WO2011001787A1 - Video display device, hmd, and hud - Google Patents

Video display device, hmd, and hud Download PDF

Info

Publication number
WO2011001787A1
WO2011001787A1 PCT/JP2010/059519 JP2010059519W WO2011001787A1 WO 2011001787 A1 WO2011001787 A1 WO 2011001787A1 JP 2010059519 W JP2010059519 W JP 2010059519W WO 2011001787 A1 WO2011001787 A1 WO 2011001787A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
view
hoe
video display
Prior art date
Application number
PCT/JP2010/059519
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 野田
佳恵 清水
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011001787A1 publication Critical patent/WO2011001787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29323Coupling to or out of the diffractive element through the lateral surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Definitions

  • the present invention relates to an image display device that allows an observer to observe an image, and a head-mounted display (hereinafter also referred to as HMD) and a head-up display (hereinafter also referred to as HUD) provided with the image display device.
  • HMD head-mounted display
  • HUD head-up display
  • an image display apparatus that allows an observer to observe an image using a volume phase type reflection type hologram optical element (hereinafter also referred to as HOE).
  • HOE volume phase type reflection type hologram optical element
  • the image light from the display element is diffracted and reflected by the HOE and guided to the optical pupil, and at the same time, the external light is transmitted and guided to the optical pupil, so that the image and the external environment are transmitted at the position of the optical pupil. Superimposing can be observed.
  • the diffraction efficiency of the HOE is constant regardless of the region.
  • the volume phase type reflection type HOE has high wavelength selectivity and angle selectivity. Therefore, the incident angle of the light beam on the HOE during reproduction (image observation) is the incident angle of the light beam during manufacturing (exposure). The wavelength of light diffracted and reflected by the HOE changes. As a result, color unevenness occurs when the observer's pupil position deviates from the optical pupil center, or color unevenness occurs in the viewing angle direction within the observation screen.
  • Patent Documents 1 and 2 disclose methods for reducing color unevenness in a screen.
  • the correction circuit corrects R (red), G (green), and B (blue) video signals to correct the display color balance of the display element, or transmits the display element.
  • the color unevenness in the screen is reduced.
  • the color unevenness in the screen is reduced by correcting the luminance signal of each color when the pixel of the display element is driven by a correction circuit.
  • JP 2009-36955 A see claims 1 and 8, paragraphs [0012] and [0013], etc.
  • any of the methods disclosed in Patent Documents 1 and 2 can be corrected only in a direction that suppresses a color with strong color unevenness.
  • the correction circuit lowers the level (pixel value) of the R video signal or luminance signal, or the correction filter reduces the R transmitted light amount. This means that the amount of image light is reduced, and the light use efficiency is reduced.
  • the present invention has been made to solve the above-described problems, and its object is to reduce color unevenness in a screen in consideration of specific visibility and without reducing light utilization efficiency. Accordingly, it is an object of the present invention to provide a video display device capable of observing a bright video with good image quality, and an HMD and a HUD including the video display device.
  • the image display device of the present invention includes a light source, a display element that modulates light from the light source and displays an image, and a volume phase reflection type that diffracts and reflects the image light from the display element and guides it to an optical pupil.
  • an observation optical system having two hologram optical elements, wherein the hologram optical element includes two colors including an R wavelength range among RGB wavelength ranges corresponding to red, green, and blue.
  • the light of the above wavelength range is diffracted and reflected and guided to the optical pupil, and the ratio of the maximum diffraction efficiency of each color of the hologram optical element differs depending on the area, and the center of the display surface of the display element and the center of the optical pupil Is the optical axis, the angle of view at the center of the observation screen is 0, and two in the observation screen in the plane including the optical axis of the incident light and the optical axis of the reflected light with respect to the hologram optical element.
  • the diffraction peak wavelength of R The larger one is ⁇ , the smaller one is ⁇ , and the light in the wavelength range of two or more colors diffracted and reflected by the hologram optical element has a wavelength region different from R and in the photopic diopter sensitivity curve.
  • the maximum diffraction efficiency ⁇ of R and C at the angles of view ⁇ , ⁇ , 0, respectively, is represented by ⁇ R ⁇ , ⁇ R ⁇ , where C is the color in the wavelength region shorter than the wavelength with the highest relative visibility.
  • the video display device of the present invention may satisfy the conditional expression (1) in the R wavelength region and the B or G wavelength region.
  • the image display device of the present invention may satisfy the conditional expression (1) in both the R wavelength range and the B wavelength range, and the R wavelength range and the G wavelength range.
  • the video display device of the present invention includes the following conditional expression (2), ⁇ R ⁇ > ⁇ R ⁇ (2) It is desirable to satisfy
  • the video display device of the present invention includes the following conditional expression (3): ⁇ C ⁇ ⁇ C ⁇ (3) It is desirable to satisfy
  • the video display device of the present invention includes the following conditional expression (4), ( ⁇ R ⁇ / ⁇ C ⁇ ) ⁇ 1.5 ⁇ ( ⁇ R ⁇ / ⁇ C ⁇ ) (4) It is desirable to satisfy
  • the video display device of the present invention includes the following conditional expression (5), P ′> ( ⁇ G ⁇ / ⁇ B ⁇ )> ( ⁇ G 0 / ⁇ B 0 ) > ( ⁇ G ⁇ / ⁇ B ⁇ )> Q ′ (5)
  • P ′ ⁇ (NB ⁇ ⁇ / NB ⁇ 0 ) ⁇ (NG ⁇ 0 / NG ⁇ ⁇ ) ⁇ 2
  • Q ′ ⁇ (NB ⁇ ⁇ / NB ⁇ 0 ) ⁇ (NG ⁇ 0 / NG ⁇ ⁇ ) ⁇ 2 It is desirable to satisfy
  • the hologram optical element is formed by multiple recording of interference fringes corresponding to two or more different colors of RGB in one layer.
  • the head-mounted display of the present invention may be configured to include the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
  • the head-up display of the present invention includes the above-described video display device of the present invention, and the hologram optical element of the video display device may be held on a substrate arranged in the field of view of the observer. Good.
  • conditional expression D ( ⁇ R ⁇ / ⁇ C ⁇ )> ( ⁇ R 0 / ⁇ C 0 )> ( ⁇ R ⁇ / ⁇ C ⁇ ) is referred to as conditional expression D.
  • the maximum R The change in diffraction efficiency is larger than the change in the maximum diffraction efficiency of C.
  • the relative luminous sensitivity changes with respect to the center of the viewing angle as compared with C (for example, B or G), and color unevenness in the screen
  • C for example, B or G
  • color unevenness in the screen The impact on is great. Therefore, by making the change in the maximum diffraction efficiency for such R larger than that for C, compared to the case where the maximum diffraction efficiency ratio of each color in HOE is constant regardless of the region, The amount of change in (relative specific luminous sensitivity) ⁇ (diffraction efficiency) can be suppressed, and color unevenness in the screen can be reduced. In this way, it is possible to reduce the color unevenness in the screen in consideration of the relative visual sensitivity, so that the observer observes an image with good image quality in which the color unevenness in the screen is reduced during actual image observation. Can do (feel).
  • FIG. 4 is a graph illustrating an example of a relationship between a position of an HOE in an X direction and a maximum diffraction efficiency of each color of RGB in the video display device according to the embodiment of the present invention.
  • It is sectional drawing which shows the schematic structure of the said video display apparatus.
  • (A) is explanatory drawing which shows the exposure light beam when producing the said HOE
  • (b) is explanatory drawing which shows the reproduction
  • FIG. 3 is a graph showing a change in (relative relative luminous sensitivity) ⁇ (diffraction efficiency) with respect to a change in field angle, normalized with respect to an angle of view of 0 °, for each color of RGB in the setting of FIG. 1.
  • It is a graph which shows distribution. It is a graph which shows the other example of the relationship between the position of the X direction of HOE, and the maximum diffraction efficiency of each color of RGB.
  • FIG. 10 is a graph showing a change in (relative relative luminous sensitivity) ⁇ (diffraction efficiency) with respect to a change in field angle, normalized with respect to an angle of view of 0 °, for each color of RGB in the setting of FIG. 9.
  • It is explanatory drawing which shows the schematic structure of the exposure optical system which produces the said HOE.
  • (A) is explanatory drawing which shows the exposure light beam when producing HOE of other embodiment of this invention
  • (b) is explanatory drawing which shows the reproduction
  • 16 is a graph showing a change in (relative relative luminous sensitivity) ⁇ (diffraction efficiency) with respect to a change in field angle, normalized with respect to a field angle of 0 °, for each color of RGB in the setting of FIG. 15.
  • It is sectional drawing which shows the structure of the outline of the video display apparatus of further another embodiment of this invention. It is a perspective view which shows the structure of outline of HMD. It is sectional drawing which shows the structure of the outline of HUD.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment.
  • the video display device 1 includes a light source 11, a display element 12, an eyepiece optical system 13, and a light guide unit 14.
  • the video display device 1 of the present embodiment is a horizontal insertion type, that is, the display element 12 is arranged at one end portion in the eye width direction (left-right direction, horizontal direction) of the observer, and the video light is generated in the light guide unit 14. Is of a type that guides light horizontally.
  • the eyepiece optical system 13 and the light guide unit 14 constitute an observation optical system.
  • the light source 11 is composed of an LED that emits light in each of the R, G, and B wavelength ranges corresponding to, for example, red, green, and blue.
  • the display element 12 is a light modulation element that displays light by modulating light from the light source 11 according to image data, and is configured by an LCD, for example.
  • the eyepiece optical system 13 converts the image light from the display element 12 into parallel light and guides it to the light guide means 14.
  • the light guide means 14 has a light guide member 21 and HOEs 22 and 23.
  • the light guide member 21 is a transparent substrate that guides video light from the display element 12 inside, and has parallel surfaces 21 a and 21 b that face each other.
  • the surface 21a is a surface on the display element 12 side, and the surface 21b is a surface opposite to the display element 12 with respect to the surface 21a.
  • the surfaces 21a and 21b are located substantially parallel to the display surface of the display element 12.
  • the HOE 22 (first HOE) is a volume phase type reflection type diffractive optical element, and is produced by exposing a hologram photosensitive material (for example, photopolymer), which is a constituent material thereof, with two light beams.
  • the HOE 22 is held on the surface 21 b of the light guide member 21, and diffracts and reflects video light incident on the light guide member 21 through the surface 21 a so as to be totally reflected in the light guide member 21.
  • the HOE 23 (second HOE) is a volume phase type reflection type diffractive optical element, and is manufactured by exposing a hologram photosensitive material (for example, photopolymer), which is a constituent material thereof, with two light beams.
  • the HOE 23 is also held on the surface 21b of the light guide member 21, and diffracts the image light that is diffracted and reflected by the HOE 22 and is totally reflected inside the light guide member 21 in the direction of the optical pupil E. Reflect.
  • the HOEs 22 and 23 diffract and reflect light in all the RGB wavelength ranges, but it is only necessary to diffract and reflect light in two or more wavelength ranges including the R wavelength range. .
  • the ratio of the maximum diffraction efficiency of each color of the HOE 22 is constant regardless of the region.
  • the ratio of the maximum diffraction efficiency of each color of the HOE 23 differs depending on the region, and this is a major feature of the present invention, which will be described later.
  • the HOEs 22 and 23 are manufactured so as to reflect incident parallel light with parallel light.
  • the light from the light source 11 is modulated by the display element 12 and is incident on the eyepiece optical system 13 as image light, and is enlarged and collimated into the light guide member 21 in the surface 21a. Incident from the side.
  • This image light is diffracted and reflected by the HOE 22 and guided to the HOE 23 while repeating total reflection between the surfaces 21a and 21b.
  • the incident image light is diffracted and reflected and guided to the optical pupil E through the surface 21a. Therefore, at the position of the optical pupil E, the observer can observe an enlarged virtual image of the image displayed on the display element 12.
  • the HOE 23 has high wavelength selectivity of diffracted and reflected light, and transmits almost all the external light, so that the observer can observe the external world see-through while observing the virtual image of the display image.
  • an axis that optically connects the center of the display surface of the display element 12 and the center of the optical pupil E is defined as an optical axis
  • the optical axis direction is defined as a Z direction.
  • the eye width direction left-right direction
  • the vertical direction is the Y direction.
  • the angle of view at the center of the observation screen is set to 0 (°), and the two maximum values in the observation screen in the plane including the optical axis of the incident light and the optical axis of the reflected light with respect to the HOE 23 (in the ZX plane in FIG. 2).
  • the larger R diffraction peak wavelength is defined as + ⁇ (°), and the smaller one is defined as ⁇ (°). That is, in the X direction (view angle direction), the direction in which the R diffraction peak wavelength shifts to the long wavelength side is the positive view angle direction (view angle plus side), and conversely, the R diffraction peak wavelength is short.
  • the direction shifted to the wavelength side is defined as the negative direction of the angle of view (view angle minus side).
  • FIG. 3A shows exposure rays (1) and (2) when the HOE 23 is manufactured (when the hologram photosensitive material 23a is exposed), and FIG. 3B shows reproduction rays during video observation.
  • the HOE 23 is manufactured by exposing the hologram photosensitive material 23a with two light beams (exposure light beams (1) and (2)) parallel to the optical axis, and recording interference fringes on the hologram photosensitive material 23a as a refractive index distribution.
  • the HOE 23 is manufactured with the incident angles of the exposure light beams (1) and (2) to the hologram photosensitive material 23a being 0 ° and 60 °, respectively, and the exposure wavelengths of the BGR being 476.5 nm, 532 nm, and 647 nm. did.
  • a prism 31 is disposed in close contact with the surface 21a of the light guide member 21, and the exposure light beam (2) is applied to the hologram photosensitive material 23a through the prism 31. Thereby, at the time of image observation, the image light can be totally reflected by the surface 21 a of the light guide member 21 and can be incident on the HOE 23.
  • the maximum field angle at the time of image observation is ⁇ 6 °
  • the hologram photosensitive material 23a undergoes 2% polymerization shrinkage in the film thickness direction during exposure.
  • the observation direction of the image and the direction of the exposure light beam (1) are the same, so the wavelength at the time of exposure ⁇ 0.98 (2% polymerization shrinkage)
  • the diffraction efficiency is maximized for image light having a wavelength of
  • the observation angle of view is different in the X direction within the plane including the optical axis in the observation screen, the observation direction of the image and the direction of the exposure light beam (1) are shifted, so that the diffraction peak wavelength reaching the optical pupil E Varies according to Bragg's conditional expression.
  • Table 1 shows the relationship between the observation angle of view and the diffraction peak wavelength of each BGR in the present embodiment.
  • the diffraction peak wavelength of BGR changes depending on the viewing angle of view.
  • a filter is inserted to change the transmittance or to electrically
  • both methods are methods in which the amount of light decreases, and the light utilization efficiency decreases.
  • FIG. 4 shows a photopic luminosity curve (hereinafter also simply referred to as a luminosity curve).
  • the relative visibility is highest near the wavelength of 555 nm, and decreases from the wavelength toward the long wavelength side and the short wavelength side. Even if video light having the same energy (intensity) exists at each wavelength of BGR, the relative visibility differs depending on the wavelength, and the brightness (luminance) perceived by humans differs.
  • the wavelength range of the image light of each BGR varies depending on the angle of view, and is B: 455 to 476 nm, G: 509 to 532 nm, and R: 618 to 647 nm (hatched hatched wavelengths in FIG. 4). Area reference).
  • B 455 to 476 nm
  • G 509 to 532 nm
  • R 618 to 647 nm (hatched hatched wavelengths in FIG. 4).
  • Area reference the relative visibility at each angle of view is normalized with respect to the screen center
  • the normalized relative luminous efficiency is also referred to as relative specific luminous efficiency.
  • the luminance of the image actually observed at the position of the optical pupil is assumed that the image light having the same energy amount at each wavelength reaches the HOE 23.
  • (Relative specific luminous efficiency) x (Diffraction efficiency) It is represented by
  • the change in (relative relative luminous sensitivity) ⁇ (diffraction efficiency) for each angle of view is substantially the same as the change in relative relative luminous sensitivity in FIG. It becomes the behavior of. Therefore, in this case, the luminance of the observed image varies depending on the angle of view, and B and G are brighter on the plus side of the angle of view, and conversely, R is brighter on the minus side of the angle of view. That is, in B, G, and R, the direction in which the video brightness is brightened is reversed (between the view angle plus side and the view angle minus side), and in principle, color unevenness occurs in the screen.
  • a color having a wavelength region different from R is C in the light of any two or three wavelength regions of RGB that the HOE 23 diffracts and reflects. That is, the wavelength range of C is the wavelength range of B or G that is on the shorter wavelength side than the wavelength (555 nm) with the highest specific visibility in the specific visibility curve shown in FIG.
  • the maximum diffraction efficiencies ⁇ of R and C at angles of view ⁇ °, ⁇ °, and 0 ° are ⁇ R ⁇ , ⁇ R ⁇ , ⁇ R 0 , ⁇ C ⁇ , ⁇ C ⁇ , and ⁇ C 0 , respectively. .
  • the relative luminous sensitivities N in the bright places of the diffraction peak wavelengths R ⁇ (nm) and C ⁇ (nm) of R and C at angles of view ⁇ °, ⁇ °, and 0 ° are respectively represented as NR ⁇ ⁇ , NR ⁇ ⁇ , NR ⁇ 0 , NC ⁇ ⁇ , NC ⁇ ⁇ , and NC ⁇ 0 are assumed.
  • FIG. 6 is a plan view of the HOE 23. Assuming that the position of the region corresponding to the angle of view 0 ° in the X direction of the HOE 23 is a reference (0 mm), the position of the region corresponding to the angle of view ⁇ ° and ⁇ ° is 2.5 mm from the reference position, respectively. -2.5 mm position.
  • FIG. 1 shows the relationship between the position of the HOE 23 in the X direction and the maximum diffraction efficiency for each color of RGB.
  • the ratio of the maximum diffraction efficiency of each color of RGB is varied depending on the region in the HOE 23 so as to satisfy the following conditional expression (1). That is, P> ( ⁇ R ⁇ / ⁇ C ⁇ )> ( ⁇ R 0 / ⁇ C 0 )> ( ⁇ R ⁇ / ⁇ C ⁇ )> Q ...
  • conditional expression D ( ⁇ R ⁇ / ⁇ C ⁇ )> ( ⁇ R 0 / ⁇ C 0 )> ( ⁇ R ⁇ / ⁇ C ⁇ ) is referred to as conditional expression D.
  • the maximum diffraction efficiency ratio for example, ⁇ R / ⁇ B, ⁇ R / ⁇ G
  • the change in the maximum diffraction efficiency of R is larger than the change in the maximum diffraction efficiency of C.
  • the relative visibility of R is lower (see FIG. 4). Therefore, in the region corresponding to the angle of view ⁇ and the HOE 23, the region corresponding to the center of the angle of view and the HOE 23 Rather than the maximum diffraction efficiency ratio of R and C (that is, ( ⁇ R ⁇ / ⁇ C ⁇ )> ( ⁇ R 0 / ⁇ C 0 )).
  • the center of view angle corresponds to HOE 23.
  • the maximum diffraction efficiency ratio of R and C is made lower than that in the region to be (that is, ( ⁇ R 0 / ⁇ C 0 )> ( ⁇ R ⁇ / ⁇ C ⁇ )).
  • FIG. 7 shows the change of (relative relative luminous sensitivity) ⁇ (diffraction efficiency) with respect to the change of the angle of view for each color of RGB, normalized based on the angle of view of 0 °.
  • the maximum diffraction efficiency of R and C in the HOE 23 can be changed monotonously (including almost monotone) in the X direction. Since the change in relative relative luminous sensitivity in the X direction is monotonic as shown in FIG. 5, the maximum diffraction efficiency of R and C changes monotonously in the X direction in accordance with such monotonous change in relative relative visual sensitivity. By doing so, color unevenness in the screen can be reduced with a simple configuration of the HOE 23 (without complicated setting of diffraction efficiency).
  • P corresponds to the upper limit of ( ⁇ R ⁇ / ⁇ C ⁇ ) in conditional expression D
  • Q corresponds to the lower limit of ( ⁇ R ⁇ / ⁇ C ⁇ ) in conditional expression D. If ( ⁇ R ⁇ / ⁇ C ⁇ ) becomes too large or ( ⁇ R ⁇ / ⁇ C ⁇ ) becomes too small, color unevenness in the screen may be reversed. Therefore, by setting ( ⁇ R ⁇ / ⁇ C ⁇ ) to be smaller than the upper limit P and setting ( ⁇ R ⁇ / ⁇ C ⁇ ) to be larger than the lower limit Q, a phenomenon in which color unevenness in the screen is reversed and generated. Can be avoided, and the effect of reducing color unevenness by conditional expression D can be obtained appropriately.
  • FIG. 8A shows the distribution of diffraction efficiency of BGR at an angle of view of 6 °
  • FIG. 8B shows an angle of view of 0 °
  • FIG. 8C shows an angle of view of ⁇ 6 °.
  • the maximum diffraction efficiency ratio of each color of the HOE 23 is larger than the angle of view 0 °
  • FIG. 8C when the angle of view is -6 °, the maximum diffraction efficiency of B and G is larger than that of the angle of view of 0 °. It becomes possible to increase the diffraction efficiency. Therefore, compared to the conventional configuration in which the color unevenness in the screen is reduced using the correction circuit and the correction filter, the light use efficiency of the necessary color can be increased, and the observer can reduce the color unevenness. The image can be observed brightly.
  • conditional expression (1) is satisfied when C is replaced with B, or conditional expression (1) is satisfied when C is replaced with G.
  • the ratio of the maximum diffraction efficiency of each color may be varied depending on the region of the HOE 23. That is, the conditional expression (1) may be satisfied in the R wavelength region and the B or G wavelength region. In this case, even when the HOE 23 is fabricated so as to diffract and reflect light in the two color wavelength ranges, it is possible to reduce color unevenness in the screen in consideration of the relative visibility of the two colors. .
  • the ratio of the maximum diffraction efficiency of each color may be varied depending on the region of the HOE 23 so as to satisfy the conditional expression (1) for both the case where C is replaced with B and the case where G is replaced. That is, the conditional expression (1) may be satisfied in both the R wavelength range and the B wavelength range, and the R wavelength range and the G wavelength range.
  • the HOE 23 is fabricated so as to diffract and reflect light in the three wavelength bands of RGB, it is possible to reduce color unevenness in the screen in consideration of all the relative luminous sensitivities of the three colors of RGB. It becomes possible. Therefore, for example, when a white image is displayed on the display element 12, the observer can observe (feel) a white image or an image close thereto at any angle of view in the observation screen.
  • the video display device 1 of the present embodiment has the following conditional expression (2), ⁇ R ⁇ > ⁇ R ⁇ (2) It is desirable to satisfy
  • the relative visual sensitivity of R is lower at an angle of view ⁇ where the diffraction peak wavelength of R is larger, and that the relative visual sensitivity of R is higher at an angle of view ⁇ where the diffraction peak wavelength of R is smaller.
  • the maximum diffraction efficiency of R becomes higher at the angle of view ⁇ where the relative luminous sensitivity of R is lower, and the angle of view ⁇ where the relative luminance of R is higher is higher. Then, the maximum diffraction efficiency of R becomes lower.
  • the change in the relative relative luminous sensitivity of R and the change in the maximum diffraction efficiency of R are reversed (the straight line between two points on the curve indicating the change in relative relative luminous sensitivity in FIG. 5).
  • the slope is positive, and the slope of a straight line between two points on the curve indicating the change in the maximum diffraction efficiency of R in FIG. 1 is negative).
  • the maximum relative diffraction efficiency of R and the maximum diffraction efficiency of R are changed in the same direction (when the inclination is both positive), the maximum diffraction efficiency of R with respect to the angle of view. It can be said that the change will be greater.
  • the effect of reducing color unevenness in the screen can be reliably obtained by greatly changing the maximum diffraction efficiency of R for R having a large change in relative relative luminous sensitivity.
  • conditional expression (2) R relative relative luminous sensitivity and R maximum diffraction efficiency are changed in the same direction in the X direction, compared to R ⁇ ( ⁇ R ⁇ ⁇ R ⁇ ). It is also possible to reduce the luminance difference and reduce luminance unevenness. That is, even if the relative relative luminous sensitivity of R and the maximum diffraction efficiency of R are changed in the same direction in the X direction, an effect of reducing color unevenness in the screen can be obtained as long as the conditional expression (1) is satisfied. However, in this case, for R, the value of (relative relative luminous sensitivity) ⁇ (diffraction efficiency) is larger on the minus angle of view and smaller on the plus side of the angle of view. This means that an R luminance difference occurs at both ends of the field angle.
  • conditional expression (2) When the conditional expression (2) is satisfied, the angle of view of R is smaller than the case of ⁇ R ⁇ ⁇ R ⁇ because the difference between the values of (relative relative luminous sensitivity) ⁇ (diffraction efficiency) is smaller than ⁇ R ⁇ ⁇ R ⁇ . The luminance difference of R at both ends is reduced. Therefore, by satisfying conditional expression (2), it is possible to reduce both color unevenness and luminance unevenness in the screen.
  • the video display device 1 of the present embodiment has the following conditional expression (3): ⁇ C ⁇ ⁇ C ⁇ (3) It is desirable to satisfy
  • the change in relative relative luminous sensitivity in the wavelength range of C is the change in relative relative luminous sensitivity in the wavelength range of R. Since the opposite is true, the relative specific luminous efficiency of C is higher on the positive angle of view and lower on the negative angle of view.
  • the maximum diffraction efficiency of C is lower at the angle of view ⁇ where the relative relative luminous sensitivity of C is higher, and at the angle of view ⁇ where the relative relative visibility of C is lower, The maximum diffraction efficiency of C becomes higher.
  • the video display device 1 of the present embodiment has the following conditional expression (4), ( ⁇ R ⁇ / ⁇ C ⁇ ) ⁇ 1.5 ⁇ ( ⁇ R ⁇ / ⁇ C ⁇ ) (4) It is desirable to satisfy
  • Conditional expression (4) indicates a level for effectively reducing color unevenness in the screen.
  • the video display device 1 of the present embodiment has the following conditional expression (5), P ′> ( ⁇ G ⁇ / ⁇ B ⁇ )> ( ⁇ G 0 / ⁇ B 0 )> ( ⁇ G ⁇ / ⁇ B ⁇ ) > Q '(5)
  • P ′ ⁇ (NB ⁇ ⁇ / NB ⁇ 0 ) ⁇ (NG ⁇ 0 / NG ⁇ ⁇ ) ⁇ 2
  • Q ′ ⁇ (NB ⁇ ⁇ / NB ⁇ 0 ) ⁇ (NG ⁇ 0 / NG ⁇ ⁇ ) ⁇ 2 It is desirable to satisfy
  • P ′ corresponds to the upper limit of ( ⁇ G ⁇ / ⁇ B ⁇ ) in conditional expression (5)
  • Q ′ corresponds to the lower limit of ( ⁇ G ⁇ / ⁇ B ⁇ ) in conditional expression (5). If ( ⁇ G ⁇ / ⁇ B ⁇ ) becomes too large or ( ⁇ G ⁇ / ⁇ B ⁇ ) becomes too small, color unevenness in the screen may be reversed. Therefore, by setting ( ⁇ G ⁇ / ⁇ B ⁇ ) to be smaller than the upper limit P ′ and setting ( ⁇ G ⁇ / ⁇ B ⁇ ) to be larger than the lower limit Q ′, color unevenness in the screen is reversed and generated. Can be avoided, and color unevenness caused by B and G can be improved.
  • the video display apparatus 1 has conditional expression (1) between R and B, that is, P> ( ⁇ R ⁇ / ⁇ B ⁇ )> ( ⁇ R 0 / ⁇ B 0 )> ( ⁇ R ⁇ / ⁇ B ⁇ )> Q Is satisfied.
  • the video display device 1 also satisfies the conditional expression D between R and G, that is, ( ⁇ R ⁇ / ⁇ G ⁇ )> ( ⁇ R 0 / ⁇ G 0 )> ( ⁇ R ⁇ / ⁇ G ⁇ ) Is satisfied.
  • the video display device 1 of the present embodiment also applies conditional expression (3) for G, that is, ⁇ G ⁇ ⁇ G ⁇ Is satisfied.
  • the video display device 1 also satisfies the conditional expression (4) between R and G, that is, ( ⁇ R ⁇ / ⁇ G ⁇ ) ⁇ 1.5 ⁇ ( ⁇ R ⁇ / ⁇ G ⁇ ) Is satisfied.
  • FIG. 9 shows another example of the relationship between the position of the HOE 23 in the X direction and the maximum diffraction efficiency for each color of RGB.
  • FIG. 10 shows the maximum diffraction efficiency of RGB in the HOE 23 as shown in FIG.
  • the change of (relative relative luminous sensitivity) ⁇ (diffraction efficiency) with respect to the change in the angle of view for each color of RGB when set is standardized with an angle of view of 0 ° as a standard.
  • the change in the maximum diffraction efficiency of G is shown in FIG. 5, with the maximum diffraction efficiency of B being constant and the effectiveness being low (the change in relative relative luminous sensitivity is small) in the X direction of the HOE 23.
  • the change (slope) of the maximum diffraction efficiency of G is R. If it is smaller than the change (slope) of the maximum diffraction efficiency, the conditional expression (1) can be satisfied. As a result, color unevenness in the screen can be reduced as shown in FIG.
  • the video display device using the HOE 23 set as shown in FIG. 9 further satisfies the conditional expressions (2), (4), and (5) in addition to the conditional expression (1) described above. This point will be confirmed below.
  • the above video display apparatus can satisfy the conditional expression (5) between G and B, that is, P ′> ( ⁇ G ⁇ / ⁇ B ⁇ )> ( ⁇ G 0 / ⁇ B 0 )> ( ⁇ G ⁇ / ⁇ B ⁇ ) > Q ' Is satisfied.
  • HOE23 is produced using the hologram photosensitive material which has a sensitivity in two or more different colors among BGR in one photosensitive layer. That is, the HOE 23 is a single layer HOE in which interference fringes corresponding to two or more colors of BGR are recorded in a single layer. A method for manufacturing the HOE 23 will be described later.
  • the interference fringes corresponding to each color are recorded in multiple layers in one layer, so that the refractive index modulation ⁇ n is increased for each interference fringe. It is difficult to increase the diffraction efficiency of each color at the same time. That is, the diffraction efficiency of each color has a trade-off relationship. For example, if the HOE is manufactured so that the maximum diffraction efficiency ratio of each color is the same in all regions, the distribution of diffraction efficiency similar to that in FIG. 8B in all regions, that is, the maximum diffraction efficiency of BGR in all regions is approximately both. It only rises to about 70%.
  • the maximum diffraction efficiency of 90% can be realized at an angle of view of 6 °. (See Fig. 8 (a)), it is possible to achieve a maximum diffraction efficiency of 85% for B and G at an angle of view of -6 ° (see Fig. 8 (c)). Compared with the case where HOE is used, it is possible to increase the diffraction efficiency of a color with low specific visibility according to the angle of view.
  • the present invention since the diffraction efficiency of each color is not increased at the same time, on the contrary, it is possible to adopt a configuration using a single layer HOE in which it is difficult to simultaneously increase the diffraction efficiency of each color. In other words, the present invention can be easily realized with a configuration using a single layer HOE, and the present invention becomes effective.
  • the light utilization efficiency when using the HOE with the maximum diffraction efficiency ratio of each color in the entire region is further reduced by the light amount reduction due to image processing or the like.
  • the utilization efficiency will be further reduced.
  • the ratio of the maximum diffraction efficiency of each color is changed depending on the region using a single layer HOE, the diffraction efficiency of a necessary color can be increased depending on the angle of view without performing image processing or the like. It can be said that the configuration using HOE is highly effective in terms of improving the light utilization efficiency.
  • FIG. 11 shows a schematic configuration of an exposure optical system for manufacturing the HOE 23.
  • the RGB three laser beams emitted from the laser light sources 41R, 41G, and 41B are adjusted in optical axis by a pair of mirrors 42R, 42G, and 42B, and transmitted through the shutters 43R, 43G, and 43B.
  • the beam diameter is enlarged by the pandas 44R, 44G, and 44B, and the light passes through the transmittance changing filters 45R, 45G, and 45B.
  • the exposure time is adjusted by turning on / off the shutters 43R, 43G, and 43B.
  • the G laser beam that has passed through the transmittance changing filter 45G is reflected by the mirror 46, and is optically combined by the dichroic mirror 47 with the B laser beam that has passed through the transmittance changing filter 45B.
  • the G and B laser beams are optically combined by the dichroic mirror 48 with the R laser beam transmitted through the transmittance changing filter 45R.
  • the RGB laser light is incident on the mirror 49 through one optical path, reflected there, and then split into two light beams by the beam splitter 50.
  • One of the branched light beams is irradiated onto the hologram photosensitive material 23a via the mirror 51 and an arbitrary optical system 52, and the other light beam is irradiated onto the hologram photosensitive material 23a via the mirror 53, the arbitrary optical system 54 and the prism 31. Is irradiated at a predetermined incident angle. In this way, the desired HOE 23 is produced by causing the two light beams to interfere with each other in the hologram photosensitive material 23a.
  • the transmittance changing filters 45R, 45G, and 45B are gradation filters whose transmittance changes sequentially depending on the region.
  • the change in transmittance in the transmittance changing filters 45R, 45G, and 45B is shown by gradation, and the portion where the gradation is dark shows that the transmittance is low and the light portion shows that the transmittance is high.
  • the exposure intensity (exposure amount) and the diffraction efficiency of the HOE there is a correlation between the exposure intensity (exposure amount) and the diffraction efficiency of the HOE.
  • the exposure intensity of each region that can obtain a desired diffraction efficiency in each region of the HOE 23 is obtained for each RGB, and an arbitrary transmittance changing filter 45R that changes the transmittance to correspond to the exposure intensity of each region.
  • 45G and 45B a desired HOE 23 in which the ratio of the maximum diffraction efficiency of RGB varies depending on the region can be produced.
  • the following can be used as three laser beams of RGB.
  • a krypton ion laser or a helium neon laser can be used.
  • a solid-state laser such as Nd: YAG (SHG) or Nd: YVO 4 (SHG) or a dye laser can be used.
  • a solid-state laser such as an argon ion laser or sapphire can be used.
  • the shutters 43R, 43G, and 43B are arranged independently on the three RGB laser light paths. However, a RGB common shutter is provided on the optical path after the dichroic mirror 48 bundles the RGB laser lights into one. One may be provided.
  • the beam expanders 44R, 44G, and 44B are also arranged independently in the RGB three laser light paths. However, the RGB common beams are arranged in the optical path after the dichroic mirror 48 bundles the RGB laser lights into one. Only one expander may be provided. However, it is more preferable to provide one beam expander corresponding to each RGB color before bundling them into one, because the beam diameter of each RGB can be expanded to a required size.
  • a transmission / reflection mirror (half mirror) coated with chromium or a multilayer film, a polarization beam splitter, or the like can be used, but the light amounts of the two light beams on the exposure surface are substantially equal. It is desirable to set the branching ratio appropriately. At this time, it is desirable to split the laser beams having a plurality of wavelengths at substantially the same branching ratio. For this purpose, it is easy to use a transmission / reflection mirror coated with chromium or a multilayer film having a desired reflection / transmission ratio. .
  • the polarization direction of the laser light may be horizontal or vertical with respect to the optical table on which the laser light sources 41R, 41G, and 41B are installed, because the polarization direction does not rotate due to reflection by a mirror or the like.
  • the image display apparatus of the present embodiment is a vertical insertion type, that is, a display element is arranged above the HOE, and image light from above is diffracted and reflected by the HOE to guide the optical pupil, and the position of the optical pupil HOE is used for observing an image, and diffracting and reflecting incident parallel light into convergent light.
  • a vertical insertion type that is, a display element is arranged above the HOE, and image light from above is diffracted and reflected by the HOE to guide the optical pupil, and the position of the optical pupil HOE is used for observing an image, and diffracting and reflecting incident parallel light into convergent light.
  • FIG. 12A shows exposure light beams (1) and (2) when the HOE 61 of the present embodiment is manufactured (when the hologram photosensitive material 61a is exposed), and FIG. The reproduction beam is shown.
  • the exposure light beam (1) is parallel light having an incident angle of 30 ° with respect to the hologram photosensitive material 61a.
  • the exposure light beam (2) is diverging light from a point light source located at a distance of 30 mm in the optical axis direction from the center of the hologram photosensitive material 61a, and the incident angle of the central light beam on the hologram photosensitive material 61a is 30 °.
  • the HOE 61 is produced by exposing the hologram photosensitive material 61a with such exposure light beams (1) and (2).
  • the exposure wavelengths of the BGR are set to 476.5 nm, 532 nm, and 647 nm, but it is assumed that there is no polymerization shrinkage of the hologram photosensitive material 61a at the time of exposure.
  • the image When observing the image, the image is observed at a distance of 15 mm from the center of the HOE 61 in the optical axis direction.
  • the observation angle of view at this time is ⁇ 7 ° in the vertical direction (Y direction).
  • the angle of view at the center of the observation screen is set to 0 (°), and two in the Y direction in the observation screen in the plane including the optical axis of the incident light and the optical axis of the reflected light with respect to the HOE 61 are displayed.
  • the larger diffraction peak wavelength of R is defined as + ⁇ (°)
  • the smaller one is defined as ⁇ (°). Therefore, in this embodiment, the downward direction with respect to the center of the angle of view is the positive direction of the angle of view (view angle plus side), and the upward direction is the negative direction of the angle of view (view angle minus side).
  • Table 2 shows the relationship between the observation angle of view of each BGR and the diffraction peak wavelength in this embodiment.
  • the wavelength range of the image light of each BGR varies depending on the angle of view, and is B: 470 to 483 nm, G: 526 to 539 nm, and R: 639 to 656 nm.
  • the specific visibility in the wavelength range corresponding to the observation angle of view is extracted from the specific visibility curve shown in FIG. 4, and the relative visibility of BGR at each extracted angle of view is based on the screen center (0 ° angle of view).
  • the result is as shown in FIG. From the figure, the gradient direction of relative relative luminous sensitivity is reversed between B and R and between G and R, and in principle, color unevenness occurs in the screen.
  • the upper side of the angle of view (the minus angle of view) is observed in red, and the lower side of the angle of view (plus angle of view) is bluish It becomes easier to observe.
  • FIG. 14 is a plan view of the HOE 61.
  • the position corresponding to the upper end of the angle of view is the position ⁇ 3 mm from the reference position and corresponds to the lower end of the angle of view.
  • the position is 3 mm from the reference position.
  • FIG. 15 shows the relationship between the position of the HOE 61 in the Y direction and the RGB maximum diffraction efficiency in this embodiment
  • FIG. 16 shows (relative relative luminous sensitivity) with respect to changes in the field angle for each color of RGB.
  • the change in (diffraction efficiency) is shown normalized with an angle of view of 0 ° as a reference.
  • the ratio of the maximum diffraction efficiency of each color of RGB in the HOE 61 is varied depending on the region so as to satisfy the conditional expressions (1) to (5) described above (see FIG. 15). As a result, as shown in FIG.
  • the amount of change in (relative relative luminous sensitivity) ⁇ (diffraction efficiency) with respect to the change in the angle of view can be suppressed for R having the largest change in relative specific luminous efficiency.
  • (relative relative luminous sensitivity) ⁇ (diffraction efficiency) 0.7 to 1.2, and the amount of change is suppressed to 30% or less. Recognize. Therefore, also in the configuration of the present embodiment, the color unevenness in the screen can be reduced in consideration of the relative visibility, and an image with good image quality can be observed during actual image observation. The effect of can be obtained.
  • the diffraction efficiency distribution of each color reflects the Gaussian intensity distribution of the exposure light beam so that the vicinity of the maximum diffraction efficiency is maximized as shown in FIG. Distribution.
  • the maximum diffraction efficiency of each color changes monotonously (increases / decreases) in accordance with the slope of the relative visibility curve.
  • the video display device has conditional expression (1) between R and B, that is, P> ( ⁇ R ⁇ / ⁇ B ⁇ )> ( ⁇ R 0 / ⁇ B 0 )> ( ⁇ R ⁇ / ⁇ B ⁇ )> Q Is satisfied.
  • the video display apparatus can satisfy the conditional expression D between R and G, that is, ( ⁇ R ⁇ / ⁇ G ⁇ )> ( ⁇ R 0 / ⁇ G 0 )> ( ⁇ R ⁇ / ⁇ G ⁇ ) Is satisfied.
  • the video display apparatus can satisfy the conditional expression (1) between R and G, that is, P> ( ⁇ R ⁇ / ⁇ G ⁇ )> ( ⁇ R 0 / ⁇ G 0 )> ( ⁇ R ⁇ / ⁇ G ⁇ )> Q Is satisfied.
  • the video display apparatus of this embodiment also applies conditional expression (3) for G, that is, ⁇ G ⁇ ⁇ G ⁇ Is satisfied.
  • the video display apparatus can satisfy the conditional expression (4) between R and G, that is, ( ⁇ R ⁇ / ⁇ G ⁇ ) ⁇ 1.5 ⁇ ( ⁇ R ⁇ / ⁇ G ⁇ ) Is satisfied.
  • the video display apparatus can satisfy the conditional expression (5) between G and B, that is, P ′> ( ⁇ G ⁇ / ⁇ B ⁇ )> ( ⁇ G 0 / ⁇ B 0 )> ( ⁇ G ⁇ / ⁇ B ⁇ ) > Q ' Is satisfied.
  • the HOE 61 of the present embodiment can be manufactured by exposing the hologram photosensitive material 61a with two light beams using the same exposure optical system as in FIG. 11, but in this embodiment, the transmittance changing filter 45R • 45G and 45B are omitted, and an arbitrary optical system is inserted so that the light beam applied to the hologram photosensitive material from the optical pupil side becomes divergent light from a point light source.
  • the laser light generally has a Gaussian intensity distribution
  • the following (A), (B), and (C) are adjusted by using the intensity distribution, and the laser beam of this embodiment is adjusted.
  • the HOE 61 can be easily manufactured.
  • the optical paths of the RGB laser beams are adjusted by a pair of mirrors for adjusting the optical path so that the center of the intensity of the exposure light beams of RGB is irradiated on the portion of the HOE surface where the diffraction efficiency is to be maximized.
  • (B) The amount of intensity decrease from the intensity center toward the periphery is adjusted by arbitrarily changing the expansion ratio of the beam diameter in the beam expander for each color. If the enlargement ratio is increased, the strength reduction amount is small, and if the expansion ratio is small, the strength reduction amount is large.
  • the first and second embodiments have been described based on the assumption that the energy of the image light is the same at each wavelength.
  • the image light has the wavelength characteristics of the intensity distribution of the light source light, and the display element. Since it is affected by the wavelength characteristics of the transmittance of the color filter, it is more desirable to set the maximum diffraction efficiency ratio of each region in consideration of these characteristics.
  • the relative visibility curve with respect to the wavelength is always constant, and the gradient direction of relative relative visibility in the screen is reversed between B, G, and R, so that in principle, color unevenness occurs. Therefore, the present invention in which the diffraction efficiency is set for each HOE region in consideration of the relative visibility with respect to the wavelength region desired to be used in the video display device is effective as a method for reducing the color unevenness while improving the light utilization efficiency. is there.
  • the light source may be a fluorescent tube. Since the fluorescent tube has a flat intensity characteristic with respect to the wavelength, it is easy to make the energy of the image light close to the same at each wavelength. Therefore, the configuration of the present invention described on the premise that the energy of the image light is the same at each wavelength becomes more effective, and the present invention can reliably reduce the color unevenness in the screen.
  • FIG. 17 is a cross-sectional view showing a schematic configuration of the video display device 71 of the present embodiment.
  • the video display device 71 includes a light source 81, an illumination optical system 82, a display element 83, and an eyepiece optical system 84.
  • the light source 81 illuminates the display element 83 and is composed of, for example, an LED.
  • the light source 81 is disposed so as to be substantially conjugate with the optical pupil E formed by the eyepiece optical system 84.
  • the illumination optical system 82 is an optical system that condenses light from the light source 81 and guides it to the display element 83, and includes, for example, a mirror 82a having a concave reflecting surface.
  • the display element 83 displays light by modulating light incident from the light source 81 via the illumination optical system 82 according to image data, and is configured by, for example, a transmissive LCD.
  • the display element 83 is arranged such that the long side direction of the rectangular display screen is the horizontal direction (direction perpendicular to the paper surface of FIG. 17; the same as the left-right direction), and the short side direction is the direction perpendicular thereto.
  • the eyepiece optical system 84 is an observation optical system that guides the image light from the display element 83 to the optical pupil E (or the pupil of the observer at the position of the optical pupil E), and includes an eyepiece prism 91, a deflection prism 92, and a HOE 93. And is configured.
  • the HOE 93 corresponds to the HOE 61 of the second embodiment.
  • the eyepiece prism 91 totally reflects the image light from the display element 83 and guides it to the optical pupil E through the HOE 93 while transmitting the external light to the optical pupil E.
  • it is made of an acrylic resin.
  • the eyepiece prism 91 has a shape in which a lower end portion of a parallel plate is wedge-shaped.
  • the upper end surface of the eyepiece prism 91 is a surface 91a as an incident surface for image light, and the two surfaces positioned in the front-rear direction are surfaces 91b and 91c parallel to each other.
  • the deflection prism 92 is configured by a substantially U-shaped parallel plate in plan view, and is integrated with the eyepiece prism 91 when bonded to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 91. It becomes a substantially parallel plate.
  • the deflection prism 92 is provided adjacent to or adhering to the eyepiece prism 91 so as to sandwich the HOE 93 therebetween. Thereby, the refraction when the external light passes through the wedge-shaped lower end of the eyepiece prism 91 can be canceled by the deflecting prism 92, and distortion of the external image observed through the see-through can be prevented.
  • the HOE 93 diffracts and reflects the image light (RGB light) from the display element 83 in the direction of the optical pupil E, while transmitting a volume of external light and guiding it to the optical pupil E as a volume phase type reflection hologram. It is an optical element and is formed on a surface 91 d that is a joint surface with the deflecting prism 92 in the eyepiece prism 91.
  • the HOE 93 has an axially asymmetric positive optical power, and has the same function as an aspherical concave mirror having a positive optical power. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer.
  • the light emitted from the light source 81 is reflected and collected by the mirror 82a of the illumination optical system 82, and enters the display element 83 as almost collimated light, where it is modulated and imaged. It is emitted as light.
  • Image light from the display element 83 enters the inside of the eyepiece prism 91 of the eyepiece optical system 84 from the surface 91a, and then is totally reflected at least once by the surfaces 91b and 91c and enters the HOE 93.
  • the HOE 93 has wavelength selectivity that functions as a diffraction element that independently diffracts light in each of the RGB wavelength regions emitted from the light source 81 for each wavelength region. It is designed to function as a concave reflecting surface for light. Therefore, the light incident on the HOE 93 is diffracted and reflected there to reach the optical pupil E, and at the same time, external light passes through the HOE 93 and travels toward the optical pupil E. Therefore, by locating the observer's pupil at the position of the optical pupil E, the observer can observe the image displayed on the display element 83 as an enlarged virtual image, and at the same time, can observe the outside world in a see-through manner. it can. Note that various aberrations (coma aberration, curvature of field, astigmatism, distortion) are corrected in the eyepiece optical system 84 so that the viewer can observe the image displayed on the display element 83 satisfactorily.
  • the light source 81 and the optical pupil E of the eyepiece optical system 84 are substantially conjugate, the light emitted from the light source 81 can be efficiently guided to the optical pupil E. Accordingly, when the observer's pupil is positioned at the position of the optical pupil E, the light from the light source 81 can be efficiently incident on the observer's pupil (pupil), and the observer can obtain a bright high-definition image. Can be observed.
  • FIG. 18 is a perspective view showing a schematic configuration of the HMD.
  • the HMD includes the above-described video display device 71 and support means 72.
  • the video display device 71 further includes a housing 73 that includes at least a light source 81 and a display element 83 (both see FIG. 17).
  • the housing 73 holds a part of the eyepiece optical system 84.
  • the eyepiece optical system 84 is configured by bonding the eyepiece prism 91 and the deflecting prism 92 as described above, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 18) as a whole.
  • the video display device 71 has a circuit board (not shown) for supplying at least driving power and a video signal to the light source 81 and the display element 83 via a cable 74 provided through the housing 73. is doing.
  • the support means 72 is a support mechanism corresponding to a spectacle frame (including a bridge and a temple), and supports the image display device 71 in front of the observer's eyes (for example, in front of the right eye). Further, the support means 72 includes a nose pad 75 (right nose pad 75R / left nose pad 75L) that comes into contact with the observer's nose, and a nose pad lock unit 76 that fixes the nose pad 75 at a predetermined position. Yes. The nose pad lock unit 76 holds the nose pad 75 with a spring shaft.
  • the observer When the observer wears the HMD on the head and displays an image on the display element 83, the image light is guided to the optical pupil via the eyepiece optical system 84. Therefore, by aligning the observer's pupil with the position of the optical pupil, the observer can observe an enlarged virtual image of the display image on the image display device 71. At the same time, the observer can observe the outside world through the eyepiece optical system 84 in a see-through manner.
  • the observer can observe the video provided from the video display device 71 in a hands-free and stable manner for a long time.
  • two video display devices 71 may be used so that video can be observed with both eyes.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of the HUD.
  • the video display device 71 applied to the HUD uses an illumination lens 82 b as the illumination optical system 82 and uses an observation optical system 85 instead of the eyepiece optical system 84.
  • the observation optical system 85 includes a HOE 93 corresponding to the HOE 61 of the second embodiment and a substrate 94 that holds the HOE 93.
  • the substrate 94 can be formed of a transparent windshield corresponding to the windshield in front of the driver's seat in a vehicle, ship, railroad, aircraft, or the like, for example, at least a part of which is within the observer's field of view. Placed in.
  • the light emitted from the light source 81 is collected by the illumination lens 82 b and enters the display element 83.
  • the light (video light) modulated by the display element 83 according to the image data is incident on the HOE 93 where it is diffracted and reflected and guided to the optical pupil.
  • the observer can observe the magnified virtual image of the image displayed on the display element 83 and at the same time observe the outside world through the HOE 93 and the substrate 94.
  • the HUD may be configured by holding the HOE 93 on a substrate separate from the windshield and placing the substrate in the field of view of the observer.
  • the HUD can function as a document display device such as a prompter. Therefore, it can be said that the HUD of the present embodiment only needs to be configured by including the video display device 71 and the HOE 93 of the video display device 71 being held on a substrate disposed in the field of view of the observer.
  • the HOE can be manufactured by appropriately combining the configurations and methods described in the embodiments, and the video display device, the HMD, and the HUD can be configured.
  • the method for manufacturing the HOE of Embodiment 2 can be applied to Embodiment 1
  • the method for manufacturing HOE of Embodiment 1 can also be applied to Embodiment 2.
  • the video display device according to the first embodiment that guides the video light in the horizontal direction can be applied to the HMD or HUD according to the third embodiment.
  • the video display device of the present invention can be used for HMD and HUD, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided is a video display device which allows bright video to be observed with excellent image quality by reducing the color unevenness on a screen, taking spectral luminous efficiency into account, without reducing light use efficiency. To achieve this, the ratios of maximum diffraction efficiency of blue, green, and red (B, G, and R) components in an HOE are made different depending on the area. More specifically, at the direction of the angle of view in which the diffraction peak wavelength of the red component is shifted (where the long wavelength side is the positive direction of the angle of view), if the maximum diffraction efficiencies η of R and C components (where C is a color different from R) at the angles of view θ, -θ, and 0 are ηRθ, ηR, ηR0, ηCθ, ηC, ηC0, and the spectral luminous efficiencies N at the diffraction peak wavelengths Rλ and Cλ of R and C at the angles of view θ, -θ, and 0 in photopic vision are NRλθ, NRλ, NRλ0, NCλθ, NCλ, and NCλ0, the video display device satisfies P > (ηRθ/ηCθ) > (ηR0/ηC0) > (ηR/ηC) > Q, where P = {(NCλθ/NCλ0)•(NRλ0/NRλθ)}2 and Q = {(NCλ/NCλ0)•(NRλ0/NRλ)}2.

