WO2011013175A1 - 3d display apparatus and 3d display system - Google Patents

3d display apparatus and 3d display system Download PDF

Info

Publication number
WO2011013175A1
WO2011013175A1 PCT/JP2009/003636 JP2009003636W WO2011013175A1 WO 2011013175 A1 WO2011013175 A1 WO 2011013175A1 JP 2009003636 W JP2009003636 W JP 2009003636W WO 2011013175 A1 WO2011013175 A1 WO 2011013175A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
intensity
parallax image
image
unit
Prior art date
Application number
PCT/JP2009/003636
Other languages
French (fr)
Japanese (ja)
Inventor
岩中由紀
最首達夫
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/003636 priority Critical patent/WO2011013175A1/en
Publication of WO2011013175A1 publication Critical patent/WO2011013175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/133Equalising the characteristics of different image components, e.g. their average brightness or colour balance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details

Definitions

  • the present invention relates to a three-dimensional display device and a three-dimensional video display system in which videos of respective viewpoints are divided by time and displayed on the same screen so that an observer can observe a 3D video.
  • a time-division type three-dimensional display that displays a multi-viewpoint video on the screen by dividing the display time has been developed.
  • a glasses type and a naked eye type are proposed.
  • the eyeglass type is a method of separating left-eye and right-eye images using liquid crystal shutter glasses, and is currently used for screening 3D movies.
  • the autostereoscopic method is a method of separating each viewpoint image by giving directivity to the backlight.
  • a stereoscopic display device and a stereoscopic display system are provided that can obtain a high-contrast image even when a time-division stereoscopic display uses a display device having a plurality of light sources.
  • the present invention provides a stereoscopic display device that displays a stereoscopic image by displaying parallax images corresponding to a plurality of viewpoints for each time, a backlight provided with a plurality of light sources, A liquid crystal panel that displays video in a display area by modulating light from a backlight, and pixels of a parallax image to be processed in an illumination area in which the display area is virtually divided based on a spatial arrangement of the light sources A calculation unit for obtaining a first intensity of the light source based on the value, the light source intensity in the parallax image displayed at the same viewpoint as the parallax image to be processed and displayed before the parallax image to be processed, and The correction unit that corrects the first intensity so as to reduce the fluctuation with the first intensity and obtains the light source intensity, and the backlight when the light source emits light according to the light source intensity.
  • An estimation unit that estimates a distribution of light to be obtained, a correction unit that obtains a corrected video signal obtained by correcting the parallax image to be processed based on the distribution, a light source control unit that controls the light source according to the light source intensity, and the correction
  • a stereoscopic display device and a stereoscopic display system comprising a panel control unit that controls the liquid crystal panel according to a video signal.
  • an object of the present invention is to display a high-contrast video even when a time-division stereoscopic display uses a display device having a plurality of light sources.
  • the stereoscopic display device of the present embodiment is a liquid crystal display that performs stereoscopic display in a time division manner.
  • the stereoscopic display device alternately displays a left-eye image and a right-eye image with parallax, and separates the left-eye image and the right-eye image with dedicated glasses.
  • the image displayed on the stereoscopic display device is a two-dimensional image, stereoscopic images using binocular parallax are realized by displaying images with parallax separately for the left eye and right eye of the observer.
  • the Examples of the time division method include a liquid crystal shutter glasses method, a polarization filter glasses method, and an RGB waveband division filter glasses method.
  • a time division method using liquid crystal shutter glasses is exemplified.
  • the time division method may be either field sequential or frame sequential. In the present embodiment, a frame sequential time division method will be described.
  • FIG. 1 is a diagram illustrating an overview of the stereoscopic display device 100 of the present embodiment.
  • the stereoscopic display device 100 switches and displays a plurality of images with different viewpoints (hereinafter referred to as parallax images) in a time-sharing manner.
  • the stereoscopic display device 100 transmits a switching signal by the transmission unit 110 for each frame.
  • the transmitter 110 transmits a switching signal indicating the switching timing of the liquid crystal shutter 211 to the glasses 200 by infrared rays or the like.
  • the stereoscopic display device 100 is a liquid crystal display including a backlight having a plurality of light sources that can control the intensity of light for each light source. A detailed configuration will be described later with reference to FIG.
  • the glasses 200 include a receiving unit 212 that receives a switching signal transmitted from the transmitting unit 110, and a driving unit 210 that drives opening and closing of the left and right liquid crystal shutters 211 of the liquid crystal shutter 211 in synchronization with the switching signal.
  • the drive unit 210 controls the liquid crystal shutter 211 so that the image for the right eye and the image for the left eye are alternately incident in time.
  • the observer inputs parallax images with parallax in the right eye and the left eye alternately in time.
  • the observer can recognize the image displayed on the stereoscopic display device 100 in two dimensions as a stereoscopic image.
  • FIG. 2 is a diagram showing the glasses 200 of the present embodiment.
  • the spectacles 200 includes a receiving unit 212, a right-eye and left-eye liquid crystal shutter 211, and a right-eye and left-eye liquid crystal shutter 211.
  • FIG. 3 is a diagram showing the stereoscopic display device 100 of the present embodiment.
  • the input video signal has a two-dimensional parallax image corresponding to a plurality of parallaxes.
  • the parallax image is attached with parallax information such as a marker indicating which viewpoint each corresponds to. It is assumed that the parallax image has already been subjected to gamma conversion calculation.
  • the stereoscopic display device 100 includes a calculation unit 303, a correction unit 304, an estimation unit 305, a video correction unit 306, a panel control unit 308 that controls the liquid crystal panel 301, and a light source that controls each light source 3021 of the backlight 302.
  • the calculation unit 303 obtains the first intensity of the light source based on the pixel value of the parallax image in the illumination area obtained by virtually dividing the display area based on the spatial arrangement of the light sources.
  • the first intensity is calculated from the average value or the maximum value of the luminance values of the parallax images in the illumination area.
  • the first intensity calculation method may be various methods other than these methods. In the present embodiment, an example in which one light source 3021 corresponds to one illumination area will be described, but a configuration in which a plurality of light sources 3021 correspond to one illumination area may be employed. Moreover, you may set so that a part of each illumination area may overlap.
  • the correction unit 304 is at the same viewpoint as the parallax image to be processed, and the variation between the light source intensity obtained for the parallax image with the previous display time and the first intensity obtained for the parallax image to be processed is reduced. The first intensity is corrected to obtain the light source intensity.
  • a detailed configuration of the correction unit 304 will be described later with reference to FIG.
  • the estimation unit 305 estimates the intensity distribution of light incident on the liquid crystal panel 301 when each light source 3021 emits light according to the light source intensity after correction by the correction unit 304.
  • the video correction unit 306 corrects the pixel value of the parallax image according to the light intensity distribution estimated by the estimation unit 305.
  • the light source control unit 307 controls each light source 3021 according to the light source intensity.
  • a control method of the light source 3021 for example, there is PWM (Pulse Width Modulation), but other methods may be used.
  • the panel control unit 308 performs control so that the corrected parallax image is displayed on the liquid crystal panel 301.
  • the synchronization unit 309 synchronizes the timing at which the light source control unit 307 changes the light source intensity, the timing at which the panel control unit 308 writes the parallax image into the liquid crystal panel 301, and the transmission timing of the switching signal transmitted by the transmission unit 110.
  • the light source 3021 for example, a light emitting diode (LED) can be used.
  • the LED may be white or a color LED. The greater the number of light sources 3021, the more effective the contrast is.
  • FIG. 4 is a diagram illustrating a configuration of the correction unit 304.
  • the correction unit 304 includes a storage unit 500, a comparison unit 501, and a filter processing unit 502.
  • the storage unit 500 stores the light source intensity of each light source 3021 that the correction unit 304 has already obtained for the parallax image whose display time is earlier than the parallax image to be processed.
  • the comparison unit 501 refers to the storage unit 500 and reads the distribution of the light source intensity obtained for the parallax image at the same viewpoint as the parallax image to be processed.
  • the first light source of the parallax image to be processed and the light source intensity obtained for the parallax image at the same viewpoint as the parallax image to be processed are compared for each light source 3021 to calculate the difference in light source intensity.
  • the target of comparison with the parallax image to be processed is a parallax image of the same viewpoint, the parallax image displayed in the immediately preceding scene or the parallax images of a plurality of previous scenes may be used.
  • a scene means a parallax image of each viewpoint corresponding to the same stereoscopic video.
  • the filter processing unit 502 applies a high frequency cut filter to the light source intensity difference calculated by the comparison unit 501.
  • the filter is not limited to the above example, and may be a high-frequency cut filter that changes the weighting when the light source intensity varies from strong to weak and when the light source intensity varies from weak to strong. . Specifically, it is preferable to increase the weight when the light source intensity varies from weak to strong, and to decrease the weight when the light source intensity varies from strong to weak. This is because when the screen changes from a dark screen to a bright screen, a sharper increase in brightness enables a contrasted image display. Any of the filters is preferably a filter set in consideration of human visual characteristics.
