WO2010137373A1 - Light interference tomogram acquiring device, probe used for light interference tomogram acquiring device, and light interference tomogram acquiring method - Google Patents

Light interference tomogram acquiring device, probe used for light interference tomogram acquiring device, and light interference tomogram acquiring method Download PDF

Info

Publication number
WO2010137373A1
WO2010137373A1 PCT/JP2010/053413 JP2010053413W WO2010137373A1 WO 2010137373 A1 WO2010137373 A1 WO 2010137373A1 JP 2010053413 W JP2010053413 W JP 2010053413W WO 2010137373 A1 WO2010137373 A1 WO 2010137373A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
optical
subject
tomographic image
Prior art date
Application number
PCT/JP2010/053413
Other languages
French (fr)
Japanese (ja)
Inventor
史生 長井
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011515927A priority Critical patent/JP5447512B2/en
Publication of WO2010137373A1 publication Critical patent/WO2010137373A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements

Definitions

  • the present invention includes SS-OCT (Swept Source Optical Coherence Tomography), SD-OCT (Special Domain Optical Coherence Tomography), and FD-OCT (FourierTormoD).
  • SS-OCT Sestrepray Optical Coherence Tomography
  • SD-OCT Synchronization Tomography
  • FD-OCT FrefierTormoD
  • the present invention relates to a probe used in a tomographic image acquisition apparatus, an optical coherence tomographic image acquisition apparatus, and an optical coherent tomographic image acquisition method.
  • endoscope apparatuses that take an image of a living body using reflected light reflected from a living body irradiated with illumination light and display it on a monitor or the like are widely used as endoscope apparatuses for observing the inside of a body cavity of a living body. It is used in various fields. Many endoscopes are provided with forceps openings, and biopsy and treatment of tissues in the body cavities can be performed with probes introduced into the body cavities from the forceps openings through the forceps channels.
  • An ultrasonic tomographic image acquisition apparatus using ultrasonic waves is known as the above-described endoscope apparatus, but an optical tomographic imaging apparatus using OCT measurement may also be used (see Patent Document 1). .
  • a probe having a thin outer shape is used (see Patent Document 2).
  • This OCT measurement is a kind of optical interferometry, which divides low-coherent light emitted from a light source into measurement light and reference light, irradiates the object with the measurement light, and reflects or backscattered light. And the reference light reflected by the reference mirror are combined, and a tomographic image is acquired based on the intensity of the interference light between the reflected light and the reference light.
  • the OCT measurement is roughly divided into two types: TD (Time domain) -OCT measurement and FD (Fourier Domain) -OCT measurement.
  • TD Time domain
  • FD Fullier Domain
  • the reflected light intensity distribution corresponding to the position in the depth direction of the measurement target (hereinafter referred to as the depth position) is obtained by measuring the interference light intensity while changing the optical path length of the reference light. Is the method.
  • the interference light intensity is measured for each spectral component of the light without changing the optical path lengths of the reference light and the signal light, and the obtained spectral interference intensity signal is Fourier transformed by a computer.
  • This is a method of obtaining a reflected light intensity distribution corresponding to a depth position by performing a representative frequency analysis.
  • FD-OCT measurement has attracted attention as a technique that enables high-speed measurement by eliminating the need for mechanical scanning existing in TD-OCT measurement.
  • SD-OCT apparatus uses broadband low-coherent light, decomposes the interference light into each optical frequency component by a spectroscopic means, and measures the interference light intensity for each optical frequency component with an array-type photodetector.
  • a tomographic image is constructed by performing Fourier transform analysis on the spectrum interference waveform obtained in step 1 by a computer.
  • the SS-OCT apparatus uses a laser or the like that temporally sweeps the optical frequency as a light source, measures the time waveform of the signal corresponding to the temporal change of the optical frequency of the interference light, and obtains the spectral interference intensity signal obtained thereby.
  • a tomographic image is constructed by performing Fourier transform on a computer.
  • the measurement light is formed by a transparent cylindrical sheath.
  • the condensing optical system is covered.
  • the sheath in order to increase the contact area with the subject, the sheath has a triangular cylindrical shape, but this causes a part of the measurement light collected by the condensing optical system to be a side surface of the sheath.
  • this reflected light is combined with the reference light together with the reflected light from the subject, it becomes manifest as noise on the tomographic image, making it difficult to distinguish it from the subject image.
  • a certain noise appears even if the reflectance on the side surface of the sheath is low, it can be said that even if an antireflection film is formed on the surface of the sheath, it is not a fundamental measure.
  • Patent Document 2 the reflected light of the measurement light on the prism surface is directed in another direction by inclining the prism surface provided at the probe emission tip to a predetermined angle, thereby reflecting from the subject.
  • a configuration in which only light is combined with reference light is disclosed.
  • the prism provided in the probe is small, there is a problem that it is difficult to obtain the accuracy of the surface inclined at a predetermined angle, and the cost increases. Even if the prism surface is tilted at a predetermined angle, it is difficult to completely prevent the reflected light from being combined with the reference light.
  • An object of the present invention is to provide an optical coherence tomographic image acquisition apparatus capable of forming a high-quality optical coherence tomographic image, a probe used in the optical coherence tomographic image acquisition apparatus, and an optical coherence tomographic image acquisition method.
  • the optical coherence tomographic image acquisition apparatus A light source that emits light of a broadband wavelength; Splitting means for splitting light from the light source into reference light and measurement light; Reference light transmitting means for transmitting the reference light divided by the dividing means; A reference mirror for reflecting the reference light transmitted through the reference light transmitting means and making it incident on the reference light transmitting means; Measurement light transmission means for transmitting the measurement light divided by the division means; The measurement light transmitted through the measurement light transmission means is collected toward the subject, and the measurement light reflected from the subject is received and incident on the measurement light transmission means.
  • a probe including an optical optical system; Combining means for combining the reference light returned via the reference light transmitting means and the measurement light returned via the measuring light transmitting means to form a combined light; Interference signal acquiring means for acquiring an interference signal from the combined light formed by the combining means; Image acquisition means for decomposing the interference signal acquired by the interference signal acquisition means into frequency components and acquiring a tomographic image of the subject accordingly;
  • the condensing optical system has at least one reflecting surface,
  • the reference optical path length from the dividing means to the combining means via the reference mirror along the reference light transmitting means is the condensing position of the condensing optical system along the measuring light transmitting means from the dividing means. It is characterized by being longer than the measurement optical path length leading to the synthesizing means.
  • the reference optical path length from the light source to the reference mirror if there is a large difference between the reference optical path length from the light source to the reference mirror and the measurement optical path length from the light source to the subject, it is reflected by the reference mirror.
  • the reference light and the measurement light reflected by the subject are less likely to interfere with each other, and an effective optical coherence tomographic image cannot be formed. Therefore, it is desirable to make the reference optical path length from the light source to the reference mirror close to the measurement optical path length from the light source to the subject.
  • the measuring light condensing optical system has a reflecting surface, the reflecting surface is relatively close to the subject, so that the reflected light is picked up to distinguish it from the reflected light from the subject. There is a risk that it will not be possible.
  • the reference optical path length from the light source to the reference mirror is longer than the measurement optical path length from the light source to the condensing position of the condensing optical system. Even if reflected light is generated from such a reflective surface, it can be clearly distinguished from the reflected light from the subject, and the reflective surface of the condensing optical system and the reference mirror are separated in the optical path length direction. The coherence is reduced, and the interference signal waveform from the reflecting surface is reduced. In addition, since the coherence with the reflected light from the subject becomes relatively large, a high-quality optical coherence tomographic image with a good SN (Signal to Noise) ratio can be formed.
  • the “condensing optical system” includes not only an optical element having power but also all elements that are arranged between the measurement light transmission means and the subject and transmit or reflect the measurement light.
  • the “reference light transmission means” refers to an optical path through which reference light is transmitted in a reciprocating manner, and includes cases where the forward path and the return path are different. In this case, there is also a reference light transmission means in which the reference light directed to the reference mirror passes but the reference light reflected from the reference mirror does not pass, or the reference light reflected from the reference mirror passes, but the reference directed to the reference mirror There is also a reference light transmission means through which light does not pass.
  • measurement light transmission means refers to an optical path through which measurement light is transmitted in a reciprocating manner, and includes cases where the forward path and the return path are different. In this case, there is also a measurement light transmitting means that passes measurement light toward the subject but does not pass measurement light reflected from the subject, or measurement light reflected from the subject passes but measurement toward the subject. There is also a measuring light transmission means through which light does not pass.
  • the optical coherence tomographic image acquisition apparatus is characterized in that, in the invention according to claim 1, the optical path length difference ⁇ l between the reference optical path length and the measurement optical path length satisfies the following expression. .
  • the reference light reflected by the reference mirror and the measurement light reflected by the subject can be easily interfered with each other, and an effective optical coherence tomographic image can be formed.
  • the optical path length difference ⁇ l is less than the lower limit of the expression (1), a signal from the subject can be acquired in a coherent state, but the acquired interference signal has a lower frequency and a direct current component Therefore, an image with a high S / N ratio cannot be obtained.
  • the interference signal when the interference signal is Fourier-transformed, the DC component interference signal is generated in the vicinity of the origin position, and it can be said that it is difficult to separate the image from the signal from the subject.
  • the optical path length difference ⁇ l exceeds the upper limit of the equation (1), the coherence becomes worse and an image with a high SN ratio cannot be obtained. Therefore, it is preferable to satisfy the formula (1).
  • NA the numerical aperture NA of 1 / e 2 intensity light incident on the subject
  • the center wavelength of the light emitted from the light source.
  • the expression (1) is an expression that expresses the degree of possibility of interference based on the Rayleigh length.
  • the optical coherence tomographic image acquisition device is the optical acquisition device according to claim 1 or 2, wherein the position of the reflection surface is obtained by obtaining reflected light reflected by the reflection surface as the interference signal. It is in the range.
  • the image acquisition range is a range in the depth direction ( ⁇ z) that can be measured by the optical coherence tomographic image acquisition apparatus.
  • the optical coherence tomographic image acquisition apparatus according to the third aspect of the invention, wherein the image acquisition range is determined by a sampling number of data for detecting the interference signal.
  • the number of sampling points of the object N, [delta] [lambda] the wavelength of the scanning during sampling, when the central wavelength of the measuring light and lambda C, the image acquiring range [delta] Z can be expressed by the following equation (26 December 2005 / Vol .13, No. 26 / OPTICS EXPRESS 10652).
  • the image acquisition range is determined by a coherence distance of measurement light emitted from the probe.
  • the “coherence distance” refers to a distance at which interference is possible.
  • optical coherence tomographic image acquisition apparatus is the invention according to claim 3, wherein the image acquisition range is 20 mm or less.
  • the optical coherence tomographic image acquisition apparatus is the optical interference tomographic image acquisition apparatus according to any one of claims 1 to 6, wherein the reflecting surface of the condensing optical system reflects the incident measurement light to the optical axis. It is characterized by returning along.
  • the reflective surface includes a flat surface, a spherical surface, or an aspheric surface.
  • the probe used in the optical coherence tomographic image acquisition apparatus is: A light source that emits light of a broadband wavelength; Splitting means for splitting light from the light source into reference light and measurement light; Reference light transmitting means for transmitting the reference light divided by the dividing means; A reference mirror for reflecting the reference light transmitted through the reference light transmitting means and making it incident on the reference light transmitting means; Measurement light transmission means for transmitting the measurement light divided by the division means; The measurement light transmitted through the measurement light transmission means is collected toward the subject, and the measurement light reflected from the subject is received and incident on the measurement light transmission means.
  • a probe including an optical optical system; Combining means for combining the reference light returned via the reference light transmitting means and the measurement light returned via the measuring light transmitting means to form a combined light; Interference signal acquiring means for acquiring an interference signal from the combined light formed by the combining means; A probe used in an optical coherence tomographic image acquisition apparatus having image acquisition means for decomposing the interference signal acquired by the interference signal acquisition means into frequency components and acquiring a tomographic image of the subject accordingly.
  • the condensing optical system of the probe has at least one reflecting surface, and a reference optical path length from the dividing unit to the combining unit through the reference mirror along the reference light transmitting unit is equal to the dividing unit.
  • the measurement light path length is longer than the measurement light path length from the condensing position of the condensing optical system to the combination means along the measurement light transmission means.
  • the reference optical path length from the light source to the reference mirror is longer than the measurement optical path length from the light source to the condensing position of the condensing optical system. Even if reflected light is generated from such a reflective surface, it can be clearly distinguished from the reflected light from the subject, and the reflective surface of the condensing optical system and the reference mirror are separated in the optical path length direction. The waveform of the reflecting surface becomes smaller, so that a high-quality optical coherence tomographic image can be formed.
  • the optical coherence tomographic image acquisition method Splitting light of a broadband wavelength emitted from a light source into reference light and measurement light using a splitting means; Transmitting the divided reference light through reference light transmission means and reflecting it by a reference mirror; Condensing the divided measurement light toward the subject via the measurement light transmitting means and a condensing optical system having at least one reflecting surface, and receiving the measurement light reflected from the subject
  • the reference optical path length from the dividing unit to the combining unit through the reference mirror along the reference light transmitting unit is determined, and the condensing position of the condensing optical system from the dividing unit along the measuring light transmitting unit. It is characterized in that it is longer than the measurement optical path length to reach the synthesis means.
  • the measurement light is reflected on the condensing optical system. Even if reflected light is generated from such a reflecting surface, it can be clearly distinguished from the reflected light from the subject, and the reflecting surface of the condensing optical system and the reference mirror are separated in the optical path length direction. Thus, the waveform of the reflection surface becomes smaller, so that a high-quality optical coherence tomographic image can be formed.
  • the present invention it is possible to form a high-quality optical coherence tomographic image by effectively removing the influence of measurement light reflection from the reflecting surface of the condensing optical system from the optical coherence tomographic image while having a simple configuration. It is possible to provide an optical coherence tomographic image acquisition apparatus, a probe used in the optical coherence tomographic image acquisition apparatus, and an optical coherence tomographic image acquisition method.
  • FIG. 4A is a diagram illustrating the relationship between the reference mirror according to the first comparative example and the position of the subject
  • FIG. 4B illustrates the interference signal acquired from the synthesized light in the first comparative example.
  • shaft is signal intensity
  • a horizontal axis is an optical distance (distance along optical path length).
  • FIG. 4C is a diagram showing the relationship between the reference mirror according to the third comparative example and the position of the subject.
  • FIG. 4D shows the interference signal acquired from the synthesized light in the third comparative example. It is a figure of the tomographic image obtained by Fourier-transform.
  • FIG. 5A is a diagram showing the relationship between the reference mirror and the position of the subject according to the first example, and FIG. 5B shows the interference signal acquired from the synthesized light in the first example. It is a figure of the tomographic image obtained by Fourier-transform, a vertical axis
  • shaft is signal intensity, and a horizontal axis is an optical distance (distance along optical path length).
  • FIG. 6A is a diagram showing the relationship between the reference mirror according to the second comparative example and the position of the subject
  • FIG. 6B shows the interference signal acquired from the synthesized light in the second comparative example. It is a figure of the tomographic image obtained by Fourier-transform, a vertical axis
  • shaft is signal intensity, and a horizontal axis is an optical distance (distance along optical path length).
  • FIG. 7A is a diagram showing the relationship between the reference mirror according to the second embodiment and the position of the subject.
  • FIG. 7B shows the interference signal acquired from the combined light in the second embodiment.
  • FIG. 1 is an external perspective view of the optical coherence tomographic image acquisition apparatus according to the present embodiment.
  • the optical coherence tomographic image acquisition apparatus includes a main body MB that acquires a tomographic image of the subject S by OCT measurement, and a probe PLB that is detachably attached to the main body MB and guides measurement light to the measurement target. .
  • the probe PLB can be removed and cleaned and disinfected or replaced with another probe.
  • FIG. 2 is a schematic configuration diagram of the optical coherence tomographic image acquisition apparatus according to the present embodiment.
  • the SD-OCT configuration is adopted.
  • the main body MB of the optical coherence tomographic image acquisition apparatus is integrated with a light source SLD that emits low-coherent light L with a broadband wavelength, an optical fiber FB1 that transmits low-coherent light L emitted from the light source SLD, and an end of the optical fiber FB1.
  • the coupler BS Optically coupled to the coupler BS, the measurement light L1 split by the coupler BS to the probe PLB side, and the measurement light L1 from the probe PLB side to the coupler BS, and the coupler BS
  • the reference light L2 is guided to the reference mirror RM side, the reference light L2 from the reference mirror RM side is transmitted to the coupler BS, and the reference light L2 emitted from the end of the optical fiber FB3 is converted into parallel light.
  • Reference optical system ROP to convert, reference mirror RM reflecting parallel light from reference optical system ROP, and position of reference mirror RM
  • the optical fiber FB4 that transmits the combined light L5 obtained by combining, the interference signal detection unit ISD that acquires an interference signal from the combined light L5 transmitted by the optical fiber FB4, and the interference signal detection unit ISD
  • An image processing unit IP that performs frequency analysis by Fourier transforming the interference signal and acquires an optical coherence tomographic image, and a monitor MNT that displays the optical coherence tomographic image based on a signal from the image processing unit IP Yes.
  • the light source SLD is composed of a laser light source that emits low-coherent light having a wide-band wavelength, such as SLD (Super Luminescent Diode) and ASE (Amplified Spontaneous Emission). Since the optical coherent tomographic image acquisition apparatus acquires a tomographic image when the living body is the subject S, the attenuation of light due to scattering and absorption when passing through the subject S is minimized. For example, it is preferable to use an ultrashort pulse laser light source having a wide spectrum band.
  • the coupler BS integrated with the optical fibers FB1, FB2, FB3, and FB4 is made of, for example, a 2 ⁇ 2 optical fiber coupler, and measures the low coherent light L guided from the light source SLD through the optical fiber FB1.
  • the light L1 is divided into the reference light L2, and the returned measurement light L1 and reference light L2 are combined and output to the optical fiber FB4.
  • the measurement light L1 is guided by the optical fiber FB2, the reference light L2 is guided by the optical fiber FB3, and the combined light L5 is guided by the optical fiber FB4.
  • the optical fibers FB1, FB2, FB3, FB4 and the coupler BS constitute an optical transmission means.
  • optical fibers FB1, FB2, FB3, and FB4 and the coupler BS may be composed of separate members and connected.
  • the tip of the optical fiber is provided in a protective cylinder called a ferrule, but is omitted in this specification.
  • the optical fiber FB2 is connected to the internal optical fiber FB of the probe PLB via an optical coupling CPL, and the measurement light L1 is guided from the optical fiber FB2 to the probe PLB.
  • the optical coupling CPL enables the measurement light L1 to be transmitted even when a relative displacement occurs between the optical fiber FB2 and the internal optical fiber due to driving of the driving device DR described later.
  • FIG. 3 is a cross-sectional view showing the tip portion of the probe PLB, and the probe PLB will be described with reference to FIGS.
  • the probe PLB is inserted, for example, into a body cavity or disposed close to a living body, and is connected to a connector CN (FIG. 1) provided at a ferrule end surrounding the optical fiber FB2.
  • the probe PLB includes a round or square sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and the outside of the sheath CY.
  • the driving device DR and the control device CONT of the main body MB are connected by a wiring H.
  • the sheath CY is formed of, for example, a flexible resin, and a transparent parallel plate PP is fixed to the distal end portion of the sheath CY, while the inside is sealed and the measurement light L1 is transmitted.
  • the torque wire TW is composed of, for example, a double contact coil in which a metal wire is spirally wound, and each of the contact coils is wound so that the winding directions are opposite to each other, and therefore flexible. However, when one end is rotationally displaced / displaced in the axial direction by the driving device DR, the other end is also displaced in the same direction even in a bent state.
  • the parallel plate PP is attached coaxially with the convex lens PL, but may be attached at an angle.
  • the control device CONT reads out the unique data of the probe PLB, and adjusts the position of the reference mirror RM by driving the adjustment device ADJ accordingly.
  • the reference optical path length from the light source to the reference mirror RM is always longer than the measurement optical path length from the light source to the condensing position FP of the subject S.
  • the low coherent light L emitted from the light source SLD propagates inside the optical fiber FB1, and is split into measuring light L1 and reference light L2 by a coupler BS which is a splitting unit (here, also serves as a combining unit). Divided.
  • the measurement light L1 divided by the coupler BS propagates through the optical fiber FB2 serving as measurement light transmission means, and enters the probe PLB through the optical coupling CPL.
  • the measurement light L1 transmitted to the probe PLB side via the optical fiber FB2 is incident on the internal optical fiber FB connected via the optical coupling CPL, and after exiting the internal optical fiber FB, the convex lens PL
  • the light is converted into convergent light, passes through the parallel plate PP, and is condensed on the tissue of the subject.
  • the reflected light L3 from the subject passes through the parallel plate PP, is condensed on the end surface of the internal optical fiber FB by the convex lens PL, passes through the internal optical fiber FB, and passes through the optical coupling CPL to the optical fiber FB2.
  • the reference light L2 divided by the coupler BS propagates inside the optical fiber FB3 as reference light transmission means, enters the reference optical system ROP from its end face, and travels toward the reference mirror RM. Irradiated.
  • the reference light L2 is reflected by the reference mirror RM, becomes reference light L4 as reflected light, is reflected by the reference mirror RM, enters from the end of the optical fiber FB3, and travels toward the coupler BS along the optical fiber FB3.
  • the reflected light L3 and the reflected light L4 are combined by the coupler BS, and the combined light L5 is transmitted to the interference signal detection unit ISD which is an interference signal acquisition unit, where an interference signal is acquired.
  • the image processing unit IP which is an image acquisition unit, receives the interference signal, performs frequency analysis by decomposing the interference signal into frequency components, that is, Fourier transform, and acquires an optical coherence tomographic image. If the control device CONT displaces the torque wire TW of the probe PLB via the drive device DR and scans the measurement light L1 on the subject S, the depth of the subject S in each tissue along this scanning direction Since direction information is obtained, a tomographic image of a tomographic plane including this scanning direction can be acquired. The tomographic image acquired in this way is displayed on the monitor MNT.
  • Equation (3) can be considered to be given as an interferogram in the optical frequency domain with the wave number k as a variable. Therefore, in the image processing unit IP, the interference light detected by the interference signal detection unit ISD is subjected to frequency analysis by performing Fourier transform, and the light intensity S (l) of the interference light is determined, so that each tissue of the subject S is determined. Reflection information at the depth position can be acquired and a tomographic image can be generated. Then, the tomographic image generated by the image processing unit IP is displayed on the monitor MNT.
  • FIG. 4A is a diagram illustrating the relationship between the reference mirror according to the first comparative example and the position of the subject
  • FIG. 4B illustrates the interference signal acquired from the synthesized light in the first comparative example. It is a figure of the tomographic image obtained by Fourier-transform.
  • FIG. 4C is a diagram showing the relationship between the reference mirror according to the third comparative example and the position of the subject.
  • FIG. 4D shows the interference signal acquired from the synthesized light in the third comparative example. It is a figure of the tomographic image obtained by Fourier-transform.
  • FIG. 5A is a diagram showing the relationship between the reference mirror and the position of the subject according to the first example, and FIG.
  • 5B shows the interference signal acquired from the synthesized light in the first example. It is a figure of the tomographic image obtained by Fourier-transform. In the tomographic image, random noise generated in the background due to electrical signals and optical fluctuations is detected, but this is not shown here.
  • the convex lens PL and the parallel plate PP constitute a condensing optical system.
  • both surfaces of the parallel plate PP (condensing optics).
  • a certain amount of reflected light is generated from the surface PP1 on the convex lens PL side and the surface PP2 on the subject S side constituting the reflection surface of the system, and returns along the optical axis.
  • the reference optical path length RL from the coupler BS to the reference mirror RM (the forward path from the dividing means to the reference mirror RM and the reference mirror RM to the combining means).
  • the measurement optical path length ML from the coupler BS to the collection position FP of the subject S (the forward path from the dividing means to the collection position FP) and the collection path
  • the return path length is equal to the return path length (the same applies hereinafter).
  • the reflected light from both sides of the parallel plate PP interferes with the reference light, and as shown in FIG. 4 (b), the two near the origin (the position of the reference mirror along the optical path length).
  • Large pulse waveforms WS1 and WS2 are generated.
  • the waveform WS3 indicating the tissue of the subject S is generated at a position farther from the origin than the pulsed waveforms WS1 and WS2.
  • the interference light is Fourier-transformed, a mirror image waveform is generated with the origin at the center as shown in the figure.
  • the position of the reference mirror RM is set to the subject S so that the signal W3 from the subject S can be acquired in a state with good coherence. Shown close-up.
  • the position of the reference mirror RM is such that the reference optical path length RL is shorter than the measurement optical path length ML and longer than the optical path length of the reflected light reflected from both surfaces of the parallel plate PP (that is, the reference mirror RM is longer than the parallel plate PP from the light source). It is set to be located far away).
  • the reflected light from both surfaces of the parallel plate PP interferes with the reference light, so that the waveforms WS1 and WS2 indicate the tissue of the subject S at positions close to the origin as shown in FIG.
  • the waveform WS3 overlaps and an accurate tomographic image cannot be obtained.
  • the reference optical path length RL from the coupler BS to the reference mirror RM is made longer than the measurement optical path length ML from the coupler BS to the condensing position FP of the subject S. Yes.
  • the reflected light from both surfaces of the parallel plate PP interferes with the reference light, thereby generating pulsed waveforms WS1 and WS2, which are unnecessary signals generated after Fourier transform, as shown in FIG. 5B.
  • the waveform WS3 indicating the tissue of the subject S can be separated from the signal, and the waveform WS3 acquired at a position close to the origin has a good coherence and a high signal-to-noise ratio.
  • the reference mirror position is set as in this configuration, it is not necessary to incline the parallel plate PP or to apply an AR coat to prevent reflection from the parallel plate PP as a reflection surface, while the signal of the parallel plate PP is transmitted. Since it is separated from the waveform WS3, the signals WS1 and WS2 which are signals from the parallel plate PP can be completely removed, and a high-quality tomographic image can be acquired.
  • the reflection surface is considered not only the parallel plate PP but also the emission end surface SS (see FIG. 6) of the internal optical fiber FB.
  • ⁇ l may be set from 0.3 mm to 3.1 mm.
  • FIG. 6A is a diagram showing the relationship between the reference mirror according to the second comparative example and the position of the subject
  • FIG. 6B shows the interference signal acquired from the synthesized light in the second comparative example. It is a figure of the tomographic image obtained by Fourier-transform.
  • FIG. 7A is a diagram showing the relationship between the reference mirror according to the second embodiment and the position of the subject.
  • FIG. 7B shows the interference signal acquired from the combined light in the second embodiment. It is a figure of the tomographic image obtained by Fourier-transform.
  • a convex lens PL having a plane PL1 on the internal optical fiber FB side is used. Accordingly, the reflecting surfaces of the condensing optical system are the surface PL1 of the convex lens PL and both surfaces PP1 and PP2 of the parallel plate PP.
  • the reference optical path length RL from the coupler BS to the reference mirror RM is shorter than the measurement optical path length ML from the coupler BS to the condensing position FP of the subject S. Accordingly, three large pulse waveforms WS1, WS2, and WS4 are generated at positions close to the origin in accordance with the reflected light from the reflecting surface of the condensing optical system.
  • the waveform WS3 indicating the tissue of the subject S is generated at a position farther from the origin than the pulse-like waveforms WS1, WS2, and WS4, and is acquired as a signal having poor coherence, so the SN ratio is poor.
  • the reference optical path length RL from the coupler BS to the reference mirror RM is made longer than the measurement optical path length ML from the coupler BS to the condensing position FP of the subject S. Yes.
  • the reflected light from both surfaces of the parallel plate PP and the surface PL1 of the convex lens PL interferes with the reference light, thereby generating pulsed waveforms WS1, WS2, WS4, WS5 as shown in FIG. 7B.
  • the waveform WS3 indicating the tissue of the subject S can be separated from the signal, and the waveform WS3 acquired at a position close to the origin has good coherence and the signal SN ratio becomes large.
  • the waveform WS5 is a waveform based on the reflected light from the emission end face SS of the internal optical fiber FB. If the reference mirror position is set as in this configuration, it is not necessary to incline the parallel plate PP and the surface PL1 or to apply an AR coating in order to prevent reflection from the parallel plate PP and the surface PL1, which are reflection surfaces. Since the signals of the parallel plate PP and the surface PL1 are separated from the waveform WS3, the signals WS1, WS2, WS4 and WS5 that are signals from the parallel plate PP and the surface PL1 can be completely removed, and the image quality is high. Tomographic images can be acquired.
  • FIG. 8 is a cross-sectional view of the probe according to the second embodiment.
  • the probe PLB includes a cylindrical sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and a torque provided outside the sheath CY.
  • a driving device DR that rotationally and axially displaces the wire TW, a GRIN lens (Gradient Index Lens) GL whose outer periphery is fixed to the end of the torque wire TW and connected to the end of the internal optical fiber FB, and a GRIN lens GL And a cap CP fixed to the tip of the sheath CY.
  • the sheath CY constitutes a part of the condensing optical system, and thus both sides of the side wall of the sheath CY constitute a reflecting surface.
  • the measurement light L1 transmitted to the probe PLB side via the optical fiber FB2 enters the internal optical fiber FB connected via the optical coupling CPL, is condensed by the GL on the GRIN lens, and is reflected by the prism PR.
  • the reflected light L3 from the subject S is reflected by the prism PR, enters the GRIN lens GL, passes through the internal optical fiber FB, and returns to the optical fiber FB2 through the optical coupling CPL.
  • Other configurations are the same as those of the embodiment shown in FIG.
  • FIG. 9 is a cross-sectional view of a probe according to the third embodiment.
  • the probe PLB includes a cylindrical sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and a torque provided outside the sheath CY.
  • a driving device DR that rotationally and axially displaces the wire TW, a GRIN lens (Gradient Index Lens) GL whose outer periphery is fixed to the end of the torque wire TW and connected to the end of the internal optical fiber FB, and a GRIN lens GL And a cap CP fixed to the tip of the sheath CY.
  • the sheath CY constitutes a part of the condensing optical system, and thus both sides of the side wall of the sheath CY constitute a reflecting surface.
  • the measurement light L1 transmitted to the probe PLB side through the optical fiber FB2 is incident on the internal optical fiber FB connected through the optical coupling CPL, is condensed by the GL on the GRIN lens, and is reflected by the reflection mirror MR.
  • the light is reflected and collected on the tissue of the subject S.
  • the reflected light L3 from the subject S is reflected by the reflecting mirror MR, enters the GRIN lens GL, passes through the internal optical fiber FB, and returns to the optical fiber FB2 through the optical coupling CPL.
  • Other configurations are the same as those of the embodiment shown in FIG.
  • FIG. 10 is a cross-sectional view of a probe according to the fourth embodiment.
  • the probe PLB includes a cylindrical sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and a torque provided outside the sheath CY.
  • the sheath CY constitutes a part of the condensing optical system, and thus both sides of the side wall of the sheath CY constitute a reflecting surface.
  • the measurement light L1 transmitted to the probe PLB side through the optical fiber FB2 is incident on the internal optical fiber FB connected through the optical coupling CPL, is further reflected by the prism PR, and is received through the convex lens PL. It is focused on the tissue of the sample S.
  • the reflected light L3 from the subject S passes through the convex lens PL, is reflected by the prism PR, passes through the internal optical fiber FB, and returns to the optical fiber FB2 through the optical coupling CPL.
  • Other configurations are the same as those of the embodiment shown in FIG.
  • FIG. 11 is a schematic configuration diagram of an optical coherence tomographic image acquisition apparatus according to another embodiment.
  • the coupler BS of the embodiment shown in FIG. 2 is replaced with a dividing coupler DV as a dividing means, a combining coupler CMP as a combining means, a first circulator C1, and a second circulator C2.
  • the optical coupling CPL includes lenses LS1 and LS2.
  • Other configurations are the same as those in the above-described embodiment, including those omitted.
  • the optical fiber FB22 connecting the first circulator C1 and the optical coupling CPL constitutes the measurement light transmission means
  • the optical fiber FB32 extending from the second circulator C2 to the reference mirror RM side constitutes the reference light transmission means.
  • the measurement optical path length is the total optical path length up to the splitting coupler DV-condensing position of the subject-optical coupling CPL, and the reference optical path length is up to the splitting coupler DV-reference mirror RM-optical coupling CPL. Is the total optical path length.
  • the measurement light transmission means for transmitting the measurement light L1 and the reflected light L3 may be common or independent. Further, the reference light transmission means for transmitting the reference light L2 and the reflected light L4 may be common or may be independent.
  • the low coherent light L emitted from the light source SLD propagates in the optical fiber FB1 integrated with the splitting coupler DV, and is split into the measuring light L1 and the reference light L2 by the splitting coupler DV.
  • the measurement light L1 split by the splitting coupler DV propagates in the optical fiber FB21, passes through the first circulator C1, propagates in the optical fiber FB22, and enters the optical coupling CPL.
  • the measurement light L1 emitted from the end of the optical fiber FB22 is converted into parallel light by the lens LS1, and condensed by the lens LS2 on the end of the internal optical fiber FB of the probe PLB.
  • the relative displacement of the internal optical fiber FB in the optical axis direction can be realized by stretching the internal optical fiber FB in a bent state.
  • the measurement light L1 transmitted to the probe PLB side through the optical coupling CPL passes through the internal optical fiber FB, is converted into convergent light by the GRIN lens, is reflected by the prism PR, and is condensed on the tissue of the subject. It has come to be.
  • the reflected light L3 from the subject is reflected by the prism PR, collected on the end surface of the internal optical fiber FB by the GRIN lens, passes through the internal optical fiber FB, and returns to the optical fiber FB22 through the optical coupling CPL. Then, it goes to the first circulator C1 along the optical fiber FB22.
  • the reflected light L3 is directed to the synthesis coupler CMP along the optical fiber FB23 by the first circulator C1.
  • the reference light L2 split by the splitting coupler DV propagates in the optical fiber FB31, passes through the second circulator C2, propagates in the optical fiber FB32, and the reference optical from its end face.
  • the light enters the system ROP and is irradiated toward the reference mirror RM.
  • the reference light L2 is reflected by the reference mirror RM, becomes reference light L4 as reflected light, enters from the end of the optical fiber FB32, and travels along the optical fiber FB32 toward the second circulator C2.
  • the reflected light L4 is directed to the synthesizing coupler CMP along the optical fiber FB33 by the second circulator C2.
  • the reflected light L3 and the reflected light L4 are combined by the combining coupler CMP, and the combined light L5 is transmitted to the interference signal detection unit ISD which is an interference signal acquisition unit, where an interference signal is acquired.
  • the image processing unit IP which is an image acquisition means, can input this interference signal and perform Fourier transform to perform frequency analysis and acquire an optical coherence tomographic image.
  • the present invention can be applied to both SD-OCT measurement and SS-OCT measurement, and the configuration of the condensing optical system may not be the configuration of the embodiment.

Abstract

Disclosed is a light interference tomogram acquiring device enabling formation of a light interference tomogram with a high image quality by effectively eliminating the influence of reflection of the measurement light from a reflective surface of a focusing optical system from the light interference tomogram even though the light interference tomogram acquiring device has a simple configuration. A probe used for light interference tomogram acquiring devices and a light interference tomogram acquiring method are also disclosed. The reference optical path length from a coupler (BS)to a reference mirror (RM) is longer than the measurement optical path length from the coupler (BS) to the focus position (FP) of the subject (S). With this, even if pulse-shape waveforms (WS1, WS2) are produced by the interference between the reflected light from both surfaces of a parallel plate (PP) and the reference light, a waveform (WS3) representing a tissue of the subject (S) and a signal can be separated, the coherence of the waveform (WS3) acquired in a position near the origin is good, and the SN ratio of the signal is high. Therefore, a tomogram with high accuracy can be formed on the basis thereof.

Description

光干渉断層画像取得装置、光干渉断層画像取得装置に用いるプローブ及び光干渉断層画像取得方法Optical coherence tomographic image acquisition apparatus, probe used in optical coherence tomographic image acquisition apparatus, and optical coherent tomographic image acquisition method
 本発明は、SS-OCT(Swept Source Optical Coherence Tomography)やSD-OCT(Spectral Domain Optical Coherence Tomography)などを含む、FD-OCT(Fourier Domain Optical Coherence Tomography)計測により光干渉断層画像を取得する光干渉断層画像取得装置、光干渉断層画像取得装置に用いるプローブ及び光干渉断層画像取得方法に関するものである。 The present invention includes SS-OCT (Swept Source Optical Coherence Tomography), SD-OCT (Special Domain Optical Coherence Tomography), and FD-OCT (FourierTormoD). The present invention relates to a probe used in a tomographic image acquisition apparatus, an optical coherence tomographic image acquisition apparatus, and an optical coherent tomographic image acquisition method.
 近年、生体の体腔内を観察する内視鏡装置として、照明光が照射された生体から反射した反射光を用いて生体の像を撮像し、モニタ等に表示する電子内視鏡装置が広く普及され様々な分野で利用されている。また多くの内視鏡は鉗子口を備え、この鉗子口から鉗子チャンネルを介して体腔内に導入されたプローブにより、体腔内の組織の生検や治療を行うことができる。 2. Description of the Related Art In recent years, electronic endoscope apparatuses that take an image of a living body using reflected light reflected from a living body irradiated with illumination light and display it on a monitor or the like are widely used as endoscope apparatuses for observing the inside of a body cavity of a living body. It is used in various fields. Many endoscopes are provided with forceps openings, and biopsy and treatment of tissues in the body cavities can be performed with probes introduced into the body cavities from the forceps openings through the forceps channels.
 上述した内視鏡装置として超音波を用いた超音波断層画像取得装置等が知られているが、その他にOCT計測を用いた光断層画像化装置が用いられることがある(特許文献1参照)。プローブは体腔内に導入するために外形の細いプローブなどが用いられている(特許文献2参照)。
このOCT計測は、光干渉計測の一種であり、光源から射出された低コヒーレント光を測定光と参照光とに分割し、該測定光を被検体に照射してその反射光、もしくは後方散乱光と、参照ミラーで反射した参照光とを合波し、該反射光と参照光との干渉光の強度に基づいて断層画像を取得するものである。
An ultrasonic tomographic image acquisition apparatus using ultrasonic waves is known as the above-described endoscope apparatus, but an optical tomographic imaging apparatus using OCT measurement may also be used (see Patent Document 1). . In order to introduce the probe into the body cavity, a probe having a thin outer shape is used (see Patent Document 2).
This OCT measurement is a kind of optical interferometry, which divides low-coherent light emitted from a light source into measurement light and reference light, irradiates the object with the measurement light, and reflects or backscattered light. And the reference light reflected by the reference mirror are combined, and a tomographic image is acquired based on the intensity of the interference light between the reflected light and the reference light.
 上記のOCT計測には、大きくわけてTD(Time domain)-OCT計測とFD(Fourier Domain)-OCT計測の2種類がある。TD-OCT計測は、参照光の光路長を変更しながら干渉光強度を測定することにより、測定対象の深さ方向の位置(以下、深さ位置という)に対応した反射光強度分布を取得する方法である。 The OCT measurement is roughly divided into two types: TD (Time domain) -OCT measurement and FD (Fourier Domain) -OCT measurement. In the TD-OCT measurement, the reflected light intensity distribution corresponding to the position in the depth direction of the measurement target (hereinafter referred to as the depth position) is obtained by measuring the interference light intensity while changing the optical path length of the reference light. Is the method.
 一方、FD-OCT計測は、参照光と信号光の光路長は変えることなく、光のスペクトル成分毎に干渉光強度を測定し、ここで得られたスペクトル干渉強度信号を計算機にてフーリエ変換に代表される周波数解析を行うことで、深さ位置に対応した反射光強度分布を取得する方法である。FD-OCT計測は、TD-OCT計測に存在する機械的な走査が不要となることで、高速な測定が可能となる手法として、近年注目されている。 On the other hand, in the FD-OCT measurement, the interference light intensity is measured for each spectral component of the light without changing the optical path lengths of the reference light and the signal light, and the obtained spectral interference intensity signal is Fourier transformed by a computer. This is a method of obtaining a reflected light intensity distribution corresponding to a depth position by performing a representative frequency analysis. In recent years, FD-OCT measurement has attracted attention as a technique that enables high-speed measurement by eliminating the need for mechanical scanning existing in TD-OCT measurement.
 FD-OCT計測を行う装置構成で代表的なものとしては、SD(Spectral Domain)-OCT装置とSS(Swept source)-OCT装置の2種類が挙げられる。SD-OCT装置は、広帯域の低コヒーレント光を用い、干渉光を分光手段により各光周波数成分に分解し、アレイ型光検出器等にて各光周波数成分毎の干渉光強度を測定し、ここで得られたスペクトル干渉波形を計算機でフーリエ変換解析することにより、断層画像を構成するようにしたものである。SS-OCT装置は、光周波数を時間的に掃引させるレーザ等を光源に用い、干渉光の光周波数の時間変化に対応した信号の時間波形を測定し、これにより得られたスペクトル干渉強度信号を計算機でフーリエ変換することにより断層画像を構成するようにしたものである。 As typical apparatus configurations for performing FD-OCT measurement, there are two types, that is, an SD (Spectral Domain) -OCT apparatus and an SS (Swept source) -OCT apparatus. The SD-OCT apparatus uses broadband low-coherent light, decomposes the interference light into each optical frequency component by a spectroscopic means, and measures the interference light intensity for each optical frequency component with an array-type photodetector. A tomographic image is constructed by performing Fourier transform analysis on the spectrum interference waveform obtained in step 1 by a computer. The SS-OCT apparatus uses a laser or the like that temporally sweeps the optical frequency as a light source, measures the time waveform of the signal corresponding to the temporal change of the optical frequency of the interference light, and obtains the spectral interference intensity signal obtained thereby. A tomographic image is constructed by performing Fourier transform on a computer.
特開2008-289850号公報JP 2008-289850 A 米国特許第6891984号明細書US Patent No. 6891984
 しかるに、OCT計測において測定光を照射するプローブは、被検体である人体の組織に接近するか、もしくは接触させて用いられるため、特許文献1に示すように、透明な筒状のシースによって測定光の集光光学系が覆われている。特に、特許文献1の従来技術では、被検体との接触面積を高めるために、シースを三角筒状としているが、これにより集光光学系によって集光される測定光の一部がシースの側面で反射され、この反射光が被検体からの反射光と共に参照光と合波されると、断層画像上のノイズとして顕在化し、被検体の画像と区別しにくくなるという問題がある。また、シースの側面での反射率が低くても一定のノイズが現れることから、例えシースの面に反射防止膜を形成しても根本的な対策とならないといえる。 However, since the probe that irradiates the measurement light in the OCT measurement is used by approaching or contacting the human tissue that is the subject, as shown in Patent Document 1, the measurement light is formed by a transparent cylindrical sheath. The condensing optical system is covered. In particular, in the prior art of Patent Document 1, in order to increase the contact area with the subject, the sheath has a triangular cylindrical shape, but this causes a part of the measurement light collected by the condensing optical system to be a side surface of the sheath. When this reflected light is combined with the reference light together with the reflected light from the subject, it becomes manifest as noise on the tomographic image, making it difficult to distinguish it from the subject image. Further, since a certain noise appears even if the reflectance on the side surface of the sheath is low, it can be said that even if an antireflection film is formed on the surface of the sheath, it is not a fundamental measure.
 これに対し、特許文献2には、プローブ出射先端に設けたプリズム面を所定の角度に傾けることで、プリズム面での測定光の反射光を別な方向に向け、それにより被検体からの反射光のみを参照光と合波させようとする構成が開示されている。しかしながら、プローブに設けたプリズムは小さいため、所定の角度に傾けた面の精度を出しにくく、コストが増大するという問題がある。又、例えプリズム面を所定の角度に傾けた場合でも、その反射光が参照光と合波されることを完全に阻止することは困難である。 On the other hand, in Patent Document 2, the reflected light of the measurement light on the prism surface is directed in another direction by inclining the prism surface provided at the probe emission tip to a predetermined angle, thereby reflecting from the subject. A configuration in which only light is combined with reference light is disclosed. However, since the prism provided in the probe is small, there is a problem that it is difficult to obtain the accuracy of the surface inclined at a predetermined angle, and the cost increases. Even if the prism surface is tilted at a predetermined angle, it is difficult to completely prevent the reflected light from being combined with the reference light.
 本発明は、上述の問題に鑑みてなされたものであり、簡素な構成でありながら、集光光学系の反射面からの測定光の反射の影響を光干渉断層画像から有効に取り除いて、高画質な光干渉断層画像を形成することが出来る光干渉断層画像取得装置、光干渉断層画像取得装置に用いるプローブ及び光干渉断層画像取得方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and has a simple configuration, but effectively removes the influence of the reflection of measurement light from the reflection surface of the condensing optical system from the optical coherence tomographic image. An object of the present invention is to provide an optical coherence tomographic image acquisition apparatus capable of forming a high-quality optical coherence tomographic image, a probe used in the optical coherence tomographic image acquisition apparatus, and an optical coherence tomographic image acquisition method.
 請求項1に記載の光干渉断層画像取得装置は、
 広帯域波長の光を出射する光源と、
 前記光源からの光を参照光と測定光とに分割する分割手段と、
 前記分割手段により分割された前記参照光を伝達する参照光伝達手段と、
 前記参照光伝達手段を介して伝達された前記参照光を反射し、前記参照光伝達手段に入射させるための参照ミラーと、
 前記分割手段により分割された前記測定光を伝達する測定光伝達手段と、
 前記測定光伝達手段を介して伝達された前記測定光を、被検体に向かって集光させると共に、前記被検体から反射した測定光を受光して、前記測定光伝達手段に入射させるための集光光学系を含むプローブと、
 前記参照光伝達手段を介して戻った前記参照光と、前記測定光伝達手段を介して戻った前記測定光とを合成して合成光を形成する合成手段と、
 前記合成手段により形成された合成光より干渉信号を取得する干渉信号取得手段と、
 前記干渉信号取得手段により取得された前記干渉信号を周波数成分に分解して、それに応じて前記被検体の断層画像を取得する画像取得手段とを有し、
 前記集光光学系は、少なくとも1つの反射面を有し、
 前記分割手段から前記参照光伝達手段に沿って前記参照ミラーを経て前記合成手段に至るまでの参照光路長が、前記分割手段から前記測定光伝達手段に沿って前記集光光学系の集光位置を経て前記合成手段に至るまでの測定光路長より長いことを特徴とする。
The optical coherence tomographic image acquisition apparatus according to claim 1,
A light source that emits light of a broadband wavelength;
Splitting means for splitting light from the light source into reference light and measurement light;
Reference light transmitting means for transmitting the reference light divided by the dividing means;
A reference mirror for reflecting the reference light transmitted through the reference light transmitting means and making it incident on the reference light transmitting means;
Measurement light transmission means for transmitting the measurement light divided by the division means;
The measurement light transmitted through the measurement light transmission means is collected toward the subject, and the measurement light reflected from the subject is received and incident on the measurement light transmission means. A probe including an optical optical system;
Combining means for combining the reference light returned via the reference light transmitting means and the measurement light returned via the measuring light transmitting means to form a combined light;
Interference signal acquiring means for acquiring an interference signal from the combined light formed by the combining means;
Image acquisition means for decomposing the interference signal acquired by the interference signal acquisition means into frequency components and acquiring a tomographic image of the subject accordingly;
The condensing optical system has at least one reflecting surface,
The reference optical path length from the dividing means to the combining means via the reference mirror along the reference light transmitting means is the condensing position of the condensing optical system along the measuring light transmitting means from the dividing means. It is characterized by being longer than the measurement optical path length leading to the synthesizing means.
 一般的に、SD-OCT計測又はSS-OCT計測において、光源から参照ミラーまでの参照光路長と、光源から被検体までの測定光路長との間に大きな差があると、参照ミラーで反射した参照光と、被検体で反射した測定光とが干渉しにくくなり、有効な光干渉断層画像を形成できない。そこで、光源から参照ミラーまでの参照光路長と、光源から被検体までの測定光路長とを近づけたい。ところが、測定光の集光光学系に反射面がある場合、かかる反射面は被検体に比較的接近しているので、その反射光をピックアップしてしまうことにより、被検体からの反射光と区別できなくなる恐れがある。 Generally, in SD-OCT measurement or SS-OCT measurement, if there is a large difference between the reference optical path length from the light source to the reference mirror and the measurement optical path length from the light source to the subject, it is reflected by the reference mirror. The reference light and the measurement light reflected by the subject are less likely to interfere with each other, and an effective optical coherence tomographic image cannot be formed. Therefore, it is desirable to make the reference optical path length from the light source to the reference mirror close to the measurement optical path length from the light source to the subject. However, when the measuring light condensing optical system has a reflecting surface, the reflecting surface is relatively close to the subject, so that the reflected light is picked up to distinguish it from the reflected light from the subject. There is a risk that it will not be possible.
 これに対し本発明によれば、前記光源から前記参照ミラーまでの参照光路長が、前記光源から前記集光光学系の集光位置までの測定光路長より長いので、測定光の集光光学系に反射面があって、かかる反射面から反射光が生じても、被検体からの反射光と明確に区別でき、しかも集光光学系の反射面と参照ミラーとが光路長方向に離れるので、可干渉性が減少し、反射面からの干渉信号波形が小さくなる。また、被検体からの反射光との可干渉性は比較的大きくなるため、SN(Signal to Noise)比の良い高画質な光干渉断層画像を形成できる。尚、「集光光学系」とはパワーを持つ光学素子のみならず、測定光伝達手段と被検体との間に配置され、測定光を透過もしくは反射する全ての要素を含む。又、「参照光伝達手段」とは、参照光が往復伝達される光路をいうが、往路と復路が異なる場合も含む。この場合、参照ミラーに向かう参照光は通過するが、参照ミラーから反射した参照光が通過しない参照光伝達手段も存在し、或いは参照ミラーから反射した参照光は通過するが、参照ミラーへ向かう参照光が通過しない参照光伝達手段も存在する。同様に、「測定光伝達手段」とは、測定光が往復伝達される光路をいうが、往路と復路が異なる場合も含む。この場合、被検体に向かう測定光は通過するが、被検体から反射した測定光が通過しない測定光伝達手段も存在し、或いは被検体から反射した測定光は通過するが、被検体へ向かう測定光が通過しない測定光伝達手段も存在する。 On the other hand, according to the present invention, the reference optical path length from the light source to the reference mirror is longer than the measurement optical path length from the light source to the condensing position of the condensing optical system. Even if reflected light is generated from such a reflective surface, it can be clearly distinguished from the reflected light from the subject, and the reflective surface of the condensing optical system and the reference mirror are separated in the optical path length direction. The coherence is reduced, and the interference signal waveform from the reflecting surface is reduced. In addition, since the coherence with the reflected light from the subject becomes relatively large, a high-quality optical coherence tomographic image with a good SN (Signal to Noise) ratio can be formed. The “condensing optical system” includes not only an optical element having power but also all elements that are arranged between the measurement light transmission means and the subject and transmit or reflect the measurement light. The “reference light transmission means” refers to an optical path through which reference light is transmitted in a reciprocating manner, and includes cases where the forward path and the return path are different. In this case, there is also a reference light transmission means in which the reference light directed to the reference mirror passes but the reference light reflected from the reference mirror does not pass, or the reference light reflected from the reference mirror passes, but the reference directed to the reference mirror There is also a reference light transmission means through which light does not pass. Similarly, “measurement light transmission means” refers to an optical path through which measurement light is transmitted in a reciprocating manner, and includes cases where the forward path and the return path are different. In this case, there is also a measurement light transmitting means that passes measurement light toward the subject but does not pass measurement light reflected from the subject, or measurement light reflected from the subject passes but measurement toward the subject. There is also a measuring light transmission means through which light does not pass.
 請求項2に記載の光干渉断層画像取得装置は、請求項1に記載の発明において、前記参照光路長と前記測定光路長との光路長差Δlは、以下の式を満たすことを特徴とする。これにより、前記参照ミラーで反射した参照光と、前記被検体で反射した測定光とを干渉しやすくでき、有効な光干渉断層画像を形成できる。より具体的には、光路長差Δlが、(1)式の下限を下回ると被検体からの信号を可干渉性の良い状態で取得できるが取得される干渉信号はより低周波となり、直流成分の信号とオーバーラップしてしまい、高SN比の画像が得られない。言い換えると、干渉信号をフーリエ変化した時、直流成分の干渉信号は原点位置付近に発生するが、これと被検体からの信号の画像分離が困難になると言える。また、光路長差Δlが、(1)式の上限を上回ると可干渉性が悪くなり高SN比の画像が得られなくなる。よって、(1)式を満たすのが好ましい。 The optical coherence tomographic image acquisition apparatus according to claim 2 is characterized in that, in the invention according to claim 1, the optical path length difference Δl between the reference optical path length and the measurement optical path length satisfies the following expression. . Thereby, the reference light reflected by the reference mirror and the measurement light reflected by the subject can be easily interfered with each other, and an effective optical coherence tomographic image can be formed. More specifically, when the optical path length difference Δl is less than the lower limit of the expression (1), a signal from the subject can be acquired in a coherent state, but the acquired interference signal has a lower frequency and a direct current component Therefore, an image with a high S / N ratio cannot be obtained. In other words, when the interference signal is Fourier-transformed, the DC component interference signal is generated in the vicinity of the origin position, and it can be said that it is difficult to separate the image from the signal from the subject. On the other hand, if the optical path length difference Δl exceeds the upper limit of the equation (1), the coherence becomes worse and an image with a high SN ratio cannot be obtained. Therefore, it is preferable to satisfy the formula (1).
 0.3/π・(λ/NA)<Δl<3.0/π・(λ/NA)   (1)
但し、NAは被検体に入射する1/e強度光線の開口数NAであり、λは前記光源から出射される光の中心波長である。(1)式は、レイリー長を基に干渉可能性の程度割合を表した式である。
0.3 / π · (λ / NA 2 ) <Δl <3.0 / π · (λ / NA 2 ) (1)
Where NA is the numerical aperture NA of 1 / e 2 intensity light incident on the subject, and λ is the center wavelength of the light emitted from the light source. The expression (1) is an expression that expresses the degree of possibility of interference based on the Rayleigh length.
 請求項3に記載の光干渉断層画像取得装置は、請求項1又は2に記載の発明において、前記反射面の位置は、前記反射面で反射した反射光が前記干渉信号として取得される画像取得範囲にあることを特徴とする。なお、画像取得範囲とは、光干渉断層画像取得装置が測定できる奥行き方向(δz)の範囲を言う。 The optical coherence tomographic image acquisition device according to claim 3 is the optical acquisition device according to claim 1 or 2, wherein the position of the reflection surface is obtained by obtaining reflected light reflected by the reflection surface as the interference signal. It is in the range. The image acquisition range is a range in the depth direction (δz) that can be measured by the optical coherence tomographic image acquisition apparatus.
 請求項4に記載の光干渉断層画像取得装置は、請求項3に記載の発明において、前記画像取得範囲は、前記干渉信号を検出するデータのサンプリング数により決定されることを特徴とする。ここで、被検体のサンプリング点の数をN、サンプリング中の走査する波長をδλ、測定光の中心波長をλとすると、画像取得範囲δは以下の式で表せる(26 December 2005/Vol.13、No.26/OPTICS EXPRESS 10652参照)。 According to a fourth aspect of the present invention, there is provided the optical coherence tomographic image acquisition apparatus according to the third aspect of the invention, wherein the image acquisition range is determined by a sampling number of data for detecting the interference signal. Here, the number of sampling points of the object N, [delta] [lambda] the wavelength of the scanning during sampling, when the central wavelength of the measuring light and lambda C, the image acquiring range [delta] Z can be expressed by the following equation (26 December 2005 / Vol .13, No. 26 / OPTICS EXPRESS 10652).
 δ=Nλ /4δλ   (2)
 請求項5に記載の光干渉断層画像取得装置は、請求項3に記載の発明において、前記画像取得範囲は、前記プローブから出射する測定光の可干渉距離により決定されることを特徴とする。「可干渉距離」とは、干渉が可能な距離をいう。
δ Z = Nλ C 2 / 4δλ (2)
According to a fifth aspect of the present invention, in the optical coherence tomographic image acquisition apparatus according to the third aspect of the invention, the image acquisition range is determined by a coherence distance of measurement light emitted from the probe. The “coherence distance” refers to a distance at which interference is possible.
 請求項6に記載の光干渉断層画像取得装置は、請求項3に記載の発明において、前記画像取得範囲は、20mm以下であることを特徴とする。 The optical coherence tomographic image acquisition apparatus according to claim 6 is the invention according to claim 3, wherein the image acquisition range is 20 mm or less.
 請求項7に記載の光干渉断層画像取得装置は、請求項1~6のいずれかに記載の発明において、前記集光光学系の反射面は、入射した前記測定光を反射して光軸に沿って戻すことを特徴とする。前記反射面は、平面又は球面もしくは非球面を含む。 The optical coherence tomographic image acquisition apparatus according to claim 7 is the optical interference tomographic image acquisition apparatus according to any one of claims 1 to 6, wherein the reflecting surface of the condensing optical system reflects the incident measurement light to the optical axis. It is characterized by returning along. The reflective surface includes a flat surface, a spherical surface, or an aspheric surface.
 請求項8に記載の光干渉断層画像取得装置に用いるプローブは、
 広帯域波長の光を出射する光源と、
 前記光源からの光を参照光と測定光とに分割する分割手段と、
 前記分割手段により分割された前記参照光を伝達する参照光伝達手段と、
 前記参照光伝達手段を介して伝達された前記参照光を反射し、前記参照光伝達手段に入射させるための参照ミラーと、
 前記分割手段により分割された前記測定光を伝達する測定光伝達手段と、
 前記測定光伝達手段を介して伝達された前記測定光を、被検体に向かって集光させると共に、前記被検体から反射した測定光を受光して、前記測定光伝達手段に入射させるための集光光学系を含むプローブと、
 前記参照光伝達手段を介して戻った前記参照光と、前記測定光伝達手段を介して戻った前記測定光とを合成して合成光を形成する合成手段と、
 前記合成手段により形成された合成光より干渉信号を取得する干渉信号取得手段と、
 前記干渉信号取得手段により取得された前記干渉信号を周波数成分に分解して、それに応じて前記被検体の断層画像を取得する画像取得手段とを有する光干渉断層画像取得装置に用いるプローブであって、
 前記プローブの集光光学系は、少なくとも1つの反射面を有し、前記分割手段から前記参照光伝達手段に沿って前記参照ミラーを経て前記合成手段に至るまでの参照光路長が、前記分割手段から前記測定光伝達手段に沿って前記集光光学系の集光位置を経て前記合成手段に至るまでの測定光路長より長いことを特徴とする。
The probe used in the optical coherence tomographic image acquisition apparatus according to claim 8 is:
A light source that emits light of a broadband wavelength;
Splitting means for splitting light from the light source into reference light and measurement light;
Reference light transmitting means for transmitting the reference light divided by the dividing means;
A reference mirror for reflecting the reference light transmitted through the reference light transmitting means and making it incident on the reference light transmitting means;
Measurement light transmission means for transmitting the measurement light divided by the division means;
The measurement light transmitted through the measurement light transmission means is collected toward the subject, and the measurement light reflected from the subject is received and incident on the measurement light transmission means. A probe including an optical optical system;
Combining means for combining the reference light returned via the reference light transmitting means and the measurement light returned via the measuring light transmitting means to form a combined light;
Interference signal acquiring means for acquiring an interference signal from the combined light formed by the combining means;
A probe used in an optical coherence tomographic image acquisition apparatus having image acquisition means for decomposing the interference signal acquired by the interference signal acquisition means into frequency components and acquiring a tomographic image of the subject accordingly. ,
The condensing optical system of the probe has at least one reflecting surface, and a reference optical path length from the dividing unit to the combining unit through the reference mirror along the reference light transmitting unit is equal to the dividing unit. The measurement light path length is longer than the measurement light path length from the condensing position of the condensing optical system to the combination means along the measurement light transmission means.
 本発明によれば、前記光源から前記参照ミラーまでの参照光路長が、前記光源から前記集光光学系の集光位置までの測定光路長より長いので、測定光の集光光学系に反射面があって、かかる反射面から反射光が生じても、被検体からの反射光と明確に区別でき、しかも集光光学系の反射面と参照ミラーとが光路長方向に離れるので、ノイズとしての反射面の波形がより小さくなり、よって高画質な光干渉断層画像を形成できる。 According to the present invention, the reference optical path length from the light source to the reference mirror is longer than the measurement optical path length from the light source to the condensing position of the condensing optical system. Even if reflected light is generated from such a reflective surface, it can be clearly distinguished from the reflected light from the subject, and the reflective surface of the condensing optical system and the reference mirror are separated in the optical path length direction. The waveform of the reflecting surface becomes smaller, so that a high-quality optical coherence tomographic image can be formed.
 請求項9に記載の光干渉断層画像取得方法は、
 光源から出射された広帯域波長の光を、参照光と測定光とに分割手段を用いて分割するステップと、
 分割した前記参照光を、参照光伝達手段を介して伝達し、参照ミラーで反射するステップと、
 分割した前記測定光を、測定光伝達手段と少なくとも1つの反射面を有する集光光学系と、を介して被検体に向かって集光させると共に、前記被検体から反射した測定光を受光するステップと、
 反射した前記参照光と反射した前記測定光とを合成手段を用いて合成することによって得られた合成光より干渉信号を取得するステップと、
 取得された前記干渉信号を周波数成分に分解して、それに応じて前記被検体の断層画像を取得するステップとを有し、
 前記分割手段から前記参照光伝達手段に沿って前記参照ミラーを経て前記合成手段に至るまでの参照光路長を、前記分割手段から前記測定光伝達手段に沿って前記集光光学系の集光位置を経て前記合成手段に至るまでの測定光路長より長くしたことを特徴とする。
The optical coherence tomographic image acquisition method according to claim 9,
Splitting light of a broadband wavelength emitted from a light source into reference light and measurement light using a splitting means;
Transmitting the divided reference light through reference light transmission means and reflecting it by a reference mirror;
Condensing the divided measurement light toward the subject via the measurement light transmitting means and a condensing optical system having at least one reflecting surface, and receiving the measurement light reflected from the subject When,
Obtaining an interference signal from the combined light obtained by combining the reflected reference light and the reflected measurement light using a combining unit;
Decomposing the acquired interference signal into frequency components, and obtaining a tomographic image of the subject accordingly,
The reference optical path length from the dividing unit to the combining unit through the reference mirror along the reference light transmitting unit is determined, and the condensing position of the condensing optical system from the dividing unit along the measuring light transmitting unit. It is characterized in that it is longer than the measurement optical path length to reach the synthesis means.
 本発明によれば、前記光源から前記参照ミラーまでの参照光路長を、前記光源から前記集光光学系の集光位置までの測定光路長より長くしたので、測定光の集光光学系に反射面があって、かかる反射面から反射光が生じても、被検体からの反射光と明確に区別でき、しかも集光光学系の反射面と参照ミラーとが光路長方向に離れるので、ノイズとしての反射面の波形がより小さくなり、よって高画質な光干渉断層画像を形成できる。 According to the present invention, since the reference optical path length from the light source to the reference mirror is longer than the measurement optical path length from the light source to the condensing position of the condensing optical system, the measurement light is reflected on the condensing optical system. Even if reflected light is generated from such a reflecting surface, it can be clearly distinguished from the reflected light from the subject, and the reflecting surface of the condensing optical system and the reference mirror are separated in the optical path length direction. Thus, the waveform of the reflection surface becomes smaller, so that a high-quality optical coherence tomographic image can be formed.
 本発明によれば、簡素な構成でありながら、集光光学系の反射面からの測定光の反射の影響を光干渉断層画像から有効に取り除いて、高画質な光干渉断層画像を形成することが出来る光干渉断層画像取得装置、光干渉断層画像取得装置に用いるプローブ及び光干渉断層画像取得方法を提供することが可能となる。 According to the present invention, it is possible to form a high-quality optical coherence tomographic image by effectively removing the influence of measurement light reflection from the reflecting surface of the condensing optical system from the optical coherence tomographic image while having a simple configuration. It is possible to provide an optical coherence tomographic image acquisition apparatus, a probe used in the optical coherence tomographic image acquisition apparatus, and an optical coherence tomographic image acquisition method.
本実施の形態にかかる光干渉断層画像取得装置の外観斜視図である。It is an external appearance perspective view of the optical coherence tomographic image acquisition apparatus concerning this Embodiment. 本発明の光干渉断層画像取得装置の好ましい実施の形態を示すブロック図である。It is a block diagram which shows preferable embodiment of the optical coherence tomographic image acquisition apparatus of this invention. 第1の実施の形態にかかるプローブPLBの先端部分を示す断面図である。It is sectional drawing which shows the front-end | tip part of the probe PLB concerning 1st Embodiment. 図4(a)は、第1比較例にかかる参照ミラーと被検体の位置との関係を示す図であり、図4(b)は、第1比較例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図であり、縦軸が信号強度、横軸が光学距離(光路長に沿った距離)である。図4(c)は、第3比較例にかかる参照ミラーと被検体の位置との関係を示す図であり、図4(d)は、第3比較例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図である。FIG. 4A is a diagram illustrating the relationship between the reference mirror according to the first comparative example and the position of the subject, and FIG. 4B illustrates the interference signal acquired from the synthesized light in the first comparative example. It is a figure of the tomographic image obtained by Fourier-transform, a vertical axis | shaft is signal intensity, and a horizontal axis is an optical distance (distance along optical path length). FIG. 4C is a diagram showing the relationship between the reference mirror according to the third comparative example and the position of the subject. FIG. 4D shows the interference signal acquired from the synthesized light in the third comparative example. It is a figure of the tomographic image obtained by Fourier-transform. 図5(a)は、第1実施例にかかる参照ミラーと被検体の位置との関係を示す図であり、図5(b)は、第1実施例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図であり、縦軸が信号強度、横軸が光学距離(光路長に沿った距離)である。FIG. 5A is a diagram showing the relationship between the reference mirror and the position of the subject according to the first example, and FIG. 5B shows the interference signal acquired from the synthesized light in the first example. It is a figure of the tomographic image obtained by Fourier-transform, a vertical axis | shaft is signal intensity, and a horizontal axis is an optical distance (distance along optical path length). 図6(a)は、第2比較例にかかる参照ミラーと被検体の位置との関係を示す図であり、図6(b)は、第2比較例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図であり、縦軸が信号強度、横軸が光学距離(光路長に沿った距離)である。FIG. 6A is a diagram showing the relationship between the reference mirror according to the second comparative example and the position of the subject, and FIG. 6B shows the interference signal acquired from the synthesized light in the second comparative example. It is a figure of the tomographic image obtained by Fourier-transform, a vertical axis | shaft is signal intensity, and a horizontal axis is an optical distance (distance along optical path length). 図7(a)は、第2実施例にかかる参照ミラーと被検体の位置との関係を示す図であり、図7(b)は、第2実施例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図であり、縦軸が信号強度、横軸が光学距離(光路長に沿った距離)である。FIG. 7A is a diagram showing the relationship between the reference mirror according to the second embodiment and the position of the subject. FIG. 7B shows the interference signal acquired from the combined light in the second embodiment. It is a figure of the tomographic image obtained by Fourier-transform, a vertical axis | shaft is signal intensity, and a horizontal axis is an optical distance (distance along optical path length). 第2の実施の形態にかかるプローブの断面図である。It is sectional drawing of the probe concerning 2nd Embodiment. 第3の実施の形態にかかるプローブの断面図である。It is sectional drawing of the probe concerning 3rd Embodiment. 第4の実施の形態にかかるプローブの断面図である。It is sectional drawing of the probe concerning 4th Embodiment. 別の実施の形態にかかる光干渉断層画像取得装置の概略構成図である。It is a schematic block diagram of the optical coherence tomographic image acquisition apparatus concerning another embodiment.
 以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は、本実施の形態にかかる光干渉断層画像取得装置の外観斜視図である。光干渉断層画像取得装置は、OCT計測により被検体Sの断層画像を取得する本体MBと、該本体MBに着脱可能に取り付けられ、測定光を測定対象まで導波するプローブPLBとを備えている。このプローブPLBは、取り外して洗浄・消毒、または別プローブに付替えをおこなうことができるようになっている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an external perspective view of the optical coherence tomographic image acquisition apparatus according to the present embodiment. The optical coherence tomographic image acquisition apparatus includes a main body MB that acquires a tomographic image of the subject S by OCT measurement, and a probe PLB that is detachably attached to the main body MB and guides measurement light to the measurement target. . The probe PLB can be removed and cleaned and disinfected or replaced with another probe.
 図2は、本実施の形態にかかる光干渉断層画像取得装置の概略構成図である。ここではSD-OCTの構成をとっている。光干渉断層画像取得装置の本体MBは、広帯域波長の低コヒーレント光Lを射出する光源SLDと、光源SLDから射出された低コヒーレント光Lを伝達する光ファイバFB1と、光ファイバFB1の末端に一体的に形成されたカプラBSと、カプラBSにより分割された測定光L1をプローブPLB側に導くと共に、プローブPLB側からの測定光L1をカプラBSまで伝達する光ファイバFB2と、カプラBSにより分割された参照光L2を参照ミラーRM側に導くと共に、参照ミラーRM側からの参照光L2をカプラBSまで伝達する光ファイバFB3と、光ファイバFB3の端部から出射された参照光L2を平行光に変換する参照光学系ROPと、参照光学系ROPからの平行光を反射する参照ミラーRMと、参照ミラーRMの位置を調整する調整装置ADJと、調整装置ADJと、プローブPLBの駆動装置DRとを制御する制御装置CONTと、カプラBSでプローブPLB側からの測定光L1と参照ミラーRMから反射した参照光L2とを合成することにより得られた合成光L5を伝達する光ファイバFB4と、光ファイバFB4により伝達された合成光L5から干渉信号を取得する干渉信号検出部ISDと、干渉信号検出部ISDで取得された干渉信号をフーリエ変換することで周波数解析を行い、光干渉断層画像を取得する画像処理部IPと、画像処理部IPからの信号に基づいて光干渉断層画像を表示するモニタMNTとを有している。 FIG. 2 is a schematic configuration diagram of the optical coherence tomographic image acquisition apparatus according to the present embodiment. Here, the SD-OCT configuration is adopted. The main body MB of the optical coherence tomographic image acquisition apparatus is integrated with a light source SLD that emits low-coherent light L with a broadband wavelength, an optical fiber FB1 that transmits low-coherent light L emitted from the light source SLD, and an end of the optical fiber FB1. Optically coupled to the coupler BS, the measurement light L1 split by the coupler BS to the probe PLB side, and the measurement light L1 from the probe PLB side to the coupler BS, and the coupler BS The reference light L2 is guided to the reference mirror RM side, the reference light L2 from the reference mirror RM side is transmitted to the coupler BS, and the reference light L2 emitted from the end of the optical fiber FB3 is converted into parallel light. Reference optical system ROP to convert, reference mirror RM reflecting parallel light from reference optical system ROP, and position of reference mirror RM An adjustment device ADJ for adjustment, a control device CONT for controlling the drive device DR for the probe PLB, a measurement light L1 from the probe PLB side by the coupler BS, and a reference light L2 reflected from the reference mirror RM The optical fiber FB4 that transmits the combined light L5 obtained by combining, the interference signal detection unit ISD that acquires an interference signal from the combined light L5 transmitted by the optical fiber FB4, and the interference signal detection unit ISD An image processing unit IP that performs frequency analysis by Fourier transforming the interference signal and acquires an optical coherence tomographic image, and a monitor MNT that displays the optical coherence tomographic image based on a signal from the image processing unit IP Yes.
 ここで、光源SLDは、たとえばSLD(Super Luminescent Diode)やASE(Amplified Spontaneous Emission)等の広帯域波長の低コヒーレント光を射出するレーザ光源からなっている。なお、光干渉断層画像取得装置は、生体を被検体Sとしたときの断層画像を取得するものであるため、被検体S内を透過するときの散乱・吸収による光の減衰を最小限に抑えることができる、たとえば広スペクトル帯域の超短パルスレーザ光源等を用いるのが好ましい。 Here, the light source SLD is composed of a laser light source that emits low-coherent light having a wide-band wavelength, such as SLD (Super Luminescent Diode) and ASE (Amplified Spontaneous Emission). Since the optical coherent tomographic image acquisition apparatus acquires a tomographic image when the living body is the subject S, the attenuation of light due to scattering and absorption when passing through the subject S is minimized. For example, it is preferable to use an ultrashort pulse laser light source having a wide spectrum band.
 光ファイバFB1、FB2、FB3、FB4と一体であるカプラBSは、たとえば2×2の光ファイバカプラからなっており、光源SLDから光ファイバFB1を介して導波された低コヒーレント光Lを、測定光L1と参照光L2に分割するようになっていると共に、戻ってきた測定光L1と参照光L2とを合成して、光ファイバFB4に出力する。測定光L1は光ファイバFB2により導波され、参照光L2は光ファイバFB3に導波され、合成光L5は光ファイバFB4により導波されるようになっている。ここでは、光ファイバFB1、FB2、FB3、FB4とカプラBSとが光伝達手段を構成する。但し、光ファイバFB1、FB2、FB3、FB4とカプラBSとは別部材から構成されて、連結されるようになっていても良い。尚、光ファイバの先端はフェルールと呼ばれる保護筒内に設けられているが、本明細書では省略する。 The coupler BS integrated with the optical fibers FB1, FB2, FB3, and FB4 is made of, for example, a 2 × 2 optical fiber coupler, and measures the low coherent light L guided from the light source SLD through the optical fiber FB1. The light L1 is divided into the reference light L2, and the returned measurement light L1 and reference light L2 are combined and output to the optical fiber FB4. The measurement light L1 is guided by the optical fiber FB2, the reference light L2 is guided by the optical fiber FB3, and the combined light L5 is guided by the optical fiber FB4. Here, the optical fibers FB1, FB2, FB3, FB4 and the coupler BS constitute an optical transmission means. However, the optical fibers FB1, FB2, FB3, and FB4 and the coupler BS may be composed of separate members and connected. The tip of the optical fiber is provided in a protective cylinder called a ferrule, but is omitted in this specification.
 光ファイバFB2は、プローブPLBの内部光ファイバFBに、光学的カップリングCPLを介して接続され、測定光L1は、光ファイバFB2からプローブPLBへ導波されるようになっている。光学的カップリングCPLは、後述する駆動装置DRの駆動によって、光ファイバFB2と、内部光ファイバとの間に相対変位が生じた場合でも、測定光L1の伝達を可能とするものである。 The optical fiber FB2 is connected to the internal optical fiber FB of the probe PLB via an optical coupling CPL, and the measurement light L1 is guided from the optical fiber FB2 to the probe PLB. The optical coupling CPL enables the measurement light L1 to be transmitted even when a relative displacement occurs between the optical fiber FB2 and the internal optical fiber due to driving of the driving device DR described later.
 図3はプローブPLBの先端部分を示す断面図であり、図2と図3を参照してプローブPLBについて説明する。プローブPLBは、たとえば体腔内に挿入されたり、生体に近接して配置されるものであって、光ファイバFB2を包囲するフェルール端に設けられたコネクタCN(図1)に連結される。図3において、プローブPLBは、丸筒状又は角筒状のシースCYと、シースCY内において環状のトルクワイヤガイド(軸受)TWGにより支持された中空のフレキシブルなトルクワイヤTWと、シースCYの外部に設けられトルクワイヤTWを回転変位及び軸線方向変位させる駆動装置DRと、トルクワイヤTWの端部に外周を固定され内部光ファイバFBの端部に連結された凸レンズPLとを有している。駆動装置DRと、本体MBの制御装置CONTとは配線Hにより接続されている。シースCYはたとえば可撓性のある樹脂等から形成され、シースCYの先端部分には内部を封止すると共に、測定光L1と透過するための透明な平行平板PPが固定されている。トルクワイヤTWは、たとえば金属線材を螺旋状に巻回した2重の密着コイルからなるものであって、各密着コイルはそれぞれ巻回方向が反対なるように巻回されており、従って可撓性は有するが、駆動装置DRにより一端を回転変位/軸線方向変位させると、曲がった状態でも他端も同方向に変位するようになっている。平行平板PPは、凸レンズPLと同軸に取り付けられているが、角度付けされて取り付けられていても良い。 FIG. 3 is a cross-sectional view showing the tip portion of the probe PLB, and the probe PLB will be described with reference to FIGS. The probe PLB is inserted, for example, into a body cavity or disposed close to a living body, and is connected to a connector CN (FIG. 1) provided at a ferrule end surrounding the optical fiber FB2. In FIG. 3, the probe PLB includes a round or square sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and the outside of the sheath CY. And a drive lens DR that rotates and axially displaces the torque wire TW, and a convex lens PL whose outer periphery is fixed to the end of the torque wire TW and is connected to the end of the internal optical fiber FB. The driving device DR and the control device CONT of the main body MB are connected by a wiring H. The sheath CY is formed of, for example, a flexible resin, and a transparent parallel plate PP is fixed to the distal end portion of the sheath CY, while the inside is sealed and the measurement light L1 is transmitted. The torque wire TW is composed of, for example, a double contact coil in which a metal wire is spirally wound, and each of the contact coils is wound so that the winding directions are opposite to each other, and therefore flexible. However, when one end is rotationally displaced / displaced in the axial direction by the driving device DR, the other end is also displaced in the same direction even in a bent state. The parallel plate PP is attached coaxially with the convex lens PL, but may be attached at an angle.
 光干渉断層画像取得装置の動作(光干渉断層画像取得方法)について説明する。まず、制御装置CONTは、プローブPLBの固有のデータを読み出して、それに応じて、調整装置ADJを駆動制御して参照ミラーRMの位置を調整する。これにより、常に光源から参照ミラーRMまでの参照光路長は、光源から被検体Sの集光位置FPまでの測定光路長より長くなっている。 The operation of the optical coherence tomographic image acquisition apparatus (optical coherence tomographic image acquisition method) will be described. First, the control device CONT reads out the unique data of the probe PLB, and adjusts the position of the reference mirror RM by driving the adjustment device ADJ accordingly. Thereby, the reference optical path length from the light source to the reference mirror RM is always longer than the measurement optical path length from the light source to the condensing position FP of the subject S.
 図2において、光源SLDから射出された低コヒーレント光Lは、光ファイバFB1の内部を伝播し、分割手段である(但しここでは合成手段を兼ねる)カプラBSで測定光L1と参照光L2とに分割される。カプラBSにより分割された測定光L1は、測定光伝達手段である光ファイバFB2の内部を伝播し、光学的カップリングCPLを介してプローブPLBに入射する。図3において、光ファイバFB2を介してプローブPLB側に伝達された測定光L1は、光学的カップリングCPLを介して連結された内部光ファイバFBに入射し、内部光ファイバFBを出射後に凸レンズPLにより収束光に変換され、平行平板PPを通過して、被検体の組織に集光されるようになっている。被検体からの反射光L3は、平行平板PPを通過して、凸レンズPLにより内部光ファイバFBの端面に集光され、更に内部光ファイバFBを通り、光学的カップリングCPLを介して光ファイバFB2に戻され、光ファイバFB2に沿ってカプラBSに向かう。 In FIG. 2, the low coherent light L emitted from the light source SLD propagates inside the optical fiber FB1, and is split into measuring light L1 and reference light L2 by a coupler BS which is a splitting unit (here, also serves as a combining unit). Divided. The measurement light L1 divided by the coupler BS propagates through the optical fiber FB2 serving as measurement light transmission means, and enters the probe PLB through the optical coupling CPL. In FIG. 3, the measurement light L1 transmitted to the probe PLB side via the optical fiber FB2 is incident on the internal optical fiber FB connected via the optical coupling CPL, and after exiting the internal optical fiber FB, the convex lens PL Thus, the light is converted into convergent light, passes through the parallel plate PP, and is condensed on the tissue of the subject. The reflected light L3 from the subject passes through the parallel plate PP, is condensed on the end surface of the internal optical fiber FB by the convex lens PL, passes through the internal optical fiber FB, and passes through the optical coupling CPL to the optical fiber FB2. To the coupler BS along the optical fiber FB2.
 一方、図2において、カプラBSにより分割された参照光L2は、参照光伝達手段である光ファイバFB3の内部を伝播し、その端面から参照光学系ROPに入射して、参照ミラーRMに向かって照射される。参照光L2は、参照ミラーRMで反射されて、反射光としての参照光L4となり、参照ミラーRMで反射され、光ファイバFB3の端部から入射し、光ファイバFB3に沿ってカプラBSに向かう。カプラBSにより反射光L3と反射光L4とが合成され、この合成光L5は、干渉信号取得手段である干渉信号検出部ISDに伝達されて、ここで干渉信号が取得される。画像取得手段である画像処理部IPは、この干渉信号を入力して、干渉信号を周波数成分に分解する周波数解析、すなわちフーリエ変換することで周波数解析を行い、光干渉断層画像を取得する。制御装置CONTが、駆動装置DRを介してプローブPLBのトルクワイヤTWを変位させて測定光L1を被検体S上で走査させれば、この走査方向に沿った各組織において被検体Sの深さ方向の情報が得られるので、この走査方向を含む断層面についての断層画像を取得することができる。このようにして取得された断層画像は、モニタMNTに表示される。 On the other hand, in FIG. 2, the reference light L2 divided by the coupler BS propagates inside the optical fiber FB3 as reference light transmission means, enters the reference optical system ROP from its end face, and travels toward the reference mirror RM. Irradiated. The reference light L2 is reflected by the reference mirror RM, becomes reference light L4 as reflected light, is reflected by the reference mirror RM, enters from the end of the optical fiber FB3, and travels toward the coupler BS along the optical fiber FB3. The reflected light L3 and the reflected light L4 are combined by the coupler BS, and the combined light L5 is transmitted to the interference signal detection unit ISD which is an interference signal acquisition unit, where an interference signal is acquired. The image processing unit IP, which is an image acquisition unit, receives the interference signal, performs frequency analysis by decomposing the interference signal into frequency components, that is, Fourier transform, and acquires an optical coherence tomographic image. If the control device CONT displaces the torque wire TW of the probe PLB via the drive device DR and scans the measurement light L1 on the subject S, the depth of the subject S in each tissue along this scanning direction Since direction information is obtained, a tomographic image of a tomographic plane including this scanning direction can be acquired. The tomographic image acquired in this way is displayed on the monitor MNT.
 ここで、干渉信号検出部ISDにおける干渉光の検出および画像処理部IPにおける画像の生成について簡単に説明する。なお、この詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol41、No7、p426-p432」に詳しい記載がある。 Here, detection of interference light in the interference signal detection unit ISD and generation of an image in the image processing unit IP will be briefly described. Details of this are described in “Takeda Mitsuo,“ Optical Frequency Scanning Spectrum Interference Microscope ”, Optical Technology Contact, 2003, Vol 41, No7, p426-p432”.
 測定光L1が被検体Sに照射されたとき、被検体Sの各組織の深さからの反射光L3と、参照ミラーRMで反射された参照光L4との合成光L5において、いろいろな光路長差をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉信号検出部ISDにおいて検出される光強度I(k)は、
 I(k)=∫ S(l)[1+cos(kl)]dl   (3)
で表される。ここで、kは波数、lは光路長差である。式(3)は波数kを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像処理部IPにおいて、干渉信号検出部ISDが検出した干渉光をフーリエ変換にかけて周波数解析を行い、干渉光の光強度S(l)を決定することにより、被検体Sの各組織の深さ位置における反射情報を取得し、断層画像を生成することができる。そして、画像処理部IPにて生成された断層画像は、モニタMNTにおいて表示される。
When the measurement light L1 is irradiated onto the subject S, various optical path lengths are obtained in the combined light L5 of the reflected light L3 from the depth of each tissue of the subject S and the reference light L4 reflected by the reference mirror RM. Assuming that the light intensity of the interference fringes for each optical path length difference l when interfering with a difference is S (l), the light intensity I (k) detected by the interference signal detector ISD is
I (k) = ∫ 0 S (l) [1 + cos (kl)] dl (3)
It is represented by Here, k is the wave number, and l is the optical path length difference. Equation (3) can be considered to be given as an interferogram in the optical frequency domain with the wave number k as a variable. Therefore, in the image processing unit IP, the interference light detected by the interference signal detection unit ISD is subjected to frequency analysis by performing Fourier transform, and the light intensity S (l) of the interference light is determined, so that each tissue of the subject S is determined. Reflection information at the depth position can be acquired and a tomographic image can be generated. Then, the tomographic image generated by the image processing unit IP is displayed on the monitor MNT.
 次に、参照ミラーRMの位置について考察する。図4(a)は、第1比較例にかかる参照ミラーと被検体の位置との関係を示す図であり、図4(b)は、第1比較例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図である。図4(c)は、第3比較例にかかる参照ミラーと被検体の位置との関係を示す図であり、図4(d)は、第3比較例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図である。図5(a)は、第1実施例にかかる参照ミラーと被検体の位置との関係を示す図であり、図5(b)は、第1実施例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図である。なお、断層画像には電気信号や光学的ゆらぎによりバックグラウンドに発生するランダムなノイズが検出させるがここでは図示していない。 Next, consider the position of the reference mirror RM. FIG. 4A is a diagram illustrating the relationship between the reference mirror according to the first comparative example and the position of the subject, and FIG. 4B illustrates the interference signal acquired from the synthesized light in the first comparative example. It is a figure of the tomographic image obtained by Fourier-transform. FIG. 4C is a diagram showing the relationship between the reference mirror according to the third comparative example and the position of the subject. FIG. 4D shows the interference signal acquired from the synthesized light in the third comparative example. It is a figure of the tomographic image obtained by Fourier-transform. FIG. 5A is a diagram showing the relationship between the reference mirror and the position of the subject according to the first example, and FIG. 5B shows the interference signal acquired from the synthesized light in the first example. It is a figure of the tomographic image obtained by Fourier-transform. In the tomographic image, random noise generated in the background due to electrical signals and optical fluctuations is detected, but this is not shown here.
 ここで、凸レンズPLと平行平板PPとが集光光学系を構成するが、シースCYの端部に取り付けられた平行平板PPを測定光L1が通過するので、平行平板PPの両面(集光光学系の反射面を構成する凸レンズPL側の面PP1と被検体S側の面PP2)から、或る程度の反射光が発生し光軸に沿って戻る。しかるに、図4(a)、(b)の第1比較例の場合、カプラBSから参照ミラーRMまでの参照光路長RL(分割手段から参照ミラーRMまでの往路と、参照ミラーRMから合成手段までの復路とが異なる場合は、往路長+復路長、以下同じ)が、カプラBSから被検体Sの集光位置FPまでの測定光路長ML(分割手段から集光位置FPまでの往路と、集光位置FPから合成手段までの復路とが異なる場合は、往路長+復路長、以下同じ)より短い。かかる場合、平行平板PPの両面からの反射光が、参照光と干渉することによって、図4(b)に示すように、原点(光路長に沿った参照ミラーの位置)に近い位置に2つの大きなパルス状の波形WS1,WS2が生じることとなる。一方、被検体Sの組織を示す波形WS3は、パルス状の波形WS1,WS2より原点から遠い位置に生じる。尚、干渉光をフーリエ変換処理すると、図に示すように原点を中心として鏡像の波形が生じる。 Here, the convex lens PL and the parallel plate PP constitute a condensing optical system. However, since the measurement light L1 passes through the parallel plate PP attached to the end of the sheath CY, both surfaces of the parallel plate PP (condensing optics). A certain amount of reflected light is generated from the surface PP1 on the convex lens PL side and the surface PP2 on the subject S side constituting the reflection surface of the system, and returns along the optical axis. However, in the case of the first comparative example shown in FIGS. 4A and 4B, the reference optical path length RL from the coupler BS to the reference mirror RM (the forward path from the dividing means to the reference mirror RM and the reference mirror RM to the combining means). Is different from the return path + the return path length (hereinafter the same), the measurement optical path length ML from the coupler BS to the collection position FP of the subject S (the forward path from the dividing means to the collection position FP) and the collection path If the return path from the optical position FP to the combining means is different, the return path length is equal to the return path length (the same applies hereinafter). In such a case, the reflected light from both sides of the parallel plate PP interferes with the reference light, and as shown in FIG. 4 (b), the two near the origin (the position of the reference mirror along the optical path length). Large pulse waveforms WS1 and WS2 are generated. On the other hand, the waveform WS3 indicating the tissue of the subject S is generated at a position farther from the origin than the pulsed waveforms WS1 and WS2. When the interference light is Fourier-transformed, a mirror image waveform is generated with the origin at the center as shown in the figure.
 一般的にOCT計測においては、参照光路長RLと測定光路長MLとの差Δlが大きいと、可干渉性が悪くなり信号のSN比が小さくなり、断層画像を形成したときにノイズとの識別が難しくなる。よって、図4の比較例の場合、波形WS3の波形が小さくなりSN比が悪く、高画質の画像を取得できない。 In general, in the OCT measurement, when the difference Δl between the reference optical path length RL and the measurement optical path length ML is large, the coherence is deteriorated and the signal-to-noise ratio of the signal is reduced, and noise is identified when a tomographic image is formed. Becomes difficult. Therefore, in the case of the comparative example in FIG. 4, the waveform of the waveform WS3 is small, the SN ratio is bad, and a high-quality image cannot be acquired.
 一方で、図4(c)、(d)に示す第3比較例の場合、可干渉性の良い状態で被検体Sからの信号W3を取得できるように参照ミラーRMの位置を被検体Sに近づけた様子を示す。ここで参照ミラーRMの位置は、参照光路長RLが測定光路長MLより短くかつ平行平板PPの両面から反射された反射光の光路長より長くなる(即ち参照ミラーRMは平行平板PPより光源から遠い位置に配置される)ように設定されている。かかる場合、平行平板PPの両面からの反射光が、参照光と干渉することによって、図4(d)に示すように、原点に近い位置で波形WS1,WS2が、被検体Sの組織を示す波形WS3と重なってしまい、正確な断層画像を得ることができなくなる。このように構成上反射面を有してしまう測定プローブにおいて高画質な画像を取得する事が困難である。 On the other hand, in the case of the third comparative example shown in FIGS. 4C and 4D, the position of the reference mirror RM is set to the subject S so that the signal W3 from the subject S can be acquired in a state with good coherence. Shown close-up. Here, the position of the reference mirror RM is such that the reference optical path length RL is shorter than the measurement optical path length ML and longer than the optical path length of the reflected light reflected from both surfaces of the parallel plate PP (that is, the reference mirror RM is longer than the parallel plate PP from the light source). It is set to be located far away). In such a case, the reflected light from both surfaces of the parallel plate PP interferes with the reference light, so that the waveforms WS1 and WS2 indicate the tissue of the subject S at positions close to the origin as shown in FIG. The waveform WS3 overlaps and an accurate tomographic image cannot be obtained. Thus, it is difficult to obtain a high-quality image with a measurement probe that has a reflecting surface due to its configuration.
 これに対し、図5に示す第1実施例の場合、カプラBSから参照ミラーRMまでの参照光路長RLを、カプラBSから被検体Sの集光位置FPまでの測定光路長MLより長くしている。これにより、平行平板PPの両面からの反射光が、参照光と干渉することによって、図5(b)に示すようにフーリエ変換後に発生する不要な信号であるパルス状の波形WS1,WS2が生じたとしても、被検体Sの組織を示す波形WS3と信号を分離でき、かつ原点に近い位置で取得される波形WS3は可干渉性が良好で信号のSN比が大きくなるため、高画質な断層画像を形成できることとなる。この構成のように参照ミラー位置を設定すれば、反射面である平行平板PPからの反射を防ぐために平行平板PPを傾けたりARコートを施したりする必要がなく、一方で平行平板PPの信号が波形WS3と分離されるため平行平板PPからの信号であるは波形WS1,WS2を完全に除去することが可能であり、かつ高画質な断層画像を取得できる。また、ここでは示していないが反射面は平行平板PPだけでなく内部光ファイバFBの出射端面SS(図6参照)とも考えられる。尚、実施例1においては、例えばNA=0.02の凸レンズPL、中心波長1.3μmの光線を出射する光源を使用できる。この場合、Δlは0.3mmmから3.1mmに設定するとよい。 On the other hand, in the case of the first embodiment shown in FIG. 5, the reference optical path length RL from the coupler BS to the reference mirror RM is made longer than the measurement optical path length ML from the coupler BS to the condensing position FP of the subject S. Yes. As a result, the reflected light from both surfaces of the parallel plate PP interferes with the reference light, thereby generating pulsed waveforms WS1 and WS2, which are unnecessary signals generated after Fourier transform, as shown in FIG. 5B. Even so, the waveform WS3 indicating the tissue of the subject S can be separated from the signal, and the waveform WS3 acquired at a position close to the origin has a good coherence and a high signal-to-noise ratio. An image can be formed. If the reference mirror position is set as in this configuration, it is not necessary to incline the parallel plate PP or to apply an AR coat to prevent reflection from the parallel plate PP as a reflection surface, while the signal of the parallel plate PP is transmitted. Since it is separated from the waveform WS3, the signals WS1 and WS2 which are signals from the parallel plate PP can be completely removed, and a high-quality tomographic image can be acquired. Although not shown here, the reflection surface is considered not only the parallel plate PP but also the emission end surface SS (see FIG. 6) of the internal optical fiber FB. In Example 1, for example, a convex lens PL with NA = 0.02 and a light source that emits a light beam with a center wavelength of 1.3 μm can be used. In this case, Δl may be set from 0.3 mm to 3.1 mm.
 図6(a)は、第2比較例にかかる参照ミラーと被検体の位置との関係を示す図であり、図6(b)は、第2比較例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図である。図7(a)は、第2実施例にかかる参照ミラーと被検体の位置との関係を示す図であり、図7(b)は、第2実施例において合成光から取得された干渉信号をフーリエ変換して得られた断層画像の図である。 FIG. 6A is a diagram showing the relationship between the reference mirror according to the second comparative example and the position of the subject, and FIG. 6B shows the interference signal acquired from the synthesized light in the second comparative example. It is a figure of the tomographic image obtained by Fourier-transform. FIG. 7A is a diagram showing the relationship between the reference mirror according to the second embodiment and the position of the subject. FIG. 7B shows the interference signal acquired from the combined light in the second embodiment. It is a figure of the tomographic image obtained by Fourier-transform.
 図6に示す第2比較例では、上述の第1比較例と異なり、内部光ファイバFB側の面PL1を平面とした凸レンズPLを用いている。従って、集光光学系の反射面は、凸レンズPLの面PL1と、平行平板PPの両面PP1,PP2となる。カプラBSから参照ミラーRMまでの参照光路長RLが、カプラBSから被検体Sの集光位置FPまでの測定光路長MLより短いのは同様である。従って、原点に近い位置に、集光光学系の反射面からの反射光に応じて3つの大きなパルス状の波形WS1,WS2、WS4が生じることとなる。一方、被検体Sの組織を示す波形WS3は、パルス状の波形WS1,WS2、WS4より原点から遠い位置に生じ可干渉性の悪い信号として取得されるためSN比が悪い。 In the second comparative example shown in FIG. 6, unlike the first comparative example described above, a convex lens PL having a plane PL1 on the internal optical fiber FB side is used. Accordingly, the reflecting surfaces of the condensing optical system are the surface PL1 of the convex lens PL and both surfaces PP1 and PP2 of the parallel plate PP. Similarly, the reference optical path length RL from the coupler BS to the reference mirror RM is shorter than the measurement optical path length ML from the coupler BS to the condensing position FP of the subject S. Accordingly, three large pulse waveforms WS1, WS2, and WS4 are generated at positions close to the origin in accordance with the reflected light from the reflecting surface of the condensing optical system. On the other hand, the waveform WS3 indicating the tissue of the subject S is generated at a position farther from the origin than the pulse-like waveforms WS1, WS2, and WS4, and is acquired as a signal having poor coherence, so the SN ratio is poor.
 これに対し、図7に示す第2実施例の場合、カプラBSから参照ミラーRMまでの参照光路長RLを、カプラBSから被検体Sの集光位置FPまでの測定光路長MLより長くしている。これにより、平行平板PPの両面及び凸レンズPLの面PL1からの反射光が、参照光と干渉することによって、図7(b)に示すようにパルス状の波形WS1,WS2、WS4、WS5が生じたとしても、被検体Sの組織を示す波形WS3と信号を分離でき、かつ原点に近い位置で取得される波形WS3は可干渉性が良好で信号のSN比が大きくなるため、これに基づいて高画質な断層画像を形成できることとなる。尚、波形WS5は、内部光ファイバFBの出射端面SSからの反射光に基づく波形である。この構成のように参照ミラー位置を設定すれば、反射面である平行平板PP及び面PL1からの反射を防ぐために平行平板PPおよび面PL1を傾けたりARコートを施したりする必要がなく、一方で平行平板PP及び面PL1の信号が波形WS3と分離されるため平行平板PP及び面PL1からの信号であるは波形WS1,WS2,WS4、WS5を完全に除去することが可能であり、かつ高画質な断層画像を取得できる。 On the other hand, in the case of the second embodiment shown in FIG. 7, the reference optical path length RL from the coupler BS to the reference mirror RM is made longer than the measurement optical path length ML from the coupler BS to the condensing position FP of the subject S. Yes. As a result, the reflected light from both surfaces of the parallel plate PP and the surface PL1 of the convex lens PL interferes with the reference light, thereby generating pulsed waveforms WS1, WS2, WS4, WS5 as shown in FIG. 7B. Even so, the waveform WS3 indicating the tissue of the subject S can be separated from the signal, and the waveform WS3 acquired at a position close to the origin has good coherence and the signal SN ratio becomes large. A high-quality tomographic image can be formed. The waveform WS5 is a waveform based on the reflected light from the emission end face SS of the internal optical fiber FB. If the reference mirror position is set as in this configuration, it is not necessary to incline the parallel plate PP and the surface PL1 or to apply an AR coating in order to prevent reflection from the parallel plate PP and the surface PL1, which are reflection surfaces. Since the signals of the parallel plate PP and the surface PL1 are separated from the waveform WS3, the signals WS1, WS2, WS4 and WS5 that are signals from the parallel plate PP and the surface PL1 can be completely removed, and the image quality is high. Tomographic images can be acquired.
 図8は、第2の実施の形態にかかるプローブの断面図である。このプローブPLBは、プローブPLBは、筒状のシースCYと、シースCY内において環状のトルクワイヤガイド(軸受)TWGにより支持された中空のフレキシブルなトルクワイヤTWと、シースCYの外部に設けられトルクワイヤTWを回転変位及び軸線方向変位させる駆動装置DRと、トルクワイヤTWの端部に外周を固定され内部光ファイバFBの端部に連結されたGRINレンズ(Gradient Index Lens)GLと、GRINレンズGLに取り付けられたプリズムPRと、シースCYの先端に固定されたキャップCPとを有している。本実施の形態においては、シースCYが集光光学系の一部を構成し、よってシースCYの側壁の両面が反射面を構成する。 FIG. 8 is a cross-sectional view of the probe according to the second embodiment. The probe PLB includes a cylindrical sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and a torque provided outside the sheath CY. A driving device DR that rotationally and axially displaces the wire TW, a GRIN lens (Gradient Index Lens) GL whose outer periphery is fixed to the end of the torque wire TW and connected to the end of the internal optical fiber FB, and a GRIN lens GL And a cap CP fixed to the tip of the sheath CY. In the present embodiment, the sheath CY constitutes a part of the condensing optical system, and thus both sides of the side wall of the sheath CY constitute a reflecting surface.
 光ファイバFB2を介してプローブPLB側に伝達された測定光L1は、光学的カップリングCPLを介して連結された内部光ファイバFBに入射し、GRINレンズにGLによって集光され、プリズムPRで反射されて被検体Sの組織に集光されるようになっている。被検体Sからの反射光L3は、プリズムPRにより反射され、GRINレンズGLに入射して内部光ファイバFBを通り、光学的カップリングCPLを介して光ファイバFB2に戻される。その他の構成については、図3の示す実施の形態と同様である。 The measurement light L1 transmitted to the probe PLB side via the optical fiber FB2 enters the internal optical fiber FB connected via the optical coupling CPL, is condensed by the GL on the GRIN lens, and is reflected by the prism PR. Thus, the light is condensed on the tissue of the subject S. The reflected light L3 from the subject S is reflected by the prism PR, enters the GRIN lens GL, passes through the internal optical fiber FB, and returns to the optical fiber FB2 through the optical coupling CPL. Other configurations are the same as those of the embodiment shown in FIG.
 図9は、第3の実施の形態にかかるプローブの断面図である。このプローブPLBは、プローブPLBは、筒状のシースCYと、シースCY内において環状のトルクワイヤガイド(軸受)TWGにより支持された中空のフレキシブルなトルクワイヤTWと、シースCYの外部に設けられトルクワイヤTWを回転変位及び軸線方向変位させる駆動装置DRと、トルクワイヤTWの端部に外周を固定され内部光ファイバFBの端部に連結されたGRINレンズ(Gradient Index Lens)GLと、GRINレンズGLに取り付けられた反射ミラーMRと、シースCYの先端に固定されたキャップCPとを有している。本実施の形態においても、シースCYが集光光学系の一部を構成し、よってシースCYの側壁の両面が反射面を構成する。 FIG. 9 is a cross-sectional view of a probe according to the third embodiment. The probe PLB includes a cylindrical sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and a torque provided outside the sheath CY. A driving device DR that rotationally and axially displaces the wire TW, a GRIN lens (Gradient Index Lens) GL whose outer periphery is fixed to the end of the torque wire TW and connected to the end of the internal optical fiber FB, and a GRIN lens GL And a cap CP fixed to the tip of the sheath CY. Also in the present embodiment, the sheath CY constitutes a part of the condensing optical system, and thus both sides of the side wall of the sheath CY constitute a reflecting surface.
 光ファイバFB2を介してプローブPLB側に伝達された測定光L1は、光学的カップリングCPLを介して連結された内部光ファイバFBに入射し、GRINレンズにGLによって集光され、反射ミラーMRで反射されて被検体Sの組織に集光されるようになっている。被検体Sからの反射光L3は、反射ミラーMRにより反射され、GRINレンズGLに入射して内部光ファイバFBを通り、光学的カップリングCPLを介して光ファイバFB2に戻される。その他の構成については、図3の示す実施の形態と同様である。 The measurement light L1 transmitted to the probe PLB side through the optical fiber FB2 is incident on the internal optical fiber FB connected through the optical coupling CPL, is condensed by the GL on the GRIN lens, and is reflected by the reflection mirror MR. The light is reflected and collected on the tissue of the subject S. The reflected light L3 from the subject S is reflected by the reflecting mirror MR, enters the GRIN lens GL, passes through the internal optical fiber FB, and returns to the optical fiber FB2 through the optical coupling CPL. Other configurations are the same as those of the embodiment shown in FIG.
 図10は、第4の実施の形態にかかるプローブの断面図である。このプローブPLBは、プローブPLBは、筒状のシースCYと、シースCY内において環状のトルクワイヤガイド(軸受)TWGにより支持された中空のフレキシブルなトルクワイヤTWと、シースCYの外部に設けられトルクワイヤTWを回転変位及び軸線方向変位させる駆動装置DRと、トルクワイヤTWの端部に外周を固定され内部光ファイバFBの端部に連結されたプリズムPRと、プリズムPRの出射面に取り付けられた凸レンズPLと、シースCYの先端に固定されたキャップCPとを有している。本実施の形態においても、シースCYが集光光学系の一部を構成し、よってシースCYの側壁の両面が反射面を構成する。 FIG. 10 is a cross-sectional view of a probe according to the fourth embodiment. The probe PLB includes a cylindrical sheath CY, a hollow flexible torque wire TW supported by an annular torque wire guide (bearing) TWG in the sheath CY, and a torque provided outside the sheath CY. A driving device DR for rotating and axially displacing the wire TW, a prism PR whose outer periphery is fixed to the end of the torque wire TW and connected to the end of the internal optical fiber FB, and an output surface of the prism PR It has a convex lens PL and a cap CP fixed to the tip of the sheath CY. Also in the present embodiment, the sheath CY constitutes a part of the condensing optical system, and thus both sides of the side wall of the sheath CY constitute a reflecting surface.
 光ファイバFB2を介してプローブPLB側に伝達された測定光L1は、光学的カップリングCPLを介して連結された内部光ファイバFBに入射し、更にプリズムPRで反射されて凸レンズPLを介して被検体Sの組織に集光されるようになっている。被検体Sからの反射光L3は、凸レンズPLを通過しプリズムPRにより反射され、内部光ファイバFBを通り、光学的カップリングCPLを介して光ファイバFB2に戻される。その他の構成については、図3の示す実施の形態と同様である。 The measurement light L1 transmitted to the probe PLB side through the optical fiber FB2 is incident on the internal optical fiber FB connected through the optical coupling CPL, is further reflected by the prism PR, and is received through the convex lens PL. It is focused on the tissue of the sample S. The reflected light L3 from the subject S passes through the convex lens PL, is reflected by the prism PR, passes through the internal optical fiber FB, and returns to the optical fiber FB2 through the optical coupling CPL. Other configurations are the same as those of the embodiment shown in FIG.
 図11は、別の実施の形態にかかる光干渉断層画像取得装置の概略構成図である。本実施の形態は、図2に示す実施の形態のカプラBSを、分割手段である分割用カプラDV、合成手段である合成用カプラCMP、第1サーキュレータC1,第2サーキュレータC2に置き換えている点が異なる。又、光学的カップリングCPLは、レンズLS1,LS2を有している。それ以外の構成は、省略したものも含めて上述の実施の形態と同様である。なお、第1サーキュレータC1と光学的カップリングCPLを連結する光ファイバFB22が測定光伝達手段を構成し、第2サーキュレータC2から参照ミラーRM側に延在する光ファイバFB32が参照光伝達手段を構成する。測定光路長は、分割用カプラDV-被検体の集光位置-光学的カップリングCPLまでの全光路長であり、参照光路長は、分割用カプラDV-参照ミラーRM-光学的カップリングCPLまでの全光路長である。測定光L1と反射光L3を伝達する測定光伝達手段は共通でも良し、独立していても良い。又、参照光L2と反射光L4を伝達する参照光伝達手段は共通でも良し、独立していても良い。 FIG. 11 is a schematic configuration diagram of an optical coherence tomographic image acquisition apparatus according to another embodiment. In the present embodiment, the coupler BS of the embodiment shown in FIG. 2 is replaced with a dividing coupler DV as a dividing means, a combining coupler CMP as a combining means, a first circulator C1, and a second circulator C2. Is different. The optical coupling CPL includes lenses LS1 and LS2. Other configurations are the same as those in the above-described embodiment, including those omitted. The optical fiber FB22 connecting the first circulator C1 and the optical coupling CPL constitutes the measurement light transmission means, and the optical fiber FB32 extending from the second circulator C2 to the reference mirror RM side constitutes the reference light transmission means. To do. The measurement optical path length is the total optical path length up to the splitting coupler DV-condensing position of the subject-optical coupling CPL, and the reference optical path length is up to the splitting coupler DV-reference mirror RM-optical coupling CPL. Is the total optical path length. The measurement light transmission means for transmitting the measurement light L1 and the reflected light L3 may be common or independent. Further, the reference light transmission means for transmitting the reference light L2 and the reflected light L4 may be common or may be independent.
 図11において、光源SLDから射出された低コヒーレント光Lは、分割用カプラDVと一体の光ファイバFB1の内部を伝播し、分割用カプラDVで測定光L1と参照光L2とに分割される。分割用カプラDVにより分割された測定光L1は、光ファイバFB21の内部を伝播し、第1サーキュレータC1を通過して光ファイバFB22の内部を伝播し、光学的カップリングCPLに入射する。ここで、光ファイバFB22の端部から出射された測定光L1は、レンズLS1で平行光に変換され、レンズLS2でプローブPLBの内部光ファイバFBの端部に集光される。明らかであるが、光ファイバFB22と、内部光ファイバFBとの間に相対回転変位が生じても、光学的カップリングCPLで伝達される光量は変化しない。また、内部光ファイバFBの光軸方向への相対変位は内部光ファイバFBをたわませた状態で伸張することで実現できる。 In FIG. 11, the low coherent light L emitted from the light source SLD propagates in the optical fiber FB1 integrated with the splitting coupler DV, and is split into the measuring light L1 and the reference light L2 by the splitting coupler DV. The measurement light L1 split by the splitting coupler DV propagates in the optical fiber FB21, passes through the first circulator C1, propagates in the optical fiber FB22, and enters the optical coupling CPL. Here, the measurement light L1 emitted from the end of the optical fiber FB22 is converted into parallel light by the lens LS1, and condensed by the lens LS2 on the end of the internal optical fiber FB of the probe PLB. Obviously, even if a relative rotational displacement occurs between the optical fiber FB22 and the internal optical fiber FB, the amount of light transmitted by the optical coupling CPL does not change. Further, the relative displacement of the internal optical fiber FB in the optical axis direction can be realized by stretching the internal optical fiber FB in a bent state.
 光学的カップリングCPLを介してプローブPLB側に伝達された測定光L1は、内部光ファイバFBを通り、GRINレンズにより収束光に変換され、プリズムPRで反射されて、被検体の組織に集光されるようになっている。被検体からの反射光L3は、プリズムPRで反射されてGRINレンズにより内部光ファイバFBの端面に集光され、更に内部光ファイバFBを通り、光学的カップリングCPLを介して光ファイバFB22に戻され、光ファイバFB22に沿って第1サーキュレータC1に向かう。反射光L3は、第1サーキュレータC1で、光ファイバFB23に沿って合成用カプラCMP側へ向かう。 The measurement light L1 transmitted to the probe PLB side through the optical coupling CPL passes through the internal optical fiber FB, is converted into convergent light by the GRIN lens, is reflected by the prism PR, and is condensed on the tissue of the subject. It has come to be. The reflected light L3 from the subject is reflected by the prism PR, collected on the end surface of the internal optical fiber FB by the GRIN lens, passes through the internal optical fiber FB, and returns to the optical fiber FB22 through the optical coupling CPL. Then, it goes to the first circulator C1 along the optical fiber FB22. The reflected light L3 is directed to the synthesis coupler CMP along the optical fiber FB23 by the first circulator C1.
 一方、図11において、分割用カプラDVにより分割された参照光L2は、光ファイバFB31の内部を伝播し、第2サーキュレータC2を通過して光ファイバFB32の内部を伝播し、その端面から参照光学系ROPに入射して、参照ミラーRMに向かって照射される。参照光L2は、参照ミラーRMで反射されて、反射光としての参照光L4となり、光ファイバFB32の端部から入射し、光ファイバFB32に沿って第2サーキュレータC2に向かう。反射光L4は、第2サーキュレータC2で、光ファイバFB33に沿って合成用カプラCMP側へ向かう。合成用カプラCMPにより反射光L3と反射光L4とが合成され、この合成光L5は、干渉信号取得手段である干渉信号検出部ISDに伝達されて、ここで干渉信号が取得される。画像取得手段である画像処理部IPは、この干渉信号を入力してフーリエ変換することで周波数解析を行い、光干渉断層画像を取得することができる。 On the other hand, in FIG. 11, the reference light L2 split by the splitting coupler DV propagates in the optical fiber FB31, passes through the second circulator C2, propagates in the optical fiber FB32, and the reference optical from its end face. The light enters the system ROP and is irradiated toward the reference mirror RM. The reference light L2 is reflected by the reference mirror RM, becomes reference light L4 as reflected light, enters from the end of the optical fiber FB32, and travels along the optical fiber FB32 toward the second circulator C2. The reflected light L4 is directed to the synthesizing coupler CMP along the optical fiber FB33 by the second circulator C2. The reflected light L3 and the reflected light L4 are combined by the combining coupler CMP, and the combined light L5 is transmitted to the interference signal detection unit ISD which is an interference signal acquisition unit, where an interference signal is acquired. The image processing unit IP, which is an image acquisition means, can input this interference signal and perform Fourier transform to perform frequency analysis and acquire an optical coherence tomographic image.
 尚、本発明は、SD-OCT測定、SS-OCT測定のいずれにも適用可能であり、集光光学系の構成は実施例の構成でなくともよい。 Note that the present invention can be applied to both SD-OCT measurement and SS-OCT measurement, and the configuration of the condensing optical system may not be the configuration of the embodiment.
 ADJ 調整装置
 BS カプラ
 CONT 制御装置
 CN コネクタ
 CY シース
 DR 駆動装置
 FB 内部光ファイバ
 FB1 光ファイバ
 FB2 光ファイバ
 FB3 光ファイバ
 FB4 光ファイバ
 FP 集光位置
 GL GRINレンズ
 H 配線
 IP 画像処理部
 ISD 干渉信号検出部
 L 低コヒーレント光
 L1 測定光
 L2 参照光
 L3 反射した測定光
 L4 反射した参照光
 L5 合成光
 MB 本体
 MNT モニタ
 MR 反射ミラー
 PL 凸レンズ
 PL1 面
 PLB プローブ
 PP 平行平板
 PP1 面
 PP2 面
 PR プリズム
 RM 参照ミラー
 ROP 参照光学系
 SLD 光源
 TW トルクワイヤ
 WS1~WS4 波形
ADJ adjustment device BS coupler CONT control device CN connector CY sheath DR drive device FB internal optical fiber FB1 optical fiber FB2 optical fiber FB3 optical fiber FB4 optical fiber FP condensing position GL GRIN lens H wiring IP image processing unit ISD interference signal detection unit L Low coherent light L1 Measurement light L2 Reference light L3 Reflected measurement light L4 Reflected reference light L5 Composite light MB Body MNT monitor MR Reflective mirror PL Convex lens PL1 surface PLB probe PP Parallel plate PP1 surface PP2 surface PR prism RM Reference mirror ROP Reference optics System SLD Light source TW Torque wire WS1 to WS4 Waveform

Claims (9)

  1.  広帯域波長の光を出射する光源と、
     前記光源からの光を参照光と測定光とに分割する分割手段と、
     前記分割手段により分割された前記参照光を伝達する参照光伝達手段と、
     前記参照光伝達手段を介して伝達された前記参照光を反射し、前記参照光伝達手段に入射させるための参照ミラーと、
     前記分割手段により分割された前記測定光を伝達する測定光伝達手段と、
     前記測定光伝達手段を介して伝達された前記測定光を、被検体に向かって集光させると共に、前記被検体から反射した測定光を受光して、前記測定光伝達手段に入射させるための集光光学系を含むプローブと、
     前記参照光伝達手段を介して戻った前記参照光と、前記測定光伝達手段を介して戻った前記測定光とを合成して合成光を形成する合成手段と、
     前記合成手段により形成された合成光より干渉信号を取得する干渉信号取得手段と、
     前記干渉信号取得手段により取得された前記干渉信号を周波数成分に分解して、それに応じて前記被検体の断層画像を取得する画像取得手段とを有し、
     前記集光光学系は、少なくとも1つの反射面を有し、
     前記分割手段から前記参照光伝達手段に沿って前記参照ミラーを経て前記合成手段に至るまでの参照光路長が、前記分割手段から前記測定光伝達手段に沿って前記集光光学系の集光位置を経て前記合成手段に至るまでの測定光路長より長いことを特徴とする光干渉断層画像取得装置。
    A light source that emits light of a broadband wavelength;
    Splitting means for splitting light from the light source into reference light and measurement light;
    Reference light transmitting means for transmitting the reference light divided by the dividing means;
    A reference mirror for reflecting the reference light transmitted through the reference light transmitting means and making it incident on the reference light transmitting means;
    Measurement light transmission means for transmitting the measurement light divided by the division means;
    The measurement light transmitted through the measurement light transmission means is collected toward the subject, and the measurement light reflected from the subject is received and incident on the measurement light transmission means. A probe including an optical optical system;
    Combining means for combining the reference light returned via the reference light transmitting means and the measurement light returned via the measuring light transmitting means to form a combined light;
    Interference signal acquiring means for acquiring an interference signal from the combined light formed by the combining means;
    Image acquisition means for decomposing the interference signal acquired by the interference signal acquisition means into frequency components and acquiring a tomographic image of the subject accordingly;
    The condensing optical system has at least one reflecting surface,
    The reference optical path length from the dividing means to the combining means via the reference mirror along the reference light transmitting means is the condensing position of the condensing optical system along the measuring light transmitting means from the dividing means. An optical coherence tomographic image acquisition apparatus characterized in that it is longer than the measurement optical path length from the first through the synthesis means.
  2.  前記参照光路長と前記測定光路長との光路長差Δlは、以下の式を満たすことを特徴とする請求項1に記載の光干渉断層画像取得装置。
     0.3/π・(λ/NA)<Δl<3.0/π・(λ/NA)   (1)
    但し、NAは被検体に入射する1/e強度光線の開口数NAであり、λは前記光源から出射される光の中心波長である。
    The optical coherence tomographic image acquisition apparatus according to claim 1, wherein an optical path length difference Δl between the reference optical path length and the measurement optical path length satisfies the following expression.
    0.3 / π · (λ / NA 2 ) <Δl <3.0 / π · (λ / NA 2 ) (1)
    Where NA is the numerical aperture NA of 1 / e 2 intensity light incident on the subject, and λ is the center wavelength of the light emitted from the light source.
  3.  前記反射面の位置は、前記反射面で反射した反射光が前記干渉信号として取得される画像取得範囲にあることを特徴とする請求項1または2に記載の光干渉断層画像取得装置。 The optical coherence tomographic image acquisition apparatus according to claim 1 or 2, wherein the position of the reflection surface is within an image acquisition range in which reflected light reflected by the reflection surface is acquired as the interference signal.
  4.  前記画像取得範囲は、前記干渉信号を検出するデータのサンプリング数により決定されることを特徴とする請求項3に記載の光干渉断層画像取得装置。 4. The optical coherence tomographic image acquisition apparatus according to claim 3, wherein the image acquisition range is determined by a sampling number of data for detecting the interference signal.
  5.  前記画像取得範囲は、前記プローブから出射する測定光の可干渉距離により決定されることを特徴とする請求項3に記載の光干渉断層画像取得装置。 The optical coherence tomographic image acquisition apparatus according to claim 3, wherein the image acquisition range is determined by a coherence distance of measurement light emitted from the probe.
  6.  前記画像取得範囲は、20mm以下であることを特徴とする請求項3に記載の光干渉断層画像取得装置。 4. The optical coherence tomographic image acquisition apparatus according to claim 3, wherein the image acquisition range is 20 mm or less.
  7.  前記集光光学系の反射面は、入射した前記測定光を反射して光軸に沿って戻すことを特徴とする請求項1~6のいずれかに記載の光干渉断層画像取得装置。 The optical coherence tomographic image acquisition apparatus according to any one of claims 1 to 6, wherein the reflecting surface of the condensing optical system reflects the incident measurement light and returns it along the optical axis.
  8.  広帯域波長の光を出射する光源と、
     前記光源からの光を参照光と測定光とに分割する分割手段と、
     前記分割手段により分割された前記参照光を伝達する参照光伝達手段と、
     前記参照光伝達手段を介して伝達された前記参照光を反射し、前記参照光伝達手段に入射させるための参照ミラーと、
     前記分割手段により分割された前記測定光を伝達する測定光伝達手段と、
     前記測定光伝達手段を介して伝達された前記測定光を、被検体に向かって集光させると共に、前記被検体から反射した測定光を受光して、前記測定光伝達手段に入射させるための集光光学系を含むプローブと、
     前記参照光伝達手段を介して戻った前記参照光と、前記測定光伝達手段を介して戻った前記測定光とを合成して合成光を形成する合成手段と、
     前記合成手段により形成された合成光より干渉信号を取得する干渉信号取得手段と、
     前記干渉信号取得手段により取得された前記干渉信号を周波数成分に分解して、それに応じて前記被検体の断層画像を取得する画像取得手段とを有する光干渉断層画像取得装置に用いるプローブであって、
     前記プローブの集光光学系は、少なくとも1つの反射面を有し、前記分割手段から前記参照光伝達手段に沿って前記参照ミラーを経て前記合成手段に至るまでの参照光路長が、前記分割手段から前記測定光伝達手段に沿って前記集光光学系の集光位置を経て前記合成手段に至るまでの測定光路長より長いことを特徴とするプローブ。
    A light source that emits light of a broadband wavelength;
    Splitting means for splitting light from the light source into reference light and measurement light;
    Reference light transmitting means for transmitting the reference light divided by the dividing means;
    A reference mirror for reflecting the reference light transmitted through the reference light transmission means and making it incident on the reference light transmission means;
    Measurement light transmission means for transmitting the measurement light divided by the division means;
    The measurement light transmitted through the measurement light transmission means is collected toward the subject, and the measurement light reflected from the subject is received and incident on the measurement light transmission means. A probe including an optical optical system;
    Combining means for combining the reference light returned via the reference light transmitting means and the measurement light returned via the measuring light transmitting means to form a combined light;
    Interference signal acquiring means for acquiring an interference signal from the combined light formed by the combining means;
    A probe used in an optical coherence tomographic image acquisition apparatus having image acquisition means for decomposing the interference signal acquired by the interference signal acquisition means into frequency components and acquiring a tomographic image of the subject accordingly. ,
    The condensing optical system of the probe has at least one reflecting surface, and a reference optical path length from the dividing unit to the combining unit through the reference mirror along the reference light transmitting unit is equal to the dividing unit. A probe having a length longer than the measurement optical path length from the converging position of the condensing optical system to the synthesizing means along the measuring light transmitting means.
  9.  光源から出射された広帯域波長の光を、参照光と測定光とに分割手段を用いて分割するステップと、
     分割した前記参照光を、参照光伝達手段を介して伝達し、参照ミラーで反射するステップと、
     分割した前記測定光を、測定光伝達手段と少なくとも1つの反射面を有する集光光学系と、を介して被検体に向かって集光させると共に、前記被検体から反射した測定光を受光するステップと、
     反射した前記参照光と反射した前記測定光とを合成手段を用いて合成することによって得られた合成光より干渉信号を取得するステップと、
     取得された前記干渉信号を周波数成分に分解して、それに応じて前記被検体の断層画像を取得するステップとを有し、
     前記分割手段から前記参照光伝達手段に沿って前記参照ミラーを経て前記合成手段に至るまでの参照光路長を、前記分割手段から前記測定光伝達手段に沿って前記集光光学系の集光位置を経て前記合成手段に至るまでの測定光路長より長くしたことを特徴とする光干渉断層画像取得方法。
    Splitting light of a broadband wavelength emitted from a light source into reference light and measurement light using a splitting means;
    Transmitting the divided reference light through reference light transmission means and reflecting it by a reference mirror;
    Condensing the divided measurement light toward the subject via the measurement light transmitting means and a condensing optical system having at least one reflecting surface, and receiving the measurement light reflected from the subject When,
    Obtaining an interference signal from the combined light obtained by combining the reflected reference light and the reflected measurement light using a combining unit;
    Decomposing the acquired interference signal into frequency components, and obtaining a tomographic image of the subject accordingly,
    The reference optical path length from the dividing unit to the combining unit through the reference mirror along the reference light transmitting unit is determined, and the condensing position of the condensing optical system from the dividing unit along the measuring light transmitting unit. An optical coherence tomographic image acquisition method characterized in that it is longer than the measurement optical path length up to the synthesis means.
PCT/JP2010/053413 2009-05-28 2010-03-03 Light interference tomogram acquiring device, probe used for light interference tomogram acquiring device, and light interference tomogram acquiring method WO2010137373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011515927A JP5447512B2 (en) 2009-05-28 2010-03-03 Optical coherence tomographic image acquisition apparatus and probe used in optical coherence tomographic image acquisition apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-129206 2009-05-28
JP2009129206 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137373A1 true WO2010137373A1 (en) 2010-12-02

Family

ID=43222499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053413 WO2010137373A1 (en) 2009-05-28 2010-03-03 Light interference tomogram acquiring device, probe used for light interference tomogram acquiring device, and light interference tomogram acquiring method

Country Status (2)

Country Link
JP (1) JP5447512B2 (en)
WO (1) WO2010137373A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016210132A1 (en) * 2015-06-26 2016-12-29 Lightlab Imaging, Inc. Gradient index lens assembly-based imaging apparatus, systems and methods
CN106537083A (en) * 2014-08-12 2017-03-22 视乐有限公司 Instantaneous time domain optical coherence tomography
WO2018105165A1 (en) * 2016-12-05 2018-06-14 住友電気工業株式会社 Oct catheter
JP2019535462A (en) * 2017-05-16 2019-12-12 パク ヨンホPark, Yonho Flexible ductile shape estimation apparatus and endoscope system including the same
WO2022039128A1 (en) * 2020-08-19 2022-02-24 デラウェーブ株式会社 Optical tomograph operation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300801A (en) * 2005-04-22 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Optical coherent tomography unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300801A (en) * 2005-04-22 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Optical coherent tomography unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537083A (en) * 2014-08-12 2017-03-22 视乐有限公司 Instantaneous time domain optical coherence tomography
JP2017524138A (en) * 2014-08-12 2017-08-24 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング Instantaneous time-domain optical coherence tomography
WO2016210132A1 (en) * 2015-06-26 2016-12-29 Lightlab Imaging, Inc. Gradient index lens assembly-based imaging apparatus, systems and methods
WO2018105165A1 (en) * 2016-12-05 2018-06-14 住友電気工業株式会社 Oct catheter
JP2019535462A (en) * 2017-05-16 2019-12-12 パク ヨンホPark, Yonho Flexible ductile shape estimation apparatus and endoscope system including the same
JP2021098095A (en) * 2017-05-16 2021-07-01 パク ヨンホPark, Yonho Flexible ductile part shape estimation device, and endoscope system including the same
JP7194462B2 (en) 2017-05-16 2022-12-22 ヨンホ パク Flexible ductile part shape estimation device and endoscope system including the same
US11896198B2 (en) 2017-05-16 2024-02-13 Yonho PARK Flexible portion shape estimating device and endoscope system having the same
WO2022039128A1 (en) * 2020-08-19 2022-02-24 デラウェーブ株式会社 Optical tomograph operation method
WO2022038697A1 (en) * 2020-08-19 2022-02-24 デラウェーブ株式会社 Optical tomographic imaging device, and method for processing tomographic images

Also Published As

Publication number Publication date
JP5447512B2 (en) 2014-03-19
JPWO2010137373A1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5704516B2 (en) Probe for optical tomographic image measuring apparatus and method for adjusting probe
US8922781B2 (en) Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US7620445B2 (en) Apparatus for acquiring tomographic image formed by ultrasound-modulated fluorescence
US8115934B2 (en) Device and method for imaging the ear using optical coherence tomography
JP5069585B2 (en) Optical tomographic imaging system using an optical probe
JP4555074B2 (en) Apparatus for imaging an object and apparatus for delivering low coherence optical radiation
JP4640813B2 (en) Optical probe and optical tomographic imaging apparatus
JP2007135947A (en) Optical probe and optical tomographic imaging system
US20080228033A1 (en) Optical Coherence Tomography Probe Device
WO2010050296A1 (en) Optical tomographic image forming method
JP2007275193A (en) Optical probe and optical tomographic imaging equipment
CN105748041A (en) System and method for suppressing speckle noise in optic coherence tomography
US20120194661A1 (en) Endscopic spectral domain optical coherence tomography system based on optical coherent fiber bundle
JP5447512B2 (en) Optical coherence tomographic image acquisition apparatus and probe used in optical coherence tomographic image acquisition apparatus
JP2008289850A (en) Optical probe and optical tomography apparatus
JP2006192059A (en) Tomographic measuring instrument
JP7257974B2 (en) Eliminate or reduce crosstalk in optical coherence tomography
Feng et al. Lensless fiber imaging with long working distance based on active depth measurement
JP2008142454A (en) Medical diagnostic probe and medical diagnostic system
JP2011089887A (en) Optical tomographic image display system
WO2012014920A1 (en) Optical tomographic imaging system and optical tomographic imaging method
US20210282642A1 (en) Scanning mechanism for multimodality intravascular and endoscopic imaging catheters
JP2006212355A (en) Optical computed tomography imaging device
Wurster et al. Endoscopic optical coherence tomography angiography using a piezo scanner
JP5105558B2 (en) Optical probe and optical tomographic imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011515927

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780333

Country of ref document: EP

Kind code of ref document: A1