Description

[規則37.2に基づきISAが決定した発明の名称] 映像表示装置、HMDおよびHUD[Name of invention determined by ISA based on Rule 37.2] Video display device, HMD and HUD
 本発明は、観察者に映像を観察させる映像表示装置と、その映像表示装置を備えたヘッドマウントディスプレイ(以下、HMDとも称する)およびヘッドアップディスプレイ(以下、HUDとも称する)とに関するものである。 The present invention relates to an image display device that allows an observer to observe an image, and a head-mounted display (hereinafter also referred to as HMD) and a head-up display (hereinafter also referred to as HUD) provided with the image display device.
 従来から、体積位相型で反射型のホログラム光学素子(以下、HOEとも称する)を用いて観察者に映像を観察させる映像表示装置が知られている。この映像表示装置では、表示素子からの映像光をHOEで回折反射させて光学瞳に導くと同時に、外界光を透過させて光学瞳に導くことにより、光学瞳の位置にて映像と外界とを重畳して観察させることができる。このような従来のシースルー型の映像表示装置では、HOEの回折効率は領域によらず一定となっていた。 2. Description of the Related Art Conventionally, there has been known an image display apparatus that allows an observer to observe an image using a volume phase type reflection type hologram optical element (hereinafter also referred to as HOE). In this image display device, the image light from the display element is diffracted and reflected by the HOE and guided to the optical pupil, and at the same time, the external light is transmitted and guided to the optical pupil, so that the image and the external environment are transmitted at the position of the optical pupil. Superimposing can be observed. In such a conventional see-through video display device, the diffraction efficiency of the HOE is constant regardless of the region.
 ところで、体積位相型で反射型のHOEは、波長選択性、角度選択性が高いため、再生時(映像観察時)のHOEへの光線の入射角度が製造時(露光時)の光線の入射角度とずれると、HOEにて回折反射される光の波長が変化する。その結果、観察者の瞳位置が光学瞳中心からずれたときに色ムラが発生したり、あるいは観察画面内で画角方向に色ムラが発生したりする。 By the way, the volume phase type reflection type HOE has high wavelength selectivity and angle selectivity. Therefore, the incident angle of the light beam on the HOE during reproduction (image observation) is the incident angle of the light beam during manufacturing (exposure). The wavelength of light diffracted and reflected by the HOE changes. As a result, color unevenness occurs when the observer's pupil position deviates from the optical pupil center, or color unevenness occurs in the viewing angle direction within the observation screen.
 ここで、後者の色ムラ、すなわち、画面内の色ムラに着目する。例えば特許文献1、2には、画面内の色ムラを低減する方法がそれぞれ開示されている。具体的には、特許文献1では、補正回路によってR(赤)、G(緑)、B(青)の映像信号を補正して表示素子の表示色バランスを補正したり、表示素子を透過した光の色バランスを補正フィルタによって補正することにより、画面内の色ムラを低減している。また、特許文献2では、表示素子の画素駆動時の各色の輝度信号を補正回路によって補正することにより、画面内の色ムラを低減している。 Here, focus on the latter color unevenness, that is, color unevenness in the screen. For example, Patent Documents 1 and 2 disclose methods for reducing color unevenness in a screen. Specifically, in Patent Document 1, the correction circuit corrects R (red), G (green), and B (blue) video signals to correct the display color balance of the display element, or transmits the display element. By correcting the color balance of light with a correction filter, color unevenness in the screen is reduced. Further, in Patent Document 2, the color unevenness in the screen is reduced by correcting the luminance signal of each color when the pixel of the display element is driven by a correction circuit.
特開2005-241825号公報(請求項1、2、4、段落〔0023〕等参照)Japanese Patent Laying-Open No. 2005-241825 (see claims 1, 2, 4, paragraph [0023], etc.) 特開2009-36955号公報(請求項1、8、段落〔0012〕、〔0013〕等参照)JP 2009-36955 A (see claims 1 and 8, paragraphs [0012] and [0013], etc.)
 ところが、上記した特許文献1、2のいずれの方法も、色ムラが強い色を抑える方向にしか補正することができない。例えば、Rの色ムラが強い場合には、補正回路によってRの映像信号または輝度信号のレベル(画素値)を下げたり、補正フィルタによってRの透過光量を下げる補正となる。これは、映像光の光量が低下することを意味し、光の利用効率の低下を招く。 However, any of the methods disclosed in Patent Documents 1 and 2 can be corrected only in a direction that suppresses a color with strong color unevenness. For example, when the R color unevenness is strong, the correction circuit lowers the level (pixel value) of the R video signal or luminance signal, or the correction filter reduces the R transmitted light amount. This means that the amount of image light is reduced, and the light use efficiency is reduced.
 また、人間は波長ごとに明るさの感じ方が違うので、画面内の色ムラを補正する際には、比視感度を考慮する必要がある。つまり、比視感度を考慮して画面内の色ムラを補正しなければ、人間が実際に映像を眼で見たときに、色ムラが低減された良好な映像を感じ取ることができない。 In addition, since humans perceive brightness differently for each wavelength, it is necessary to consider relative visibility when correcting color unevenness in the screen. In other words, unless the color unevenness in the screen is corrected in consideration of the relative visibility, when a person actually sees the image with his eyes, a good image with reduced color unevenness cannot be felt.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、比視感度を考慮して、かつ、光利用効率を低下させることなく、画面内の色ムラを低減することができ、これによって画質が良好で明るい映像を観察させることができる映像表示装置と、その映像表示装置を備えたHMDおよびHUDとを提供することにある。 The present invention has been made to solve the above-described problems, and its object is to reduce color unevenness in a screen in consideration of specific visibility and without reducing light utilization efficiency. Accordingly, it is an object of the present invention to provide a video display device capable of observing a bright video with good image quality, and an HMD and a HUD including the video display device.
 本発明の映像表示装置は、光源と、前記光源からの光を変調して映像を表示する表示素子と、前記表示素子からの映像光を回折反射させて光学瞳に導く体積位相型で反射型のホログラム光学素子を有する観察光学系とを備えた映像表示装置であって、前記ホログラム光学素子は、赤、緑、青に対応するRGBの各波長域のうち、Rの波長域を含む2色以上の波長域の光を回折反射させて光学瞳に導き、前記ホログラム光学素子の各色の最大回折効率の比は、領域によって異なっており、前記表示素子の表示面の中心と光学瞳の中心とを光学的に結ぶ軸を光軸とし、観察画面中心の画角を0とし、前記ホログラム光学素子に対する入射光の光軸と反射光の光軸とを含む面内における、観察画面内の2つの最大画角のうち、Rの回折ピーク波長のより大きいほうをθ、より小さいほうを-θとし、前記ホログラム光学素子が回折反射する2色以上の波長域の光のうち、Rとは異なる波長域であって明所視比視感度曲線における最も比視感度の高い波長よりも短波長側の波長域の色をCとしたときに、画角θ、-θ、0でのRおよびCの最大回折効率ηをそれぞれ、ηRθ、ηR-θ、ηR、ηCθ、ηC-θ、ηCとし、画角θ、-θ、0でのRおよびCの回折ピーク波長Rλ、Cλの明所での比視感度Nをそれぞれ、NRλθ、NRλ-θ、NRλ、NCλθ、NCλ-θ、NCλとすると、以下の条件式(1)、
P>(ηRθ/ηCθ)>(ηR/ηC)>(ηR-θ/ηC-θ)>Q
                          ・・・(1)
 ただし、
 P={(NCλθ/NCλ)・(NRλ/NRλθ)}
 Q={(NCλ-θ/NCλ)・(NRλ/NRλ-θ)}
を満足することを特徴としている。
The image display device of the present invention includes a light source, a display element that modulates light from the light source and displays an image, and a volume phase reflection type that diffracts and reflects the image light from the display element and guides it to an optical pupil. And an observation optical system having two hologram optical elements, wherein the hologram optical element includes two colors including an R wavelength range among RGB wavelength ranges corresponding to red, green, and blue. The light of the above wavelength range is diffracted and reflected and guided to the optical pupil, and the ratio of the maximum diffraction efficiency of each color of the hologram optical element differs depending on the area, and the center of the display surface of the display element and the center of the optical pupil Is the optical axis, the angle of view at the center of the observation screen is 0, and two in the observation screen in the plane including the optical axis of the incident light and the optical axis of the reflected light with respect to the hologram optical element. Of the maximum field angle, the diffraction peak wavelength of R The larger one is θ, the smaller one is −θ, and the light in the wavelength range of two or more colors diffracted and reflected by the hologram optical element has a wavelength region different from R and in the photopic diopter sensitivity curve. The maximum diffraction efficiency η of R and C at the angles of view θ, −θ, 0, respectively, is represented by ηR θ , ηR , where C is the color in the wavelength region shorter than the wavelength with the highest relative visibility. θ , ηR 0 , ηC θ , ηC −θ , and ηC 0, and the relative luminous sensitivities N in the bright places of the diffraction peak wavelengths Rλ and Cλ of the R and C at the angles of view θ, −θ, 0 are respectively represented by NRλ θ , NRλ −θ , NRλ 0 , NCλ θ , NCλ −θ and NCλ 0 , the following conditional expression (1),
P> (ηR θ / ηC θ )> (ηR 0 / ηC 0 )> (ηR −θ / ηC −θ )> Q
... (1)
However,
P = {(NCλ θ / NCλ 0 ) · (NRλ 0 / NRλ θ )} 2
Q = {(NCλ −θ / NCλ 0 ) · (NRλ 0 / NRλ −θ )} 2
It is characterized by satisfying.
 本発明の映像表示装置は、Rの波長域と、BまたはGの一方の波長域とにおいて、前記条件式(1)を満足してもよい。 The video display device of the present invention may satisfy the conditional expression (1) in the R wavelength region and the B or G wavelength region.
 本発明の映像表示装置は、Rの波長域とBの波長域、およびRの波長域とGの波長域との両者において、前記条件式(1)を満足してもよい。 The image display device of the present invention may satisfy the conditional expression (1) in both the R wavelength range and the B wavelength range, and the R wavelength range and the G wavelength range.
 本発明の映像表示装置は、以下の条件式(2)、
 ηRθ>ηR-θ      ・・・(2)
を満足することが望ましい。
The video display device of the present invention includes the following conditional expression (2),
ηR θ > ηR −θ (2)
It is desirable to satisfy
 本発明の映像表示装置は、以下の条件式(3)、
 ηCθ<ηC-θ      ・・・(3)
を満足することが望ましい。
The video display device of the present invention includes the following conditional expression (3):
ηC θ <ηC −θ (3)
It is desirable to satisfy
 本発明の映像表示装置は、以下の条件式(4)、
 (ηRθ/ηCθ)≧1.5×(ηR-θ/ηC-θ)  ・・・(4)
を満足することが望ましい。
The video display device of the present invention includes the following conditional expression (4),
(ΗR θ / ηC θ ) ≧ 1.5 × (ηR −θ / ηC −θ ) (4)
It is desirable to satisfy
 本発明の映像表示装置は、以下の条件式(5)、
P′>(ηGθ/ηBθ)>(ηG/ηB
     >(ηG-θ/ηB-θ)>Q′       ・・・(5)
 ただし、
 P′={(NBλθ/NBλ)・(NGλ/NGλθ)}
 Q′={(NBλ-θ/NBλ)・(NGλ/NGλ-θ)}
を満足することが望ましい。
The video display device of the present invention includes the following conditional expression (5),
P ′> (ηG θ / ηB θ )> (ηG 0 / ηB 0 )
> (ΗG −θ / ηB −θ )> Q ′ (5)
However,
P ′ = {(NBλ θ / NBλ 0 ) · (NGλ 0 / NGλ θ )} 2
Q ′ = {(NBλ −θ / NBλ 0 ) · (NGλ 0 / NGλ −θ )} 2
It is desirable to satisfy
 本発明の映像表示装置において、前記ホログラム光学素子は、RGBのうちで異なる2色以上に対応する干渉縞が1層に多重記録されてなることが望ましい。 In the video display device of the present invention, it is desirable that the hologram optical element is formed by multiple recording of interference fringes corresponding to two or more different colors of RGB in one layer.
 本発明のヘッドマウントディスプレイは、上述した本発明の映像表示装置と、前記映像表示装置を観察者の眼前で支持する支持手段と、を備えている構成であってもよい。 The head-mounted display of the present invention may be configured to include the above-described video display device of the present invention and support means for supporting the video display device in front of the observer's eyes.
 本発明のヘッドアップディスプレイは、上述した本発明の映像表示装置を備え、前記映像表示装置の前記ホログラム光学素子が、観察者の視界内に配置される基板に保持されている構成であってもよい。 The head-up display of the present invention includes the above-described video display device of the present invention, and the hologram optical element of the video display device may be held on a substrate arranged in the field of view of the observer. Good.
 条件式(1)のうち、(ηRθ/ηCθ)>(ηR/ηC)>(ηR-θ/ηC-θ)を条件式Dと称する。条件式Dを満足するようにHOEの各色の最大回折効率比を領域によって異ならせることにより、HOEでは、画角θおよび-θを張る方向(以下、画角方向とも称する)において、Rの最大回折効率の変化がCの最大回折効率の変化よりも大きくなる。 Of conditional expression (1), (ηR θ / ηC θ )> (ηR 0 / ηC 0 )> (ηR −θ / ηC −θ ) is referred to as conditional expression D. By varying the maximum diffraction efficiency ratio of each color of the HOE depending on the region so as to satisfy the conditional expression D, in the HOE, in the direction in which the field angles θ and −θ are stretched (hereinafter also referred to as the field angle direction), the maximum R The change in diffraction efficiency is larger than the change in the maximum diffraction efficiency of C.
 観察画面内の画角方向において、Rについては、C(例えばBやG)に比べて、画角中心を基準とした比視感度(相対比視感度)の変化が大きく、画面内の色ムラへの影響が大きい。したがって、そのようなRについてCよりも最大回折効率の変化を大きくすることにより、HOEにおいて各色の最大回折効率比を領域によらず一定とする場合に比べて、Rについて画角の変化に対する(相対比視感度)×(回折効率)の変化量を抑え、画面内の色ムラを低減することが可能となる。このように比視感度を考慮して画面内の色ムラを低減することができるので、観察者は、実際の映像観察時に、画面内の色ムラが低減された、画質の良好な映像を観察する(感じ取る)ことができる。 In the viewing angle direction in the observation screen, as for R, the relative luminous sensitivity (relative relative luminous sensitivity) changes with respect to the center of the viewing angle as compared with C (for example, B or G), and color unevenness in the screen The impact on is great. Therefore, by making the change in the maximum diffraction efficiency for such R larger than that for C, compared to the case where the maximum diffraction efficiency ratio of each color in HOE is constant regardless of the region, The amount of change in (relative specific luminous sensitivity) × (diffraction efficiency) can be suppressed, and color unevenness in the screen can be reduced. In this way, it is possible to reduce the color unevenness in the screen in consideration of the relative visual sensitivity, so that the observer observes an image with good image quality in which the color unevenness in the screen is reduced during actual image observation. Can do (feel).
 また、条件式Dの(ηRθ/ηCθ)を上限Pよりも小さく設定し、(ηR-θ/ηC-θ)を下限Qよりも大きく設定することにより、(ηRθ/ηCθ)が大きくなりすぎる、あるいは(ηR-θ/ηC-θ)が小さくなりすぎることによって、画面内の色ムラが逆転して発生する現象を回避することができ、条件式Dによる色ムラの低減効果を適切に得ることができる。 Further, by setting (ηR θ / ηC θ ) in conditional expression D to be smaller than the upper limit P and setting (ηR −θ / ηC −θ ) to be larger than the lower limit Q, (ηR θ / ηC θ ) is When the value becomes too large or (ηR −θ / ηC −θ ) becomes too small, a phenomenon in which the color unevenness in the screen is reversed can be avoided, and the effect of reducing the color unevenness by the conditional expression D can be avoided. You can get it properly.
 また、上記のようにHOEの各色の最大回折効率比を領域によって異ならせることにより、HOEの領域ごとに(各画角に対して)必要な色の回折効率を高めることが可能となる。これにより、従来のように補正回路や補正フィルタを用いて画面内の色ムラを低減する構成に比べて、必要な色の光利用効率を高めることができる。その結果、観察者は、色ムラの低減された映像を明るく観察することができる。 In addition, by making the maximum diffraction efficiency ratio of each color of the HOE different depending on the region as described above, it becomes possible to increase the diffraction efficiency of a necessary color for each HOE region (for each angle of view). Thereby, the light use efficiency of a required color can be improved compared with the structure which reduces the color nonuniformity in a screen using a correction circuit and a correction filter conventionally. As a result, the observer can brightly observe an image with reduced color unevenness.
本発明の実施の一形態の映像表示装置において、HOEのX方向の位置とRGBの各色の最大回折効率との関係の一例を示すグラフである。4 is a graph illustrating an example of a relationship between a position of an HOE in an X direction and a maximum diffraction efficiency of each color of RGB in the video display device according to the embodiment of the present invention. 上記映像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the said video display apparatus. (a)は、上記HOEを作製するときの露光光線を示す説明図であり、(b)は、映像観察時の再生光線を示す説明図である。(A) is explanatory drawing which shows the exposure light beam when producing the said HOE, (b) is explanatory drawing which shows the reproduction | regeneration light beam at the time of image observation. 明所視比視感度曲線を示す説明図である。It is explanatory drawing which shows a photopic visual acuity sensitivity curve. 各画角での比視感度を画面中心(画角0°)を基準として規格化して示したグラフである。It is the graph which normalized and showed the relative visibility in each view angle on the basis of the screen center (view angle 0 degree). 上記HOEの平面図である。It is a top view of the HOE. 図1の設定において、RGBの各色について、画角の変化に対する(相対比視感度)×(回折効率)の変化を、画角0°を基準として規格化して示したグラフである。FIG. 3 is a graph showing a change in (relative relative luminous sensitivity) × (diffraction efficiency) with respect to a change in field angle, normalized with respect to an angle of view of 0 °, for each color of RGB in the setting of FIG. 1. (a)は画角6°でのBGRの回折効率の分布、(b)は画角0°でのBGRの回折効率の分布、(c)は画角-6°でのBGRの回折効率の分布を示すグラフである。(A) BGR diffraction efficiency distribution at an angle of view of 6 °, (b) BGR diffraction efficiency distribution at an angle of view of 0 °, and (c) BGR diffraction efficiency distribution at an angle of view of −6 °. It is a graph which shows distribution. HOEのX方向の位置とRGBの各色の最大回折効率との関係の他の例を示すグラフである。It is a graph which shows the other example of the relationship between the position of the X direction of HOE, and the maximum diffraction efficiency of each color of RGB. 図9の設定において、RGBの各色について、画角の変化に対する(相対比視感度)×(回折効率)の変化を、画角0°を基準として規格化して示したグラフである。FIG. 10 is a graph showing a change in (relative relative luminous sensitivity) × (diffraction efficiency) with respect to a change in field angle, normalized with respect to an angle of view of 0 °, for each color of RGB in the setting of FIG. 9. 上記HOEを作製する露光光学系の概略の構成を示す説明図である。It is explanatory drawing which shows the schematic structure of the exposure optical system which produces the said HOE. (a)は、本発明の他の実施の形態のHOEを作製するときの露光光線を示す説明図であり、(b)は、映像観察時の再生光線を示す説明図である。(A) is explanatory drawing which shows the exposure light beam when producing HOE of other embodiment of this invention, (b) is explanatory drawing which shows the reproduction | regeneration light beam at the time of image observation. 各画角での比視感度を画面中心(画角0°)を基準として規格化して示したグラフである。It is the graph which normalized and showed the relative visibility in each view angle on the basis of the screen center (view angle 0 degree). 上記HOEの平面図である。It is a top view of the HOE. 上記HOEのY方向の位置とRGBの最大回折効率との関係を示すグラフである。It is a graph which shows the relationship between the position of the Y direction of the said HOE, and the maximum diffraction efficiency of RGB. 図15の設定において、RGBの各色について、画角の変化に対する(相対比視感度)×(回折効率)の変化を、画角0°を基準として規格化して示したグラフである。16 is a graph showing a change in (relative relative luminous sensitivity) × (diffraction efficiency) with respect to a change in field angle, normalized with respect to a field angle of 0 °, for each color of RGB in the setting of FIG. 15. 本発明のさらに他の実施の形態の映像表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the video display apparatus of further another embodiment of this invention. HMDの概略の構成を示す斜視図である。It is a perspective view which shows the structure of outline of HMD. HUDの概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of HUD.
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to the drawings.
 <映像表示装置について>
 図2は、本実施形態の映像表示装置1の概略の構成を示す断面図である。映像表示装置1は、光源11と、表示素子12と、接眼光学系13と、導光手段14とを有して構成されている。なお、本実施形態の映像表示装置1は、横入れタイプ、すなわち、表示素子12を観察者の眼幅方向(左右方向、横方向)の一端部に配置し、導光手段14内で映像光を横方向に導光するタイプのものである。なお、接眼光学系13と導光手段14とで、観察光学系が構成されている。
<About video display device>
FIG. 2 is a cross-sectional view showing a schematic configuration of the video display device 1 of the present embodiment. The video display device 1 includes a light source 11, a display element 12, an eyepiece optical system 13, and a light guide unit 14. Note that the video display device 1 of the present embodiment is a horizontal insertion type, that is, the display element 12 is arranged at one end portion in the eye width direction (left-right direction, horizontal direction) of the observer, and the video light is generated in the light guide unit 14. Is of a type that guides light horizontally. The eyepiece optical system 13 and the light guide unit 14 constitute an observation optical system.
 光源11は、例えば赤、緑、青に対応するR、G、Bの各波長域の光を出射するLEDで構成されている。表示素子12は、光源11からの光を画像データに応じて変調して映像を表示する光変調素子であり、例えばLCDで構成されている。接眼光学系13は、表示素子12からの映像光を平行光に変換して導光手段14に導く。 The light source 11 is composed of an LED that emits light in each of the R, G, and B wavelength ranges corresponding to, for example, red, green, and blue. The display element 12 is a light modulation element that displays light by modulating light from the light source 11 according to image data, and is configured by an LCD, for example. The eyepiece optical system 13 converts the image light from the display element 12 into parallel light and guides it to the light guide means 14.
 導光手段14は、導光部材21と、HOE22・23とを有している。導光部材21は、表示素子12からの映像光を内部で導光する透明基板であり、互いに対向する平行な面21a・21bを有している。なお、面21aは表示素子12側の面とし、面21bは面21aに対して表示素子12とは反対側の面とする。面21a・21bは、表示素子12の表示面とほぼ平行に位置している。 The light guide means 14 has a light guide member 21 and HOEs 22 and 23. The light guide member 21 is a transparent substrate that guides video light from the display element 12 inside, and has parallel surfaces 21 a and 21 b that face each other. The surface 21a is a surface on the display element 12 side, and the surface 21b is a surface opposite to the display element 12 with respect to the surface 21a. The surfaces 21a and 21b are located substantially parallel to the display surface of the display element 12.
 HOE22(第1のHOE)は、体積位相型で反射型の回折光学素子であり、その構成材料であるホログラム感光材料(例えばフォトポリマー)を2光束で露光することによって作製されている。HOE22は、導光部材21の面21b上に保持されており、面21aを介して導光部材21内に入射した映像光を導光部材21内で全反射するように回折反射させる。 The HOE 22 (first HOE) is a volume phase type reflection type diffractive optical element, and is produced by exposing a hologram photosensitive material (for example, photopolymer), which is a constituent material thereof, with two light beams. The HOE 22 is held on the surface 21 b of the light guide member 21, and diffracts and reflects video light incident on the light guide member 21 through the surface 21 a so as to be totally reflected in the light guide member 21.
 HOE23(第2のHOE)は、体積位相型で反射型の回折光学素子であり、その構成材料であるホログラム感光材料(例えばフォトポリマー)を2光束で露光することによって作製されている。HOE23も、導光部材21の面21b上に保持されており、HOE22にて回折反射されて導光部材21内を全反射しながら導光されてきた映像光を、光学瞳Eの方向に回折反射させる。 The HOE 23 (second HOE) is a volume phase type reflection type diffractive optical element, and is manufactured by exposing a hologram photosensitive material (for example, photopolymer), which is a constituent material thereof, with two light beams. The HOE 23 is also held on the surface 21b of the light guide member 21, and diffracts the image light that is diffracted and reflected by the HOE 22 and is totally reflected inside the light guide member 21 in the direction of the optical pupil E. Reflect.
 本実施形態では、HOE22・23は、RGBの全ての波長域の光を回折反射させるが、Rの波長域を含む2色以上の波長域の光を回折反射するように作製されていればよい。なお、HOE22の各色の最大回折効率の比は領域によらず一定とする。一方、HOE23の各色の最大回折効率の比は領域によって異なっており、この点に本発明の大きな特徴があるが、これについては後述する。また、HOE22・23は、入射する平行光を平行光で反射するように作製されているものとする。 In the present embodiment, the HOEs 22 and 23 diffract and reflect light in all the RGB wavelength ranges, but it is only necessary to diffract and reflect light in two or more wavelength ranges including the R wavelength range. . Note that the ratio of the maximum diffraction efficiency of each color of the HOE 22 is constant regardless of the region. On the other hand, the ratio of the maximum diffraction efficiency of each color of the HOE 23 differs depending on the region, and this is a major feature of the present invention, which will be described later. The HOEs 22 and 23 are manufactured so as to reflect incident parallel light with parallel light.
