WO2011021374A1 - Post-treatment solution for self-deposited coating film formed on metal surface, and process for production of metallic material having post-treated self-deposited coating film formed thereon - Google Patents

Post-treatment solution for self-deposited coating film formed on metal surface, and process for production of metallic material having post-treated self-deposited coating film formed thereon Download PDF

Info

Publication number
WO2011021374A1
WO2011021374A1 PCT/JP2010/005051 JP2010005051W WO2011021374A1 WO 2011021374 A1 WO2011021374 A1 WO 2011021374A1 JP 2010005051 W JP2010005051 W JP 2010005051W WO 2011021374 A1 WO2011021374 A1 WO 2011021374A1
Authority
WO
WIPO (PCT)
Prior art keywords
post
treatment liquid
self
coating
metal
Prior art date
Application number
PCT/JP2010/005051
Other languages
French (fr)
Japanese (ja)
Inventor
高▲桑▼英樹
中山隆臣
藤野孝洋
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Publication of WO2011021374A1 publication Critical patent/WO2011021374A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Definitions

  • the present invention is a surface of an iron-based metal material that requires high corrosion resistance and adhesion, such as automobile bodies, automobile parts, steel furniture, and home appliances, and that may be overcoated in accordance with the application. It relates to processing technology.
  • the present invention aims to form an autodeposition composition containing tannin, an acid and an oxidizing agent on the surface of the metal material for the purpose of forming an autodeposition film having excellent corrosion resistance and adhesion on the surface of the iron-based metal material.
  • This is a technique related to chemical treatment (post-treatment) applied to an uncured autodeposition coating formed on the same surface by bringing it into contact.
  • Japanese Patent Publication No. 47-17630, Japanese Patent Publication No. 48-14412 are self-deposition compositions that can form a resin film on the metal surface by contacting the metal surface with an acidic composition containing an organic coating resin.
  • Conventionally known autodeposition compositions are characterized in that by immersing a clean metal surface in the autodeposition composition, an autodeposition coating whose thickness or weight increases with the immersion time can be formed. Furthermore, a part of the metal ions eluted from the metal by the chemical action (etching) of the autodeposition composition on the surface of the metal is taken into the film to form a film. An autodeposited film can be effectively formed on the metal surface without using.
  • U.S. Pat. Nos. 3,647,567, 4,030,945 and JP-A-61-168673 disclose a chromium compound before drying an uncured autodeposition coating formed on a metal surface. It is disclosed that an autodeposition coating excellent in corrosion resistance can be obtained by contacting with an aqueous solution containing. However, at present, it is not preferable to use a treatment liquid containing chromium whose use is restricted from the viewpoint of environmental problems.
  • Patent Documents 1 to 3 have proposed a method that does not use chromium.
  • Patent Document 2 discloses a self-deposited coating film in which a metal to be coated is coated with an aqueous coating composition and then baked and coated. It is disclosed to wash with an aqueous solution or an aqueous dispersion mainly containing at least one selected from the group of salts, borofluoride, titanium fluoride, aluminum fluoride and nitrite.
  • Patent Document 3 discloses that an autodeposition coating deposited on a metal substrate is brought into contact with an aqueous solution containing a Group II A or Group II B metal cation and a phosphate anion before curing. It is disclosed that a phosphate compound is generated at the interface of the coating and the corrosion resistance is improved.
  • the autodeposition coating using tannin as the resin component gives good results in many test items. be able to.
  • the conventional post-treatment agent is used for the autodeposition coating using tannin as the resin component, the present inventors have tested all the test items required by the present inventors, specifically, the salt warm water test, the salt spray It was confirmed that a high level of corrosion resistance and adhesion satisfying all the test items of the test, the combined environmental cycle test and the adhesion test could not be obtained. Accordingly, the present invention provides a post-treatment technique that imparts a high level of corrosion resistance and adhesion to an autodeposition coating using tannin as a resin component, without using harmful components such as chromium. With the goal.
  • the present invention (1) is an aqueous solution containing at least one metal component selected from the group consisting of lithium, manganese, iron, cobalt, nickel, copper and aluminum and phosphoric acid. It is a post-treatment liquid for autodeposition coating on the metal surface as a resin component.
  • K A / B which is the ratio of the total molar concentration A of the metal components to the molar concentration B of the phosphoric acid is represented by the formula (1): (Formula 2)
  • the molar concentration A in the aqueous solution is in the range of 0.1 to 500 mmol / L as the concentration in the aqueous solution.
  • the present invention (3) is the post-treatment liquid of the invention (1) or (2), wherein the post-treatment liquid for autodeposition coating on the metal surface has a pH of 2 to 6.
  • the post-treatment liquid for autodeposition coating on the metal surface is selected from the group consisting of nitrite, hydroxylamine, hydroxylamine sulfate, hydroxylamine phosphate, hydroxylamine hydrochloride, hydroxylammonium and hydrogen peroxide. Any one of the post-treatment liquids according to any one of the inventions (1) to (3).
  • the present invention (5) is the post-treatment liquid according to any one of the inventions (1) to (4), wherein the self-deposited film contains at least one selected from the group consisting of cerium, yttrium, aluminum and strontium. is there.
  • the present invention (6) is the post-treatment liquid of the invention (5), wherein cerium, yttrium, aluminum and strontium are fluoride particles.
  • At least one crosslinking agent having a phenolic hydroxyl group and / or a crosslinking group capable of thermosetting reaction with a phenol nucleus is used.
  • the present invention (8) is the post-treatment liquid according to the invention (7), wherein the crosslinking group capable of thermosetting reaction in the at least one crosslinking agent is an isocyanate group.
  • the present invention (9) is the post-treatment liquid of the invention (8), wherein the at least one crosslinking agent is a polyfunctional blocked isocyanate blocked with a blocking agent.
  • the at least one crosslinking agent is at least one selected from block isocyanates having at least one molecule of bisphenol A structure and / or self-emulsifying type blocked isocyanates using polyether polyol. This is a post-treatment liquid of the invention (9).
  • an uncured self-deposited film is formed on a metal surface by bringing a self-deposited composition containing tannin as a resin component into contact with a metal material whose surface has been cleaned in advance by degreasing and washing with water.
  • a metal material comprising: a precipitation coating step; a contact step of bringing the post-treatment liquid according to any one of the inventions (1) to (10) into contact with the uncured self-deposition coating; and a baking step This is a surface treatment method.
  • the post-treatment liquid for self-deposition of a metal surface according to the present invention is for an auto-deposition film containing tannin as a resin component, and is at least one selected from the group consisting of lithium, manganese, iron, cobalt, nickel, copper and aluminum It is the aqueous solution containing the metal component and phosphoric acid.
  • aqueous solution containing the metal component and phosphoric acid.
  • Lithium, manganese, iron, cobalt, nickel, copper, and aluminum used in the present invention are metal parts in forming a phosphate compound that provides excellent corrosion resistance and adhesion to an autodeposition coating containing tannin as a resin component. It becomes.
  • an aqueous solution containing these metal components and phosphoric acid is applied to an autodeposition coating containing tannin as a resin component, the interface between the metal surface and the autodeposition coating is different from the case of using a post-treatment agent in the prior art.
  • the phosphate compound is not unevenly distributed, but is uniformly dispersed and deposited in the autodeposition coating.
  • the phosphate compound which not only improves the corrosion resistance and adhesion at the interface between the metal surface and the self-deposited coating but also has an effect as a rust preventive pigment is uniformly dispersed in the coating, Corrosion resistance can be remarkably improved over the entire coating.
  • Preferred metal components are manganese, cobalt and nickel.
  • the supply source of the metal component is not particularly limited, and for example, oxides, hydroxides, fluorides, complex fluorides, chlorides, nitrates, oxynitrates, sulfates, oxysulfates of these metal elements , Carbonates, oxycarbonates, phosphates, oxyphosphates, oxalates, oxyoxalates, and organometallic compounds can be used, and two or more can be used in combination.
  • the phosphoric acid used in the present invention becomes an anion moiety when forming the phosphate compound.
  • the supply source of phosphoric acid is not specifically limited, For example, orthophosphoric acid, condensed phosphoric acid, etc. can be used and 2 or more types can be used together.
  • an accelerator for producing a phosphate compound it is preferable to add an accelerator for producing a phosphate compound to the post-treatment liquid for autodeposition coating used in the present invention.
  • the accelerator has an effect of increasing the production amount of the phosphate compound by accelerating the etching reaction on the metal surface on which the uncured autodeposited film has been deposited.
  • the accelerator include nitrite, hydroxylamine, hydroxylamine sulfate, hydroxylamine phosphate, hydroxylamine hydrochloride, hydroxylammonium, hydrogen peroxide, etc. Among them, nitrite and hydroxylamine are preferable.
  • K A / B, which is the ratio of the total molar concentration A of metal components to the molar concentration B of phosphoric acid in the treatment liquid of the present invention, is preferably in the range of formula (1), and in the range of formula (2). More preferably it is.
  • K is smaller than 0.001 since the ratio of the metal component is small, it is not possible to obtain a phosphate compound sufficient to obtain corrosion resistance and adhesion.
  • K is larger than 0.5, an excessive metal component may adversely affect the appearance of the autodeposition coating, resulting in appearance defects such as coating cracks and pinholes.
  • the metal component in the post-treatment liquid for autodeposition coating was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP) and represented by the total molar concentration (mol / L) as each metal element in the treatment liquid. Is done.
  • phosphoric acid in the post-treatment liquid for autodeposition coating is measured using ion chromatography (IC) and is expressed as a molar concentration (mol / L) as PO4 in the treatment liquid. (Formula 3)
  • IC ion chromatography
  • the concentration of the metal component in the treatment liquid of the present invention is preferably 0.1 to 500 mmol / L, more preferably 1 to 100 mmol / L.
  • concentration of the metal component is less than 0.1 mmol / L, formation of a phosphate compound sufficient to obtain corrosion resistance and adhesion cannot be obtained.
  • it is higher than 500 mmol / L, the amount of the phosphate compound formed becomes too large, which may cause an abnormality in the appearance of the self-deposited film, and is also disadvantageous economically.
  • concentrations of the metal component in the treatment liquid of the present invention are 20 mmol / L or more for manganese, 5 mmol / L or more for cobalt, 30 mmol / L or more for nickel, and 1 mmol / L or more for lithium, iron, copper, and aluminum.
  • the concentration of the accelerator when it is added is preferably 1 to 1000 mmol / L, more preferably 10 to 300 mmol / L.
  • concentration of the accelerator is less than 1 mmol / L, it is not possible to obtain a sufficient promoting effect for obtaining corrosion resistance and adhesion.
  • concentration of the accelerator is higher than 1000 mmol / L, as the metal etching reaction is promoted, the amount of the phosphate compound formed becomes excessive, and the appearance of the autodeposition coating may be abnormal.
  • the post-treatment liquid for autodeposition coating used in the present invention is preferably adjusted and maintained within the range of pH 2-6, more preferably pH 3-5.
  • pH 2-6 more preferably pH 3-5.
  • the pH is less than 2
  • the etching reaction of the metal becomes excessive, and abnormalities such as cracking of the film and pinholes occur in the appearance of the film.
  • the pH is higher than 6, a phosphate compound may be formed and precipitated in the post-treatment liquid for the autodeposition coating depending on the kind of the metal component, and the effect is lost.
  • the drug used is not particularly limited.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, organic acids; lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, alkali metal salts, ammonia, Examples include alkalis such as ammonium salts and amines.
  • the post-treatment liquid for autodeposition coating of the present invention can be applied to metal materials such as iron-based metal materials and galvanized steel sheets.
  • metal materials such as iron-based metal materials and galvanized steel sheets.
  • the most suitable metal material is an iron-based metal material.
  • the iron-based metal material as used herein refers to steel sheets such as cold-rolled steel sheets and hot-rolled steel sheets, and iron-based materials such as cast iron and sintered materials.
  • the autodeposition coating that is the target of the post-treatment agent of the present invention is a coating that contains at least tannin as a resin component. This autodeposition coating is formed using the autodeposition composition described below.
  • the autodeposition composition is characterized in that an autodeposition coating whose thickness or weight increases with the immersion time can be formed by immersing a clean metal surface in the composition. Furthermore, a part of the metal ions eluted from the metal by the chemical action (etching) of the autodeposition composition on the metal surface is taken into the film, and the film is formed. There is a feature that an autodeposition coating can be effectively formed on the surface of the metal without using a metal.
  • a suitable autodeposition composition contains a tannin component as a resin and a component having a chemical action (etching).
  • a more preferable autodeposition composition is obtained by mixing a tannin component as a resin, an acid, an oxidizing agent, and a compound capable of supplying ferric ions as required, and further adding water as necessary. is there.
  • each component will be described in detail.
  • the resin component of the autodeposition composition to which the post-treatment liquid according to the present invention is applied contains at least tannin.
  • the post-treatment liquid for autodeposition coating of the present invention was used for an autodeposition coating in which tannin is a resin component, the anticorrosion property of the phosphate compound was imparted to the coating, and the corrosion resistance was significantly improved. It has become possible to obtain a high level of corrosion resistance and adhesion satisfying all the test items of the salt warm water test, the salt spray test, the combined environmental cycle test, and the adhesion test required by the inventors.
  • the tannin used is not particularly limited.
  • tannins are hydrolyzed tannins, and more preferred are pentaploids and gallics.
  • the content of tannin is preferably 10 to 90%, more preferably 20 to 50%, based on the total mass (dry) of the autodeposition composition.
  • phenolic hydroxyl group refers to the hydroxyl group of phenols
  • phenol nucleus refers to a carbon in the ortho or para position relative to the hydroxyl group of phenol.
  • crosslinking group of the crosslinking agent a methylol group, a carboxyl group, a glycidyl group, a secondary alcohol group in which a glycidyl group is opened, an isocyanate group, or the like can be used, and among them, an isocyanate group is preferable.
  • a more preferable crosslinking agent is a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol.
  • the isocyanate group is optimal as a crosslinking agent because it can be inhibited from reaction with water by blocking with a blocking agent, and the blocking agent is dissociated by applying heat to cause a crosslinking reaction.
  • polyether glycol such as polypropylene glycol, polyethylene glycol, polytetramethylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, polyethylene adipate, polydiethylene adipate, polypropylene adipate,
  • polyester polyols such as polytetramethylene adipate and poly- ⁇ -caprolactone, polycarbonate polyols, acrylic polyols, epoxy polyols, trimethylolpropane, bisphenol A, bisphenol F, and bisphenol AD.
  • a preferred first polyol is a polyether polyol.
  • the detailed mechanism that supports the self-emulsifying type blocked isocyanate using such a polyether polyol is not known at this stage, by using the self-emulsifying type blocked isocyanate using the polyether polyol as the polyol, The deposition rate of the autodeposition coating can be significantly improved.
  • the self-emulsifying type blocked isocyanate means that the polymer molecule itself has an affinity for water by adding an anionic, cationic or nonionic hydrophilic group to the blocked isocyanate polymer molecule. What can be emulsified and dispersed is shown.
  • polyethylene glycol is particularly suitable for the balance between its water solubility and the deposition rate of the autodeposition coating.
  • the preferred second polyol is an epoxy polyol or bisphenol A having at least one bisphenol A structure in the molecular structure.
  • “having at least one molecule of bisphenol A structure” means a polymer such as the above-described epoxy polyol, a polymer partially including a repeating unit of bisphenol A, or a homopolymer of bisphenol A. Or bisphenol A itself.
  • Bisphenol A has a benzene ring in the basic skeleton, and since the two benzene rings are connected by a methylene chain with two methyl groups, the resin itself has robustness (rigidity) and high chemical resistance.
  • polyisocyanate a well-known thing can be used as said polyisocyanate.
  • aliphatic diisocyanates such as hexamethylene diisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 2-isocyanatoethyl (2,6-diisocyanate) hexanoate
  • a diisocyanate having a cyclic structure such as aliphatic triisocyanate and isophorone diisocyanate, m- or p-phenylene diisocyanate, toluene-2,4- or 2,6
  • preferred polyisocyanates are 1,6-hexamethylene diisocyanate from the viewpoint of the flexibility of the resulting film, and toluene-2,4- or 2,6-diisocyanate from the viewpoint of the reactivity of the isocyanate group.
  • blocking agent known blocking agents for the isocyanate group can be used.
  • alcohol such as methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol, phenol, methylphenol, chlorophenol, p-iso-butylphenol, p -Phenols such as tert-butylphenol, p-iso-amylphenol, p-octylphenol and p-nonylphenol; active methylene compounds such as malonic acid dimethyl ester, malonic acid diethyl ester, acetylacetone, methyl acetoacetate and ethyl acetoacetate; Formaldoxime, acetoaldoxime, acetone oxime, methyl ethyl ketone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxi
  • the acid and / or oxidizing agent for example, at least one selected from zircon hydrofluoric acid, titanium hydrofluoric acid, silicohydrofluoric acid, borohydrofluoric acid, hydrofluoric acid, phosphoric acid, nitric acid and the like can be used. Hydrofluoric acid is preferred.
  • the compound capable of supplying ferric ions is not particularly limited as long as it is stable in the autodeposition composition, and examples thereof include ferric fluoride, ferric nitrate, and ferrous phosphate. Ferric fluoride is preferred.
  • the autodeposition composition that can be used in the present invention may contain a rust preventive pigment selected from the group consisting of cerium, yttrium, aluminum, and strontium.
  • a rust preventive pigment selected from the group consisting of cerium, yttrium, aluminum, and strontium.
  • the cerium, yttrium, aluminum, and strontium are preferably fluoride particles.
  • the fluoride particles will be described in detail.
  • the fluoride particles have low solubility in an aqueous hydrofluoric acid solution, the supplied fluoride exists almost as solid particles in the surface treatment liquid of the present invention, and when the organic coating is deposited by an autodeposition reaction. It is incorporated into the film. Corrosion resistance of the autodeposition coating is improved by the incorporated fluoride particles. At the present time, the effect of the fluoride particles is not clear, but the presence of fluoride particles in the coating slows the rate at which the corrosion promoting components that have entered the coating reach the metal interface, and baking. This is considered to have an effect of promoting the crosslinking reaction between the resin component in the autodeposition coating film and the crosslinking agent.
  • the preferable average particle diameter of at least 1 sort (s) chosen from the group which consists of cerium fluoride, yttrium fluoride, aluminum fluoride, and strontium fluoride is 50 micrometers or less, More preferably, it is 10 micrometers or less.
  • grains is 0.1 micrometer from the effect
  • a degreasing step in which the surface is washed in advance by degreasing and water washing treatment, an iron-based metal material after the degreasing step is brought into contact with the autodeposition composition, and the surface of the metal is not deposited
  • An uncured self-deposited film forming step for forming a cured self-deposited film
  • a post-treatment liquid contacting step for bringing the uncured self-deposited film into contact with the post-treatment liquid for self-deposited film
  • a baking step a baking step.
  • ⁇ Degreasing process> For the degreasing treatment, conventionally used solvent degreasing, alkali degreasing and the like can be used, and the construction method is also poured, and there are no restrictions such as spraying, dipping and electrolysis. Moreover, there is no restriction
  • the quality of water used for washing is not particularly limited, but ion-exchanged water is a preferred choice in consideration of bringing in small components into the autodeposition coating treatment bath and remaining in the coating.
  • ⁇ Uncured autodeposition coating formation process> There is no particular limitation on the method of treating the metal surface using the autodeposition composition that can be used in the present invention, and a general application method of a surface treatment agent such as a dipping method, a spray method, or a roll coating method is adopted. A dipping method is preferred.
  • the treatment temperature and treatment time are not particularly limited, but in the case of immersion treatment, it is generally appropriate to immerse in the composition at room temperature, for example, 18 to 25 ° C. for 30 to 600 seconds, preferably 90 to 300 seconds. is there.
  • the amount of the autodeposition composition applied to the metal is not particularly limited, but the film thickness after baking is preferably 5 to 40 ⁇ m.
  • the post-treatment of the present invention may be performed immediately.
  • the post-treatment of the present invention is preferably performed after washing with water. This water washing is usually performed by immersing in normal temperature water for 10 to 180 seconds, preferably 20 to 120 seconds.
  • the treatment time (for example, immersion time) in the post-treatment for the self-deposited film is not particularly limited, but the preferred treatment time for obtaining the effect of the present invention is 10 seconds to 5 minutes, more preferably 30 seconds to 2 minutes. is there. Usually, after the treatment is completed (for example, after the completion of immersion), baking is performed immediately, but washing may be performed before the baking process.
  • a preferable baking temperature in the baking step is 170 to 220 ° C, more preferably 180 to 200 ° C.
  • a preferable baking time in the baking step is 10 to 60 minutes, more preferably 20 to 40 minutes.
  • the post-treatment liquid for autodeposition coating on a metal surface and the post-treatment method for autodeposition coating of the present invention will be specifically described.
  • the to-be-processed material used in the Example, a degreasing agent, and a coating material are arbitrarily selected from commercially available materials, and for the post-treatment liquid for the autodeposition coating on the metal surface of the present invention and for the autodeposition coating It does not limit the actual use of the post-processing method.
  • Test plate Cold rolled steel sheet: JIS-G-3141
  • Examples 1 to 23 and Comparative Examples 1 to 3 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (Nippon Parkerizing Co., Ltd.) was diluted with water to 2% by mass and humidified to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • the test plate whose surface was degreased and washed was prepared by using commercially available tannin (trade name: Tannic acid AL: Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name: Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.).
  • Comparative example 4 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 2% by mass with water and moisturized at 40 ° C., and sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • Fine Cleaner L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • test plate from which the surface was degreased was washed with commercially available tannin (trade name Tannic Acid AL: manufactured by Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.).
  • tannin trade name Tannic Acid AL: manufactured by Fuji Chemical Industry Co., Ltd.
  • water-soluble blocked isocyanate trade name Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.
  • Examples 24 to 26 and Comparative Examples 5 and 6 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 2% by mass with water and moisturized at 40 ° C., and sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device.
  • Fine Cleaner L4460 manufactured by Nihon Parkerizing Co., Ltd.
  • the test plate whose surface was degreased and washed was prepared by using commercially available tannin (trade name: Tannic acid AL: manufactured by Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name: Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.).
  • commercially available tannin trade name: Tannic acid AL: manufactured by Fuji Chemical Industry Co., Ltd.
  • a commercially available water-soluble blocked isocyanate trade name: Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.
  • the self-deposited film after baking is referred to as a self-deposited film, and the coating film that has been subjected to baking after top coating is referred to as a 3 caots coating film.
  • SDT salt warm water test (self-deposited coating)
  • SST Salt spray test (self-deposited coating)
  • DuPont DuPont impact test (self-deposited coating)
  • CCT Combined environmental cycle test (3caots coating)
  • 1STADH Primary adhesion (3coats coating film)
  • 2ndADH Water resistant secondary adhesion (3coats coating film)
  • the maximum swollen width on both sides is less than 2.0 mm
  • B The maximum swollen width on both sides is 2.0 mm or more and less than 4.0 mm ⁇ : The maximum swollen width on both sides is 4.0 mm or more and less than 6.0 mm ⁇ : The maximum swollen width on both sides is 6. 0mm or more
  • A The maximum swollen width on both sides is less than 4.0 mm.
  • The maximum swollen width on both sides is 4.0 mm or more and less than 6.0 mm.
  • The maximum swollen width on both sides is 4.0 mm or more and less than 8.0 mm. 0mm or more
  • Table 4 shows the evaluation results of the self-deposited films obtained in Examples 1 to 26 and Comparative Examples 1 to 6.
  • Example 20 where the nickel concentration was as low as 0.1 mmol, Example 21 where the cobalt concentration was as low as 0.4 mmol, and Example 22 where the manganese concentration was as low as 0.2 mmol were as in Example Although it is inferior to 1 to 5, the SDT evaluation is ⁇ , and the SST evaluation is ⁇ .
  • a DuPont test result is OK and has favorable adhesiveness.
  • Example 23 which has a higher pH than Examples 1-16, precipitates were generated in the uncured autodeposition coating treatment solution, and the results of the SDT and SST tests were higher than those of Examples 1-16.
  • the evaluation of the inferior one is ⁇ .
  • a DuPont test result is OK and has favorable adhesiveness.
  • Examples 24 to 26 are evaluated as ⁇ in the CCT test results, have extremely excellent corrosion resistance, and also have excellent adhesion.

Abstract

Disclosed is a post-treatment technique for a self-deposited coating film that contains tannin as a resin component, which does not contain any environmentally hazardous component such as chromium and can impart high levels of corrosion resistance and adhesion properties to the self-deposited coating film. Specifically disclosed is a post-treatment solution for a self-deposited coating film that is formed on a metal surface and contains tannin as a resin component. The post-treatment solution is characterized by being an aqueous solution comprising at least one metal component selected from the group consisting of lithium, manganese, iron, cobalt, nickel, copper and aluminum and phosphoric acid.

Description

金属表面の自己析出被膜用後処理液及び後処理された自己析出被膜が形成された金属材料の製造方法Post-treatment liquid for autodeposition coating on metal surface and method for producing metal material with post-processed autodeposition coating
 本発明は、自動車車体や自動車部品、スチール家具及び家電製品のように高い耐食性及び密着性が必要とされ、かつ用途に応じて塗料の重ね塗りが施されることがある鉄系金属材料の表面処理技術に関する。特に、本発明は、鉄系金属材料表面上に優れた耐食性及び密着性を有する自己析出被膜を形成させることを目的として、タンニン、酸及び酸化剤を含有する自己析出組成物を該金属材料表面に接触させることで同表面に形成された未硬化自己析出被膜に対して施される化学的処理(後処理)に関する技術である。 The present invention is a surface of an iron-based metal material that requires high corrosion resistance and adhesion, such as automobile bodies, automobile parts, steel furniture, and home appliances, and that may be overcoated in accordance with the application. It relates to processing technology. In particular, the present invention aims to form an autodeposition composition containing tannin, an acid and an oxidizing agent on the surface of the metal material for the purpose of forming an autodeposition film having excellent corrosion resistance and adhesion on the surface of the iron-based metal material. This is a technique related to chemical treatment (post-treatment) applied to an uncured autodeposition coating formed on the same surface by bringing it into contact.
 有機被膜用樹脂を含む酸性の組成物に金属表面を接触させることによって、該金属表面に樹脂被膜を形成せしめることができる自己析出組成物は、特公昭47-17630号、特公昭48-14412号、特公昭52-21006号、特公昭52-35692号、特公昭53-15093号、特公昭53-16010号、特公昭53-44949号、特公昭54-13435号、特開昭60-58474号、特開昭61-168673号及び特開昭61-246267号の公報に開示されている。 Japanese Patent Publication No. 47-17630, Japanese Patent Publication No. 48-14412 are self-deposition compositions that can form a resin film on the metal surface by contacting the metal surface with an acidic composition containing an organic coating resin. Japanese Patent Publication No. 52-21006, Japanese Patent Publication No. 52-35692, Japanese Patent Publication No. 53-15093, Japanese Patent Publication No. 53-16010, Japanese Patent Publication No. 53-44949, Japanese Patent Publication No. 54-13435, Japanese Patent Publication No. Sho 60-58474. JP-A-61-168673 and JP-A-61-246267.
 従来の公知の自己析出組成物については、自己析出組成物中に清浄な金属表面を浸漬することにより、浸漬時間とともに厚さ或いは重量が増大する自己析出被膜を形成せしめることができる特徴がある。更に、該金属表面上の自己析出組成物の化学作用(エッチング)により該金属から溶出した金属イオンの一部は被膜中に取り込まれて被膜が形成されるため、電着のごとく外部からの電気を使用することなく、該金属表面上に自己析出被膜を効果的に形成せしめることができる。 Conventionally known autodeposition compositions are characterized in that by immersing a clean metal surface in the autodeposition composition, an autodeposition coating whose thickness or weight increases with the immersion time can be formed. Furthermore, a part of the metal ions eluted from the metal by the chemical action (etching) of the autodeposition composition on the surface of the metal is taken into the film to form a film. An autodeposited film can be effectively formed on the metal surface without using.
 しかしながら、従来の自己析出組成物による被膜は、その耐食性や密着性等が十分ではないため、金属表面上に形成される自己析出被膜の耐食性及び密着性を更に改良するための種々の手段が開発された。例えば、未硬化の自己析出被膜に対して化学的処理(後処理)を施す種々の方法が知られている。 However, since the conventional autodeposition composition coating has insufficient corrosion resistance and adhesion, various means have been developed to further improve the corrosion resistance and adhesion of the autodeposition coating formed on the metal surface. It was done. For example, various methods are known in which a chemical treatment (post-treatment) is performed on an uncured autodeposition coating.
 米国特許第3,647,567号、同第4,030,945号及び特開昭61-168673号には、金属表面に形成された未硬化状態の自己析出被膜を乾燥する前に、クロム化合物を含有した水溶液に接触させることにより、耐食性に優れた自己析出被膜を得られることが開示されている。しかしながら、現在では環境問題の観点から使用が規制されるクロムを含有する処理液の使用は好ましくない。 U.S. Pat. Nos. 3,647,567, 4,030,945 and JP-A-61-168673 disclose a chromium compound before drying an uncured autodeposition coating formed on a metal surface. It is disclosed that an autodeposition coating excellent in corrosion resistance can be obtained by contacting with an aqueous solution containing. However, at present, it is not preferable to use a treatment liquid containing chromium whose use is restricted from the viewpoint of environmental problems.
 そして、クロムを使用しない手法が、特許文献1~3に提案されている。まず、特許文献1には、金属表面に形成された未硬化状態の自己析出被膜を乾燥する前に、アルカリ金属又は水酸化アンモニウムの水溶液に接触させることで、乾燥した被膜の水透過性を非透過にし、被膜の耐水性を改良することが教示されている。また、特許文献2には、被塗装金属を水性コーティング組成物にて塗装し、ついで焼き付け塗装する自己析出型コーティング方法において、塗装工程と焼き付け乾燥工程間で未硬化状態の自己析出被膜をケイフッ化塩、ホウフッ化塩、チタンフッ化塩、アルミフッ化塩及び亜硝酸塩の群から選ばれた少なくとも1種を主成分とする水溶液若しくは水分散液で洗浄することが開示されている。更には、特許文献3には、金属基体上に析出した自己析出被膜を硬化前に、第II族A又は第II族B金属カチオン及びリン酸アニオンを含有する水溶液と接触させることによって、素材と被膜の界面にリン酸塩化合物を生成させ、耐食性が向上することが開示されている。
特開昭60-58474号 特開昭52-56142号 特表2004-523648号
Patent Documents 1 to 3 have proposed a method that does not use chromium. First, in Patent Document 1, before drying an uncured autodeposition coating formed on a metal surface, the water permeability of the dried coating is made non-contact by contacting with an aqueous solution of an alkali metal or ammonium hydroxide. It is taught to permeate and improve the water resistance of the coating. Further, Patent Document 2 discloses a self-deposited coating film in which a metal to be coated is coated with an aqueous coating composition and then baked and coated. It is disclosed to wash with an aqueous solution or an aqueous dispersion mainly containing at least one selected from the group of salts, borofluoride, titanium fluoride, aluminum fluoride and nitrite. Furthermore, Patent Document 3 discloses that an autodeposition coating deposited on a metal substrate is brought into contact with an aqueous solution containing a Group II A or Group II B metal cation and a phosphate anion before curing. It is disclosed that a phosphate compound is generated at the interface of the coating and the corrosion resistance is improved.
JP 60-58474 A JP 52-56142 A Special table 2004-523648
 ここで、自己析出組成物の樹脂成分としてタンニンを選択すると、タンニン自体が優れた耐食性を有しているため、タンニンを樹脂成分に用いた自己析出被膜は多くの試験項目において良好な結果を得ることができる。しかしながら、本発明者らは、タンニンを樹脂成分に用いた自己析出被膜について従来の後処理剤を使用した場合、本発明者らが求める全試験項目、具体的には、塩温水試験、塩水噴霧試験、複合環境サイクル試験及び密着性試験の全ての試験項目を満足する高レベルの耐食性及び密着性を得ることができないことを確認した。そこで、本発明は、タンニンを樹脂成分に用いた自己析出被膜に対し、クロムのような環境に有害な成分を使用せず、高レベルの耐食性及び密着性を付与する後処理技術を提供することを目的とする。 Here, when tannin is selected as the resin component of the autodeposition composition, tannin itself has excellent corrosion resistance. Therefore, the autodeposition coating using tannin as the resin component gives good results in many test items. be able to. However, when the conventional post-treatment agent is used for the autodeposition coating using tannin as the resin component, the present inventors have tested all the test items required by the present inventors, specifically, the salt warm water test, the salt spray It was confirmed that a high level of corrosion resistance and adhesion satisfying all the test items of the test, the combined environmental cycle test and the adhesion test could not be obtained. Accordingly, the present invention provides a post-treatment technique that imparts a high level of corrosion resistance and adhesion to an autodeposition coating using tannin as a resin component, without using harmful components such as chromium. With the goal.
 本発明者らは前記課題を解決するための手段について、鋭意検討した結果、タンニンを樹脂成分に用いた自己析出被膜用として、従来技術にはない金属表面の自己析出被膜用後処理液及び自己析出被膜用後処理方法を発明するに至った。 As a result of intensive studies on the means for solving the above problems, the present inventors have found that a post-treatment liquid for self-deposition coating on a metal surface and a self-treatment that does not exist in the prior art as an auto-deposition coating using tannin as a resin component. It came to invent the post-processing method for depositing films.
 本発明(1)は、リチウム、マンガン、鉄、コバルト、ニッケル、銅及びアルミニウムからなる群から選ばれる少なくとも1種の金属成分とリン酸とを含有する水溶液であることを特徴とする、タンニンを樹脂成分とする金属表面における自己析出被膜用の後処理液である。 The present invention (1) is an aqueous solution containing at least one metal component selected from the group consisting of lithium, manganese, iron, cobalt, nickel, copper and aluminum and phosphoric acid. It is a post-treatment liquid for autodeposition coating on the metal surface as a resin component.
 本発明(2)は、前記金属成分の合計モル濃度Aと前記リン酸のモル濃度Bとの比であるK=A/Bが式(1):
(式2)
Figure JPOXMLDOC01-appb-I000001
の範囲内であり、かつ、前記モル濃度Aが水溶液中の濃度として0.1~500mmol/Lの範囲内である、前記発明(1)の後処理液である。
In the present invention (2), K = A / B which is the ratio of the total molar concentration A of the metal components to the molar concentration B of the phosphoric acid is represented by the formula (1):
(Formula 2)
Figure JPOXMLDOC01-appb-I000001
And the molar concentration A in the aqueous solution is in the range of 0.1 to 500 mmol / L as the concentration in the aqueous solution.
 本発明(3)は、前記金属表面の自己析出被膜用後処理液のpHが2から6である、前記発明(1)又は(2)の後処理液である。 The present invention (3) is the post-treatment liquid of the invention (1) or (2), wherein the post-treatment liquid for autodeposition coating on the metal surface has a pH of 2 to 6.
 本発明(4)は、前記金属表面の自己析出被膜用後処理液が、亜硝酸塩、ヒドロキシルアミン、硫酸ヒドロキシルアミン、リン酸ヒドロキシルアミン、塩酸ヒドロキシルアミン、ヒドロキシルアンモニウム及び過酸化水素からなる群から選ばれる少なくとも1種を含有する、前記発明(1)~(3)のいずれか一つの後処理液である。 In the present invention (4), the post-treatment liquid for autodeposition coating on the metal surface is selected from the group consisting of nitrite, hydroxylamine, hydroxylamine sulfate, hydroxylamine phosphate, hydroxylamine hydrochloride, hydroxylammonium and hydrogen peroxide. Any one of the post-treatment liquids according to any one of the inventions (1) to (3).
 本発明(5)は、前記自己析出被膜が、セリウム、イットリウム、アルミニウム及びストロンチウムからなる群から選ばれる少なくとも1種を含む、前記発明(1)~(4)のいずれか一つの後処理液である。 The present invention (5) is the post-treatment liquid according to any one of the inventions (1) to (4), wherein the self-deposited film contains at least one selected from the group consisting of cerium, yttrium, aluminum and strontium. is there.
 本発明(6)は、セリウム、イットリウム、アルミニウム及びストロンチウムが、フッ化物粒子である、前記発明(5)の後処理液である。 The present invention (6) is the post-treatment liquid of the invention (5), wherein cerium, yttrium, aluminum and strontium are fluoride particles.
 本発明(7)は、前記自己析出被膜を形成するに際し、フェノール性ヒドロキシル基及び/又はフェノール核と熱硬化反応可能な架橋基を有する少なくとも1種の架橋剤が使用されている、前記発明(1)~(6)のいずれか一つの後処理液である。 In the invention (7), in forming the autodeposition film, at least one crosslinking agent having a phenolic hydroxyl group and / or a crosslinking group capable of thermosetting reaction with a phenol nucleus is used. 1) A post-treatment liquid of any one of (6).
 本発明(8)は、前記少なくとも1種の架橋剤における熱硬化反応可能な架橋基が、イソシアネート基である、前記発明(7)の後処理液である。 The present invention (8) is the post-treatment liquid according to the invention (7), wherein the crosslinking group capable of thermosetting reaction in the at least one crosslinking agent is an isocyanate group.
 本発明(9)は、前記少なくとも1種の架橋剤が、ブロック剤でブロックされた多官能ブロックイソシアネートである、前記発明(8)の後処理液である。 The present invention (9) is the post-treatment liquid of the invention (8), wherein the at least one crosslinking agent is a polyfunctional blocked isocyanate blocked with a blocking agent.
 本発明(10)は、前記少なくとも1種の架橋剤が、少なくとも一分子のビスフェノールA構造を有したブロックイソシアネート、及び/又は、ポリエーテルポリオールを使用した自己乳化型ブロックイソシアネートから選ばれる少なくとも1種である、前記発明(9)の後処理液である。 In the invention (10), the at least one crosslinking agent is at least one selected from block isocyanates having at least one molecule of bisphenol A structure and / or self-emulsifying type blocked isocyanates using polyether polyol. This is a post-treatment liquid of the invention (9).
 本発明(11)は、予め脱脂、水洗処理によって表面を清浄化した金属材料にタンニンを樹脂成分とする自己析出組成物を接触させて、金属表面に未硬化自己析出被膜を形成させる未硬化自己析出被膜工程と、前記未硬化自己析出被膜に前記発明(1)~(10)のいずれか一つの後処理液を接触させる接触工程と、焼き付け工程と、を有することを特徴とする、金属材料の表面処理方法である。 In the present invention (11), an uncured self-deposited film is formed on a metal surface by bringing a self-deposited composition containing tannin as a resin component into contact with a metal material whose surface has been cleaned in advance by degreasing and washing with water. A metal material comprising: a precipitation coating step; a contact step of bringing the post-treatment liquid according to any one of the inventions (1) to (10) into contact with the uncured self-deposition coating; and a baking step This is a surface treatment method.
発明を実施するための最良形態BEST MODE FOR CARRYING OUT THE INVENTION
《自己析出被膜用後処理液》
 本発明に係る金属表面の自己析出用後処理液は、タンニンを樹脂成分とする自己析出被膜用であり、リチウム、マンガン、鉄、コバルト、ニッケル、銅及びアルミニウムからなる群から選ばれる少なくとも1種の金属成分とリン酸とを含有する水溶液である。以下、本水溶液中の各成分、組成及び液性を説明することとする。
<Post-treatment liquid for self-deposited film>
The post-treatment liquid for self-deposition of a metal surface according to the present invention is for an auto-deposition film containing tannin as a resin component, and is at least one selected from the group consisting of lithium, manganese, iron, cobalt, nickel, copper and aluminum It is the aqueous solution containing the metal component and phosphoric acid. Hereinafter, each component, composition, and liquid property in the aqueous solution will be described.
(成分)
<金属成分>
 本発明で使用されるリチウム、マンガン、鉄、コバルト、ニッケル、銅及びアルミニウムは、タンニンを樹脂成分とする自己析出被膜に優れた耐食性及び密着性を与えるリン酸塩化合物を形成させる際の金属部分となる。ここで、タンニンを樹脂成分とする自己析出被膜に対してこれら金属成分及びリン酸を含有する水溶液を適用すると、従来技術における後処理剤を用いた場合とは異なり、金属表面と自己析出被膜界面にリン酸塩化合物が偏在するのではなく、自己析出被膜中に均一に分散して析出する。このため、金属表面と該自己析出被膜の界面における耐食性及び密着性を向上させるのみならず、防錆顔料としての効果をも有するリン酸塩化合物が被膜中に均一分散しているので該自己析出被膜全体に亘って耐食性を格段に向上させることができる。好ましい金属成分は、マンガン、コバルト、ニッケルである。
(component)
<Metal component>
Lithium, manganese, iron, cobalt, nickel, copper, and aluminum used in the present invention are metal parts in forming a phosphate compound that provides excellent corrosion resistance and adhesion to an autodeposition coating containing tannin as a resin component. It becomes. Here, when an aqueous solution containing these metal components and phosphoric acid is applied to an autodeposition coating containing tannin as a resin component, the interface between the metal surface and the autodeposition coating is different from the case of using a post-treatment agent in the prior art. The phosphate compound is not unevenly distributed, but is uniformly dispersed and deposited in the autodeposition coating. For this reason, since the phosphate compound which not only improves the corrosion resistance and adhesion at the interface between the metal surface and the self-deposited coating but also has an effect as a rust preventive pigment is uniformly dispersed in the coating, Corrosion resistance can be remarkably improved over the entire coating. Preferred metal components are manganese, cobalt and nickel.
 ここで、金属成分の供給源は、特に限定されず、例えば、これらの金属元素の酸化物、水酸化物、フッ化物、錯フッ化物、塩化物、硝酸塩、オキシ硝酸塩、硫酸塩、オキシ硫酸塩、炭酸塩、オキシ炭酸塩、リン酸塩、オキシリン酸塩、シュウ酸塩、オキシシュウ酸塩、有機金属化合物を用いることができ、2種以上を併用することができる。 Here, the supply source of the metal component is not particularly limited, and for example, oxides, hydroxides, fluorides, complex fluorides, chlorides, nitrates, oxynitrates, sulfates, oxysulfates of these metal elements , Carbonates, oxycarbonates, phosphates, oxyphosphates, oxalates, oxyoxalates, and organometallic compounds can be used, and two or more can be used in combination.
<リン酸成分>
  本発明で使用されるリン酸は、前記リン酸塩化合物を形成する際のアニオン部分となる。また、リン酸の供給源は、特に限定されず、例えば、オルトリン酸、縮合リン酸などを用いることができ、2種以上を併用することができる。
<Phosphoric acid component>
The phosphoric acid used in the present invention becomes an anion moiety when forming the phosphate compound. Moreover, the supply source of phosphoric acid is not specifically limited, For example, orthophosphoric acid, condensed phosphoric acid, etc. can be used and 2 or more types can be used together.
<促進剤>
 本発明に使用する自己析出被膜用後処理液は、リン酸塩化合物生成のための促進剤を添加することが好ましい。該促進剤は、未硬化自己析出被膜が析出した金属表面におけるエッチング反応を促進することにより、リン酸塩化合物の生成量を増加させる効果がある。促進剤は、例えば、亜硝酸塩、ヒドロキシルアミン、硫酸ヒドロキシルアミン、リン酸ヒドロキシルアミン、塩酸ヒドロキシルアミン、ヒドロキシルアンモニウム、過酸化水素などが挙げられ、中でも好ましいのは、亜硝酸塩、ヒドロキシルアミンである。
<Accelerator>
It is preferable to add an accelerator for producing a phosphate compound to the post-treatment liquid for autodeposition coating used in the present invention. The accelerator has an effect of increasing the production amount of the phosphate compound by accelerating the etching reaction on the metal surface on which the uncured autodeposited film has been deposited. Examples of the accelerator include nitrite, hydroxylamine, hydroxylamine sulfate, hydroxylamine phosphate, hydroxylamine hydrochloride, hydroxylammonium, hydrogen peroxide, etc. Among them, nitrite and hydroxylamine are preferable.
(組成)
<金属成分とリン酸の濃度比>
 本発明の処理液における金属成分の合計モル濃度Aとリン酸のモル濃度Bの比であるK=A/Bは、式(1)の範囲であることが好ましく、式(2)の範囲であることが更に好ましい。Kが0.001よりも小さい場合は、金属成分の比率が少ないため、耐食性及び密着性を得るに十分なリン酸塩化合物の形成を得ることができない。また、Kが0.5よりも大きい場合には、過剰な金属成分が自己析出被膜の外観に悪影響を及ぼし、被膜割れやピンホールなどの外観不良を生じることがある。尚、自己析出被膜用後処理液中の金属成分は、高周波誘導結合プラズマ発光分析(ICP)を用いて測定され、該処理液中における各金属元素としての合計モル濃度(mol/L)で表される。また、自己析出被膜用後処理液中のリン酸は、イオンクロマトグラフィー(IC)を用いて測定され、該処理液中におけるPO4としてのモル濃度(mol/L)で表される。
(式3)
Figure JPOXMLDOC01-appb-I000002
 (式4)
Figure JPOXMLDOC01-appb-I000003
(composition)
<Concentration ratio of metal component and phosphoric acid>
K = A / B, which is the ratio of the total molar concentration A of metal components to the molar concentration B of phosphoric acid in the treatment liquid of the present invention, is preferably in the range of formula (1), and in the range of formula (2). More preferably it is. When K is smaller than 0.001, since the ratio of the metal component is small, it is not possible to obtain a phosphate compound sufficient to obtain corrosion resistance and adhesion. On the other hand, when K is larger than 0.5, an excessive metal component may adversely affect the appearance of the autodeposition coating, resulting in appearance defects such as coating cracks and pinholes. The metal component in the post-treatment liquid for autodeposition coating was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP) and represented by the total molar concentration (mol / L) as each metal element in the treatment liquid. Is done. In addition, phosphoric acid in the post-treatment liquid for autodeposition coating is measured using ion chromatography (IC) and is expressed as a molar concentration (mol / L) as PO4 in the treatment liquid.
(Formula 3)
Figure JPOXMLDOC01-appb-I000002
(Formula 4)
Figure JPOXMLDOC01-appb-I000003
<金属成分の濃度>
 本発明の処理液における金属成分の濃度は、0.1~500mmol/Lであることが好ましく、より好ましくは1~100mmol/Lである。金属成分の濃度が、0.1mmol/L未満の場合は、耐食性及び密着性を得るに十分なリン酸塩化合物の形成を得ることができない。また、500mmol/Lよりも大きい場合には、リン酸塩化合物の形成量が多くなり過ぎて、自己析出被膜の外観に異常を生じることがあるだけでなく経済的にも不利益である。本発明の処理液における金属成分の更に好ましい濃度は、マンガンが20mmol/L以上、コバルトが5mmol/L以上、ニッケルが30mmol/L以上、リチウム、鉄、銅及びアルミニウムが1mmol/L以上である。
<Concentration of metal component>
The concentration of the metal component in the treatment liquid of the present invention is preferably 0.1 to 500 mmol / L, more preferably 1 to 100 mmol / L. When the concentration of the metal component is less than 0.1 mmol / L, formation of a phosphate compound sufficient to obtain corrosion resistance and adhesion cannot be obtained. On the other hand, if it is higher than 500 mmol / L, the amount of the phosphate compound formed becomes too large, which may cause an abnormality in the appearance of the self-deposited film, and is also disadvantageous economically. Further preferable concentrations of the metal component in the treatment liquid of the present invention are 20 mmol / L or more for manganese, 5 mmol / L or more for cobalt, 30 mmol / L or more for nickel, and 1 mmol / L or more for lithium, iron, copper, and aluminum.
<促進剤の濃度>
 促進剤を添加する際の添加濃度は、1~1000mmol/Lであることがこの好ましく、より好ましくは10~300mmol/Lである。促進剤の濃度が、1mmol/L未満の場合は、耐食性及び密着性を得るに十分な促進効果を得ることができない。また、1000mmol/Lよりも大きい場合には、金属のエッチング反応が促進されるに伴って、リン酸塩化合物の形成量が過剰となり、自己析出被膜の外観に異常を生じることがある。
<Concentration of accelerator>
The concentration of the accelerator when it is added is preferably 1 to 1000 mmol / L, more preferably 10 to 300 mmol / L. When the concentration of the accelerator is less than 1 mmol / L, it is not possible to obtain a sufficient promoting effect for obtaining corrosion resistance and adhesion. On the other hand, when it is higher than 1000 mmol / L, as the metal etching reaction is promoted, the amount of the phosphate compound formed becomes excessive, and the appearance of the autodeposition coating may be abnormal.
(液性)
 本発明に使用する自己析出被膜用後処理液は、pH2~6の範囲に調整して維持することが好ましく、より好ましくはpH3~5である。pH2未満の場合は、金属のエッチング反応が過剰となり被膜の外観に被膜割れ、ピンホールなどの異常を生じる。また、pH6よりも大きい場合には、前記金属成分の種類によって、該自己析出被膜後処理液中でリン酸塩化合物が形成し沈殿してしまうことがあり、その効果が失われてしまう。
(liquid)
The post-treatment liquid for autodeposition coating used in the present invention is preferably adjusted and maintained within the range of pH 2-6, more preferably pH 3-5. When the pH is less than 2, the etching reaction of the metal becomes excessive, and abnormalities such as cracking of the film and pinholes occur in the appearance of the film. On the other hand, when the pH is higher than 6, a phosphate compound may be formed and precipitated in the post-treatment liquid for the autodeposition coating depending on the kind of the metal component, and the effect is lost.
 また、好ましい範囲のpHに調整する必要がある場合、用いられる薬剤は特に限定されない。例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸、有機酸等の酸;水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム、水酸化バリウム、アルカリ金属塩、アンモニア、アンモニウム塩、アミン類等のアルカリが挙げられる。 In addition, when it is necessary to adjust the pH within a preferable range, the drug used is not particularly limited. For example, acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, organic acids; lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, magnesium hydroxide, barium hydroxide, alkali metal salts, ammonia, Examples include alkalis such as ammonium salts and amines.
《使用方法》
(使用対象の金属材料)
 本発明の自己析出被膜用後処理液は、鉄系金属材料や亜鉛めっき鋼板等の金属材料に適用することができる。しかしながら、もっとも適した金属材料は鉄系金属材料である。ここでいう鉄系金属材料とは、冷延鋼板及び熱間圧延鋼板等の鋼板や、鋳鉄及び焼結材等の鉄系材料を示す。
"how to use"
(Metal materials to be used)
The post-treatment liquid for autodeposition coating of the present invention can be applied to metal materials such as iron-based metal materials and galvanized steel sheets. However, the most suitable metal material is an iron-based metal material. The iron-based metal material as used herein refers to steel sheets such as cold-rolled steel sheets and hot-rolled steel sheets, and iron-based materials such as cast iron and sintered materials.
(使用対象の自己析出被膜)
 本発明の後処理剤の対象となる自己析出被膜は、少なくともタンニンを樹脂成分として含む被膜である。この自己析出被膜は、以下で説明する自己析出組成物を用いて形成される。
(Self-deposited film to be used)
The autodeposition coating that is the target of the post-treatment agent of the present invention is a coating that contains at least tannin as a resin component. This autodeposition coating is formed using the autodeposition composition described below.
<自己析出組成物>
 自己析出組成物は、当該組成物中に清浄な金属表面を浸漬することにより、浸漬時間と共に厚さ或いは重量が増大する自己析出被膜を形成せしめることができる特徴がある。更に、該金属表面上の自己析出組成物の化学作用(エッチング)により該金属から溶出した金属イオンの一部は被膜中に取り込まれて、被膜が形成されるため電着のごとく外部からの電気を使用することなく、該金属表面上に自己析出被膜を効果的に形成せしめることができる特徴がある。
<Autodeposition composition>
The autodeposition composition is characterized in that an autodeposition coating whose thickness or weight increases with the immersion time can be formed by immersing a clean metal surface in the composition. Furthermore, a part of the metal ions eluted from the metal by the chemical action (etching) of the autodeposition composition on the metal surface is taken into the film, and the film is formed. There is a feature that an autodeposition coating can be effectively formed on the surface of the metal without using a metal.
 ここで、好適な自己析出組成物は、樹脂としてのタンニン成分と化学作用(エッチング)とを有する成分を含有するものである。更に好ましい自己析出組成物は、樹脂としてのタンニン成分と、酸及び酸化剤並びに必要に応じ第二鉄イオンを供給し得る化合物とを混合し、必要に応じ更に水を添加して得られるものである。以下、各成分を詳述する。 Here, a suitable autodeposition composition contains a tannin component as a resin and a component having a chemical action (etching). A more preferable autodeposition composition is obtained by mixing a tannin component as a resin, an acid, an oxidizing agent, and a compound capable of supplying ferric ions as required, and further adding water as necessary. is there. Hereinafter, each component will be described in detail.
<タンニン>
 前述のように、本発明に係る後処理液が適用される自己析出組成物の樹脂成分は、タンニンを少なくとも含む。本発明の自己析出被膜用後処理液をタンニンが樹脂成分である自己析出被膜に用いたところ、リン酸塩化合物が持つ防錆機能が被膜に付与されたことで格段に耐食性が向上し、本発明者らが求める塩温水試験、塩水噴霧試験、複合環境サイクル試験及び密着性試験の全ての試験項目を満足する高レベルの耐食性及び密着性を得ることが可能となったのである。ここで、使用されるタンニンは、特に限定されず、例えば、チェストナット、オーク、ユーカリブタス、ディビディビ、タラ、スマック、ミラボラム、アルガロビア、バロニア、五倍子及び没食子等の加水分解型タンニン、ケプラチョ、ビルマカッチ、ワットル、スプルーム、ヘムロック、マングローブ、カシワ樹皮、アラバム、ガンビア、茶及び柿等の縮合型タンニン、特開昭61-4775に開示されるような合成タンニンが挙げられる。中でも好ましいタンニンは、加水分解型タンニンであり、更に好ましくは五倍子及び没食子である。ここで、タンニンの含有量は、自己析出組成物の全質量(乾)を基準として、10~90%が好ましく、20~50%であることがより好適である。
<Tannin>
As described above, the resin component of the autodeposition composition to which the post-treatment liquid according to the present invention is applied contains at least tannin. When the post-treatment liquid for autodeposition coating of the present invention was used for an autodeposition coating in which tannin is a resin component, the anticorrosion property of the phosphate compound was imparted to the coating, and the corrosion resistance was significantly improved. It has become possible to obtain a high level of corrosion resistance and adhesion satisfying all the test items of the salt warm water test, the salt spray test, the combined environmental cycle test, and the adhesion test required by the inventors. Here, the tannin used is not particularly limited. , Spun, hemlock, mangrove, oak bark, condensed tannins such as alabum, Gambia, tea and persimmon, and synthetic tannins as disclosed in JP-A 61-4775. Among them, preferred tannins are hydrolyzed tannins, and more preferred are pentaploids and gallics. Here, the content of tannin is preferably 10 to 90%, more preferably 20 to 50%, based on the total mass (dry) of the autodeposition composition.
<架橋剤>
 更に本発明に係る後処理液が適用される自己析出組成物の成分として、タンニンの有するフェノール性ヒドロキシル基及び/又はフェノール核と熱硬化反応可能な架橋基を有する少なくとも1種の架橋剤を含むことが好適である。ここでいうフェノール性ヒドロキシル基とは、フェノール類のヒドロキシル基を指し、フェノール核とは、フェノールのヒドロキシル基に対してオルソ基又はパラ位の炭素を指す。前記架橋剤の架橋基としては、メチロール基、カルボキシル基、グリシジル基、グリシジル基が開環した二級アルコール基及びイソシアネート基等を用いることができ、中でもイソシアネート基であることが好ましい。
<Crosslinking agent>
Further, as a component of the autodeposition composition to which the post-treatment liquid according to the present invention is applied, at least one crosslinking agent having a phenolic hydroxyl group and / or a crosslinking group capable of thermosetting reaction with a phenol nucleus is included. Is preferred. The term “phenolic hydroxyl group” as used herein refers to the hydroxyl group of phenols, and the term “phenol nucleus” refers to a carbon in the ortho or para position relative to the hydroxyl group of phenol. As the crosslinking group of the crosslinking agent, a methylol group, a carboxyl group, a glycidyl group, a secondary alcohol group in which a glycidyl group is opened, an isocyanate group, or the like can be used, and among them, an isocyanate group is preferable.
 ここで、より好ましい架橋剤は、1モルのポリオールに対して、予め一方のイソシアネート基がブロック剤でブロックされた少なくとも2モルのポリイソシアネートを付加した多官能ブロックイソシアネートである。イソシアネート基は、ブロック剤でブロックすることによって水との反応を抑制することができ、かつ熱を与えることでブロック剤が解離して架橋反応が起こるため、架橋剤として最適である。以下、当該好ましい架橋剤の詳細を説明する。 Here, a more preferable crosslinking agent is a polyfunctional blocked isocyanate obtained by adding at least 2 mol of polyisocyanate in which one isocyanate group is blocked with a blocking agent to 1 mol of polyol. The isocyanate group is optimal as a crosslinking agent because it can be inhibited from reaction with water by blocking with a blocking agent, and the blocking agent is dissociated by applying heat to cause a crosslinking reaction. Hereinafter, the details of the preferable crosslinking agent will be described.
・ポリオール
 まず、前記ポリオールとしては、ポリプロピレングルコール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体の様なポリエーテルポリオール、ポリエチレンアジベート、ポリジエチレンアジベート、ポリプロピレンアジベート、ポリテトラメチレンアジベート、ポリ-ε-カプロラクトンの様なポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、エポキシポリオール、トリメチロールプロパン、ビスフェノールA、ビスフェノールF、ビスフェノールAD等が挙げられる。
-Polyol First, as the polyol, polyether glycol such as polypropylene glycol, polyethylene glycol, polytetramethylene glycol, a copolymer of polyethylene glycol and polypropylene glycol, polyethylene adipate, polydiethylene adipate, polypropylene adipate, Examples thereof include polyester polyols such as polytetramethylene adipate and poly-ε-caprolactone, polycarbonate polyols, acrylic polyols, epoxy polyols, trimethylolpropane, bisphenol A, bisphenol F, and bisphenol AD.
 中でも好ましい第一のポリオールは、ポリエーテルポリオールである。このようなポリエーテルポリオールを使用した自己乳化型ブロックイソシアネートが好ましいことを裏付ける詳細な機構は現段階では不明であるが、ポリオールにポリエーテルポリオールを使用した自己乳化型ブロックイソシアネートを使用することによって、自己析出被膜の析出速度を著しく向上させることができる。ここで、自己乳化型ブロックイソシアネートとは、ブロックイソシアネートポリマー分子中に、アニオン性、カチオン性、又はノニオン性の親水基を付加することによって、ポリマー分子自身が水との親和性を持ち、水中で乳化分散することができるものを示す。尚、ポリエーテルポリオールの中では、特にポリエチレングリコールが、その水溶性と自己析出被膜の析出速度とのバランスが好適である。 Among these, a preferred first polyol is a polyether polyol. Although the detailed mechanism that supports the self-emulsifying type blocked isocyanate using such a polyether polyol is not known at this stage, by using the self-emulsifying type blocked isocyanate using the polyether polyol as the polyol, The deposition rate of the autodeposition coating can be significantly improved. Here, the self-emulsifying type blocked isocyanate means that the polymer molecule itself has an affinity for water by adding an anionic, cationic or nonionic hydrophilic group to the blocked isocyanate polymer molecule. What can be emulsified and dispersed is shown. Of the polyether polyols, polyethylene glycol is particularly suitable for the balance between its water solubility and the deposition rate of the autodeposition coating.
 中でも好ましい第二のポリオールは、分子構造中に少なくとも一分子のビスフェノールA構造を有するエポキシポリオールやビスフェノールAである。ここで、「少なくとも一分子のビスフェノールA構造を有する」とは、前記エポキシポリオールのようなポリマーであることや、ビスフェノールAの繰り返し単位を一部に有するポリマーであることや、ビスフェノールAのホモポリマーや、ビスフェノールAそのものであることを意味する。ビスフェノールAは、ベンゼン環を基本骨格に有し、かつ二つのベンゼン環が二つのメチル基がついたメチレン鎖で繋がれているため、樹脂自体の頑丈さ(堅さ)と高い耐薬品性を併せ持つ構造である(HO-C-C(CH-C-OH)。したがって、ビスフェノールA構造を有するポリオールを本発明の多官能ブロックイソシアネートに用いることによって、耐食性が飛躍的に向上するのである。 Among them, the preferred second polyol is an epoxy polyol or bisphenol A having at least one bisphenol A structure in the molecular structure. Here, “having at least one molecule of bisphenol A structure” means a polymer such as the above-described epoxy polyol, a polymer partially including a repeating unit of bisphenol A, or a homopolymer of bisphenol A. Or bisphenol A itself. Bisphenol A has a benzene ring in the basic skeleton, and since the two benzene rings are connected by a methylene chain with two methyl groups, the resin itself has robustness (rigidity) and high chemical resistance. It is a structure having both (HO—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —OH). Therefore, by using a polyol having a bisphenol A structure in the polyfunctional blocked isocyanate of the present invention, the corrosion resistance is drastically improved.
・ポリイソシアネート
 次に、前記ポリイソシアネートとしては、公知のものを用いることができる。例えば、1,4-テトラメチレンジイソシアネート、エチル(2,6-ジイソシアネート)ヘキサノエート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、2,2,4-又は2,4,4-トリメチルヘキサメチレンジイソシアネートの様な脂肪族ジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート-4-イソシアナートメチルオクタン、2-イソシアナートエチル(2,6-ジイソシアナート)ヘキサノエートの様な脂肪族トリイソシアネートやイソホロンジイソシアネートの様な環状構造を有するジイソシアネート、更には、m-又はp-フェニレンジイソシアネート、トルエン-2,4-又は2,6-ジイソシアネート、ジフェニルメタン-4,4’ジイソシアネート、ナフタレン-1,5-ジイソシアネート、ジフェニル-4,4’ジイソシアネート、4,4’-ジイソシアナート-3,3’-ジメチルジフェニル、3-メチル-ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネートの様な芳香族ジイソシアネート等を用いることができる。中でも好ましいポリイソシアネートは、得られる被膜の柔軟性の観点からは1,6-ヘキサメチレンジイソシアネート、イソシアネート基の反応性の観点からはトルエン-2,4-又は2,6-ジイソシアネートである。
-Polyisocyanate Next, a well-known thing can be used as said polyisocyanate. For example, 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanate) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 2,2,4- or 2,4,4-trimethyl Of aliphatic diisocyanates such as hexamethylene diisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate-4-isocyanatomethyloctane, 2-isocyanatoethyl (2,6-diisocyanate) hexanoate A diisocyanate having a cyclic structure such as aliphatic triisocyanate and isophorone diisocyanate, m- or p-phenylene diisocyanate, toluene-2,4- or 2,6-diisocyanate, diphenylmethane-4, 'Diisocyanate, naphthalene-1,5-diisocyanate, diphenyl-4,4' diisocyanate, 4,4'-diisocyanate-3,3'-dimethyldiphenyl, 3-methyl-diphenylmethane-4,4'-diisocyanate, diphenyl ether Aromatic diisocyanates such as -4,4'-diisocyanate can be used. Among them, preferred polyisocyanates are 1,6-hexamethylene diisocyanate from the viewpoint of the flexibility of the resulting film, and toluene-2,4- or 2,6-diisocyanate from the viewpoint of the reactivity of the isocyanate group.
・ブロック剤
 次に、前記イソシアネート基のブロック剤としては、公知のものを用いることができる。例えば、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、iso-ブチルアルコール、tert-ブチルアルコール等のアルコール類、フェノール、メチルフェノール、クロルフェノール、p-iso-ブチルフェノール、p-tert-ブチルフェノール、p-iso-アミルフェノール、p-オクチルフェノール、p-ノニルフェノール等のフェノール類、マロン酸ジメチルエステル、マロン酸ジエチルエステル、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル等の活性メチレン化合物類、ホルムアルドキシム、アセトアルドキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム、2-ブタノンオキシム等のオキシム類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等のラクタム類及びチオ硫酸塩等が挙げられる。
Blocking agent Next, known blocking agents for the isocyanate group can be used. For example, alcohol such as methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol, phenol, methylphenol, chlorophenol, p-iso-butylphenol, p -Phenols such as tert-butylphenol, p-iso-amylphenol, p-octylphenol and p-nonylphenol; active methylene compounds such as malonic acid dimethyl ester, malonic acid diethyl ester, acetylacetone, methyl acetoacetate and ethyl acetoacetate; Formaldoxime, acetoaldoxime, acetone oxime, methyl ethyl ketone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime Oximes such as 2-butanone oxime, .epsilon.-caprolactam, .delta.-valerolactam, lactams such as γ- butyrolactam and thiosulfate salts.
<酸・酸化剤>
 酸及び/又は酸化剤としては、例えばジルコンフッ化水素酸、チタンフッ化水素酸、ケイフッ化水素酸、ホウフッ化水素酸、フッ化水素酸、リン酸、硝酸等から選ばれる少なくとも1種を使用できるが、フッ化水素酸が好ましい。
<Acid / Oxidizing agent>
As the acid and / or oxidizing agent, for example, at least one selected from zircon hydrofluoric acid, titanium hydrofluoric acid, silicohydrofluoric acid, borohydrofluoric acid, hydrofluoric acid, phosphoric acid, nitric acid and the like can be used. Hydrofluoric acid is preferred.
<第二鉄イオンを供給し得る化合物>
 第二鉄イオンを供給し得る化合物としては、該自己析出組成物中で安定であれば特に限定はなく、例えばフッ化第二鉄、硝酸第二鉄、リン酸第一鉄等が挙げられるが、フッ化第二鉄が好ましい。
<Compound capable of supplying ferric ion>
The compound capable of supplying ferric ions is not particularly limited as long as it is stable in the autodeposition composition, and examples thereof include ferric fluoride, ferric nitrate, and ferrous phosphate. Ferric fluoride is preferred.
<防錆顔料>
 本発明に用いることができる自己析出組成物には、セリウム、イットリウム、アルミニウム、ストロンチウムからなる群から選ばれる防錆顔料を含有させることもできる。ここで、前記セリウム、イットリウム、アルミニウム、ストロンチウムが、フッ化物粒子であることが好ましい。以下、フッ化物粒子について詳述する。
<Anti-rust pigment>
The autodeposition composition that can be used in the present invention may contain a rust preventive pigment selected from the group consisting of cerium, yttrium, aluminum, and strontium. Here, the cerium, yttrium, aluminum, and strontium are preferably fluoride particles. Hereinafter, the fluoride particles will be described in detail.
 フッ化物粒子は、フッ化水素酸水溶液中での溶解度が小さいため、本発明の表面処理液中では供給した前記フッ化物がほとんど固体粒子として存在し、自己析出反応によって有機被膜が析出する際に被膜中に取り込まれる。取り込まれたフッ化物粒子によって、自己析出被膜の耐食性が向上するのである。現時点では、前記フッ化物の粒子の作用効果は明確ではないが、フッ化物粒子が被膜中に存在することによって、被膜中に進入した腐食促進成分が金属界面まで到達する速度を遅らせる効果と、焼き付け時における該自己析出被膜中の樹脂成分と架橋剤との架橋反応を促進する効果を有するものと考えられる。 Since the fluoride particles have low solubility in an aqueous hydrofluoric acid solution, the supplied fluoride exists almost as solid particles in the surface treatment liquid of the present invention, and when the organic coating is deposited by an autodeposition reaction. It is incorporated into the film. Corrosion resistance of the autodeposition coating is improved by the incorporated fluoride particles. At the present time, the effect of the fluoride particles is not clear, but the presence of fluoride particles in the coating slows the rate at which the corrosion promoting components that have entered the coating reach the metal interface, and baking. This is considered to have an effect of promoting the crosslinking reaction between the resin component in the autodeposition coating film and the crosslinking agent.
 フッ化セリウム、フッ化イットリウム、フッ化アルミニウム、フッ化ストロンチウムからなる群から選ばれる少なくとも1種としては、市販の塩を使用しても構わないし、硝酸セリウム等の可溶性金属塩とフッ化水素酸とを反応させることによって析出した沈殿物である粒子を使用して構わない。また、フッ化セリウム、フッ化イットリウム、フッ化アルミニウム、フッ化ストロンチウムからなる群から選ばれる少なくとも1種の好ましい平均粒径は50μm以下であり、より好ましくは10μm以下である。また、フッ化物粒子の平均粒径の好ましい下限は、それによる腐食促進成分の移動速度を遅らせる作用からは、0.1μmである。 As at least one selected from the group consisting of cerium fluoride, yttrium fluoride, aluminum fluoride, and strontium fluoride, a commercially available salt may be used, or a soluble metal salt such as cerium nitrate and hydrofluoric acid You may use the particle | grains which are the deposits precipitated by making it react. Moreover, the preferable average particle diameter of at least 1 sort (s) chosen from the group which consists of cerium fluoride, yttrium fluoride, aluminum fluoride, and strontium fluoride is 50 micrometers or less, More preferably, it is 10 micrometers or less. Moreover, the preferable minimum of the average particle diameter of fluoride particle | grains is 0.1 micrometer from the effect | action which delays the moving speed | rate of the corrosion promotion component by it.
(プロセス)
 本発明の金属の自己析出被膜用後処理方法は、予め脱脂、水洗処理によって表面を洗浄化する脱脂工程、脱脂工程後の鉄系金属材料を自己析出組成物と接触させて、金属表面に未硬化自己析出被膜を形成させる未硬化自己析出被膜形成工程、未硬化自己析出被膜を前記自己析出被膜用後処理液と接触させる後処理液接触工程、焼き付け工程、を含む。以下、各工程を説明する。
(process)
In the post-treatment method for metal autodeposition coating of the present invention, a degreasing step in which the surface is washed in advance by degreasing and water washing treatment, an iron-based metal material after the degreasing step is brought into contact with the autodeposition composition, and the surface of the metal is not deposited An uncured self-deposited film forming step for forming a cured self-deposited film; a post-treatment liquid contacting step for bringing the uncured self-deposited film into contact with the post-treatment liquid for self-deposited film; and a baking step. Hereinafter, each process will be described.
<脱脂工程>
 脱脂処理は、従来から一般に用いられている溶剤脱脂、アルカリ脱脂等を用いることができ、その工法も流しかけ、スプレー、浸漬及び電解等、なんら制約されるものではない。また、脱脂処理後に(及び自己析出被膜処理後にも)行われる水洗処理に関しても何ら制約はなく、流しかけ、スプレー、浸漬等から選択することができる。水洗に用いる水の水質にも特に制約はないが、自己析出被膜処理浴への微少成分の持ち込み及び塗膜中への残存を考慮するとイオン交換水が好ましい選択である。
<Degreasing process>
For the degreasing treatment, conventionally used solvent degreasing, alkali degreasing and the like can be used, and the construction method is also poured, and there are no restrictions such as spraying, dipping and electrolysis. Moreover, there is no restriction | limiting also about the water washing process performed after a degreasing process (and also after an autodeposition coating process), It can select from pouring, spraying, immersion, etc. The quality of water used for washing is not particularly limited, but ion-exchanged water is a preferred choice in consideration of bringing in small components into the autodeposition coating treatment bath and remaining in the coating.
<未硬化自己析出被膜形成工程>
 本発明に使用することができる自己析出組成物を用いて、金属表面を処理する方法については特に制限はなく、浸漬法、スプレー法、ロールコート法等の表面処理剤の一般的適用方法を採用できるが、浸漬法が好ましい。また、処理温度、処理時間についても特に制限はないが、浸漬処理の場合、一般に常温、例えば18~25℃の該組成物に30~600秒、好ましくは90~300秒浸漬するのが適当である。該自己析出組成物の金属への適用量についても特に制限はないが、焼き付け後の膜厚として、5~40μmが好ましい。
<Uncured autodeposition coating formation process>
There is no particular limitation on the method of treating the metal surface using the autodeposition composition that can be used in the present invention, and a general application method of a surface treatment agent such as a dipping method, a spray method, or a roll coating method is adopted. A dipping method is preferred. The treatment temperature and treatment time are not particularly limited, but in the case of immersion treatment, it is generally appropriate to immerse in the composition at room temperature, for example, 18 to 25 ° C. for 30 to 600 seconds, preferably 90 to 300 seconds. is there. The amount of the autodeposition composition applied to the metal is not particularly limited, but the film thickness after baking is preferably 5 to 40 μm.
 ここで、自己析出組成物の金属への適用後、直ちに本発明の後処理を行ってもよいが、好ましくは水洗を行った後、本発明の後処理を行う。この水洗は、通常常温水に10~180秒、好ましくは20秒から120秒浸漬することにより行う。 Here, after the autodeposition composition is applied to the metal, the post-treatment of the present invention may be performed immediately. However, the post-treatment of the present invention is preferably performed after washing with water. This water washing is usually performed by immersing in normal temperature water for 10 to 180 seconds, preferably 20 to 120 seconds.
<後処理液接触工程>
 自己析出被膜用後処理における処理時間(例えば浸漬時間)には特に限定はないが、本発明の効果を得るために好ましい処理時間は、10秒から5分、より好ましくは30秒から2分である。通常は処理終了後(例えば浸漬終了後)、直ちに焼き付けを行うが、焼き付け工程の前に水洗を行っても構わない。
<Post-treatment liquid contact process>
The treatment time (for example, immersion time) in the post-treatment for the self-deposited film is not particularly limited, but the preferred treatment time for obtaining the effect of the present invention is 10 seconds to 5 minutes, more preferably 30 seconds to 2 minutes. is there. Usually, after the treatment is completed (for example, after the completion of immersion), baking is performed immediately, but washing may be performed before the baking process.
<焼き付け工程>
 焼き付け工程における好ましい焼き付け温度は、170~220℃、より好ましくは180~200℃である。焼き付け工程における好ましい焼き付け時間は、10~60分、より好ましくは20~40分である。
<Baking process>
A preferable baking temperature in the baking step is 170 to 220 ° C, more preferably 180 to 200 ° C. A preferable baking time in the baking step is 10 to 60 minutes, more preferably 20 to 40 minutes.
《用途》
 本発明に従う後処理された自己析出被膜を有する金属材料の用途は、自動車車体や自動車部品、スチール家具、及び家電製品等であり、各々の用途に応じて本発明の自己析出被膜のみの状態か、溶剤塗装等の他の上塗り塗装と組み合せて使用することができる。
<Application>
Applications of the metal material having the post-processed autodeposition coating according to the present invention are automobile bodies, automobile parts, steel furniture, home appliances, etc. It can be used in combination with other top coating such as solvent coating.
 以下に実施例を比較例と共に挙げ、本発明の金属表面の自己析出被膜用後処理液及び自己析出被膜用後処理方法を具体的に説明する。尚、実施例で使用した被処理素材、脱脂剤及び塗料は市販されている材料の中から任意に選定したものであり、本発明の金属表面の自己析出被膜用後処理液及び自己析出被膜用後処理方法の実際の用途を限定するものではない。 Hereinafter, examples will be given together with comparative examples, and the post-treatment liquid for autodeposition coating on a metal surface and the post-treatment method for autodeposition coating of the present invention will be specifically described. In addition, the to-be-processed material used in the Example, a degreasing agent, and a coating material are arbitrarily selected from commercially available materials, and for the post-treatment liquid for the autodeposition coating on the metal surface of the present invention and for the autodeposition coating It does not limit the actual use of the post-processing method.
(供試板)
 実施例と比較例に用いた供試板の略号と内訳を以下に示す。
・CRS(冷延鋼板:JIS-G-3141)
(Test plate)
The abbreviations and breakdown of the test plates used in the examples and comparative examples are shown below.
・ CRS (Cold rolled steel sheet: JIS-G-3141)
・実施例1~23及び比較例1~3
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株))を水で2質量%に希釈し40℃に加湿した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、市販のタンニン(商品名タンニン酸AL:富士化学工業(株))、架橋剤Aとして市販の水溶性ブロックイソシアネート(商品名エラストロンH38:第一工業製薬(株)製)、及び架橋剤Bとして市販のポリエチレングリコール自己乳化タイプのブロックイソシアネート(商品名タケネートWB-920:三井化学ポリウレタン(株)製)、フッ化水素酸(試薬)、過酸化水素水(試薬)、フッ化セリウム(試薬)、及びフッ化第二鉄(鉄粉(試薬)とフッ化水素酸(試薬)を混合し作製)を用いて調整した表1に示す自己析出被膜処理浴に3分間浸漬し、スプレー装置を用いてイオン交換水で洗浄した後、表3に示す組成の自己析出被膜用後処理浴に表3に示す処理温度にて表3に示す処理時間浸漬し、次いで180℃×20分間焼き付けを行った。各々の実施例及び比較例で得られた被覆金属材料を後述する方法に従って評価した。
Examples 1 to 23 and Comparative Examples 1 to 3
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (Nippon Parkerizing Co., Ltd.) was diluted with water to 2% by mass and humidified to 40 ° C., and sprayed on a test plate with a spray device to perform degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and washed was prepared by using commercially available tannin (trade name: Tannic acid AL: Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name: Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.). ), And a commercially available polyethylene glycol self-emulsifying type blocked isocyanate (trade name Takenate WB-920: manufactured by Mitsui Chemicals Polyurethane Co., Ltd.), hydrofluoric acid (reagent), hydrogen peroxide ( Reagent), cerium fluoride (reagent), and ferric fluoride (prepared by mixing iron powder (reagent) and hydrofluoric acid (reagent)), and prepared in the autodeposition coating treatment bath shown in Table 1 After dipping for 3 minutes and washing with ion-exchanged water using a spray device, it is immersed in the post-treatment bath for autodeposition coating having the composition shown in Table 3 at the treatment temperature shown in Table 3 for the treatment time shown in Table 3. Then baked 180 ° C. × 20 min. The coated metal materials obtained in the respective examples and comparative examples were evaluated according to the methods described later.
・ 比較例4 
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加湿した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、市販のタンニン(商品名タンニン酸AL:富士化学工業(株)製)、架橋剤Aとして市販の水溶性ブロックイソシアネート(商品名エラストロンH38:第一工業製薬(株)製)、及び架橋剤Bとして市販のポリエチレングリコール自己乳化タイプのブロックイソシアネート(商品名タケネートWB-920:三井化学ポリウレタン(株)製)、フッ化水素酸(試薬)、過酸化水素水(試薬)、フッ化セリウム(試薬)、及びフッ化第二鉄(鉄粉(試薬)とフッ化水素酸(試薬)を混合し作製)を用いて調整し表1に示す自己析出被膜処理浴に3分間浸漬し、スプレー装置を用いてイオン交換水で洗浄した後、自己析出被膜用後処理浴に浸漬せずに、180℃×20分間焼き付けを行った。この比較例で得られた被覆金属材料を後述する方法に従って評価した。
Comparative example 4
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 2% by mass with water and moisturized at 40 ° C., and sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate from which the surface was degreased was washed with commercially available tannin (trade name Tannic Acid AL: manufactured by Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.). And a commercially available polyethylene glycol self-emulsifying type blocked isocyanate (trade name Takenate WB-920: manufactured by Mitsui Chemicals Polyurethane Co., Ltd.), hydrofluoric acid (reagent), hydrogen peroxide solution (Reagent), cerium fluoride (reagent), and ferric fluoride (prepared by mixing iron powder (reagent) and hydrofluoric acid (reagent)), and the autodeposition coating treatment bath shown in Table 1 After immersing for 3 minutes and washing with ion exchange water using a spray device, baking was performed at 180 ° C. for 20 minutes without being immersed in the post-treatment bath for autodeposition coating. The coated metal material obtained in this comparative example was evaluated according to the method described later.
・ 実施例24~26及び比較例5、6
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング(株)製)を水で2質量%に希釈し40℃に加湿した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄した。前記表面を脱脂洗浄した供試板を、市販のタンニン(商品名タンニン酸AL:富士化学工業(株)製)、架橋剤Aとして市販の水溶性ブロックイソシアネート(商品名エラストロンH38:第一工業製薬(株)製)、及び架橋剤Bとして市販のポリエチレングリコール自己乳化タイプのブロックイソシアネート(商品名タケネートWB-920:三井化学ポリウレタン(株)製)、フッ化水素酸(試薬)、過酸化水素水(試薬)、及びフッ化第二鉄(鉄粉(試薬)とフッ化水素酸(試薬)を混合し作製)を用いて調整した表2に示す自己析出被膜処理浴に3分間浸漬し、スプレー装置を用いてイオン交換水で洗浄した後、表3に示す組成の自己析出被膜用後処理浴に表3に示す処理温度にて表3に示す処理時間浸漬し、次いで180℃×20分間焼き付けを行った。更に、市販のアミノアルキッド系中塗り塗装(商品名アミラックTP-37グレー:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)、及び市販のアミノアルキッド系上塗り塗装(商品名アミラックTM-13白:関西ペイント(株)製、膜厚35μm、スプレー塗装、140℃で20分間焼き付け)を行った。各々の実施例及び比較例で得られた被覆金属材料を後述する方法に従って評価した。
Examples 24 to 26 and Comparative Examples 5 and 6
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing Co., Ltd.) was diluted to 2% by mass with water and moisturized at 40 ° C., and sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device. The test plate whose surface was degreased and washed was prepared by using commercially available tannin (trade name: Tannic acid AL: manufactured by Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name: Elastron H38: Daiichi Kogyo Seiyaku Co., Ltd.). And a commercially available polyethylene glycol self-emulsifying type blocked isocyanate (trade name Takenate WB-920: manufactured by Mitsui Chemicals Polyurethane Co., Ltd.), hydrofluoric acid (reagent), hydrogen peroxide solution (Reagent) and ferric fluoride (prepared by mixing iron powder (reagent) and hydrofluoric acid (reagent)) for 3 minutes in an autodeposition coating treatment bath shown in Table 2 and sprayed After washing with ion-exchanged water using an apparatus, it was immersed in a post-treatment bath for autodeposition coating having the composition shown in Table 3 at the treatment temperature shown in Table 3, and then treated at 180 ° C. for 20 minutes. Baking was performed. Furthermore, a commercially available aminoalkyd-based intermediate coating (trade name Amirac TP-37 Gray: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baked at 140 ° C. for 20 minutes), and a commercially available aminoalkyd-based topcoat ( Product name Amirac TM-13 white: manufactured by Kansai Paint Co., Ltd., film thickness 35 μm, spray coating, baking at 140 ° C. for 20 minutes). The coated metal materials obtained in the respective examples and comparative examples were evaluated according to the methods described later.
(自己析出被膜処理金属材料の膜厚評価)
 実施例及び比較例における供試板の被膜厚を電磁式膜厚計(フィッシャースコープMMS:FISCHER製)を用いて測定した。
(Evaluation of film thickness of autodeposition coating metal materials)
The film thickness of the test plates in Examples and Comparative Examples was measured using an electromagnetic film thickness meter (Fisherscope MMS: manufactured by FISCHER).
(自己析出被覆材料の性能評価)
 実施例及び比較例の性能評価を行った。評価項目と略号を以下に示す。尚、焼き付け完了後の自己析出被膜を自己析出被膜、上塗り塗装後に焼き付けまでを行った塗膜を3caots塗膜と称することとする。
(1)SDT:塩温水試験(自己析出塗膜)
(2)SST:塩水噴霧試験(自己析出塗膜)
(3)デュポン:デュポン式衝撃試験(自己析出被膜)
(4)CCT:複合環境サイクル試験(3caots塗膜)
(5)1STADH:1次密着性(3coats塗膜)
(6)2ndADH:耐水2次密着性(3coats塗膜)
(Performance evaluation of self-deposited coating materials)
The performance evaluation of Examples and Comparative Examples was performed. Evaluation items and abbreviations are shown below. The self-deposited film after baking is referred to as a self-deposited film, and the coating film that has been subjected to baking after top coating is referred to as a 3 caots coating film.
(1) SDT: salt warm water test (self-deposited coating)
(2) SST: Salt spray test (self-deposited coating)
(3) DuPont: DuPont impact test (self-deposited coating)
(4) CCT: Combined environmental cycle test (3caots coating)
(5) 1STADH: Primary adhesion (3coats coating film)
(6) 2ndADH: Water resistant secondary adhesion (3coats coating film)
・SDT
 鋭利なカッターでクロスカットを入れた自己析出塗膜板を、50℃に昇温した5質量%のNaCl水溶液に240時間浸漬した。浸漬終了後に水道水で水洗→常温乾燥したクロスカット部を粘着テープで剥離し、塗膜の両側最大剥離幅を測定し、以下に示す基準に従って評価した。
・ SDT
The self-deposited coated film with the cross cut cut by a sharp cutter was immersed in a 5 mass% NaCl aqueous solution heated to 50 ° C for 240 hours. After completion of the immersion, the crosscut portion washed with tap water and dried at room temperature was peeled off with an adhesive tape, the maximum peel width on both sides of the coating film was measured, and evaluated according to the following criteria.
 ◎:両側最大膨れ幅が2.0mm未満
 ○:両側最大膨れ幅が2.0mm以上4.0mm未満
 △:両側最大膨れ幅が4.0mm以上6.0mm未満
 ×:両側最大膨れ幅が6.0mm以上
A: The maximum swollen width on both sides is less than 2.0 mm B: The maximum swollen width on both sides is 2.0 mm or more and less than 4.0 mm Δ: The maximum swollen width on both sides is 4.0 mm or more and less than 6.0 mm ×: The maximum swollen width on both sides is 6. 0mm or more
・ SST
 鋭利なカッターでクロスカットを入れた自己析出塗膜板に5質量%塩水を2000時間噴霧(JIS-Z-2371に準ずる)した。噴霧終了後にクロスカットからの両側最大ふくれ幅を測定し、以下に示す基準に従って評価した。
・ SST
5 mass% salt water was sprayed for 2000 hours (according to JIS-Z-2371) onto a self-deposited coated film having a cross-cut with a sharp cutter. After spraying, the maximum blister width on both sides from the crosscut was measured and evaluated according to the following criteria.
 ◎:両側最大膨れ幅が4.0mm未満
 ○:両側最大膨れ幅が4.0mm以上6.0mm未満
 △:両側最大膨れ幅が4.0mm以上8.0mm未満
 ×:両側最大膨れ幅が8.0mm以上
A: The maximum swollen width on both sides is less than 4.0 mm. ○: The maximum swollen width on both sides is 4.0 mm or more and less than 6.0 mm. Δ: The maximum swollen width on both sides is 4.0 mm or more and less than 8.0 mm. 0mm or more
・ デュポン
 自己析出塗膜板に、直径1/2インチで1kgの垂錘を、50cmの高さから落下させた後、衝撃部を粘着テープで剥離し、以下に示す基準に従って評価した。
-DuPont A 1 kg vertical weight with a diameter of 1/2 inch was dropped from a height of 50 cm onto the self-deposited coating film plate, and then the impact part was peeled off with an adhesive tape, and evaluated according to the following criteria.
 OK:被膜剥離無し
 NG:被膜剥離有り
OK: No film peeling NG: Film peeling
・CCT
 鋭利なカッターでクロスカットを入れた3caots塗装板を複合サイクル試験機に入れ、「塩水噴霧(5質量%NaCl水溶液、35℃、17時間)→乾燥(70℃、3時間)→塩水浸せき(5質量%NaCl水溶液、50℃、2時間)→自然乾燥(25℃、2時間)」というサイクルを60サイクル施した。60サイクル後のクロスカットからの両側最大膨れ幅を測定し、以下に示す基準に従って評価した。
・ CCT
A 3caots coated plate with a cross-cut with a sharp cutter is placed in a combined cycle tester, and “salt water spray (5 mass% NaCl aqueous solution, 35 ° C., 17 hours) → dry (70 ° C., 3 hours) → soaked with salt water (5 A cycle of “mass% NaCl aqueous solution, 50 ° C., 2 hours) → natural drying (25 ° C., 2 hours)” was performed 60 cycles. The maximum swollen width on both sides from the cross cut after 60 cycles was measured and evaluated according to the following criteria.
 ◎:両側最大膨れ幅が4.0mm未満
 ○:両側最大膨れ幅が4.0mm以上6.0mm未満
 △:両側最大膨れ幅が6.0mm以上10.0mm未満
 ×:両側最大膨れ幅が10.0mm以上
A: The maximum swollen width on both sides is less than 4.0 mm. A: The maximum swollen width on both sides is 4.0 mm or more and less than 6.0 mm. Δ: The maximum swollen width on both sides is 6.0 mm or more and less than 10.0 mm. 0mm or more
・1stADH
 3coats塗膜に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部を粘着テープで剥離し、碁盤目の残存個数を数えた。
・ 1stADH
Cut 100 grids at 2mm intervals with a sharp cutter on the 3coats coating. The grid area was peeled off with adhesive tape, and the number of remaining grids was counted.
・2ndADH
 3coats塗装板を40℃の脱イオン水に240時間浸漬した。浸漬後に鋭利なカッターで2mm間隔の碁盤目を100個切った。碁盤目部を粘着テープで剥離し、碁盤目の残存個数を数えた。
・ 2ndADH
The 3coats coated plate was immersed in deionized water at 40 ° C. for 240 hours. After immersion, 100 grids with 2 mm intervals were cut with a sharp cutter. The grid area was peeled off with adhesive tape, and the number of remaining grids was counted.
 表4に実施例1~26及び比較例1~6で得られた自己析出被膜の評価結果を示した。 Table 4 shows the evaluation results of the self-deposited films obtained in Examples 1 to 26 and Comparative Examples 1 to 6.
 実施例1~16は、SDT及びSST試験結果において全て◎の評価であることから極めて優れた耐食性を有している。更に、デュポン試験結果は、全てOKであり、良好な密着性も有している。これに対して、実施例1~16に比べ、K=A/B値が0.0005と低い実施例17、K=A/B値が5.0と高い実施例18、促進剤を含んでいない実施例19におけるSDT、SST試験結果は実施例1~16に比べて劣るものの評価は○である。なお、デュポン試験結果はOKであり、良好な密着性を有している。 Examples 1 to 16 have extremely excellent corrosion resistance because they are all evaluated as ◎ in the SDT and SST test results. Furthermore, all the DuPont test results are OK, and it also has good adhesion. On the other hand, compared to Examples 1 to 16, Example 17 has a K = A / B value as low as 0.0005, Example 18 has a K = A / B value as high as 5.0, and Example 19 does not contain an accelerator. Although the SDT and SST test results in were inferior to those of Examples 1 to 16, the evaluation was good. In addition, a DuPont test result is OK and has favorable adhesiveness.
 実施例1~16に比べて、ニッケル濃度が0.1mmolと低い実施例20、コバルト濃度が0.4mmolと低い実施例21、マンガン濃度が0.2mmolと低い実施例22におけるSDT、SST試験結果は実施例1~5に比べて劣るものの、SDT評価は○、SST評価は△である。なお、デュポン試験結果はOKであり、良好な密着性を有している。 Compared to Examples 1 to 16, the results of the SDT and SST tests in Example 20 where the nickel concentration was as low as 0.1 mmol, Example 21 where the cobalt concentration was as low as 0.4 mmol, and Example 22 where the manganese concentration was as low as 0.2 mmol were as in Example Although it is inferior to 1 to 5, the SDT evaluation is ○, and the SST evaluation is Δ. In addition, a DuPont test result is OK and has favorable adhesiveness.
 また、実施例1~16に比べてpHが高い実施例23は、未硬化自己析出被膜用処理液中で沈殿物が生成してしまい、SDT、SST試験結果は実施例1~16に比べて劣るものの評価は○である。なお、デュポン試験結果はOKであり、良好な密着性を有している。 In Example 23, which has a higher pH than Examples 1-16, precipitates were generated in the uncured autodeposition coating treatment solution, and the results of the SDT and SST tests were higher than those of Examples 1-16. The evaluation of the inferior one is ○. In addition, a DuPont test result is OK and has favorable adhesiveness.
 一方、実施例1~23に対して、金属成分及びリン酸を含まない比較例1、リン酸を含まない比較例2及び本発明記載の金属成分を含まない比較例3のSDT、SST、デュポン試験結果は実施例1~23に比べて劣っている。 On the other hand, compared with Examples 1 to 23, SDT, SST, and Dupont of Comparative Example 1 containing no metal component and phosphoric acid, Comparative Example 2 containing no phosphoric acid, and Comparative Example 3 containing no metal component described in the present invention The test results are inferior to those of Examples 1-23.
 また、自己析出被膜用後処理を行っていない比較例4におけるSDT、SST試験結果は実施例1~23に比べて劣っている。 Also, the SDT and SST test results in Comparative Example 4 where the post-treatment for the self-deposited film was not performed are inferior to those in Examples 1 to 23.
 実施例24~26は、CCT試験結果において◎の評価であり、極めて優れた耐食性を有しており、更に密着性にも優れている。 Examples 24 to 26 are evaluated as ◎ in the CCT test results, have extremely excellent corrosion resistance, and also have excellent adhesion.
 これに対して本発明記載の金属成分を含まない比較例5、6におけるCCT試験結果は実施例24~26に比べて劣っている。 On the other hand, the CCT test results in Comparative Examples 5 and 6 not containing the metal component described in the present invention are inferior to those in Examples 24-26.
 以上より、本発明の効果は明らかである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
From the above, the effects of the present invention are clear.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (11)

  1.  リチウム、マンガン、鉄、コバルト、ニッケル、銅及びアルミニウムからなる群から選ばれる少なくとも1種の金属成分とリン酸とを含有する水溶液であることを特徴とする、タンニンを樹脂成分とする金属表面における自己析出被膜用の後処理液。 In an aqueous solution containing at least one metal component selected from the group consisting of lithium, manganese, iron, cobalt, nickel, copper and aluminum and phosphoric acid, the metal surface containing tannin as a resin component Post-treatment liquid for autodeposition coating.
  2.  前記金属成分の合計モル濃度Aと前記リン酸のモル濃度Bとの比であるK=A/Bが式(1):
    (式1)
    Figure JPOXMLDOC01-appb-I000004
    の範囲内であり、かつ、前記モル濃度Aが水溶液中の濃度として0.1~500mmol/Lの範囲内である、請求項1記載の後処理液。
    K = A / B, which is the ratio of the total molar concentration A of the metal components to the molar concentration B of the phosphoric acid, is represented by the formula (1):
    (Formula 1)
    Figure JPOXMLDOC01-appb-I000004
    The post-treatment liquid according to claim 1, wherein the molar concentration A is in the range of 0.1 to 500 mmol / L as the concentration in the aqueous solution.
  3.  前記金属表面の自己析出被膜用後処理液のpHが2から6である、請求項1又は2記載の後処理液。 The post-treatment liquid according to claim 1 or 2, wherein the post-treatment liquid for autodeposition coating on the metal surface has a pH of 2 to 6.
  4.  前記金属表面の自己析出被膜用後処理液が、亜硝酸塩、ヒドロキシルアミン、硫酸ヒドロキシルアミン、リン酸ヒドロキシルアミン、塩酸ヒドロキシルアミン、ヒドロキシルアンモニウム及び過酸化水素からなる群から選ばれる少なくとも1種を含有する、請求項1~3のいずれか一項記載の後処理液。 The post-treatment liquid for autodeposition coating on the metal surface contains at least one selected from the group consisting of nitrite, hydroxylamine, hydroxylamine sulfate, hydroxylamine phosphate, hydroxylamine hydrochloride, hydroxylammonium and hydrogen peroxide. The post-treatment liquid according to any one of claims 1 to 3.
  5.  前記自己析出被膜が、セリウム、イットリウム、アルミニウム及びストロンチウムからなる群から選ばれる少なくとも1種を含む、請求項1~4のいずれか一項記載の後処理液。 The post-treatment liquid according to any one of claims 1 to 4, wherein the self-deposited film contains at least one selected from the group consisting of cerium, yttrium, aluminum, and strontium.
  6.  セリウム、イットリウム、アルミニウム及びストロンチウムが、フッ化物粒子である、請求項5記載の後処理液。 The post-treatment liquid according to claim 5, wherein cerium, yttrium, aluminum, and strontium are fluoride particles.
  7.  前記自己析出被膜を形成するに際し、フェノール性ヒドロキシル基及び/又はフェノール核と熱硬化反応可能な架橋基を有する少なくとも1種の架橋剤が使用されている、請求項1~6のいずれか一項記載の後処理液。 The at least one crosslinking agent having a crosslinking group capable of thermosetting reaction with a phenolic hydroxyl group and / or a phenol nucleus is used in forming the autodeposition coating. Post-treatment liquid as described.
  8.  前記少なくとも1種の架橋剤における熱硬化反応可能な架橋基が、イソシアネート基である、請求項7記載の後処理液。 The post-treatment liquid according to claim 7, wherein the crosslinking group capable of thermosetting reaction in the at least one crosslinking agent is an isocyanate group.
  9.  前記少なくとも1種の架橋剤が、ブロック剤でブロックされた多官能ブロックイソシアネートである、請求項8記載の後処理液。 The post-treatment liquid according to claim 8, wherein the at least one crosslinking agent is a polyfunctional blocked isocyanate blocked with a blocking agent.
  10.  前記少なくとも1種の架橋剤が、少なくとも一分子のビスフェノールA構造を有したブロックイソシアネート、及び/又は、ポリエーテルポリオールを使用した自己乳化型ブロックイソシアネートから選ばれる少なくとも1種である、請求項9記載の後処理液。 The at least one crosslinking agent is at least one selected from blocked isocyanates having at least one molecule of bisphenol A structure and / or self-emulsifying blocked isocyanates using polyether polyols. After-treatment liquid.
  11.  予め脱脂、水洗処理によって表面を清浄化した金属材料にタンニンを樹脂成分とする自己析出組成物を接触させて、金属表面に未硬化自己析出被膜を形成させる未硬化自己析出被膜工程と、前記未硬化自己析出被膜に請求項1~10のいずれか一項記載の後処理液を接触させる接触工程と、焼き付け工程と、を有することを特徴とする、金属材料の表面処理方法。 An uncured self-deposited coating step in which a self-deposited composition containing tannin as a resin component is brought into contact with a metal material whose surface has been cleaned in advance by degreasing and rinsing, thereby forming an uncured self-deposited coating on the metal surface; A surface treatment method for a metal material, comprising a contact step of bringing the post-treatment liquid according to any one of claims 1 to 10 into contact with a cured autodeposition coating, and a baking step.
PCT/JP2010/005051 2009-08-17 2010-08-12 Post-treatment solution for self-deposited coating film formed on metal surface, and process for production of metallic material having post-treated self-deposited coating film formed thereon WO2011021374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-188564 2009-08-17
JP2009188564A JP5518398B2 (en) 2009-08-17 2009-08-17 Post-treatment liquid for autodeposition coating on metal surface and method for producing metal material with post-processed autodeposition coating

Publications (1)

Publication Number Publication Date
WO2011021374A1 true WO2011021374A1 (en) 2011-02-24

Family

ID=43606834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005051 WO2011021374A1 (en) 2009-08-17 2010-08-12 Post-treatment solution for self-deposited coating film formed on metal surface, and process for production of metallic material having post-treated self-deposited coating film formed thereon

Country Status (3)

Country Link
JP (1) JP5518398B2 (en)
TW (1) TW201127990A (en)
WO (1) WO2011021374A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865619B2 (en) * 2011-07-15 2016-02-17 日本パーカライジング株式会社 Water-based metal surface treatment agent and metal material treated with the treatment agent
JP5889561B2 (en) * 2011-07-15 2016-03-22 日本パーカライジング株式会社 Water-based metal surface treatment agent and metal material with surface coating
JP2019173180A (en) * 2019-07-09 2019-10-10 有限会社昭和ケミカル静岡 Method for manufacturing metal having base coating film and treatment solution for forming base coating film
CN115463564B (en) * 2022-09-08 2023-08-15 哈尔滨工业大学水资源国家工程研究中心有限公司 Modification method for in-situ growth of manganese dioxide on ultrafiltration membrane surface based on metal polyphenol network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191369A (en) * 1984-10-09 1986-05-09 パーカー・ケミカル・カンパニー Surface treatment of aluminum by treatment solution containing no chromium
JP2001192852A (en) * 1999-10-22 2001-07-17 Kawasaki Steel Corp Metallic surface treating composition
JP2008150542A (en) * 2006-12-20 2008-07-03 Cadic:Kk Coating solution, method for formation of inorganic-organic hybrid coating film using the solution and coating film formed by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191369A (en) * 1984-10-09 1986-05-09 パーカー・ケミカル・カンパニー Surface treatment of aluminum by treatment solution containing no chromium
JP2001192852A (en) * 1999-10-22 2001-07-17 Kawasaki Steel Corp Metallic surface treating composition
JP2008150542A (en) * 2006-12-20 2008-07-03 Cadic:Kk Coating solution, method for formation of inorganic-organic hybrid coating film using the solution and coating film formed by the method

Also Published As

Publication number Publication date
JP2011038173A (en) 2011-02-24
TW201127990A (en) 2011-08-16
JP5518398B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
RU2482220C2 (en) Metallizing preliminary treatment of zinc surfaces
JP4078044B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
KR101514194B1 (en) Surface-treated galvanized steel sheet having excellent wound and end face corrosion resistance and method for manufacturing same
JP5860582B2 (en) Metal surface treatment agent and metal surface treatment method
KR910008596B1 (en) Highly corrosion resistant surface treated sheel sheef
JP5086040B2 (en) Metal surface treatment composition
KR20020070460A (en) Organic coating covered steel sheet
JP2007162098A (en) Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
US8663376B2 (en) Surface treatment solution for autodeposition coating of metallic material and autodeposition coating treatment method
JP4646966B2 (en) Metal surface treatment agent, surface treatment method of metal material, and surface treatment metal material
JPH0215177A (en) Production of surface-treated steel sheet having high corrosion resistance
JP5518398B2 (en) Post-treatment liquid for autodeposition coating on metal surface and method for producing metal material with post-processed autodeposition coating
KR0125011B1 (en) Organic composite coated steel and a process for manufacturing the same
JP5498634B2 (en) Water-based metal surface treatment agent, surface treatment method and surface treatment metal material
JP2008238014A (en) Surface treated steel sheet having high corrosion resistance
JP2011117026A (en) Surface treatment solution for self-deposition coating treatment for metallic material and self-deposition coating treatment method
JP2000160353A (en) Organic coated steel sheet excellent in corrosion resistance
JP5518307B2 (en) Self-deposited coating treatment liquid for metal material, and self-deposited coating treatment method
JP5442346B2 (en) Method for producing chemical conversion treated steel sheet
JP5441102B2 (en) High corrosion resistance surface-treated steel sheet
JPH04254588A (en) Organic composite coated steel sheet excellent in corrosion resistance, weldability, coating adhesion, electrodeposition coating suitability and discriminability and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809721

Country of ref document: EP

Kind code of ref document: A1