  • the correction amount obtained by filtering the difference amount is added to the first light source luminance, and the light source luminance corresponding to the parallax image to be processed is calculated. As a result, it is possible to perform correction so that the fluctuation of the light source intensity between the parallax images of the same viewpoint by the filter processing unit 502 becomes small. Since fluctuations in light source intensity between parallax images at the same viewpoint are reduced, flicker perception due to luminance fluctuations in the backlight can be suppressed.
  • FIG. 5 is a diagram illustrating the input video signal, the video to be displayed, and the luminance of the backlight.
  • FIG. 5 shows an example where the number of viewable viewpoints is three.
  • the horizontal axis shows the display time.
  • FIG. 5A shows a stereoscopic image to be recognized by the observer.
  • a stereoscopic image in which white bright spots move from bottom to top on the screen is displayed.
  • Reference numeral 401 denotes a stereoscopic image that is recognized by an observer based on a parallax image of a scene displayed at times t 11 to t 13 .
  • Reference numeral 402 denotes a stereoscopic image that is recognized by the observer based on a parallax image of a scene displayed at times t 21 to t 23 .
  • Reference numeral 403 denotes a stereoscopic image that is recognized by the observer based on a parallax image of a scene displayed at times t 31 to t 33 .
  • FIG. 5B shows a parallax image displayed on the liquid crystal panel 301.
  • Three parallax images of viewpoints 1 to 3 corresponding to the same stereoscopic image correspond and are included in the same scene.
  • 104 parallax image of the view 1 to view the time t 11 105 is a parallax image of the view 2 that displays the time t 12
  • 106 denotes a parallax image of the view 3 to display the time t 13.
  • 107 shows the parallax image of viewpoint 1 displayed at time t 21
  • 108 shows the parallax image of viewpoint 2 displayed at time t 22
  • 109 shows the parallax image of viewpoint 3 displayed at time t 23 .
  • 110 parallax image of the view 1 to view the time t 31 111 is a parallax image of the view 2 that displays the time t 32, 112 denotes a parallax image of the view 3 to display the time t 33.
  • 104 to 106, 107 to 109, and 110 to 112 are the same scenes corresponding to the same stereoscopic image.
  • FIG. 5C is a diagram schematically illustrating a light source intensity distribution of the backlight 302 corresponding to each parallax image illustrated in FIG.
  • the light source intensity shown in FIG. 5C is the light source intensity after correction by the correction unit 304.
  • 113 is a light source intensity distribution for 104 displayed at time t 11
  • 114 is a light source intensity distribution for 105 displayed at time t 12
  • 115 is a light source intensity distribution for 106 displayed at time t 13
  • 116 is the distribution of the light source intensity for 107 to be displayed at a time t 21, the 117 distribution of the light source intensity for 108 to be displayed at a time t 22, 118 the distribution 119 of the light source intensity for 109 to display the time t 23, the 119 time
  • the operation of the correction unit 304 will be specifically described with reference to FIG. Parallax images 111 of view 2 to display the time t 32 is illustrated for the case where a parallax image to be processed.
  • the comparison unit 501 reads the light source intensity distribution 117 obtained from the parallax image 108 of the scene 2 immediately before the scene 3 that is the same viewpoint 2 as the parallax image 111 to be processed, and the variation amount (difference) for each light source 3021 is read.
  • the filter processing unit 502 calculates a light source intensity distribution 120 that suppresses the fluctuation amount (difference) for each light source 3021.
  • the object to be compared with the parallax image 111 may not be the parallax image 108 displayed in the scene 2 immediately before the scene 3 as long as it is a parallax image of the same viewpoint.
  • the parallax image 105 of the viewpoint 2 displayed in the scene 1 two scenes before the scene 3 may be used.
  • FIG. 6 is a diagram illustrating an example of the calculated light source intensity of the backlight 302.
  • FIG. 6 shows an example in which the number of illumination areas is 8 ⁇ 4.
  • Each numerical value is a value indicating the light source intensity of each light source 3021 in 8 bits.
  • FIG. 7 is a diagram illustrating the operation of the correction unit 304 of the present embodiment.
  • the comparison unit 501 reads the light source intensity distribution calculated for the parallax image of the previous scene, which is the same viewpoint as the parallax image to be processed.
  • the difference amount is calculated by comparing the distribution of the light source intensity of the parallax image of the reference viewpoint of the previous scene with the distribution of the first intensity obtained by the calculation unit 303 for the parallax image of the reference viewpoint of the scene to be processed ( S72).
  • the filter processing unit 502 performs correction by the above-described filter processing and calculates the light source luminance (S73).
  • the storage unit 500 stores the light source luminance calculated in S73 (S74).
  • a sensor for example, an optical sensor
  • the calculation unit 303 may be configured to calculate the light source intensity based on the illuminance information from the sensor. Absent.
  • An image to be viewed from one viewpoint is a parallax image of that viewpoint, and is not affected by the parallax image of another viewpoint. Therefore, it is not necessary to adjust the fluctuation of the light source intensity performed between the parallax images.
  • a high-contrast image by controlling the backlight is displayed in a time-division stereoscopic display device of a liquid crystal display device having a plurality of light sources. Can be obtained.
  • the correction unit 304 shown in the first embodiment performs correction on a parallax image of one reference viewpoint (hereinafter referred to as a reference viewpoint) in the same scene.
  • the correction amount is calculated by shifting the position of the correction amount of the reference viewpoint image according to the parallax amount in the parallax image in the processing target.
  • the difference from the first embodiment is that the light source luminance of the parallax image to be processed is corrected by adding the calculated correction amount to the first intensity.
  • FIG. 8 is a diagram illustrating the correction unit 304 of the present embodiment.
  • the correction unit 304 further includes a detection unit 5031 that detects the amount of parallax between parallax images, and a filter processing unit 5021.
  • the detecting unit 5031 detects the amount of parallax between the parallax image of the reference viewpoint and the parallax image to be processed.
  • the amount of parallax corresponds to the amount of movement / shift that appears on the retina between parallax images in the same scene.
  • a block matching method is a typical method for detecting the amount of parallax.
  • a feature may be used in which feature points such as edges and corner points are first extracted from each parallax image, and correspondence between the feature points is obtained. The method for obtaining the amount of parallax is not limited to the above example.
  • the filter processing unit 5021 performs the same correction process as the filter processing unit 502 on the reference viewpoint parallax image.
  • FIG. 9 is a diagram illustrating the operation of the correction unit 304 of the present embodiment.
  • the comparison unit 501 sets a reference viewpoint (hereinafter referred to as a reference viewpoint) (S71).
  • the reference viewpoint may be determined in advance.
  • the comparison unit 501 reads the light source intensity distribution calculated for the parallax image of the reference viewpoint in the previous scene.
  • the difference amount is calculated by comparing the distribution of the light source intensity of the parallax image of the reference viewpoint of the previous scene with the distribution of the first intensity obtained by the calculation unit 303 for the parallax image of the reference viewpoint of the scene to be processed ( S72).
  • the filter processing unit 5021 performs the same correction process as the filter processing unit 502 of the first embodiment on the parallax image of the reference viewpoint (S73).
  • the storage unit 500 stores the light source luminance calculated in S73 (S74).
  • the detection unit 5031 detects the amount of parallax between the parallax image of the reference viewpoint and the parallax images of other viewpoints in the same scene to be processed (S75). Corresponding points are obtained using template matching using pixels in a region (block) around a pixel at a position where a correspondence is to be obtained in a reference image. As a typical matching method, there is a method of comparing luminances in blocks. In the parallax image displayed as a stereoscopic image, the search range can be set on the epipolar line when the shooting conditions and camera calibration data are already known. It is possible to reduce errors in matching and shorten calculation time. The epipolar line will be described.
  • the position of the space obtained from the position on one image is limited to a certain straight line (line of sight) in the space. Therefore, the position of the projection point (corresponding point) on the other image is limited to a straight line in the image formed when the line of sight is projected on the other image. This straight line is called an epipolar line.
  • the filter processing unit 5021 calculates a correction amount obtained by shifting the position of the correction amount corresponding to the parallax image of the reference viewpoint calculated in S73 based on the parallax amount calculated in S75 (S76).
  • the filter processing unit 5021 calculates the light source intensity by adding the correction amount calculated in S76 to the first intensity of the parallax image to be processed (S77).
  • the amount of calculation required for calculating the light source intensity increases as the number of viewpoints (number of parallaxes) that can be observed increases.
  • the filter processing performed on the light source intensity corresponding to the parallax image of the reference viewpoint is shifted according to the amount of parallax in order to calculate the light source intensity corresponding to the parallax image of the other viewpoint. Therefore, the calculation amount can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Provided is a 3D display apparatus which displays images corresponding to a plurality of view points on an image surface at divided display times. The 3D display apparatus (100) has a backlight (302) in which a plurality of light sources (3021) are arranged, and a liquid crystal panel (301) in which an image is displayed in a display area by modulating light from the backlight. A calculation unit (303) obtains a first intensity of the light sources (3021) on the basis of a pixel value of a parallax image to be processed in illumination areas which are obtained by virtually dividing the display area on the basis of the spatial arrangement of the light sources (3021). A correction unit (304) corrects the first intensity and obtains the light source intensity so that a difference between the light source intensity for an image signal which corresponds to the same view point as the parallax image to be processed and which is displayed prior to the parallax image to be processed, and the first intensity becomes small thereby. An image correction unit (306) corrects the pixel value of the parallax image in accordance with a light intensity distribution estimated by an estimation unit (305). With this structure, it is possible to display a high contrast image if a time division system 3D display apparatus is applied to a backlight having a plurality of light sources.