 上記の構成によれば、光源11からの光は表示素子12にて変調され、映像光として接眼光学系13に入射し、そこで拡大されて平行光の状態で導光部材21の内部に面21a側から入射する。この映像光は、HOE22にて回折反射され、面21a・21b間で全反射を繰り返しながらHOE23まで導光される。HOE23では、入射した映像光が回折反射され、面21aを介して光学瞳Eに導かれる。したがって、光学瞳Eの位置では、観察者は表示素子12に表示された映像の拡大虚像を観察することができる。また、HOE23は、回折反射光の波長選択性が高く、外界光をほとんど全て透過させるので、観察者は、表示映像の虚像を観察しながら外界をシースルーで観察することができる。 According to the above configuration, the light from the light source 11 is modulated by the display element 12 and is incident on the eyepiece optical system 13 as image light, and is enlarged and collimated into the light guide member 21 in the surface 21a. Incident from the side. This image light is diffracted and reflected by the HOE 22 and guided to the HOE 23 while repeating total reflection between the surfaces 21a and 21b. In the HOE 23, the incident image light is diffracted and reflected and guided to the optical pupil E through the surface 21a. Therefore, at the position of the optical pupil E, the observer can observe an enlarged virtual image of the image displayed on the display element 12. Further, the HOE 23 has high wavelength selectivity of diffracted and reflected light, and transmits almost all the external light, so that the observer can observe the external world see-through while observing the virtual image of the display image.
 <回折効率一定のときの画面内の色ムラについて>
 次に、本発明の画面内の色ムラの低減方法について説明する前に、HOE23の回折効率を領域によらず一定としたときの画面内の色ムラについて説明する。
<Color unevenness in the screen when the diffraction efficiency is constant>
Next, before explaining the method for reducing color unevenness in the screen of the present invention, color unevenness in the screen when the diffraction efficiency of the HOE 23 is constant regardless of the region will be described.
 なお、以下での説明の便宜上、表示素子12の表示面の中心と光学瞳Eの中心とを光学的に結ぶ軸を光軸とし、その光軸方向をZ方向とする。また、Z方向に垂直な2方向のうち、眼幅方向(左右方向)をX方向とし、上下方向をY方向とする。また、観察画面中心の画角を0(°)とし、HOE23に対する入射光の光軸と反射光の光軸とを含む面内(図2ではZX面内)における、観察画面内の2つの最大画角のうち、Rの回折ピーク波長のより大きいほうを+θ(°)とし、より小さいほうを-θ(°)とする。つまり、X方向(画角方向)において、Rの回折ピーク波長が長波長側にシフトする方向を、画角の正の方向(画角プラス側)とし、逆に、Rの回折ピーク波長が短波長側にシフトする方向を、画角の負の方向(画角マイナス側)とする。 For convenience of explanation below, an axis that optically connects the center of the display surface of the display element 12 and the center of the optical pupil E is defined as an optical axis, and the optical axis direction is defined as a Z direction. Of the two directions perpendicular to the Z direction, the eye width direction (left-right direction) is the X direction, and the vertical direction is the Y direction. In addition, the angle of view at the center of the observation screen is set to 0 (°), and the two maximum values in the observation screen in the plane including the optical axis of the incident light and the optical axis of the reflected light with respect to the HOE 23 (in the ZX plane in FIG. 2). Of the angles of view, the larger R diffraction peak wavelength is defined as + θ (°), and the smaller one is defined as −θ (°). That is, in the X direction (view angle direction), the direction in which the R diffraction peak wavelength shifts to the long wavelength side is the positive view angle direction (view angle plus side), and conversely, the R diffraction peak wavelength is short. The direction shifted to the wavelength side is defined as the negative direction of the angle of view (view angle minus side).
 図3(a)は、HOE23を作製するとき(ホログラム感光材料23aを露光するとき)の露光光線(1)(2)を示しており、図3(b)は、映像観察時の再生光線を示している。HOE23は、光軸と平行な2光束(露光光線(1)(2))でホログラム感光材料23aを露光し、ホログラム感光材料23aに干渉縞を屈折率分布として記録することにより作製される。本実施形態では、露光光線(1)(2)のホログラム感光材料23aへの入射角を、それぞれ0°および60°とし、BGRそれぞれの露光波長を、476.5nm、532nm、647nmとしてHOE23を作製した。なお、導光部材21の面21aにはプリズム31が密着配置され、このプリズム31を介して露光光線(2)をホログラム感光材料23aに照射している。これにより、映像観察時に、導光部材21の面21aで映像光を全反射させてHOE23に入射させることができる。 FIG. 3A shows exposure rays (1) and (2) when the HOE 23 is manufactured (when the hologram photosensitive material 23a is exposed), and FIG. 3B shows reproduction rays during video observation. Show. The HOE 23 is manufactured by exposing the hologram photosensitive material 23a with two light beams (exposure light beams (1) and (2)) parallel to the optical axis, and recording interference fringes on the hologram photosensitive material 23a as a refractive index distribution. In the present embodiment, the HOE 23 is manufactured with the incident angles of the exposure light beams (1) and (2) to the hologram photosensitive material 23a being 0 ° and 60 °, respectively, and the exposure wavelengths of the BGR being 476.5 nm, 532 nm, and 647 nm. did. A prism 31 is disposed in close contact with the surface 21a of the light guide member 21, and the exposure light beam (2) is applied to the hologram photosensitive material 23a through the prism 31. Thereby, at the time of image observation, the image light can be totally reflected by the surface 21 a of the light guide member 21 and can be incident on the HOE 23.
 ここで、映像観察時の最大画角は±6°であり、露光時にホログラム感光材料23aが膜厚方向に2%重合収縮するとする。映像観察時の観察画面中心(画角θ=0°)では、映像の観察方向と露光光線(1)の方向とが同じであるので、露光時の波長×0.98(2%の重合収縮を考慮)の波長の映像光について回折効率が最大となる。しかし、観察画面内で、光軸を含む面内のX方向において観察画角が異なると、映像の観察方向と露光光線(1)の方向とがずれるので、光学瞳Eに到達する回折ピーク波長は、ブラッグの条件式に従って変化する。表1は、本実施形態におけるBGRそれぞれの観察画角と回折ピーク波長との関係を示している。 Here, it is assumed that the maximum field angle at the time of image observation is ± 6 °, and the hologram photosensitive material 23a undergoes 2% polymerization shrinkage in the film thickness direction during exposure. At the center of the observation screen at the time of image observation (view angle θ = 0 °), the observation direction of the image and the direction of the exposure light beam (1) are the same, so the wavelength at the time of exposure × 0.98 (2% polymerization shrinkage) The diffraction efficiency is maximized for image light having a wavelength of However, if the observation angle of view is different in the X direction within the plane including the optical axis in the observation screen, the observation direction of the image and the direction of the exposure light beam (1) are shifted, so that the diffraction peak wavelength reaching the optical pupil E Varies according to Bragg's conditional expression. Table 1 shows the relationship between the observation angle of view and the diffraction peak wavelength of each BGR in the present embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、観察画角によってBGRの回折ピーク波長は変化する。従来は、画角方向における回折ピーク波長の差(色味の差、輝度差)に着目し、画面内の色ムラを補正するために、フィルタを挿入して透過率を変えたり、電気的に信号処理を行うことにより、各色の強度を変更しているが、どちらの手法も、光量が低下する手法であり、光利用効率が低下する。 Thus, the diffraction peak wavelength of BGR changes depending on the viewing angle of view. Conventionally, focusing on the diffraction peak wavelength difference (color difference, luminance difference) in the field angle direction, in order to correct color unevenness in the screen, a filter is inserted to change the transmittance or to electrically Although the intensity of each color is changed by performing signal processing, both methods are methods in which the amount of light decreases, and the light utilization efficiency decreases.
 一方、図4は、明所視比視感度曲線(以下、単に比視感度曲線とも称する)を示している。同図に示すように、比視感度は、波長555nm付近で最も高く、その波長から長波長側および短波長側に向かうにつれて減少する。BGRの各波長に同じエネルギー(強度)の映像光が存在したとしても、波長により比視感度が異なり、人間が感じる明るさ(輝度)が異なる。 On the other hand, FIG. 4 shows a photopic luminosity curve (hereinafter also simply referred to as a luminosity curve). As shown in the figure, the relative visibility is highest near the wavelength of 555 nm, and decreases from the wavelength toward the long wavelength side and the short wavelength side. Even if video light having the same energy (intensity) exists at each wavelength of BGR, the relative visibility differs depending on the wavelength, and the brightness (luminance) perceived by humans differs.
 ここで、表1より、BGRそれぞれの映像光の波長域は、画角によって異なり、B:455~476nm、G:509~532nm、R:618~647nmである(図4の斜線のハッチングの波長域参照)。このとき、各画角での比視感度を、画面中心(画角0°)を基準として規格化すると、図5のようになる。なお、以下では、規格化した比視感度のことを相対比視感度とも称する。 Here, from Table 1, the wavelength range of the image light of each BGR varies depending on the angle of view, and is B: 455 to 476 nm, G: 509 to 532 nm, and R: 618 to 647 nm (hatched hatched wavelengths in FIG. 4). Area reference). At this time, when the relative visibility at each angle of view is normalized with respect to the screen center (angle of view 0 °), it is as shown in FIG. Hereinafter, the normalized relative luminous efficiency is also referred to as relative specific luminous efficiency.
 図5より、BおよびGについては、画角の変化に対する相対比視感度の変化がほぼ同様の挙動を示すのに対して、Rについては、相対比視感度の変化がBやGとは全く異なる挙動を示す。つまり、BおよびGについては、画角がプラス側に大きくなるほど、相対比視感度が単調に増加するのに対して、Rについては逆に相対比視感度が単調に減少する。しかも、相対比視感度の変化量は、BおよびGに比べて、Rが非常に大きい。 From FIG. 5, for B and G, the change in relative relative luminous sensitivity with respect to the change in angle of view shows almost the same behavior, while for R, the change in relative relative luminous sensitivity is completely different from B and G. Behave differently. That is, for B and G, the relative relative luminous sensitivity increases monotonously as the angle of view increases toward the plus side, whereas the relative relative luminous sensitivity monotonously decreases for R. In addition, the amount of change in relative relative luminous sensitivity is much larger in R than B and G.
 ここで、実際に光学瞳の位置で観察される映像の輝度は、各波長で同一エネルギー量の映像光がHOE23に到達したとすると、
 (相対比視感度)×(回折効率)
で表される。このとき、HOE23の回折効率が領域によらず一定である場合には、各画角に対する(相対比視感度)×(回折効率)の変化は、ほぼ図5の相対比視感度の変化と同様の挙動となる。したがって、この場合、観察される映像の輝度が画角によって異なり、BおよびGは画角プラス側で明るく、逆に、Rは画角マイナス側で明るくなる。つまり、BおよびGとRとで、映像輝度が明るくなる方向が(画角プラス側と画角マイナス側とで)逆転しており、原理的に画面内で色ムラが発生する状態にある。
Here, the luminance of the image actually observed at the position of the optical pupil is assumed that the image light having the same energy amount at each wavelength reaches the HOE 23.
(Relative specific luminous efficiency) x (Diffraction efficiency)
It is represented by At this time, when the diffraction efficiency of the HOE 23 is constant regardless of the region, the change in (relative relative luminous sensitivity) × (diffraction efficiency) for each angle of view is substantially the same as the change in relative relative luminous sensitivity in FIG. It becomes the behavior of. Therefore, in this case, the luminance of the observed image varies depending on the angle of view, and B and G are brighter on the plus side of the angle of view, and conversely, R is brighter on the minus side of the angle of view. That is, in B, G, and R, the direction in which the video brightness is brightened is reversed (between the view angle plus side and the view angle minus side), and in principle, color unevenness occurs in the screen.
 <本発明の画面内の色ムラの低減方法について>
 次に、本発明の画面内の色ムラの低減方法について説明する。本発明では、BおよびGとRとで、画角による比視感度曲線の傾きが逆転することにより発生する画面内の色ムラを、HOE23を工夫することによって改善する。具体的には、以下の通りである。
<About the method for reducing color unevenness in the screen of the present invention>
Next, a method for reducing color unevenness in the screen of the present invention will be described. In the present invention, the color unevenness in the screen caused by the reverse of the gradient of the relative visibility curve depending on the angle of view between B, G, and R is improved by devising the HOE 23. Specifically, it is as follows.
 ここで、HOE23が回折反射するRGBのいずれか2色または3色の波長域の光のうち、Rとは異なる波長域の色をCとする。つまり、Cの波長域は、図4で示した比視感度曲線における最も比視感度の高い波長(555nm)よりも短波長側にあるBまたはGの波長域である。また、HOE23において、画角θ°、-θ°、0°でのRおよびCの最大回折効率ηをそれぞれ、ηRθ、ηR-θ、ηR、ηCθ、ηC-θ、ηCとする。さらに、画角θ°、-θ°、0°でのRおよびCの回折ピーク波長Rλ(nm)、Cλ(nm)の明所での比視感度Nをそれぞれ、NRλθ、NRλ-θ、NRλ、NCλθ、NCλ-θ、NCλとする。 Here, it is assumed that a color having a wavelength region different from R is C in the light of any two or three wavelength regions of RGB that the HOE 23 diffracts and reflects. That is, the wavelength range of C is the wavelength range of B or G that is on the shorter wavelength side than the wavelength (555 nm) with the highest specific visibility in the specific visibility curve shown in FIG. In the HOE 23, the maximum diffraction efficiencies η of R and C at angles of view θ °, −θ °, and 0 ° are ηR θ , ηR −θ , ηR 0 , ηC θ , ηC −θ , and ηC 0 , respectively. . Further, the relative luminous sensitivities N in the bright places of the diffraction peak wavelengths Rλ (nm) and Cλ (nm) of R and C at angles of view θ °, −θ °, and 0 ° are respectively represented as NRλ θ , NRλ −θ , NRλ 0 , NCλ θ , NCλ −θ , and NCλ 0 are assumed.
 また、図6は、HOE23の平面図である。HOE23のX方向において、画角0°に対応する領域の位置を基準(0mm)とすると、画角θ°および-θ°に対応する領域の位置は、それぞれ、上記基準位置から2.5mm、-2.5mmの位置である。 FIG. 6 is a plan view of the HOE 23. Assuming that the position of the region corresponding to the angle of view 0 ° in the X direction of the HOE 23 is a reference (0 mm), the position of the region corresponding to the angle of view θ ° and −θ ° is 2.5 mm from the reference position, respectively. -2.5 mm position.
 図1は、RGBの各色について、HOE23のX方向の位置と最大回折効率との関係を示している。同図に示すように、本実施形態では、以下の条件式(1)を満足するように、HOE23において、RGBの各色の最大回折効率の比を領域によって異ならせている。すなわち、
P>(ηRθ/ηCθ)>(ηR/ηC)>(ηR-θ/ηC-θ)>Q
                       ・・・(1)
 ただし、
 P={(NCλθ/NCλ)・(NRλ/NRλθ)}
 Q={(NCλ-θ/NCλ)・(NRλ/NRλ-θ)}
である。
FIG. 1 shows the relationship between the position of the HOE 23 in the X direction and the maximum diffraction efficiency for each color of RGB. As shown in the figure, in the present embodiment, the ratio of the maximum diffraction efficiency of each color of RGB is varied depending on the region in the HOE 23 so as to satisfy the following conditional expression (1). That is,
P> (ηR θ / ηC θ )> (ηR 0 / ηC 0 )> (ηR −θ / ηC −θ )> Q
... (1)
However,
P = {(NCλ θ / NCλ 0 ) · (NRλ 0 / NRλ θ )} 2
Q = {(NCλ −θ / NCλ 0 ) · (NRλ 0 / NRλ −θ )} 2
It is.
 条件式(1)のうち、(ηRθ/ηCθ)>(ηR/ηC)>(ηR-θ/ηC-θ)を条件式Dと称する。条件式Dを満足するようにHOE23の各色の最大回折効率比(例えばηR/ηB、ηR/ηG)を領域によって異ならせることにより、HOE23では、画角θおよび-θを張る方向(X方向)において、Rの最大回折効率の変化がCの最大回折効率の変化よりも大きくなる。 Of conditional expression (1), (ηR θ / ηC θ )> (ηR 0 / ηC 0 )> (ηR −θ / ηC −θ ) is referred to as conditional expression D. By varying the maximum diffraction efficiency ratio (for example, ηR / ηB, ηR / ηG) of each color of the HOE 23 depending on the region so as to satisfy the conditional expression D, in the HOE 23, the direction in which the angles of view θ and −θ are stretched (X direction) , The change in the maximum diffraction efficiency of R is larger than the change in the maximum diffraction efficiency of C.
 図5で示したように、X方向においては、相対比視感度の変化が、C(BやG)よりもRのほうが大きいので、条件式Dを満足して、相対比視感度の変化の大きいRについてCよりも最大回折効率の変化を大きくすることにより、画面内の色ムラを低減することが可能となる。 As shown in FIG. 5, in the X direction, the change in relative relative luminous sensitivity is larger in R than in C (B or G). By making the change in maximum diffraction efficiency larger than C for large R, it becomes possible to reduce color unevenness in the screen.
 つまり、Rの回折ピーク波長がより大きい画角θでは、Rの比視感度がより低いので(図4参照)、画角θとHOE23で対応する領域では、画角中心とHOE23で対応する領域よりも、RとCの最大回折効率比を高くする(すなわち、(ηRθ/ηCθ)>(ηR/ηC))。一方、Rの回折ピーク波長がより小さい画角-θでは、Rの比視感度がより高いので(図4参照)、画角-θとHOE23で対応する領域では、画角中心とHOE23で対応する領域よりも、RとCの最大回折効率比を低くする(すなわち、(ηR/ηC)>(ηR-θ/ηC-θ))。 That is, at the angle of view θ where the diffraction peak wavelength of R is larger, the relative visibility of R is lower (see FIG. 4). Therefore, in the region corresponding to the angle of view θ and the HOE 23, the region corresponding to the center of the angle of view and the HOE 23 Rather than the maximum diffraction efficiency ratio of R and C (that is, (ηR θ / ηC θ )> (ηR 0 / ηC 0 )). On the other hand, at the angle of view −θ where the diffraction peak wavelength of R is smaller, the relative visibility of R is higher (see FIG. 4), so in the region corresponding to the angle of view −θ and HOE 23, the center of view angle corresponds to HOE 23. The maximum diffraction efficiency ratio of R and C is made lower than that in the region to be (that is, (ηR 0 / ηC 0 )> (ηR −θ / ηC −θ )).
 図7は、RGBの各色について、画角の変化に対する(相対比視感度)×(回折効率)の変化を、画角0°を基準として規格化して示している。上記のようにRとCの最大回折効率比をHOE23の領域によって異ならせることにより、上記最大回折効率比をHOEの領域によらず一定とした場合に比べて、相対比視感度の変化が最も大きいRについて、画角の変化に対する(相対比視感度)×(回折効率)の変化量を抑えることができ、画面内の色ムラを低減することが可能となる。なお、図7の例では、RGBのいずれについても、(相対比視感度)×(回折効率)=0.7~1.3であり、上記変化量が30%以下に抑えられていることがわかる。このように比視感度を考慮して画面内の色ムラを低減することができるので、観察者は、実際の映像観察時に、画質の良好な映像を感じ取ることができる。 FIG. 7 shows the change of (relative relative luminous sensitivity) × (diffraction efficiency) with respect to the change of the angle of view for each color of RGB, normalized based on the angle of view of 0 °. By making the maximum diffraction efficiency ratio of R and C different depending on the region of HOE 23 as described above, the relative specific luminous efficiency changes most as compared with the case where the maximum diffraction efficiency ratio is constant regardless of the HOE region. For large R, the amount of change in (relative relative luminous sensitivity) × (diffraction efficiency) with respect to the change in the angle of view can be suppressed, and color unevenness in the screen can be reduced. In the example of FIG. 7, for all of RGB, (relative relative luminous sensitivity) × (diffraction efficiency) = 0.7 to 1.3, and the amount of change is suppressed to 30% or less. Recognize. As described above, since the color unevenness in the screen can be reduced in consideration of the relative visibility, the observer can perceive an image with good image quality during actual image observation.
 また、条件式Dを満足することにより、HOE23におけるRおよびCの最大回折効率をX方向に単調(ほぼ単調を含む)に変化させることができる。X方向の相対比視感度の変化は、図5に示すように単調変化であるので、このような相対比視感度の単調変化に合わせてRおよびCの最大回折効率をX方向に単調に変化させることにより、HOE23の簡単な構成で(回折効率の設定が複雑になることなく)、画面内の色ムラを低減することができる。 Further, by satisfying the conditional expression D, the maximum diffraction efficiency of R and C in the HOE 23 can be changed monotonously (including almost monotone) in the X direction. Since the change in relative relative luminous sensitivity in the X direction is monotonic as shown in FIG. 5, the maximum diffraction efficiency of R and C changes monotonously in the X direction in accordance with such monotonous change in relative relative visual sensitivity. By doing so, color unevenness in the screen can be reduced with a simple configuration of the HOE 23 (without complicated setting of diffraction efficiency).
 また、Pは、条件式Dにおける(ηRθ/ηCθ)の上限に相当し、Qは、条件式Dにおける(ηR-θ/ηC-θ)の下限に相当する。(ηRθ/ηCθ)が大きくなりすぎたり、(ηR-θ/ηC-θ)が小さくなりすぎると、画面内の色ムラが逆転して発生する場合がある。そこで、(ηRθ/ηCθ)を上限Pよりも小さく設定し、(ηR-θ/ηC-θ)を下限Qよりも大きく設定することにより、画面内の色ムラが逆転して発生する現象を回避することができ、条件式Dによる色ムラの低減効果を適切に得ることができる。 P corresponds to the upper limit of (ηR θ / ηC θ ) in conditional expression D, and Q corresponds to the lower limit of (ηR −θ / ηC −θ ) in conditional expression D. If (ηR θ / ηC θ ) becomes too large or (ηR −θ / ηC −θ ) becomes too small, color unevenness in the screen may be reversed. Therefore, by setting (ηR θ / ηC θ ) to be smaller than the upper limit P and setting (ηR −θ / ηC −θ ) to be larger than the lower limit Q, a phenomenon in which color unevenness in the screen is reversed and generated. Can be avoided, and the effect of reducing color unevenness by conditional expression D can be obtained appropriately.
 また、図8(a)は画角6°、(b)は画角0°、(c)は、画角-6°でのBGRの回折効率の分布をそれぞれ示している。上記のようにHOE23の各色の最大回折効率比を領域によって異ならせることにより、図8(a)のように、画角6°では画角0°よりもRの最大回折効率を大きくしたり、図8(c)のように、画角-6°では画角0°よりもBおよびGの最大回折効率を大きくするなど、HOE23の領域ごとに(各画角に対して)必要な色の回折効率を高めることが可能となる。したがって、従来のように補正回路や補正フィルタを用いて画面内の色ムラを低減する構成に比べて、必要な色の光利用効率を高めることができ、観察者は、色ムラの低減された映像を明るく観察することが可能となる。 8A shows the distribution of diffraction efficiency of BGR at an angle of view of 6 °, FIG. 8B shows an angle of view of 0 °, and FIG. 8C shows an angle of view of −6 °. As described above, by making the maximum diffraction efficiency ratio of each color of the HOE 23 different depending on the region, as shown in FIG. 8A, at the angle of view 6 °, the maximum diffraction efficiency of R is larger than the angle of view 0 °, As shown in FIG. 8C, when the angle of view is -6 °, the maximum diffraction efficiency of B and G is larger than that of the angle of view of 0 °. It becomes possible to increase the diffraction efficiency. Therefore, compared to the conventional configuration in which the color unevenness in the screen is reduced using the correction circuit and the correction filter, the light use efficiency of the necessary color can be increased, and the observer can reduce the color unevenness. The image can be observed brightly.
 ところで、Cは、BまたはGの波長域であることから、CをBと置き換えた場合に条件式(1)を満足する、またはCをGと置き換えた場合に条件式(1)を満足するように、各色の最大回折効率の比をHOE23の領域によって異ならせてもよい。つまり、Rの波長域と、BまたはGの一方の波長域とにおいて、条件式(1)を満足してもよい。この場合は、HOE23が2色の波長域の光を回折反射するように作製されているときでも、その2色の比視感度を考慮して画面内の色ムラを低減することが可能となる。 By the way, since C is in the wavelength range of B or G, conditional expression (1) is satisfied when C is replaced with B, or conditional expression (1) is satisfied when C is replaced with G. As described above, the ratio of the maximum diffraction efficiency of each color may be varied depending on the region of the HOE 23. That is, the conditional expression (1) may be satisfied in the R wavelength region and the B or G wavelength region. In this case, even when the HOE 23 is fabricated so as to diffract and reflect light in the two color wavelength ranges, it is possible to reduce color unevenness in the screen in consideration of the relative visibility of the two colors. .
 また、CをBと置き換えた場合およびGと置き換えた場合の両者について、条件式(1)を満足するように、各色の最大回折効率の比をHOE23の領域によって異ならせてもよい。つまり、Rの波長域とBの波長域、およびRの波長域とGの波長域との両者において、条件式(1)を満足していてもよい。この場合、HOE23がRGBの3色の波長域の光を回折反射するように作製されているときでも、RGBの3色の比視感度を全て考慮して画面内の色ムラを低減することが可能となる。したがって、例えば表示素子12に白色の映像を表示させたときには、観察者は観察画面内のどの画角においても、白色またはそれに近い映像を観察(感じ取る)ことができる。 Further, the ratio of the maximum diffraction efficiency of each color may be varied depending on the region of the HOE 23 so as to satisfy the conditional expression (1) for both the case where C is replaced with B and the case where G is replaced. That is, the conditional expression (1) may be satisfied in both the R wavelength range and the B wavelength range, and the R wavelength range and the G wavelength range. In this case, even when the HOE 23 is fabricated so as to diffract and reflect light in the three wavelength bands of RGB, it is possible to reduce color unevenness in the screen in consideration of all the relative luminous sensitivities of the three colors of RGB. It becomes possible. Therefore, for example, when a white image is displayed on the display element 12, the observer can observe (feel) a white image or an image close thereto at any angle of view in the observation screen.
 また、本実施形態の映像表示装置1は、以下の条件式(2)、
 ηRθ>ηR-θ      ・・・(2)
を満足することが望ましい。
Further, the video display device 1 of the present embodiment has the following conditional expression (2),
ηR θ > ηR −θ (2)
It is desirable to satisfy
 図4より、Rの回折ピーク波長がより大きい画角θでは、Rの比視感度がより低く、Rの回折ピーク波長がより小さい画角-θでは、Rの比視感度がより高いことは、前述した通りである。条件式(2)を満足することにより、Rの比視感度のより低いほうの画角θでは、Rの最大回折効率がより高くなり、Rの比視感度のより高いほうの画角-θでは、Rの最大回折効率がより低くなる。 From FIG. 4, it can be seen that the relative visual sensitivity of R is lower at an angle of view θ where the diffraction peak wavelength of R is larger, and that the relative visual sensitivity of R is higher at an angle of view −θ where the diffraction peak wavelength of R is smaller. As described above. By satisfying the conditional expression (2), the maximum diffraction efficiency of R becomes higher at the angle of view θ where the relative luminous sensitivity of R is lower, and the angle of view −θ where the relative luminance of R is higher is higher. Then, the maximum diffraction efficiency of R becomes lower.
 つまり、X方向において、Rの相対比視感度の変化とRの最大回折効率の変化とが逆の挙動となる(図5の相対比視感度の変化を示す曲線上の2点間の直線の傾きが正で、図1のRの最大回折効率の変化を示す曲線上の2点間の直線の傾きが負となる)。この場合、X方向において、Rの相対比視感度とRの最大回折効率とを同方向に変化させる場合(傾きをどちらも正とする場合)に比べて、画角に対するRの最大回折効率の変化は大きくなると言える。このように、相対比視感度の変化の大きいRについて、Rの最大回折効率を大きく変化させることにより、画面内の色ムラの低減効果を確実に得ることができる。 That is, in the X direction, the change in the relative relative luminous sensitivity of R and the change in the maximum diffraction efficiency of R are reversed (the straight line between two points on the curve indicating the change in relative relative luminous sensitivity in FIG. 5). The slope is positive, and the slope of a straight line between two points on the curve indicating the change in the maximum diffraction efficiency of R in FIG. 1 is negative). In this case, in the X direction, the maximum relative diffraction efficiency of R and the maximum diffraction efficiency of R are changed in the same direction (when the inclination is both positive), the maximum diffraction efficiency of R with respect to the angle of view. It can be said that the change will be greater. As described above, the effect of reducing color unevenness in the screen can be reliably obtained by greatly changing the maximum diffraction efficiency of R for R having a large change in relative relative luminous sensitivity.
 また、条件式(2)を満足することにより、X方向において、Rの相対比視感度とRの最大回折効率とを同方向に変化させる場合(ηRθ<ηR-θ)に比べて、Rの輝度差を低減し、輝度ムラを低減することも可能となる。つまり、X方向において、Rの相対比視感度とRの最大回折効率とを同方向に変化させても、条件式(1)を満足する限りは、画面内の色ムラの低減効果が得られるが、この場合は、Rについて、(相対比視感度)×(回折効率)の値が画角マイナス側でより大きくなり、画角プラス側でより小さくなる。このことは、画角両端でRの輝度差が発生することを意味する。 Further, by satisfying conditional expression (2), R relative relative luminous sensitivity and R maximum diffraction efficiency are changed in the same direction in the X direction, compared to Rη (θR θ <ηR −θ ). It is also possible to reduce the luminance difference and reduce luminance unevenness. That is, even if the relative relative luminous sensitivity of R and the maximum diffraction efficiency of R are changed in the same direction in the X direction, an effect of reducing color unevenness in the screen can be obtained as long as the conditional expression (1) is satisfied. However, in this case, for R, the value of (relative relative luminous sensitivity) × (diffraction efficiency) is larger on the minus angle of view and smaller on the plus side of the angle of view. This means that an R luminance difference occurs at both ends of the field angle.
 条件式(2)を満足する場合、Rについて、(相対比視感度)×(回折効率)の値の画角両端での差がηRθ<ηR-θの場合よりも小さくなるので、画角両端でのRの輝度差が低減される。したがって、条件式(2)を満足することにより、画面内の色ムラおよび輝度ムラを両方とも低減することが可能となる。 When the conditional expression (2) is satisfied, the angle of view of R is smaller than the case of ηR θ <ηR −θ because the difference between the values of (relative relative luminous sensitivity) × (diffraction efficiency) is smaller than ηR θ <ηR −θ. The luminance difference of R at both ends is reduced. Therefore, by satisfying conditional expression (2), it is possible to reduce both color unevenness and luminance unevenness in the screen.
 また、本実施形態の映像表示装置1は、以下の条件式(3)、
 ηCθ<ηC-θ      ・・・(3)
を満足することが望ましい。
In addition, the video display device 1 of the present embodiment has the following conditional expression (3):
ηC θ <ηC −θ (3)
It is desirable to satisfy
 Cの波長域がBの波長域であってもGの波長域であっても、Cの波長域での相対比視感度の変化は、Rの波長域での相対比視感度の変化とは逆であることから、Cの相対比視感度は、画角プラス側ではより高く、画角マイナス側ではより低い。条件式(3)を満足することにより、Cの相対比視感度のより高い画角θでは、Cの最大回折効率がより低くなり、Cの相対比視感度のより低い画角-θでは、Cの最大回折効率がより高くなる。 Regardless of whether the wavelength range of C is the wavelength range of B or the wavelength range of G, the change in relative relative luminous sensitivity in the wavelength range of C is the change in relative relative luminous sensitivity in the wavelength range of R. Since the opposite is true, the relative specific luminous efficiency of C is higher on the positive angle of view and lower on the negative angle of view. By satisfying the conditional expression (3), the maximum diffraction efficiency of C is lower at the angle of view θ where the relative relative luminous sensitivity of C is higher, and at the angle of view −θ where the relative relative visibility of C is lower, The maximum diffraction efficiency of C becomes higher.
 このように、X方向において、Cの相対比視感度の変化とCの最大回折効率の変化とが逆の挙動となるので、Cの比視感度を考慮して画面内の色ムラの低減効果を確実に得ることができる。特に、条件式(2)(3)を同時に満足する場合は、RおよびCの両者について、画角の変化に対する(相対比視感度)×(回折効率)の変化量を抑えることができるので、画面内の色ムラの低減効果を最も高く得ることができる。 Thus, in the X direction, the change in the relative relative luminous sensitivity of C and the change in the maximum diffraction efficiency of C have opposite behaviors. Can be definitely obtained. In particular, when conditional expressions (2) and (3) are satisfied at the same time, for both R and C, the amount of change in (relative relative luminous sensitivity) × (diffraction efficiency) relative to the change in the angle of view can be suppressed. The highest effect of reducing color unevenness in the screen can be obtained.
 また、本実施形態の映像表示装置1は、以下の条件式(4)、
 (ηRθ/ηCθ)≧1.5×(ηR-θ/ηC-θ)  ・・・(4)
を満足することが望ましい。
Further, the video display device 1 of the present embodiment has the following conditional expression (4),
(ΗR θ / ηC θ ) ≧ 1.5 × (ηR −θ / ηC −θ ) (4)
It is desirable to satisfy
 条件式(4)は、画面内の色ムラを効果的に低減するためのレベルを示している。条件式(4)を満足することにより、X方向において、相対比視感度の変化の大きいRの最大回折効率をCの最大回折効率よりも確実に大きく変化させることができる。これにより、画面内の色ムラの低減効果を確実に得ることができる。 Conditional expression (4) indicates a level for effectively reducing color unevenness in the screen. By satisfying conditional expression (4), it is possible to reliably change the maximum diffraction efficiency of R, which has a large change in relative specific luminous efficiency, to be larger than the maximum diffraction efficiency of C in the X direction. Thereby, the effect of reducing color unevenness in the screen can be obtained with certainty.
 また、本実施形態の映像表示装置1は、以下の条件式(5)、
 P′>(ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
   >Q′          ・・・(5)
 ただし、
 P′={(NBλθ/NBλ)・(NGλ/NGλθ)}
 Q′={(NBλ-θ/NBλ)・(NGλ/NGλ-θ)}
を満足することが望ましい。
In addition, the video display device 1 of the present embodiment has the following conditional expression (5),
P ′> (ηG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
> Q '(5)
However,
P ′ = {(NBλ θ / NBλ 0 ) · (NGλ 0 / NGλ θ )} 2
Q ′ = {(NBλ −θ / NBλ 0 ) · (NGλ 0 / NGλ −θ )} 2
It is desirable to satisfy
 Bの波長域とGの波長域においては、波長に対する相対比視感度の変化が同じ傾向にあり、色ムラは生じ難いが、条件式(5)を満たすことで、BとGに起因する色ムラを、さらに改善することができる。 In the B wavelength region and the G wavelength region, the change in relative relative luminous sensitivity with respect to the wavelength tends to be the same and color unevenness hardly occurs. However, by satisfying conditional expression (5), the color caused by B and G Unevenness can be further improved.
 P′は、条件式(5)における(ηGθ/ηBθ)の上限に相当し、Q′は、条件式(5)における(ηG-θ/ηB-θ)の下限に相当する。(ηGθ/ηBθ)が大きくなりすぎたり、(ηG-θ/ηB-θ)が小さくなりすぎると、画面内の色ムラが逆転して発生する場合がある。そこで、(ηGθ/ηBθ)を上限P′よりも小さく設定し、(ηG-θ/ηB-θ)を下限Q′よりも大きく設定することにより、画面内の色ムラが逆転して発生する現象を回避することができ、BとGに起因する色ムラを、改善することができる。 P ′ corresponds to the upper limit of (ηG θ / ηB θ ) in conditional expression (5), and Q ′ corresponds to the lower limit of (ηG −θ / ηB −θ ) in conditional expression (5). If (ηG θ / ηB θ ) becomes too large or (ηG −θ / ηB −θ ) becomes too small, color unevenness in the screen may be reversed. Therefore, by setting (ηG θ / ηB θ ) to be smaller than the upper limit P ′ and setting (ηG −θ / ηB −θ ) to be larger than the lower limit Q ′, color unevenness in the screen is reversed and generated. Can be avoided, and color unevenness caused by B and G can be improved.
 <条件式の確認>
 次に、本実施形態の映像表示装置1が上述した条件式(1)~(5)を満足していることを確認しておく。
<Confirmation of conditional expression>
Next, it is confirmed that the video display device 1 of the present embodiment satisfies the conditional expressions (1) to (5) described above.
 (条件式(1)について)
 RとBとの間では、図1より、
 (ηRθ/ηBθ)=0.9/0.55=1.64
 (ηR/ηB)=0.65/0.7=0.93
 (ηR-θ/ηB-θ)=0.4/0.85=0.47
である。よって、本実施形態の映像表示装置1は、RとBとの間で条件式D、すなわち、
 (ηRθ/ηBθ)>(ηR/ηB)>(ηR-θ/ηB-θ
を満足している。
(Regarding conditional expression (1))
Between R and B, from FIG.
(ΗR θ / ηB θ ) = 0.9 / 0.55 = 1.64
(ΗR 0 / ηB 0 ) = 0.65 / 0.7 = 0.93
(ΗR −θ / ηB −θ ) = 0.4 / 0.85 = 0.47
It is. Therefore, the video display apparatus 1 according to the present embodiment has a conditional expression D between R and B, that is,
(ΗR θ / ηB θ )> (ηR 0 / ηB 0 )> (ηR −θ / ηB −θ )
Is satisfied.
 また、図4より、
 P={(NBλθ/NBλ)・(NRλ/NRλθ)}
  ={(0.12/0.08)・(0.23/0.13)}
  =7.04
であり、
 Q={(NBλ-θ/NBλ)・(NRλ/NRλ-θ)}
  ={(0.05/0.08)・(0.23/0.39)}
  =0.14
である。よって、本実施形態の映像表示装置1は、RとBとの間で条件式(1)、すなわち、
 P>(ηRθ/ηBθ)>(ηR/ηB)>(ηR-θ/ηB-θ)>Q
を満足している。
From FIG.
P = {(NBλ θ / NBλ 0 ) · (NRλ 0 / NRλ θ )} 2
= {(0.12 / 0.08). (0.23 / 0.13)} 2
= 7.04
And
Q = {(NBλ −θ / NBλ 0 ) · (NRλ 0 / NRλ −θ )} 2
= {(0.05 / 0.08) · (0.23 / 0.39)} 2
= 0.14
It is. Therefore, the video display apparatus 1 according to the present embodiment has conditional expression (1) between R and B, that is,
P> (ηR θ / ηB θ )> (ηR 0 / ηB 0 )> (ηR −θ / ηB −θ )> Q
Is satisfied.
 また、RとGとの間では、図1より、
 (ηRθ/ηGθ)=0.9/0.65=1.38
 (ηR/ηG)=0.65/0.75=0.87
 (ηR-θ/ηG-θ)=0.4/0.85=0.47
である。よって、本実施形態の映像表示装置1は、RとGとの間でも条件式D、すなわち、
 (ηRθ/ηGθ)>(ηR/ηG)>(ηR-θ/ηG-θ
を満足している。
Also, between R and G, from FIG.
(ΗR θ / ηG θ ) = 0.9 / 0.65 = 1.38
(ΗR 0 / ηG 0 ) = 0.65 / 0.75 = 0.87
(ΗR −θ / ηG −θ ) = 0.4 / 0.85 = 0.47
It is. Therefore, the video display device 1 according to the present embodiment also satisfies the conditional expression D between R and G, that is,
(ΗR θ / ηG θ )> (ηR 0 / ηG 0 )> (ηR −θ / ηG −θ )
Is satisfied.
 また、図4より、
 P={(NGλθ/NGλ)・(NRλ/NRλθ)}
  ={(0.88/0.73)・(0.23/0.13)}
  =4.55
であり、
 Q={(NGλ-θ/NGλ)・(NRλ/NRλ-θ)}
  ={(0.48/0.73)・(0.23/0.39)}
  =0.15
である。よって、本実施形態の映像表示装置1は、RとGとの間でも条件式(1)、すなわち、
 P>(ηRθ/ηGθ)>(ηR/ηG)>(ηR-θ/ηG-θ)>Q
を満足している。
From FIG.
P = {(NGλ θ / NGλ 0 ) · (NRλ 0 / NRλ θ )} 2
= {(0.88 / 0.73) · (0.23 / 0.13)} 2
= 4.55
And
Q = {(NGλ −θ / NGλ 0 ) · (NRλ 0 / NRλ −θ )} 2
= {(0.48 / 0.73) · (0.23 / 0.39)} 2
= 0.15
It is. Therefore, the video display device 1 according to the present embodiment also satisfies the conditional expression (1) between R and G, that is,
P> (ηR θ / ηG θ )> (ηR 0 / ηG 0 )> (ηR −θ / ηG −θ )> Q
Is satisfied.
 (条件式(2)について)
 図1より、ηRθ=0.9、ηR-θ=0.4であるので、本実施形態の映像表示装置1は、条件式(2)、すなわち、
 ηRθ>ηR-θ
を満足している。
(Regarding conditional expression (2))
From FIG. 1, since ηR θ = 0.9 and ηR −θ = 0.4, the video display device 1 of the present embodiment has the conditional expression (2), that is,
ηR θ > ηR −θ
Is satisfied.
 (条件式(3)について)
 図1より、ηBθ=0.55、ηB-θ=0.85であるので、本実施形態の映像表示装置1は、Bについて、条件式(3)、すなわち、
 ηBθ<ηB-θ
を満足している。
(Regarding conditional expression (3))
From FIG. 1, since ηB θ = 0.55 and ηB −θ = 0.85, the video display apparatus 1 of the present embodiment has conditional expression (3) for B, that is,
ηB θ <ηB −θ
Is satisfied.
 同様に、図1より、ηGθ=0.65、ηG-θ=0.85であるので、本実施形態の映像表示装置1は、Gについても、条件式(3)、すなわち、
 ηGθ<ηG-θ
を満足している。
Similarly, from FIG. 1, since ηG θ = 0.65 and ηG −θ = 0.85, the video display device 1 of the present embodiment also applies conditional expression (3) for G, that is,
ηG θ <ηG −θ
Is satisfied.
 (条件式(4)について)
 RとBとの間では、図1より、
 (ηRθ/ηBθ)=0.9/0.55=1.64
 (ηR-θ/ηB-θ)=0.4/0.85=0.47
であるので、
 (ηRθ/ηBθ)≧3.47×(ηR-θ/ηB-θ
である。よって、本実施形態の映像表示装置1は、RとBとの間で条件式(4)、すなわち、
 (ηRθ/ηBθ)≧1.5×(ηR-θ/ηB-θ
を満足している。
(Regarding conditional expression (4))
Between R and B, from FIG.
(ΗR θ / ηB θ ) = 0.9 / 0.55 = 1.64
(ΗR −θ / ηB −θ ) = 0.4 / 0.85 = 0.47
So
(ΗR θ / ηB θ ) ≧ 3.47 × (ηR −θ / ηB −θ )
It is. Therefore, the video display device 1 according to the present embodiment has conditional expression (4) between R and B, that is,
(ΗR θ / ηB θ ) ≧ 1.5 × (ηR −θ / ηB −θ )
Is satisfied.
 また、RとGとの間では、図1より、
 (ηRθ/ηGθ)=0.9/0.65=1.38
 (ηR-θ/ηG-θ)=0.4/0.85=0.47
であるので、
 (ηRθ/ηGθ)≧2.94×(ηR-θ/ηG-θ
である。よって、本実施形態の映像表示装置1は、RとGとの間でも条件式(4)、すなわち、
 (ηRθ/ηGθ)≧1.5×(ηR-θ/ηG-θ
を満足している。
Also, between R and G, from FIG.
(ΗR θ / ηG θ ) = 0.9 / 0.65 = 1.38
(ΗR −θ / ηG −θ ) = 0.4 / 0.85 = 0.47
So
(ΗR θ / ηG θ ) ≧ 2.94 × (ηR −θ / ηG −θ )
It is. Therefore, the video display device 1 according to the present embodiment also satisfies the conditional expression (4) between R and G, that is,
(ΗR θ / ηG θ ) ≧ 1.5 × (ηR −θ / ηG −θ )
Is satisfied.
 (条件式(5)について)
 GとBとの間では、図1より、
 (ηGθ/ηBθ)=0.65/0.55=1.18
 (ηG/ηB)=0.75/0.7=1.07
 (ηG-θ/ηB-θ)=0.85/0.85=1
である。よって、本実施形態の映像表示装置1は、GとBとの間でも、
 (ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
を満足している。
(Regarding conditional expression (5))
Between G and B, from FIG.
(ΗG θ / ηB θ ) = 0.65 / 0.55 = 1.18
(ΗG 0 / ηB 0 ) = 0.75 / 0.7 = 1.07
(ΗG −θ / ηB −θ ) = 0.85 / 0.85 = 1
It is. Therefore, the video display device 1 according to the present embodiment is also between G and B.
(ΗG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
Is satisfied.
 また、図4より、
 P′={(NBλθ/NBλ)・(NGλ/NGλθ)}
   ={(0.12/0.08)・(0.73/0.88)}
   =1.55
であり、
 Q′={(NBλ-θ/NBλ)・(NGλ/NGλ-θ)}
   ={(0.05/0.08)・(0.73/0.48)}
   =0.90
である。よって、本実施形態の映像表示装置1は、GとBとの間でも条件式(5)、すなわち、
 P′>(ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
   >Q′
を満足している。
From FIG.
P ′ = {(NBλ θ / NBλ 0 ) · (NGλ 0 / NGλ θ )} 2
= {(0.12 / 0.08). (0.73 / 0.88)} 2
= 1.55
And
Q ′ = {(NBλ −θ / NBλ 0 ) · (NGλ 0 / NGλ −θ )} 2
= {(0.05 / 0.08) · (0.73 / 0.48)} 2
= 0.90
It is. Therefore, the video display device 1 according to the present embodiment also satisfies the conditional expression (5) between G and B, that is,
P ′> (ηG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
> Q '
Is satisfied.
 <他の回折効率の設定について>
 ところで、HOE23のX方向において、BおよびGの最大回折効率を一定とし、Rの最大回折効率だけを領域によって異ならせても、各色の最大回折効率の比を領域によって異ならせることができ、上述した条件式(1)を満足することができる。
<Other diffraction efficiency settings>
By the way, even if the maximum diffraction efficiency of B and G is made constant in the X direction of the HOE 23 and only the maximum diffraction efficiency of R is varied depending on the region, the ratio of the maximum diffraction efficiency of each color can be varied depending on the region. Conditional expression (1) can be satisfied.
 また、図9は、RGBの各色について、HOE23のX方向の位置と最大回折効率との関係の他の例を示しており、図10は、HOE23におけるRGBの最大回折効率を図9のように設定したときの、RGBの各色について画角の変化に対する(相対比視感度)×(回折効率)の変化を、画角0°を基準として規格化して示している。 9 shows another example of the relationship between the position of the HOE 23 in the X direction and the maximum diffraction efficiency for each color of RGB. FIG. 10 shows the maximum diffraction efficiency of RGB in the HOE 23 as shown in FIG. The change of (relative relative luminous sensitivity) × (diffraction efficiency) with respect to the change in the angle of view for each color of RGB when set is standardized with an angle of view of 0 ° as a standard.
 図9に示すように、HOE23のX方向において、Bの最大回折効率を一定とし、効き率が低い(相対比視感度の変化が小さい)Gの最大回折効率の変化を、図5に示したGの相対比視感度の変化と同方向の挙動としても(Gの色ムラを増大させる方向にGの最大回折効率を変化させても)、そのGの最大回折効率の変化(傾き)がRの最大回折効率の変化(傾き)よりも小さければ、条件式(1)を満足することができる。その結果、HOEの各色の最大回折効率比を領域によらず一定とした構成に比べて、図10に示すように、画面内の色ムラを低減することができる。したがって、画面内の色ムラを低減するためには、色ムラへの影響が一番大きいRについて、最大回折効率を領域によって変化させることが最も重要であると言える。なお、色ムラの低減効果をより高めるためには、図1で示したように、HOE23において、BおよびGはRと逆の傾きを持つ回折効率の分布とすることが望ましい。 As shown in FIG. 9, the change in the maximum diffraction efficiency of G is shown in FIG. 5, with the maximum diffraction efficiency of B being constant and the effectiveness being low (the change in relative relative luminous sensitivity is small) in the X direction of the HOE 23. Even if the behavior in the same direction as the change of the relative relative luminous sensitivity of G (even if the maximum diffraction efficiency of G is changed in the direction of increasing the color unevenness of G), the change (slope) of the maximum diffraction efficiency of G is R. If it is smaller than the change (slope) of the maximum diffraction efficiency, the conditional expression (1) can be satisfied. As a result, color unevenness in the screen can be reduced as shown in FIG. 10 compared to a configuration in which the maximum diffraction efficiency ratio of each color of the HOE is constant regardless of the region. Therefore, in order to reduce the color unevenness in the screen, it can be said that it is most important to change the maximum diffraction efficiency depending on the region for R that has the greatest influence on the color unevenness. In order to further enhance the effect of reducing color unevenness, it is desirable that B and G have a diffraction efficiency distribution having an inclination opposite to R in HOE 23 as shown in FIG.
 図9のように設定されたHOE23を用いた映像表示装置は、上述した条件式(1)のほか、条件式(2)、(4)及び(5)をさらに満足する。以下、この点を確認しておく。 The video display device using the HOE 23 set as shown in FIG. 9 further satisfies the conditional expressions (2), (4), and (5) in addition to the conditional expression (1) described above. This point will be confirmed below.
 (条件式(1)について)
 RとBとの間では、図9より、
 (ηRθ/ηBθ)=0.9/0.65=1.38
 (ηR/ηB)=0.65/0.65=1
 (ηR-θ/ηB-θ)=0.4/0.65=0.62
である。よって上記映像表示装置は、RとBとの間で条件式D、すなわち、
 (ηRθ/ηBθ)>(ηR/ηB)>(ηR-θ/ηB-θ
を満足している。
(Regarding conditional expression (1))
From FIG. 9 between R and B,
(ΗR θ / ηB θ ) = 0.9 / 0.65 = 1.38
(ΗR 0 / ηB 0 ) = 0.65 / 0.65 = 1
(ΗR −θ / ηB −θ ) = 0.4 / 0.65 = 0.62
It is. Therefore, the video display device has a conditional expression D between R and B, that is,
(ΗR θ / ηB θ )> (ηR 0 / ηB 0 )> (ηR −θ / ηB −θ )
Is satisfied.
 また、図4より、
 P={(NBλθ/NBλ)・(NRλ/NRλθ)}
  =7.04
であり、
 Q={(NBλ-θ/NBλ)・(NRλ/NRλ-θ)}
  =0.14
であり、上記映像表示装置は、RとBとの間で条件式(1)、すなわち、
 P>(ηRθ/ηBθ)>(ηR/ηB)>(ηR-θ/ηB-θ)>Q
を満足している。
From FIG.
P = {(NBλ θ / NBλ 0 ) · (NRλ 0 / NRλ θ )} 2
= 7.04
And
Q = {(NBλ −θ / NBλ 0 ) · (NRλ 0 / NRλ −θ )} 2
= 0.14
And the video display device has a conditional expression (1) between R and B, that is,
P> (ηR θ / ηB θ )> (ηR 0 / ηB 0 )> (ηR −θ / ηB −θ )> Q
Is satisfied.
 RとGとの間では、図9より、
 (ηRθ/ηGθ)=0.9/0.85=1.06
 (ηR/ηG)=0.65/0.75=0.87
 (ηR-θ/ηG-θ)=0.4/0.65=0.62
である。よって、上記映像表示装置は、RとGとの間でも条件式D、すなわち、
 (ηRθ/ηGθ)>(ηR/ηG)>(ηR-θ/ηG-θ
を満足している。
From FIG. 9 between R and G,
(ΗR θ / ηG θ ) = 0.9 / 0.85 = 1.06
(ΗR 0 / ηG 0 ) = 0.65 / 0.75 = 0.87
(ΗR −θ / ηG −θ ) = 0.4 / 0.65 = 0.62
It is. Therefore, the above video display device can satisfy the conditional expression D between R and G, that is,
(ΗR θ / ηG θ )> (ηR 0 / ηG 0 )> (ηR −θ / ηG −θ )
Is satisfied.
 また、図4より、
 P={(NGλθ/NGλ)・(NRλ/NRλθ)}
  =4.55
であり、
 Q={(NGλ-θ/NGλ)・(NRλ/NRλ-θ)}
  =0.15
であり、上記映像表示装置は、RとGとの間でも条件式(1)、すなわち、
 P>(ηRθ/ηGθ)>(ηR/ηG)>(ηR-θ/ηG-θ)>Q
を満足している。
From FIG.
P = {(NGλ θ / NGλ 0 ) · (NRλ 0 / NRλ θ )} 2
= 4.55
And
Q = {(NGλ −θ / NGλ 0 ) · (NRλ 0 / NRλ −θ )} 2
= 0.15
In the video display device, the conditional expression (1) between R and G, that is,
P> (ηR θ / ηG θ )> (ηR 0 / ηG 0 )> (ηR −θ / ηG −θ )> Q
Is satisfied.
 (条件式(2)について)
 図9より、ηRθ=0.9、ηR-θ=0.4であるので、上記映像表示装置は、条件式(2)、すなわち、
   ηRθ>ηR-θ
を満足している。
(Regarding conditional expression (2))
From FIG. 9, ηR θ = 0.9 and ηR −θ = 0.4. Therefore, the video display device has the conditional expression (2), that is,
ηR θ > ηR −θ
Is satisfied.
 (条件式(4)について)
 RとBとの間では、図9より、
 (ηRθ/ηBθ)=0.9/0.65=1.38
 (ηR-θ/ηB-θ)=0.4/0.65=0.62
であるので、
 (ηRθ/ηBθ)≧2.25×(ηR-θ/ηB-θ
である。よって、上記映像表示装置は、RとBとの間で条件式(4)、すなわち、
 (ηRθ/ηBθ)≧1.5×(ηR-θ/ηB-θ
を満足している。
(Regarding conditional expression (4))
From FIG. 9 between R and B,
(ΗR θ / ηB θ ) = 0.9 / 0.65 = 1.38
(ΗR −θ / ηB −θ ) = 0.4 / 0.65 = 0.62
So
(ΗR θ / ηB θ ) ≧ 2.25 × (ηR −θ / ηB −θ )
It is. Therefore, the video display device has conditional expression (4) between R and B, that is,
(ΗR θ / ηB θ ) ≧ 1.5 × (ηR −θ / ηB −θ )
Is satisfied.
 また、RとGとの間では、図9より、
 (ηRθ/ηGθ)=0.9/0.85=1.06
 (ηR-θ/ηG-θ)=0.4/0.65=0.62
であるので、
 (ηRθ/ηGθ)≧1.72×(ηR-θ/ηG-θ
である。よって、上記映像表示装置は、RとGとの間でも条件式(4)、すなわち、
 (ηRθ/ηGθ)≧1.5×(ηR-θ/ηG-θ
を満足している。
Moreover, between R and G, from FIG.
(ΗR θ / ηG θ ) = 0.9 / 0.85 = 1.06
(ΗR −θ / ηG −θ ) = 0.4 / 0.65 = 0.62
So
(ΗR θ / ηG θ ) ≧ 1.72 × (ηR −θ / ηG −θ )
It is. Therefore, the above video display apparatus can satisfy the conditional expression (4) between R and G, that is,
(ΗR θ / ηG θ ) ≧ 1.5 × (ηR −θ / ηG −θ )
Is satisfied.
 (条件式(5)について)
 GとBとの間では、図9より、
 (ηGθ/ηBθ)=0.85/0.65=1.31
 (ηG/ηB)=0.75/0.65=1.15
 (ηG-θ/ηB-θ)=0.65/0.65=1
である。よって、上記映像表示装置は、GとBとの間でも、
 (ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
を満足している。
(Regarding conditional expression (5))
From FIG. 9 between G and B,
(ΗG θ / ηB θ ) = 0.85 / 0.65 = 1.31
(ΗG 0 / ηB 0 ) = 0.75 / 0.65 = 1.15
(ΗG −θ / ηB −θ ) = 0.65 / 0.65 = 1
It is. Therefore, the video display device can be used between G and B.
(ΗG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
Is satisfied.
 また、図4より、
 P′={(NBλθ/NBλ)・(NGλ/NGλθ)}
   ={(0.12/0.08)・(0.73/0.88)}
   =1.55
であり、
 Q′={(NBλ-θ/NBλ)・(NGλ/NGλ-θ)}
   ={(0.05/0.08)・(0.73/0.48)}
   =0.90
である。よって、上記映像表示装置は、GとBとの間でも条件式(5)、すなわち、
 P′>(ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
   >Q′
を満足している。
From FIG.
P ′ = {(NBλ θ / NBλ 0 ) · (NGλ 0 / NGλ θ )} 2
= {(0.12 / 0.08). (0.73 / 0.88)} 2
= 1.55
And
Q ′ = {(NBλ −θ / NBλ 0 ) · (NGλ 0 / NGλ −θ )} 2
= {(0.05 / 0.08) · (0.73 / 0.48)} 2
= 0.90
It is. Therefore, the above video display apparatus can satisfy the conditional expression (5) between G and B, that is,
P ′> (ηG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
> Q '
Is satisfied.
 <単層HOEについて>
 ところで、本実施形態では、HOE23が、感光層1層でBGRのうち異なる2色以上に感度を有するホログラム感光材料を用いて作製されている。つまり、HOE23は、BGRのうちの2色以上に対応する干渉縞が1層に多重記録されたもの(単層HOE)である。なお、HOE23の作製方法については後述する。
<About single-layer HOE>
By the way, in this embodiment, HOE23 is produced using the hologram photosensitive material which has a sensitivity in two or more different colors among BGR in one photosensitive layer. That is, the HOE 23 is a single layer HOE in which interference fringes corresponding to two or more colors of BGR are recorded in a single layer. A method for manufacturing the HOE 23 will be described later.
 このように、HOE23において、各色に対応する干渉縞が1層に多重記録されている場合、互いの干渉縞が重なり合って記録されているので、それぞれの干渉縞に対して屈折率変調Δnを大きくすることが難しく、各色の回折効率を同時に高くすることが困難となる。すなわち、各色の回折効率は、トレードオフの関係になる。例えば全領域で各色の最大回折効率比が同じになるようにHOEを作製すると、全領域で図8(b)と同様の回折効率の分布、すなわち、全領域でBGRの最大回折効率がともに約70%程度までしか上がらない。 As described above, in the HOE 23, when the interference fringes corresponding to each color are recorded in multiple layers in one layer, the interference fringes are recorded so as to overlap each other, so that the refractive index modulation Δn is increased for each interference fringe. It is difficult to increase the diffraction efficiency of each color at the same time. That is, the diffraction efficiency of each color has a trade-off relationship. For example, if the HOE is manufactured so that the maximum diffraction efficiency ratio of each color is the same in all regions, the distribution of diffraction efficiency similar to that in FIG. 8B in all regions, that is, the maximum diffraction efficiency of BGR in all regions is approximately both. It only rises to about 70%.
 これに対して、本発明のように、HOE23において、各色の最大回折効率の比を領域によって異ならせることにより、前述したように、画角6°でRの最大回折効率90%を実現したり(図8(a)参照)、画角-6°でBおよびGの最大回折効率85%を実現することができ(図8(c)参照)、全領域で各色一定の最大回折効率比のHOEを用いる場合と比較して、画角に応じて比視感度の低い色の回折効率を高めることができる。つまり、本発明では、各色の回折効率を同時に高めるわけではないので、逆に、各色の回折効率を同時に高めることが困難な単層HOEを用いる構成を採用することが可能となる。言い換えれば、単層HOEを用いる構成で、本発明を容易に実現することができ、本発明が有効となる。 On the other hand, in the HOE 23 as in the present invention, by varying the ratio of the maximum diffraction efficiency of each color depending on the area, as described above, the maximum diffraction efficiency of 90% can be realized at an angle of view of 6 °. (See Fig. 8 (a)), it is possible to achieve a maximum diffraction efficiency of 85% for B and G at an angle of view of -6 ° (see Fig. 8 (c)). Compared with the case where HOE is used, it is possible to increase the diffraction efficiency of a color with low specific visibility according to the angle of view. That is, in the present invention, since the diffraction efficiency of each color is not increased at the same time, on the contrary, it is possible to adopt a configuration using a single layer HOE in which it is difficult to simultaneously increase the diffraction efficiency of each color. In other words, the present invention can be easily realized with a configuration using a single layer HOE, and the present invention becomes effective.
 また、従来のように、画像処理やフィルタによって色ムラ改善を行う場合、全領域で各色一定の最大回折効率比のHOEを用いた場合の光利用効率から、さらに画像処理等による光量低下によって光利用効率がより一層低下することとなる。本発明では、単層HOEを用いて各色の最大回折効率の比を領域によって異ならせることにより、画像処理等を行わずに画角によって必要な色の回折効率を高めることができることから、単層HOEを用いる構成は、光利用効率の向上という点で有効性が高いと言える。 In addition, when color unevenness is improved by image processing or filters as in the past, the light utilization efficiency when using the HOE with the maximum diffraction efficiency ratio of each color in the entire region is further reduced by the light amount reduction due to image processing or the like. The utilization efficiency will be further reduced. In the present invention, since the ratio of the maximum diffraction efficiency of each color is changed depending on the region using a single layer HOE, the diffraction efficiency of a necessary color can be increased depending on the angle of view without performing image processing or the like. It can be said that the configuration using HOE is highly effective in terms of improving the light utilization efficiency.
 <HOEの作製方法>
 次に、上述したHOE23の作製方法について説明する。図11は、HOE23を作製する露光光学系の概略の構成を示している。レーザ光源41R・41G・41Bから出射されるRGB3本のレーザ光は、それぞれ、2枚1組のミラー対42R・42G・42Bで光軸調整され、シャッタ43R・43G・43Bを透過後、ビームエキスパンダ44R・44G・44Bで光束径を拡大され、透過率変更フィルタ45R・45G・45Bを透過する。このとき、シャッタ43R・43G・43BのON/OFFにより、露光時間を調整する。
<Method for producing HOE>
Next, a method for manufacturing the above-described HOE 23 will be described. FIG. 11 shows a schematic configuration of an exposure optical system for manufacturing the HOE 23. The RGB three laser beams emitted from the laser light sources 41R, 41G, and 41B are adjusted in optical axis by a pair of mirrors 42R, 42G, and 42B, and transmitted through the shutters 43R, 43G, and 43B. The beam diameter is enlarged by the pandas 44R, 44G, and 44B, and the light passes through the transmittance changing filters 45R, 45G, and 45B. At this time, the exposure time is adjusted by turning on / off the shutters 43R, 43G, and 43B.
 透過率変更フィルタ45Gを透過したGのレーザ光は、ミラー46にて反射され、ダイクロイックミラー47にて、透過率変更フィルタ45Bを透過したBのレーザ光と光路合成される。そして、GおよびBのレーザ光は、ダイクロイックミラー48にて、透過率変更フィルタ45Rを透過したRのレーザ光と光路合成される。 The G laser beam that has passed through the transmittance changing filter 45G is reflected by the mirror 46, and is optically combined by the dichroic mirror 47 with the B laser beam that has passed through the transmittance changing filter 45B. The G and B laser beams are optically combined by the dichroic mirror 48 with the R laser beam transmitted through the transmittance changing filter 45R.
 その後、RGBのレーザ光は、1本の光路でミラー49に入射し、そこで反射された後、ビームスプリッタ50で2光束に分岐される。分岐された一方の光束は、ミラー51および任意の光学系52を介してホログラム感光材料23aに照射され、他方の光束は、ミラー53、任意の光学系54およびプリズム31を介してホログラム感光材料23aに所定の入射角度で照射される。このようにして、ホログラム感光材料23a内で2光束を干渉させることにより、所望のHOE23が作製される。 Thereafter, the RGB laser light is incident on the mirror 49 through one optical path, reflected there, and then split into two light beams by the beam splitter 50. One of the branched light beams is irradiated onto the hologram photosensitive material 23a via the mirror 51 and an arbitrary optical system 52, and the other light beam is irradiated onto the hologram photosensitive material 23a via the mirror 53, the arbitrary optical system 54 and the prism 31. Is irradiated at a predetermined incident angle. In this way, the desired HOE 23 is produced by causing the two light beams to interfere with each other in the hologram photosensitive material 23a.
 ここで、透過率変更フィルタ45R・45G・45Bは、領域により順次透過率が変化するグラデーションフィルタである。なお、図11では、透過率変更フィルタ45R・45G・45Bにおける透過率の変化をグラデーションで示しており、グラデーションが濃い部分は透過率が低く、淡い部分は透過率が高いことを示している。このような透過率変更フィルタ45R・45G・45Bを介して、RGBのレーザ光をホログラム感光材料23aに照射することにより、露光ビーム断面に必要な強度分布(露光量分布)を持たせることができる。 Here, the transmittance changing filters 45R, 45G, and 45B are gradation filters whose transmittance changes sequentially depending on the region. In FIG. 11, the change in transmittance in the transmittance changing filters 45R, 45G, and 45B is shown by gradation, and the portion where the gradation is dark shows that the transmittance is low and the light portion shows that the transmittance is high. By irradiating the hologram photosensitive material 23a with RGB laser light through such transmittance changing filters 45R, 45G, and 45B, the necessary intensity distribution (exposure amount distribution) can be provided in the exposure beam cross section. .
 このとき、露光強度(露光量)とHOEの回折効率との間には相関関係があり、露光量が高いと回折効率が高くなり、露光量が低いと回折効率が低くなる。したがって、HOE23の各領域で所望の回折効率が得られるような各領域の露光強度をRGBごとに求め、各領域の露光強度に対応するように透過率が変化する任意の透過率変更フィルタ45R・45G・45Bを用いることにより、RGBの最大回折効率の比を領域によって異ならせた所望のHOE23を作製することができる。 At this time, there is a correlation between the exposure intensity (exposure amount) and the diffraction efficiency of the HOE. The higher the exposure amount, the higher the diffraction efficiency, and the lower the exposure amount, the lower the diffraction efficiency. Accordingly, the exposure intensity of each region that can obtain a desired diffraction efficiency in each region of the HOE 23 is obtained for each RGB, and an arbitrary transmittance changing filter 45R that changes the transmittance to correspond to the exposure intensity of each region. By using 45G and 45B, a desired HOE 23 in which the ratio of the maximum diffraction efficiency of RGB varies depending on the region can be produced.
 なお、RGBの3本のレーザ光としては、以下のものを用いることができる。例えば、Rのレーザ光としては、クリプトンイオンレーザやヘリウムネオンレーザを用いることができる。Gのレーザ光としては、Nd:YAG(SHG)、Nd:YVO(SHG)などの固体レーザや色素レーザを用いることができる。Bのレーザ光としては、アルゴンイオンレーザやサファイアなどの固体レーザを用いることができる。 In addition, the following can be used as three laser beams of RGB. For example, as the R laser light, a krypton ion laser or a helium neon laser can be used. As the G laser light, a solid-state laser such as Nd: YAG (SHG) or Nd: YVO 4 (SHG) or a dye laser can be used. As the B laser beam, a solid-state laser such as an argon ion laser or sapphire can be used.
 なお、上記のシャッタ43R・43G・43Bは、RGB3本のレーザ光路に独立して配置されているが、ダイクロイックミラー48でRGBのレーザ光を1本に束ねた後の光路にRGB共通のシャッタを1つ設けてもよい。また、ビームエキスパンダ44R・44G・44Bについても、RGB3本のレーザ光路に独立して配置されているが、ダイクロイックミラー48でRGBのレーザ光を1本に束ねた後の光路にRGB共通のビームエキスパンダを1つだけ設けてもよい。ただし、1本に束ねる前にRGBの各色に対応して1つずつビームエキスパンダを設けるほうが、RGBそれぞれのビーム径を必要なサイズに拡大することができ、より望ましい。 The shutters 43R, 43G, and 43B are arranged independently on the three RGB laser light paths. However, a RGB common shutter is provided on the optical path after the dichroic mirror 48 bundles the RGB laser lights into one. One may be provided. The beam expanders 44R, 44G, and 44B are also arranged independently in the RGB three laser light paths. However, the RGB common beams are arranged in the optical path after the dichroic mirror 48 bundles the RGB laser lights into one. Only one expander may be provided. However, it is more preferable to provide one beam expander corresponding to each RGB color before bundling them into one, because the beam diameter of each RGB can be expanded to a required size.
 なお、ビームスプリッタ50としては、クロムや多層膜がコートされた透過反射ミラー(ハーフミラー)や偏光ビームスプリッタなどを用いることができるが、露光面での2光束の光量がほぼ等しくなるように、分岐比を適切に設定することが望ましい。このとき、複数の波長のレーザ光をほぼ同じ分岐比で分岐することが望ましく、このためには所望の反射・透過比のクロムや多層膜がコートされた透過反射ミラーを用いるのが容易である。 As the beam splitter 50, a transmission / reflection mirror (half mirror) coated with chromium or a multilayer film, a polarization beam splitter, or the like can be used, but the light amounts of the two light beams on the exposure surface are substantially equal. It is desirable to set the branching ratio appropriately. At this time, it is desirable to split the laser beams having a plurality of wavelengths at substantially the same branching ratio. For this purpose, it is easy to use a transmission / reflection mirror coated with chromium or a multilayer film having a desired reflection / transmission ratio. .
 なお、レーザ光の偏光方向は、レーザ光源41R・41G・41Bが設置される光学台に対して水平方向または垂直方向にするほうが、ミラーによる反射などで偏光方向が回転しないのでよい。実際には、ホログラム感光材料に対してS偏光で入射するようにレーザ光の偏光方向を設定するのが最も望ましい。 It should be noted that the polarization direction of the laser light may be horizontal or vertical with respect to the optical table on which the laser light sources 41R, 41G, and 41B are installed, because the polarization direction does not rotate due to reflection by a mirror or the like. In practice, it is most desirable to set the polarization direction of the laser light so that it is incident on the hologram photosensitive material as S-polarized light.
 〔実施の形態2〕
 本発明の他の実施の形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to the drawings.
 本実施形態の映像表示装置は、縦入れタイプ、すなわち、HOEに対して表示素子を上方に配置し、上方向からの映像光をHOEにて回折反射させて光学瞳に導き、光学瞳の位置にて映像を観察させるタイプのものであり、入射する平行光を回折反射させて収束光とするHOEを用いている。以下では、上記HOEの各色の最大回折効率比を領域によって異ならせた例について説明する。 The image display apparatus of the present embodiment is a vertical insertion type, that is, a display element is arranged above the HOE, and image light from above is diffracted and reflected by the HOE to guide the optical pupil, and the position of the optical pupil HOE is used for observing an image, and diffracting and reflecting incident parallel light into convergent light. Hereinafter, an example in which the maximum diffraction efficiency ratio of each color of the HOE is varied depending on the region will be described.
 図12(a)は、本実施形態のHOE61を作製するとき(ホログラム感光材料61aを露光するとき)の露光光線(1)(2)を示しており、図12(b)は、映像観察時の再生光線を示している。露光光線(1)は、ホログラム感光材料61aに対して入射角30°の平行光である。露光光線(2)は、ホログラム感光材料61aの中心から光軸方向に距離30mmの位置にある点光源からの発散光であり、ホログラム感光材料61aへの中心光線の入射角は30°である。HOE61は、このような露光光線(1)(2)でホログラム感光材料61aを露光することにより作製される。 FIG. 12A shows exposure light beams (1) and (2) when the HOE 61 of the present embodiment is manufactured (when the hologram photosensitive material 61a is exposed), and FIG. The reproduction beam is shown. The exposure light beam (1) is parallel light having an incident angle of 30 ° with respect to the hologram photosensitive material 61a. The exposure light beam (2) is diverging light from a point light source located at a distance of 30 mm in the optical axis direction from the center of the hologram photosensitive material 61a, and the incident angle of the central light beam on the hologram photosensitive material 61a is 30 °. The HOE 61 is produced by exposing the hologram photosensitive material 61a with such exposure light beams (1) and (2).
 本実施形態では、実施の形態1と同様に、BGRそれぞれの露光波長を、476.5nm、532nm、647nmとしたが、露光時のホログラム感光材料61aの重合収縮はないと仮定する。 In this embodiment, similarly to the first embodiment, the exposure wavelengths of the BGR are set to 476.5 nm, 532 nm, and 647 nm, but it is assumed that there is no polymerization shrinkage of the hologram photosensitive material 61a at the time of exposure.
 映像観察時は、HOE61の中心から光軸方向に距離15mmの位置で映像を観察するものとする。このときの観察画角は、上下方向(Y方向)に±7°である。 When observing the image, the image is observed at a distance of 15 mm from the center of the HOE 61 in the optical axis direction. The observation angle of view at this time is ± 7 ° in the vertical direction (Y direction).
 なお、本実施形態においても、観察画面中心の画角を0(°)とし、HOE61に対する入射光の光軸と反射光の光軸とを含む面内における、観察画面内のY方向の2つの最大画角のうち、Rの回折ピーク波長のより大きいほうを+θ(°)とし、より小さいほうを-θ(°)とする。したがって、本実施形態では、画角中心に対して下方向が画角の正の方向(画角プラス側)となり、上方向が画角の負の方向(画角マイナス側)となる。表2は、本実施形態におけるBGRそれぞれの観察画角と回折ピーク波長との関係を示している。 Also in this embodiment, the angle of view at the center of the observation screen is set to 0 (°), and two in the Y direction in the observation screen in the plane including the optical axis of the incident light and the optical axis of the reflected light with respect to the HOE 61 are displayed. Of the maximum angle of view, the larger diffraction peak wavelength of R is defined as + θ (°), and the smaller one is defined as −θ (°). Therefore, in this embodiment, the downward direction with respect to the center of the angle of view is the positive direction of the angle of view (view angle plus side), and the upward direction is the negative direction of the angle of view (view angle minus side). Table 2 shows the relationship between the observation angle of view of each BGR and the diffraction peak wavelength in this embodiment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、BGRそれぞれの映像光の波長域は、画角によって異なり、B:470~483nm、G:526~539nm、R:639~656nmである。図4で示した比視感度曲線から観察画角に対応する波長範囲における比視感度を抜き出し、抜き出した各画角でのBGRの比視感度を、画面中心(画角0°)を基準として規格化すると、図13のようになる。同図より、BとR、GとRとで相対比視感度の傾き方向が逆転しており、原理的に画面内で色ムラが発生する状態にある。つまり、映像光のエネルギー(強度)を各波長で同じとすると、本実施形態では、画角上側(画角マイナス側)が赤っぽく観察され、画角下側(画角プラス側)が青っぽく観察されやすくなる。 From Table 2, the wavelength range of the image light of each BGR varies depending on the angle of view, and is B: 470 to 483 nm, G: 526 to 539 nm, and R: 639 to 656 nm. The specific visibility in the wavelength range corresponding to the observation angle of view is extracted from the specific visibility curve shown in FIG. 4, and the relative visibility of BGR at each extracted angle of view is based on the screen center (0 ° angle of view). When normalized, the result is as shown in FIG. From the figure, the gradient direction of relative relative luminous sensitivity is reversed between B and R and between G and R, and in principle, color unevenness occurs in the screen. That is, assuming that the energy (intensity) of the image light is the same at each wavelength, in this embodiment, the upper side of the angle of view (the minus angle of view) is observed in red, and the lower side of the angle of view (plus angle of view) is bluish It becomes easier to observe.
 図14は、HOE61の平面図である。HOE61のY方向において、画角0°に対応する領域の位置を基準(0mm)とすると、画角上端に対応する位置は、上記基準位置から-3mmの位置であり、画角下端に対応する位置は、上記基準位置から3mmの位置である。 FIG. 14 is a plan view of the HOE 61. In the Y direction of the HOE 61, assuming that the position of the region corresponding to the angle of view of 0 ° is the reference (0 mm), the position corresponding to the upper end of the angle of view is the position −3 mm from the reference position and corresponds to the lower end of the angle of view. The position is 3 mm from the reference position.
 図15は、本実施形態における、HOE61のY方向の位置とRGBの最大回折効率との関係を示しており、図16は、RGBの各色について、画角の変化に対する(相対比視感度)×(回折効率)の変化を、画角0°を基準として規格化して示している。本実施形態においても、上述した条件式(1)~(5)を満足するように、HOE61においてRGBの各色の最大回折効率の比を領域によって異ならせている(図15参照)。これにより、図16に示すように、相対比視感度の変化が最も大きいRについて、画角の変化に対する(相対比視感度)×(回折効率)の変化量を抑えることができる。なお、図16の例では、RGBのいずれについても、(相対比視感度)×(回折効率)=0.7~1.2であり、上記変化量が30%以下に抑えられていることがわかる。したがって、本実施形態の構成においても、画面内の色ムラを比視感度を考慮して低減すことができ、実際の映像観察時に画質の良好な映像を観察できるなど、実施の形態1と同様の効果を得ることができる。 FIG. 15 shows the relationship between the position of the HOE 61 in the Y direction and the RGB maximum diffraction efficiency in this embodiment, and FIG. 16 shows (relative relative luminous sensitivity) with respect to changes in the field angle for each color of RGB. The change in (diffraction efficiency) is shown normalized with an angle of view of 0 ° as a reference. Also in this embodiment, the ratio of the maximum diffraction efficiency of each color of RGB in the HOE 61 is varied depending on the region so as to satisfy the conditional expressions (1) to (5) described above (see FIG. 15). As a result, as shown in FIG. 16, the amount of change in (relative relative luminous sensitivity) × (diffraction efficiency) with respect to the change in the angle of view can be suppressed for R having the largest change in relative specific luminous efficiency. In the example of FIG. 16, for all of RGB, (relative relative luminous sensitivity) × (diffraction efficiency) = 0.7 to 1.2, and the amount of change is suppressed to 30% or less. Recognize. Therefore, also in the configuration of the present embodiment, the color unevenness in the screen can be reduced in consideration of the relative visibility, and an image with good image quality can be observed during actual image observation. The effect of can be obtained.
 なお、本実施形態では、後述するHOE61の作製方法により、各色の回折効率分布は、露光光線のガウシアン的な強度分布を反映し、図15に示すように、最大回折効率付近が極大となるような分布となっている。しかし、全体的には、実施の形態1と同様に、比視感度曲線の傾きに応じて、各色の最大回折効率は単調に変化(増加・減少)していると考えてよい。 In the present embodiment, the diffraction efficiency distribution of each color reflects the Gaussian intensity distribution of the exposure light beam so that the vicinity of the maximum diffraction efficiency is maximized as shown in FIG. Distribution. However, overall, as in the first embodiment, it can be considered that the maximum diffraction efficiency of each color changes monotonously (increases / decreases) in accordance with the slope of the relative visibility curve.
 次に、本実施形態の映像表示装置が条件式(1)~(5)を満足していることを確認しておく。 Next, it is confirmed that the video display device of this embodiment satisfies the conditional expressions (1) to (5).
 (条件式(1)について)
 RとBとの間では、図15より、
 (ηRθ/ηBθ)=0.78/0.55=1.42
 (ηR/ηB)=0.65/0.7=0.93
 (ηR-θ/ηB-θ)=0.45/0.73=0.62
である。よって、本実施形態の映像表示装置は、RとBとの間で条件式D、すなわち、
 (ηRθ/ηBθ)>(ηR/ηB)>(ηR-θ/ηB-θ
を満足している。
(Regarding conditional expression (1))
Between R and B, from FIG.
(ΗR θ / ηB θ ) = 0.78 / 0.55 = 1.42
(ΗR 0 / ηB 0 ) = 0.65 / 0.7 = 0.93
(ΗR −θ / ηB −θ ) = 0.45 / 0.73 = 0.62
It is. Therefore, the video display apparatus according to the present embodiment has a conditional expression D between R and B, that is,
(ΗR θ / ηB θ )> (ηR 0 / ηB 0 )> (ηR −θ / ηB −θ )
Is satisfied.
 また、図4より、
 P={(NBλθ/NBλ)・(NRλ/NRλθ)}
  ={(0.16/0.12)・(0.13/0.08)}
  =4.69
であり、
 Q={(NBλ-θ/NBλ)・(NRλ/NRλ-θ)}
  ={(0.09/0.12)・(0.13/0.18)}
  =0.29
である。よって、本実施形態の映像表示装置は、RとBとの間で条件式(1)、すなわち、
 P>(ηRθ/ηBθ)>(ηR/ηB)>(ηR-θ/ηB-θ)>Q
を満足している。
From FIG.
P = {(NBλ θ / NBλ 0 ) · (NRλ 0 / NRλ θ )} 2
= {(0.16 / 0.12) · (0.13 / 0.08)} 2
= 4.69
And
Q = {(NBλ −θ / NBλ 0 ) · (NRλ 0 / NRλ −θ )} 2
= {(0.09 / 0.12) · (0.13 / 0.18)} 2
= 0.29
It is. Therefore, the video display device according to the present embodiment has conditional expression (1) between R and B, that is,
P> (ηR θ / ηB θ )> (ηR 0 / ηB 0 )> (ηR −θ / ηB −θ )> Q
Is satisfied.
 また、RとGとの間では、図15より、
 (ηRθ/ηGθ)=0.78/0.75=1.04
 (ηR/ηG)=0.65/0.8=0.81
 (ηR-θ/ηG-θ)=0.45/0.82=0.55
である。よって、本実施形態の映像表示装置は、RとGとの間でも条件式D、すなわち、
 (ηRθ/ηGθ)>(ηR/ηG)>(ηR-θ/ηG-θ
を満足している。
Also, between R and G, from FIG.
(ΗR θ / ηG θ ) = 0.78 / 0.75 = 1.04
(ΗR 0 / ηG 0 ) = 0.65 / 0.8 = 0.81
(ΗR −θ / ηG −θ ) = 0.45 / 0.82 = 0.55
It is. Therefore, the video display apparatus according to the present embodiment can satisfy the conditional expression D between R and G, that is,
(ΗR θ / ηG θ )> (ηR 0 / ηG 0 )> (ηR −θ / ηG −θ )
Is satisfied.
 また、図4より、
 P={(NGλθ/NGλ)・(NRλ/NRλθ)}
  ={(0.95/0.88)・(0.13/0.08)}
  =3.08
であり、
 Q={(NGλ-θ/NGλ)・(NRλ/NRλ-θ)}
  ={(0.81/0.88)・(0.13/0.18)}
  =0.44
である。よって、本実施形態の映像表示装置は、RとGとの間でも条件式(1)、すなわち、
 P>(ηRθ/ηGθ)>(ηR/ηG)>(ηR-θ/ηG-θ)>Q
を満足している。
From FIG.
P = {(NGλ θ / NGλ 0 ) · (NRλ 0 / NRλ θ )} 2
= {(0.95 / 0.88). (0.13 / 0.08)} 2
= 3.08
And
Q = {(NGλ −θ / NGλ 0 ) · (NRλ 0 / NRλ −θ )} 2
= {(0.81 / 0.88). (0.13 / 0.18)} 2
= 0.44
It is. Therefore, the video display apparatus according to the present embodiment can satisfy the conditional expression (1) between R and G, that is,
P> (ηR θ / ηG θ )> (ηR 0 / ηG 0 )> (ηR −θ / ηG −θ )> Q
Is satisfied.
 (条件式(2)について)
 図15より、ηRθ=0.78、ηR-θ=0.45であるので、本実施形態の映像表示装置は、条件式(2)、すなわち、
 ηRθ>ηR-θ
を満足している。
(Regarding conditional expression (2))
From FIG. 15, since ηR θ = 0.78 and ηR −θ = 0.45, the video display apparatus of the present embodiment has the conditional expression (2), that is,
ηR θ > ηR −θ
Is satisfied.
 (条件式(3)について)
 図15より、ηBθ=0.55、ηB-θ=0.73であるので、本実施形態の映像表示装置は、Bについて、条件式(3)、すなわち、
 ηBθ<ηB-θ
を満足している。
(Regarding conditional expression (3))
From FIG. 15, since ηB θ = 0.55 and ηB −θ = 0.73, the video display apparatus of the present embodiment has conditional expression (3) for B, that is,
ηB θ <ηB −θ
Is satisfied.
 同様に、図15より、ηGθ=0.75、ηG-θ=0.82であるので、本実施形態の映像表示装置は、Gについても条件式(3)、すなわち、
 ηGθ<ηG-θ
を満足している。
Similarly, from FIG. 15, since ηG θ = 0.75 and ηG −θ = 0.82, the video display apparatus of this embodiment also applies conditional expression (3) for G, that is,
ηG θ <ηG −θ
Is satisfied.
 (条件式(4)について)
 RとBとの間では、図15より、
 (ηRθ/ηBθ)=0.78/0.55=1.42
 (ηR-θ/ηB-θ)=0.45/0.73=0.62
であるので、
 (ηRθ/ηBθ)≧2.3×(ηR-θ/ηB-θ
である。よって、本実施形態の映像表示装置は、RとBとの間で条件式(4)、すなわち、
 (ηRθ/ηBθ)≧1.5×(ηR-θ/ηB-θ
を満足している。
(Regarding conditional expression (4))
Between R and B, from FIG.
(ΗR θ / ηB θ ) = 0.78 / 0.55 = 1.42
(ΗR −θ / ηB −θ ) = 0.45 / 0.73 = 0.62
So
(ΗR θ / ηB θ ) ≧ 2.3 × (ηR −θ / ηB −θ )
It is. Therefore, the video display device according to the present embodiment has conditional expression (4) between R and B, that is,
(ΗR θ / ηB θ ) ≧ 1.5 × (ηR −θ / ηB −θ )
Is satisfied.
 また、RとGとの間では、図15より、
 (ηRθ/ηGθ)=0.78/0.75=1.04
 (ηR-θ/ηG-θ)=0.45/0.82=0.55
であるので、
 (ηRθ/ηGθ)≧1.89×(ηR-θ/ηG-θ
である。よって、本実施形態の映像表示装置は、RとGとの間でも条件式(4)、すなわち、
 (ηRθ/ηGθ)≧1.5×(ηR-θ/ηG-θ
を満足している。
Also, between R and G, from FIG.
(ΗR θ / ηG θ ) = 0.78 / 0.75 = 1.04
(ΗR −θ / ηG −θ ) = 0.45 / 0.82 = 0.55
So
(ΗR θ / ηG θ ) ≧ 1.89 × (ηR −θ / ηG −θ )
It is. Therefore, the video display apparatus according to the present embodiment can satisfy the conditional expression (4) between R and G, that is,
(ΗR θ / ηG θ ) ≧ 1.5 × (ηR −θ / ηG −θ )
Is satisfied.
 (条件式(5)について)
 GとBとの間では、図15より、
 (ηGθ/ηBθ)=0.75/0.55=1.36
 (ηG/ηB)=0.8/0.7=1.14
 (ηG-θ/ηB-θ)=0.82/0.73=1.12
である。よって、本実施形態の映像表示装置は、GとBとの間でも、
 (ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
を満足している。
(Regarding conditional expression (5))
Between G and B, from FIG.
(ΗG θ / ηB θ ) = 0.75 / 0.55 = 1.36
(ΗG 0 / ηB 0 ) = 0.8 / 0.7 = 1.14
(ΗG −θ / ηB −θ ) = 0.82 / 0.73 = 1.12
It is. Therefore, the video display device of the present embodiment is also between G and B.
(ΗG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
Is satisfied.
 また、図4より、
 P′={(NBλθ/NBλ)・(NGλ/NGλθ)}
   ={(0.16/0.12)・(0.83/0.95)}
   =1.52
であり、
 Q′={(NBλ-θ/NBλ)・(NGλ/NGλ-θ)}
   ={(0.09/0.12)・(0.88/0.81)}
   =0.66
である。よって、本実施形態の映像表示装置は、GとBとの間でも条件式(5)、すなわち、
 P′>(ηGθ/ηBθ)>(ηG/ηB)>(ηG-θ/ηB-θ
   >Q′
を満足している。
From FIG.
P ′ = {(NBλ θ / NBλ 0 ) · (NGλ 0 / NGλ θ )} 2
= {(0.16 / 0.12) · (0.83 / 0.95)} 2
= 1.52
And
Q ′ = {(NBλ −θ / NBλ 0 ) · (NGλ 0 / NGλ −θ )} 2
= {(0.09 / 0.12) · (0.88 / 0.81)} 2
= 0.66
It is. Therefore, the video display apparatus according to the present embodiment can satisfy the conditional expression (5) between G and B, that is,
P ′> (ηG θ / ηB θ )> (ηG 0 / ηB 0 )> (ηG −θ / ηB −θ )
> Q '
Is satisfied.
 次に、HOE61の作製方法について説明する。 Next, a method for manufacturing the HOE 61 will be described.
 本実施形態のHOE61は、図11と同様の露光光学系を用い、2光束でホログラム感光材料61aを露光して作製することができるが、本実施形態では、図11の透過率変更フィルタ45R・45G・45Bを省き、光学瞳側からホログラム感光材料に照射される光束が点光源からの発散光となるよう任意の光学系を挿入することによって作製している。 The HOE 61 of the present embodiment can be manufactured by exposing the hologram photosensitive material 61a with two light beams using the same exposure optical system as in FIG. 11, but in this embodiment, the transmittance changing filter 45R • 45G and 45B are omitted, and an arbitrary optical system is inserted so that the light beam applied to the hologram photosensitive material from the optical pupil side becomes divergent light from a point light source.
 このとき、一般的に、レーザ光はガウシアン的な強度分布を持っているので、その強度分布を利用し、以下の(A)(B)(C)の調整を行うことにより、本実施形態のHOE61を容易に作製することができる。 At this time, since the laser light generally has a Gaussian intensity distribution, the following (A), (B), and (C) are adjusted by using the intensity distribution, and the laser beam of this embodiment is adjusted. The HOE 61 can be easily manufactured.
 (A)RGBそれぞれの露光光線の強度中心が、HOE面上の回折効率の最も高くしたい部分に照射されるように、RGBそれぞれのレーザ光の光路を、光路調整用のミラー対により調整する。本実施形態の例では、RGBの各色の強度中心が、R:Y=2.3mm、G:Y=-2.3mm、B:Y=-2.1mmの位置となるように、RGBのレーザ光の光路を調整する。 (A) The optical paths of the RGB laser beams are adjusted by a pair of mirrors for adjusting the optical path so that the center of the intensity of the exposure light beams of RGB is irradiated on the portion of the HOE surface where the diffraction efficiency is to be maximized. In the example of the present embodiment, the RGB lasers are set so that the intensity centers of the RGB colors are R: Y = 2.3 mm, G: Y = −2.3 mm, and B: Y = −2.1 mm. Adjust the light path.
 (B)強度中心から周辺に向けての強度低下量を、ビームエキスパンダにおける光束径の拡大率を各色で任意に変更することにより調整する。上記拡大率を大きくすれば、上記強度低下量は小さく、上記拡大率が小さければ上記強度低下量が大きくなる。 (B) The amount of intensity decrease from the intensity center toward the periphery is adjusted by arbitrarily changing the expansion ratio of the beam diameter in the beam expander for each color. If the enlargement ratio is increased, the strength reduction amount is small, and if the expansion ratio is small, the strength reduction amount is large.
 (C)上記(A)(B)により、ビーム形状を調整し、最後に各色が必要な最大回折効率比になるように、各色のレーザ強度を調整する。 (C) According to the above (A) and (B), the beam shape is adjusted, and finally the laser intensity of each color is adjusted so that each color has the required maximum diffraction efficiency ratio.
 以上、実施の形態1・2では、映像光のエネルギーは各波長で同じであるとの前提で説明したが、実際には、映像光は、光源光の強度分布の波長特性や、表示素子のカラーフィルタの透過率の波長特性等の影響を受けるため、これらの特性を考慮して、各領域の最大回折効率比を設定するのがより望ましい。 As described above, the first and second embodiments have been described based on the assumption that the energy of the image light is the same at each wavelength. However, in reality, the image light has the wavelength characteristics of the intensity distribution of the light source light, and the display element. Since it is affected by the wavelength characteristics of the transmittance of the color filter, it is more desirable to set the maximum diffraction efficiency ratio of each region in consideration of these characteristics.
 しかし、波長に対する比視感度曲線は常に一定であり、BおよびGとRとで画面内での相対比視感度の傾き方向が逆転するため、原理的には色ムラが発生する状況にある。したがって、映像表示装置において使用したい波長域に対し、比視感度を考慮してHOEの領域ごとに回折効率を設定する本発明は、光利用効率を高めつつ、色ムラを低減できる手法として有効である。 However, the relative visibility curve with respect to the wavelength is always constant, and the gradient direction of relative relative visibility in the screen is reversed between B, G, and R, so that in principle, color unevenness occurs. Therefore, the present invention in which the diffraction efficiency is set for each HOE region in consideration of the relative visibility with respect to the wavelength region desired to be used in the video display device is effective as a method for reducing the color unevenness while improving the light utilization efficiency. is there.
 なお、以上では、映像表示装置の光源として、LEDを想定したが、光源は蛍光管であってもよい。蛍光管は波長に対する強度特性がフラットなので、各波長で映像光のエネルギーを同一に近づけることが容易である。したがって、映像光のエネルギーが各波長で同一であるとの前提で説明した本発明の構成がより有効となり、本発明によって画面内の色ムラを確実に低減することが可能となる。 In the above, an LED is assumed as the light source of the video display device, but the light source may be a fluorescent tube. Since the fluorescent tube has a flat intensity characteristic with respect to the wavelength, it is easy to make the energy of the image light close to the same at each wavelength. Therefore, the configuration of the present invention described on the premise that the energy of the image light is the same at each wavelength becomes more effective, and the present invention can reliably reduce the color unevenness in the screen.
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図面を用いて説明すれば、以下の通りである。本実施形態では、実施の形態2のHOE61を適用可能な映像表示装置、HMDおよびHUDについて説明する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to the drawings. In the present embodiment, a video display device, HMD, and HUD to which the HOE 61 of the second embodiment can be applied will be described.
 <映像表示装置について>
 図17は、本実施形態の映像表示装置71の概略の構成を示す断面図である。映像表示装置71は、光源81と、照明光学系82と、表示素子83と、接眼光学系84とを有して構成されている。
<About video display device>
FIG. 17 is a cross-sectional view showing a schematic configuration of the video display device 71 of the present embodiment. The video display device 71 includes a light source 81, an illumination optical system 82, a display element 83, and an eyepiece optical system 84.
 光源81は、表示素子83を照明するものであり、例えばLEDで構成されている。光源81は、接眼光学系84によって形成される光学瞳Eと略共役となるように配置されている。照明光学系82は、光源81からの光を集光して表示素子83に導く光学系であり、例えば凹面反射面を有するミラー82aで構成されている。表示素子83は、光源81から照明光学系82を介して入射する光を画像データに応じて変調して映像を表示するものであり、例えば透過型のLCDで構成されている。表示素子83は、矩形の表示画面の長辺方向が水平方向(図17の紙面に垂直な方向;左右方向と同じ)となり、短辺方向がそれに垂直な方向となるように配置されている。 The light source 81 illuminates the display element 83 and is composed of, for example, an LED. The light source 81 is disposed so as to be substantially conjugate with the optical pupil E formed by the eyepiece optical system 84. The illumination optical system 82 is an optical system that condenses light from the light source 81 and guides it to the display element 83, and includes, for example, a mirror 82a having a concave reflecting surface. The display element 83 displays light by modulating light incident from the light source 81 via the illumination optical system 82 according to image data, and is configured by, for example, a transmissive LCD. The display element 83 is arranged such that the long side direction of the rectangular display screen is the horizontal direction (direction perpendicular to the paper surface of FIG. 17; the same as the left-right direction), and the short side direction is the direction perpendicular thereto.
 接眼光学系84は、表示素子83からの映像光を光学瞳E(または光学瞳Eの位置にある観察者の瞳)に導く観察光学系であり、接眼プリズム91と、偏向プリズム92と、HOE93とを有して構成されている。なお、HOE93は、実施の形態2のHOE61に対応している。 The eyepiece optical system 84 is an observation optical system that guides the image light from the display element 83 to the optical pupil E (or the pupil of the observer at the position of the optical pupil E), and includes an eyepiece prism 91, a deflection prism 92, and a HOE 93. And is configured. The HOE 93 corresponds to the HOE 61 of the second embodiment.
 接眼プリズム91は、表示素子83からの映像光を内部で全反射させてHOE93を介して光学瞳Eに導く一方、外界光を透過させて光学瞳Eに導くものであり、偏向プリズム92とともに、例えばアクリル系樹脂で構成されている。この接眼プリズム91は、平行平板の下端部を楔状にした形状で構成されている。接眼プリズム91の上端面は、映像光の入射面としての面91aとなっており、前後方向に位置する2面は、互いに平行な面91b・91cとなっている。 The eyepiece prism 91 totally reflects the image light from the display element 83 and guides it to the optical pupil E through the HOE 93 while transmitting the external light to the optical pupil E. For example, it is made of an acrylic resin. The eyepiece prism 91 has a shape in which a lower end portion of a parallel plate is wedge-shaped. The upper end surface of the eyepiece prism 91 is a surface 91a as an incident surface for image light, and the two surfaces positioned in the front-rear direction are surfaces 91b and 91c parallel to each other.
 偏向プリズム92は、平面視で略U字型の平行平板で構成されており、接眼プリズム91の下端部および両側面部(左右の各端面)と貼り合わされたときに、接眼プリズム91と一体となって略平行平板となるものである。偏向プリズム92は、HOE93を挟むように接眼プリズム91と隣接または接着して設けられている。これにより、外界光が接眼プリズム91の楔状の下端部を透過するときの屈折を偏向プリズム92でキャンセルすることができ、シースルーで観察される外界像に歪みが生じるのを防止することができる。 The deflection prism 92 is configured by a substantially U-shaped parallel plate in plan view, and is integrated with the eyepiece prism 91 when bonded to the lower end portion and both side surface portions (left and right end surfaces) of the eyepiece prism 91. It becomes a substantially parallel plate. The deflection prism 92 is provided adjacent to or adhering to the eyepiece prism 91 so as to sandwich the HOE 93 therebetween. Thereby, the refraction when the external light passes through the wedge-shaped lower end of the eyepiece prism 91 can be canceled by the deflecting prism 92, and distortion of the external image observed through the see-through can be prevented.
 HOE93は、表示素子83からの映像光(RGBの各光)を光学瞳Eの方向に回折反射させる一方、外界光を透過させて光学瞳Eに導くコンバイナとしての体積位相型で反射型のホログラム光学素子であり、接眼プリズム91において偏向プリズム92との接合面である面91dに形成されている。HOE93は、軸非対称な正の光学的パワーを有しており、正の光学的パワーを持つ非球面凹面ミラーと同様の機能を持っている。これにより、装置を構成する各光学部材の配置の自由度を高めて装置を容易に小型化することができるとともに、良好に収差補正された映像を観察者に提供することができる。 The HOE 93 diffracts and reflects the image light (RGB light) from the display element 83 in the direction of the optical pupil E, while transmitting a volume of external light and guiding it to the optical pupil E as a volume phase type reflection hologram. It is an optical element and is formed on a surface 91 d that is a joint surface with the deflecting prism 92 in the eyepiece prism 91. The HOE 93 has an axially asymmetric positive optical power, and has the same function as an aspherical concave mirror having a positive optical power. Thereby, the degree of freedom of arrangement of each optical member constituting the apparatus can be increased, and the apparatus can be easily reduced in size, and an image with good aberration correction can be provided to the observer.
 上記構成の映像表示装置71において、光源81から出射された光は、照明光学系82のミラー82aによって反射、集光され、ほぼコリメート光となって表示素子83に入射し、そこで変調されて映像光として出射される。表示素子83からの映像光は、接眼光学系84の接眼プリズム91の内部に面91aから入射し、続いて面91b・91cで少なくとも1回ずつ全反射されてHOE93に入射する。 In the image display device 71 having the above-described configuration, the light emitted from the light source 81 is reflected and collected by the mirror 82a of the illumination optical system 82, and enters the display element 83 as almost collimated light, where it is modulated and imaged. It is emitted as light. Image light from the display element 83 enters the inside of the eyepiece prism 91 of the eyepiece optical system 84 from the surface 91a, and then is totally reflected at least once by the surfaces 91b and 91c and enters the HOE 93.
 HOE93は、光源81が発光するRGBの各波長領域の光を、各波長領域ごとに独立して回折する回折素子として機能する波長選択性を有しており、また、光源81が発光するRGBの光に対しては凹面反射面として機能するように設計されている。したがって、HOE93に入射した光は、そこで回折反射されて光学瞳Eに達し、同時に、外界光もHOE93を透過して、光学瞳Eに向かう。よって、光学瞳Eの位置に観察者の瞳を位置させることにより、観察者は、表示素子83に表示された映像を拡大虚像として観察することができると同時に、外界をシースルーで観察することができる。なお、表示素子83に表示された映像を観察者が良好に観察できるように、接眼光学系84において諸収差(コマ収差、像面湾曲、非点収差、歪曲収差)が補正されている。 The HOE 93 has wavelength selectivity that functions as a diffraction element that independently diffracts light in each of the RGB wavelength regions emitted from the light source 81 for each wavelength region. It is designed to function as a concave reflecting surface for light. Therefore, the light incident on the HOE 93 is diffracted and reflected there to reach the optical pupil E, and at the same time, external light passes through the HOE 93 and travels toward the optical pupil E. Therefore, by locating the observer's pupil at the position of the optical pupil E, the observer can observe the image displayed on the display element 83 as an enlarged virtual image, and at the same time, can observe the outside world in a see-through manner. it can. Note that various aberrations (coma aberration, curvature of field, astigmatism, distortion) are corrected in the eyepiece optical system 84 so that the viewer can observe the image displayed on the display element 83 satisfactorily.
 また、光源81と接眼光学系84の光学瞳Eとは略共役であるので、光源81から射出された光を効率よく光学瞳Eに導くことができる。これにより、光学瞳Eの位置に観察者の瞳を位置させたときには、光源81からの光を観察者の瞳(瞳孔)に効率よく入射させることができ、観察者は、明るい高品位な映像を観察することができる。 Further, since the light source 81 and the optical pupil E of the eyepiece optical system 84 are substantially conjugate, the light emitted from the light source 81 can be efficiently guided to the optical pupil E. Accordingly, when the observer's pupil is positioned at the position of the optical pupil E, the light from the light source 81 can be efficiently incident on the observer's pupil (pupil), and the observer can obtain a bright high-definition image. Can be observed.
 <HMDについて>
 図18は、HMDの概略の構成を示す斜視図である。HMDは、上記した映像表示装置71と、支持手段72とで構成されている。
<About HMD>
FIG. 18 is a perspective view showing a schematic configuration of the HMD. The HMD includes the above-described video display device 71 and support means 72.
 映像表示装置71について補足すると、映像表示装置71は、少なくとも光源81および表示素子83(ともに図17参照)を内包する筐体73をさらに有している。この筐体73は、接眼光学系84の一部を保持している。接眼光学系84は、上述したように接眼プリズム91および偏向プリズム92の貼り合わせによって構成されており、全体として眼鏡の一方のレンズ(図18では右眼用レンズ)のような形状をしている。また、映像表示装置71は、筐体73を貫通して設けられるケーブル74を介して、光源81および表示素子83に少なくとも駆動電力および映像信号を供給するための回路基板(図示せず)を有している。 Supplementing the video display device 71, the video display device 71 further includes a housing 73 that includes at least a light source 81 and a display element 83 (both see FIG. 17). The housing 73 holds a part of the eyepiece optical system 84. The eyepiece optical system 84 is configured by bonding the eyepiece prism 91 and the deflecting prism 92 as described above, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 18) as a whole. . Further, the video display device 71 has a circuit board (not shown) for supplying at least driving power and a video signal to the light source 81 and the display element 83 via a cable 74 provided through the housing 73. is doing.
 支持手段72は、眼鏡のフレーム(ブリッジ、テンプルを含む)に相当する支持機構であり、映像表示装置71を観察者の眼前(例えば右眼の前)で支持している。また、支持手段72は、観察者の鼻と当接する鼻当て75(右鼻当て75R・左鼻当て75L)と、その鼻当て75を所定の位置で固定する鼻当てロックユニット76とを含んでいる。鼻当てロックユニット76は、ばね性の軸により鼻当て75を保持している。 The support means 72 is a support mechanism corresponding to a spectacle frame (including a bridge and a temple), and supports the image display device 71 in front of the observer's eyes (for example, in front of the right eye). Further, the support means 72 includes a nose pad 75 (right nose pad 75R / left nose pad 75L) that comes into contact with the observer's nose, and a nose pad lock unit 76 that fixes the nose pad 75 at a predetermined position. Yes. The nose pad lock unit 76 holds the nose pad 75 with a spring shaft.
 観察者がHMDを頭部に装着し、表示素子83に映像を表示すると、その映像光が接眼光学系84を介して光学瞳に導かれる。したがって、光学瞳の位置に観察者の瞳を合わせることにより、観察者は、映像表示装置71の表示映像の拡大虚像を観察することができる。また、これと同時に、観察者は、接眼光学系84を介して外界をシースルーで観察することができる。 When the observer wears the HMD on the head and displays an image on the display element 83, the image light is guided to the optical pupil via the eyepiece optical system 84. Therefore, by aligning the observer's pupil with the position of the optical pupil, the observer can observe an enlarged virtual image of the display image on the image display device 71. At the same time, the observer can observe the outside world through the eyepiece optical system 84 in a see-through manner.
 このように、映像表示装置71が支持手段72にて支持されることにより、観察者は映像表示装置71から提供される映像をハンズフリーで長時間安定して観察することができる。なお、映像表示装置71を2つ用いて両眼で映像を観察できるようにしてもよい。この場合は、両方の観察光学系の間の距離(眼幅距離)を調整するための調整機構(図示せず)を設けることが必要である。 Thus, by supporting the video display device 71 by the support means 72, the observer can observe the video provided from the video display device 71 in a hands-free and stable manner for a long time. Note that two video display devices 71 may be used so that video can be observed with both eyes. In this case, it is necessary to provide an adjustment mechanism (not shown) for adjusting the distance (eye distance) between the two observation optical systems.
 <HUDについて>
 図19は、HUDの概略の構成を示す断面図である。HUDに適用される映像表示装置71は、照明光学系82として照明レンズ82bを用い、接眼光学系84の代わりに観察光学系85を用いて構成されている。
<About HUD>
FIG. 19 is a cross-sectional view showing a schematic configuration of the HUD. The video display device 71 applied to the HUD uses an illumination lens 82 b as the illumination optical system 82 and uses an observation optical system 85 instead of the eyepiece optical system 84.
 観察光学系85は、実施の形態2のHOE61に対応するHOE93と、そのHOE93を保持する基板94とで構成されている。基板94は、例えば、車両、船舶、鉄道、航空機などの輸送手段における運転席前面のフロントガラスに相当する透明なウィンドシールドで構成することが可能であり、その少なくとも一部が観察者の視界内に配置される。 The observation optical system 85 includes a HOE 93 corresponding to the HOE 61 of the second embodiment and a substrate 94 that holds the HOE 93. The substrate 94 can be formed of a transparent windshield corresponding to the windshield in front of the driver's seat in a vehicle, ship, railroad, aircraft, or the like, for example, at least a part of which is within the observer's field of view. Placed in.
 上記の構成によれば、光源81から出射される光は、照明レンズ82bで集光され、表示素子83に入射する。表示素子83にて画像データに応じて変調された光(映像光)は、HOE93に入射し、そこで回折反射されて光学瞳に導かれる。光学瞳の位置では、観察者は、表示素子83にて表示された映像の拡大虚像を観察できると同時に、HOE93および基板94を介して外界を観察することができる。 According to the above configuration, the light emitted from the light source 81 is collected by the illumination lens 82 b and enters the display element 83. The light (video light) modulated by the display element 83 according to the image data is incident on the HOE 93 where it is diffracted and reflected and guided to the optical pupil. At the position of the optical pupil, the observer can observe the magnified virtual image of the image displayed on the display element 83 and at the same time observe the outside world through the HOE 93 and the substrate 94.
 なお、ウィンドシールドとは別体の基板にHOE93を保持し、上記基板を観察者の視界内に配置することによってHUDを構成してもよい。この場合は、プロンプタのような原稿表示装置としてHUDを機能させることができる。したがって、本実施形態のHUDは、映像表示装置71を備え、この映像表示装置71のHOE93が観察者の視界内に配置される基板に保持されて構成されればよいと言うことができる。 It should be noted that the HUD may be configured by holding the HOE 93 on a substrate separate from the windshield and placing the substrate in the field of view of the observer. In this case, the HUD can function as a document display device such as a prompter. Therefore, it can be said that the HUD of the present embodiment only needs to be configured by including the video display device 71 and the HOE 93 of the video display device 71 being held on a substrate disposed in the field of view of the observer.
 なお、図19の構成では、表示素子83からの映像光は、HOE93に対して下側から入射するため、上下方向の画角両端のうち、Rの回折ピーク波長がより長波長となる側が図17や図18の構成とは逆になる。したがって、HUDに適用される映像表示装置71において条件式(1)~(5)を適用するとき、画角中心に対して上方向が画角の正の方向(画角プラス側)となり、下方向が画角の負の方向(画角マイナス側)となる。 In the configuration of FIG. 19, since the image light from the display element 83 is incident on the HOE 93 from the lower side, the side where the diffraction peak wavelength of R becomes longer is shown in the both ends of the vertical field angle. 17 and the configuration of FIG. Therefore, when the conditional expressions (1) to (5) are applied to the video display device 71 applied to the HUD, the upward direction with respect to the center of the angle of view is the positive direction of the angle of view (the angle of view plus side), and The direction is the negative direction of the angle of view (the angle of view minus side).
 なお、各実施の形態で説明した構成や手法を適宜組み合わせてHOEを作製したり、映像表示装置やHMD、HUDを構成することも勿論可能である。例えば、実施の形態2のHOEの作製方法は、実施の形態1にも適用可能であり、逆に、実施の形態1のHOEの作製方法は、実施の形態2にも適用可能である。また、横方向に映像光を導光する実施の形態1の映像表示装置を、実施の形態3のHMDやHUDに適用することも勿論可能である。 Of course, the HOE can be manufactured by appropriately combining the configurations and methods described in the embodiments, and the video display device, the HMD, and the HUD can be configured. For example, the method for manufacturing the HOE of Embodiment 2 can be applied to Embodiment 1, and conversely, the method for manufacturing HOE of Embodiment 1 can also be applied to Embodiment 2. Of course, the video display device according to the first embodiment that guides the video light in the horizontal direction can be applied to the HMD or HUD according to the third embodiment.
 本発明の映像表示装置は、例えばHMDやHUDに利用可能である。 The video display device of the present invention can be used for HMD and HUD, for example.
 1 映像表示装置
 11 光源
 12 表示素子
 13 接眼光学系(観察光学系)
 14 導光手段(観察光学系)
 23 HOE
 61 HOE
 71 映像表示装置
 72 支持手段
 81 光源
 83 表示素子
 84 接眼光学系(観察光学系)
 85 観察光学系
 93 HOE
 94 基板
 E 光学瞳
DESCRIPTION OF SYMBOLS 1 Image display apparatus 11 Light source 12 Display element 13 Eyepiece optical system (observation optical system)
14 Light guiding means (observation optical system)
23 HOE
61 HOE
Reference Signs List 71 Video display device 72 Support means 81 Light source 83 Display element 84 Eyepiece optical system (observation optical system)
85 Observation optical system 93 HOE
94 Substrate E Optical pupil

Claims (10)

  1.  光源と、
     前記光源からの光を変調して映像を表示する表示素子と、
     前記表示素子からの映像光を回折反射させて光学瞳に導く体積位相型で反射型のホログラム光学素子を有する観察光学系と、を備えた映像表示装置であって、
     前記ホログラム光学素子は、赤、緑、青に対応するRGBの各波長域のうち、Rの波長域を含む2色以上の波長域の光を回折反射させて光学瞳に導き、
     前記ホログラム光学素子の各色の最大回折効率の比は、領域によって異なっており、
     前記表示素子の表示面の中心と光学瞳の中心とを光学的に結ぶ軸を光軸とし、
     観察画面中心の画角を0とし、前記ホログラム光学素子に対する入射光の光軸と反射光の光軸とを含む面内における、観察画面内の2つの最大画角のうち、Rの回折ピーク波長のより大きいほうをθ、より小さいほうを-θとし、
     前記ホログラム光学素子が回折反射する2色以上の波長域の光のうち、Rとは異なる波長域であって明所視比視感度曲線における最も比視感度の高い波長よりも短波長側の波長域の色をCとしたときに、
     画角θ、-θ、0でのRおよびCの最大回折効率ηをそれぞれ、ηRθ、ηR-θ、ηR、ηCθ、ηC-θ、ηCとし、
     画角θ、-θ、0でのRおよびCの回折ピーク波長Rλ、Cλの明所での比視感度Nをそれぞれ、NRλθ、NRλ-θ、NRλ、NCλθ、NCλ-θ、NCλとすると、
     以下の条件式(1)を満足することを特徴とする映像表示装置。
     P>(ηRθ/ηCθ)>(ηR/ηC
         >(ηR-θ/ηC-θ)>Q      ・・・(1)
     ただし、
     P={(NCλθ/NCλ)・(NRλ/NRλθ)}
     Q={(NCλ-θ/NCλ)・(NRλ/NRλ-θ)}
    A light source;
    A display element that displays light by modulating light from the light source;
    An observation optical system having a volume phase type reflection type hologram optical element that diffracts and reflects the image light from the display element and guides it to the optical pupil, and an image display device comprising:
    The hologram optical element diffracts and reflects light of two or more wavelength ranges including the R wavelength range among the RGB wavelength ranges corresponding to red, green, and blue to guide the optical pupil,
    The ratio of the maximum diffraction efficiency of each color of the hologram optical element differs depending on the region,
    The optical axis is an axis that optically connects the center of the display surface of the display element and the center of the optical pupil,
    The angle of view at the center of the observation screen is 0, and the diffraction peak wavelength of R out of the two maximum angles of view in the observation screen in a plane including the optical axis of incident light and the optical axis of reflected light with respect to the hologram optical element. The larger of is θ, the smaller is -θ,
    Among the light of two or more wavelength ranges diffracted and reflected by the hologram optical element, the wavelength is different from R and shorter than the wavelength having the highest relative visibility in the photopic luminosity curve. When the area color is C,
    The maximum diffraction efficiencies η of R and C at angles of view θ, −θ, 0 are ηR θ , ηR −θ , ηR 0 , ηC θ , ηC −θ , and ηC 0 , respectively.
    R and C diffraction peak wavelengths Rλ and Cλ at various angles of view θ , λλ, θ , λλ 0 , NRλ 0 , NCλ θ , NCλ −θ , NCλ respectively. If 0 ,
    An image display apparatus satisfying the following conditional expression (1):
    P> (ηR θ / ηC θ )> (ηR 0 / ηC 0 )
    > (ΗR −θ / ηC −θ )> Q (1)
    However,
    P = {(NCλ θ / NCλ 0 ) · (NRλ 0 / NRλ θ )} 2
    Q = {(NCλ −θ / NCλ 0 ) · (NRλ 0 / NRλ −θ )} 2
  2.  Rの波長域と、BまたはGの一方の波長域とにおいて、前記条件式(1)を満足することを特徴とする請求項1に記載の映像表示装置。 2. The video display device according to claim 1, wherein the conditional expression (1) is satisfied in an R wavelength region and a B or G wavelength region.
  3.  Rの波長域とBの波長域、およびRの波長域とGの波長域との両者において、前記条件式(1)を満足することを特徴とする請求項1に記載の映像表示装置。 2. The video display device according to claim 1, wherein the conditional expression (1) is satisfied in both of an R wavelength region and a B wavelength region, and an R wavelength region and a G wavelength region.
  4.  以下の条件式(2)を満足することを特徴とする請求項1から3のいずれか一項に記載の映像表示装置。
     ηRθ>ηR-θ   ・・・(2)
    The video display apparatus according to claim 1, wherein the following conditional expression (2) is satisfied.
    ηR θ > ηR −θ (2)
  5.  以下の条件式(3)を満足することを特徴とする請求項1から4のいずれか一項に記載の映像表示装置。
     ηCθ<ηC-θ   ・・・(3)
    The video display device according to claim 1, wherein the following conditional expression (3) is satisfied.
    ηC θ <ηC −θ (3)
  6.  以下の条件式(4)を満足することを特徴とする請求項1から5のいずれか一項に記載の映像表示装置。
     (ηRθ/ηCθ)≧1.5×(ηR-θ/ηC-θ)・・・(4)
    The video display device according to claim 1, wherein the following conditional expression (4) is satisfied.
    (ΗR θ / ηC θ ) ≧ 1.5 × (ηR −θ / ηC −θ ) (4)
  7.  以下の条件式(5)を満足することを特徴とする請求項1から6のいずれか一項に記載の映像表示装置。
     P′>(ηGθ/ηBθ)>(ηG/ηB
         >(ηG-θ/ηB-θ)>Q′      ・・・(5)
     ただし、
     P′={(NBλθ/NBλ)・(NGλ/NGλθ)}
     Q′={(NBλ-θ/NBλ)・(NGλ/NGλ-θ)}
    The video display device according to claim 1, wherein the following conditional expression (5) is satisfied.
    P ′> (ηG θ / ηB θ )> (ηG 0 / ηB 0 )
    > (ΗG −θ / ηB −θ )> Q ′ (5)
    However,
    P ′ = {(NBλ θ / NBλ 0 ) · (NGλ 0 / NGλ θ )} 2
    Q ′ = {(NBλ −θ / NBλ 0 ) · (NGλ 0 / NGλ −θ )} 2
  8.  前記ホログラム光学素子は、RGBのうちで異なる2色以上に対応する干渉縞が1層に多重記録されてなることを特徴とする請求項1から7のいずれか一項に記載の映像表示装置。 The image display device according to any one of claims 1 to 7, wherein the hologram optical element is formed by multiple recording of interference fringes corresponding to two or more different colors of RGB in one layer.
  9.  請求項1から8のいずれか一項に記載の映像表示装置と、
     前記映像表示装置を観察者の眼前で支持する支持手段と、を備えていることを特徴とするヘッドマウントディスプレイ。
    The video display device according to any one of claims 1 to 8,
    And a support means for supporting the video display device in front of the observer's eyes.
  10.  請求項1から8のいずれか一項に記載の映像表示装置を備え、前記映像表示装置の前記ホログラム光学素子が、観察者の視界内に配置される基板に保持されていることを特徴とするヘッドアップディスプレイ。 9. The image display device according to claim 1, wherein the hologram optical element of the image display device is held on a substrate disposed in the field of view of an observer. Head-up display.
PCT/JP2010/059519 2009-07-02 2010-06-04 Video display device, hmd, and hud WO2011001787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009157881 2009-07-02
JP2009-157881 2009-07-02

Publications (1)

Publication Number Publication Date
WO2011001787A1 true WO2011001787A1 (en) 2011-01-06

Family

ID=43410867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059519 WO2011001787A1 (en) 2009-07-02 2010-06-04 Video display device, hmd, and hud

Country Status (1)

Country Link
WO (1) WO2011001787A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068440A (en) * 2010-09-24 2012-04-05 Seiko Epson Corp Virtual image display device
WO2017104421A1 (en) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 Method for manufacturing holographic optical element
TWI738356B (en) * 2020-05-22 2021-09-01 鴻海精密工業股份有限公司 Holographic display device
CN113703174A (en) * 2020-05-22 2021-11-26 富泰华工业(深圳)有限公司 Holographic display device
TWI748529B (en) * 2020-06-22 2021-12-01 鴻海精密工業股份有限公司 Holographic display device
CN113900264A (en) * 2020-06-22 2022-01-07 富泰华工业(深圳)有限公司 Holographic display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093493A1 (en) * 2004-03-29 2005-10-06 Sony Corporation Optical device and virtual image display device
JP2006184864A (en) * 2004-12-03 2006-07-13 Hitachi Cable Ltd Polymer optical waveguide manufacturing method and polymer optical waveguide
JP2007052086A (en) * 2005-08-16 2007-03-01 Konica Minolta Photo Imaging Inc Image display apparatus and head mount display
JP2008058776A (en) * 2006-09-01 2008-03-13 Sony Corp Image display device
JP2009036955A (en) * 2007-08-01 2009-02-19 Sony Corp Image display device and drive method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093493A1 (en) * 2004-03-29 2005-10-06 Sony Corporation Optical device and virtual image display device
JP2006184864A (en) * 2004-12-03 2006-07-13 Hitachi Cable Ltd Polymer optical waveguide manufacturing method and polymer optical waveguide
JP2007052086A (en) * 2005-08-16 2007-03-01 Konica Minolta Photo Imaging Inc Image display apparatus and head mount display
JP2008058776A (en) * 2006-09-01 2008-03-13 Sony Corp Image display device
JP2009036955A (en) * 2007-08-01 2009-02-19 Sony Corp Image display device and drive method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068440A (en) * 2010-09-24 2012-04-05 Seiko Epson Corp Virtual image display device
WO2017104421A1 (en) * 2015-12-14 2017-06-22 コニカミノルタ株式会社 Method for manufacturing holographic optical element
TWI738356B (en) * 2020-05-22 2021-09-01 鴻海精密工業股份有限公司 Holographic display device
CN113703174A (en) * 2020-05-22 2021-11-26 富泰华工业(深圳)有限公司 Holographic display device
TWI748529B (en) * 2020-06-22 2021-12-01 鴻海精密工業股份有限公司 Holographic display device
CN113900264A (en) * 2020-06-22 2022-01-07 富泰华工业(深圳)有限公司 Holographic display device

Similar Documents

Publication Publication Date Title
JP5003291B2 (en) Video display device
US7385742B2 (en) Image display apparatus
CN110082926B (en) Display device
US8310764B2 (en) Image display device and head mount display
JP4874593B2 (en) Video display device and head mounted display
JP5534009B2 (en) Video display device, head-mounted display, and head-up display
WO2010061835A1 (en) Image display device and head-mounted display
KR20210002032U (en) Light Guide Display with Reflector
US20070291355A1 (en) Image display apparatus, head-mounted display, and optical axis adjustment method
JP2010072150A (en) Video display apparatus and head mount display
WO2011001787A1 (en) Video display device, hmd, and hud
JP2010262232A (en) Apparatus for displaying video image and head-mounted display
WO2010064582A1 (en) Video display device and head-mounted display
JP2006349719A (en) Video display device and head mount display
JP2011002778A (en) Video display and head-mounted display
JP2010145561A (en) Head mount display
WO2017033975A1 (en) Hologram recording structure, optical device, and manufacturing method
JP2008216852A (en) Video display device and head-mounted display
JP5315974B2 (en) Optical path combiner, video display device, and head mounted display
JP2010243787A (en) Video display and head-mounted display
WO2010122854A1 (en) Image display apparatus, head-mounted display, and head-up display
JP2009157026A (en) Image display device and head mounted display
JP6610675B2 (en) Light guiding element, bonding optical element, image display device, and head mounted display
JP6566025B2 (en) Video display device and head mounted display
JP4735506B2 (en) Video display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP