱伝導方程式を解けば演算することができる。但し、初期条件は{θ}t=0 ={θ0}であり、θ0は初期温度である。
[Calculation of temperature distribution]
In the present embodiment, after calculating the heat generation amounts of the six calculation sections, the temperature distribution is calculated based on the heat generation amounts of the respective calculation sections. The temperature distribution can be calculated by solving the following unsteady heat conduction equation. However, the initial condition is {θ} t = 0 = {θ 0 }, and θ 0 is the initial temperature.
    [C]d{θ}/dt+[H]{θ}+{Q}=0
 [C]は熱容量マトリックスである。[H]は熱伝導マトリックスである。{θ}は、温度分布である。{Q}は発熱量である。tは時間である。
[C] d {θ} / dt + [H] {θ} + {Q} = 0
[C] is a heat capacity matrix. [H] is a heat conduction matrix. {Θ} is a temperature distribution. {Q} is the calorific value. t is time.
[熱変位量の演算]
 図7に示すように、本実施例はボールネジシャフト81の6つの演算区間の温度θ1~θ6を演算する。本実施例は演算した温度θ1~θ6に基づいて、ボールネジシャフト81の6つの演算区間区切り位置(図7のθ1~θ6に対応する位置)の熱変位量を演算する。6つの演算区間区切り位置の熱変位量は次式に従って演算する。
[Calculation of thermal displacement]
As shown in FIG. 7, the present embodiment calculates temperatures θ 1 to θ 6 in six calculation sections of the ball screw shaft 81. In this embodiment, based on the calculated temperatures θ 1 to θ 6 , the thermal displacement amounts at the six calculation section break positions of the ball screw shaft 81 (positions corresponding to θ 1 to θ 6 in FIG. 7) are calculated. The amount of thermal displacement at the six calculation section break positions is calculated according to the following equation.
    ΔL=∫L 0 β×θ(L)dL          ・・・(1)
 ΔLは熱変位量である。βはボールネジシャフト材料の線膨張係数である。積分記号は0~Lの範囲についての積分を示す。Lは6つの演算区間に関する演算区間区切り位置までの長さを示す。具体的には、上式は0~80、0~160、0~240、・・・等の範囲についての積分を示す。
ΔL = ∫ L 0 β × θ (L) dL (1)
ΔL is the amount of thermal displacement. β is the coefficient of linear expansion of the ball screw shaft material. The integration symbol indicates integration over a range of 0 to L. L shows the length to the calculation section delimitation position regarding six calculation sections. Specifically, the above equation shows the integration over a range of 0 to 80, 0 to 160, 0 to 240,.
[補正量の演算]
 本実施例はボールネジシャフト81の6つの演算区間区切り位置の熱変位量を演算してから、16個の補正区間区切り位置のピッチ誤差補正量を夫々補正する補正量を演算する。本実施例のナット部移動範囲81bはX0~X300(300mmの範囲)の区間である。各補正区間の長さは20mmである。故に、本実施例はX0、X20、X40、‥‥、X300の16個の位置での補正量を演算する。16個の補正区間区切り位置の補正量は図9と後述する[補正量演算式]の式に従って演算することができる。
[Calculation of correction amount]
In this embodiment, after calculating the thermal displacement amounts at the six calculation section break positions of the ball screw shaft 81, the correction amounts for correcting the pitch error correction amounts at the 16 correction section break positions are calculated. The nut portion movement range 81b of the present embodiment is a section of X0 to X300 (300 mm range). The length of each correction section is 20 mm. Therefore, in this embodiment, correction amounts at 16 positions of X0, X20, X40,..., X300 are calculated. The correction amounts at the 16 correction section break positions can be calculated in accordance with FIG. 9 and the [correction amount calculation formula] described later.
 図9を参照して、ピッチ誤差補正量を補正する補正量を演算する場合を説明する。図9の紙面上側のグラフの縦軸は固定軸受18の位置を基準とする熱変位量を示す。紙面上側のグラフの横軸は固定軸受18を基準とするボールネジシャフト81の各部の位置を示す。紙面下側の横軸は16個の補正区間の区切り位置(X0,X20・・・,X300)を示す。
   DF1は演算区間1における熱変位量である。
   DF2は演算区間1と演算区間2とにおける熱変位量の合計である。
             :
   DF6は演算区間1~演算区間6における熱変位量の合計である。
With reference to FIG. 9, the case where the correction amount for correcting the pitch error correction amount is calculated will be described. The vertical axis of the upper graph in FIG. 9 indicates the amount of thermal displacement based on the position of the fixed bearing 18. The horizontal axis of the graph on the upper side of the drawing indicates the position of each part of the ball screw shaft 81 with respect to the fixed bearing 18. The horizontal axis on the lower side of the drawing indicates the delimiting positions (X0, X20..., X300) of the 16 correction sections.
D F1 is a thermal displacement amount in the calculation section 1.
D F2 is the total amount of thermal displacement in the calculation section 1 and the calculation section 2.
:
D F6 is the total amount of thermal displacement in the calculation interval 1 to the calculation interval 6.
 図9に示すように、本実施例は16個の補正区間の区切り位置(X0,X20,・・・,X300)の補正量を次式に従って演算する。
[補正量演算式]
    X0の補正量=(演算区間1の熱変位量)+(演算区間2の熱変位量)×{(演算区間2の左区切り位置とX0間の長さ)/(演算区間2の長さ)}
    X20の補正量=(演算区間1の熱変位量)+(演算区間2の熱変位量)×{(演算区間2の左区切り位置とX20間の長さ)/(演算区間2の長さ)}-(X0の補正量)
    X40の補正量=(演算区間1の熱変位量)+(演算区間2の熱変位量)×{(演算区間2の左区切り位置とX40間の長さ)/(演算区間2の長さ)}-(X20の補正量)
    X60の補正量=(演算区間1の熱変位量)+(演算区間2の熱変位量)×{(演算区間2の左区切り位置とX60間の長さ)/(演算区間2の長さ)}-(X40の補正量)
    X80の補正量=(演算区間1の熱変位量)+(演算区間2の熱変位量)+(演算区間3の熱変位量)×{(演算区間3の左区切り位置とX80間の長さ)/(演算区間3の長さ)}-(X60の補正量)
                   :
    X300の補正量=(演算区間1の熱変位量)+(演算区間2の熱変位量)+(演算区間3の熱変位量)+(演算区間4の熱変位量)+(演算区間5の熱変位量)+(演算区間6の熱変位量)×{(演算区間6の左区切り位置とX300間の長さ)/(演算区間6の長さ)}-(X280の補正量)
As shown in FIG. 9, the present embodiment calculates the correction amount at the delimiter positions (X0, X20,..., X300) of the 16 correction sections according to the following equation.
[Correction amount calculation formula]
X0 correction amount = (thermal displacement amount in computation section 1) + (thermal displacement amount in computation section 2) × {(length between the left break position in computation section 2 and X0) / (length of computation section 2) }
Correction amount of X20 = (thermal displacement amount in calculation section 1) + (thermal displacement amount in calculation section 2) × {(length between left separation position of calculation section 2 and X20) / (length of calculation section 2) }-(X0 correction amount)
Correction amount of X40 = (thermal displacement amount of computation section 1) + (thermal displacement amount of computation section 2) × {(length between left delimiter position of computation section 2 and X40) / (length of computation section 2) }-(X20 correction amount)
Correction amount of X60 = (thermal displacement amount of calculation section 1) + (thermal displacement amount of calculation section 2) × {(length between left delimiter position of calculation section 2 and X60) / (length of calculation section 2) }-(X40 correction amount)
Correction amount of X80 = (thermal displacement amount of computation section 1) + (thermal displacement amount of computation section 2) + (thermal displacement amount of computation section 3) × {(length between left separation position of computation section 3 and X80 ) / (Length of calculation section 3)} − (correction amount of X60)
:
X300 correction amount = (thermal displacement amount in computation section 1) + (thermal displacement amount in computation section 2) + (thermal displacement amount in computation section 3) + (thermal displacement amount in computation section 4) + (in the computation section 5) Thermal displacement amount) + (Thermal displacement amount in the calculation section 6) × {(Length between the left separation position of the calculation section 6 and X300) / (Length of the calculation section 6)} − (Correction amount of X280)
 図10を参照して、数値制御装置50が実行する熱変位量補正制御の手順を説明する。図中Si(i=1,2・・・)は各ステップを示す。熱変位量補正制御は以上説明した内容と重複する部分が多いので簡単に説明する。実際のワークに対する数値制御に従う機械加工は熱変位量補正制御と並行的に実行する。 Referring to FIG. 10, the procedure of the thermal displacement correction control executed by the numerical controller 50 will be described. In the figure, Si (i = 1, 2,...) Indicates each step. The thermal displacement amount correction control will be briefly described because there are many portions that overlap with the contents described above. Machining according to numerical control for an actual workpiece is executed in parallel with thermal displacement correction control.
 CPU51は熱変位量補正制御を開始すると、ステップS1において初期設定を実行する。CPU51はステップS1ではパラメータ等の設定データに基づき、有限要素法に従う演算に必要なマトリックスを設定する。CPU51はステップS1で初期温度を設定する。CPU51はステップS1でフラッシュメモリ53の関連するメモリエリアをクリアする等の処理を実行する。図5に示すように、CPU51はステップS2においてボールネジシャフト81の延設範囲を6つの演算区間1~6に分割する。 When the CPU 51 starts the thermal displacement correction control, the CPU 51 executes initial setting in step S1. In step S1, the CPU 51 sets a matrix necessary for calculation according to the finite element method based on setting data such as parameters. The CPU 51 sets an initial temperature in step S1. The CPU 51 executes processing such as clearing the related memory area of the flash memory 53 in step S1. As shown in FIG. 5, the CPU 51 divides the extended range of the ball screw shaft 81 into six calculation sections 1 to 6 in step S2.
 CPU51はステップS3でカウンタIに0を設定する。CPU51はステップS4でX軸送りデータとエンコーダ71aの検出信号とを読み込む。CPU51はステップS5で演算区間1~6の50ms毎の発熱量を演算して、演算した発熱量をフラッシュメモリ53に記憶する。CPU51はステップS6でカウンタIに「1」加算する。CPU51はステップS7でカウンタIのカウンタ値が「127」よりも大きいか否かを判定する。CPU51はステップS7での判定がNoの時はステップS4へ戻ってステップS4からステップS6の処理を繰り返す。CPU51はステップS7で判定がYesである時、ステップS8の処理へ移行する。CPU51はステップS8で演算区間1~6毎の6,400ms間の発熱量Q1~Q6、発熱量Q1~Q6の合計発熱量QTを演算し、演算結果をフラッシュメモリ53に記憶する。 The CPU 51 sets 0 to the counter I in step S3. In step S4, the CPU 51 reads the X-axis feed data and the detection signal of the encoder 71a. In step S5, the CPU 51 calculates the amount of heat generated every 50 ms in the calculation sections 1 to 6, and stores the calculated amount of heat generated in the flash memory 53. In step S6, the CPU 51 adds “1” to the counter I. In step S7, the CPU 51 determines whether or not the counter value of the counter I is larger than “127”. When the determination in step S7 is No, the CPU 51 returns to step S4 and repeats the processing from step S4 to step S6. When the determination at Step S7 is Yes, the CPU 51 proceeds to the process at Step S8. CPU51 calculates a total heat generation amount Q T of the calorific value Q 1 to Q 6, the calorific value Q 1 to Q 6 between 6,400ms arithmetic section 1 every 6 in step S8, the result of computation is stored into the flash memory 53 To do.
 CPU51はステップS9で前述の各部の発熱量QF、QN、QBを演算し、演算結果をフラッシュメモリ53に記憶する。CPU51は演算区間1~6への分配発熱量QN1~QN6を演算し、演算結果をフラッシュメモリ53に記憶する。CPU51は図7に示す演算区間1~6についての発熱量を演算し、演算結果をフラッシュメモリ53に記憶する。CPU51はステップS10で図7に示す各部の発熱量に基づいて、演算区間1~6の温度θ1~θ6を演算し、演算結果をフラッシュメモリ53に記憶する。 In step S < b > 9, the CPU 51 calculates the calorific values Q F , Q N , and Q B of each unit described above and stores the calculation results in the flash memory 53. The CPU 51 calculates the calorific values Q N1 to Q N6 distributed to the calculation sections 1 to 6 and stores the calculation results in the flash memory 53. The CPU 51 calculates the heat generation amount for the calculation sections 1 to 6 shown in FIG. 7 and stores the calculation result in the flash memory 53. In step S 10, the CPU 51 calculates the temperatures θ 1 to θ 6 in the calculation sections 1 to 6 based on the heat generation amounts of the respective parts shown in FIG. 7 and stores the calculation results in the flash memory 53.
 CPU51はステップS11で、前記の(1)式に基づいて、6つの演算区間についての演算区間区切り位置の熱変位量を演算して、演算結果をフラッシュメモリ53に記憶する。CPU51はステップS12で、前述した補正量演算式に基づいて、前述のようにして16個の補正区間区切り位置での補正量を演算する。CPU51はステップS13で、ステップS12において演算した補正量を用いて、16個の補正区間区切り位置に対して予め設定したピッチ誤差補正量に対する補正処理を実行する。CPU51は補正処理したピッチ誤差補正量を用いた送り量補正処理を実行する。CPU51はステップS14で、熱変位量補正の処理を終了するか否かを判定する。CPU51は判定結果がNoの場合、ステップS3へ戻ってステップS3以降を繰り返し実行する。熱変位量補正制御はステップS14の判定結果がYesになると終了する。 In step S11, the CPU 51 calculates the amount of thermal displacement at the calculation section break positions for the six calculation sections based on the equation (1), and stores the calculation results in the flash memory 53. In step S12, the CPU 51 calculates the correction amounts at the 16 correction section break positions as described above based on the correction amount calculation formula described above. In step S13, the CPU 51 executes a correction process for the pitch error correction amount set in advance for the 16 correction section break positions using the correction amount calculated in step S12. The CPU 51 executes a feed amount correction process using the corrected pitch error correction amount. In step S14, the CPU 51 determines whether or not to end the thermal displacement amount correction process. When the determination result is No, the CPU 51 returns to step S3 and repeatedly executes step S3 and subsequent steps. The thermal displacement correction control ends when the determination result in step S14 is Yes.
 図11を参照して、補正量演算処理について説明する。補正量演算処理はステップS12のピッチ誤差補正量を補正する補正量を演算する処理である。図中Si(i=20、21・・・)は各ステップを示す。CPU51は補正量演算処理を開始すると、カウンタnを0にする(S20)。CPU51は位置Xnの補正量ΔMnを次式に従って演算する(S21)。 The correction amount calculation process will be described with reference to FIG. The correction amount calculation process is a process of calculating a correction amount for correcting the pitch error correction amount in step S12. In the figure, Si (i = 20, 21...) Indicates each step. When starting the correction amount calculation process, the CPU 51 sets the counter n to 0 (S20). The CPU 51 calculates the correction amount ΔM n of the position Xn according to the following equation (S21).
 CPU51は最初に、ΔMn=DF+ΔDn×{(Xn-XF)/Ln}-ΔMn-20、n=0 に従って、位置X0の補正量ΔM0を演算する。上式は前述した補正量演算式を簡単に表した式である。DFは位置Xnよりも固定側の演算区間で発生した熱変位量の合計である。ΔDnは位置Xnを含む演算区間で発生した熱変位量である。XFは位置Xnを含む演算区間の左区切り位置である。Lnは位置Xnを含む演算区間の長さである。ΔM0を演算する場合に用いるΔM-20は0とする。 First, the CPU 51 calculates the correction amount ΔM 0 of the position X0 according to ΔM n = D F + ΔD n × {(Xn−X F ) / L n } −ΔM n−20, n = 0. The above expression is a simple expression of the above-described correction amount calculation expression. DF is the total amount of thermal displacement generated in the calculation section on the fixed side with respect to the position Xn. ΔD n is the amount of thermal displacement generated in the calculation interval including the position Xn. X F is the left delimiter position of the calculation section including the position Xn. L n is the length of the calculation interval including the position Xn. ΔM −20 used when calculating ΔM 0 is set to 0.
 CPU51はステップS22でnに20加算する。CPU51はステップS23でnが320であるか否か判定する。CPU51はnが320ではない場合(S23:No)、位置X300までの補正量についての演算を終了していないものと判定し、ステップS21へ戻って位置Xnの補正量ΔMnを演算する。CPU51は位置X300の補正量ΔM300を演算するまではS21からS23を繰り返し実行する。CPU51は補正量ΔM300を演算すると(S21)、ステップS22においてn=320となる。ステップS23の判定はYesとなる。CPU51は図11の処理を終了して図10のステップS14へ移行する。 The CPU 51 adds 20 to n in step S22. In step S23, the CPU 51 determines whether n is 320 or not. If n is not 320 (S23: No), the CPU 51 determines that the calculation for the correction amount up to the position X300 has not ended, returns to step S21, and calculates the correction amount ΔM n for the position Xn. CPU51 is until calculates a correction amount .DELTA.M 300 position X300 to run repeatedly to S23 S21. When the CPU 51 calculates the correction amount ΔM 300 (S21), n = 320 in step S22. The determination in step S23 is Yes. CPU51 complete | finishes the process of FIG. 11, and transfers to step S14 of FIG.
 エンコーダ71aは「速度検出機器」に相当する。ステップS3~ステップS7を実行するCPU51は「発熱量演算部」に相当する。ステップS8~ステップS10を実行するCPU51は「温度分布演算部」に相当する。ステップS11を実行するCPU51は「熱変位量演算部」に相当する。ステップS12を実行するCPU51は「補正量演算部」に相当する。 Encoder 71a corresponds to “speed detection device”. The CPU 51 that executes Steps S3 to S7 corresponds to a “heat generation amount calculation unit”. The CPU 51 that executes Steps S8 to S10 corresponds to a “temperature distribution calculation unit”. The CPU 51 that executes step S11 corresponds to a “thermal displacement amount calculation unit”. The CPU 51 executing step S12 corresponds to a “correction amount calculation unit”.
 以上説明した工作機械Mの熱変位量補正方法及び熱変位量補正装置(数値制御装置50)の作用と効果について説明する。演算区間はボールネジ機構のボールネジシャフト81の全長を、固定側端部81eから補正区間よりも長い一定長さで分割した区間である。可動側端部81fを含む演算区間の長さは一定長さ以上である。CPU51は複数の演算区間の発熱量と温度分布を演算する。CPU51は演算結果に基づいて複数の演算区間の区切り位置での熱変位量を演算する。CPU51はピッチ誤差補正量を補正する補正量を演算する。故に、熱変位量補正方法及び熱変位量補正装置(数値制御装置50)は次のような効果を有する。 The operation and effect of the thermal displacement correction method for the machine tool M and the thermal displacement correction device (numerical control device 50) described above will be described. The calculation section is a section obtained by dividing the entire length of the ball screw shaft 81 of the ball screw mechanism by a fixed length longer than the correction section from the fixed side end portion 81e. The length of the calculation section including the movable side end portion 81f is not less than a certain length. CPU51 calculates the emitted-heat amount and temperature distribution of several calculation area. The CPU 51 calculates the thermal displacement amount at the break position of the plurality of calculation sections based on the calculation result. The CPU 51 calculates a correction amount for correcting the pitch error correction amount. Therefore, the thermal displacement correction method and the thermal displacement correction device (numerical control device 50) have the following effects.
 数値制御装置50は演算区間の区切り位置と補正区間の区切り位置が一致する必要がない。故に、数値制御装置50は演算区間の区間長を長く設定することで熱変位量を演算する演算周期を長くすることができる。数値制御装置50は数値制御装置50における演算処理の負荷を低減できる。 The numerical controller 50 does not require that the calculation section break position and the correction section break position match. Therefore, the numerical controller 50 can lengthen the calculation cycle for calculating the thermal displacement amount by setting the length of the calculation section to be long. The numerical control device 50 can reduce the processing load on the numerical control device 50.
 数値制御装置50は演算区間の区間長を不必要に長くならないように設定することで、高精度な熱変位量補正を行うことができる。数値制御装置50は演算区間の区間長を適切な大きさに設定することによって、数値制御装置50における演算処理の負荷を抑制し、且つ目標とする加工精度を達成することが可能となる。 The numerical control device 50 can perform highly accurate thermal displacement correction by setting the section length of the computation section so as not to become unnecessarily long. The numerical control device 50 can suppress the calculation processing load in the numerical control device 50 and achieve the target machining accuracy by setting the section length of the calculation section to an appropriate size.
 上記実施例を部分的に変更した変更例について説明する。
 1)上記実施例において、本発明の熱変位量補正装置及びその熱変位量補正方法をX軸のボールネジ機構の熱変位量補正に適用した場合について説明した。本発明はY軸のボールネジ機構及びZ軸のボールネジ機構の熱変位量補正に適用することも可能である。
 2)上記実施例において、数値制御装置50はボールネジシャフト81の前側軸部81aとナット部移動範囲81bを80mm間隔(補正区間の設定長の4倍)で5つの演算区間に分割した。演算区間は補正区間よりも長ければよい。例えば、演算区間は補正区間の設定長の1.5倍及び3倍等4倍以外の長さでもよい。
A modified example in which the above embodiment is partially modified will be described.
1) In the above embodiment, the case where the thermal displacement correction device and the thermal displacement correction method of the present invention are applied to the thermal displacement correction of the X-axis ball screw mechanism has been described. The present invention can also be applied to the correction of thermal displacement of the Y-axis ball screw mechanism and the Z-axis ball screw mechanism.
2) In the above embodiment, the numerical controller 50 divides the front shaft portion 81a of the ball screw shaft 81 and the nut portion moving range 81b into five calculation sections at intervals of 80 mm (four times the set length of the correction section). The calculation interval may be longer than the correction interval. For example, the calculation section may have a length other than four times, such as 1.5 times and 3 times the set length of the correction section.
 3)上記実施例において、工作機械Mはボールネジシャフト81の前側軸部81a側にX軸モータ71を備える。数値制御装置50は工作機械Mがボールネジシャフト81の後側軸部81c側にX軸モータ71を設けた場合も、上記実施例と同様の方法で、ボールネジシャフト81の6つの演算区間の熱変位量を演算することができる。
 4)上記実施例で、発熱量を演算する演算周期は一例として、50msであるが、演算周期は50msに限るものではない。所定期間の6400msは一例である。所定期間は6400msに限るものではない。例えば、所定期間はms単位ではなく秒単位でもよい。
3) In the above embodiment, the machine tool M includes the X-axis motor 71 on the front shaft portion 81 a side of the ball screw shaft 81. When the machine tool M is provided with the X-axis motor 71 on the rear shaft portion 81c side of the ball screw shaft 81, the numerical control device 50 performs thermal displacement of the six calculation sections of the ball screw shaft 81 in the same manner as in the above embodiment. The amount can be calculated.
4) In the above embodiment, the calculation cycle for calculating the heat generation amount is 50 ms as an example, but the calculation cycle is not limited to 50 ms. The predetermined period of 6400 ms is an example. The predetermined period is not limited to 6400 ms. For example, the predetermined period may be in seconds instead of ms.

Claims (4)

  1.  シャフトとナットとを備える送り駆動用ボールネジ機構と、前記ボールネジ機構の前記ナットが螺合した前記シャフトを回転駆動するサーボモータと、前記サーボモータを制御データに基づき制御する制御部とを有する工作機械の熱変位量補正方法において、
     前記シャフトに前記サーボモータと連結する固定側端部と、前記固定側端部と反対側の可動側端部とを予め設け、
     前記工作機械の稼働中に前記シャフトの熱変位量を演算する場合に、前記シャフトの全長を、前記固定側端部から一定長さで分割した複数の演算区間及び前記可動側端部を含み且つ前記一定長さ以上の演算区間に設定し、前記夫々の演算区間の発熱量と温度分布を演算する工作機械の熱変位量補正方法。
    A machine tool comprising: a feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and a control unit that controls the servo motor based on control data. In the thermal displacement correction method of
    A fixed side end connected to the shaft with the servo motor, and a movable side end opposite to the fixed side end are provided in advance,
    When calculating the amount of thermal displacement of the shaft during operation of the machine tool, the plurality of calculation sections obtained by dividing the total length of the shaft by a fixed length from the fixed side end and the movable side end, and A method of correcting a thermal displacement amount of a machine tool, wherein the heat displacement amount and temperature distribution of each calculation section are calculated by setting the calculation sections of a certain length or more.
  2.  前記シャフトの全長のうちの前記ナットが移動可能な範囲であるナット移動範囲を前記演算区間よりも短い複数の補正区間に分割し、前記複数の補正区間毎にピッチ誤差補正するピッチ誤差補正量を、前記熱変位量を用いて補正する請求項1に記載の工作機械の熱変位量補正方法。 A nut movement range that is a range in which the nut can move in the entire length of the shaft is divided into a plurality of correction sections shorter than the calculation section, and a pitch error correction amount for correcting a pitch error for each of the plurality of correction sections is obtained. The method for correcting a thermal displacement amount of a machine tool according to claim 1, wherein the thermal displacement amount is corrected using the thermal displacement amount.
  3.  シャフトとナットとを備える送り駆動用ボールネジ機構と、前記ボールネジ機構の前記ナットが螺合した前記シャフトを回転駆動するサーボモータと、前記サーボモータを制御データに基づき制御する制御部とを有し、前記シャフトの全長のうちの前記ナットが移動可能な範囲であるナット移動範囲を複数の補正区間に分割し、前記複数の補正区間毎にピッチ誤差補正する工作機械の熱変位量補正方法において、
     前記シャフトに前記サーボモータと連結する固定側端部と、前記固定側端部と反対側の可動側端部とを予め設け、
     前記シャフトの全長を、前記固定側端部から前記補正区間よりも長い一定長さの演算区間に分割した複数の演算区間及び前記可動側端部を含み且つ前記一定長さ以上の演算区間に設定し、
     前記夫々の演算区間について、前記演算区間毎の発熱量を、前記サーボモータの回転速度と制御データとに基づいて所定時間毎に演算する第1ステップと、
     前記演算区間毎の前記発熱量を所定期間分累積した合計発熱量と非定常熱伝導方程式とに基づいて、前記演算区間毎の温度分布を前記所定期間毎に演算する第2ステップと、
     前記温度分布に基づき、前記演算区間毎の熱変位量を前記所定期間毎に演算する第3ステップと、
     前記演算区間毎の前記熱変位量に基づいて、前記補正区間毎のピッチ誤差補正量を夫々補正する補正量を前記所定期間毎に演算する第4ステップと、
     を備えた工作機械の熱変位量補正方法。
    A feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and a control unit that controls the servo motor based on control data; In the thermal displacement correction method for a machine tool, the nut movement range, which is the range in which the nut can move, of the total length of the shaft is divided into a plurality of correction sections, and the pitch error correction is performed for each of the plurality of correction sections.
    A fixed side end connected to the shaft with the servo motor, and a movable side end opposite to the fixed side end are provided in advance,
    The total length of the shaft is set to a calculation section that includes a plurality of calculation sections and a movable end section that are divided into calculation sections having a fixed length longer than the correction section from the fixed side end and the fixed length or more. And
    For each of the calculation sections, a first step of calculating a calorific value for each calculation section at predetermined intervals based on the rotation speed of the servo motor and control data;
    A second step of calculating a temperature distribution for each calculation interval for each predetermined period based on a total heat generation amount obtained by accumulating the heat generation amount for each calculation interval for a predetermined period and an unsteady heat conduction equation;
    A third step of calculating a thermal displacement amount for each of the calculation sections for each of the predetermined periods based on the temperature distribution;
    A fourth step of calculating a correction amount for correcting a pitch error correction amount for each correction section for each predetermined period based on the thermal displacement amount for each calculation section;
    A method for correcting the amount of thermal displacement of a machine tool equipped with
  4.  シャフトとナットとを備える送り駆動用ボールネジ機構と、前記ボールネジ機構の前記ナットが螺合した前記シャフトを回転駆動するサーボモータと、前記サーボモータを制御データに基づき制御する制御部とを有し、前記シャフトの全長のうちの前記ナットが移動可能な範囲であるナット移動範囲を複数の補正区間に分割し、前記複数の補正区間毎にピッチ誤差補正する工作機械の熱変位量補正装置において、
     前記シャフトは前記サーボモータと連結する固定側端部と、前記固定側端部と反対側の可動側端部とを有し、
     前記サーボモータの回転速度を検出する速度検出機器と、
     前記シャフトの全長を、前記固定側端部から前記補正区間よりも長い一定長さの演算区間に分割した複数の演算区間及び前記可動側端部を含み且つ前記一定長さ以上の演算区間に設定し、
     前記夫々の演算区間について、前記演算区間毎の発熱量を、前記サーボモータの回転速度と制御データとに基づいて所定時間毎に演算する発熱量演算部と、
     前記演算区間毎の前記発熱量を所定期間分累積した合計発熱量と非定常熱伝導方程式とに基づいて、前記演算区間毎の温度分布を前記所定期間毎に演算する温度分布演算部と、
     前記温度分布に基づき、前記演算区間毎の熱変位量を前記所定期間毎に演算する熱変位量演算部と、
     前記演算区間毎の前記熱変位量に基づいて、前記補正区間毎のピッチ誤差補正量を夫々補正する補正量を前記所定期間毎に演算する補正量演算部と、
     を備えた工作機械の熱変位量補正装置。
    A feed drive ball screw mechanism including a shaft and a nut; a servo motor that rotationally drives the shaft into which the nut of the ball screw mechanism is screwed; and a control unit that controls the servo motor based on control data; In a thermal displacement correction device for a machine tool that divides a nut movement range, which is a range in which the nut can move, of a total length of the shaft into a plurality of correction sections, and corrects a pitch error for each of the plurality of correction sections,
    The shaft has a fixed side end connected to the servo motor, and a movable side end opposite to the fixed side end,
    A speed detection device for detecting the rotational speed of the servo motor;
    The total length of the shaft is set to a calculation section that includes a plurality of calculation sections and a movable end section that are divided into calculation sections having a fixed length longer than the correction section from the fixed side end and the fixed length or more. And
    For each calculation section, a heat generation amount calculation unit that calculates a heat generation amount for each calculation section every predetermined time based on the rotation speed of the servomotor and control data;
    Based on the total calorific value obtained by accumulating the calorific value for each calculation section for a predetermined period and an unsteady heat conduction equation, a temperature distribution calculation unit that calculates the temperature distribution for each calculation period for each predetermined period;
    Based on the temperature distribution, a thermal displacement amount calculation unit that calculates a thermal displacement amount for each of the calculation sections for each predetermined period;
    A correction amount calculation unit for calculating a correction amount for correcting a pitch error correction amount for each correction section for each predetermined period based on the thermal displacement amount for each calculation section;
    Thermal displacement correction device for machine tools equipped with
PCT/JP2010/064341 2009-08-28 2010-08-25 Method for thermal displacement correction in machine tool and thermal displacement correction device WO2011024838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080037054.5A CN102481675B (en) 2009-08-28 2010-08-25 Method for thermal displacement correction in machine tool and thermal displacement correction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-198377 2009-08-28
JP2009198377A JP5397095B2 (en) 2009-08-28 2009-08-28 Thermal displacement compensation method and thermal displacement compensation device for numerically controlled machine tool

Publications (1)

Publication Number Publication Date
WO2011024838A1 true WO2011024838A1 (en) 2011-03-03

Family

ID=43627938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064341 WO2011024838A1 (en) 2009-08-28 2010-08-25 Method for thermal displacement correction in machine tool and thermal displacement correction device

Country Status (3)

Country Link
JP (1) JP5397095B2 (en)
CN (1) CN102481675B (en)
WO (1) WO2011024838A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009857B2 (en) * 2018-07-05 2021-05-18 Dalian University Of Technology Application method of the thermal error-temperature loop in the spindle of a CNC machine tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582522B2 (en) * 2015-04-30 2019-10-02 ブラザー工業株式会社 Machine tool, calculation method and computer program
CN116572082B (en) * 2023-07-14 2023-09-22 深圳市今日标准精密机器有限公司 Screw rod temperature rise compensation method and system of numerical control machine tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018677A (en) * 2000-07-06 2002-01-22 Fanuc Ltd Thermal displacement correcting method of machine tool
JP2004042260A (en) * 1994-06-16 2004-02-12 Mori Seiki Hitech Co Ltd Thermal displacement correcting method for machine tool, and device thereof
JP2007021721A (en) * 2006-09-20 2007-02-01 Jtekt Corp Device for correcting thermal displacement of ball screw
JP2010234500A (en) * 2009-03-31 2010-10-21 Brother Ind Ltd Numerical control machine tool and thermal displacement correction method for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760091B2 (en) * 2005-03-30 2011-08-31 ブラザー工業株式会社 Machine tool and displacement correction method for machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042260A (en) * 1994-06-16 2004-02-12 Mori Seiki Hitech Co Ltd Thermal displacement correcting method for machine tool, and device thereof
JP2002018677A (en) * 2000-07-06 2002-01-22 Fanuc Ltd Thermal displacement correcting method of machine tool
JP2007021721A (en) * 2006-09-20 2007-02-01 Jtekt Corp Device for correcting thermal displacement of ball screw
JP2010234500A (en) * 2009-03-31 2010-10-21 Brother Ind Ltd Numerical control machine tool and thermal displacement correction method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009857B2 (en) * 2018-07-05 2021-05-18 Dalian University Of Technology Application method of the thermal error-temperature loop in the spindle of a CNC machine tool

Also Published As

Publication number Publication date
JP5397095B2 (en) 2014-01-22
CN102481675B (en) 2014-05-21
JP2011045985A (en) 2011-03-10
CN102481675A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
KR101074206B1 (en) Heat dislocation compensation method of machine tool, heat dislocation compensation device of machine tool and computer readable medium in which program for heat dislocation compensation is stored
US8240060B2 (en) Methods and apparatus for compensating temperature-dependent changes of positions on machine tools
JP5673855B2 (en) Machine Tools
JP5897891B2 (en) Machine Tools
WO2011024840A1 (en) Method for thermal displacement correction in machine tool, and thermal displacement correction device
JP2019000945A (en) Workpiece machining method of machine tool
JP5545025B2 (en) Machine Tools
WO2011024833A1 (en) Method for heat displacement correction in machine tool and heat displacement correction device
JP2006281420A (en) Heat displacement compensating method of nc machine tool
JP5206555B2 (en) Numerically controlled machine tool and thermal displacement correction method thereof
JP5224177B2 (en) Thermal displacement correction method and thermal displacement correction apparatus for machine tool
WO2011024838A1 (en) Method for thermal displacement correction in machine tool and thermal displacement correction device
JP2002273642A (en) Ball screw feed drive correcting method, and ball screw feed drive device
JP2010082724A (en) Thermal displacement correction device and thermal displacement correction method for machine tool
JP5846400B2 (en) Machine tool and its thermal deformation correction method
JP5786436B2 (en) Numerical control apparatus and processing method
JP2019013996A (en) Workpiece machining method in machine tool
JP2014061567A (en) Machine tool
JP2017144527A (en) Correction method of thermal displacement of machine tool
JP6500602B2 (en) Machine tool, calculation method and computer program
KR20140093847A (en) Feed drive system thermal deformation correction device of machine tool and method thereof
JP5169946B2 (en) Numerically controlled machine tool and thermal displacement correction method thereof
JP2002219632A (en) Method for correcting thermal displacement of feed screw in machine tool
KR20050098208A (en) A machine tool having the temperature compensation apparatus
JPH07108457A (en) Sizing device with thermal displacement correcting function

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037054.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811887

Country of ref document: EP

Kind code of ref document: A1