Description

立体表示装置、立体表示システム3D display device and 3D display system
 本発明は、各視点の映像を時間で分割して同一画面上に表示し、観察者が3D映像を観察することができる、立体表示装置および立体映像表示システムに関するものである。 The present invention relates to a three-dimensional display device and a three-dimensional video display system in which videos of respective viewpoints are divided by time and displayed on the same screen so that an observer can observe a 3D video.
 立体(3次元)ディスプレイの一つに、多視点の映像を表示時間を分割して画面上に表示する時分割方式立体ディスプレイが開発されている。時分割方式立体ディスプレイは、眼鏡式と裸眼式が提案されている。眼鏡式は、液晶シャッター眼鏡を用いて左眼用、右眼用の画像を分離する方式で、現在、立体映画の上映などに用いられている。裸眼式は、バックライトに指向性をもたせて、各視点画像を分離する方式である。 As one of the three-dimensional (three-dimensional) displays, a time-division type three-dimensional display that displays a multi-viewpoint video on the screen by dividing the display time has been developed. As the time-division type stereoscopic display, a glasses type and a naked eye type are proposed. The eyeglass type is a method of separating left-eye and right-eye images using liquid crystal shutter glasses, and is currently used for screening 3D movies. The autostereoscopic method is a method of separating each viewpoint image by giving directivity to the backlight.
 一方、表示画像に合わせて、バックライトを場所的・時間的に制御して液晶パネルディスプレイのコントラストを向上させる、ローカルディミングという技術が開発されている。動画表示の場合に、フレーム間の輝度変動が大きいと、ちらつきが発生するため、フレーム間の輝度変動が小さくなるように調整する技術が提案されている。例えば、映像信号に対してバックライト輝度を制御する際に、現在の映像信号と以前の映像信号の差分に応じて、光源強度を制御する方法が提案されている(例えば、特許文献1)。 On the other hand, a technique called local dimming has been developed that improves the contrast of the liquid crystal panel display by controlling the backlight location and time according to the display image. In the case of moving image display, flickering occurs when the luminance variation between frames is large. Therefore, a technique for adjusting the luminance variation between frames has been proposed. For example, a method of controlling the light source intensity according to the difference between the current video signal and the previous video signal when controlling the backlight luminance for the video signal has been proposed (for example, Patent Document 1).
 しかしながら、フレーム間の輝度変動が小さくなるように調整する方法を、時分割方式立体ディスプレイ適用した場合、コントラスト向上が実現できない。各視点より観察される画像(視差画像)に対し、単純にフレーム間で輝度変動が小さくなるように調整を行うと、異なる視差画像間で輝度変動の調整が行われ、意図したコントラスト向上が望めない。 However, when the method of adjusting the brightness fluctuation between frames to be small is applied to a time-division type stereoscopic display, contrast improvement cannot be realized. If an image observed from each viewpoint (parallax image) is simply adjusted so that the luminance variation between frames is reduced, the luminance variation is adjusted between different parallax images, and the intended improvement in contrast can be expected. Absent.
特開2004-4532号公報(米国特許出願公開第2003/201968号明細書)JP 2004-4532 A (US Patent Application Publication No. 2003/2019968)
 上記課題を解決するため、時分割方式立体ディスプレイが複数の光源を有する表示装置を用いた場合でも、高コントラストな映像を得ることが可能な立体表示装置及び立体表示システムを提供する。 In order to solve the above problems, a stereoscopic display device and a stereoscopic display system are provided that can obtain a high-contrast image even when a time-division stereoscopic display uses a display device having a plurality of light sources.
  上記目的を達成するために、本発明は、複数の視点に対応する視差画像を時間毎に表示することで立体映像を表示する立体表示装置において、複数の光源が配されたバックライトと、前記バックライトからの光を変調することで映像を表示領域において表示する液晶パネルと、前記光源の空間的な配置に基づいて前記表示領域を仮想的に分割した照明領域における処理対象の視差画像の画素値に基づいて、前記光源の第1の強度を求める算出部と、前記処理対象の視差画像と同じ視点であり前記処理対象の視差画像より前に表示される視差画像における前記光源強度と、前記第1の強度との変動が小さくなるように前記第1の強度を補正し光源強度を求める補正部と前記光源強度に従って前記光源が発光した場合の前記バックライトが発する光の分布を推定する推定部と、前記分布に基づいて前記処理対象の視差画像を補正した補正映像信号を求める補正部と、前記光源強度に従って前記光源を制御する光源制御部と、前記補正映像信号に従って前記液晶パネルを制御するパネル制御部と、を備えたことを特徴とする立体表示装置及び立体表示システムを提供する。 In order to achieve the above object, the present invention provides a stereoscopic display device that displays a stereoscopic image by displaying parallax images corresponding to a plurality of viewpoints for each time, a backlight provided with a plurality of light sources, A liquid crystal panel that displays video in a display area by modulating light from a backlight, and pixels of a parallax image to be processed in an illumination area in which the display area is virtually divided based on a spatial arrangement of the light sources A calculation unit for obtaining a first intensity of the light source based on the value, the light source intensity in the parallax image displayed at the same viewpoint as the parallax image to be processed and displayed before the parallax image to be processed, and The correction unit that corrects the first intensity so as to reduce the fluctuation with the first intensity and obtains the light source intensity, and the backlight when the light source emits light according to the light source intensity. An estimation unit that estimates a distribution of light to be obtained, a correction unit that obtains a corrected video signal obtained by correcting the parallax image to be processed based on the distribution, a light source control unit that controls the light source according to the light source intensity, and the correction There is provided a stereoscopic display device and a stereoscopic display system comprising a panel control unit that controls the liquid crystal panel according to a video signal.
 本発明によれば、本発明の目的は、時分割方式立体ディスプレイが複数の光源を有する表示装置を用いた場合でも、高コントラストな映像を表示することが可能となる。 According to the present invention, an object of the present invention is to display a high-contrast video even when a time-division stereoscopic display uses a display device having a plurality of light sources.
第1の実施形態の立体表示装置の概要を説明する図。The figure explaining the outline | summary of the three-dimensional display apparatus of 1st Embodiment. 第1の実施形態の眼鏡を示す図。The figure which shows the spectacles of 1st Embodiment. 第1の実施形態の立体表示装置を示す図。The figure which shows the three-dimensional display apparatus of 1st Embodiment. 第1の実施形態の補正部を示す図。The figure which shows the correction | amendment part of 1st Embodiment. 立体画像と、表示する視差画像と、バックライトの輝度を説明する図。The figure explaining the brightness | luminance of a stereo image, the parallax image to display, and a backlight. バックライトの光源強度の例を示す図。The figure which shows the example of the light source intensity | strength of a backlight. 第1の実施形態の補正部の動作を示す図。The figure which shows operation | movement of the correction | amendment part of 1st Embodiment. 第2の実施形態の補正部を示す図。The figure which shows the correction | amendment part of 2nd Embodiment. 第2の実施形態の補正部の動作を示す図。The figure which shows operation | movement of the correction | amendment part of 2nd Embodiment.
 図面を参照して、本発明の実施の形態を説明する。なお、互いに同様の動作をする構成や処理には共通の符号を付して、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the structure and process which mutually perform the same operation | movement, and the overlapping description is abbreviate | omitted.
(第1の実施形態)
 本実施形態の立体表示装置は、時間分割方式で立体表示を行う液晶ディスプレイである。立体表示装置は、視差のある左目用画像と右目用画像とを交互に切換表示し、専用の眼鏡で左目用と右目用画像とに分離する。立体表示装置に表示される画像は2次元画像であるが、観察者の左眼と右眼とに視差のある画像が別々に表示されることで、両眼視差を利用した立体視が実現される。時間分割方式には、液晶シャッター眼鏡方式、偏光フィルタ眼鏡方式、RGB波帯分割フィルタ眼鏡方式などがある。本実施形態では、液晶シャッター眼鏡方式の眼鏡を用いた時間分割方式について例示する。時間分割方式は、フィールドシーケンシャル、フレームシーケンシャルのどちらでも構わないが、本実施形態では、フレームシーケンシャルの時分割方式について説明する。
(First embodiment)
The stereoscopic display device of the present embodiment is a liquid crystal display that performs stereoscopic display in a time division manner. The stereoscopic display device alternately displays a left-eye image and a right-eye image with parallax, and separates the left-eye image and the right-eye image with dedicated glasses. Although the image displayed on the stereoscopic display device is a two-dimensional image, stereoscopic images using binocular parallax are realized by displaying images with parallax separately for the left eye and right eye of the observer. The Examples of the time division method include a liquid crystal shutter glasses method, a polarization filter glasses method, and an RGB waveband division filter glasses method. In this embodiment, a time division method using liquid crystal shutter glasses is exemplified. The time division method may be either field sequential or frame sequential. In the present embodiment, a frame sequential time division method will be described.
 図1は、本実施形態の立体表示装置100の概要を説明する図である。 FIG. 1 is a diagram illustrating an overview of the stereoscopic display device 100 of the present embodiment.
 立体表示装置100は、異なる視点の複数の画像(以下、視差画像と記載)を時分割で切り替えて表示する。立体表示装置100は、スイッチング信号をフレーム毎に発信部110によって発信する。発信部110は赤外線等によって眼鏡200に液晶シャッター211の切り替えタイミングを示すスイッチング信号を眼鏡200に発信する。なお、立体表示装置100は、光の強度を光源毎に制御可能な光源を複数有するバックライトを備える液晶ディスプレイである。詳細な構成については図2を用いて後述する。 The stereoscopic display device 100 switches and displays a plurality of images with different viewpoints (hereinafter referred to as parallax images) in a time-sharing manner. The stereoscopic display device 100 transmits a switching signal by the transmission unit 110 for each frame. The transmitter 110 transmits a switching signal indicating the switching timing of the liquid crystal shutter 211 to the glasses 200 by infrared rays or the like. The stereoscopic display device 100 is a liquid crystal display including a backlight having a plurality of light sources that can control the intensity of light for each light source. A detailed configuration will be described later with reference to FIG.
 眼鏡200は、発信部110が発信するスイッチング信号を受信する受信部212と、スイッチング信号に同期して液晶シャッター211の左右の液晶シャッター211の開閉を駆動させる駆動部210を備える。立体表示装置100が表示する視差画像毎に、右目用の画像と左目用の画像とが時間的に交互に入光されるように駆動部210は液晶シャッター211を制御する。これにより、観察者は時間的に交互に右目、左目に視差のついた視差画像が入力される。それによって、観察者は2次元で立体表示装置100に表示された映像を、立体映像として認識することができる。 The glasses 200 include a receiving unit 212 that receives a switching signal transmitted from the transmitting unit 110, and a driving unit 210 that drives opening and closing of the left and right liquid crystal shutters 211 of the liquid crystal shutter 211 in synchronization with the switching signal. For each parallax image displayed by the stereoscopic display device 100, the drive unit 210 controls the liquid crystal shutter 211 so that the image for the right eye and the image for the left eye are alternately incident in time. Thereby, the observer inputs parallax images with parallax in the right eye and the left eye alternately in time. Thereby, the observer can recognize the image displayed on the stereoscopic display device 100 in two dimensions as a stereoscopic image.
 なお、立体表示装置100の発信部110と眼鏡200の受信部212とが無線通信する例について述べたが、有線通信であっても構わない。 In addition, although the example in which the transmission unit 110 of the stereoscopic display device 100 and the reception unit 212 of the glasses 200 perform wireless communication has been described, wired communication may be used.
 図2は、本実施形態の眼鏡200を示す図である。眼鏡200は、受信部212と、右目用・左目用それぞれの液晶シャッター211と、右目用・左目用それぞれの液晶シャッター211を駆動する駆動部210を備える。 FIG. 2 is a diagram showing the glasses 200 of the present embodiment. The spectacles 200 includes a receiving unit 212, a right-eye and left-eye liquid crystal shutter 211, and a right-eye and left-eye liquid crystal shutter 211.
 図3は、本実施形態の立体表示装置100を示す図である。入力映像信号は、複数の視差に対応した2次元の視差画像を有する。視差画像には、それぞれがどの視点に対応するかを示すマーカー等の視差情報が付されている。なお、視差画像は既にガンマ変換演算がなされているものとする。 FIG. 3 is a diagram showing the stereoscopic display device 100 of the present embodiment. The input video signal has a two-dimensional parallax image corresponding to a plurality of parallaxes. The parallax image is attached with parallax information such as a marker indicating which viewpoint each corresponds to. It is assumed that the parallax image has already been subjected to gamma conversion calculation.
 立体表示装置100は、算出部303と、補正部304と、推定部305と、映像補正部306と、液晶パネル301を制御するパネル制御部308と、バックライト302の各光源3021を制御する光源制御部307と、複数の光源3021がアレイ状に配されたバックライト302と、バックライトからの光を変調することで映像を表示領域において表示する液晶パネル301、スイッチング信号をフレーム毎に発信する発信部110、同期部309と、を有する。 The stereoscopic display device 100 includes a calculation unit 303, a correction unit 304, an estimation unit 305, a video correction unit 306, a panel control unit 308 that controls the liquid crystal panel 301, and a light source that controls each light source 3021 of the backlight 302. A control unit 307, a backlight 302 in which a plurality of light sources 3021 are arranged in an array, a liquid crystal panel 301 that displays an image in a display area by modulating light from the backlight, and a switching signal is transmitted for each frame. A transmission unit 110 and a synchronization unit 309.
 算出部303は、光源の空間的な配置に基づいて表示領域を仮想的に分割した照明領域における視差画像の画素値に基づいて、光源の第1の強度を求める。照明領域における視差画像の輝度値の平均値もしくは最大値から第1の強度を算出するのが一般的である。第1の強度の算出方法は、これらの方法以外の種々の方法であってかまわない。なお、本実施形態では1つの照明領域毎に1つの光源3021が対応する例について説明するが、1つの照明領域に複数の光源3021が対応する構成であってもよい。また、各照明領域の一部が重なるように設定しても構わない。 The calculation unit 303 obtains the first intensity of the light source based on the pixel value of the parallax image in the illumination area obtained by virtually dividing the display area based on the spatial arrangement of the light sources. In general, the first intensity is calculated from the average value or the maximum value of the luminance values of the parallax images in the illumination area. The first intensity calculation method may be various methods other than these methods. In the present embodiment, an example in which one light source 3021 corresponds to one illumination area will be described, but a configuration in which a plurality of light sources 3021 correspond to one illumination area may be employed. Moreover, you may set so that a part of each illumination area may overlap.
 補正部304は、処理対象の視差画像と同じ視点であり、表示時刻が前の視差画像について求めた光源強度と、処理対象の視差画像について求めた第1の強度との変動が小さくなるように第1の強度を補正し光源強度を求める。補正部304の詳細な構成については図4を用いて後述する。 The correction unit 304 is at the same viewpoint as the parallax image to be processed, and the variation between the light source intensity obtained for the parallax image with the previous display time and the first intensity obtained for the parallax image to be processed is reduced. The first intensity is corrected to obtain the light source intensity. A detailed configuration of the correction unit 304 will be described later with reference to FIG.
 推定部305は、補正部304による補正後の光源強度に従って各光源3021が光を照射した場合に液晶パネル301に入射する光の強度分布を推定する。 The estimation unit 305 estimates the intensity distribution of light incident on the liquid crystal panel 301 when each light source 3021 emits light according to the light source intensity after correction by the correction unit 304.
 映像補正部306は、推定部305が推定した光の強度分布に従って視差画像の画素値を補正する。 The video correction unit 306 corrects the pixel value of the parallax image according to the light intensity distribution estimated by the estimation unit 305.
 光源制御部307は、光源強度に従って各光源3021を制御する。光源3021の制御方法として例えば、PWM(Pulse Width Modulation:パルス幅変調)等があるが、その他の方法であっても構わない。 The light source control unit 307 controls each light source 3021 according to the light source intensity. As a control method of the light source 3021, for example, there is PWM (Pulse Width Modulation), but other methods may be used.
 パネル制御部308は、補正後の視差画像を液晶パネル301に表示する様に制御する。 The panel control unit 308 performs control so that the corrected parallax image is displayed on the liquid crystal panel 301.
 同期部309は、光源制御部307が光源強度を変更するタイミングと、パネル制御部308が視差画像を液晶パネル301に書き込むタイミングと、発信部110が発信するスイッチング信号の送信タイミングとを同期させる。 The synchronization unit 309 synchronizes the timing at which the light source control unit 307 changes the light source intensity, the timing at which the panel control unit 308 writes the parallax image into the liquid crystal panel 301, and the transmission timing of the switching signal transmitted by the transmission unit 110.
 光源3021として、例えば発光ダイオード(LED)を用いることができる。LEDは白色であってもカラーLEDであっても構わない。光源3021の数が多いほど、コントラストの向上に効果的である。 As the light source 3021, for example, a light emitting diode (LED) can be used. The LED may be white or a color LED. The greater the number of light sources 3021, the more effective the contrast is.
 図4は補正部304の構成を示す図である。 FIG. 4 is a diagram illustrating a configuration of the correction unit 304.
 補正部304は、記憶部500、比較部501、フィルタ処理部502を有する。 The correction unit 304 includes a storage unit 500, a comparison unit 501, and a filter processing unit 502.
 記憶部500は、表示時間が処理対象の視差画像よりも前の視差画像に対して既に補正部304が求めた各光源3021の光源強度が記憶されている。 The storage unit 500 stores the light source intensity of each light source 3021 that the correction unit 304 has already obtained for the parallax image whose display time is earlier than the parallax image to be processed.
 比較部501は、記憶部500を参照し、処理対象の視差画像と同じ視点の視差画像に対して求めた光源強度の分布を読み込む。処理対象の視差画像の第1の光源と、処理対象の視差画像と同じ視点の視差画像に対して求めた光源強度とを、光源3021ごとに比較して光源強度の差分を算出する。処理対象の視差画像との比較対象は、同じ視点の視差画像であれば、直前のシーンに表示される視差画像でも、複数前のシーンの視差画像でもかまわない。なお、シーンとは同じ立体映像に対応する各視点の視差画像を意味する。例えば、入力映像信号が3視点の場合には、1つのシーンに異なる3視点の視差画像が含まれる。動きが少ない立体画像の場合、複数前のシーンの視差画像を比較に使用することによって、比較回数が減少するというメリットがある。 The comparison unit 501 refers to the storage unit 500 and reads the distribution of the light source intensity obtained for the parallax image at the same viewpoint as the parallax image to be processed. The first light source of the parallax image to be processed and the light source intensity obtained for the parallax image at the same viewpoint as the parallax image to be processed are compared for each light source 3021 to calculate the difference in light source intensity. As long as the target of comparison with the parallax image to be processed is a parallax image of the same viewpoint, the parallax image displayed in the immediately preceding scene or the parallax images of a plurality of previous scenes may be used. A scene means a parallax image of each viewpoint corresponding to the same stereoscopic video. For example, when the input video signal has three viewpoints, a parallax image with three different viewpoints is included in one scene. In the case of a stereoscopic image with little motion, there is an advantage that the number of comparisons is reduced by using the parallax images of a plurality of previous scenes for comparison.
 フィルタ処理部502は、比較部501が算出した光源強度の差分に対して高周波カットフィルタをかける。なお、フィルタは上記の例によらず、光源強度が強から弱へと変動する場合と、光源強度が弱から強へと変動する場合とで重み付けを変更する高周波カットフィルタであっても構わない。具体的には、光源強度が弱から強へと変動する場合には重みを大きくし、光源強度が強から弱へと変動する場合には重みを小さくするのが好ましい。暗い画面から明るい画面に変化するときは、急峻に輝度を上げる方がコントラストのある映像表示が可能なためである。いずれのフィルタも、人間の視覚特性を考慮して設定されたフィルタであることが好ましい。差分量をフィルタ処理して求めた補正量を第1の光源輝度に加算し、処理対象の視差画像に対応する光源輝度を算出する。これによって、フィルタ処理部502による同じ視点の視差画像間で光源強度の変動が小さくなるような補正をすることが出来る。同じ視点の視差画像間で光源強度の変動が小さくなるため、バックライトの輝度変動によるちらつきの知覚を抑制することができる。 The filter processing unit 502 applies a high frequency cut filter to the light source intensity difference calculated by the comparison unit 501. The filter is not limited to the above example, and may be a high-frequency cut filter that changes the weighting when the light source intensity varies from strong to weak and when the light source intensity varies from weak to strong. . Specifically, it is preferable to increase the weight when the light source intensity varies from weak to strong, and to decrease the weight when the light source intensity varies from strong to weak. This is because when the screen changes from a dark screen to a bright screen, a sharper increase in brightness enables a contrasted image display. Any of the filters is preferably a filter set in consideration of human visual characteristics. The correction amount obtained by filtering the difference amount is added to the first light source luminance, and the light source luminance corresponding to the parallax image to be processed is calculated. As a result, it is possible to perform correction so that the fluctuation of the light source intensity between the parallax images of the same viewpoint by the filter processing unit 502 becomes small. Since fluctuations in light source intensity between parallax images at the same viewpoint are reduced, flicker perception due to luminance fluctuations in the backlight can be suppressed.
 図5は、入力映像信号と、表示する映像と、バックライトの輝度を説明する図である。図5では、観賞できる視点数が3視点の場合の例について示す。横軸は、表示時刻を示す
 図5(a)は、観察者に認識させる立体画像を示す。白い輝点が画面上を下から上に移動する立体画像を表示する。401は時刻t11~t13に表示するシーンの視差画像によって観察者に認識させる立体画像を示す。402は時刻t21~t23に表示するシーンの視差画像によって観察者に認識させる立体画像を示す。403は時刻t31~t33に表示するシーンの視差画像によって観察者に認識させる立体画像を示す。
FIG. 5 is a diagram illustrating the input video signal, the video to be displayed, and the luminance of the backlight. FIG. 5 shows an example where the number of viewable viewpoints is three. The horizontal axis shows the display time. FIG. 5A shows a stereoscopic image to be recognized by the observer. A stereoscopic image in which white bright spots move from bottom to top on the screen is displayed. Reference numeral 401 denotes a stereoscopic image that is recognized by an observer based on a parallax image of a scene displayed at times t 11 to t 13 . Reference numeral 402 denotes a stereoscopic image that is recognized by the observer based on a parallax image of a scene displayed at times t 21 to t 23 . Reference numeral 403 denotes a stereoscopic image that is recognized by the observer based on a parallax image of a scene displayed at times t 31 to t 33 .
 図5(b)は、液晶パネル301に表示させる視差画像を示す。同じ立体画像に対応する視点1~3の3枚の視差画像が対応し、同じシーンに含まれる。104は時刻t11に表示する視点1の視差画像を、105は時刻t12に表示する視点2の視差画像を、106は時刻t13に表示する視点3の視差画像を示す。107は時刻t21に表示する視点1の視差画像を、108は時刻t22に表示する視点2の視差画像を、109は時刻t23に表示する視点3の視差画像を示す。110は時刻t31に表示する視点1の視差画像を、111は時刻t32に表示する視点2の視差画像を、112は時刻t33に表示する視点3の視差画像を示す。104~106、107~109、110~112はそれぞれ同じ立体画像と対応する同シーンである。 FIG. 5B shows a parallax image displayed on the liquid crystal panel 301. Three parallax images of viewpoints 1 to 3 corresponding to the same stereoscopic image correspond and are included in the same scene. 104 parallax image of the view 1 to view the time t 11, 105 is a parallax image of the view 2 that displays the time t 12, 106 denotes a parallax image of the view 3 to display the time t 13. 107 shows the parallax image of viewpoint 1 displayed at time t 21 , 108 shows the parallax image of viewpoint 2 displayed at time t 22 , and 109 shows the parallax image of viewpoint 3 displayed at time t 23 . 110 parallax image of the view 1 to view the time t 31, 111 is a parallax image of the view 2 that displays the time t 32, 112 denotes a parallax image of the view 3 to display the time t 33. 104 to 106, 107 to 109, and 110 to 112 are the same scenes corresponding to the same stereoscopic image.
 図5(c)は、(b)に示した各視差画像に対応するバックライト302の光源強度の分布を模式的に示す図である。図5(c)に示す光源強度は、補正部304によって補正後の光源強度である。113は時刻t11に表示する104に対する光源強度の分布を、114は時刻t12に表示する105に対する光源強度の分布を、115は時刻t13に表示する106に対する光源強度の分布を、116は時刻t21に表示する107に対する光源強度の分布を、117は時刻t22に表示する108に対する光源強度の分布を、118は時刻t23に表示する109に対する光源強度の分布119を、119は時刻t31に表示する110に対する光源強度の分布を、120は時刻t32に表示する111に対する光源強度の分布を、121は時刻t33に表示する112に対する光源強度の分布を示す。 FIG. 5C is a diagram schematically illustrating a light source intensity distribution of the backlight 302 corresponding to each parallax image illustrated in FIG. The light source intensity shown in FIG. 5C is the light source intensity after correction by the correction unit 304. 113 is a light source intensity distribution for 104 displayed at time t 11 , 114 is a light source intensity distribution for 105 displayed at time t 12 , 115 is a light source intensity distribution for 106 displayed at time t 13 , and 116 is the distribution of the light source intensity for 107 to be displayed at a time t 21, the 117 distribution of the light source intensity for 108 to be displayed at a time t 22, 118 the distribution 119 of the light source intensity for 109 to display the time t 23, the 119 time The light source intensity distribution for 110 displayed at t 31 , 120 the light source intensity distribution for 111 displayed at time t 32 , and 121 the light source intensity distribution for 112 displayed at time t 33 .
 補正部304の動作を、図5を用いて具体的に説明する。時刻t32に表示する視点2の視差画像111が処理対象の視差画像である場合について例示する。比較部501は、処理対象の視差画像111と同じ視点2であり、シーン3の直前のシーン2の視差画像108に対して求めた光源強度の分布117を読み込み、光源3021ごとの変動量(差分)を求める。フィルタ処理部502は、光源3021ごとの変動量(差分)を抑制するような光源強度の分布120を算出する。なお、視差画像111との比較対象は、同じ視点の視差画像であれば、シーン3の直前のシーン2に表示される視差画像108でなくても構わない。例えば、シーン3の2つ前のシーン1に表示される視点2の視差画像105等であってもよい。 The operation of the correction unit 304 will be specifically described with reference to FIG. Parallax images 111 of view 2 to display the time t 32 is illustrated for the case where a parallax image to be processed. The comparison unit 501 reads the light source intensity distribution 117 obtained from the parallax image 108 of the scene 2 immediately before the scene 3 that is the same viewpoint 2 as the parallax image 111 to be processed, and the variation amount (difference) for each light source 3021 is read. ) The filter processing unit 502 calculates a light source intensity distribution 120 that suppresses the fluctuation amount (difference) for each light source 3021. Note that the object to be compared with the parallax image 111 may not be the parallax image 108 displayed in the scene 2 immediately before the scene 3 as long as it is a parallax image of the same viewpoint. For example, the parallax image 105 of the viewpoint 2 displayed in the scene 1 two scenes before the scene 3 may be used.
 図6は、算出されたバックライト302の光源強度の例を示す図である。図6は、照明領域の数が8×4の場合の例を示す。各数値は、各光源3021の光源強度を8ビットで示した値である。 FIG. 6 is a diagram illustrating an example of the calculated light source intensity of the backlight 302. FIG. 6 shows an example in which the number of illumination areas is 8 × 4. Each numerical value is a value indicating the light source intensity of each light source 3021 in 8 bits.
 図7は、本実施形態の補正部304の動作を示す図である。 FIG. 7 is a diagram illustrating the operation of the correction unit 304 of the present embodiment.
 比較部501は、処理対象の視差画像と同じ視点であり、前のシーンの視差画像について算出した光源強度の分布を読み込む。前のシーンの基準視点の視差画像の光源強度の分布と、処理対象のシーンの基準視点の視差画像について算出部303が求めた第1の強度の分布とを比較し、差分量を算出する(S72)。 The comparison unit 501 reads the light source intensity distribution calculated for the parallax image of the previous scene, which is the same viewpoint as the parallax image to be processed. The difference amount is calculated by comparing the distribution of the light source intensity of the parallax image of the reference viewpoint of the previous scene with the distribution of the first intensity obtained by the calculation unit 303 for the parallax image of the reference viewpoint of the scene to be processed ( S72).
 フィルタ処理部502は、前述のフィルタ処理による補正を行い、光源輝度を算出する(S73)。 The filter processing unit 502 performs correction by the above-described filter processing and calculates the light source luminance (S73).
 記憶部500は、S73で算出した光源輝度を記憶する(S74)。 The storage unit 500 stores the light source luminance calculated in S73 (S74).
 同じシーン内の全ての視差画像について第1の強度を補正した光源強度を算出したかを判定する(S78)。補正を行っていない視差画像が有る場合には(S78,NO)、S75に戻り、補正を行っていない視差画像の光源強度を求める。補正を行っていない視差画像が無い場合には(S78,YES)、同じシーンの視差画像の光源強度の補正を終了する。 It is determined whether the light source intensity obtained by correcting the first intensity is calculated for all parallax images in the same scene (S78). If there is a parallax image that has not been corrected (S78, NO), the process returns to S75 to determine the light source intensity of the parallax image that has not been corrected. If there is no parallax image that has not been corrected (S78, YES), the correction of the light source intensity of the parallax image of the same scene is terminated.
 また、液晶パネル301の表示領域周辺の照度を検出するセンサ(例えば光センサなど)を設け、算出部303は、センサからの照度の情報をもとに、光源強度算出する構成であっても構わない。 Further, a sensor (for example, an optical sensor) that detects the illuminance around the display area of the liquid crystal panel 301 may be provided, and the calculation unit 303 may be configured to calculate the light source intensity based on the illuminance information from the sensor. Absent.
 1つの視点において鑑賞する画像は、その視点の視差画像であり、他視点の視差画像の影響は受けない。よって、視差画像間で行われた光源強度の変動を調整する必要ない。本実施形態によれば、同じ視点間で光源強度の変動を抑制する補正を行うため、複数の光源を有する液晶表示装置の時分割方式立体表示装置において、バックライトの制御による高コントラストな映像を得ることが可能となる。 An image to be viewed from one viewpoint is a parallax image of that viewpoint, and is not affected by the parallax image of another viewpoint. Therefore, it is not necessary to adjust the fluctuation of the light source intensity performed between the parallax images. According to the present embodiment, in order to perform correction for suppressing fluctuations in light source intensity between the same viewpoints, a high-contrast image by controlling the backlight is displayed in a time-division stereoscopic display device of a liquid crystal display device having a plurality of light sources. Can be obtained.
 (第2の実施形態)
 本実施形態では、同じシーン内の1つの基準となる視点(以下、基準視点と記載)の視差画像について第1の実施形態で示した補正部304による補正を行う。同じシーン内のその他の視点の視差画像は、基準となる視点画像の補正量を、処理対象内の視差画像内の視差量に応じて位置をシフトさせて補正量を算出する。算出した補正量を第1の強度に加算することで処理対象の視差画像の光源輝度を補正する点が第1の実施形態とは異なる。
(Second Embodiment)
In the present embodiment, the correction unit 304 shown in the first embodiment performs correction on a parallax image of one reference viewpoint (hereinafter referred to as a reference viewpoint) in the same scene. For the parallax images of other viewpoints in the same scene, the correction amount is calculated by shifting the position of the correction amount of the reference viewpoint image according to the parallax amount in the parallax image in the processing target. The difference from the first embodiment is that the light source luminance of the parallax image to be processed is corrected by adding the calculated correction amount to the first intensity.
 図8は、本実施形態の補正部304を示す図である。 FIG. 8 is a diagram illustrating the correction unit 304 of the present embodiment.
 補正部304は、視差画像間の視差量を検出する検出部5031と、フィルタ処理部5021とをさらに備える。 The correction unit 304 further includes a detection unit 5031 that detects the amount of parallax between parallax images, and a filter processing unit 5021.
 検出部5031は、基準視点の視差画像と、処理対象の視差画像との間の視差量を検出する。視差量とは、同じシーン内の視差画像間での網膜上に写る移動量・ずれの量に相当する。視差量の検出には、代表的なものとしてブロックマッチング法がある。また、各視差画像でまずエッジやコーナー点などの特徴点を抽出し、その特徴点どうしの対応を求めるというやり方であっても構わない。なお、視差量の求め方は上記した例に限定されない。 The detecting unit 5031 detects the amount of parallax between the parallax image of the reference viewpoint and the parallax image to be processed. The amount of parallax corresponds to the amount of movement / shift that appears on the retina between parallax images in the same scene. A block matching method is a typical method for detecting the amount of parallax. In addition, a feature may be used in which feature points such as edges and corner points are first extracted from each parallax image, and correspondence between the feature points is obtained. The method for obtaining the amount of parallax is not limited to the above example.
 フィルタ処理部5021は、基準となる視点の視差画像に対してはフィルタ処理部502と同様の補正処理を行う。 The filter processing unit 5021 performs the same correction process as the filter processing unit 502 on the reference viewpoint parallax image.
 図9は、本実施形態の補正部304の動作を示す図である。 FIG. 9 is a diagram illustrating the operation of the correction unit 304 of the present embodiment.
 比較部501は、基準となる視点(以下、基準視点と記載)を設定する(S71)。基準視点はあらかじめ定められていても良い。 The comparison unit 501 sets a reference viewpoint (hereinafter referred to as a reference viewpoint) (S71). The reference viewpoint may be determined in advance.
 比較部501は、前のシーンで基準視点の視差画像について算出した光源強度の分布を読み込む。前のシーンの基準視点の視差画像の光源強度の分布と、処理対象のシーンの基準視点の視差画像について算出部303が求めた第1の強度の分布とを比較し、差分量を算出する(S72)。 The comparison unit 501 reads the light source intensity distribution calculated for the parallax image of the reference viewpoint in the previous scene. The difference amount is calculated by comparing the distribution of the light source intensity of the parallax image of the reference viewpoint of the previous scene with the distribution of the first intensity obtained by the calculation unit 303 for the parallax image of the reference viewpoint of the scene to be processed ( S72).
 フィルタ処理部5021は、基準視点の視差画像に対して第1の実施形態のフィルタ処理部502と同様の補正処理を行う(S73)。 The filter processing unit 5021 performs the same correction process as the filter processing unit 502 of the first embodiment on the parallax image of the reference viewpoint (S73).
 記憶部500は、S73で算出した光源輝度を記憶する(S74)。 The storage unit 500 stores the light source luminance calculated in S73 (S74).
 検出部5031は、基準視点の視差画像と、処理対象の同じシーン内のその他の視点の視差画像との間の視差量を検出する(S75)。基準となる画像で対応をもとめようとしている位置の画素の周囲のある領域(ブロック)内の画素をテンプレートとし、テンプレートマッチングを用いて対応点を求める。マッチングには、代表的なものとして、ブロック内の輝度を比較するという方法がある。立体画像として表示される視差画像では、あらかじめ撮影条件やカメラのキャリブレーションデータが明らかになっている場合、探索範囲はエピポーラ線上に設定することができる。マッチングの際の誤差を軽減し、計算時間を短縮することが可能である。エピポーラ線について説明する。1枚の画像上の位置から得られる空間の位置は、空間中のある直線(視線)上に制限される。したがって、他方の画像上における投影点(対応点)の位置は、その視線を他方の画像に投影したときにできる画像中の直線状に制限される。この直線のことをエピポーラ線とよぶ。 The detection unit 5031 detects the amount of parallax between the parallax image of the reference viewpoint and the parallax images of other viewpoints in the same scene to be processed (S75). Corresponding points are obtained using template matching using pixels in a region (block) around a pixel at a position where a correspondence is to be obtained in a reference image. As a typical matching method, there is a method of comparing luminances in blocks. In the parallax image displayed as a stereoscopic image, the search range can be set on the epipolar line when the shooting conditions and camera calibration data are already known. It is possible to reduce errors in matching and shorten calculation time. The epipolar line will be described. The position of the space obtained from the position on one image is limited to a certain straight line (line of sight) in the space. Therefore, the position of the projection point (corresponding point) on the other image is limited to a straight line in the image formed when the line of sight is projected on the other image. This straight line is called an epipolar line.
 フィルタ処理部5021は、S73で算出した基準視点の視差画像に対応する補正量をS75で算出した視差量に基づいて位置をシフトさせた補正量を算出する(S76)。 The filter processing unit 5021 calculates a correction amount obtained by shifting the position of the correction amount corresponding to the parallax image of the reference viewpoint calculated in S73 based on the parallax amount calculated in S75 (S76).
 フィルタ処理部5021は、S76で算出した補正量を、処理対象の視差画像の第1の強度に加算して光源強度を算出する(S77)。 The filter processing unit 5021 calculates the light source intensity by adding the correction amount calculated in S76 to the first intensity of the parallax image to be processed (S77).
 同じシーン内の全ての視差画像について第1の強度を補正した光源強度を算出したかを判定する(S78)。補正を行っていない視差画像が有る場合には(S78,NO)、S75に戻り、補正を行っていない視差画像の光源強度を求める。補正を行っていない視差画像が無い場合には(S78,YES)、同じシーンの視差画像の光源強度の補正を終了する。 It is determined whether the light source intensity obtained by correcting the first intensity is calculated for all parallax images in the same scene (S78). If there is a parallax image that has not been corrected (S78, NO), the process returns to S75 to determine the light source intensity of the parallax image that has not been corrected. If there is no parallax image that has not been corrected (S78, YES), the correction of the light source intensity of the parallax image of the same scene is terminated.
 通常同じ視点の視差画像間で光源強度を算出するため、観察できる視点数(視差数)が多くなる程、光源強度の算出に必要な演算量が増加していた。本実施形態の立体表示装置によれば、基準視点の視差画像と対応する光源強度について行ったフィルタ処理を、他の視点の視差画像と対応する光源強度を算出するために視差量に応じてシフトさせて用いるため、演算量を削減できる。 Usually, since the light source intensity is calculated between parallax images of the same viewpoint, the amount of calculation required for calculating the light source intensity increases as the number of viewpoints (number of parallaxes) that can be observed increases. According to the stereoscopic display device of this embodiment, the filter processing performed on the light source intensity corresponding to the parallax image of the reference viewpoint is shifted according to the amount of parallax in order to calculate the light source intensity corresponding to the parallax image of the other viewpoint. Therefore, the calculation amount can be reduced.
100・・・立体表示装置
  110・・・発信部
200・・・眼鏡
  210・・・駆動部
  211・・・液晶シャッター
  212・・・受信部
301・・・液晶パネル
302・・・バックライト
  3021・・・光源
 303・・・算出部
304・・・補正部
305・・・推定部
306・・・映像補正部
307・・・光源制御部
308・・・パネル制御部
500・・・記憶部
501・・・比較部
5031・・・検出部
502、5021・・・フィルタ処理部
DESCRIPTION OF SYMBOLS 100 ... Three-dimensional display device 110 ... Transmitting part 200 ... Glasses 210 ... Drive part 211 ... Liquid crystal shutter 212 ... Receiving part 301 ... Liquid crystal panel 302 ... Backlight 3021. ··· Light source 303 ··· Calculation unit 304 ··· Correction unit 305 ··· Estimation unit 306 ··· Image correction unit 307 ··· Light source control unit 308 ··· Panel control unit 500 ··· Storage unit 501 ..Comparison unit 5031 ... detection unit 502, 5021 ... filter processing unit

Claims (4)

  1.  複数の視点に対応する視差画像を時間毎に表示することで立体映像を表示する立体表示装置において、
     複数の光源が配されたバックライトと、
     前記バックライトからの光を変調することで映像を表示領域において表示する液晶パネルと、
     前記光源の空間的な配置に基づいて前記表示領域を仮想的に分割した照明領域における処理対象の視差画像の画素値に基づいて、前記光源の第1の強度を求める算出部と、
     前記処理対象の視差画像と同じ視点であり前記処理対象の視差画像より前に表示される視差画像における前記光源強度と、前記第1の強度との変動が小さくなるように前記第1の強度を補正し光源強度を求める補正部と
     前記光源強度に従って前記光源が発光した場合の前記バックライトが発する光の分布を推定する推定部と、
      前記分布に基づいて前記処理対象の視差画像を補正した補正映像信号を求める補正部と、
      前記光源強度に従って前記光源を制御する光源制御部と、
      前記補正映像信号に従って前記液晶パネルを制御するパネル制御部と、
      を備えたことを特徴とする立体表示装置。
    In a stereoscopic display device that displays stereoscopic video by displaying parallax images corresponding to a plurality of viewpoints for each time,
    A backlight with multiple light sources,
    A liquid crystal panel that displays an image in a display area by modulating light from the backlight; and
    A calculation unit that obtains a first intensity of the light source based on a pixel value of a parallax image to be processed in an illumination region obtained by virtually dividing the display region based on a spatial arrangement of the light source;
    The first intensity is set so that the variation between the light source intensity and the first intensity in the parallax image displayed at the same viewpoint as the parallax image to be processed and displayed before the parallax image to be processed becomes small. A correction unit that corrects and obtains light source intensity; an estimation unit that estimates a distribution of light emitted by the backlight when the light source emits light according to the light source intensity;
    A correction unit for obtaining a corrected video signal obtained by correcting the parallax image to be processed based on the distribution;
    A light source controller that controls the light source according to the light source intensity;
    A panel controller for controlling the liquid crystal panel according to the corrected video signal;
    A stereoscopic display device comprising:
  2.  前記補正部は、
       前記処理対象の視差画像と同じ視点であり前記処理対象の視差画像より前に表示される映像信号における前記光源強度と、前記第1の強度との、差分を前記照明領域毎に算出する比較部と、
     前記差分の変動が小さくなるように前記差分をフィルタ処理し補正量を算出し、前記補正量を前記第1の強度に加算するフィルタ処理部と、
     を備えたことを特徴とする請求項1記載の立体表示装置
    The correction unit is
    A comparison unit that calculates the difference between the light source intensity and the first intensity in the video signal that is the same viewpoint as the parallax image to be processed and displayed before the parallax image to be processed for each illumination area When,
    A filter processing unit that filters the difference so as to reduce variation in the difference, calculates a correction amount, and adds the correction amount to the first intensity;
    The stereoscopic display device according to claim 1, further comprising:
  3.  前記補正部は、
       処理対象の視差画像と、同じシーンの基準視点の視差画像との視差量を検出する検出部をさらに備え、
     前記フィルタ処理部は、前記視差量に基づいて、前記基準視点の視差画像について算出した前記補正量をシフトさせた補正量を算出し、該補正量を前記処理対象の視差画像について求めた前記第1の強度に加算する、
     ことを特徴とする請求項2記載の立体表示装置。
    The correction unit is
    A detection unit that detects the amount of parallax between the parallax image to be processed and the parallax image of the reference viewpoint of the same scene;
    The filter processing unit calculates a correction amount obtained by shifting the correction amount calculated for the parallax image of the reference viewpoint based on the parallax amount, and obtains the correction amount for the parallax image to be processed. Add to the intensity of 1.
    The three-dimensional display device according to claim 2.
  4.  左目、右目毎に開閉可能なシャッタと、
     前記シャッタの開閉タイミングの信号を受信部と、
    を備えたメガネ装置と、
     複数の光源が配されたバックライトと、
     前記バックライトからの光を変調することで映像を表示領域において表示する液晶パネルと、
     前記光源の空間的な配置に基づいて前記表示領域を仮想的に分割した照明領域における処理対象の視差画像の画素値に基づいて、前記光源の第1の強度を求める算出部と、
     前記処理対象の視差画像と同じ視点であり前記処理対象の視差画像より前に表示される映像信号における前記光源強度と、前記第1の強度と、の変動が小さくなるように前記第1の強度を補正し光源強度を求める補正部と
     前記光源強度に従って前記光源が発光した場合の前記バックライトが発する光の分布を推定する推定部と、
      前記分布に基づいて前記処理対象の視差画像を補正した補正映像信号を求める補正部と、
      前記光源強度に従って前記光源を制御する光源制御部と、
      前記補正映像信号に従って前記液晶パネルを制御するパネル制御部と、
      前記メガネ装置にシャッタの開閉タイミングの信号を発信する発信部と、
      前記光源制御部が光源強度を変更するタイミングと、前記パネル制御部が視差画像を液晶パネルに書き込むタイミングと、発信部が発信するスイッチング信号の送信タイミングとを同期させる同期部と、
     を備えた表示装置と、
     を備え、複数の視点に対応する視差画像を時間毎に表示装置に表示することで立体映像を表示する立体表示システム。
    A shutter that can be opened and closed for each left eye and right eye;
    A signal receiving / closing timing signal of the shutter; and
    A glasses apparatus comprising:
    A backlight with multiple light sources,
    A liquid crystal panel that displays an image in a display area by modulating light from the backlight; and
    A calculation unit that obtains a first intensity of the light source based on a pixel value of a parallax image to be processed in an illumination region obtained by virtually dividing the display region based on a spatial arrangement of the light source;
    The first intensity so that variation between the light source intensity and the first intensity in a video signal displayed at the same viewpoint as the parallax image to be processed and displayed before the parallax image to be processed becomes small. A correction unit for correcting light source intensity and an estimation unit for estimating a distribution of light emitted by the backlight when the light source emits light according to the light source intensity;
    A correction unit for obtaining a corrected video signal obtained by correcting the parallax image to be processed based on the distribution;
    A light source controller that controls the light source according to the light source intensity;
    A panel controller for controlling the liquid crystal panel according to the corrected video signal;
    A transmission unit for transmitting a shutter opening / closing timing signal to the glasses device;
    A synchronization unit that synchronizes a timing at which the light source control unit changes the light source intensity, a timing at which the panel control unit writes a parallax image to the liquid crystal panel, and a transmission timing of a switching signal transmitted by the transmission unit;
    A display device comprising:
    A stereoscopic display system that displays stereoscopic images by displaying parallax images corresponding to a plurality of viewpoints on a display device every time.
PCT/JP2009/003636 2009-07-31 2009-07-31 3d display apparatus and 3d display system WO2011013175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003636 WO2011013175A1 (en) 2009-07-31 2009-07-31 3d display apparatus and 3d display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003636 WO2011013175A1 (en) 2009-07-31 2009-07-31 3d display apparatus and 3d display system

Publications (1)

Publication Number Publication Date
WO2011013175A1 true WO2011013175A1 (en) 2011-02-03

Family

ID=43528858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003636 WO2011013175A1 (en) 2009-07-31 2009-07-31 3d display apparatus and 3d display system

Country Status (1)

Country Link
WO (1) WO2011013175A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492906A3 (en) * 2011-02-25 2012-09-05 Kabushiki Kaisha Toshiba Image display apparatus
JP2018528631A (en) * 2015-12-10 2018-09-27 グーグル エルエルシー Stereo autofocus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259395A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Stereoscopic display method and stereoscopic display apparatus
JP2008292577A (en) * 2007-05-22 2008-12-04 Panasonic Electric Works Co Ltd Three-dimensional video display system
JP2009025436A (en) * 2007-07-18 2009-02-05 Seiko Epson Corp Electro-optical device, display method and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259395A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Stereoscopic display method and stereoscopic display apparatus
JP2008292577A (en) * 2007-05-22 2008-12-04 Panasonic Electric Works Co Ltd Three-dimensional video display system
JP2009025436A (en) * 2007-07-18 2009-02-05 Seiko Epson Corp Electro-optical device, display method and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492906A3 (en) * 2011-02-25 2012-09-05 Kabushiki Kaisha Toshiba Image display apparatus
JP2018528631A (en) * 2015-12-10 2018-09-27 グーグル エルエルシー Stereo autofocus

Similar Documents

Publication Publication Date Title
JP6061852B2 (en) Video display device and video display method
US8456516B2 (en) Methods and systems for stereoscopic imaging
KR102130123B1 (en) Multi view image display apparatus and control method thereof
JP5297531B2 (en) Stereoscopic image display device
TW201405483A (en) Image data processing method and stereoscopic image display using the same
US9967536B2 (en) Video format determination device, video format determination method, and video display device
TW201215096A (en) Image display device, image display viewing system and image display method
US9986226B2 (en) Video display method and video display apparatus
KR101937710B1 (en) Display Apparatus For Displaying Three Dimensional Picture And Method For Driving The Same
JP2011250229A (en) Video signal processing apparatus, video signal processing method, and computer program
KR101966335B1 (en) Method for displaying an image in three dimensions on a display system and display system for displaying an image in three dimensions
JP5257248B2 (en) Image processing apparatus and method, and image display apparatus
US9167237B2 (en) Method and apparatus for providing 3-dimensional image
JP2011186224A5 (en)
US20120127288A1 (en) 2D-to-3D DELAY COMPENSATION SYSTEM AND METHOD THEREOF
US8514274B2 (en) Apparatus for compensating 3D image in projector and method thereof
WO2011013175A1 (en) 3d display apparatus and 3d display system
US9392261B2 (en) Image processing apparatus, image processing method, and camera module for frame timing adjustment
JP2012145656A (en) Stereoscopic image display device and control method therefor
US9756321B2 (en) Three-dimensional image display device and method of displaying three dimensional image
US8952957B2 (en) Three-dimensional display apparatus
US9955146B2 (en) Display device and driving method thereof
US8947425B2 (en) Method and apparatus for processing and displaying a three-dimensional image with variable depth effect
JP2012109706A (en) Stereoscopic image display device and stereoscopic image display system
WO2016068066A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP