WO2011007420A1 - Control device for vehicle - Google Patents

Control device for vehicle Download PDF

Info

Publication number
WO2011007420A1
WO2011007420A1 PCT/JP2009/062743 JP2009062743W WO2011007420A1 WO 2011007420 A1 WO2011007420 A1 WO 2011007420A1 JP 2009062743 W JP2009062743 W JP 2009062743W WO 2011007420 A1 WO2011007420 A1 WO 2011007420A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
speed
output torque
engine
output
Prior art date
Application number
PCT/JP2009/062743
Other languages
French (fr)
Japanese (ja)
Inventor
光旗 松下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/062743 priority Critical patent/WO2011007420A1/en
Publication of WO2011007420A1 publication Critical patent/WO2011007420A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an apparatus for controlling a vehicle that uses an internal combustion engine that outputs power by burning fuel such as a gasoline engine, and more particularly, for example, shock caused by torque fluctuation at the time of shifting or fuel cut.
  • the present invention relates to a vehicle control device capable of executing torque down control for reducing the output torque of an internal combustion engine in order to prevent the occurrence of the engine.
  • the fuel supply is stopped, so that the operating state of the engine is forcibly rotated by the external force from the driving state where the power is output. Change to driven state. Therefore, the execution state of the fuel cut changes the operating state of the torque in the power transmission system, which may cause a shock or vibration, resulting in an uncomfortable feeling for the driver and the occupant.
  • shocks and vibrations due to torque fluctuations in the power transmission system may occur at the time of shifting in an automatic transmission provided on the output side of the engine, for example, in addition to the above-described fuel cut. is there.
  • torque down control that intentionally reduces the output torque of the internal combustion engine is performed. It has been broken.
  • the ignition timing for the air-fuel mixture in the combustion chamber of the internal combustion engine is retarded before the start of the fuel cut. The output torque is reduced.
  • Japanese Patent Laid-Open No. 2007-309218 discloses the ignition timing of an ignition plug provided in an engine for the purpose of preventing torque shock after returning from fuel cut and shortening unstable combustion time. An apparatus for controlling based on the above is described.
  • the device described in Japanese Patent Application Laid-Open No. 2007-309218 delays the ignition timing when returning from the fuel cut at the time of deceleration, and the magnitude of the engine speed and the torque converter rotation speed after the return from the fuel cut. Is configured to estimate the reverse rotation timing at which the reverse rotation occurs and retard the ignition timing based on the reverse rotation timing.
  • Japanese Patent Laid-Open No. 2006-57527 discloses that the engine torque during engine operation based on the idle signal and the fuel cut signal is to reduce vehicle shock and vibration caused by engine electronic throttle control.
  • An apparatus is described that is configured to gently change the throttle opening by limiting the change speed of the target throttle opening when it is determined that the direction of action is reversed.
  • Japanese Patent Application Laid-Open No. 7-293291 estimates the catalyst temperature according to the amount of fuel cut or ignition timing retard (retard) for the purpose of protecting the catalytic converter and the catalyst provided in the exhaust system of the vehicle.
  • the apparatus is configured to change the engine output reduction pattern in a direction to reduce the unburned components in the exhaust gas introduced into the catalytic converter. Is described.
  • the engine output torque can be reduced, that is, the engine torque down control can be executed. Therefore, it is possible to suppress the occurrence of a shock in the power transmission system caused by the engine operating state changing from the driving state to the driven state when the fuel cut is performed.
  • Such engine torque-down control is performed by, for example, retarding the ignition timing of the engine as in the devices described in the above-mentioned JP-A-8-246938 and JP-A-2007-309218.
  • it can be executed by controlling the electronic throttle valve of the engine as in the device described in Japanese Patent Application Laid-Open No. 2006-57527.
  • torque reduction by retarding the ignition timing of the engine is excellent in control responsiveness. Therefore, by executing the retard control of the ignition timing of the engine when performing the fuel cut as in the devices described in the above-mentioned Japanese Patent Application Laid-Open Nos. 8-246938 and 2007-309218.
  • the torque reduction control can be executed with good responsiveness, and the engine output torque can be quickly reduced. Therefore, the shock in the power transmission system accompanying the fuel cut can be appropriately prevented or suppressed.
  • the responsiveness of the deceleration operation can be further improved by further increasing the rate of decrease in the output torque of the engine when executing the torque down control.
  • the fuel cut execution time can be lengthened accordingly, and as a result, fuel efficiency is improved by the fuel cut. The effect can be further enhanced.
  • by performing a rapid torque-down control by increasing the rate of decrease of the output torque of the engine there is a possibility that a shock in the power transmission system due to the sudden torque fluctuation may newly occur.
  • the present invention has been made paying attention to the above technical problem, and performs torque down control as quickly as possible, and prevents or suppresses shock caused by torque fluctuation during the torque down control.
  • An object of the present invention is to provide a vehicle control device that can perform the above-described operation.
  • the present invention provides a vehicle control apparatus capable of executing fuel cut using an internal combustion engine as a power source and stopping or suppressing fuel supply to the internal combustion engine during traveling.
  • torque down control means for reducing the output torque of the internal combustion engine, and the rate of reduction when the output torque is reduced by the torque down control means are set as the output torque.
  • the rate of decrease is relatively increased, and the output torque is increased when the output torque is less than 0 including 0.
  • a control device for a vehicle comprising: torque down speed changing means for relatively slowing down the decrease speed when close to 0 A.
  • the torque down speed changing means sets, as the reduction speed, a first torque down speed that is relatively high when the output torque is far from the zero,
  • the vehicle control device includes means for setting a second torque down speed that is slower than the first torque down speed.
  • the present invention is the above invention, wherein the internal combustion engine includes a spark ignition engine, and the torque down control means reduces the output torque by retarding an ignition timing of the spark ignition engine. It is a control device of vehicles including.
  • the present invention further comprises a catalytic converter provided in an exhaust system of the internal combustion engine, and a catalyst temperature detecting means for detecting a temperature of the catalyst of the catalytic converter, and the torque down control means
  • the vehicle control device includes means for suppressing the rate of decrease. It is.
  • the invention further includes a torque converter that receives the output torque, amplifies the output torque in accordance with a speed ratio between the input member and the output member, and outputs the torque.
  • the changing means determines whether the output torque is far from the zero and the output torque is close to the zero based on the difference between the rotational speed of the output shaft of the internal combustion engine and the rotational speed of the output member.
  • a vehicle control apparatus including means.
  • a torque down control means for reducing the output torque of the internal combustion engine, and a reduction speed when the output torque is reduced by the torque down control means
  • the vehicle control apparatus includes torque down speed changing means for relatively slowing down the decrease speed.
  • the torque down speed changing means sets, as the reduction speed, a first torque down speed that is relatively high when the output torque is far from the zero,
  • the vehicle control device includes means for setting a second torque down speed that is slower than the first torque down speed.
  • the present invention is the above invention, wherein the internal combustion engine includes a spark ignition engine, and the torque down control means reduces the output torque by retarding an ignition timing of the spark ignition engine. It is a control device of vehicles including.
  • the present invention further comprises a catalytic converter provided in an exhaust system of the internal combustion engine, and a catalyst temperature detecting means for detecting a temperature of the catalyst of the catalytic converter, and the torque down control means
  • the vehicle control device includes means for suppressing the rate of decrease. It is.
  • the invention further includes a torque converter that receives the output torque, amplifies the output torque in accordance with a speed ratio between the input member and the output member, and outputs the torque.
  • the changing means determines whether the output torque is far from the zero and the output torque is close to the zero based on the difference between the rotational speed of the output shaft of the internal combustion engine and the rotational speed of the output member.
  • a vehicle control apparatus including means.
  • torque down control for reducing the output torque of the internal combustion engine is executed prior to the execution of the fuel cut.
  • the output torque to be reduced is still far from 0, the output torque can be quickly reduced at a fast reduction speed.
  • the output torque becomes close to 0, the output torque is gradually reduced at a slow decrease rate. Therefore, when the vehicle reverses from the driving state to the driven state in the vicinity where the output torque becomes zero, it is possible to prevent or suppress a shock or vibration caused by a sudden torque fluctuation or a large torque fluctuation amount. .
  • the output torque can be rapidly reduced until the output torque reaches near zero, the time required to reach the desired torque reduction amount is shortened as much as possible, and the fuel cut is started accordingly. You can expedite. As a result, the fuel cut execution time can be lengthened, and the fuel efficiency improvement effect by the fuel cut can be enhanced.
  • the output torque to be reduced when the torque down control is executed, if the output torque to be reduced is still far from 0, the output torque can be quickly reduced at the first torque down speed that is relatively fast. .
  • the output torque When the output torque becomes close to 0, the output torque is gradually reduced at the second torque down speed that is slower than the first torque down speed. Therefore, it is possible to reliably reduce the rate of decrease of the output torque in the vicinity where the output torque becomes zero.
  • the torque reduction control of the internal combustion engine is easily executed by retarding the ignition timing of the spark ignition engine.
  • the torque down amount and the decrease speed of the torque down control can be easily controlled.
  • the rate of decrease when the torque down control is executed is suppressed. Rapid retarding control is accompanied by a rise in the exhaust temperature of the internal combustion engine, which causes a catalyst temperature rise. Therefore, when the catalyst is at a high temperature, the rate of decrease in torque-down control is suppressed, that is, the retard amount or retard speed of retard control is suppressed, thereby preventing the catalyst from overheating and protecting the catalyst. be able to.
  • the rotational speed of the output shaft of the internal combustion engine and the torque converter By obtaining the difference from the rotation speed of the output member, it is possible to easily determine whether the output torque that is reduced by the torque-down control is far from 0 or close to 0.
  • the present invention when executing the torque down control for reducing the output torque of the internal combustion engine, if the output torque to be reduced is still far from 0, the output torque can be quickly reduced at a fast reduction speed. When the output torque becomes close to 0, the output torque is gradually reduced at a slow decrease rate. Therefore, when the vehicle reverses from the driving state to the driven state in the vicinity where the output torque becomes zero, it is possible to prevent or suppress a shock or vibration caused by a sudden torque fluctuation or a large torque fluctuation amount. .
  • FIG. 4 shows the configuration of the drive system and control system of the vehicle Ve to be controlled in the present invention.
  • reference numeral 1 denotes a power source 1 of the vehicle Ve.
  • an internal combustion engine that is a power device that burns fuel and outputs power is targeted.
  • the power source 1, that is, the internal combustion engine 1 is referred to as an engine (ENG) 1.
  • An automatic transmission (AT) 3 is connected to the output side of the engine 1 via a torque converter 2.
  • Drive wheels 7 are connected to the output side of the automatic transmission 3 via, for example, a propeller shaft 4, a differential 5, a drive shaft 6, and the like. That is, the output shaft 1a of the engine is connected to a pump impeller 2a that is an input member of the torque converter 2.
  • a turbine runner 2 b that is an output member of the torque converter 2 is connected to the input shaft 3 a of the automatic transmission 3. Therefore, the output torque of the engine 1 is input to the automatic transmission 3 via the torque converter 2, and is shifted according to the gear ratio set in the automatic transmission 3, and transmitted as drive torque to the drive wheel 7 side. It has come to be.
  • the engine 1 is an internal combustion engine.
  • the engine 1 is a spark ignition engine such as a gasoline engine, an LPG engine, or an alcohol fuel engine.
  • the engine 1 is configured to be able to electrically control operating conditions such as throttle opening (intake amount), fuel injection amount (fuel supply amount), intake / exhaust valve opening / closing operation, ignition timing, and the like.
  • the exhaust system of the engine 1 is provided with a catalytic converter 8 having an exhaust purification catalyst 8a.
  • a catalyst temperature sensor 9 for detecting the temperature of the catalyst 8a in the catalytic converter 8 is provided.
  • the torque converter 2 has a conventionally known configuration, and applies a spiral flow of oil generated by the pump impeller 2a to the turbine runner 2b to rotate the turbine runner 2b, and from the turbine runner 2b to the pump impeller 2a.
  • the flow direction of the oil returning to is controlled by a stator (not shown), and torque is transmitted through the oil.
  • the torque converter 2 is provided with a lock-up clutch 2c.
  • the lock-up clutch 2c is provided between an input-side member to which the pump impeller 2a is connected and an output-side member to which the turbine runner 2b is connected.
  • the input element and the output element are mechanically coupled to each other by a frictional force or the like. And is configured to transmit torque.
  • the automatic transmission 3 is a so-called electronically controlled transmission that performs shift control that changes the gear ratio by electrically controlling the hydraulic pressure, for example, and is, for example, a hydraulic control device (integrated in the automatic transmission 3 ( (Not shown) is configured to switch or change the gear position or gear ratio.
  • a transmission of various mechanisms such as a stepped automatic transmission or a belt-type or toroidal-type continuously variable transmission can be used.
  • the operation state of the engine 1 such as the throttle opening, the fuel injection amount, the intake / exhaust valve opening / closing operation, and the ignition timing, and the operation of the hydraulic control device and the actuator for executing the shift control of the automatic transmission 3 are performed.
  • An electronic control unit (ECU) 10 for controlling the state is provided.
  • the electronic control device 10 is composed of a central processing unit, a storage device, and a microcomputer mainly including an input / output interface.
  • the electronic control unit 10 includes, for example, an engine speed sensor 11 that detects the speed of the output shaft 1a of the engine 1, a turbine speed sensor 12 that detects the speed of the turbine runner 2b of the torque converter 2, and an accelerator pedal.
  • the output signal is input.
  • a control signal for controlling the releasing operation or a control signal for controlling the shifting operation of the automatic transmission 3 is output. Therefore, the control device for the vehicle Ve in the present invention is based on the control signal calculated and output by the electronic control device 10, and the operation control of the engine 1, the engagement control of the lockup clutch 2c, and the shift of the automatic transmission 3 are performed. It is configured to execute control and the like.
  • the engine 1 in order to reduce fuel consumption and improve fuel efficiency when the vehicle Ve is decelerating or coasting, for example, when the vehicle 1 is decelerating or coasting, the engine 1 is warmed up. Preconditions for starting the control are that it has been completed, that the engine 1 has a rotational speed equal to or higher than a predetermined speed, that the throttle opening is closed to about the idle opening, and that the accelerator pedal is returned. In the case where all of them are established, a so-called fuel cut can be executed that temporarily stops or suppresses the fuel supply to the engine 1.
  • the throttle opening of the engine 1 or the ignition timing it is possible to execute torque down control for intentionally or forcibly reducing the output torque of the engine 1.
  • the torque down control by retarding the ignition timing of the engine 1 has good control responsiveness, and the output torque of the engine 1 in the torque down control is controlled by controlling the retard amount and retard speed of the ignition timing. The amount of decrease or the rate of decrease can be easily controlled.
  • the present invention aims to execute torque reduction as quickly as possible, and to prevent or suppress shock caused by torque fluctuation at the time of torque reduction.
  • the control device is configured to execute the following control.
  • FIG. 1 is a flowchart for explaining an example of control by the control device of the present invention, and the routine shown in this flowchart is repeatedly executed every predetermined short time.
  • step S1 it is determined whether or not the driver has performed an accelerator-off operation. Specifically, it is determined whether or not the detected value of the accelerator switch 13 has been switched from ON to OFF, that is, whether or not an operation for returning the accelerator pedal that the driver has depressed has been performed based on a deceleration request or the like.
  • step S2 if the driver makes an accelerator-off operation, that is, if the detected value of the accelerator switch 13 is switched from ON to OFF, and if the determination in step S1 is affirmative, step S2 Then, prior to the fuel cut scheduled to be executed in the future, torque-down control for reducing the output torque of the engine 1 is executed. At the beginning of this torque-down control, the output torque of the engine 1 is reduced as rapidly as possible under the first torque-down speed that is relatively high.
  • the torque down control in the present invention is executed by retarding the ignition timing of the engine 1, for example. Specifically, by controlling the retard amount when retarding the ignition timing of the engine 1, the torque down amount of the torque down control, that is, the decrease amount of the output torque of the engine 1 is controlled. Further, by controlling the retarding speed at which the ignition timing of the engine 1 is retarded, the torque down speed of the torque down control, that is, the output torque decreasing speed of the engine 1 is controlled. Therefore, the first torque down speed can be set by retarding the ignition timing of the engine 1 at a predetermined retard speed with a relatively fast change speed.
  • the engine 1, the automatic transmission 3, the differential 5, and the like use gear mechanisms for transmitting power, and these gear mechanisms inevitably have backlash between the tooth surfaces of the gear pairs that mesh with each other. Exists. Therefore, when the torque transmission direction is switched as described above, the working tooth surface of the gear involved in power transmission changes. That is, the meshing side tooth surface and the non-meshing side tooth surface of the gear are interchanged. Therefore, if the torque fluctuation when the output torque of the engine 1 becomes zero and the torque transmission direction is switched is large, the impact when the working tooth surface changes during the backlash of the gear mechanism increases, and the vehicle Ve is operated. There is a possibility of giving a shock or discomfort to the passenger or passenger.
  • the torque reduction control of the engine 1 is executed prior to the start of the fuel cut. That is, the output torque of the engine 1 is reduced in advance before the start of fuel cut. Therefore, the torque fluctuation at the time of executing the fuel cut can be made as small as possible, and the occurrence of a shock due to the torque fluctuation accompanying the execution of the fuel cut can be prevented or suppressed.
  • the drive system from the engine 1 to the drive wheel 7 changes from the drive state in which the engine 1 outputs torque as described above to the drive wheel. It is determined whether or not it is just before reversing to the driven state where torque is input from 7 (step S3).
  • step S3 when the output torque of the engine 1 is reduced by the torque-down control, the time point when the torque becomes 0 is estimated and obtained.
  • the rotational speed (engine rotational speed) Ne of the output shaft 1a of the engine 1 and the rotational speed (turbine rotational speed) Nt of the turbine runner 2b of the torque converter 2 are detected, and these engine rotational speed Ne and turbine rotational speed Nt are detected.
  • the time point before the time point, or the time point when the output torque of the engine 1 decreases to a value larger than 0 by a predetermined torque is the above drive. It is obtained as the time immediately before the system is reversed from the driving state to the driven state. For example, it can be obtained by calculating a time before a predetermined time set in advance with respect to the time when the output torque of the engine 1 estimated as described above becomes zero. Alternatively, it can be obtained by calculating the time when the output torque of the engine 1 that has been reduced reaches a predetermined torque set in advance as a value larger than zero. Alternatively, the time when the difference between the engine speed Ne and the turbine speed Nt is equal to or less than a predetermined value set as a threshold value can be set as the time immediately before the drive system is reversed from the drive state to the driven state. .
  • step S3 If it is not determined in this step S3 that the drive system is not immediately before the drive state is reversed from the drive state to the driven state, the control in step S3 is executed again. That is, the control in step S3 is repeatedly executed until the time point immediately before the drive system is reversed from the drive state to the driven state is reached.
  • step S4 the output of the engine 1 in the torque-down control.
  • the torque reduction speed is changed from the first torque down speed set at the beginning of the torque down control to the second torque down speed that is slower than the first torque down speed. That is, at the time immediately before the drive system reverses from the drive state to the driven state, the decrease rate of the torque down control is reduced. This reduction in the decrease speed is continued until the fuel cut start point described later. Therefore, in the period from the time immediately before the drive system reverses from the drive state to the driven state until the output torque of the engine 1 becomes close to 0, the rate of decrease in the torque down control is reduced. The torque is gradually reduced.
  • the change in the decrease speed of the torque-down control in step S4 is specifically performed by controlling the retard speed when retarding the ignition timing of the engine 1 as described above. That is, the second torque down speed is set by retarding the ignition timing of the engine 1 at a predetermined retard speed that is slower than the first torque down speed.
  • 2 Torque down speed can be set appropriately.
  • a differential value of the difference between the detected engine speed Ne and the turbine speed Nt is calculated, and the magnitude of the differential value, that is, the engine speed Ne.
  • a second torque down speed is set based on the decreasing speed. For example, when the differential value is large, that is, when the decrease speed of the engine speed Ne is fast, the second torque down speed is set to a slower value.
  • the arrival time from the current time until the output torque of the engine 1 becomes zero is estimated from the difference between the current engine speed Ne and the turbine speed Nt and the differential value of the difference, Accordingly, the second torque down speed is appropriately set.
  • the torque is When the output torque of the engine 1 becomes 0 by executing the down control, the torque transmission direction is reversed, and if the torque fluctuation at that time is large, the driver or the occupant of the vehicle Ve is given a shock or discomfort. There was a possibility.
  • the output torque of the engine 1 gradually decreases in the period from the time immediately before the drive system is reversed from the drive state to the driven state until the time when the output torque of the engine 1 becomes zero. By doing so, it is possible to prevent or suppress the occurrence of a shock due to a large or abrupt torque fluctuation when the torque transmission direction is reversed in accordance with the execution of the torque down control.
  • step S5 the fuel cut of the engine 1 is started after the decrease speed of the torque-down control is decelerated immediately before the drive system is reversed from the drive state to the driven state. Thereafter, this routine is once terminated.
  • the time t3 when the difference between the engine speed Ne and the turbine speed Nt becomes 0 is estimated and set as the time when the output torque of the engine 1 becomes 0 as described above.
  • the fuel cut is started when the output torque of the engine 1 is reduced to a desired value by the retard control (time t4). Further, the retard control is terminated with the start of the fuel cut. That is, the ignition timing of the engine 1 is returned to the normal state.
  • the time t2 that is, the time immediately before the drive system is reversed from the drive state to the driven state
  • the time t3 can be set as the time t2, which is a time that is a predetermined time ⁇ t later than the time t3, that is, when the output torque of the engine 1 becomes zero.
  • a time when the difference between the engine speed Ne and the turbine speed Nt is equal to or less than a predetermined value ⁇ N set in advance can be set as the time t2.
  • FIG. 3 shows the behavior of each part of the vehicle Ve when another control example by the control device of the present invention is executed.
  • the control example shown in the time chart of FIG. 3 takes into account the temperature of the catalyst 8a in the catalytic converter 8 provided in the exhaust system of the engine 1 when executing the retard control of the engine for torque down control. This is an example of control.
  • the temperature of the catalyst 8a is detected by the catalyst temperature sensor 9 provided in the catalytic converter 8 as the catalyst temperature detecting means, and the temperature of the catalyst 8a is determined in advance in order to determine the overheated state of the catalyst 8a.
  • a predetermined temperature as a predetermined temperature, ie, a threshold temperature for preventing damage due to overheating of the catalyst 8a
  • the retard speed or retard amount when executing the retard control is suppressed.
  • the retarding speed in the retarding control during the period from the starting point t1 of the retarding control to the time t2 is as shown in FIG. Is suppressed so as to be slower than the normal retardation angle speed indicated by the broken line. That is, the rate of decrease in the torque down control of the engine 1 by the retard control (in this case, the first torque down speed) is suppressed.
  • the catalyst temperature detecting means for detecting the temperature of the catalyst 8a in addition to the catalyst temperature sensor 9 for directly detecting the temperature of the catalyst 8a as described above, for example, the output torque of the engine 1, the throttle opening degree, It is also possible to detect a control amount that affects the increase or decrease in the load of the engine 1, such as the intake air amount or the vehicle speed, and estimate the exhaust temperature of the engine 1 and the temperature of the catalyst 8a based on the detected values.
  • step S2 corresponds to the torque-down control means in the present invention.
  • step S4 corresponds to the torque down speed changing means in the present invention.
  • the output of the engine 1 is executed prior to the execution of the fuel cut in order to prevent a shock caused by the fluctuation of the torque when the fuel cut is executed.
  • Torque down control for reducing the torque is executed.
  • the time point t3 that becomes a change point when the output torque of the engine 1 becomes 0 due to torque reduction, that is, when the engine 1 is reversed from the driving state in which the torque is output to the driven state driven by the external force is set. Inferred and required.
  • the time t2 which is a time before the time t3, or a time when the output torque to be reduced reaches a value larger than 0 by a predetermined torque, is reversed from the driving state to the driven state.
  • the torque-down control is executed at the first torque-down speed at which the decrease speed is high during the period before the time t2 with the time t2 as a boundary.
  • torque down control is executed at a second torque down speed that is slower than the first torque down speed.
  • the output torque is rapidly reduced at a rapid reduction rate until time t2 that is a predetermined time ⁇ t before the time t3 when the output torque of the engine 1 becomes zero.
  • the output torque can be gradually reduced at a slow decrease rate. Therefore, when the vehicle reverses from the driving state to the driven state in the vicinity of the time point t3 when the output torque of the engine 1 becomes 0, a shock or vibration caused by a large torque fluctuation amount or a sudden torque fluctuation is prevented. Or it can be suppressed.
  • the start of the fuel cut can be accelerated accordingly.
  • the execution time of the fuel cut can be lengthened, and the fuel efficiency improvement effect by the fuel cut can be further enhanced.
  • the torque reduction control as described above can be easily executed by retarding the ignition timing of the engine 1. Can do. That is, by controlling the retard amount and retard speed of the ignition timing, it is possible to easily control the torque down amount and the decrease speed of the torque down control.
  • the rate of decrease in torque down control is suppressed. That is, the retard speed or retard amount of the retard control is suppressed. Therefore, when the catalyst 8a is at a high temperature, it is possible to prevent overheating of the catalyst 8a due to rapid retard control and protect the catalyst 8a.
  • the present invention is not limited to the specific examples described above. That is, in the specific example described above, an example in which torque down control of the engine 1 is executed in order to prevent a shock caused by torque fluctuation at the time of fuel cut is described. Is not limited to the control executed at the time of fuel cut.
  • the object of the present invention is torque down control that is executed when the purpose is to suppress torque fluctuations that occur in the power transmission system from the power source to the drive wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

Provided is a control device for a vehicle capable of performing rapid torque down control and preventing a shock caused by a torque variation at that time. A control device for a vehicle which uses an internal combustion engine as a power source and can execute fuel cut is provided with a torque down controlling means for decreasing output torque of the internal combustion engine before the execution of the fuel cut (step S2) and a torque down rate changing means for changing the rate of decrease when the output torque is decreased by the torque down controlling means in a case where the output torque is close to zero including zero and in the other cases where the output torque is far from zero, relatively increasing the rate of decrease in the case where the output torque is far from zero, and relatively slowing the rate of decrease in the case where the output torque is close to zero (steps S3, S4).

Description

車両の制御装置Vehicle control device
 この発明は、ガソリンエンジンなどの燃料を燃焼して動力を出力する内燃機関を動力源とする車両を制御するための装置に関し、特に、例えば変速時やフューエルカット時のトルクの変動に起因するショックを防止するために内燃機関の出力トルクを低下させるトルクダウン制御を実行可能な車両の制御装置に関するものである。 The present invention relates to an apparatus for controlling a vehicle that uses an internal combustion engine that outputs power by burning fuel such as a gasoline engine, and more particularly, for example, shock caused by torque fluctuation at the time of shifting or fuel cut. The present invention relates to a vehicle control device capable of executing torque down control for reducing the output torque of an internal combustion engine in order to prevent the occurrence of the engine.
 ガソリンエンジンなどの内燃機関を動力源とする車両では、アクセルオフでの減速時や惰性走行時などのように車両が慣性力で走行している場合には、エンジンは外力によって強制的に駆動させられるので、燃料の供給がなくとも回転を維持することができる。そのため、減速時や惰性走行時にエンジンに対する燃料供給を一時的に停止することにより燃料消費を削減して燃費の向上を図ることができる。これがいわゆるフューエルカットである。 In a vehicle that uses an internal combustion engine such as a gasoline engine as a power source, when the vehicle is traveling with inertial force, such as during deceleration with the accelerator off or coasting, the engine is forcibly driven by external force. Therefore, the rotation can be maintained without supplying fuel. Therefore, fuel consumption can be reduced and fuel consumption can be improved by temporarily stopping fuel supply to the engine during deceleration or coasting. This is a so-called fuel cut.
 上記のような燃費向上のためのフューエルカットが実行されると、燃料の供給が停止されることから、エンジンの運転状態が、動力を出力していた駆動状態から外力によって強制的に回転させられ被駆動状態に変化する。そのため、フューエルカットの実行によって動力伝達系統におけるトルクの作用状態が変化し、これが原因となってショックもしくは振動などが生じ、その結果、運転者や乗員に違和感を与えてしまう可能性がある。このような動力伝達系統におけるトルクの変動に起因するショックや振動は、上記のフューエルカットの実行時以外にも、例えばエンジンの出力側に設けられる自動変速機における変速時などに発生する可能性がある。 When the fuel cut for improving the fuel efficiency as described above is executed, the fuel supply is stopped, so that the operating state of the engine is forcibly rotated by the external force from the driving state where the power is output. Change to driven state. Therefore, the execution state of the fuel cut changes the operating state of the torque in the power transmission system, which may cause a shock or vibration, resulting in an uncomfortable feeling for the driver and the occupant. Such shocks and vibrations due to torque fluctuations in the power transmission system may occur at the time of shifting in an automatic transmission provided on the output side of the engine, for example, in addition to the above-described fuel cut. is there.
 そこで、上記のようなフューエルカットの実行時や自動変速機での変速時などに生じるトルク変動に起因するショックを防止するために、内燃機関の出力トルクを意図的に低下させるトルクダウン制御が行われている。例えば、特開平8-246938号公報に記載された装置は、フューエルカットを実行する場合、そのフューエルカットの開始前に、内燃機関の燃焼室内の混合気への点火時期を遅角させて内燃機関の出力トルクを低下させるように構成されている。 Therefore, in order to prevent shocks caused by torque fluctuations that occur during the execution of fuel cut as described above or during shifting with an automatic transmission, torque down control that intentionally reduces the output torque of the internal combustion engine is performed. It has been broken. For example, in the device described in Japanese Patent Application Laid-Open No. 8-246938, when performing fuel cut, the ignition timing for the air-fuel mixture in the combustion chamber of the internal combustion engine is retarded before the start of the fuel cut. The output torque is reduced.
 また、特開2007-309218号公報には、燃料カット復帰後のトルクショックを防止し、不安定な燃焼時間を短縮することを目的として、エンジンに設けられた点火プラグによる点火時期をエンジン運転状態に基づいて制御する装置が記載されている。この特開2007-309218号公報に記載された装置は、減速時の燃料カットからの復帰時に点火時期を遅角させるとともに、燃料カットからの復帰後にエンジン回転速度とトルクコンバータ回転速度との大きさが逆転する逆転時期を推定し、その逆転時期に基づいて点火時期を遅角させるように構成されている。 Japanese Patent Laid-Open No. 2007-309218 discloses the ignition timing of an ignition plug provided in an engine for the purpose of preventing torque shock after returning from fuel cut and shortening unstable combustion time. An apparatus for controlling based on the above is described. The device described in Japanese Patent Application Laid-Open No. 2007-309218 delays the ignition timing when returning from the fuel cut at the time of deceleration, and the magnitude of the engine speed and the torque converter rotation speed after the return from the fuel cut. Is configured to estimate the reverse rotation timing at which the reverse rotation occurs and retard the ignition timing based on the reverse rotation timing.
 なお、特開2006-57527号公報には、エンジンの電子スロットル制御に起因する車両のショックや振動を低減することを目的として、アイドル信号と燃料カット信号とに基づいてエンジン運転中にエンジントルクの作用方向が逆転したことを判定した場合に、目標スロットル開度の変化速度を制限してスロットル開度を緩やかに変化させるように構成された装置が記載されている。 Japanese Patent Laid-Open No. 2006-57527 discloses that the engine torque during engine operation based on the idle signal and the fuel cut signal is to reduce vehicle shock and vibration caused by engine electronic throttle control. An apparatus is described that is configured to gently change the throttle opening by limiting the change speed of the target throttle opening when it is determined that the direction of action is reversed.
 また、特開平7-293291号公報には、車両の排気系に設けられた触媒コンバータおよび触媒の保護を目的として、燃料カットや点火時期のリタード(遅角)量に応じて触媒温度を推定し、その触媒温度の推定値が所定の設定温度に到達した場合に、触媒コンバータに導入される排気ガス中の未燃焼成分を減少させる方向にエンジン出力の低減パターンを変更するように構成された装置が記載されている。 Japanese Patent Application Laid-Open No. 7-293291 estimates the catalyst temperature according to the amount of fuel cut or ignition timing retard (retard) for the purpose of protecting the catalytic converter and the catalyst provided in the exhaust system of the vehicle. When the estimated value of the catalyst temperature reaches a predetermined set temperature, the apparatus is configured to change the engine output reduction pattern in a direction to reduce the unburned components in the exhaust gas introduced into the catalytic converter. Is described.
 上記の特開平8-246938号公報および特開2007-309218号公報に記載されている装置のように、燃費向上のためのフューエルカットを実行する場合に、エンジンの点火時期を遅角させることにより、エンジンの出力トルクを低下させること、すなわちエンジンのトルクダウン制御を実行することができる。したがって、フューエルカットの実行時にエンジンの運転状態が駆動状態から被駆動状態に変化することに起因する動力伝達系統におけるショックの発生を抑制することができる。 By delaying the ignition timing of the engine when performing fuel cut for improving fuel efficiency, as in the devices described in the above-mentioned JP-A-8-246938 and JP-A-2007-309218 The engine output torque can be reduced, that is, the engine torque down control can be executed. Therefore, it is possible to suppress the occurrence of a shock in the power transmission system caused by the engine operating state changing from the driving state to the driven state when the fuel cut is performed.
 このようなエンジンのトルクダウン制御は、例えば、上記の特開平8-246938号公報および特開2007-309218号公報に記載されている装置のように、エンジンの点火時期を遅角制御すること、あるいは特開2006-57527号公報に記載されている装置のように、エンジンの電子スロットルバルブを制御することなどにより実行することができる。特に、エンジンの点火時期を遅角させることによるトルクダウンは、制御の応答性に優れている。したがって、上記の特開平8-246938号公報および特開2007-309218号公報に記載されている装置のように、フューエルカットを実行する際に、エンジンの点火時期の遅角制御を実行することにより、トルクダウン制御を応答性良く実行してエンジンの出力トルクを速やかに低下させることができ、そのため、フューエルカットに伴う動力伝達系統におけるショックを適切に防止もしくは抑制することができる。 Such engine torque-down control is performed by, for example, retarding the ignition timing of the engine as in the devices described in the above-mentioned JP-A-8-246938 and JP-A-2007-309218. Alternatively, it can be executed by controlling the electronic throttle valve of the engine as in the device described in Japanese Patent Application Laid-Open No. 2006-57527. In particular, torque reduction by retarding the ignition timing of the engine is excellent in control responsiveness. Therefore, by executing the retard control of the ignition timing of the engine when performing the fuel cut as in the devices described in the above-mentioned Japanese Patent Application Laid-Open Nos. 8-246938 and 2007-309218. Further, the torque reduction control can be executed with good responsiveness, and the engine output torque can be quickly reduced. Therefore, the shock in the power transmission system accompanying the fuel cut can be appropriately prevented or suppressed.
 このとき、トルクダウン制御を実行する際のエンジンの出力トルクの低下速度をさらに速めることにより、減速操作の応答性を一層向上させることができる。また、エンジンの出力トルクが所定量低下するのを待って実行されるフューエルカットの開始時期を早められるので、その分フューエルカットの実行時間を長くすることができ、その結果、フューエルカットによる燃費向上効果を一層高めることができる。その反面、エンジンの出力トルクの低下速度を速めて急激なトルクダウン制御を行うことにより、その急激なトルクの変動に起因する動力伝達系統におけるショックが新たに発生してしまう可能性がある。 At this time, the responsiveness of the deceleration operation can be further improved by further increasing the rate of decrease in the output torque of the engine when executing the torque down control. In addition, since the start time of the fuel cut that is executed after waiting for the engine output torque to decrease by a predetermined amount can be advanced, the fuel cut execution time can be lengthened accordingly, and as a result, fuel efficiency is improved by the fuel cut. The effect can be further enhanced. On the other hand, by performing a rapid torque-down control by increasing the rate of decrease of the output torque of the engine, there is a possibility that a shock in the power transmission system due to the sudden torque fluctuation may newly occur.
 このように、動力伝達系統におけるショックを低減するためのエンジンのトルクダウン制御を実行する場合に、応答性が良好で素早いトルクダウンを実現させることと、トルク変動に起因するショックを確実に低減させることとを両立させるためには、未だ改良の余地があった。 Thus, when executing engine torque-down control for reducing shocks in the power transmission system, it is possible to realize quick torque-down with good responsiveness and to reliably reduce shocks caused by torque fluctuations. There was still room for improvement in order to achieve both.
 この発明は上記の技術的課題に着目してなされたものであり、可及的に素早いトルクダウン制御を実行し、かつそのトルクダウン制御の際のトルクの変動に起因するショックを防止もしくは抑制することができる車両の制御装置を提供することを目的とするものである。 The present invention has been made paying attention to the above technical problem, and performs torque down control as quickly as possible, and prevents or suppresses shock caused by torque fluctuation during the torque down control. An object of the present invention is to provide a vehicle control device that can perform the above-described operation.
 上記の目的を達成するために、この発明は、内燃機関を動力源とし、走行中に前記内燃機関に対する燃料供給を停止もしくは抑制するフューエルカットを実行可能な車両の制御装置において、前記フューエルカットを実行する際に、そのフューエルカットの実行に先立って、前記内燃機関の出力トルクを低下させるトルクダウン制御手段と、前記トルクダウン制御手段により前記出力トルクを低下させる際の低下速度を、前記出力トルクが0を含む0に近い場合とそれ以外の0から遠い場合とで変更する手段であって、前記出力トルクが前記0から遠い場合は前記低下速度を相対的に速くし、前記出力トルクが前記0に近い場合は前記低下速度を相対的に遅くするトルクダウン速度変更手段とを備えていることを特徴とする車両の制御装置である。 In order to achieve the above object, the present invention provides a vehicle control apparatus capable of executing fuel cut using an internal combustion engine as a power source and stopping or suppressing fuel supply to the internal combustion engine during traveling. Prior to the execution of the fuel cut, torque down control means for reducing the output torque of the internal combustion engine, and the rate of reduction when the output torque is reduced by the torque down control means are set as the output torque. When the output torque is far from 0, the rate of decrease is relatively increased, and the output torque is increased when the output torque is less than 0 including 0. A control device for a vehicle, comprising: torque down speed changing means for relatively slowing down the decrease speed when close to 0 A.
 また、この発明は、上記の発明において、前記トルクダウン速度変更手段が、前記低下速度として、前記出力トルクが前記0から遠い場合は相対的に低下速度が速い第1トルクダウン速度を設定し、前記出力トルクが前記0に近い場合は前記第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度を設定する手段を含む車両の制御装置である。 Further, according to the present invention, in the above invention, the torque down speed changing means sets, as the reduction speed, a first torque down speed that is relatively high when the output torque is far from the zero, When the output torque is close to 0, the vehicle control device includes means for setting a second torque down speed that is slower than the first torque down speed.
 また、この発明は、上記の発明において、前記内燃機関が、火花点火機関を含み、前記トルクダウン制御手段が、前記火花点火機関の点火時期を遅角することにより前記出力トルクを低下させる手段を含む車両の制御装置である。 Further, the present invention is the above invention, wherein the internal combustion engine includes a spark ignition engine, and the torque down control means reduces the output torque by retarding an ignition timing of the spark ignition engine. It is a control device of vehicles including.
 また、この発明は、上記の発明において、前記内燃機関の排気系統内に設けられた触媒コンバータと、前記触媒コンバータの触媒の温度を検出する触媒温度検出手段とを更に備え、前記トルクダウン制御手段が、前記触媒温度検出手段により検出された前記触媒の温度が前記触媒の過熱状態を判定するために予め定めた所定温度よりも高い場合に、前記低下速度を抑制する手段を含む車両の制御装置である。 In the above invention, the present invention further comprises a catalytic converter provided in an exhaust system of the internal combustion engine, and a catalyst temperature detecting means for detecting a temperature of the catalyst of the catalytic converter, and the torque down control means However, when the temperature of the catalyst detected by the catalyst temperature detecting means is higher than a predetermined temperature determined in order to determine an overheated state of the catalyst, the vehicle control device includes means for suppressing the rate of decrease. It is.
 そして、この発明は、上記の発明において、前記出力トルクが入力されて、該出力トルクを入力部材と出力部材との速度比に応じて増幅して出力するトルクコンバータを更に備え、前記トルクダウン速度変更手段が、前記内燃機関の出力軸の回転数と前記出力部材の回転数との差に基づいて、前記出力トルクが前記0から遠い場合と前記出力トルクが前記0に近い場合とを判定する手段を含む車両の制御装置である。 The invention further includes a torque converter that receives the output torque, amplifies the output torque in accordance with a speed ratio between the input member and the output member, and outputs the torque. The changing means determines whether the output torque is far from the zero and the output torque is close to the zero based on the difference between the rotational speed of the output shaft of the internal combustion engine and the rotational speed of the output member. A vehicle control apparatus including means.
 一方、この発明は、内燃機関を動力源とする車両の制御装置において、前記内燃機関の出力トルクを低下させるトルクダウン制御手段と、前記トルクダウン制御手段により前記出力トルクを低下させる際の低下速度を、前記出力トルクが0を含む0に近い場合とそれ以外の0から遠い場合とで変更する手段であって、前記出力トルクが前記0から遠い場合は前記低下速度を相対的に速くし、前記出力トルクが前記0に近い場合は前記低下速度を相対的に遅くするトルクダウン速度変更手段とを備えていることを特徴とする車両の制御装置である。 On the other hand, according to the present invention, in a vehicle control apparatus using an internal combustion engine as a power source, a torque down control means for reducing the output torque of the internal combustion engine, and a reduction speed when the output torque is reduced by the torque down control means In the case where the output torque is close to 0 including 0 and the case where the output torque is far from 0, and when the output torque is far from 0, the decrease speed is relatively increased, When the output torque is close to 0, the vehicle control apparatus includes torque down speed changing means for relatively slowing down the decrease speed.
 また、この発明は、上記の発明において、前記トルクダウン速度変更手段が、前記低下速度として、前記出力トルクが前記0から遠い場合は相対的に低下速度が速い第1トルクダウン速度を設定し、前記出力トルクが前記0に近い場合は前記第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度を設定する手段を含む車両の制御装置である。 Further, according to the present invention, in the above invention, the torque down speed changing means sets, as the reduction speed, a first torque down speed that is relatively high when the output torque is far from the zero, When the output torque is close to 0, the vehicle control device includes means for setting a second torque down speed that is slower than the first torque down speed.
 また、この発明は、上記の発明において、前記内燃機関が、火花点火機関を含み、前記トルクダウン制御手段が、前記火花点火機関の点火時期を遅角することにより前記出力トルクを低下させる手段を含む車両の制御装置である。 Further, the present invention is the above invention, wherein the internal combustion engine includes a spark ignition engine, and the torque down control means reduces the output torque by retarding an ignition timing of the spark ignition engine. It is a control device of vehicles including.
 また、この発明は、上記の発明において、前記内燃機関の排気系統内に設けられた触媒コンバータと、前記触媒コンバータの触媒の温度を検出する触媒温度検出手段とを更に備え、前記トルクダウン制御手段が、前記触媒温度検出手段により検出された前記触媒の温度が前記触媒の過熱状態を判定するために予め定めた所定温度よりも高い場合に、前記低下速度を抑制する手段を含む車両の制御装置である。 In the above invention, the present invention further comprises a catalytic converter provided in an exhaust system of the internal combustion engine, and a catalyst temperature detecting means for detecting a temperature of the catalyst of the catalytic converter, and the torque down control means However, when the temperature of the catalyst detected by the catalyst temperature detecting means is higher than a predetermined temperature determined in order to determine an overheated state of the catalyst, the vehicle control device includes means for suppressing the rate of decrease. It is.
 そして、この発明は、上記の発明において、前記出力トルクが入力されて、該出力トルクを入力部材と出力部材との速度比に応じて増幅して出力するトルクコンバータを更に備え、前記トルクダウン速度変更手段が、前記内燃機関の出力軸の回転数と前記出力部材の回転数との差に基づいて、前記出力トルクが前記0から遠い場合と前記出力トルクが前記0に近い場合とを判定する手段を含む車両の制御装置である。 The invention further includes a torque converter that receives the output torque, amplifies the output torque in accordance with a speed ratio between the input member and the output member, and outputs the torque. The changing means determines whether the output torque is far from the zero and the output torque is close to the zero based on the difference between the rotational speed of the output shaft of the internal combustion engine and the rotational speed of the output member. A vehicle control apparatus including means.
 この発明によれば、フューエルカットを実行する際のトルクの変動に起因するショックを防止するために、そのフューエルカットの実行に先行して、内燃機関の出力トルクを低下させるトルクダウン制御が実行される。その場合、低下させられる出力トルクが未だ0から遠い場合は、速い低下速度で素早く出力トルクが低下させられる。そして出力トルクが0に近くなると、遅い低下速度で緩やかに出力トルクが低下させられる。そのため、出力トルクが0になる近傍で、車両が駆動状態から被駆動状態に反転する際に、急激なトルク変動もしくはトルクの変動量が大きいことにより生じるショックや振動を防止もしくは抑制することができる。 According to the present invention, in order to prevent a shock caused by a fluctuation in torque at the time of executing the fuel cut, torque down control for reducing the output torque of the internal combustion engine is executed prior to the execution of the fuel cut. The In this case, if the output torque to be reduced is still far from 0, the output torque can be quickly reduced at a fast reduction speed. When the output torque becomes close to 0, the output torque is gradually reduced at a slow decrease rate. Therefore, when the vehicle reverses from the driving state to the driven state in the vicinity where the output torque becomes zero, it is possible to prevent or suppress a shock or vibration caused by a sudden torque fluctuation or a large torque fluctuation amount. .
 そして、出力トルクが0になる近傍まではその出力トルクを急速に低下させることができることから、所望するトルクダウン量に達するまでの時間を可及的に短縮して、その分フューエルカットの開始を早めることができる。その結果、フューエルカットの実行時間を長くすることができ、そのフューエルカットによる燃費向上効果を高めることができる。 Since the output torque can be rapidly reduced until the output torque reaches near zero, the time required to reach the desired torque reduction amount is shortened as much as possible, and the fuel cut is started accordingly. You can expedite. As a result, the fuel cut execution time can be lengthened, and the fuel efficiency improvement effect by the fuel cut can be enhanced.
 また、この発明によれば、トルクダウン制御が実行される場合、低下させられる出力トルクが未だ0から遠い場合は、相対的に低下速度が速い第1トルクダウン速度で素早く出力トルクが低下させられる。そして出力トルクが0に近くなると、第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度で緩やかに出力トルクが低下させられる。そのため、出力トルクが0になる近傍で、確実に出力トルクの低下速度を減速させることができる。 Further, according to the present invention, when the torque down control is executed, if the output torque to be reduced is still far from 0, the output torque can be quickly reduced at the first torque down speed that is relatively fast. . When the output torque becomes close to 0, the output torque is gradually reduced at the second torque down speed that is slower than the first torque down speed. Therefore, it is possible to reliably reduce the rate of decrease of the output torque in the vicinity where the output torque becomes zero.
 また、この発明によれば、内燃機関が、ガソリンエンジンなどの火花点火機関である場合に、その火花点火機関の点火時期を遅角制御することにより、内燃機関のトルクダウン制御を容易に実行することができる。例えば、点火時期の遅角量や遅角速度を制御することによってトルクダウン制御のトルクダウン量や低下速度を容易に制御することができる。 Further, according to the present invention, when the internal combustion engine is a spark ignition engine such as a gasoline engine, the torque reduction control of the internal combustion engine is easily executed by retarding the ignition timing of the spark ignition engine. be able to. For example, by controlling the retard amount and retard speed of the ignition timing, the torque down amount and the decrease speed of the torque down control can be easily controlled.
 また、この発明によれば、内燃機関の排気系統に用いられる触媒の温度が高い場合には、トルクダウン制御を実行する際の低下速度が抑制される。急速な遅角制御は内燃機関の排気温度の上昇を伴うので、触媒の温度上昇要因となる。そのため、触媒が高温の場合に、トルクダウン制御の低下速度が抑制されること、すなわち遅角制御の遅角量もしくは遅角速度が抑制されることにより、触媒の過熱を防止して触媒を保護することができる。 Further, according to the present invention, when the temperature of the catalyst used in the exhaust system of the internal combustion engine is high, the rate of decrease when the torque down control is executed is suppressed. Rapid retarding control is accompanied by a rise in the exhaust temperature of the internal combustion engine, which causes a catalyst temperature rise. Therefore, when the catalyst is at a high temperature, the rate of decrease in torque-down control is suppressed, that is, the retard amount or retard speed of retard control is suppressed, thereby preventing the catalyst from overheating and protecting the catalyst. be able to.
 そして、この発明によれば、例えば変速機などの動力伝達機構に内燃機関の出力トルクを増幅して伝達するトルクコンバータが設けられている場合に、内燃機関の出力軸の回転数とトルクコンバータの出力部材の回転数との差分を求めることにより、トルクダウン制御により低下させられる出力トルクが0から遠い場合と0に近い場合とを容易に判定することができる。 According to this invention, for example, when a torque converter that amplifies and transmits the output torque of the internal combustion engine is provided in a power transmission mechanism such as a transmission, the rotational speed of the output shaft of the internal combustion engine and the torque converter By obtaining the difference from the rotation speed of the output member, it is possible to easily determine whether the output torque that is reduced by the torque-down control is far from 0 or close to 0.
 一方、この発明によれば、内燃機関の出力トルクを低下させるトルクダウン制御を実行する場合、低下させられる出力トルクが未だ0から遠い場合は、速い低下速度で素早く出力トルクが低下させられる。そして出力トルクが0に近くなると、遅い低下速度で緩やかに出力トルクが低下させられる。そのため、出力トルクが0になる近傍で、車両が駆動状態から被駆動状態に反転する際に、急激なトルク変動もしくはトルクの変動量が大きいことにより生じるショックや振動を防止もしくは抑制することができる。 On the other hand, according to the present invention, when executing the torque down control for reducing the output torque of the internal combustion engine, if the output torque to be reduced is still far from 0, the output torque can be quickly reduced at a fast reduction speed. When the output torque becomes close to 0, the output torque is gradually reduced at a slow decrease rate. Therefore, when the vehicle reverses from the driving state to the driven state in the vicinity where the output torque becomes zero, it is possible to prevent or suppress a shock or vibration caused by a sudden torque fluctuation or a large torque fluctuation amount. .
この発明の車両の制御装置における制御例を説明するためのフローチャートである。It is a flowchart for demonstrating the example of control in the control apparatus of the vehicle of this invention. この発明の車両の制御装置における制御を実行した際の各部の挙動を示すタイムチャートである。It is a time chart which shows the behavior of each part at the time of performing control in the control apparatus of vehicles of this invention. この発明の車両の制御装置における他の制御を実行した際の各部の挙動を示すタイムチャートである。It is a time chart which shows the behavior of each part at the time of performing other control in the control apparatus of the vehicle of this invention. この発明で制御の対象とする車両の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the vehicle made into the object of control by this invention.
 つぎに、この発明を具体例に基づいて説明する。図4に、この発明で制御の対象とする車両Veの駆動系統および制御系統の構成を示している。図4において、符号1はこの車両Veの動力源1であり、この発明においては、燃料を燃焼させて動力を出力する動力装置である内燃機関を対象としている。なお、以下の説明では、動力源1すなわち内燃機関1をエンジン(ENG)1と記す。 Next, the present invention will be described based on specific examples. FIG. 4 shows the configuration of the drive system and control system of the vehicle Ve to be controlled in the present invention. In FIG. 4, reference numeral 1 denotes a power source 1 of the vehicle Ve. In the present invention, an internal combustion engine that is a power device that burns fuel and outputs power is targeted. In the following description, the power source 1, that is, the internal combustion engine 1 is referred to as an engine (ENG) 1.
 エンジン1の出力側には、トルクコンバータ2を介して、自動変速機(AT)3が連結されている。そして、自動変速機3の出力側に、例えばプロペラシャフト4およびデファレンシャル5ならびにドライブシャフト6などを介して、駆動輪7が連結されている。すなわち、エンジンの出力軸1aが、トルクコンバータ2の入力部材であるポンプインペラ2aに連結されている。そして、トルクコンバータ2の出力部材であるタービンランナ2bが、自動変速機3の入力軸3aに連結されている。したがって、エンジン1の出力トルクは、トルクコンバータ2を介して自動変速機3に入力され、その自動変速機3において設定される変速比に応じて変速されて、駆動トルクとして駆動輪7側へ伝達されるようになっている。 An automatic transmission (AT) 3 is connected to the output side of the engine 1 via a torque converter 2. Drive wheels 7 are connected to the output side of the automatic transmission 3 via, for example, a propeller shaft 4, a differential 5, a drive shaft 6, and the like. That is, the output shaft 1a of the engine is connected to a pump impeller 2a that is an input member of the torque converter 2. A turbine runner 2 b that is an output member of the torque converter 2 is connected to the input shaft 3 a of the automatic transmission 3. Therefore, the output torque of the engine 1 is input to the automatic transmission 3 via the torque converter 2, and is shifted according to the gear ratio set in the automatic transmission 3, and transmitted as drive torque to the drive wheel 7 side. It has come to be.
 エンジン1は、前述したように内燃機関であって、特に、この実施例では、エンジン1が、例えばガソリンエンジンやLPGエンジンあるいはアルコール燃料エンジンなどの火花点火機関である例を示している。そして、エンジン1は、スロットル開度(吸気量)、燃料噴射量(燃料供給量)、吸排気弁の開閉動作、点火時期などの運転状態を電気的に制御できるように構成されている。 As described above, the engine 1 is an internal combustion engine. In particular, in this embodiment, the engine 1 is a spark ignition engine such as a gasoline engine, an LPG engine, or an alcohol fuel engine. The engine 1 is configured to be able to electrically control operating conditions such as throttle opening (intake amount), fuel injection amount (fuel supply amount), intake / exhaust valve opening / closing operation, ignition timing, and the like.
 また、エンジン1の排気系統には、排気浄化用の触媒8aを備えた触媒コンバータ8が設けられている。そして、この触媒コンバータ8内の触媒8aの温度を検出するための触媒温度センサ9が設けられている。 Further, the exhaust system of the engine 1 is provided with a catalytic converter 8 having an exhaust purification catalyst 8a. A catalyst temperature sensor 9 for detecting the temperature of the catalyst 8a in the catalytic converter 8 is provided.
 トルクコンバータ2は、従来知られている構成のものであり、ポンプインペラ2aによって生じさせたオイルの螺旋流をタービンランナ2bに与えてそのタービンランナ2bを回転させ、またタービンランナ2bからポンプインペラ2aに帰還するオイルの流動方向をステータ(図示せず)によって制御するように構成され、オイルを介してトルクを伝達するようになっている。 The torque converter 2 has a conventionally known configuration, and applies a spiral flow of oil generated by the pump impeller 2a to the turbine runner 2b to rotate the turbine runner 2b, and from the turbine runner 2b to the pump impeller 2a. The flow direction of the oil returning to is controlled by a stator (not shown), and torque is transmitted through the oil.
 また、トルクコンバータ2には、ロックアップクラッチ2cが設けられている。このロックアップクラッチ2cは、ポンプインペラ2aが連結された入力側の部材とタービンランナ2bが連結された出力側の部材との間に設けられ、入力要素と出力要素とが摩擦力などによって機械的に係合してトルクを伝達するように構成されている。 Further, the torque converter 2 is provided with a lock-up clutch 2c. The lock-up clutch 2c is provided between an input-side member to which the pump impeller 2a is connected and an output-side member to which the turbine runner 2b is connected. The input element and the output element are mechanically coupled to each other by a frictional force or the like. And is configured to transmit torque.
 自動変速機3は、例えば油圧を電気的に制御して変速比を変更する変速制御を行う、いわゆる電子制御式の変速機であり、例えば自動変速機3に一体に設けられた油圧制御装置(図示せず)を制御することにより、変速段もしくは変速比の切り替え・変更を行うように構成されている。この自動変速機3としては、有段式の自動変速機やベルト式あるいはトロイダル式の無段変速機などの各種機構の変速機を用いることができる。 The automatic transmission 3 is a so-called electronically controlled transmission that performs shift control that changes the gear ratio by electrically controlling the hydraulic pressure, for example, and is, for example, a hydraulic control device (integrated in the automatic transmission 3 ( (Not shown) is configured to switch or change the gear position or gear ratio. As this automatic transmission 3, a transmission of various mechanisms such as a stepped automatic transmission or a belt-type or toroidal-type continuously variable transmission can be used.
 そして、上記のスロットル開度や燃料噴射量あるいは吸排気弁の開閉動作や点火時期などのエンジン1の運転状態、および自動変速機3の変速制御を実行するための油圧制御装置やアクチュエータなどの動作状態を制御する電子制御装置(ECU)10が設けられている。 The operation state of the engine 1 such as the throttle opening, the fuel injection amount, the intake / exhaust valve opening / closing operation, and the ignition timing, and the operation of the hydraulic control device and the actuator for executing the shift control of the automatic transmission 3 are performed. An electronic control unit (ECU) 10 for controlling the state is provided.
 電子制御装置10は、一例として中央演算処理装置および記憶装置ならびに入出力インターフェースを主体とするマイクロコンピュータにより構成されている。この電子制御装置10には、例えば、エンジン1の出力軸1aの回転数を検出するエンジン回転数センサ11、トルクコンバータ2のタービンランナ2bの回転数を検出するタービン回転数センサ12、アクセルペダルの動作状態や操作量などを検出するアクセルセンサ(もしくはアクセルスイッチ)13、ブレーキペダルの動作状態や操作量などを検出するブレーキセンサ(もしくはブレーキスイッチ)14、車速を検出するための車輪速センサ15などの出力信号が入力されるように構成されている。 As an example, the electronic control device 10 is composed of a central processing unit, a storage device, and a microcomputer mainly including an input / output interface. The electronic control unit 10 includes, for example, an engine speed sensor 11 that detects the speed of the output shaft 1a of the engine 1, a turbine speed sensor 12 that detects the speed of the turbine runner 2b of the torque converter 2, and an accelerator pedal. An accelerator sensor (or an accelerator switch) 13 for detecting an operating state or an operation amount, a brake sensor (or a brake switch) 14 for detecting an operating state or an operation amount of a brake pedal, a wheel speed sensor 15 for detecting a vehicle speed, or the like. The output signal is input.
 そして、電子制御装置10からは、上述したエンジン1のスロットル開度や燃料噴射量あるいは吸排気弁の開閉動作や点火時期などを制御する制御信号、あるいはトルクコンバータ2のロックアップクラッチ2cの係合・解放動作を制御する制御信号、あるいは自動変速機3の変速動作を制御する制御信号などを出力するように構成されている。したがって、この発明における車両Veの制御装置は、電子制御装置10で演算されて出力される制御信号に基づいて、エンジン1の運転制御およびロックアップクラッチ2cの係合制御ならびに自動変速機3の変速制御などを実行するように構成されている。 From the electronic control unit 10, the control signal for controlling the throttle opening of the engine 1, the fuel injection amount, the intake / exhaust valve opening / closing operation, the ignition timing, or the like, or the engagement of the lock-up clutch 2 c of the torque converter 2. A control signal for controlling the releasing operation or a control signal for controlling the shifting operation of the automatic transmission 3 is output. Therefore, the control device for the vehicle Ve in the present invention is based on the control signal calculated and output by the electronic control device 10, and the operation control of the engine 1, the engagement control of the lockup clutch 2c, and the shift of the automatic transmission 3 are performed. It is configured to execute control and the like.
 特にエンジン1の運転制御に関しては、車両Veの減速走行時あるいは惰力走行時に燃料消費を節減して燃費を向上させるために、減速走行時あるいは惰力走行時に、例えば、エンジン1の暖機が終了していること、エンジン1の回転数が所定回転数以上であること、スロットル開度がアイドル開度程度に閉じられていること、アクセルペダルが戻されること、などの制御開始の前提条件が全て成立している場合に、エンジン1に対する燃料供給を一時的に停止もしくは抑制するいわゆるフューエルカットを実行することが可能な構成となっている。 In particular, regarding the operation control of the engine 1, in order to reduce fuel consumption and improve fuel efficiency when the vehicle Ve is decelerating or coasting, for example, when the vehicle 1 is decelerating or coasting, the engine 1 is warmed up. Preconditions for starting the control are that it has been completed, that the engine 1 has a rotational speed equal to or higher than a predetermined speed, that the throttle opening is closed to about the idle opening, and that the accelerator pedal is returned. In the case where all of them are established, a so-called fuel cut can be executed that temporarily stops or suppresses the fuel supply to the engine 1.
 また、エンジン1のスロットル開度あるいは点火時期などを制御することにより、エンジン1の出力トルクを意図的にもしくは強制的に低下させるトルクダウン制御を実行することが可能な構成になっている。特に、エンジン1の点火時期を遅角させることによるトルクダウン制御は、制御応答性が良好であり、点火時期の遅角量や遅角速度を制御することにより、トルクダウン制御におけるエンジン1の出力トルクの低下量あるいは低下速度を容易に制御することができる。 Further, by controlling the throttle opening of the engine 1 or the ignition timing, it is possible to execute torque down control for intentionally or forcibly reducing the output torque of the engine 1. In particular, the torque down control by retarding the ignition timing of the engine 1 has good control responsiveness, and the output torque of the engine 1 in the torque down control is controlled by controlling the retard amount and retard speed of the ignition timing. The amount of decrease or the rate of decrease can be easily controlled.
 前述したように、この発明は、可及的に素早いトルクダウンを実行するとともに、そのトルクダウンの際のトルクの変動に起因するショックを防止もしくは抑制することを目的としていて、そのために、この発明の制御装置は以下の制御を実行するように構成されている。 As described above, the present invention aims to execute torque reduction as quickly as possible, and to prevent or suppress shock caused by torque fluctuation at the time of torque reduction. The control device is configured to execute the following control.
 図1は、この発明の制御装置による制御例を説明するためのフローチャートであって、このフローチャートで示されるルーチンは、所定の短時間毎に繰り返し実行される。図1のフローチャートにおいて、先ず、運転者によるアクセルオフの操作が行われたか否かが判断される(ステップS1)。具体的には、アクセルスイッチ13の検出値がONからOFFに切り替わったか否か、すなわち、減速要求などから、運転者が踏み込んでいたアクセルペダルを元に戻す操作を行ったか否か判断される。 FIG. 1 is a flowchart for explaining an example of control by the control device of the present invention, and the routine shown in this flowchart is repeatedly executed every predetermined short time. In the flowchart of FIG. 1, first, it is determined whether or not the driver has performed an accelerator-off operation (step S1). Specifically, it is determined whether or not the detected value of the accelerator switch 13 has been switched from ON to OFF, that is, whether or not an operation for returning the accelerator pedal that the driver has depressed has been performed based on a deceleration request or the like.
 運転者によるアクセルオフの操作が行われていないこと、すなわち、アクセルスイッチ13の検出値がONからOFFに切り替わっていないことにより、このステップS1で否定的に判断された場合は、燃費向上のためのフューエルカットが実行されることはないので、以降の制御も実行することなく、このルーチンを一旦終了する。 If the driver does not perform the accelerator-off operation, that is, the detected value of the accelerator switch 13 has not been switched from ON to OFF, and if the determination is negative in this step S1, the fuel efficiency is improved. Since this fuel cut is not executed, this routine is temporarily terminated without executing the subsequent control.
 これに対して、運転者によるアクセルオフの操作が行われたこと、すなわちアクセルスイッチ13の検出値がONからOFFに切り替わったことにより、ステップS1で肯定的に判断された場合には、ステップS2へ進み、今後実行される予定のフューエルカットに先立って、エンジン1の出力トルクを低下させるトルクダウン制御が実行される。このトルクダウン制御の開始当初は、相対的に低下速度が速い第1トルクダウン速度のもとで、エンジン1の出力トルクを可及的に急速に低下させるようになっている。 On the other hand, if the driver makes an accelerator-off operation, that is, if the detected value of the accelerator switch 13 is switched from ON to OFF, and if the determination in step S1 is affirmative, step S2 Then, prior to the fuel cut scheduled to be executed in the future, torque-down control for reducing the output torque of the engine 1 is executed. At the beginning of this torque-down control, the output torque of the engine 1 is reduced as rapidly as possible under the first torque-down speed that is relatively high.
 この発明におけるトルクダウン制御は、例えば、エンジン1の点火時期を遅角させることによって実行される。具体的には、エンジン1の点火時期を遅角させる際の遅角量を制御することにより、トルクダウン制御のトルクダウン量すなわちエンジン1の出力トルクの低下量が制御される。また、エンジン1の点火時期を遅角させる際の遅角速度を制御することにより、トルクダウン制御のトルクダウン速度すなわちエンジン1の出力トルクの低下速度が制御される。したがって、上記の第1トルクダウン速度は、相対的に変化速度が速い所定の遅角速度でエンジン1の点火時期を遅角させることにより設定することができる。 The torque down control in the present invention is executed by retarding the ignition timing of the engine 1, for example. Specifically, by controlling the retard amount when retarding the ignition timing of the engine 1, the torque down amount of the torque down control, that is, the decrease amount of the output torque of the engine 1 is controlled. Further, by controlling the retarding speed at which the ignition timing of the engine 1 is retarded, the torque down speed of the torque down control, that is, the output torque decreasing speed of the engine 1 is controlled. Therefore, the first torque down speed can be set by retarding the ignition timing of the engine 1 at a predetermined retard speed with a relatively fast change speed.
 走行中にアクセルペダルが開放された際に、燃費を向上させるためのフューエルカットを実行する場合は、車両Veが惰力走行している状態でエンジン1に対する燃料供給が停止されるので、エンジン1で燃焼が行われなくなることからエンジン1の出力トルクが0になる。エンジン1の出力トルクが0になると、車両Veは、それまでエンジン1の出力トルクによって駆動力を発生させていた駆動状態から、車両Veの慣性力や重力などの外力により駆動される被駆動状態に切り替わる。そして、車両Veが駆動状態から被駆動状態に切り替わると、エンジン1から駆動輪7に至る動力伝達経路におけるトルクの伝達方向が切り替わることになる。すなわち、エンジン1の出力トルクが、そのエンジン1からトルクコンバータ2および自動変速機3ならびにデファレンシャル5などを経由して駆動輪7へ伝達される状態から、反対に、駆動輪7のトルクが、その駆動輪7からデファレンシャル5および自動変速機3ならびにトルクコンバータ2などを経由してエンジン1に伝達される状態に変化する。 When a fuel cut for improving fuel efficiency is executed when the accelerator pedal is released during traveling, the fuel supply to the engine 1 is stopped while the vehicle Ve is coasting, so the engine 1 Since the combustion is not performed at this point, the output torque of the engine 1 becomes zero. When the output torque of the engine 1 becomes 0, the vehicle Ve is driven by an external force such as an inertial force or gravity of the vehicle Ve from a driving state where the driving force has been generated by the output torque of the engine 1 until then. Switch to When the vehicle Ve is switched from the driving state to the driven state, the torque transmission direction in the power transmission path from the engine 1 to the driving wheel 7 is switched. That is, from the state in which the output torque of the engine 1 is transmitted from the engine 1 to the drive wheels 7 via the torque converter 2, the automatic transmission 3 and the differential 5, the torque of the drive wheels 7 is The state changes from the drive wheel 7 to the engine 1 via the differential 5, the automatic transmission 3, the torque converter 2, and the like.
 エンジン1や自動変速機3あるいはデファレンシャル5などでは、動力伝達を行うための歯車機構が用いられており、それらの歯車機構には、不可避的に、互いに噛み合う歯車対の歯面の間にバックラッシが存在する。そのため、上記のようにトルクの伝達方向が切り替わることによって、動力伝達に関与している歯車の作用歯面が変化する。すなわち、歯車の噛み合い側歯面と反噛み合い側歯面とが入れ替わる。したがって、エンジン1の出力トルクが0になってトルクの伝達方向が切り替わる際のトルク変動が大きいと、歯車機構のバックラッシの間で作用歯面が変化する際の衝撃が大きくなり、車両Veの運転者や乗員にショックや違和感を与えてしまう可能性がある。 The engine 1, the automatic transmission 3, the differential 5, and the like use gear mechanisms for transmitting power, and these gear mechanisms inevitably have backlash between the tooth surfaces of the gear pairs that mesh with each other. Exists. Therefore, when the torque transmission direction is switched as described above, the working tooth surface of the gear involved in power transmission changes. That is, the meshing side tooth surface and the non-meshing side tooth surface of the gear are interchanged. Therefore, if the torque fluctuation when the output torque of the engine 1 becomes zero and the torque transmission direction is switched is large, the impact when the working tooth surface changes during the backlash of the gear mechanism increases, and the vehicle Ve is operated. There is a possibility of giving a shock or discomfort to the passenger or passenger.
 そこで、フューエルカットを実行する場合に、そのフューエルカットの開始に先立って、エンジン1のトルクダウン制御が実行される。すなわち、フューエルカットの開始前に予めエンジン1の出力トルクが低下させられる。そのため、フューエルカットを実行する際のトルク変動を可及的に小さくすることができ、そのフューエルカットを実行することに伴うトルク変動に起因するショックの発生を防止もしくは抑制することができる。 Therefore, when the fuel cut is executed, the torque reduction control of the engine 1 is executed prior to the start of the fuel cut. That is, the output torque of the engine 1 is reduced in advance before the start of fuel cut. Therefore, the torque fluctuation at the time of executing the fuel cut can be made as small as possible, and the occurrence of a shock due to the torque fluctuation accompanying the execution of the fuel cut can be prevented or suppressed.
 フューエルカット時のショックを防止するためのトルクダウン制御が開始されると、エンジン1から駆動輪7へ至る駆動系統が、前述のように、エンジン1がトルクを出力している駆動状態から駆動輪7からトルクが入力される被駆動状態に反転する直前になったか否かが判断される(ステップS3)。駆動系統が駆動状態から被駆動状態に反転する直前とは、低下させられるエンジン1の出力トルクが0近傍になる時点のことであり、例えば、エンジン1の出力トルクが0になる時点から予め設定した所定時間前の時点、もしくは、エンジン1の出力トルクが0よりも予め設定した所定トルクだけ大きな値まで低下する時点のことである。 When torque-down control for preventing a shock at the time of fuel cut is started, the drive system from the engine 1 to the drive wheel 7 changes from the drive state in which the engine 1 outputs torque as described above to the drive wheel. It is determined whether or not it is just before reversing to the driven state where torque is input from 7 (step S3). Immediately before the drive system is reversed from the drive state to the driven state is a time when the output torque of the engine 1 to be reduced becomes close to 0, for example, preset from the time when the output torque of the engine 1 becomes 0 This is a point in time before the predetermined time, or a point in time when the output torque of the engine 1 drops to a value that is larger than 0 by a predetermined torque set in advance.
 したがって、このステップS3では、先ず、トルクダウン制御によりエンジン1の出力トルクを低下させた場合にトルクが0になる時点が推定して求められる。例えば、エンジン1の出力軸1aの回転数(エンジン回転数)Neとトルクコンバータ2のタービンランナ2bの回転数(タービン回転数)Ntとを検出し、それらエンジン回転数Neとタービン回転数Ntとの差分が0になる時点を予測することにより求めることができる。すなわち、エンジン回転数Neとタービン回転数Ntとの差分が0になる時点をエンジン1の出力トルクが0になる時点として推定することができる。 Therefore, in this step S3, first, when the output torque of the engine 1 is reduced by the torque-down control, the time point when the torque becomes 0 is estimated and obtained. For example, the rotational speed (engine rotational speed) Ne of the output shaft 1a of the engine 1 and the rotational speed (turbine rotational speed) Nt of the turbine runner 2b of the torque converter 2 are detected, and these engine rotational speed Ne and turbine rotational speed Nt are detected. Can be obtained by predicting the time point when the difference between them becomes zero. That is, the time when the difference between the engine speed Ne and the turbine speed Nt becomes 0 can be estimated as the time when the output torque of the engine 1 becomes 0.
 エンジン1の出力トルクが0になる時点が推定されると、その時点よりも所定時間前の時点、もしくはエンジン1の出力トルクが0よりも所定トルクだけ大きな値まで低下する時点が、上記の駆動系統が駆動状態から被駆動状態に反転する直前の時点として求められる。例えば、上記のようにして推定されたエンジン1の出力トルクが0になる時点の時刻に対して予め設定された所定時間前の時刻を算出することにより求めることができる。あるいは、低下させられているエンジン1の出力トルクが、0よりも大きな値として予め設定された所定トルクに到達した時刻を算出することにより求めることができる。あるいは、エンジン回転数Neとタービン回転数Ntとの差分が、閾値として予め設定された所定値以下になった時刻を駆動系統が駆動状態から被駆動状態に反転する直前の時点とすることができる。 When the time point at which the output torque of the engine 1 becomes 0 is estimated, the time point before the time point, or the time point when the output torque of the engine 1 decreases to a value larger than 0 by a predetermined torque is the above drive. It is obtained as the time immediately before the system is reversed from the driving state to the driven state. For example, it can be obtained by calculating a time before a predetermined time set in advance with respect to the time when the output torque of the engine 1 estimated as described above becomes zero. Alternatively, it can be obtained by calculating the time when the output torque of the engine 1 that has been reduced reaches a predetermined torque set in advance as a value larger than zero. Alternatively, the time when the difference between the engine speed Ne and the turbine speed Nt is equal to or less than a predetermined value set as a threshold value can be set as the time immediately before the drive system is reversed from the drive state to the driven state. .
 駆動系統が駆動状態から被駆動状態に反転する直前の時点になっていないことにより、このステップS3で否定的に判断された場合は、このステップS3の制御が再度実行される。すなわち、駆動系統が駆動状態から被駆動状態に反転する直前の時点に到達するまで、このステップS3の制御が繰り返し実行される。 If it is not determined in this step S3 that the drive system is not immediately before the drive state is reversed from the drive state to the driven state, the control in step S3 is executed again. That is, the control in step S3 is repeatedly executed until the time point immediately before the drive system is reversed from the drive state to the driven state is reached.
 これに対して、駆動系統が駆動状態から被駆動状態に反転する直前になったことにより、ステップS3で肯定的に判断された場合には、ステップS4へ進み、トルクダウン制御におけるエンジン1の出力トルクの低下速度が、このトルクダウン制御の開始当初に設定されていた第1トルクダウン速度から、その第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度に変更される。すなわち、駆動系統が駆動状態から被駆動状態に反転する直前の時点で、トルクダウン制御の低下速度が減速させられる。この低下速度の減速は、後述するフューエルカットの開始時点まで継続される。したがって、駆動系統が駆動状態から被駆動状態に反転する直前の時点以降からエンジン1の出力トルクが0近傍になるまでの期間では、トルクダウン制御の低下速度が減速させられるので、エンジン1の出力トルクが徐々に低下させられることになる。 On the other hand, if the determination is affirmative in step S3 due to the fact that the drive system is just before reversing from the drive state to the driven state, the process proceeds to step S4 and the output of the engine 1 in the torque-down control. The torque reduction speed is changed from the first torque down speed set at the beginning of the torque down control to the second torque down speed that is slower than the first torque down speed. That is, at the time immediately before the drive system reverses from the drive state to the driven state, the decrease rate of the torque down control is reduced. This reduction in the decrease speed is continued until the fuel cut start point described later. Therefore, in the period from the time immediately before the drive system reverses from the drive state to the driven state until the output torque of the engine 1 becomes close to 0, the rate of decrease in the torque down control is reduced. The torque is gradually reduced.
 このステップS4におけるトルクダウン制御の低下速度の変更は、具体的には、前述したようにエンジン1の点火時期を遅角させる際の遅角速度を制御することにより行われる。すなわち、前述の第1トルクダウン速度よりも変化速度が遅い所定の遅角速度でエンジン1の点火時期を遅角させることにより、上記の第2トルクダウン速度が設定される。 The change in the decrease speed of the torque-down control in step S4 is specifically performed by controlling the retard speed when retarding the ignition timing of the engine 1 as described above. That is, the second torque down speed is set by retarding the ignition timing of the engine 1 at a predetermined retard speed that is slower than the first torque down speed.
 また、上記のようにして第2トルクダウン速度を設定する場合は、例えば、前述のトルク反転点を推定する際に検出されるエンジン回転数Neとタービン回転数Ntとを考慮することにより、第2トルクダウン速度を適切に設定することができる。具体的には、第2トルクダウン速度を設定する場合に、検出されたエンジン回転数Neとタービン回転数Ntとの差分の微分値が算出され、その微分値の大きさすなわちエンジン回転数Neの減少速度に基づいて第2トルクダウン速度が設定される。例えば、上記の微分値が大きい場合すなわちエンジン回転数Neの減少速度が速い場合は、第2トルクダウン速度がより遅い値となるように設定される。あるいは、現時点のエンジン回転数Neとタービン回転数Ntとの差分と、その差分の微分値とから、現時点からエンジン1の出力トルクが0になる時点までの到達時間が推定され、その到達時間に応じて第2トルクダウン速度が適宜設定される。 Further, when the second torque down speed is set as described above, for example, by considering the engine speed Ne and the turbine speed Nt detected when the torque reversal point is estimated, 2 Torque down speed can be set appropriately. Specifically, when the second torque down speed is set, a differential value of the difference between the detected engine speed Ne and the turbine speed Nt is calculated, and the magnitude of the differential value, that is, the engine speed Ne. A second torque down speed is set based on the decreasing speed. For example, when the differential value is large, that is, when the decrease speed of the engine speed Ne is fast, the second torque down speed is set to a slower value. Alternatively, the arrival time from the current time until the output torque of the engine 1 becomes zero is estimated from the difference between the current engine speed Ne and the turbine speed Nt and the differential value of the difference, Accordingly, the second torque down speed is appropriately set.
 前述のフューエルカットを実行する場合と同様に、すなわち、フューエルカットを実行することにより車両Veが駆動状態から被駆動状態に反転する際にショックが発生する可能性があることと同じ理由から、トルクダウン制御を実行することによってエンジン1の出力トルクが0になると、トルクの伝達方向が反転し、その際のトルク変動が大きい場合には、車両Veの運転者や乗員にショックや違和感を与えてしまう可能性があった。 As in the case where the fuel cut is performed, that is, for the same reason that a shock may occur when the vehicle Ve is reversed from the driven state to the driven state by executing the fuel cut, the torque is When the output torque of the engine 1 becomes 0 by executing the down control, the torque transmission direction is reversed, and if the torque fluctuation at that time is large, the driver or the occupant of the vehicle Ve is given a shock or discomfort. There was a possibility.
 それに対して、上記のように、駆動系統が駆動状態から被駆動状態に反転する直前の時点以降からエンジン1の出力トルクが0になる時点近傍までの期間でエンジン1の出力トルクが徐々に低下させられることにより、トルクダウン制御を実行することに伴ってトルクの伝達方向が反転する際に、大きなもしくは急激なトルク変動に起因するショックの発生を防止もしくは抑制することができる。 On the other hand, as described above, the output torque of the engine 1 gradually decreases in the period from the time immediately before the drive system is reversed from the drive state to the driven state until the time when the output torque of the engine 1 becomes zero. By doing so, it is possible to prevent or suppress the occurrence of a shock due to a large or abrupt torque fluctuation when the torque transmission direction is reversed in accordance with the execution of the torque down control.
 そして、駆動系統が駆動状態から被駆動状態に反転する直前の時点でトルクダウン制御の低下速度が減速させられた後に、エンジン1のフューエルカットが開始される(ステップS5)。そしてその後、このルーチンを一旦終了する。 Then, the fuel cut of the engine 1 is started after the decrease speed of the torque-down control is decelerated immediately before the drive system is reversed from the drive state to the driven state (step S5). Thereafter, this routine is once terminated.
 上記のような制御例を実行した場合の車両Ve各部の挙動を、図2のタイムチャートに示してある。時刻t0の時点でアクセルオフの操作が行われると、それに伴ってエンジン回転数Neが減少し始め、フューエルカットを実行するための準備段階に入る。続いて、そのフューエルカットを実行する際のトルク変動を抑制するためのトルクダウン制御が開始される。すなわちエンジン1の点火時期の遅角制御が開始される(時刻t1)。その際、遅角制御が開始される時刻t1から駆動系統が駆動状態から被駆動状態に反転する直前の時点として設定された時刻t2までの期間は、相対的に遅角速度が速い第1トルクダウン速度で遅角制御が実行される。そして時刻t2以降は、第1トルクダウン速度よりも遅角速度が遅い第2トルクダウン速度で遅角制御が実行される。 The behavior of each part of the vehicle Ve when the above control example is executed is shown in the time chart of FIG. When the accelerator-off operation is performed at time t0, the engine speed Ne starts to decrease accordingly, and a preparation stage for executing fuel cut is entered. Subsequently, torque-down control for suppressing torque fluctuation when executing the fuel cut is started. That is, the retard control of the ignition timing of the engine 1 is started (time t1). At that time, during the period from the time t1 when the retard control is started to the time t2 set as the time immediately before the drive system is reversed from the drive state to the driven state, the first torque reduction with a relatively fast retard speed is performed. Delay angle control is executed at speed. After time t2, the retard control is executed at the second torque down speed that is slower than the first torque down speed.
 なお、エンジン回転数Neとタービン回転数Ntとの差分が0になる時刻t3が、前述したようにエンジン1の出力トルクが0になる時点として推定されて設定されている。そして、遅角制御によりエンジン1の出力トルクが所望する値まで低下した時点で、フューエルカットが開始される(時刻t4)。また、このフューエルカットの開始に伴い遅角制御が終了させられる。すなわち、エンジン1の点火時期が通常の状態に戻される。 The time t3 when the difference between the engine speed Ne and the turbine speed Nt becomes 0 is estimated and set as the time when the output torque of the engine 1 becomes 0 as described above. The fuel cut is started when the output torque of the engine 1 is reduced to a desired value by the retard control (time t4). Further, the retard control is terminated with the start of the fuel cut. That is, the ignition timing of the engine 1 is returned to the normal state.
 また、時刻t2すなわち駆動系統が駆動状態から被駆動状態に反転する直前の時点は、例えば、エンジン1の出力トルクが閾値として予め設定した0よりも大きい所定トルクまで低下する時刻として設定することができる。あるいは、図2に示すように、時刻t3すなわちエンジン1の出力トルクが0になる時点に対して予め設定した所定時間Δtだけ遡った時刻を、時刻t2として設定することができる。あるいは、エンジン回転数Neとタービン回転数Ntとの差分が予め設定した所定値ΔN以下になる時刻を、時刻t2として設定することができる。 Further, the time t2, that is, the time immediately before the drive system is reversed from the drive state to the driven state, can be set, for example, as the time when the output torque of the engine 1 drops to a predetermined torque larger than 0 set in advance as a threshold value. it can. Alternatively, as shown in FIG. 2, the time t3 can be set as the time t2, which is a time that is a predetermined time Δt later than the time t3, that is, when the output torque of the engine 1 becomes zero. Alternatively, a time when the difference between the engine speed Ne and the turbine speed Nt is equal to or less than a predetermined value ΔN set in advance can be set as the time t2.
 また、図3に、この発明の制御装置による他の制御例を実行した場合の車両Ve各部の挙動を示してある。この図3のタイムチャートに示す制御例は、トルクダウン制御のためのエンジンの遅角制御を実行する際に、エンジン1の排気系統内に設けられた触媒コンバータ8内の触媒8aの温度を考慮して制御した例である。 FIG. 3 shows the behavior of each part of the vehicle Ve when another control example by the control device of the present invention is executed. The control example shown in the time chart of FIG. 3 takes into account the temperature of the catalyst 8a in the catalytic converter 8 provided in the exhaust system of the engine 1 when executing the retard control of the engine for torque down control. This is an example of control.
 前述したように、点火時期を遅角させると、エンジン1の排気温度が上昇し、排気系統への熱負荷が増大する。したがって、急激なもしくは大幅な遅角制御を行うと、排気系統中の触媒8aが過熱されてしまうおそれがある。そのため、この発明では、触媒温度検出手段として触媒コンバータ8に設けられた触媒温度センサ9により、触媒8aの温度を検出し、その触媒8aの温度が、触媒8aの過熱状態を判定するために予め定めた所定温度すなわち触媒8aの過熱による損傷を防止するための閾値温度として予め定めた所定温度に達した場合に、遅角制御を実行する際の遅角速度もしくは遅角量が抑制される。 As described above, when the ignition timing is retarded, the exhaust temperature of the engine 1 rises and the heat load on the exhaust system increases. Therefore, if rapid or large retardation control is performed, the catalyst 8a in the exhaust system may be overheated. Therefore, in the present invention, the temperature of the catalyst 8a is detected by the catalyst temperature sensor 9 provided in the catalytic converter 8 as the catalyst temperature detecting means, and the temperature of the catalyst 8a is determined in advance in order to determine the overheated state of the catalyst 8a. When reaching a predetermined temperature as a predetermined temperature, ie, a threshold temperature for preventing damage due to overheating of the catalyst 8a, the retard speed or retard amount when executing the retard control is suppressed.
 具体的には、触媒8aの温度が所定温度以上となる高温の場合、図3に示すように、遅角制御の開始時点t1から時刻t2までの期間で遅角制御における遅角速度が、図3で破線で示している通常時の遅角速度に対してより遅くなるように抑制される。すなわち、遅角制御によるエンジン1のトルクダウン制御の低下速度(この場合、第1トルクダウン速度)が抑制される。 Specifically, when the temperature of the catalyst 8a is a high temperature that is equal to or higher than a predetermined temperature, as shown in FIG. 3, the retarding speed in the retarding control during the period from the starting point t1 of the retarding control to the time t2 is as shown in FIG. Is suppressed so as to be slower than the normal retardation angle speed indicated by the broken line. That is, the rate of decrease in the torque down control of the engine 1 by the retard control (in this case, the first torque down speed) is suppressed.
 なお、触媒8aの温度を検出する触媒温度検出手段としては、上記のような触媒8aの温度を直接的に検出する触媒温度センサ9の他に、例えば、エンジン1の出力トルク、スロットル開度、吸入空気量、あるいは車速など、エンジン1の負荷の増減に影響を及ぼす制御量を検出し、その検出値を基にエンジン1の排気温度および触媒8aの温度を推定して求めることもできる。 As the catalyst temperature detecting means for detecting the temperature of the catalyst 8a, in addition to the catalyst temperature sensor 9 for directly detecting the temperature of the catalyst 8a as described above, for example, the output torque of the engine 1, the throttle opening degree, It is also possible to detect a control amount that affects the increase or decrease in the load of the engine 1, such as the intake air amount or the vehicle speed, and estimate the exhaust temperature of the engine 1 and the temperature of the catalyst 8a based on the detected values.
 ここで、上述した具体例とこの発明との関係を簡単に説明すると、図1で示したフローチャートにおいて、ステップS2を実行する機能的手段が、この発明におけるトルクダウン制御手段に相当し、ステップS3,S4を実行する機能的手段が、この発明におけるトルクダウン速度変更手段に相当する。 Here, the relationship between the above-described specific example and the present invention will be briefly described. In the flowchart shown in FIG. 1, the functional means for executing step S2 corresponds to the torque-down control means in the present invention. , S4 corresponds to the torque down speed changing means in the present invention.
 以上のように、この発明の車両の制御装置によれば、フューエルカットを実行する際のトルクの変動に起因するショックを防止するために、そのフューエルカットの実行に先行して、エンジン1の出力トルクを低下させるトルクダウン制御が実行される。その場合、トルクダウンによりエンジン1の出力トルクが0になる時点、すなわちエンジン1がトルクを出力している駆動状態から外力により駆動される被駆動状態に反転する場合の変化点となる時刻t3が推測されて求められる。そして、その時刻t3よりも所定時間Δt前の時点、あるいは、低下される出力トルクが0よりも所定トルクだけ大きい値に到達する時点である時刻t2が駆動系統が駆動状態から被駆動状態に反転する直前の時点として求められ、その時刻t2を境界にして、時刻t2よりも前の期間は、低下速度が速い第1トルクダウン速度でトルクダウン制御が実行される。そして、時刻t2よりも後の期間は、第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度でトルクダウン制御が実行される。 As described above, according to the vehicle control device of the present invention, the output of the engine 1 is executed prior to the execution of the fuel cut in order to prevent a shock caused by the fluctuation of the torque when the fuel cut is executed. Torque down control for reducing the torque is executed. In this case, the time point t3 that becomes a change point when the output torque of the engine 1 becomes 0 due to torque reduction, that is, when the engine 1 is reversed from the driving state in which the torque is output to the driven state driven by the external force is set. Inferred and required. Then, the time t2, which is a time before the time t3, or a time when the output torque to be reduced reaches a value larger than 0 by a predetermined torque, is reversed from the driving state to the driven state. The torque-down control is executed at the first torque-down speed at which the decrease speed is high during the period before the time t2 with the time t2 as a boundary. In a period after time t2, torque down control is executed at a second torque down speed that is slower than the first torque down speed.
 したがって、フューエルカットに併用してトルクダウン制御を実行する際に、エンジン1の出力トルクが0になる時点t3よりも所定時間Δt手前の時刻t2までは、速い低下速度で出力トルクを急速に低下させることができ、そして時刻t2を経過した後のエンジン1の出力トルクが0になる時点t3に到達する直前には、遅い低下速度で出力トルクを徐々に低下させることができる。そのため、エンジン1の出力トルクが0になる時点t3の近傍で、車両が駆動状態から被駆動状態に反転する際に、トルクの変動量が大きいこともしくは急激なトルク変動により生じるショックや振動を防止もしくは抑制することができる。 Therefore, when the torque reduction control is executed in combination with the fuel cut, the output torque is rapidly reduced at a rapid reduction rate until time t2 that is a predetermined time Δt before the time t3 when the output torque of the engine 1 becomes zero. Immediately before reaching the time point t3 when the output torque of the engine 1 becomes 0 after the time t2 has elapsed, the output torque can be gradually reduced at a slow decrease rate. Therefore, when the vehicle reverses from the driving state to the driven state in the vicinity of the time point t3 when the output torque of the engine 1 becomes 0, a shock or vibration caused by a large torque fluctuation amount or a sudden torque fluctuation is prevented. Or it can be suppressed.
 そして、駆動系統が駆動状態から被駆動状態に反転する直前の時点までは出力トルクを急速に低下させることができることから、所望するトルクダウン量に達するまでの時間を可及的に短縮して、その分フューエルカットの開始を早めることができる。その結果、フューエルカットの実行時間を長くすることができ、そのフューエルカットによる燃費向上効果を一層高めることができる。 And since the output torque can be rapidly reduced until just before the drive system reverses from the drive state to the driven state, the time to reach the desired torque reduction amount is reduced as much as possible, The start of the fuel cut can be accelerated accordingly. As a result, the execution time of the fuel cut can be lengthened, and the fuel efficiency improvement effect by the fuel cut can be further enhanced.
 また、上記のようなトルクダウン制御は、前述した例のようにエンジン1が例えばガソリンエンジンなどの火花点火機関であれば、そのエンジン1の点火時期を遅角制御することにより容易に実行することができる。すなわち、点火時期の遅角量や遅角速度を制御することによってトルクダウン制御のトルクダウン量や低下速度を容易に制御することができる。 Moreover, if the engine 1 is a spark ignition engine such as a gasoline engine as in the above-described example, the torque reduction control as described above can be easily executed by retarding the ignition timing of the engine 1. Can do. That is, by controlling the retard amount and retard speed of the ignition timing, it is possible to easily control the torque down amount and the decrease speed of the torque down control.
 また、エンジン1の排気系統に用いられる触媒8aの温度が高い場合には、トルクダウン制御の低下速度が抑制される。すなわち、遅角制御の遅角速度あるいは遅角量が抑制される。そのため、触媒8aが高温の場合に、急速な遅角制御が行われることによる触媒8aの過熱を防止し、触媒8aを保護することができる。 Further, when the temperature of the catalyst 8a used in the exhaust system of the engine 1 is high, the rate of decrease in torque down control is suppressed. That is, the retard speed or retard amount of the retard control is suppressed. Therefore, when the catalyst 8a is at a high temperature, it is possible to prevent overheating of the catalyst 8a due to rapid retard control and protect the catalyst 8a.
 なお、この発明は上述した具体例に限定されない。すなわち、上述した具体例では、フューエルカットを行う際のトルク変動に起因するショックを防止するためにエンジン1のトルクダウン制御を実行する場合の例を説明しているが、この発明におけるトルクダウン制御は、フューエルカットの際に実行される制御に限定されるものではない。例えば、自動変速機の変速時におけるトルク変動を抑制することを目的とする場合や、トルクコンバータのロックアップクラッチの作動時におけるトルク変動を抑制することを目的とする場合など、走行中に車両の動力源から駆動輪に至る動力伝達系統で発生するトルク変動を抑制することを目的とする場合に実行されるトルクダウン制御を、この発明の対象としている。 Note that the present invention is not limited to the specific examples described above. That is, in the specific example described above, an example in which torque down control of the engine 1 is executed in order to prevent a shock caused by torque fluctuation at the time of fuel cut is described. Is not limited to the control executed at the time of fuel cut. For example, when the purpose is to suppress torque fluctuations during shifting of an automatic transmission or when the purpose is to suppress torque fluctuations during operation of a lockup clutch of a torque converter, The object of the present invention is torque down control that is executed when the purpose is to suppress torque fluctuations that occur in the power transmission system from the power source to the drive wheels.

Claims (10)

  1.  内燃機関を動力源とし、走行中に前記内燃機関に対する燃料供給を停止もしくは抑制するフューエルカットを実行可能な車両の制御装置において、
     前記フューエルカットを実行する際に、そのフューエルカットの実行に先立って、前記内燃機関の出力トルクを低下させるトルクダウン制御手段と、
     前記トルクダウン制御手段により前記出力トルクを低下させる際の低下速度を、前記出力トルクが0を含む0に近い場合とそれ以外の0から遠い場合とで変更する手段であって、前記出力トルクが前記0から遠い場合は前記低下速度を相対的に速くし、前記出力トルクが前記0に近い場合は前記低下速度を相対的に遅くするトルクダウン速度変更手段と
    を備えていることを特徴とする車両の制御装置。
    In a control apparatus for a vehicle capable of executing fuel cut using an internal combustion engine as a power source and stopping or suppressing fuel supply to the internal combustion engine during traveling,
    Torque down control means for reducing the output torque of the internal combustion engine prior to the execution of the fuel cut when the fuel cut is executed;
    A means for changing a reduction speed when the output torque is reduced by the torque-down control means between a case where the output torque is close to 0 including 0 and a case where the output torque is far from 0. Torque down speed changing means for relatively decreasing the decreasing speed when the distance from the distance is 0 and relatively decreasing the decreasing speed when the output torque is close to 0. Vehicle control device.
  2.  前記トルクダウン速度変更手段は、前記低下速度として、前記出力トルクが前記0から遠い場合は相対的に低下速度が速い第1トルクダウン速度を設定し、前記出力トルクが前記0に近い場合は前記第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度を設定する手段を含む請求項1に記載の車両の制御装置。 The torque down speed changing means sets the first torque down speed that is relatively high when the output torque is far from the zero as the reduction speed, and the torque down speed changing means when the output torque is close to the zero. The vehicle control device according to claim 1, further comprising means for setting a second torque down speed that is slower than the first torque down speed.
  3.  前記内燃機関は、火花点火機関を含み、
     前記トルクダウン制御手段は、前記火花点火機関の点火時期を遅角することにより前記出力トルクを低下させる手段を含む請求項1または2に記載の車両の制御装置。
    The internal combustion engine includes a spark ignition engine,
    3. The vehicle control device according to claim 1, wherein the torque down control means includes means for reducing the output torque by retarding an ignition timing of the spark ignition engine.
  4.  前記内燃機関の排気系統内に設けられた触媒コンバータと、
     前記触媒コンバータの触媒の温度を検出する触媒温度検出手段と
    を更に備え、
     前記トルクダウン制御手段は、前記触媒温度検出手段により検出された前記触媒の温度が前記触媒の過熱状態を判定するために予め定めた所定温度よりも高い場合に、前記低下速度を抑制する手段を含む請求項1ないし3のいずれかに記載の車両の制御装置。
    A catalytic converter provided in an exhaust system of the internal combustion engine;
    Further comprising catalyst temperature detection means for detecting the temperature of the catalyst of the catalytic converter,
    The torque-down control means includes means for suppressing the rate of decrease when the temperature of the catalyst detected by the catalyst temperature detection means is higher than a predetermined temperature that is determined in advance to determine an overheated state of the catalyst. The vehicle control device according to any one of claims 1 to 3.
  5.  前記出力トルクが入力されて、該出力トルクを入力部材と出力部材との速度比に応じて増幅して出力するトルクコンバータを更に備え、
     前記トルクダウン速度変更手段は、前記内燃機関の出力軸の回転数と前記出力部材の回転数との差に基づいて、前記出力トルクが前記0から遠い場合と前記出力トルクが前記0に近い場合とを判定する手段を含む請求項1ないし4のいずれかに記載の車両の制御装置。
    A torque converter that receives the output torque, amplifies the output torque according to a speed ratio between the input member and the output member, and outputs the amplified torque;
    When the output torque is far from 0 and the output torque is close to 0 based on the difference between the rotational speed of the output shaft of the internal combustion engine and the rotational speed of the output member. The vehicle control device according to claim 1, further comprising means for determining
  6.  内燃機関を動力源とする車両の制御装置において、
     前記内燃機関の出力トルクを低下させるトルクダウン制御手段と、
     前記トルクダウン制御手段により前記出力トルクを低下させる際の低下速度を、前記出力トルクが0を含む0に近い場合とそれ以外の0から遠い場合とで変更する手段であって、前記出力トルクが前記0から遠い場合は前記低下速度を相対的に速くし、前記出力トルクが前記0に近い場合は前記低下速度を相対的に遅くするトルクダウン速度変更手段と
    を備えていることを特徴とする車両の制御装置。
    In a vehicle control apparatus using an internal combustion engine as a power source,
    Torque down control means for reducing the output torque of the internal combustion engine;
    A means for changing a reduction speed when the output torque is reduced by the torque-down control means between a case where the output torque is close to 0 including 0 and a case where the output torque is far from 0. Torque down speed changing means for relatively decreasing the decreasing speed when the distance from the distance is 0 and relatively decreasing the decreasing speed when the output torque is close to 0. Vehicle control device.
  7.  前記トルクダウン速度変更手段は、前記低下速度として、前記出力トルクが前記0から遠い場合は相対的に低下速度が速い第1トルクダウン速度を設定し、前記出力トルクが前記0に近い場合は前記第1トルクダウン速度よりも低下速度が遅い第2トルクダウン速度を設定する手段を含む請求項6に記載の車両の制御装置。 The torque down speed changing means sets the first torque down speed that is relatively high when the output torque is far from the zero as the reduction speed, and the torque down speed changing means when the output torque is close to the zero. The vehicle control device according to claim 6, further comprising means for setting a second torque down speed that is slower than the first torque down speed.
  8.  前記内燃機関は、火花点火機関を含み、
     前記トルクダウン制御手段は、前記火花点火機関の点火時期を遅角することにより前記出力トルクを低下させる手段を含む請求項6または7に記載の車両の制御装置。
    The internal combustion engine includes a spark ignition engine,
    8. The vehicle control device according to claim 6, wherein the torque down control means includes means for reducing the output torque by retarding an ignition timing of the spark ignition engine.
  9.  前記内燃機関の排気系統内に設けられた触媒コンバータと、
     前記触媒コンバータの触媒の温度を検出する触媒温度検出手段と
    を更に備え、
     前記トルクダウン制御手段は、前記触媒温度検出手段により検出された前記触媒の温度が前記触媒の過熱状態を判定するために予め定めた所定温度よりも高い場合に、前記低下速度を抑制する手段を含む請求項6ないし8のいずれかに記載の車両の制御装置。
    A catalytic converter provided in an exhaust system of the internal combustion engine;
    Further comprising catalyst temperature detection means for detecting the temperature of the catalyst of the catalytic converter,
    The torque-down control means includes means for suppressing the rate of decrease when the temperature of the catalyst detected by the catalyst temperature detection means is higher than a predetermined temperature that is determined in advance to determine an overheated state of the catalyst. The vehicle control device according to any one of claims 6 to 8.
  10.  前記出力トルクが入力されて、該出力トルクを入力部材と出力部材との速度比に応じて増幅して出力するトルクコンバータを更に備え、
     前記トルクダウン速度変更手段は、前記内燃機関の出力軸の回転数と前記出力部材の回転数との差に基づいて、前記出力トルクが前記0から遠い場合と前記出力トルクが前記0に近い場合とを判定する手段を含む請求項6ないし9のいずれかに記載の車両の制御装置。
    A torque converter that receives the output torque, amplifies the output torque according to a speed ratio between the input member and the output member, and outputs the amplified torque;
    When the output torque is far from 0 and the output torque is close to 0 based on the difference between the rotational speed of the output shaft of the internal combustion engine and the rotational speed of the output member. The vehicle control device according to claim 6, further comprising means for determining
PCT/JP2009/062743 2009-07-14 2009-07-14 Control device for vehicle WO2011007420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062743 WO2011007420A1 (en) 2009-07-14 2009-07-14 Control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062743 WO2011007420A1 (en) 2009-07-14 2009-07-14 Control device for vehicle

Publications (1)

Publication Number Publication Date
WO2011007420A1 true WO2011007420A1 (en) 2011-01-20

Family

ID=43449036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062743 WO2011007420A1 (en) 2009-07-14 2009-07-14 Control device for vehicle

Country Status (1)

Country Link
WO (1) WO2011007420A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024091A (en) * 2011-07-19 2013-02-04 Toyota Motor Corp Vehicle control device
JP2013142307A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Torque control device of vehicle
JP2013144966A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Control device for vehicle
JP2013151900A (en) * 2012-01-25 2013-08-08 Toyota Motor Corp Internal combustion engine controller
JP2013160161A (en) * 2012-02-07 2013-08-19 Toyota Motor Corp Internal combustion engine control device
JP2013194640A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Control device for internal combustion engine
JP2013238140A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Control device for internal combustion engine
JP2013245639A (en) * 2012-05-29 2013-12-09 Toyota Motor Corp Control device for internal combustion engine
JP2014005737A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Control device of internal combustion engine
JP2014047667A (en) * 2012-08-30 2014-03-17 Toyota Motor Corp Control device of internal combustion engine
US20220003181A1 (en) * 2020-07-03 2022-01-06 c/o Honda Motor Co., Ltd. Internal combustion engine control apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171690A (en) * 1999-12-09 2001-06-26 Totani Corp Plastic bag and its manufacturing method
JP2003090248A (en) * 2001-09-17 2003-03-28 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2005140076A (en) * 2003-11-10 2005-06-02 Toyota Motor Corp Vehicle control device relating to supply/stop control of fuel to engine as vehicle driving source, particularly, to stop control of fuel supply during idling for improved fuel economy
JP2005146953A (en) * 2003-11-13 2005-06-09 Toyota Motor Corp Ignition timing control device for engine
JP2005171942A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Engine fuel feed stop controlling device
JP2007107406A (en) * 2005-10-11 2007-04-26 Toyota Motor Corp Drive control device for vehicle
JP2008025507A (en) * 2006-07-24 2008-02-07 Toyota Motor Corp Exhaust emission control system of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171690A (en) * 1999-12-09 2001-06-26 Totani Corp Plastic bag and its manufacturing method
JP2003090248A (en) * 2001-09-17 2003-03-28 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2005140076A (en) * 2003-11-10 2005-06-02 Toyota Motor Corp Vehicle control device relating to supply/stop control of fuel to engine as vehicle driving source, particularly, to stop control of fuel supply during idling for improved fuel economy
JP2005146953A (en) * 2003-11-13 2005-06-09 Toyota Motor Corp Ignition timing control device for engine
JP2005171942A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Engine fuel feed stop controlling device
JP2007107406A (en) * 2005-10-11 2007-04-26 Toyota Motor Corp Drive control device for vehicle
JP2008025507A (en) * 2006-07-24 2008-02-07 Toyota Motor Corp Exhaust emission control system of internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024091A (en) * 2011-07-19 2013-02-04 Toyota Motor Corp Vehicle control device
JP2013142307A (en) * 2012-01-10 2013-07-22 Toyota Motor Corp Torque control device of vehicle
JP2013144966A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Control device for vehicle
JP2013151900A (en) * 2012-01-25 2013-08-08 Toyota Motor Corp Internal combustion engine controller
JP2013160161A (en) * 2012-02-07 2013-08-19 Toyota Motor Corp Internal combustion engine control device
JP2013194640A (en) * 2012-03-21 2013-09-30 Toyota Motor Corp Control device for internal combustion engine
JP2013238140A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Control device for internal combustion engine
JP2013245639A (en) * 2012-05-29 2013-12-09 Toyota Motor Corp Control device for internal combustion engine
JP2014005737A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Control device of internal combustion engine
JP2014047667A (en) * 2012-08-30 2014-03-17 Toyota Motor Corp Control device of internal combustion engine
US20220003181A1 (en) * 2020-07-03 2022-01-06 c/o Honda Motor Co., Ltd. Internal combustion engine control apparatus

Similar Documents

Publication Publication Date Title
WO2011007420A1 (en) Control device for vehicle
JP3985832B2 (en) Control device for hybrid vehicle
EP2722512B1 (en) Vehicle driving device and vehicle driving method
JP5907279B2 (en) Vehicle control device
JP4821658B2 (en) Transmission neutral control device and engine idle stop control device
JP4073908B2 (en) Automatic engine stop and restart device for vehicle
JP2020118095A (en) On-vehicle control device
JP4779998B2 (en) Device for promoting activation of exhaust purification catalyst
JP6323418B2 (en) Vehicle control device
JP6583130B2 (en) Vehicle control device
JP5862527B2 (en) Vehicle control device
JP2009150513A (en) Control device of power transmission apparatus
JP6036121B2 (en) Control device for automatic stop and restart of engine in vehicle
EP3306062B1 (en) Control device for internal combustion engine for vehicle
JP4111084B2 (en) Idle stop control device for vehicle
JP2012220010A (en) Vehicular control device
JP6536470B2 (en) Vehicle control device
JP2020045801A (en) Vehicle control device
JP2012037053A (en) Method for controlling internal combustion engine
US20220281433A1 (en) Control device for vehicle
JP2006342907A (en) Lock-up control device for automatic transmission
JP6481536B2 (en) ENGINE CONTROL METHOD AND ENGINE CONTROL DEVICE
JP5533710B2 (en) Control device for vehicle lock-up clutch
JP5776612B2 (en) Vehicle starting clutch control device
JP5928288B2 (en) Control device for clutch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847318

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP