WO2010137155A1 - Mobile communication system, base station, mobile station, and wireless communication method - Google Patents

Mobile communication system, base station, mobile station, and wireless communication method Download PDF

Info

Publication number
WO2010137155A1
WO2010137155A1 PCT/JP2009/059802 JP2009059802W WO2010137155A1 WO 2010137155 A1 WO2010137155 A1 WO 2010137155A1 JP 2009059802 W JP2009059802 W JP 2009059802W WO 2010137155 A1 WO2010137155 A1 WO 2010137155A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
enb
station
received
Prior art date
Application number
PCT/JP2009/059802
Other languages
French (fr)
Japanese (ja)
Inventor
紀明 河野
秀和 佐藤
秀雄 加藤
義久 中山
晋一郎 小林
昌代 寺田
弘幸 長島
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2009/059802 priority Critical patent/WO2010137155A1/en
Publication of WO2010137155A1 publication Critical patent/WO2010137155A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a mobile communication system, a base station, a mobile station, and a radio communication method.
  • FIG. 28 is a sequence diagram illustrating an example of a processing procedure of a handover process in a conventional mobile communication system.
  • the mobile station transmits a cell formed by a base station (handover source base station, hereinafter referred to as HO source base station) that is currently communicating with another base station (handover destination base station, hereinafter,
  • HO source base station a base station that is currently communicating with another base station
  • handover destination base station a handover request is transmitted to the HO destination base station via the HO source base station (step S001).
  • the handover request includes information necessary when the HO destination base station executes the handover process, such as cell identification information formed by the HO destination base station and information on the mobile station.
  • the HO destination base station that has received the handover request determines whether or not the mobile station can be accepted (step S002). If the HO destination base station determines that the mobile station can be accepted, the HO destination base station secures radio resources used for radio communication with the mobile station (step S003), and sends a handover request response signal (Handover Request Acknowledge) to the HO source base. Transmit to the station (step S004).
  • the HO source base station transmits a handover command signal (Handover Command) to the mobile station (step S005).
  • the handover instruction signal includes information related to radio resources used by the mobile station for radio communication with the HO destination base station.
  • the mobile station When the mobile station receives the handover instruction signal, the mobile station secures radio resources according to the radio resource information included in the handover instruction signal, and enables communication with the HO destination base station (step S006). After that, the mobile station transmits / receives a synchronization establishment signal, timing information, etc. in order to establish frame synchronization and time alignment adjustment with the HO destination base station. A handover completion signal is transmitted to the station (step S007). Then, the HO destination base station that has received the handover complete signal transmits a radio resource release instruction signal to the HO source base station (step S008), and the HO source base station is based on the radio resource release instruction signal. The radio resource is released (step S009). As a result, the handover process is completed, and the mobile station can continue radio communication with the HO destination base station.
  • the handover process is a relatively complicated process that requires securing and releasing radio resources and exchanging various signals associated with these processes. It takes a long time to complete the process. Therefore, especially in areas where small-zone cells with small cell radii are located, where handovers are likely to occur, the continuous generation of handovers increases the data transfer between base stations and secures radio resources. Since it takes time to open or release the communication, there is a possibility that the communication quality is deteriorated or the communication is interrupted.
  • the present invention has been made in view of the above, and even when a mobile station frequently repeats movement between cells, it is possible to prevent deterioration in communication quality and interruption of communication due to handover processing. It is an object to provide a mobile communication system, a base station, a mobile station, and a radio communication method.
  • the mobile communication system disclosed in the present case is, as one aspect, a mobile station and a mobile station when receiving a handover request from the mobile station.
  • a mobile communication system including a plurality of base stations that execute a handover process for securing radio resources for communication and enabling communication with the mobile station, wherein the mobile station includes a plurality of base stations
  • a group cell construction request transmitting means for transmitting a group cell construction request for requesting construction of a group cell, which is a virtually integrated cell formed by each station, to the base station in the area;
  • Dependent cell determination means for determining a dependent cell included in a group cell having a cell formed by the own station as a reference cell when the group cell construction request is received from the mobile station
  • Radio resource information transmitting means for transmit
  • the base station, the mobile station, and the radio communication method disclosed in this case even when the mobile station frequently repeats movement between cells, the communication quality associated with the handover process is improved. There is an effect that it is possible to prevent deterioration and interruption of communication.
  • FIG. 1 is a diagram illustrating the configuration of the mobile communication system according to the first embodiment.
  • FIG. 2 is a conceptual diagram of the group cell according to the first embodiment.
  • FIG. 3 is a diagram for explaining how a group cell is constructed for each UE.
  • FIG. 4 is a block diagram of the configuration of the eNB according to the first embodiment.
  • FIG. 5 is a diagram for explaining processing executed by the scheduling unit and the data buffer unit.
  • FIG. 6 is a block diagram of the configuration of the UE according to the first embodiment.
  • FIG. 7 is a sequence diagram illustrating an example of a processing procedure of a handover process in the mobile communication system according to the first embodiment.
  • FIG. 8 is a flowchart illustrating an outline of a processing procedure of the eNB 1M according to the present embodiment.
  • FIG. 9 is a sequence diagram illustrating an example of a processing procedure of master cell determination processing according to the present embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of the processing procedure of the slave cell determination processing according to the present embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of a processing procedure of data transfer processing and data sharing management processing according to the present embodiment.
  • FIG. 12 is a sequence diagram illustrating an example of a processing procedure of the radio resource sharing process and the retransmission control process according to the present embodiment.
  • FIG. 13A is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell formed by the eNB 1M.
  • FIG. 13-2 is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M.
  • FIG. 14 is a sequence diagram illustrating an example of the processing procedure of the slave cell change processing according to the present embodiment.
  • FIG. 15 is a sequence diagram illustrating a processing procedure of master cell determination processing when a group cell construction request is automatically transmitted.
  • FIG. 16 is a block diagram illustrating a configuration of a UE according to another embodiment.
  • FIG. 17A is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell formed by the eNB 1M.
  • FIG. 17-2 is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M.
  • FIG. 18 is a block diagram illustrating a configuration of a UE according to another embodiment.
  • FIG. 19 is a sequence diagram illustrating another example of the processing procedure of the slave cell change process.
  • FIG. 20 is a sequence diagram illustrating an example of a processing procedure of a slave cell determination process when a slave cell is determined based on cell position coordinate information received from each eNB.
  • FIG. 21A is a sequence diagram illustrating a processing procedure when it is determined that the UE is moving and the number of slave cells is increased.
  • FIG. 21-2 is a sequence diagram illustrating a processing procedure when it is determined that the UE is stationary and the number of slave cells is decreased.
  • FIG. 22 is a sequence diagram illustrating an example of a processing procedure when the transmission power in the group cell is different.
  • FIG. 23 is a sequence diagram illustrating an example of a processing procedure when downlink transmission power is changed based on feedback information from the UE.
  • FIG. 24-1 is a diagram illustrating a state in which some eNBs 1S do not perform data transmission to the UE.
  • FIG. 24-2 is a diagram illustrating a state in which the eNB 1S that does not perform data transmission to the UE is changed as the UE moves.
  • FIG. 25 is a diagram illustrating an example of a processing procedure when dynamic control of a downlink power transmission target is performed.
  • FIG. 26 is a sequence diagram illustrating a processing procedure of uplink transmission power control processing.
  • FIG. 27 is a sequence diagram showing a processing procedure for uplink transmission power control processing based on reception power of pilot signals received via a master cell and a slave cell.
  • FIG. 28 is a sequence diagram illustrating an example of a processing procedure of a handover process in a conventional mobile communication system.
  • FIG. 1 is a diagram showing a configuration of a mobile communication system according to the present embodiment
  • FIG. 2 is a conceptual diagram of a group cell according to the present embodiment
  • FIG. 3 is a diagram for explaining how a group cell is constructed for each UE FIG.
  • a packet communication system based on 3GPP-LTE (3rd Generation Partnership Project Long Term Evolution) standard will be described as an example of a mobile communication system.
  • 3GPP-LTE 3rd Generation Partnership Project Long Term Evolution
  • the mobile communication system S includes eNBs (evolved Node-B) 1a to 1j, UEs (User Equipment) 2a and 2b, and MME / UPE (Mobile Management Entity / User Plane). Entity) 3.
  • eNBs evolved Node-B
  • UEs User Equipment
  • MME Mobile Management Entity / User Plane
  • the eNBs 1a to 1j correspond to the base stations according to the present embodiment, and are wireless communication apparatuses that communicate with the UEs 2a and 2b existing in the local station cell via wireless links.
  • the radio link includes a downlink (DL) that is a direction from the eNBs 1a to 1j to the UEs 2a and 2b, and an uplink (UL) that is the opposite direction.
  • DL downlink
  • UL uplink
  • RNC Radio Network Controller
  • Node-B base station
  • SAE Long Term Evolution / System Architecture Evolution
  • an eNB enhanced Node-B
  • the eNBs 1a to 1j according to the present embodiment have both the Node-B function and the RNC function.
  • the function of controlling the handover process etc.
  • eNBs are connected to each other using a communication interface called X2 (hereinafter referred to as “X2 interface”).
  • X2 interface is a newly added interface in 3GPP-LTE.
  • various signals can be directly transferred between the eNBs.
  • eNB1 arbitrary eNBs 1a to 1j among eNBs 1a to 1j are simply referred to as “eNB1”.
  • the UEs 2a and 2b are mobile stations such as portable terminals, and communicate with other UEs, external packet networks, and the like via the eNB 1 that forms a cell in the area.
  • UE2 arbitrary UEs 2a and 2b out of UEs 2a and 2b are simply referred to as “UE2”.
  • MME / UPE3 corresponds to a host device of eNB1, and has a function of managing and controlling a plurality of eNB1, a function of managing location registration of UE2, a function of transmitting and receiving messages between UE2 and an external packet network, etc. It is a core network system device.
  • ENB1 and MME / UPE3 are connected to each other by a communication interface called S1 (hereinafter referred to as “S1 interface”). Similar to the X2 interface, the S1 interface is an interface defined in 3GPP-LTE.
  • the mobile communication system S includes ten eNBs 1a to 1j and two UEs 2a and 2b, but the number of eNBs and the number of UEs are not limited thereto.
  • each eNB 1a to 1j forms one or a plurality of cells. Specifically, as shown in FIG. 2, eNB 1a forms cells 5a to 5c, eNB 1b forms cells 5d to 5f, eNB 1c forms cells 5g to 5i, and eNB 1d forms cells 5j and 5k.
  • the eNB 1e forms cells 5l and 5m.
  • eNB 1f forms cells 5n and 5o
  • eNB 1g forms cells 5p and 5q
  • eNB 1h forms cells 5r to 5t
  • eNB 1i forms cell 5u
  • eNB 1j forms cells 5v to 5x.
  • any of the cells 5a to 5x is simply referred to as “cell 5”.
  • a group cell that is a cell in which cells formed by a plurality of eNBs 1 are virtually integrated is constructed.
  • the UE 2a receives a predetermined operation from the user, the UE 2a transmits a group cell construction request to the eNB 1a that forms the cell 5a being located.
  • the eNB 1a that has received the group cell construction request from the UE 2a constructs the group cell 50 using the cell 5a in which the UE 2a is located as a reference cell.
  • the eNB 1a determines a dependent cell.
  • the subordinate cell is a cell 5 other than the reference cell included in the group cell 50.
  • the eNB 1a determines a neighboring cell of the cell 5a that is the reference cell as a subordinate cell.
  • the eNB 1a determines a cell adjacent to the cell 5a as a dependent cell. That is, as illustrated in FIG. 2, the eNB 1a determines the cells 5b and 5c formed by the own station, the cells 5e and 5e formed by the eNB 1b, and the cells 5g and 5i formed by the eNB 1c as subordinate cells.
  • the eNB 1a determines radio resources for communication with the UE 2a, which are allocated in common to the eNBs 1b and 1c forming the dependent cells and the own station. Specifically, the eNB 1a acquires the resource allocation status information from the eNBs 1b and 1c forming the dependent cells, and is common to the local station and the eNB 1b and 1c from the acquired resource allocation status information and the resource allocation status information of the local station. Identify available radio resources.
  • the eNB 1a determines the specified free radio resource as a radio resource for commonly allocating to the eNBs 1b and 1c and the own station, and sets information on the determined radio resource (hereinafter referred to as “radio resource information”) to the eNB 1b, Send to 1c.
  • radio resource information information on the determined radio resource
  • eNB1b and 1c which received eNB1a and radio
  • the eNB 1a transfers data to be transmitted to the UE 2a to the eNB 1b and 1c.
  • eNB1a and eNB1b, 1c transmit the data to UE2a simultaneously using the radio
  • FIG. the data for the UE 2a is transmitted not only from the cell 5a where the UE 2a is located, but also from the other cells 5b, 5c, 5e, 5g, and 5i that constitute the group cell 50.
  • the mobile communication system S virtually integrates the plurality of cells 5 as a group cell by sharing the radio resources for communication with the UE 2 among the plurality of cells 5. .
  • the UE 2 can treat the group cell 50 virtually as a single cell.
  • the eNB 1 does not need to perform a handover process even when the UE 2 moves between the cells 5 in the group cell 50. As a result, even when the UE 2 frequently moves to another cell 5 in the group cell 50, it is possible to prevent communication quality deterioration and communication interruption caused by the handover process.
  • eNB1M which forms a master cell
  • eNB1S eNB1 which forms only a slave cell
  • the group cell 50 is constructed in units of UE2.
  • the group cell 50a constructed for the UE 2a is a group cell in which the eNB 1a is the eNB 1M and the eNBs 1b and 1c are the eNB 1S.
  • the group cell 50a uses the cell 5a formed by the eNB 1a as a master cell, and sets the cells 5b and 5c of the eNB 1a, the cells 5e and 5f of the eNB 1b, and the cells 5g and 5i of the eNB 1c as slave cells.
  • the group cell 50b constructed for the UE 2b is a group cell in which the eNB 1b is eNB 1M and the eNBs 1a, 1c, 1h, and 1j are eNB 1S. Specifically, the group cell 50b uses the cell 5e formed by the eNB 1b as a master cell, the cell 5a of the eNB 1a, the cells 5d and 5f of the eNB 1b, the cells 5g and 5i of the eNB 1c, the cell 5t of the eNB 1h, and the eNB 1j.
  • the cell 5v is a slave cell.
  • each eNB 1 manages for each UE 2 whether the cell formed by itself is a master cell or a slave cell.
  • group cell 50 arbitrary group cells 50a and 50b after group cells 50a and 50b constructed for each UE 2a and 2b are simply referred to as “group cell 50”.
  • the mobile communication system S according to the present embodiment changes the master cell and the slave cell that configure the group cell 50 as the UE 2 moves. For example, in the mobile communication system S according to the present embodiment, when the UE 2 moves to the end of the group cell 50, the slave cell is reconstructed, and when the communication quality between the UE 2 and the master cell deteriorates, the master cell is changed. Do.
  • FIG. 4 is a block diagram illustrating a configuration of the eNB 1 according to the present embodiment.
  • the eNB 1 according to the present embodiment includes an IF unit 10, a handover processing unit 11, a lower layer processing unit 14, an upper layer processing unit 15, a master control unit 12, and a slave control unit 13. And a scheduling unit 16 and a data buffer unit 17.
  • the IF unit 10 is an interface for transmitting and receiving various signals to and from another eNB1.
  • the IF unit 10 in this embodiment corresponds to the X2 interface.
  • the handover processing unit 11 executes a handover process when receiving a handover request from the UE 2. Specifically, when the handover processing unit 11 receives a handover request from the UE 2, the handover processing unit 11 secures radio resources for communication with the UE 2 and enables communication with the UE 2.
  • the master control unit 12 performs processing related to determination of the master cell and change of the master cell.
  • the master control unit 12 includes a master cell determination unit 121, a master cell change unit 122, a power calculation unit 123, and a cell information management unit 124.
  • the master cell determination unit 121 determines the cell 5 in which the UE 2 is located as the master cell. Specifically, the master cell determination unit 121 registers the cell 5 where the UE 2 is located in the cell information management unit 124 described later as the master cell of the group cell 50 for the UE 2. Thereby, eNB1 which received the group cell construction request can judge that the own station is eNB1M.
  • the master cell determining unit 121 determines the cell 5 of its own station as the master cell
  • the master cell determining unit 121 transmits a slave cell determining request to the slave cell determining unit 131 described later.
  • the slave cell determination unit 131 performs determination processing of the slave cells included in the group cell 50. The slave cell determination process will be described later.
  • the master cell changing unit 122 changes the master cell when the communication quality between the UE 2 and the master cell deteriorates. Specifically, when the own station is the eNB 1S, the master cell changing unit 122 receives the pilot signal calculated by the power calculating unit 123 described later based on the pilot signal received from the UE 2 via the slave cell of the own station. Information on power (hereinafter referred to as “received power information”) is transmitted to the eNB 1M via the X2 interface.
  • the master cell changing unit 122 compares the received power indicated by the received power information received from each eNB 1S and the received power of the pilot signal received through the slave cell of the own station, A slave cell with high received power is determined. Subsequently, the master cell changing unit 122 compares the determined received power of the slave cell with the received power of the pilot signal received from the UE 2 via the master cell.
  • the master cell changing unit 122 changes the slave cell to a new master cell, Change the current master cell to a slave cell.
  • the master cell changing unit 122 instructs the cell information managing unit 124 described later to change the cell 5 to a master cell and change the current master cell to a slave cell.
  • the new master cell is the cell 5 formed by the current eNB 1M
  • the current eNB 1M continues to function as the eNB 1M.
  • the master cell changing unit 122 transmits a notification that the cell 5 should be a master cell (hereinafter, referred to as “master cell change notification”) to the other eNB 1 that forms the cell 5.
  • master cell change notification a notification that the cell 5 should be a master cell
  • the master cell changing unit 122 instructs the cell information managing unit 124 to change the current master cell to a slave cell.
  • the master cell change unit 122 when the master cell change unit 122 receives the master cell change notification from the eNB 1M when the own station is the eNB 1S, the master cell change unit 122 becomes a target of mastering with respect to the cell information management unit 124 based on the master cell change notification. Instruct to change cell 5 to master cell. Thereby, this eNB1S comes to function as eNB1M.
  • the master cell change notification includes information on each eNB 1 that constructs the group cell 50.
  • the master cell changing unit 122 notifies each eNB1S that constructs the group cell 50 that the own station has become eNB1M. Thereby, each eNB1S which constructs the group cell 50 can specify a new eNB1M.
  • the master cell changing unit 122 changes the slave cell to the master cell when the communication quality between the UE 2 and the master cell is higher. It functions as an example of reference changing means for changing a master cell formed by the own station to a slave cell.
  • the master cell changing unit 122 functions as an example of a reference changing unit, so that the highest received power among the received power represented by the received power information received from the eNB 1S forming the slave cell is When the received power of the pilot signal received from UE2 is higher, a request to change the slave cell to the master cell is sent to eNB 1S that forms the slave cell that has transmitted the received power information indicating the highest received power. At the same time, the master cell formed by the own station is changed to a slave cell.
  • the power calculator 123 calculates the received power of the pilot signal that is periodically transmitted from the UE2.
  • the power calculation by the power calculation unit 123 is performed for each cell 5 formed by the own station.
  • the power calculation part 123 transmits the received power information regarding the calculated received power to the eNB 1M via the X2 interface when the own station is the eNB 1S.
  • the power calculation part 123 transmits the received power information regarding the calculated received power to the master cell change part 122 and the slave cell change part 132, when a self-station is eNB1M.
  • the received power information transmitting unit transmits the received power information indicating the received power of the pilot signal to the eNB 1M that forms the master cell. It serves as an example.
  • the cell information management unit 124 displays information (hereinafter referred to as “cell management information”) indicating whether the cell 5 formed by the own station is a master cell, a slave cell, or a normal cell that is neither of them. It manages for every UE2. Thereby, each eNB1 can determine which cell 5 is the master cell and the slave cell among the cells 5 formed by the own station, and whether the own station is the eNB1M or the eNB1S. Judgment can be made. In addition, the cell information management unit 124 registers and updates cell management information in accordance with instructions from the master cell determination unit 121, the master cell change unit 122, the slave cell determination unit 131, or the slave cell change unit 132.
  • the slave control unit 13 performs processing related to determination of slave cells and reconstruction of slave cells. Specifically, the slave control unit 13 includes a slave cell determination unit 131 and a slave cell change unit 132.
  • the slave cell determination unit 131 determines a slave cell included in the group cell 50 based on the slave cell determination request received from the master cell determination unit 121.
  • the slave cell determination request includes information indicating which cell 5 of the own station is the master cell.
  • each eNB 1 stores in advance a position information of the cell 5 formed by the own station and the cell 5 formed by another eNB 1 in a predetermined storage area. Then, the slave cell determination unit 131 determines which cell 5 of the own station is the master cell based on the slave cell determination request, and the cell 5 adjacent to the master cell based on the information stored in the predetermined storage area. And the identified cell 5 is determined as a slave cell.
  • the slave cell determination unit 131 transmits, via the X2 interface, a slave request, which is a request that the corresponding cell 5 should be a slave cell, to the other eNB 1 that forms the determined slave cell. Then, when the local station is the eNB 1M, when the local cell 5 is determined as the slave cell, or when the slave cell determination unit 131 receives the slave request from the eNB 1M, the slave cell determination unit 131 sets the cell 5 as the slave cell.
  • the cell information management unit 124 is instructed to register.
  • the slave request includes information indicating which cell 5 is the master cell. Thereby, eNB1 which received the slave request
  • the slave cell determining unit 131 determines a slave cell included in the group cell 50 that is configured with the cell 5 formed by the local station as the master cell. It functions as an example of means.
  • the slave cell changing unit 132 changes the slave cell when the UE 2 is located at the end of the group cell 50. Specifically, the slave cell changing unit 132 of the eNB 1M first receives received power information corresponding to each slave cell from each eNB 1S via the X2 interface. Moreover, the slave cell change part 132 of eNB1M acquires the received power information corresponding to the master cell and slave cell of an own station from the electric power calculation part 123.
  • the slave cell changing unit 132 of the eNB 1M estimates the current position of the UE 2 based on the received power information. Specifically, the reception power of the pilot signal transmitted from the UE 2 basically increases as the distance from the UE 2 decreases and decreases as the distance from the UE 2 increases. Therefore, the slave cell changing unit 132 can estimate the current position of the UE 2 by comparing the received power corresponding to the master cell and each slave cell that configures the group cell 50.
  • the slave cell changing unit 132 of the eNB 1M adds and releases a slave cell that configures the group cell 50. Specifically, the slave cell changing unit 132 of the eNB 1M first identifies the cell 5 in which the UE 2 is located from the estimated position of the UE 2. Next, the slave cell changing unit 132 of the eNB 1M determines a cell 5 that is adjacent to the cell 5 and other than the slave cell that currently constructs the group cell 50 as a new slave cell.
  • the slave cell changing unit 132 of the eNB 1M transmits a slave request to the eNB 1 that forms the cell 5 determined as a new slave cell.
  • a slave request includes information for specifying the cell 5 to be slaved, information for specifying the eNB 1M, and the like.
  • the slave cell changing unit 132 of the eNB 1S when the slave cell changing unit 132 of the eNB 1S receives the slave request from the eNB 1M, the slave cell changing unit 132 instructs the cell information managing unit 124 to register the corresponding cell 5 as a slave cell.
  • the slave cell changing unit 132 of the eNB 1M instructs the cell information management unit 124 to register the cell 5 as the slave cell. Instruct.
  • the slave cell changing unit 132 releases the slave cells included in the current group cell 50 in order of increasing distance from the UE 2 according to the number of slave cells newly added to the group cell 50. Specifically, the slave cell changing unit 132 of the eNB 1M transmits a slave release notification to the eNB 1S that forms the slave cell to be released.
  • the cell information managing unit 124 changes the corresponding slave cell to a normal cell other than the cell 5 that configures the group cell 50. To instruct. Similarly, the slave cell change unit 132 of the eNB 1M instructs the cell information management unit 124 to change the cell 5 to a normal cell when the cell 5 to be released is the cell 5 formed by the own station. Instruct.
  • the slave cell changing unit 132 is an example of a dependent changing unit that changes the slave cell included in the group cell 50 based on the position of the UE 2 estimated from the received power represented by the received power information acquired from each eNB 1. Function.
  • the lower layer processing unit 14 is a processing unit that executes processing related to a MAC (Media Access Control) layer and a PHY (Physical Layer) layer.
  • the lower layer processing unit 14 has a function as an interface with the UE 2, identifies data (packets) received from the UE 2 via the radio link, and delivers the data to each processing unit, or is delivered from each processing unit. Data is transmitted to UE2 via a radio link.
  • the lower layer processing unit 14 performs radio resource allocation control for communication with the UE 2. Further, the lower layer processing unit 14 functions as a signal transmission unit, and periodically transmits a pilot signal to the UE 2 via a radio link.
  • the upper layer processing unit 15 is a processing unit that executes processing related to the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer. For example, the upper layer processing unit 15 transmits / receives data to be transmitted to the UE 2 and various signals to / from the MME / UPE 3 via the S1 interface.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the scheduling unit 16 performs control for synchronizing the operations of the lower layer processing unit 14 of the eNB 1M and the eNB 1S.
  • the scheduling unit 16 includes a lower layer control unit 161 and a feedback control unit 162.
  • the lower layer control unit 161 is a processing unit that controls the lower layer processing unit 14, and in particular, when the local station is the eNB 1M, determines radio resources and transmission power that can be commonly used in the group cell 50, Also, retransmission control is performed.
  • the feedback control unit 162 receives the received power information of the pilot signal received by the UE 2 via the master cell and the slave cell from the UE 2, the feedback control unit 162 uses the received power information as feedback information from the UE 2 to the lower layer control unit 161. Send.
  • the data buffer unit 17 performs control for simultaneously transmitting data to be transmitted to the UE 2 to the lower layer processing unit 14 of the eNB 1M and the eNB 1S.
  • the data buffer unit 17 includes a data transfer processing unit 171 and a data sharing management unit 172.
  • the data transfer processing unit 171 is a processing unit that delivers data from the upper layer processing unit 15 to the lower layer processing unit 14.
  • the data transfer processing unit 171 receives data from the upper layer processing unit 15 only when the own station is the eNB 1M, transmits the received data to the lower layer processing unit 14 of the own station, The data is transferred to the data transfer processing unit 171 of the eNB 1S.
  • the data sharing management unit 172 performs timing adjustment so that the data from the upper layer processing unit 15 is transmitted to the lower layer processing unit 14 of the eNB 1M and the lower layer processing unit 14 of the eNB 1S at the same time.
  • FIG. 5 is a diagram for explaining processing executed by the scheduling unit 16 and the data buffer unit 17.
  • the MME / UPE 3 corresponding to the host device of each eNB 1 transmits data to the UE 2 only to the eNB 1M in the group cell 50 for the UE 2. Then, the upper layer processing unit 15 of the eNB 1M performs various processes on the data received from the MME / UPE 3, and transfers the data as RLC-PDU (RLC Protocol Data Unit) obtained by dividing the data into predetermined protocol data units. Transmit to the processing unit 171.
  • RLC-PDU RLC Protocol Data Unit
  • the upper layer processing unit 15 functions as an example of an upper layer processing unit that receives data to be transmitted to the UE 2 from the MME / UPE 3, performs a predetermined process on the received data, and transmits the data.
  • the data transfer processing unit 171 of the eNB 1 M transmits to the data sharing management unit 172 as a data arrival notification that the RLC-PDU has been received.
  • the data sharing management unit 172 determines the transmission timing of the RLC-PDU to the lower layer processing unit 14, and notifies the data transfer processing unit 171 of the determined transmission timing as transmission timing information. .
  • the data transfer processing unit 171 that has received the transmission timing information converts the RLC-PDU into a MAC-SDU (MAC Service Data Unit), and then transfers the MAC-SDU together with the transmission timing information to the data transfer processing unit 171 of the eNB 1S. . Then, the data transfer processing unit 171 of the eNB 1M and the data transfer processing unit 171 of the eNB 1S store the MAC-SDUs in the predetermined data transfer processing units 171 until the MAC-SDU transmission timing is reached. Buffer it in the storage area. Then, when the timing for transmitting the MAC-SDU arrives, the data transfer processing unit 171 of the eNB 1M and the data transfer processing unit 171 of the eNB 1S transmit the MAC-SDU to each lower layer processing unit 14.
  • MAC-SDU MAC Service Data Unit
  • the data sharing management unit 172 functions as an example of a transmission timing determination unit that determines a timing when data received from the upper layer processing unit 15 is transmitted to the lower layer processing unit 14.
  • the data transfer processing unit 171 functions as an example of a data transfer unit that transfers the data received from the upper layer processing unit 15 and the information related to the transmission timing determined by the data sharing management unit 172 to the eNB 1S forming the slave cell. . Further, the data transfer processing unit 171 receives the data when the data transmission timing determined by the data sharing management unit 172 or the data transmission timing received from the eNB 1M forming the master cell has arrived.
  • 14 functions as an example of a data transmission unit that transmits data to 14.
  • the lower layer control unit 161 of the eNB 1M is a radio resource for communication with the UE 2, and determines a radio resource to be commonly allocated to each eNB 1S and the own station.
  • the lower layer control unit 161 of the eNB 1M transmits the lower layer information of the eNB 1S to the eNB 1S. Request. Subsequently, the lower layer control unit 161 of the eNB 1M and the lower layer control unit 161 of the eNB 1S that has received the request acquire each lower layer information from the lower layer processing unit 14.
  • the lower layer information includes information (resource allocation status information) related to radio resources allocated to each UE 2 located in the own station.
  • the lower layer control unit 161 of the eNB 1S acquires the resource allocation status information included in the lower layer information from the lower layer processing unit 14
  • the acquired resource allocation status information is sent to the lower layer control unit 161 of the eNB 1M via the X2 interface.
  • the lower layer processing unit 14 and the lower layer control unit 161 function as an example of a resource allocation status information transmission unit that transmits information on the available radio resources of the local station as resource allocation status information to the eNB 1M that forms the master cell. .
  • the lower layer control unit 161 of the eNB 1M can use the transmission power common in the group cell 50 and the common use in the group cell 50 based on the resource allocation situation information of the own station and the resource allocation situation information received from the eNB 1S. Calculate radio resources. Specifically, the lower layer control unit 161 of the eNB 1M specifies a free radio resource common to the local station and the eNB 1S based on the resource allocation status information of the local station and the resource allocation status information received from the eNB 1S. And the lower layer control part 161 of eNB1M determines this radio
  • the lower layer control unit 161 of the eNB 1M calculates radio resources and transmission power that are common in the group cell 50 in consideration of the feedback information.
  • the lower layer control unit 161 of the eNB 1M transmits information on the determined radio resource (hereinafter referred to as “radio resource information”) and information on the determined transmission power (hereinafter referred to as “transmission power information”) of the eNB 1S. It transmits to the lower layer control part 161. Then, the lower layer control unit 161 of the eNB 1M and the lower layer control unit 161 of the eNB 1S transmit the determined radio resource information and transmission power information to each lower layer processing unit 14.
  • the lower layer control unit 161 functions as an example of a common resource determination unit, is a radio resource for communication with the UE 2, and forms the slave cell determined by the slave cell determination unit 131 and the eNB 1S and A radio resource to be allocated in common to the own station is determined. Further, the lower layer control unit 161 functions as an example of a radio resource information transmitting unit, and transmits information on the determined radio resource to the eNB 1S that forms the slave cell.
  • the lower layer processing unit 14 of the eNB 1M and the eNB 1S reserves a radio resource corresponding to the received radio resource information as a radio resource for communication with the UE 2. Then, the lower layer processing unit 14 of the eNB 1M and the eNB 1S transmits the data (MAC-SDU) to the UE 2 received from the data transfer processing unit 171 via the radio link to the UE 2 with transmission power based on the received transmission power information. Send.
  • MAC-SDU data
  • each eNB 1 that constructs the group cell 50 transmits transmission data to the UE 2 at the same time using radio resources common in the group cell 50. Thereby, even if UE2 moves from cell 5 in the area to another cell 5 because UE2 has already transmitted the data to UE2 to destination cell 5, handover processing is performed. You can move without doing.
  • the data transfer processing unit 171 and the data sharing management unit 172 are divided into the upper layer processing unit 15 corresponding to the PDCP layer and the RLC layer, and the lower layer corresponding to the MAC layer and the PHY layer. It is provided as an intermediate layer with the processing unit 14.
  • the group cell 50 can be constructed without changing the operations of the lower layer processing unit 14 and the upper layer processing unit 15. That is, the data transfer processing unit 171 and the data sharing management unit 172 align the timing at which the data for the UE 2 reaches the lower layer processing unit 14 of the eNB 1M and each eNB 1S, so that the upper layer processing unit 15 and the lower layer processing unit 14
  • the construction of the group cell 50 can be realized without changing the process.
  • FIG. 6 is a block diagram illustrating the configuration of the UE according to the present embodiment.
  • the UE 2 according to the present embodiment includes an IF unit 20, a handover processing unit 21, an operation input unit 22, a signal transmission unit 23, and a power calculation unit 24.
  • the handover processing unit 21 transmits a handover request and executes a handover process with the eNB 1 when moving from the cell 5 being located to another cell 5. Note that when a group cell construction request operation is performed by an operation input unit 22 (to be described later), the handover processing unit 21 receives a handover request even when moving from the cell 5 in the service area to another cell 5. Do not send.
  • the operation input unit 22 corresponds to an example of an input unit, and receives an input operation from the user of the UE 2.
  • the operation input unit 22 accepts a group cell construction request operation for requesting construction of the group cell 50 from the user.
  • the group cell construction request operation includes, for example, an operation of starting an application that requires construction of the group cell 50 in addition to an operation of a user pressing a predetermined button provided in the UE 2.
  • the application that requires the construction of the group cell 50 is, for example, an application that requires more reliable communication with the eNB 1.
  • the signal transmission unit 23 performs transmission processing of various signals to the eNB 1.
  • the signal transmission unit 23 functions as an example of a group cell construction request transmission unit, and when the operation input unit 22 receives a group cell construction request operation from a user, the cell in which the own station is located A group cell construction request is transmitted to eNB1 forming 5.
  • the signal transmission part 23 transmits a predetermined pilot signal regularly with respect to each eNB1.
  • the group cell construction request may be a dedicated signal, or may be transmitted by being included in other signals such as broadcast information.
  • the power calculator 24 calculates the received power of the pilot signal that is periodically transmitted from each eNB 1 through the cell 5. Moreover, the power calculation unit 24 transmits the received power information of the pilot signal to the eNB 1M of the group cell 50 constructed for the own station.
  • FIG. 7 is a sequence diagram illustrating an example of a processing procedure of a handover process in the mobile communication system S of the present embodiment.
  • UE2a located in the cell 5a which eNB1a forms moves to the cell 5f which eNB1b forms
  • the handover process performed between UE2a, eNB1a, and eNB1b is demonstrated.
  • the handover processing unit 21 of the UE 2a transmits a handover request to the eNB 1b via the eNB 1a (Ste S101).
  • the handover request includes, for example, identification information of the cell 5f formed by the eNB 1b that is the destination of the UE 2a, information about the UE 2a, and the like as information necessary when the eNB 1b executes the handover process.
  • the handover processing unit 11 of the eNB 1b that has received the handover request determines whether or not the UE 2a can be accepted (step S102). If the handover processing unit 11 of the eNB 1b determines that the UE 2a can be accepted, the handover processing unit 11 secures radio resources used for radio communication with the UE 2a (step S103), and transmits a handover request response signal to the eNB 1a (step S104). .
  • the handover processing unit 11 of the eNB 1a transmits a handover instruction signal to the UE 2a (Step S105).
  • the handover instruction signal includes information on radio resources used by the UE 2a for radio communication with the eNB 1b.
  • the handover processing unit 21 of the UE 2a When receiving the handover instruction signal, the handover processing unit 21 of the UE 2a secures radio resources according to the radio resource information included in the handover instruction signal and enables communication with the eNB 1b (step S106). Thereafter, the UE 21a transmits / receives a synchronization establishment signal, timing information, etc. in order to establish frame synchronization and time alignment adjustment with the eNB 1b, and when normal communication is possible, the handover completion signal to the eNB 1b. Is transmitted (step S107).
  • the handover processing unit 21 of the eNB 1b that has received the handover completion signal transmits a radio resource release instruction signal to the eNB 1a (step S108), and the eNB 1a handover processing unit 21 receives the radio resource release instruction signal. Based on this, radio resources are released (step S109). Thereby, the handover process is completed, and the UE 2a can continue the wireless communication with the eNB 1b.
  • FIG. 8 is a flowchart illustrating an outline of a processing procedure of the eNB 1M according to the present embodiment.
  • the eNB 1M first determines a master cell (step S201). Specifically, when the master cell determination unit 121 of the eNB 1M receives the group cell construction request from the UE 2, the cell 5 in which the UE 2 is located is determined as a master cell, and a cell information management unit that the cell 5 is the master cell 124.
  • the eNB 1M determines a slave cell (step S202). Specifically, the slave cell determination unit 131 of the eNB 1M specifies the cell 5 adjacent to the master cell based on the position information of the cell 5 formed by another eNB 1 stored in a predetermined storage area. Then, the eNB 1M performs radio resource sharing, retransmission control, data transfer, and data sharing management so that the slave cell determined in step S202 is subordinate to the master cell determined in step S201 (step S203).
  • the slave control unit 13 of the eNB 1M determines whether or not the UE 2 is located at the end of the group cell (Step S204). Specifically, this determination is performed by estimating the position of the UE 2 based on the received power of the pilot signal from the UE 2 calculated by the power calculation unit 123 of the eNB 1M and the power calculation unit 123 of the eNB 1S.
  • the slave cell changing unit 132 of the eNB 1M reconstructs the slave cell (Step S205). Specifically, the slave cell changing unit 132 of the eNB 1M specifies the cell 5 where the UE 2 is located from the estimated position of the UE 2, and is the cell 5 adjacent to the cell 5 and is the current slave cell. The cell 5 that has not been determined is determined as a new slave cell. In addition, the slave cell changing unit 132 of the eNB 1M releases the slave cells in order of increasing distance from the UE 2 according to the number of newly added slave cells. When the process of step S205 is completed, the eNB 1M shifts the process to step S203, and performs processes such as radio resource sharing and retransmission control again.
  • the master control unit 12 of the eNB1M determines whether or not the communication quality between the UE2 and the master cell is good (Step S204). S206). Specifically, the master cell changing unit 122 of the eNB 1M receives the pilot received via the slave cell based on the received power of the pilot signal from the UE 2 calculated by the power calculating unit 123 of the eNB 1M and the power calculating unit 123 of the eNB 1S. It is determined whether the received power of the signal is higher than the received power of the pilot signal received via the master cell.
  • step S207 when the communication quality between the UE 2 and the master cell is not good (No at Step S206), that is, the reception power of the pilot signal received via the slave cell is received by the pilot signal received via the master cell.
  • the master cell changing unit 122 of the eNB 1M changes the master cell (step S207).
  • step S207 When the process of step S207 is completed, or when it is determined in step S206 that the communication quality between the UE 2 and the master cell is good (Yes in step S206), the eNB 1M moves the process to step S203 and shares the radio resource. And processing such as retransmission control again.
  • FIG. 9 is a sequence diagram illustrating an example of a processing procedure of master cell determination processing according to the present embodiment.
  • the operation input unit 22 of the UE 2 acquires a group cell construction request operation from the user of the own station (step S301)
  • the operation input unit 22 notifies the signal transmission unit 23 that the group cell construction request operation has been acquired.
  • the signal transmission unit 23 that has received such notification transmits a group cell construction request to the eNB1 that forms the UE2 serving cell via the cell currently serving (UE2 serving cell) ( Step S302).
  • This group cell construction request includes identification information for identifying UE2.
  • the master cell determination unit 121 of the eNB 1 that has received the group cell construction request via the UE 2 serving cell registers the UE 2 serving cell as a master cell in the cell information management unit 124 (step S303).
  • UE2 serving cell becomes a master cell of group cell 50 constructed for UE2, and eNB1 forming the UE2 serving cell uses eNB1M as a process for constructing or changing group cell or transmitting data to UE2. Execute.
  • a group cell construction request is transmitted to the eNB1, and the group cell 50 Is built. That is, since the user can construct the group cell 50 only when reliable communication is necessary, for example, the communication cost can be prevented from becoming higher than necessary.
  • FIG. 10 is a sequence diagram illustrating an example of the processing procedure of the slave cell determination processing according to the present embodiment. The process shown in FIG. 10 is continued from the master cell determination process shown in FIG.
  • the master cell determination unit 121 of the eNB 1M transmits a slave cell determination request to the slave cell determination unit 131 of the local station (step S401).
  • the slave cell determination request includes information indicating which cell 5 is the master cell.
  • each eNB 1 stores in advance a position information of the cell 5 formed by the own station and the cell 5 formed by another eNB 1 in a predetermined storage area. Then, the slave cell determination unit 131 of the eNB 1M determines which cell 5 is the master cell based on the slave cell determination request, and identifies the cell 5 adjacent to the master cell based on the information stored in the predetermined storage area Thus, a slave cell is determined (step S402).
  • the slave cell determining unit 131 of the eNB 1M transmits a slave request via the X2 interface to the other eNB 1 that forms the determined slave cell (step S403).
  • the slave cell determination unit 131 of the eNB 1M instructs the cell information management unit 124 of the own station to register the cell 5 as a slave cell. (Step S404).
  • the eNB 1 that has received the slave request from the eNB 1M instructs the cell information management unit 124 of the local station to register the target cell 5 of the local station as a slave cell based on the slave request (step S405).
  • the slave request includes information indicating which cell 5 is the master cell.
  • requirement can identify which eNB1 is eNB1M.
  • Such information is stored in a predetermined storage area of the eNB 1.
  • the slave cell to be included in the group cell 50 is determined, and the eNB 1 that has received the slave request executes, as eNB 1S, processing related to the construction or change of the group cell or data transmission to the UE 2.
  • FIG. 11 is a sequence diagram illustrating an example of a processing procedure of data transfer processing and data sharing management processing according to the present embodiment.
  • the upper layer processing unit 15 of the eNB 1M performs various processes on the data received from the MME / UPE 3, and performs data transfer processing as RLC-PDU obtained by dividing the data into predetermined protocol data units. It transmits to the part 171 (step S501). Subsequently, when the data transfer processing unit 171 of the eNB 1M receives the RLC-PDU from the higher layer processing unit 15, the data transfer processing unit 171 transmits to the data sharing management unit 172 as a data arrival notification that the RLC-PDU has been received (step S502). .
  • the data sharing management unit 172 determines the transmission timing of the RLC-PDU to the lower layer processing unit 14 (step S503), and uses the information regarding the determined transmission timing as transmission timing information. 171 is notified (step S504). Subsequently, after receiving the transmission timing information, the data transfer processing unit 171 converts the RLC-PDU into the MAC-SDU, and then adds the transmission timing information to the converted MAC-SDU (step S505), and the data transfer of the eNB 1S The data is transferred to the processing unit 171 (step S506).
  • the data transfer processing unit 171 of the eNB 1M and the data transfer processing unit 171 of the eNB 1S store the MAC-SDUs in the predetermined data transfer processing units 171 until the MAC-SDU transmission timing is reached. Buffer it in the storage area. Thereafter, when the timing for transmitting the MAC-SDU has arrived based on the transmission timing information (step S507), the data transfer processing unit 171 of the eNB 1M transmits the MAC-SDU to each lower layer processing unit 14 (step S507). S508).
  • the data transfer processing unit 171 of the eNB 1S transmits the MAC-SDU to each lower layer processing unit 14 ( Step S510).
  • FIG. 12 is a sequence diagram illustrating an example of a processing procedure of the radio resource sharing process and the retransmission control process according to the present embodiment.
  • the feedback control unit 162 of the eNB 1M makes a retransmission request to the lower layer control unit 161 (step S602).
  • the feedback information is a reception result of the uplink signal of UE2.
  • the lower layer control unit 161 of the eNB 1M acquires the resource allocation status information included in the lower layer information of the own station from the lower layer processing unit 14 (step S603).
  • the lower layer control unit 161 of the eNB 1S requested to transmit the lower layer information from the eNB 1M acquires the resource allocation status information included in the lower layer information from the lower layer processing unit 14 (step S604), and the eNB 1M Transfer to the lower layer control unit 161 via the X2 interface (step S605).
  • the lower layer control unit 161 of the eNB 1M calculates radio resources that can be commonly used in the group cell 50 based on the resource allocation status information of the own station and the resource allocation status information received from the eNB 1S (step S606). . Specifically, the lower layer control unit 161 of the eNB 1M specifies a free radio resource common to the local station and the eNB 1S based on the resource allocation status information of the local station and the resource allocation status information received from the eNB 1S. And the lower layer control part 161 of eNB1M determines the specified radio
  • the lower layer control unit 161 of the eNB 1M transmits radio resource information, which is information regarding the determined radio resource, to the lower layer processing unit 14 of the own station (step S607). Further, the lower layer control unit 161 of the eNB 1M transfers the radio resource information to the lower layer control unit 161 of the eNB 1S via the X2 interface (Step S608). And the lower layer control part 161 of eNB1M which received radio
  • the lower layer processing unit 14 of the eNB 1M secures a radio resource corresponding to the received radio resource information as a radio resource for communication with the UE 2 (Step S610).
  • the lower layer processing unit 14 of the eNB 1S reserves a radio resource corresponding to the received radio resource information as a radio resource for communication with the UE 2 (Step S611).
  • the transmission data to UE2 are simultaneously transmitted from eNB1M and eNB1S using the radio
  • FIG. As a result, even if UE2 moves from cell 5 in the area to another cell 5 since UE2 has already transmitted data to UE2 to destination cell 5, handover processing is performed. You can move without doing.
  • FIG. 13A is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell formed by the eNB 1M.
  • UE2 periodically transmits a pilot signal to each eNB1 (step S701). Subsequently, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (step S702). Similarly, the master control unit 12 of the eNB 1M uses the power calculation unit 123 to calculate the received power of the pilot signal received via the slave cell (step S703). In addition, the master control unit 12 of the eNB 1S calculates the received power of the pilot signal received via the slave cell by the power calculation unit 123 (step S704). Then, the master control unit 12 of the eNB 1S transfers the received power information that is the calculation result to the master control unit 12 of the eNB 1M via the X2 interface (Step S705).
  • the master cell changing unit 122 of the eNB 1M compares the received power indicated by the received power information received from each eNB 1S with the received power of the pilot signal received via the slave cell of the own station, and selects a new master cell. (Step S706). Specifically, the master cell changing unit 122 of the eNB 1M determines a slave cell with the highest received power based on each received power information. Subsequently, the master cell changing unit 122 of the eNB 1M compares the received power of the slave cell with the highest received power with the received power of the pilot signal received from the UE 2 via the master cell. If the received power of the slave cell is higher than the received power of the master cell, the master cell changing unit 122 of the eNB 1M determines that the slave cell is a new master cell and the current master cell is a slave cell.
  • the cell information management unit 124 is instructed to change the slave cell having the highest pilot signal to the master cell and to change the current master cell to the slave cell. (Step S707).
  • the current master cell is changed to a slave cell (slave), and the current slave cell having the highest pilot signal becomes a new master cell (master).
  • the current eNB 1M continues to function as the eNB 1M.
  • FIG. 13-2 is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M. Note that the processing from Steps S751 to S755 shown in FIG. 13-2 is the same as the processing from Steps S701 to S705 shown in FIG.
  • step S756 of FIG. 13-2 when the cell 5 with the highest pilot signal reception power is a slave cell formed by the eNB 1S, the master cell changing unit 122 of the eNB 1M sets the cell 5 as a master cell to the eNB 1S. A master cell change notification to the effect is transmitted (step S757). Also, the master cell changing unit 122 of the eNB 1M instructs the cell information managing unit 124 to change the current master cell to a slave cell (step S758).
  • the master cell changing unit 122 of the eNB 1S instructs the cell information managing unit 124 to change the master cell to the master cell based on the master cell change notification ( Step S759).
  • this eNB1S comes to function as eNB1M.
  • the master cell change notification includes information for specifying each eNB 1S that constructs the group cell 50.
  • the master cell change part 122 notifies each eNB1S which constructs the group cell 50 that the own station became eNB1M. Thereby, each eNB1S which constructs the group cell 50 can specify a new eNB1M.
  • the communication quality between the UE2 and the master cell deteriorates, that is, the communication quality between the UE2 and the slave cell becomes higher than the communication quality between the UE2 and the master cell. If so, change the master cell. Thereby, even if UE2 moves in the group cell 50 after the construction of the group cell 50, it can perform radio communication with the cell 5 having the highest communication quality in the group cell 50.
  • FIG. 14 is a sequence diagram illustrating an example of the processing procedure of the slave cell change processing according to the present embodiment.
  • UE2 regularly transmits a pilot signal to each eNB1 (step S801). Subsequently, the master control unit 12 of the eNB 1M calculates the reception power of the pilot signal received via the master cell by the power calculation unit 123 (step S802), and transmits the received power information that is the calculation result to the slave cell change unit 132. (Step S803). Similarly, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the slave cell by the power calculation unit 123 (step S804), and the received power information as the calculation result to the slave cell change unit 132. Transmit (step S805).
  • the master control unit 12 of the eNB 1 calculates the received power of the pilot signal received via the cell 5 by the power calculation unit 123 (step S806), and the received power information as the calculation result is sent to the slave control unit 13 of the eNB 1M. The transfer is performed via the X2 interface (step S807).
  • the slave cell changing unit 132 of the eNB 1M estimates the current position of the UE 2 based on the received power information received from the master control unit 12 of the own station or another eNB 1. Subsequently, when the position of the UE 2 estimated based on the reception power corresponding to the master cell and each slave cell is near the end of the group cell 50, the slave cell changing unit 132 of the eNB 1M selects the slave cell that configures the group cell 50. It is determined again (step S808). Specifically, the slave cell changing unit 132 of the eNB 1M specifies the cell 5 in which the UE 2 is located from the estimated position of the UE 2, and is the cell 5 adjacent to the cell 5, and the current group cell 50 is changed.
  • Cells 5 other than the slave cell to be constructed are determined as new slave cells. Then, the slave cell changing unit 132 of the eNB 1M transmits a slave request to the eNB 1 that forms the cell 5 determined as a new slave cell (step S809).
  • the slave information changing unit 132 changes the slave cell that is the release target to the cell in the cell information management unit.
  • An instruction is given (step S810).
  • the slave cell changing unit 132 of the eNB 1 receives the slave request from the eNB 1M, the slave cell changing unit 132 instructs the cell information management unit 124 to register the cell 5 that is the subject of slave formation as a slave cell (step S811).
  • the UE 2 when the UE 2 is located at the end of the group cell 50, the UE 2 moves out of the group cell 50 by changing the slave cell included in the group cell 50. Can be prevented in advance.
  • the radio resource for communication with the UE 2 is shared between the plurality of cells 5 that configure the group cell 50, and the radio resource shared by the eNB 1M and the eNB 1S is used to transmit the UE 2 Send data to all at once. That is, by setting the cell 5 where the UE 2 is not located in a state in which the handover process has been completed, even if the UE 2 has moved to the cell 5, the UE 2 and the destination can be moved without performing the handover process. Wireless communication can be continued with the eNB1. As a result, even when the UE 2 frequently moves to another cell 5 in the group cell 50, it is possible to prevent communication quality degradation and communication interruption caused by the handover process. .
  • the UE 2 can move between the cells 5 without performing the handover process by reconstructing the group cell 50 according to the position of the UE 2 so that the UE 2 does not move outside the group cell 50. The state can be maintained.
  • the slave cell having the highest communication quality with the UE2 is set as a new master cell.
  • the UE 2 can perform wireless communication with the cell 5 having the highest communication quality in the group cell 50 even if the UE 2 moves within the group cell 50 after the group cell 50 is constructed.
  • UE2 when UE2 is located at the end of group cell 50, UE2 can be prevented from moving out of group cell 50 by changing the slave cell included in group cell 50. be able to.
  • a cell 5 other than the cell 5 that configures the group cell 50 and adjacent to the cell 5 where the UE 2 is located is determined as a new slave cell to be added to the group cell 50. That is, by adding the cell 5 having a high possibility that the UE 2 moves to the group cell 50 as a new slave cell, it is possible to more reliably prevent the occurrence of the handover process accompanying the movement of the UE 2 between the cells 5.
  • the processing for the reconstruction of the group cell 50 can be distributed.
  • the mobile communication system, the base station, the mobile station, and the wireless communication method disclosed in this case may be implemented in various different forms other than the above-described embodiments. Therefore, in the second embodiment, another embodiment of the mobile communication system, the base station, the mobile station, and the wireless communication method disclosed in this case will be described.
  • symbol is attached
  • the group cell construction request is transmitted when a predetermined button is pressed by the user or when an application that needs to construct the group cell 50 is activated. It may be sent automatically.
  • FIG. 15 is a sequence diagram illustrating a processing procedure of master cell determination processing when a group cell construction request is automatically transmitted.
  • the eNB 1 periodically transmits notification information including information such as the state of the cell 5 of the own station to the UE 2 located in the cell 5 formed by the own station by the lower layer processing unit 14.
  • the lower layer processing unit 14 adds information (group cell constructable information) indicating that the own station is an eNB 1 capable of constructing the group cell 50 to the broadcast information, and then sends it to the UE 2.
  • the lower layer processing unit 14 functions as an example of a group cell constructable information transmitting unit that transmits group cell constructable information indicating that the local station is an eNB capable of constructing a group cell to the UE 2. To do.
  • the UE 2 determines whether or not the eNB 1 forming the cell 5 in the service area can construct the group cell 50 by using the signal transmission unit 23 (step S902). That is, the UE 2 determines whether the broadcast information received from the eNB 1 includes information indicating that the eNB 1 is an eNB 1 having a function of constructing the group cell 50. And when the information which shows that this eNB1 is eNB1 which has the function to construct
  • the UE 2 when the UE 2 is located in the cell 5 of the eNB 1 capable of constructing the group cell 50, the UE 2 automatically transmits a group cell construction request to the eNB 1, and therefore, based on a predetermined operation from the user. Compared with the case of transmitting a group cell construction request, the group cell 50 can be constructed more quickly. Such automatic transmission of the group cell construction request is particularly effective when the UE 2 is moving at high speed.
  • FIG. 16 is a block diagram illustrating a configuration of the UE 2 according to another embodiment.
  • the UE 2 in this case includes a master cell change determination unit 25 in addition to the IF unit 20, the handover processing unit 21, the operation input unit 22, the signal transmission unit 23, and the power calculation unit 24.
  • the master cell change determination unit 25 determines whether or not to change the master cell based on the calculation result of the received power of the pilot signal by the power calculation unit 24. Specifically, the master cell change determination unit 25 first acquires the received power information of the pilot signal transmitted from the eNB 1M and the eNB 1S via the master cell and the slave cell from the power calculation unit 24.
  • the master cell change determination unit 25 sends a master change notification (corresponding to a reference change request) to the eNB 1M that the slave cell should be changed to a new master cell. It transmits to the master control part 12 via a master cell.
  • FIG. 17A is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell formed by the eNB 1M.
  • eNB1M and eNB1S periodically transmit pilot signals to UE2 (step S1001). Subsequently, the power calculation unit 24 of the UE 2 calculates the reception power of the pilot signal received via the master cell and the slave cell (step S1002).
  • Step S1003 when the master cell change determination unit 25 of the UE 2 acquires the received power information of the pilot signal received via the master cell and the slave cell from the power calculation unit 24, the received power information is compared and a new master cell is selected.
  • the master cell change determination unit 25 determines the slave cell as a new master cell. .
  • the master cell change determination unit 25 transmits a master change notification indicating that the slave cell should be changed to a new master cell to the master control unit 12 of the eNB 1M via the master cell (step S1004).
  • the master cell changing unit 122 of the eNB 1M receives the master change notification from the UE 2 via the radio link.
  • the master cell change determination unit 25 compares the received power of the pilot signals received from the eNB 1M and the eNB 1S, and the highest received power among the received powers of the pilot signals received via the slave cell is transmitted via the master cell.
  • a reference change request transmitting means for transmitting to the eNB 1M a reference change request indicating that the slave cell to which the pilot signal indicating the highest received power is transmitted should be changed to a master cell. It serves as an example.
  • the master cell changing unit 122 of the eNB 1M sets the slave cell to be mastered as the master cell, and changes the current master cell to the slave cell. 124 is instructed (step S1005).
  • FIG. 17-2 is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M. Note that the processing from steps S1051 to S1054 shown in FIG. 17-2 is the same as the processing from steps S1001 to S1004 shown in FIG.
  • the master cell changing unit 122 of the eNB 1M sets the cell 5 as the master cell to the eNB 1S.
  • a master cell change notification to the effect is transmitted (step S1055).
  • the master cell changing unit 122 of the eNB 1M instructs the cell information managing unit 124 to change the current master cell to a slave cell (step S1056).
  • the master cell changing unit 122 of the eNB 1S instructs the cell information managing unit 124 to change the master cell to the master cell based on the master cell change notification ( Step S1057).
  • this eNB1S comes to function as eNB1M.
  • the master cell changing unit 122 receives the master change notification from the UE 2
  • the master cell changing unit 122 changes the slave cell to which the pilot signal indicating the highest received power is transmitted to a new master cell based on the master change notification.
  • the master cell formed by the own station is changed to a slave cell.
  • the load on the master cell changing unit 122 of the eNB 1M can be reduced.
  • FIG. 18 is a block diagram illustrating a configuration of the UE 2 according to another embodiment.
  • the UE 2 in this case includes a slave cell change determination unit 26 in addition to the IF unit 20, the handover processing unit 21, the operation input unit 22, the signal transmission unit 23, and the power calculation unit 24.
  • the slave cell change determination unit 26 determines whether or not to change the slave cell based on the calculation result of the received power of the pilot signal by the power calculation unit 24. Specifically, the slave cell change determination unit 26 first acquires the received power information of the pilot signal transmitted from the eNB 1M and the eNB 1S via the master cell and the slave cell from the power calculation unit 24. Subsequently, the slave cell change determination unit 26 compares the acquired pieces of received power information and estimates the position of the own station.
  • the slave cell change determination unit 26 determines a slave cell to be added to the group cell 50 and a slave cell to be released. Specifically, the slave cell change determination unit 26 determines a cell 5 that is adjacent to the cell 5 in which the station is located and other than the slave cell that currently constructs the group cell 50 as a new slave cell. To do. The slave cell change determination unit 26 determines a slave cell to be released from the group cell 50 according to the number of cells 5 newly added to the group cell 50. Then, the slave cell change determination unit 26 transmits a slave request (corresponding to a dependent change request) to the slave control unit 13 of the eNB 1M via the master cell.
  • the slave cell change determination unit 26 becomes a slave indicating that the slave cell included in the group cell should be changed based on the position of the local station estimated from the received power represented by the received power information acquired from each eNB1. It functions as an example of a dependent change request transmission unit that transmits a request to the eNB 1M.
  • the slave request includes information for specifying a slave cell newly added to the group cell 50 and information for specifying a slave cell released from the group cell 50.
  • UE2 can identify eNB1M and eNB1S by acquiring the information regarding eNB1M and eNB1S which construct the group cell 50 from eNB1M regularly.
  • FIG. 19 is a sequence diagram illustrating another example of the processing procedure of the slave cell change process.
  • eNB1M and eNB1S periodically transmit pilot signals to UE2 (step S1101). Subsequently, the power calculation unit 24 of the UE 2 calculates the reception power of the pilot signal received via the master cell and the slave cell (step S1102).
  • the slave cell change determination unit 26 of the UE 2 acquires the received power information of the pilot signal received via the master cell and the slave cell from the power calculation unit 24, the slave cell change determination unit 26 estimates the position of the own station based on the received power information. Then, the slave cell is determined again (step S1103). Then, a slave reconfiguration notification including information for specifying a slave cell to be added to the group cell 50 and information for specifying a slave cell to be released from the group cell 50 is transmitted to the slave cell changing unit 132 of the eNB 1M via the master cell ( Step S1104).
  • the slave cell changing unit 132 of the eNB 1M that has received the slave reconfiguration notification transmits a slave request to the eNB 1 that forms the cell 5 that is the target of the slave (step S1105). Further, when the slave cell to be released from the group cell 50 is the cell 5 formed by the own station, the slave cell changing unit 132 of the eNB 1M changes the cell information managing unit to change the slave cell to a normal cell. 124 is instructed (step S1106).
  • the slave cell changing unit 132 of the eNB 1 that has received the slave request from the eNB 1M via the X2 interface registers the cell 5 to be slaved in the cell information management unit 124 as a slave cell (step S1107).
  • the slave cell changing unit 132 functions as an example of a slave changing unit, and when receiving a slave request from the UE 2, changes the slave cell included in the group cell 50 based on the slave request.
  • the load on the eNB 1M can be reduced.
  • FIG. 20 is a sequence diagram illustrating an example of a processing procedure of a slave cell determination process when a slave cell is determined based on cell position coordinate information received from each eNB1.
  • the eNB 1 installed in the vicinity of the eNB 1M transmits cell position coordinate information indicating the position coordinates of the cell formed by the own station to the eNB 1M via the X2 interface (step S1201).
  • the cell position coordinate information is input as a parameter unique to each eNB1. That is, the cell position coordinate information includes information related to the cell position coordinates and information for specifying the cell 5 corresponding to the cell position coordinates.
  • the eNB 1 installed in the vicinity of the eNB 1M transmits the cell position coordinate information when receiving a request from the eNB 1M to transmit the cell position coordinate information.
  • the slave cell determination unit 131 of the eNB 1M determines a slave cell based on the cell position coordinate information received from the neighboring eNB 1 (step S1202). Specifically, the slave cell determination unit 131 of the eNB 1M calculates the distance from the master cell to each cell 5 based on the received cell position coordinate information, selects a predetermined number of cells 5 that are close to the master cell, The selected cell 5 is determined as a slave cell.
  • the slave cell determination unit 131 of the eNB 1M transmits a slave request to the eNB 1 that forms the slave cell determined in step S1202 (step S1203).
  • the slave cell determination unit 131 of the eNB 1M registers the determined cell as a slave cell in the cell information management unit (step S1204).
  • the slave request includes information indicating which cell 5 should be slaved.
  • the slave cell determination unit 131 of the eNB 1 that has received the slave request via the X2 interface registers the cell 5 to be slaved in the cell information management unit 124 as a slave cell (step S1205).
  • the cell 5 of the eNB 1M and the cell 5 of the eNB 1 that are the slaves become slaves, and the eNB 1 that has received the slave notification functions as the eNB 1S.
  • the slave cell determination unit 131 functions as an example of a dependent cell determination unit, and when receiving a group cell construction request from the UE 2, the slave cell determination unit 131 is based on the location information of the cell formed by the eNB 1 received from another eNB 1. The slave cell included in the group cell 50 having the cell formed by the own station as the master cell is determined.
  • FIG. 21A is a sequence diagram illustrating a processing procedure when it is determined that the UE 2 is moving and the number of slave cells is increased.
  • UE2 periodically transmits a pilot signal to each eNB1 (step S1301).
  • the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (step S1302), and the received power information that is the calculation result is the slave cell change unit 132 of the eNB 1M. (Step S1303).
  • the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (steps S1304 and S1306), and changes the received power information as the calculation result to the slave cell change of the eNB 1M.
  • the data is transmitted to the unit 132 (steps S1305 and S1307).
  • the master control unit 12 of the eNB 1S calculates the reception power of the pilot signal received via the slave cell by the power calculation unit 123, and the received power information as a calculation result is transmitted to the slave control unit 13 of the eNB 1M X2. Transfer through the interface.
  • the slave cell changing unit 132 of the eNB 1M determines the position of the UE 2 estimated by comparing the received power indicated by the received power information received from each eNB 1S and the received power of the pilot signal received through the slave cell of the own station.
  • the movement state of the UE 2 is determined based on Specifically, the slave cell changing unit 132 of the eNB 1M stores history information of the UE 2 position estimated in the past in a predetermined storage area, and the UE 2 position based on the history information and the currently estimated UE 2 position. From this, the amount of change in the position of the UE2 is calculated. And the slave cell change part 132 of eNB1M determines with this UE2 moving, when the calculated variation
  • the slave cell changing unit 132 of the eNB1M transmits a slave request to the eNB1 in order to expand the group cell 50 (step S1309). Specifically, the slave cell changing unit 132 of the eNB 1M first adds a cell 5 other than the cell 5 included in the current group cell 50 and adjacent to the slave cell to the group cell 50. Determine as a slave cell. For example, when expanding the group cell 50 shown in FIG.
  • the slave cell changing unit 132 of the eNB 1M causes the cells 5d, 5h, 5j, 5k, 5l, 5m, 5n, 5o, which are adjacent to the slave cell of the current group cell 50, 5p, 5t, 5v, and 5x are determined as slave cells to be newly added.
  • the slave cell changing unit 132 of the eNB 1M transmits a slave request to the eNB 1 that forms the cell 5 to be slaved.
  • the slave cell changing unit 132 of the eNB 1M performs the following operations on the eNB 1b that forms the cell 5d, the eNB 1c that forms the cell 5h, the eNB 1d that forms the cells 5j and 5k, and the eNB 1e that forms the cells 5l and 5m. Send a slave request.
  • the slave cell changing unit 132 of the eNB 1M sends a slave request to the eNB 1f that forms the cells 5n and 5o, the eNB 1g that forms the cell 5p, the eNB 1h that forms the cell 5t, and the eNB 1j that forms the cells 5v and 5x. Send.
  • the cell information management unit 124 sets the cell to be slaved as a slave cell based on the slave request. Registration is performed (step S1310).
  • FIG. 21-2 is a sequence diagram illustrating a processing procedure when it is determined that the UE 2 is stationary and the number of slave cells is decreased. Note that the processing in steps S1351 to S1357 shown in FIG. 21-2 is the same as the processing in steps S1301 to 1307 shown in FIG. 21-1, and a description thereof will be omitted.
  • the slave cell changing unit 132 of the eNB 1M calculates the amount of change in the position of the UE 2 from the history information of the position of the UE 2 estimated in the past and the position information of the UE 2 estimated this time. As a result, the calculated amount of change is less than a predetermined value. If it is, it is determined that the UE2 is stationary (step S1358). When determining that the UE 2 is stationary, the slave cell changing unit 132 of the eNB 1M releases the slave cell included in the current group cell 50 in order to reduce the group cell 50. Then, the slave cell change unit 132 of the eNB 1M instructs the cell information management unit 124 to change the slave cell that is the target of slave release to a normal cell (step S1359).
  • the slave cell changing unit 132 of the eNB 1M stores the estimated location information history of the UE 2, and determines the movement state of the UE 2 by calculating the amount of change. And the slave cell change part 132 of eNB1M can perform management of a more efficient slave cell by changing the number of slave cells according to the determined movement state. That is, for example, when the UE 2 is moving, it is possible to reliably prevent the UE 2 from moving out of the group cell 50 by increasing the number of slave cells included in the group cell 50. On the other hand, when UE2 is stationary, it is possible to prevent unnecessary use of radio resources by reducing the number of slave cells included in group cell 50.
  • the transmission power of data transmitted via the master cell and the slave cell is common in the group cell 50, but the transmission power is not limited to this, and the transmission power may be different in the group cell 50.
  • the lower layer control unit 161 of the eNB 1M sets the transmission power higher for the cell 5 located at the center of the group cell 50, and the group cell 50 The transmission power is set to be lower for the cell 5 located at the outer edge.
  • FIG. 22 is a sequence diagram illustrating an example of a processing procedure when the transmission power in the group cell 50 is varied.
  • the lower layer control unit 161 of the eNB 1M indicates the downlink power that is set lower than the reference value for the eNB 1S that forms a slave cell located near the outer edge of the group cell 50. Transmit power information is transmitted via the X2 interface (step S1401). Then, the lower layer control unit 161 of the eNB 1S determines the transmission power of data to the UE 2 to be lower than the reference value based on the received downlink transmission power information (step S1402).
  • the lower layer control unit 161 of the eNB 1M determines the transmission power corresponding to the master cell that is the center of the group cell 50 to be higher than the reference (step S1403). Further, the lower layer control unit 161 of the eNB 1M determines the transmission power corresponding to the slave cell formed by the own station as a reference value (step S1404). In this way, the lower layer control unit 161 of the eNB 1M functions as an example of a common resource determination unit, and determines different transmission power for each master cell and slave cell that constructs the group cell 50.
  • the group cell 50 can be operated more efficiently.
  • the group cell 50 is formed concentrically around the master cell, the cell 5 located at the center of the group cell 50 is set to a higher transmission power, thereby enabling more reliable communication with the UE 2.
  • the transmission power can be lower for the cells 5 located at the outer edge of the group cell 50, the influence on the other cells 5 can be reduced.
  • FIG. 23 is a sequence diagram illustrating an example of a processing procedure when the downlink transmission power is changed based on feedback information from the UE2.
  • the eNB 1M and the eNB 1S transmit pilot signals through the master cell and the slave cell using the transmission power determined by the lower layer control unit 161 of the eNB 1M, respectively (step S1501). Subsequently, the UE 2 that has received these pilot signals via the radio link calculates the reception power of each pilot signal by the power calculation unit 123 (step S1502), and the received power information that is the calculation result of the eNB 1M via the master cell. It transmits to the lower layer control part 161 (step S1503).
  • the power calculation unit 123 when receiving a pilot signal from the eNB 1M and the eNB 1S, the power calculation unit 123 functions as an example of a received power information transmitting unit that transmits received power information indicating the received power of the pilot to the eNB 1M.
  • the lower layer control unit 161 of the eNB 1M determines the changed downlink transmission power for each master cell and slave cell based on the received reception power information (step S1504). For example, the lower layer control unit 161 of the eNB 1M corrects the transmission power corresponding to the master cell to be lower when the reception power of the pilot signal received by the UE 2 via the master cell is higher than a predetermined value. In addition, when the reception power of the pilot signal received by the UE 2 via the slave cell located at the outer edge of the group cell 50 is lower than a predetermined value, the lower layer control unit 161 of the eNB 1M sets the transmission power corresponding to the slave cell. Correct higher.
  • the lower layer control unit 161 of the eNB 1M functions as an example of a common resource determination unit, and when receiving the received power information of the pilot signal transmitted from the own station and the eNB 1S from the UE 2, based on the received power information, The transmission power determined for each master cell and slave cell is changed.
  • the lower layer control unit 161 of the eNB 1M sends the downlink transmission power information indicating the changed downlink transmission power to the lower layer control unit 161 of the eNB 1S. Send. Then, the lower layer control unit 161 of the eNB 1S changes the transmission power of the corresponding slave cell based on the downlink transmission power information received via the X2 interface (step S1506). Further, the lower layer control unit 161 of the eNB 1M changes the transmission power of the master cell (step S1507) and changes the transmission power of the slave cell (step S1508) based on the determination result in step S1504.
  • UE2 uses the received power information of the pilot signals received from eNB1M and eNB1S as feedback information, and changes the downlink transmission power corresponding to the master cell and slave cell based on the feedback information, thereby enabling the master cell and slave cell to Corresponding downlink transmission power can be optimized.
  • the feedback information transmitted from the UE2 is the reception power information of the pilot signal received by the UE2 from the eNB1M and the eNB1S. However, whether or not the downlink transmission power determined for each master cell and slave cell is appropriate is lower than the eNB1M. Any information that can be determined by the layer control unit 161 may be used. For example, an error rate may be used.
  • FIG. 24-1 is a diagram illustrating a state in which some eNBs 1S do not perform data transmission to the UE 2
  • FIG. 24-2 illustrates that the eNB 1S that does not perform data transmission to the UE 2 is changed as the UE 2 moves. It is a figure which shows a mode.
  • a group cell 50 is constructed as a group cell for the UE 2a, in which the cell 5a is a master cell and the cells 5b, 5c, 5d to 5g, 5i, 5t, and 5v are slave cells.
  • the lower layer control unit 161 of the eNB 1a that is the eNB 1M sets power control only for the master cell and the slave cell adjacent to the master cell.
  • the lower layer control unit 161 of the eNB 1a powers only the cell 5a that is the master cell and the cells 5b, 5c, 5e, 5f, 5g, and 5i adjacent to the cell 5a. Controlled.
  • the lower layer control part 161 of eNB1a transmits a power control object notification with respect to eNB1S which forms the slave cell used as the object of power control.
  • the lower layer control unit 161 of the eNB 1a sends a power control target notification to the eNB 1b that forms the cells 5e and 5f that are the targets of power control and the eNB 1c that forms the cells 5g and 5i via the X2 interface. Send through.
  • the eNBs 1b and 1c that have received the power control target notification transmit the data using the common radio resource in the group cell 50.
  • the lower layer control unit 161 of the eNB 1a is not subject to power control for the eNB 1b that forms the cell 5d that is a slave cell that is not the target of power control, the eNB 1h that forms the cell 5t, and the eNB 1j that forms the cell 5v.
  • a notification is sent via the X2 interface.
  • the eNB 1b, 1h, 1j that has received the power control non-target notification does not transmit the data even when it receives data from the data transfer processing unit 171 of the eNB 1M to the UE 2, and the group cell 50 In this state, only the common radio resource is secured.
  • the cell 5 to be subjected to power control is changed as the UE 2 moves.
  • the UE 2 moves from the cell 5a formed by the eNB 1a to the cell 5e formed by the eNB 1b.
  • the lower layer control unit 161 of the eNB 1b that has newly become the eNB 1M sets the cell 5e as the master cell and the cells 5a, 5d, 5f, 5g, 5t, and 5v adjacent to the cell 5e to be subjected to power control.
  • the cells 5b, 5c, 5i not adjacent to 5e are excluded from power control.
  • the cells 5d, 5t, and 5v that are not subject to power control before the UE2 moves are newly subject to power control, and the cells 5b, 5c, and 5i that are subject to power control before the UE2 move are Not subject to power control.
  • the lower layer control unit 161 of the eNB 1a functions as an example of a common resource determination unit, and transmits a power control target notification to a predetermined slave cell among slave cells that construct the group cell 50.
  • the lower layer processing unit 14 functions as a lower layer processing unit, and transmits data to the UE 2 using a common radio resource in the group cell 50 only when a power control target notification is received from the eNB 1M. .
  • FIG. 25 is a diagram illustrating an example of a processing procedure when dynamic control of a downlink power transmission target is performed.
  • the eNB 1M specifies the position of the UE 2 in advance by comparing the received power of the pilot signal.
  • the lower layer control unit 161 of the eNB 1M selects a slave cell adjacent to the master cell (step S1601), and transmits a power control target notification to the eNB 1S that forms the selected slave cell (Ste S1602). Also, the lower layer control unit 161 of the eNB 1M registers in the cell information management unit 124 that the master cell and slave cell of the own station are power control target cells (step S1603). Also, the lower layer control unit 161 of the eNB 1S that has received the power control target notification from the eNB 1M registers in the cell information management unit 124 that the slave cell of the local station is the power control target cell based on the power control target notification. (Step S1604).
  • eNB1S which received eNB1M and the power control object notification can judge that the master cell and slave cell which an own station forms are power control object cells.
  • the eNB 1M and the eNB 1S that form the power control target cell transmit data to the UE 2 using a common radio resource in the group cell 50.
  • the lower layer control unit 161 of the eNB 1M transmits a power control non-target notification to the eNB 1S that forms a slave cell that is not adjacent to the master cell (step S1605). Then, the lower layer control unit 161 of the eNB 1S that has received the power control non-target notification via the X2 interface registers in the cell information management unit 124 that the slave cell formed by itself is not the power control target (step S1606). Accordingly, the eNB 1S that has received the power control non-target notification can determine that the slave cell formed by the own station is out of the power control target.
  • the eNB 1S that forms a slave cell that is not subject to power control only secures radio resources that are common in the group cell 50 and data is transferred from the data transfer processing unit 171 of the eNB 1M to the UE 2, The data is not transmitted to UE2.
  • the slave cell that is far from the UE 2 and has little influence on the radio communication with the UE 2 does not perform data transmission to the UE 2 to perform group transmission. Interference with the neighboring cells of the cell 50 can be suppressed.
  • the radio resource is used to transmit to UE2. Data can be transmitted quickly.
  • the lower layer control unit 161 of the eNB 1S that forms the power control non-target cell temporarily releases the secured radio resource when it is necessary to transmit other data with high priority, and the priority May be assigned to transmission of high data.
  • FIG. 26 is a sequence diagram illustrating a processing procedure of uplink transmission power control processing.
  • UE2 periodically transmits a pilot signal to each eNB1 (step S1701).
  • the lower layer control unit 161 of the eNB 1M calculates the reception power of the pilot signal received via the master cell by the power calculation unit 123, and determines the uplink transmission power value based on the calculation result (step S1702).
  • the lower layer control unit 161 of the eNB 1M specifies the communication quality of radio communication with the UE 2 performed via the master cell, based on the received power of the pilot signal received from the UE 2.
  • the lower layer control unit 161 of the eNB 1M determines the optimum uplink transmission power, for example, by increasing the uplink transmission power when the specified communication quality is low.
  • the lower layer control unit 161 of the eNB 1M transmits a transmission power control signal (Transmit Power Control: TPC) including information on the uplink transmission power determined in Step S1702 to the UE 2 via the master cell (Step S1703). Further, UE2 changes the uplink transmission power value based on the received TPC as uplink transmission power control (step S1704). And UE2 transmits a pilot signal to eNB1M again using the uplink transmission power value after a change (step S1705). Thus, UE2 and eNB1M control uplink transmission power by repeating the processes of steps S1701 to S1705.
  • TPC Transmission Power Control
  • FIG. 27 is a sequence diagram showing a processing procedure of uplink transmission power control processing based on the received power of the pilot signal received via the master cell and the slave cell.
  • UE2 periodically transmits a pilot signal to each eNB1 (step S1801). Subsequently, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (step S1802), and transmits the received power information as a calculation result to the slave cell change unit 132. (Step S1803). Similarly, the master control unit 12 of the eNB 1M calculates the reception power of the pilot signal received via the slave cell by the power calculation unit 123 (step S1804), and the received power information as the calculation result to the slave cell change unit 132. Transmit (step S1805).
  • the master control unit 12 of the eNB 1S calculates the received power of the pilot signal received via the cell 5 by the power calculation unit 123 (step S1806), and the received power information as a calculation result is sent to the slave control unit 13 of the eNB 1M.
  • the data is transferred via the X2 interface (step S1807).
  • the slave cell changing unit 132 of the eNB 1M determines an uplink transmission power value based on the received power information received from the master control unit 12 of the own station or another eNB 1 (step S1808). For example, when the reception power of the pilot signal received via the slave cell located at the outer edge of the group cell 50 is higher than the reference value, the lower layer control unit 161 of the eNB 1M lowers the uplink transmission power value from the current value. Thus, the optimum uplink transmission power is determined.
  • the lower layer control unit 161 of the eNB 1M functions as an example of a common resource determination unit, and the transmission power when the UE 2 transmits a signal to the eNB 1 based on the received power information acquired from the own station and each eNB 1S. A certain upstream transmission power is changed.
  • the lower layer control unit 161 of the eNB 1M transmits a TPC including information on the uplink transmission power determined in step S1808 to the UE 2 via the master cell (step S1809). And UE2 changes an uplink transmission power value based on received TPC as uplink transmission power control (step S1810).
  • the UE 2 and the group cell 50 Wireless communication can be performed more appropriately.
  • the base station disclosed in this case is not limited to the eNB, but may be a radio base station (BS: Base Station) of a generation prior to LTE / SAE.
  • BS Base Station
  • the cell 5 adjacent to the master cell is determined as the slave cell.
  • the cell 5 determined as the slave cell is not necessarily adjacent to the master cell. That is, the shape of the group cell 50 constructed by the technique disclosed in this case may be any shape.
  • the cell information management unit 124 manages information such as whether the cell 5 formed by the own station is a master cell or a slave cell.
  • the present invention is not limited to this.
  • a state management unit that manages the state of cell 5 such as whether the cell 5 formed by the own station is a master cell or a slave cell is provided for each cell 5, and the state of each cell 5 is managed by these state managements.
  • Each section may manage each.
  • each state management unit functions as an example of the reception power information transmission unit, calculates the reception power of the pilot signal received via each cell 5, and outputs the calculation result to the master control unit 12 or the eNB 1M. You may make it report to the slave control part 13.
  • FIG. In this way, by providing the eNB 1 with a state management unit that manages each cell 5, processing by the master control unit 12 can be reduced.
  • the eNB 1M and the eNB 1S are configured to grasp which eNB 1 is the eNB 1M and which eNB 1 is the eNB 1S by transmitting information by themselves.
  • the present invention is not limited to this, and the MME / UPE 3 may manage information on the eNB 1M and the eNB 1S that construct the group cell 50, and notify the eNB 1M and the eNB 1S as necessary.
  • the eNB 1 that has become the eNB 1M or the eNB 1S notifies the MME / UPE 3 which cell of its own station has become the master cell or the slave cell, or the slave release target. And MME / UPE3 will update the status information of the master cell and slave cell which comprise the group cell 50, and will notify to eNB1M and eNB1S, if this notification is received. In this way, the eNB 1M and the eNB 1S may be able to grasp which eNB 1 is the eNB 1M and which eNB 1 is the eNB 1S.
  • S Mobile communication system 1a to 1j Radio base station 2a, 2b UE 3 MME / UPE 5a to 5x cell 11 handover processing unit 12 master control unit 13 slave control unit 14 lower layer processing unit 15 upper layer processing unit 16 scheduling unit 17 data buffer unit 121 master cell determination unit 122 master cell change unit 123 power calculation unit 124 cell information management unit 131 Slave cell determination unit 132 Slave cell change unit 161 Lower layer control unit 162 Feedback control unit 171 Data transfer processing unit 172 Data sharing management unit 20 IF unit 21 Handover processing unit 22 Operation input unit 23 Signal transmission unit 24 Power calculation unit 25 Master cell Change determination unit 26 Slave cell change determination unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

To prevent deterioration in communication quality and communication interruptions due to handover processing when a mobile station moves frequently between cells. To achieve this, when eNB1 receives a request from UE2 to build a group cell, it determines slave cells included in a group cell (50) with a cell that it forms as a master cell, determines a wireless resource for communication with UE2 and for allocation in common to a base station (eNB1S) that forms slave cells and to itself (eNB1M), and transmits to eNB1S information related to the wireless resource that has been determined, and thus eNB1M and eNB1S secure a shared wireless resource within the group cell.

Description

移動通信システム、基地局、移動局および無線通信方法Mobile communication system, base station, mobile station, and radio communication method
 本発明は、移動通信システム、基地局、移動局および無線通信方法に関する。 The present invention relates to a mobile communication system, a base station, a mobile station, and a radio communication method.
 従来、移動局と基地局との間で無線通信を行う移動通信システムでは、在圏中のセルから他のセルに移動局が移動した場合、該移動局との通信相手となる基地局を切り替えて無線通信を継続させるハンドオーバ処理が行われる。 Conventionally, in a mobile communication system in which wireless communication is performed between a mobile station and a base station, when the mobile station moves from a cell in the service area to another cell, the base station that is a communication partner with the mobile station is switched. Thus, a handover process for continuing wireless communication is performed.
 ここで、図28を用いて、従来の移動通信システムにおいて実施されるハンドオーバ処理について説明する。図28は、従来の移動通信システムにおけるハンドオーバ処理の処理手順の一例を示すシーケンス図である。 Here, the handover process performed in the conventional mobile communication system will be described with reference to FIG. FIG. 28 is a sequence diagram illustrating an example of a processing procedure of a handover process in a conventional mobile communication system.
 図28に示すように、移動局は、現在通信中の基地局(ハンドオーバ元基地局、以降、HO元基地局ともいう)が形成するセルから、他の基地局(ハンドオーバ先基地局、以降、HO先基地局ともいう)が形成するセルへ移動する場合、HO元基地局を介しHO先基地局に対してハンドオーバ要求を送信する(ステップS001)。ここで、ハンドオーバ要求には、例えば、HO先基地局が形成するセルの識別情報や移動局に関する情報など、HO先基地局がハンドオーバ処理を実行する場合に必要な情報が含まれる。 As shown in FIG. 28, the mobile station transmits a cell formed by a base station (handover source base station, hereinafter referred to as HO source base station) that is currently communicating with another base station (handover destination base station, hereinafter, When moving to a cell formed by a HO destination base station, a handover request is transmitted to the HO destination base station via the HO source base station (step S001). Here, the handover request includes information necessary when the HO destination base station executes the handover process, such as cell identification information formed by the HO destination base station and information on the mobile station.
 続いて、ハンドオーバ要求を受信したHO先基地局は、移動局の受け入れ可否を判断する(ステップS002)。そして、HO先基地局は、移動局の受け入れが可能と判断した場合、移動局との無線通信に用いる無線リソースを確保し(ステップS003)、ハンドオーバ要求応答信号(Handover Request Acknowledge)をHO元基地局へ送信する(ステップS004)。 Subsequently, the HO destination base station that has received the handover request determines whether or not the mobile station can be accepted (step S002). If the HO destination base station determines that the mobile station can be accepted, the HO destination base station secures radio resources used for radio communication with the mobile station (step S003), and sends a handover request response signal (Handover Request Acknowledge) to the HO source base. Transmit to the station (step S004).
 続いて、HO元基地局は、移動局に対してハンドオーバ指示信号(Handover Command)を送信する(ステップS005)。なお、ハンドオーバ指示信号には、移動局がHO先基地局との無線通信に用いる無線リソースに関する情報等が含まれる。 Subsequently, the HO source base station transmits a handover command signal (Handover Command) to the mobile station (step S005). Note that the handover instruction signal includes information related to radio resources used by the mobile station for radio communication with the HO destination base station.
 移動局は、ハンドオーバ指示信号を受信すると、ハンドオーバ指示信号に含まれる無線リソース情報に応じた無線リソースを確保し、HO先基地局との通信が可能な状態とする(ステップS006)。その後、移動局は、HO先基地局との間で、フレーム同期確立やタイムアライメント調整を行うために、同期確立信号やタイミング情報等の送受を行い、正常な通信が可能になると、HO先基地局に対してハンドオーバ完了信号を送信する(ステップS007)。そして、ハンドオーバ完了信号を受信したHO先基地局は、HO元基地局に対して無線リソースの開放指示信号を送信し(ステップS008)、HO元基地局は、かかる無線リソースの開放指示信号に基づき、無線リソースを開放する(ステップS009)。これによりハンドオーバ処理が完了し、移動局は、HO先基地局との間で無線通信を継続することができる。 When the mobile station receives the handover instruction signal, the mobile station secures radio resources according to the radio resource information included in the handover instruction signal, and enables communication with the HO destination base station (step S006). After that, the mobile station transmits / receives a synchronization establishment signal, timing information, etc. in order to establish frame synchronization and time alignment adjustment with the HO destination base station. A handover completion signal is transmitted to the station (step S007). Then, the HO destination base station that has received the handover complete signal transmits a radio resource release instruction signal to the HO source base station (step S008), and the HO source base station is based on the radio resource release instruction signal. The radio resource is released (step S009). As a result, the handover process is completed, and the mobile station can continue radio communication with the HO destination base station.
特開平10-136426号公報JP-A-10-136426
 しかしながら、従来の移動通信システムでは、移動局がセル間の移動を頻繁に繰り返した場合、ハンドオーバ処理が頻繁に発生し、その結果、移動局と基地局との通信品質が劣化したり、ハンドオーバ処理自体に失敗して通信が途切れたりするおそれがある。 However, in a conventional mobile communication system, when a mobile station frequently moves between cells, handover processing frequently occurs, resulting in deterioration in communication quality between the mobile station and the base station, or handover processing. There is a risk that communication may be interrupted due to failure.
 すなわち、上述したように、ハンドオーバ処理は、無線リソースの確保や開放及びこれらの処理に伴う各種信号のやり取り等を必要とする比較的煩雑な処理であるため、移動局や基地局への負担が大きく、また、処理が完了するまでに時間がかかる。そのため、特に、セル半径の小さい小ゾーンセルが配置されたエリアのようにハンドオーバが発生し易いエリアでは、ハンドオーバの連続的な発生によって、基地局間でのデータの受け渡しが増大し、無線リソースを確保したり開放したりするまでに時間がかかることで、通信品質の劣化や通信の遮断が起こるおそれがある。 That is, as described above, the handover process is a relatively complicated process that requires securing and releasing radio resources and exchanging various signals associated with these processes. It takes a long time to complete the process. Therefore, especially in areas where small-zone cells with small cell radii are located, where handovers are likely to occur, the continuous generation of handovers increases the data transfer between base stations and secures radio resources. Since it takes time to open or release the communication, there is a possibility that the communication quality is deteriorated or the communication is interrupted.
 本発明は、上記に鑑みてなされたものであって、移動局がセル間の移動を頻繁に繰り返した場合であっても、ハンドオーバ処理に伴う通信品質の劣化や通信の遮断を防ぐことのできる移動通信システム、基地局、移動局および無線通信方法を提供することを目的とする。 The present invention has been made in view of the above, and even when a mobile station frequently repeats movement between cells, it is possible to prevent deterioration in communication quality and interruption of communication due to handover processing. It is an object to provide a mobile communication system, a base station, a mobile station, and a radio communication method.
 上述した課題を解決し、目的を達成するために、本件に開示する移動通信システムは、一つの態様として、移動局と、前記移動局からのハンドオーバ要求を受信した場合に、該移動局との通信のための無線リソースを確保して該移動局との通信が可能な状態とするハンドオーバ処理を実行する複数の基地局とを含む移動通信システムであって、前記移動局は、複数の前記基地局がそれぞれ形成するセルを仮想的に統合したセルであるグループセルの構築を要求するグループセル構築要求を、在圏する前記基地局へ送信するグループセル構築要求送信手段を備え、前記基地局は、前記移動局から前記グループセル構築要求を受信した場合に、自局が形成するセルを基準セルとするグループセルに含まれる従属セルを決定する従属セル決定手段と、前記移動局との通信のための無線リソースであって、前記従属セル決定手段により決定された従属セルを形成する基地局および自局に共通して割当てるための無線リソースを決定する共通リソース決定手段と、前記共通リソース決定手段により決定した無線リソースに関する情報を前記従属セルを形成する基地局に対して送信する無線リソース情報送信手段と、前記共通リソース決定手段により決定した無線リソース、或いは、前記基準セルを形成する基地局から受信した無線リソース情報に基づく無線リソースを確保する下位レイヤ処理手段とを備える。 In order to solve the above-described problems and achieve the object, the mobile communication system disclosed in the present case is, as one aspect, a mobile station and a mobile station when receiving a handover request from the mobile station. A mobile communication system including a plurality of base stations that execute a handover process for securing radio resources for communication and enabling communication with the mobile station, wherein the mobile station includes a plurality of base stations A group cell construction request transmitting means for transmitting a group cell construction request for requesting construction of a group cell, which is a virtually integrated cell formed by each station, to the base station in the area; Dependent cell determination means for determining a dependent cell included in a group cell having a cell formed by the own station as a reference cell when the group cell construction request is received from the mobile station A radio resource for communication with the mobile station, and a common resource determination for determining a radio resource to be commonly allocated to a base station and a local station forming a subordinate cell determined by the subordinate cell determining means Means, radio resource information transmitting means for transmitting information on radio resources determined by the common resource determining means to a base station forming the dependent cell, radio resources determined by the common resource determining means, or Lower layer processing means for securing radio resources based on radio resource information received from base stations forming a reference cell.
 本件に開示する移動通信システム、基地局、移動局および無線通信方法の一つの態様によれば、移動局がセル間の移動を頻繁に繰り返した場合であっても、ハンドオーバ処理に伴う通信品質の劣化や通信の遮断を防ぐことができるという効果を奏する。 According to one aspect of the mobile communication system, the base station, the mobile station, and the radio communication method disclosed in this case, even when the mobile station frequently repeats movement between cells, the communication quality associated with the handover process is improved. There is an effect that it is possible to prevent deterioration and interruption of communication.
図1は、実施例1にかかる移動通信システムの構成を示す図である。FIG. 1 is a diagram illustrating the configuration of the mobile communication system according to the first embodiment. 図2は、実施例1にかかるグループセルの概念図である。FIG. 2 is a conceptual diagram of the group cell according to the first embodiment. 図3は、グループセルが各UEごとに構築される様子を説明するための図である。FIG. 3 is a diagram for explaining how a group cell is constructed for each UE. 図4は、実施例1にかかるeNBの構成を示すブロック図である。FIG. 4 is a block diagram of the configuration of the eNB according to the first embodiment. 図5は、スケジューリング部およびデータバッファ部により実行される処理について説明するための図である。FIG. 5 is a diagram for explaining processing executed by the scheduling unit and the data buffer unit. 図6は、実施例1にかかるUEの構成を示すブロック図である。FIG. 6 is a block diagram of the configuration of the UE according to the first embodiment. 図7は、実施例1の移動通信システムにおけるハンドオーバ処理の処理手順の一例を示すシーケンス図である。FIG. 7 is a sequence diagram illustrating an example of a processing procedure of a handover process in the mobile communication system according to the first embodiment. 図8は、本実施例にかかるeNB1Mの処理手順の概要を示すフローチャートである。FIG. 8 is a flowchart illustrating an outline of a processing procedure of the eNB 1M according to the present embodiment. 図9は、本実施例にかかるマスタセル決定処理の処理手順の一例を示すシーケンス図である。FIG. 9 is a sequence diagram illustrating an example of a processing procedure of master cell determination processing according to the present embodiment. 図10は、本実施例にかかるスレーブセル決定処理の処理手順の一例を示すシーケンス図である。FIG. 10 is a sequence diagram illustrating an example of the processing procedure of the slave cell determination processing according to the present embodiment. 図11は、本実施例にかかるデータ転送処理およびデータ共有管理処理の処理手順の一例を示すシーケンス図である。FIG. 11 is a sequence diagram illustrating an example of a processing procedure of data transfer processing and data sharing management processing according to the present embodiment. 図12は、本実施例にかかる無線リソース共有処理および再送制御処理の処理手順の一例を示すシーケンス図である。FIG. 12 is a sequence diagram illustrating an example of a processing procedure of the radio resource sharing process and the retransmission control process according to the present embodiment. 図13-1は、新たなマスタセルがeNB1Mが形成するセルである場合におけるマスタセル変更処理の処理手順の一例を示すシーケンス図である。FIG. 13A is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell formed by the eNB 1M. 図13-2は、新たなマスタセルがeNB1Mが形成するセル以外のセルである場合におけるマスタセル変更処理の処理手順の一例を示すシーケンス図である。FIG. 13-2 is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M. 図14は、本実施例にかかるスレーブセル変更処理の処理手順の一例を示すシーケンス図である。FIG. 14 is a sequence diagram illustrating an example of the processing procedure of the slave cell change processing according to the present embodiment. 図15は、グループセル構築要求が自動的に送信される場合におけるマスタセル決定処理の処理手順を示すシーケンス図である。FIG. 15 is a sequence diagram illustrating a processing procedure of master cell determination processing when a group cell construction request is automatically transmitted. 図16は、他の実施例にかかるUEの構成を示すブロック図である。FIG. 16 is a block diagram illustrating a configuration of a UE according to another embodiment. 図17-1は、新たなマスタセルがeNB1Mが形成するセルである場合におけるマスタセル変更処理の処理手順の他の一例を示すシーケンス図である。FIG. 17A is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell formed by the eNB 1M. 図17-2は、新たなマスタセルがeNB1Mが形成するセル以外のセルである場合におけるマスタセル変更処理の処理手順の他の一例を示すシーケンス図である。FIG. 17-2 is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M. 図18は、他の実施例にかかるUEの構成を示すブロック図である。FIG. 18 is a block diagram illustrating a configuration of a UE according to another embodiment. 図19は、スレーブセル変更処理の処理手順の他の一例を示すシーケンス図である。FIG. 19 is a sequence diagram illustrating another example of the processing procedure of the slave cell change process. 図20は、各eNBから受信したセル位置座標情報に基づきスレーブセルを決定する場合におけるスレーブセル決定処理の処理手順の一例を示すシーケンス図である。FIG. 20 is a sequence diagram illustrating an example of a processing procedure of a slave cell determination process when a slave cell is determined based on cell position coordinate information received from each eNB. 図21-1は、UEが移動中であると判断しスレーブセル数を増加させる場合の処理手順を示すシーケンス図である。FIG. 21A is a sequence diagram illustrating a processing procedure when it is determined that the UE is moving and the number of slave cells is increased. 図21-2は、UEが静止中であると判断しスレーブセル数を減少させる場合の処理手順を示すシーケンス図である。FIG. 21-2 is a sequence diagram illustrating a processing procedure when it is determined that the UE is stationary and the number of slave cells is decreased. 図22は、グループセル内での送信電力を異ならせる場合の処理手順の一例を示すシーケンス図である。FIG. 22 is a sequence diagram illustrating an example of a processing procedure when the transmission power in the group cell is different. 図23は、UEからのフィードバック情報に基づき下り送信電力を変更する場合の処理手順の一例を示すシーケンス図である。FIG. 23 is a sequence diagram illustrating an example of a processing procedure when downlink transmission power is changed based on feedback information from the UE. 図24-1は、一部のeNB1SがUEへのデータ送信を行わない様子を示す図である。FIG. 24-1 is a diagram illustrating a state in which some eNBs 1S do not perform data transmission to the UE. 図24-2は、UEの移動に伴いUEへのデータ送信を行わないeNB1Sが変更される様子を示す図である。FIG. 24-2 is a diagram illustrating a state in which the eNB 1S that does not perform data transmission to the UE is changed as the UE moves. 図25は、下り電力送信対象の動的制御を行う場合における処理手順の一例を示す図である。FIG. 25 is a diagram illustrating an example of a processing procedure when dynamic control of a downlink power transmission target is performed. 図26は、上り送信電力の制御処理の処理手順を示すシーケンス図である。FIG. 26 is a sequence diagram illustrating a processing procedure of uplink transmission power control processing. 図27は、マスタセルおよびスレーブセルを介して受信したパイロット信号の受信電力に基づく上り送信電力の制御処理の処理手順を示すシーケンス図である。FIG. 27 is a sequence diagram showing a processing procedure for uplink transmission power control processing based on reception power of pilot signals received via a master cell and a slave cell. 図28は、従来の移動通信システムにおけるハンドオーバ処理の処理手順の一例を示すシーケンス図である。FIG. 28 is a sequence diagram illustrating an example of a processing procedure of a handover process in a conventional mobile communication system.
 以下に、本発明にかかる移動通信システム、基地局、移動局および無線通信方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of a mobile communication system, a base station, a mobile station, and a radio communication method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[1.移動通信システムの概要について]
 先ず、本実施例にかかる移動通信システムの概要について図面を参照して説明する。図1は本実施例にかかる移動通信システムの構成を示す図、図2は本実施例にかかるグループセルの概念図、図3はグループセルが各UEごとに構築される様子を説明するための図である。なお、以下では、移動通信システムの一例として、3GPP-LTE(3rd Generation Partnership Project Long Term Evolution)標準をベースとするパケット通信システムについて説明する。ただし、本件に開示する技術は、かかる通信システムに限定されるものではない。
[1. Overview of mobile communication system]
First, an outline of a mobile communication system according to the present embodiment will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a mobile communication system according to the present embodiment, FIG. 2 is a conceptual diagram of a group cell according to the present embodiment, and FIG. 3 is a diagram for explaining how a group cell is constructed for each UE FIG. In the following, a packet communication system based on 3GPP-LTE (3rd Generation Partnership Project Long Term Evolution) standard will be described as an example of a mobile communication system. However, the technology disclosed in this case is not limited to such a communication system.
 図1に示すように、本実施例にかかる移動通信システムSは、eNB(evolved Node-B)1a~1jと、UE(User Equipment)2a,2bと、MME/UPE(Mobile Management Entity/User Plane Entity)3とを含む。 As shown in FIG. 1, the mobile communication system S according to the present embodiment includes eNBs (evolved Node-B) 1a to 1j, UEs (User Equipment) 2a and 2b, and MME / UPE (Mobile Management Entity / User Plane). Entity) 3.
 eNB1a~1jは、本実施例にかかる基地局に相当し、自局セルに在圏するUE2a,2bと無線リンクを介して通信する無線通信装置である。無線リンクには、eNB1a~1jからUE2a,2bへの方向であるダウンリンク(DL)と、その逆の方向であるアップリンク(UL)とが含まれる。 The eNBs 1a to 1j correspond to the base stations according to the present embodiment, and are wireless communication apparatuses that communicate with the UEs 2a and 2b existing in the local station cell via wireless links. The radio link includes a downlink (DL) that is a direction from the eNBs 1a to 1j to the UEs 2a and 2b, and an uplink (UL) that is the opposite direction.
 ここで、3GPP-LTEに基づく無線通信システムでは、LTE/SAE(Long Term Evolution/System Architecture Evolution)における基地局制御装置(RNC:Radio Network Controller)と基地局(Node-B)とからなる組み合わせに代えて、eNB(enhanced Node-B)が設けられる。すなわち、本実施例にかかるeNB1a~1jは、Node-Bの機能とRNCの機能とを兼ね備えており、UE2a,2bとの間で無線通信を行う機能の他、ハンドオーバ処理の制御を行う機能等を有する。 Here, in a wireless communication system based on 3GPP-LTE, a combination of a base station controller (RNC: Radio Network Controller) and a base station (Node-B) in LTE / SAE (Long Term Evolution / System Architecture Evolution) Instead, an eNB (enhanced Node-B) is provided. That is, the eNBs 1a to 1j according to the present embodiment have both the Node-B function and the RNC function. In addition to the function of performing radio communication with the UEs 2a and 2b, the function of controlling the handover process, etc. Have
 また、本実施例において、eNB同士は、X2と呼ばれる通信インタフェース(以下、「X2インタフェース」という)を用いて相互に接続される。X2インタフェースは、3GPP-LTEにおいて新たに追加されたインタフェースであり、eNB1a~1j間をかかるX2インタフェースで接続することで、各種信号の転送をeNB間で直接行うことが可能となる。なお、以下では、eNB1a~1jのうち、任意のeNB1a~1jを単に「eNB1」とする。 In this embodiment, eNBs are connected to each other using a communication interface called X2 (hereinafter referred to as “X2 interface”). The X2 interface is a newly added interface in 3GPP-LTE. By connecting the eNBs 1a to 1j with the X2 interface, various signals can be directly transferred between the eNBs. In the following, arbitrary eNBs 1a to 1j among eNBs 1a to 1j are simply referred to as “eNB1”.
 UE2a,2bは、携帯端末等の移動局であり、在圏するセルを形成するeNB1を介して、他のUEや外部パケット網などと通信を行う。なお、以下では、UE2a,2bのうち、任意のUE2a,2bを単に「UE2」とする。 The UEs 2a and 2b are mobile stations such as portable terminals, and communicate with other UEs, external packet networks, and the like via the eNB 1 that forms a cell in the area. In the following, arbitrary UEs 2a and 2b out of UEs 2a and 2b are simply referred to as “UE2”.
 MME/UPE3は、eNB1の上位装置に相当し、複数のeNB1を管理、制御する機能や、UE2の位置登録を管理する機能、UE2と外部パケット網との間のメッセージの送受信を行なう機能などを具備するコアネットワーク系装置である。また、eNB1とMME/UPE3とは、S1と呼ばれる通信インタフェース(以下、「S1インタフェース」という)により相互に接続さる。S1インタフェースは、X2インタフェースと同様、3GPP-LTEにおいて定義されるインタフェースである。なお、本実施例において、移動通信システムSは、10台のeNB1a~1j、2台のUE2a,2bを含むが、eNBの台数及びUEの台数は、これに限定されるものではない。 MME / UPE3 corresponds to a host device of eNB1, and has a function of managing and controlling a plurality of eNB1, a function of managing location registration of UE2, a function of transmitting and receiving messages between UE2 and an external packet network, etc. It is a core network system device. ENB1 and MME / UPE3 are connected to each other by a communication interface called S1 (hereinafter referred to as “S1 interface”). Similar to the X2 interface, the S1 interface is an interface defined in 3GPP-LTE. In the present embodiment, the mobile communication system S includes ten eNBs 1a to 1j and two UEs 2a and 2b, but the number of eNBs and the number of UEs are not limited thereto.
 本実施例にかかる移動通信システムSにおいて、各eNB1a~1jは、それぞれ単数または複数のセルを形成する。具体的には、図2に示すように、eNB1aはセル5a~5cを形成し、eNB1bはセル5d~5fを形成し、eNB1cはセル5g~5iを形成し、eNB1dはセル5j,5kを形成し、eNB1eはセル5l,5mを形成する。同様に、eNB1fはセル5n,5oを形成し、eNB1gはセル5p,5qを形成し、eNB1hはセル5r~5tを形成し、eNB1iはセル5uを形成し、eNB1jはセル5v~5xを形成する。なお、以下では、セル5a~5xのうち、任意のセル5a~5xを単に「セル5」とする。 In the mobile communication system S according to the present embodiment, each eNB 1a to 1j forms one or a plurality of cells. Specifically, as shown in FIG. 2, eNB 1a forms cells 5a to 5c, eNB 1b forms cells 5d to 5f, eNB 1c forms cells 5g to 5i, and eNB 1d forms cells 5j and 5k. The eNB 1e forms cells 5l and 5m. Similarly, eNB 1f forms cells 5n and 5o, eNB 1g forms cells 5p and 5q, eNB 1h forms cells 5r to 5t, eNB 1i forms cell 5u, and eNB 1j forms cells 5v to 5x. . In the following, any of the cells 5a to 5x is simply referred to as “cell 5”.
 そして、本実施例にかかる移動通信システムSでは、UE2からの要求に応じて、複数のeNB1がそれぞれ形成するセルを仮想的に統合したセルであるグループセルを構築する。例えば、図2に示すように、UE2aは、ユーザから所定の操作を受け付けると、在圏中のセル5aを形成するeNB1aに対してグループセル構築要求を送信する。そして、UE2aからグループセル構築要求を受信したeNB1aは、UE2aが在圏するセル5aを基準セルとするグループセル50の構築を行なう。 Then, in the mobile communication system S according to the present embodiment, in response to a request from the UE 2, a group cell that is a cell in which cells formed by a plurality of eNBs 1 are virtually integrated is constructed. For example, as illustrated in FIG. 2, when the UE 2a receives a predetermined operation from the user, the UE 2a transmits a group cell construction request to the eNB 1a that forms the cell 5a being located. Then, the eNB 1a that has received the group cell construction request from the UE 2a constructs the group cell 50 using the cell 5a in which the UE 2a is located as a reference cell.
 先ず、eNB1aは、従属セルの決定を行なう。従属セルとは、グループセル50に含まれる基準セル以外のセル5である。本実施例において、eNB1aは、基準セルであるセル5aの近隣のセルを従属セルとして決定する。例えば、eNB1aは、セル5aに隣接するセルを従属セルとして決定する。すなわち、図2に示すように、eNB1aは、自局が形成するセル5b,5c、eNB1bが形成するセル5e,5eおよびeNB1cが形成するセル5g,5iを従属セルとして決定する。 First, the eNB 1a determines a dependent cell. The subordinate cell is a cell 5 other than the reference cell included in the group cell 50. In the present embodiment, the eNB 1a determines a neighboring cell of the cell 5a that is the reference cell as a subordinate cell. For example, the eNB 1a determines a cell adjacent to the cell 5a as a dependent cell. That is, as illustrated in FIG. 2, the eNB 1a determines the cells 5b and 5c formed by the own station, the cells 5e and 5e formed by the eNB 1b, and the cells 5g and 5i formed by the eNB 1c as subordinate cells.
 続いて、eNB1aは、UE2aとの通信のための無線リソースであって、従属セルを形成するeNB1b,1cおよび自局に共通して割当てるための無線リソースの決定を行なう。具体的には、eNB1aは、従属セルを形成するeNB1b,1cからリソース割当状況情報を取得し、取得したリソース割当状況情報および自局のリソース割当状況情報から、自局およびeNB1b,1cに共通する空き無線リソースを特定する。そして、eNB1aは、特定した空き無線リソースをeNB1b,1cおよび自局に共通して割当てるための無線リソースとして決定し、決定した無線リソースに関する情報(以下、「無線リソース情報」とする)をeNB1b,1cに対して送信する。 Subsequently, the eNB 1a determines radio resources for communication with the UE 2a, which are allocated in common to the eNBs 1b and 1c forming the dependent cells and the own station. Specifically, the eNB 1a acquires the resource allocation status information from the eNBs 1b and 1c forming the dependent cells, and is common to the local station and the eNB 1b and 1c from the acquired resource allocation status information and the resource allocation status information of the local station. Identify available radio resources. Then, the eNB 1a determines the specified free radio resource as a radio resource for commonly allocating to the eNBs 1b and 1c and the own station, and sets information on the determined radio resource (hereinafter referred to as “radio resource information”) to the eNB 1b, Send to 1c.
 そして、eNB1aおよび無線リソース情報を受信したeNB1b,1cは、eNB1aによって決定された共通の無線リソースを、UE2aとの通信のための無線リソースとして確保する。これにより、UE2aとの通信のための無線リソースがグループセル50内で共有された状態となる。 And eNB1b and 1c which received eNB1a and radio | wireless resource information ensure the common radio | wireless resource determined by eNB1a as a radio | wireless resource for communication with UE2a. Thereby, it will be in the state by which the radio | wireless resource for communication with UE2a was shared within the group cell 50. FIG.
 続いて、eNB1aは、UE2aへ送信するデータをeNB1b,1cへ転送する。そして、eNB1aおよびeNB1b,1cは、グループセル50内で共有された無線リソースを用いて、UE2aへのデータを一斉に送信する。これにより、UE2aへのデータは、該UE2aが在圏するセル5aからだけでなく、グループセル50を構築するその他のセル5b,5c,5e,5g,5iからも送信される。 Subsequently, the eNB 1a transfers data to be transmitted to the UE 2a to the eNB 1b and 1c. And eNB1a and eNB1b, 1c transmit the data to UE2a simultaneously using the radio | wireless resource shared within the group cell 50. FIG. Thereby, the data for the UE 2a is transmitted not only from the cell 5a where the UE 2a is located, but also from the other cells 5b, 5c, 5e, 5g, and 5i that constitute the group cell 50.
 このように、本実施例にかかる移動通信システムSは、複数のセル5間でUE2との通信のための無線リソースを共有することにより、これら複数のセル5をグループセルとして仮想的に統合する。その結果、UE2は、グループセル50を仮想的に単一のセルをとして扱うことが可能となる。 As described above, the mobile communication system S according to the present embodiment virtually integrates the plurality of cells 5 as a group cell by sharing the radio resources for communication with the UE 2 among the plurality of cells 5. . As a result, the UE 2 can treat the group cell 50 virtually as a single cell.
 すなわち、UE2は、グループセル50内において、在圏中のセル5から他のセル5へ移動する場合であっても、移動先のセル5からはUE2へのデータが既に送信されているため、ハンドオーバ処理を行うことなく移動することできる。また、これに伴い、eNB1は、UE2がグループセル50内においてセル5間を移動した場合であってもハンドオーバ処理を行う必要がなくなる。その結果、UE2がグループセル50内において他のセル5への移動を頻繁に繰り返した場合であっても、ハンドオーバ処理に起因して生じる通信品質の劣化や通信の遮断を防ぐことができる。 That is, since the UE 2 has already transmitted data from the destination cell 5 to the UE 2 even if the UE 2 moves from the cell 5 in the service area to another cell 5 in the group cell 50, It is possible to move without performing a handover process. Accordingly, the eNB 1 does not need to perform a handover process even when the UE 2 moves between the cells 5 in the group cell 50. As a result, even when the UE 2 frequently moves to another cell 5 in the group cell 50, it is possible to prevent communication quality deterioration and communication interruption caused by the handover process.
 ここで、以下では、基準セルを「マスタセル」と呼び、従属セルを「スレーブセル」と呼ぶ。また、以下では、マスタセルを形成するeNB1を「eNB1M」と呼び、スレーブセルのみを形成するeNB1を「eNB1S」と呼ぶ。 Here, hereinafter, the reference cell is referred to as a “master cell” and the subordinate cell is referred to as a “slave cell”. Moreover, below, eNB1 which forms a master cell is called "eNB1M", and eNB1 which forms only a slave cell is called "eNB1S."
 なお、本実施例において、グループセル50は、UE2単位で構築される。例えば、図3に示すように、UE2a用に構築されたグループセル50aは、eNB1aをeNB1Mとし、eNB1b,1cをeNB1Sとするグループセルである。具体的には、グループセル50aは、eNB1aが形成するセル5aをマスタセルとし、eNB1aのセル5b,5cと、eNB1bのセル5e,5fと、eNB1cのセル5g,5iとをスレーブセルとする。 In this embodiment, the group cell 50 is constructed in units of UE2. For example, as illustrated in FIG. 3, the group cell 50a constructed for the UE 2a is a group cell in which the eNB 1a is the eNB 1M and the eNBs 1b and 1c are the eNB 1S. Specifically, the group cell 50a uses the cell 5a formed by the eNB 1a as a master cell, and sets the cells 5b and 5c of the eNB 1a, the cells 5e and 5f of the eNB 1b, and the cells 5g and 5i of the eNB 1c as slave cells.
 また、UE2b用に構築されたグループセル50bは、eNB1bをeNB1Mとし、eNB1a,1c,1h,1jをeNB1Sとするグループセルである。具体的には、グループセル50bは、eNB1bが形成するセル5eをマスタセルとし、eNB1aのセル5aと、eNB1bのセル5d,5fと、eNB1cのセル5g,5iと、eNB1hのセル5tと、eNB1jのセル5vとをスレーブセルとする。 Also, the group cell 50b constructed for the UE 2b is a group cell in which the eNB 1b is eNB 1M and the eNBs 1a, 1c, 1h, and 1j are eNB 1S. Specifically, the group cell 50b uses the cell 5e formed by the eNB 1b as a master cell, the cell 5a of the eNB 1a, the cells 5d and 5f of the eNB 1b, the cells 5g and 5i of the eNB 1c, the cell 5t of the eNB 1h, and the eNB 1j. The cell 5v is a slave cell.
 すなわち、各eNB1は、自局が形成するセルがマスタセルであるかスレーブセルであるかをUE2ごとに管理する。なお、以下において、UE2a,2bごとに構築されるグループセル50a,50bのち、任意のグループセル50a,50bを単に「グループセル50」とする。 That is, each eNB 1 manages for each UE 2 whether the cell formed by itself is a master cell or a slave cell. In the following, arbitrary group cells 50a and 50b after group cells 50a and 50b constructed for each UE 2a and 2b are simply referred to as “group cell 50”.
 また、本実施例にかかる移動通信システムSは、UE2の移動に伴い、グループセル50を構築するマスタセルやスレーブセルの変更を行う。例えば、本実施例にかかる移動通信システムSでは、UE2がグループセル50の端に移動した場合にスレーブセルの再構築を行い、UE2とマスタセルとの通信品質が悪化した場合にはマスタセルの変更を行なう。 Moreover, the mobile communication system S according to the present embodiment changes the master cell and the slave cell that configure the group cell 50 as the UE 2 moves. For example, in the mobile communication system S according to the present embodiment, when the UE 2 moves to the end of the group cell 50, the slave cell is reconstructed, and when the communication quality between the UE 2 and the master cell deteriorates, the master cell is changed. Do.
[2.eNBおよびUEの構成について]
 次に、本実施例にかかるeNB1の構成について具体的に説明する。図4は、本実施例にかかるeNB1の構成を示すブロック図である。図4に示すように、本実施例にかかるeNB1は、IF部10と、ハンドオーバ処理部11と、下位レイヤ処理部14と、上位レイヤ処理部15と、マスタ制御部12と、スレーブ制御部13と、スケジューリング部16と、データバッファ部17とを備える。
[2. About the configuration of eNB and UE]
Next, the configuration of the eNB 1 according to the present embodiment will be specifically described. FIG. 4 is a block diagram illustrating a configuration of the eNB 1 according to the present embodiment. As illustrated in FIG. 4, the eNB 1 according to the present embodiment includes an IF unit 10, a handover processing unit 11, a lower layer processing unit 14, an upper layer processing unit 15, a master control unit 12, and a slave control unit 13. And a scheduling unit 16 and a data buffer unit 17.
 IF部10は、他のeNB1との間で各種信号を送受するためのインタフェースである。本実施例におけるIF部10は、X2インタフェースに対応する。ハンドオーバ処理部11は、UE2からのハンドオーバ要求を受信した場合に、ハンドオーバ処理を実行する。具体的には、ハンドオーバ処理部11は、UE2からのハンドオーバ要求を受信した場合に、該UE2との通信のための無線リソースを確保して該UE2との通信が可能な状態とする。 The IF unit 10 is an interface for transmitting and receiving various signals to and from another eNB1. The IF unit 10 in this embodiment corresponds to the X2 interface. The handover processing unit 11 executes a handover process when receiving a handover request from the UE 2. Specifically, when the handover processing unit 11 receives a handover request from the UE 2, the handover processing unit 11 secures radio resources for communication with the UE 2 and enables communication with the UE 2.
 マスタ制御部12は、マスタセルの決定やマスタセルの変更に関する処理を行う。具体的には、マスタ制御部12は、マスタセル決定部121と、マスタセル変更部122と、電力計算部123と、セル情報管理部124とを備える。 The master control unit 12 performs processing related to determination of the master cell and change of the master cell. Specifically, the master control unit 12 includes a master cell determination unit 121, a master cell change unit 122, a power calculation unit 123, and a cell information management unit 124.
 マスタセル決定部121は、UE2からグループセル構築要求を受信した場合に、該UE2が在圏するセル5をマスタセルとして決定する。具体的には、マスタセル決定部121は、UE2が在圏するセル5を、該UE2用のグループセル50のマスタセルとして後述するセル情報管理部124に登録する。これにより、グループセル構築要求を受信したeNB1は、自局がeNB1Mであると判断することができる。 When the master cell determination unit 121 receives a group cell construction request from the UE 2, the master cell determination unit 121 determines the cell 5 in which the UE 2 is located as the master cell. Specifically, the master cell determination unit 121 registers the cell 5 where the UE 2 is located in the cell information management unit 124 described later as the master cell of the group cell 50 for the UE 2. Thereby, eNB1 which received the group cell construction request can judge that the own station is eNB1M.
 また、マスタセル決定部121は、自局のセル5をマスタセルとして決定すると、後述するスレーブセル決定部131に対して、スレーブセル決定要求を送信する。これにより、スレーブセル決定部131において、グループセル50に含まれるスレーブセルの決定処理が行われる。スレーブセル決定処理については、後述する。 When the master cell determining unit 121 determines the cell 5 of its own station as the master cell, the master cell determining unit 121 transmits a slave cell determining request to the slave cell determining unit 131 described later. As a result, the slave cell determination unit 131 performs determination processing of the slave cells included in the group cell 50. The slave cell determination process will be described later.
 マスタセル変更部122は、UE2とマスタセルとの通信品質が悪化した場合に、マスタセルの変更を行う。具体的には、マスタセル変更部122は、自局がeNB1Sである場合、自局のスレーブセルを介してUE2から受信したパイロット信号に基づき後述する電力計算部123により計算された該パイロット信号の受信電力に関する情報(以下、「受信電力情報」とする)を、eNB1MへX2インタフェースを介して送信する。 The master cell changing unit 122 changes the master cell when the communication quality between the UE 2 and the master cell deteriorates. Specifically, when the own station is the eNB 1S, the master cell changing unit 122 receives the pilot signal calculated by the power calculating unit 123 described later based on the pilot signal received from the UE 2 via the slave cell of the own station. Information on power (hereinafter referred to as “received power information”) is transmitted to the eNB 1M via the X2 interface.
 また、マスタセル変更部122は、自局がeNB1Mである場合、各eNB1Sから受信した受信電力情報が示す受信電力および自局のスレーブセルを介して受信したパイロット信号の受信電力を比較して、最も受信電力の高いスレーブセルを決定する。続いて、マスタセル変更部122は、決定したスレーブセルの受信電力と、マスタセルを介してUE2から受信したパイロット信号の受信電力を比較する。 Further, when the own station is the eNB 1M, the master cell changing unit 122 compares the received power indicated by the received power information received from each eNB 1S and the received power of the pilot signal received through the slave cell of the own station, A slave cell with high received power is determined. Subsequently, the master cell changing unit 122 compares the determined received power of the slave cell with the received power of the pilot signal received from the UE 2 via the master cell.
 そして、マスタセルを介して受信したパイロット信号の受信電力よりもスレーブセルを介して受信したパイロット信号の受信電力の方が高い場合、マスタセル変更部122は、該スレーブセルを新たなマスタセルに変更し、現マスタセルをスレーブセルに変更する。具体的には、例えば、自局がeNB1Mである場合において、グループセル50内で最も受信電力の高かったスレーブセルが自局の形成するセル5であったとする。かかる場合、マスタセル変更部122は、後述するセル情報管理部124に対して、該セル5をマスタセルに変更し、現マスタセルをスレーブセルに変更するよう指示する。このように、新たなマスタセルが現eNB1Mの形成するセル5である場合、現eNB1Mは、引き続きeNB1Mとして機能する。 When the reception power of the pilot signal received via the slave cell is higher than the reception power of the pilot signal received via the master cell, the master cell changing unit 122 changes the slave cell to a new master cell, Change the current master cell to a slave cell. Specifically, for example, when the own station is the eNB 1M, it is assumed that the slave cell having the highest received power in the group cell 50 is the cell 5 formed by the own station. In such a case, the master cell changing unit 122 instructs the cell information managing unit 124 described later to change the cell 5 to a master cell and change the current master cell to a slave cell. Thus, when the new master cell is the cell 5 formed by the current eNB 1M, the current eNB 1M continues to function as the eNB 1M.
 また、例えば、自局がeNB1Mである場合において、グループセル50内で最も受信電力の高かったスレーブセルが他のeNB1が形成するセル5であったとする。かかる場合、マスタセル変更部122は、該セル5を形成する他のeNB1に対して、該セル5をマスタセルとすべき旨の通知(以下、「マスタセル変更通知」とする)を送信する。また、かかる場合、マスタセル変更部122は、セル情報管理部124に対して、現マスタセルをスレーブセルに変更するよう指示する。 For example, when the local station is the eNB 1M, it is assumed that the slave cell having the highest received power in the group cell 50 is the cell 5 formed by another eNB 1. In such a case, the master cell changing unit 122 transmits a notification that the cell 5 should be a master cell (hereinafter, referred to as “master cell change notification”) to the other eNB 1 that forms the cell 5. In such a case, the master cell changing unit 122 instructs the cell information managing unit 124 to change the current master cell to a slave cell.
 また、マスタセル変更部122は、自局がeNB1Sである場合において、eNB1Mからマスタセル変更通知を受信した場合、該マスタセル変更通知に基づき、セル情報管理部124に対して、マスタ化の対象となったセル5をマスタセルに変更するよう指示する。これにより、かかるeNB1Sは、eNB1Mとして機能するようになる。 Moreover, when the master cell change unit 122 receives the master cell change notification from the eNB 1M when the own station is the eNB 1S, the master cell change unit 122 becomes a target of mastering with respect to the cell information management unit 124 based on the master cell change notification. Instruct to change cell 5 to master cell. Thereby, this eNB1S comes to function as eNB1M.
 なお、マスタセル変更通知には、グループセル50を構築する各eNB1に関する情報が含まれる。そして、マスタセル変更通知を受信してeNB1Mとなった場合、マスタセル変更部122は、グループセル50を構築する各eNB1Sに対して、自局がeNB1Mとなった旨を通知する。これにより、グループセル50を構築する各eNB1Sは、新たなeNB1Mを特定することができる。 The master cell change notification includes information on each eNB 1 that constructs the group cell 50. When the master cell change notification is received and becomes eNB1M, the master cell changing unit 122 notifies each eNB1S that constructs the group cell 50 that the own station has become eNB1M. Thereby, each eNB1S which constructs the group cell 50 can specify a new eNB1M.
 このようにマスタセル変更部122は、UE2との通信品質が最も高いスレーブセルとUE2との通信品質が、該UE2とマスタセルとの通信品質よりも高い場合、該スレーブセルをマスタセルに変更するとともに、自局が形成するマスタセルをスレーブセルに変更する基準変更手段の一例として機能する。より具体的には、マスタセル変更部122は、基準変更手段の一例として機能することにより、スレーブセルを形成するeNB1Sから受信した受信電力情報が表す受信電力のうち最も高い受信電力が、自局がUE2から受信したパイロット信号の受信電力よりも高い場合、該最も高い受信電力を表す受信電力情報を送信したスレーブセルを形成するeNB1Sに対して、該スレーブセルをマスタセルに変更すべき旨の要求を送信するとともに、自局が形成するマスタセルをスレーブセルに変更する。 Thus, when the communication quality between the UE 2 and the master cell is higher than the communication quality between the UE 2 and the master cell, the master cell changing unit 122 changes the slave cell to the master cell when the communication quality between the UE 2 and the master cell is higher. It functions as an example of reference changing means for changing a master cell formed by the own station to a slave cell. More specifically, the master cell changing unit 122 functions as an example of a reference changing unit, so that the highest received power among the received power represented by the received power information received from the eNB 1S forming the slave cell is When the received power of the pilot signal received from UE2 is higher, a request to change the slave cell to the master cell is sent to eNB 1S that forms the slave cell that has transmitted the received power information indicating the highest received power. At the same time, the master cell formed by the own station is changed to a slave cell.
 電力計算部123は、UE2から定期的に送信されるパイロット信号の受信電力を計算する。ここで、本実施例において、電力計算部123による電力の計算は、自局が形成するセル5ごとに行われる。また、電力計算部123は、自局がeNB1Sである場合、計算した受信電力に関する受信電力情報をeNB1MへX2インタフェースを介して送信する。また、電力計算部123は、自局がeNB1Mである場合には、計算した受信電力に関する受信電力情報をマスタセル変更部122やスレーブセル変更部132へ送信する。 The power calculator 123 calculates the received power of the pilot signal that is periodically transmitted from the UE2. Here, in the present embodiment, the power calculation by the power calculation unit 123 is performed for each cell 5 formed by the own station. Moreover, the power calculation part 123 transmits the received power information regarding the calculated received power to the eNB 1M via the X2 interface when the own station is the eNB 1S. Moreover, the power calculation part 123 transmits the received power information regarding the calculated received power to the master cell change part 122 and the slave cell change part 132, when a self-station is eNB1M.
 このように、電力計算部123およびIF部10は、UE2からパイロット信号を受信した場合、該パイロット信号の受信電力を表す受信電力情報を、マスタセルを形成するeNB1Mへ送信する受信電力情報送信手段の一例として機能する。 As described above, when the power calculation unit 123 and the IF unit 10 receive the pilot signal from the UE 2, the received power information transmitting unit transmits the received power information indicating the received power of the pilot signal to the eNB 1M that forms the master cell. It serves as an example.
 セル情報管理部124は、自局が形成するセル5がマスタセルであるかスレーブセルであるか或いはそのどちらでもない通常のセルであるかを表す情報(以下、「セル管理情報」とする)をUE2ごとに管理する。これにより、各eNB1は、自局が形成するセル5のうち、どのセル5がマスタセルであり、スレーブセルであるかを判断することができるとともに、自局がeNB1MであるかeNB1Sであるかを判断することができる。また、セル情報管理部124は、マスタセル決定部121、マスタセル変更部122、スレーブセル決定部131或いはスレーブセル変更部132からの指示に応じて、セル管理情報の登録や更新を行う。 The cell information management unit 124 displays information (hereinafter referred to as “cell management information”) indicating whether the cell 5 formed by the own station is a master cell, a slave cell, or a normal cell that is neither of them. It manages for every UE2. Thereby, each eNB1 can determine which cell 5 is the master cell and the slave cell among the cells 5 formed by the own station, and whether the own station is the eNB1M or the eNB1S. Judgment can be made. In addition, the cell information management unit 124 registers and updates cell management information in accordance with instructions from the master cell determination unit 121, the master cell change unit 122, the slave cell determination unit 131, or the slave cell change unit 132.
 スレーブ制御部13は、スレーブセルの決定やスレーブセルの再構築に関する処理を行う。具体的には、スレーブ制御部13は、スレーブセル決定部131と、スレーブセル変更部132とを備える。 The slave control unit 13 performs processing related to determination of slave cells and reconstruction of slave cells. Specifically, the slave control unit 13 includes a slave cell determination unit 131 and a slave cell change unit 132.
 スレーブセル決定部131は、マスタセル決定部121から受信したスレーブセル決定要求に基づき、グループセル50に含まれるスレーブセルを決定する。ここで、スレーブセル決定要求には、自局のどのセル5がマスタセルであるかを示す情報が含まれている。また、各eNB1は、自局が形成するセル5および他のeNB1が形成するセル5の位置情報を予め所定の記憶領域に記憶している。そして、スレーブセル決定部131は、スレーブセル決定要求に基づき、自局のどのセル5がマスタセルであるかを判断するとともに、所定の記憶領域に記憶された情報に基づき該マスタセルに隣接するセル5を特定し、特定したセル5をスレーブセルとして決定する。 The slave cell determination unit 131 determines a slave cell included in the group cell 50 based on the slave cell determination request received from the master cell determination unit 121. Here, the slave cell determination request includes information indicating which cell 5 of the own station is the master cell. In addition, each eNB 1 stores in advance a position information of the cell 5 formed by the own station and the cell 5 formed by another eNB 1 in a predetermined storage area. Then, the slave cell determination unit 131 determines which cell 5 of the own station is the master cell based on the slave cell determination request, and the cell 5 adjacent to the master cell based on the information stored in the predetermined storage area. And the identified cell 5 is determined as a slave cell.
 また、スレーブセル決定部131は、決定したスレーブセルを形成する他のeNB1に対して、該当するセル5をスレーブセルとすべき旨の要求であるスレーブ化要求をX2インタフェースを介して送信する。そして、スレーブセル決定部131は、自局がeNB1Mである場合において自局のセル5がスレーブセルに決定された場合、または、eNB1Mからスレーブ化要求を受信した場合、該セル5をスレーブセルとして登録するようセル情報管理部124に指示する。なお、スレーブ化要求には、どのセル5がマスタセルであるかを示す情報が含まれる。これにより、スレーブ化要求を受信したeNB1は、どのeNB1がeNB1Mであるかを特定することができる。かかる情報は、所定の記憶領域に記憶される。 In addition, the slave cell determination unit 131 transmits, via the X2 interface, a slave request, which is a request that the corresponding cell 5 should be a slave cell, to the other eNB 1 that forms the determined slave cell. Then, when the local station is the eNB 1M, when the local cell 5 is determined as the slave cell, or when the slave cell determination unit 131 receives the slave request from the eNB 1M, the slave cell determination unit 131 sets the cell 5 as the slave cell. The cell information management unit 124 is instructed to register. Note that the slave request includes information indicating which cell 5 is the master cell. Thereby, eNB1 which received the slave request | requirement can identify which eNB1 is eNB1M. Such information is stored in a predetermined storage area.
 このように、スレーブセル決定部131は、UE2からグループセル構築要求を受信した場合に、自局が形成するセル5をマスタセルとして構築されるグループセル50に含まれるスレーブセルを決定する従属セル決定手段の一例として機能する。 As described above, when the slave cell determining unit 131 receives a group cell construction request from the UE 2, the slave cell determining unit 131 determines a slave cell included in the group cell 50 that is configured with the cell 5 formed by the local station as the master cell. It functions as an example of means.
 スレーブセル変更部132は、UE2がグループセル50の端に位置した場合に、スレーブセルの変更を行なう。具体的には、eNB1Mのスレーブセル変更部132は、先ず、各スレーブセルに対応する受信電力情報を各eNB1SからX2インタフェースを介して受信する。また、eNB1Mのスレーブセル変更部132は、電力計算部123から、自局のマスタセル及びスレーブセルに対応する受信電力情報を取得する。 The slave cell changing unit 132 changes the slave cell when the UE 2 is located at the end of the group cell 50. Specifically, the slave cell changing unit 132 of the eNB 1M first receives received power information corresponding to each slave cell from each eNB 1S via the X2 interface. Moreover, the slave cell change part 132 of eNB1M acquires the received power information corresponding to the master cell and slave cell of an own station from the electric power calculation part 123. FIG.
 続いて、eNB1Mのスレーブセル変更部132は、これら受信電力情報に基づき、UE2の現在位置を推定する。具体的には、UE2から送信されたパイロット信号の受信電力は、基本的には、UE2との距離が近いほど高くなり、遠いほど低くなる。そこで、スレーブセル変更部132は、グループセル50を構築するマスタセルおよび各スレーブセルに対応する受信電力を比較することで、UE2の現在位置を推定することができる。 Subsequently, the slave cell changing unit 132 of the eNB 1M estimates the current position of the UE 2 based on the received power information. Specifically, the reception power of the pilot signal transmitted from the UE 2 basically increases as the distance from the UE 2 decreases and decreases as the distance from the UE 2 increases. Therefore, the slave cell changing unit 132 can estimate the current position of the UE 2 by comparing the received power corresponding to the master cell and each slave cell that configures the group cell 50.
 続いて、各受信電力に基づき推定したUE2の位置が、グループセル50の端近傍に位置する場合、eNB1Mのスレーブセル変更部132は、グループセル50を構築するスレーブセルの追加と解放を行う。具体的には、eNB1Mのスレーブセル変更部132は、先ず、推定したUE2の位置から該UE2が在圏中のセル5を特定する。次に、eNB1Mのスレーブセル変更部132は、該セル5に隣接するセル5であって、現在グループセル50を構築するスレーブセル以外のセル5を新たなスレーブセルとして決定する。そして、eNB1Mのスレーブセル変更部132は、新たなスレーブセルとして決定されたセル5を形成するeNB1に対して、スレーブ化要求を送信する。かかるスレーブ化要求には、スレーブ化の対象となるセル5を特定するための情報やeNB1Mを特定するための情報等が含まれる。 Subsequently, when the position of the UE 2 estimated based on each received power is located in the vicinity of the end of the group cell 50, the slave cell changing unit 132 of the eNB 1M adds and releases a slave cell that configures the group cell 50. Specifically, the slave cell changing unit 132 of the eNB 1M first identifies the cell 5 in which the UE 2 is located from the estimated position of the UE 2. Next, the slave cell changing unit 132 of the eNB 1M determines a cell 5 that is adjacent to the cell 5 and other than the slave cell that currently constructs the group cell 50 as a new slave cell. Then, the slave cell changing unit 132 of the eNB 1M transmits a slave request to the eNB 1 that forms the cell 5 determined as a new slave cell. Such a slave request includes information for specifying the cell 5 to be slaved, information for specifying the eNB 1M, and the like.
 一方、eNB1Sのスレーブセル変更部132は、eNB1Mからスレーブ化要求を受信した場合、対応するセル5をスレーブセルとして登録するようセル情報管理部124に指示する。同様に、eNB1Mのスレーブセル変更部132は、新たにスレーブセルとして決定されたセル5が自局の形成するセル5である場合、該セル5をスレーブセルとして登録するようセル情報管理部124に指示する。 On the other hand, when the slave cell changing unit 132 of the eNB 1S receives the slave request from the eNB 1M, the slave cell changing unit 132 instructs the cell information managing unit 124 to register the corresponding cell 5 as a slave cell. Similarly, when the cell 5 newly determined as the slave cell is the cell 5 formed by the own station, the slave cell changing unit 132 of the eNB 1M instructs the cell information management unit 124 to register the cell 5 as the slave cell. Instruct.
 また、スレーブセル変更部132は、グループセル50に新たに追加したスレーブセルの数に応じて、現在グループセル50に含まれるスレーブセルを、UE2との距離が遠い順に解放する。具体的には、eNB1Mのスレーブセル変更部132は、解放対象となったスレーブセルを形成するeNB1Sに対して、スレーブ開放通知を送信する。 Also, the slave cell changing unit 132 releases the slave cells included in the current group cell 50 in order of increasing distance from the UE 2 according to the number of slave cells newly added to the group cell 50. Specifically, the slave cell changing unit 132 of the eNB 1M transmits a slave release notification to the eNB 1S that forms the slave cell to be released.
 eNB1Sのスレーブセル変更部132は、eNB1Mからスレーブ解放通知を受信した場合、該当するスレーブセルを、グループセル50を構築するセル5以外のセルである通常のセルに変更するようセル情報管理部124に対して指示する。同様に、eNB1Mのスレーブセル変更部132は、解放の対象となったセル5が自局の形成するセル5である場合、該セル5を通常のセルに変更するようセル情報管理部124に対して指示する。 When the slave cell changing unit 132 of the eNB 1S receives the slave release notification from the eNB 1M, the cell information managing unit 124 changes the corresponding slave cell to a normal cell other than the cell 5 that configures the group cell 50. To instruct. Similarly, the slave cell change unit 132 of the eNB 1M instructs the cell information management unit 124 to change the cell 5 to a normal cell when the cell 5 to be released is the cell 5 formed by the own station. Instruct.
 このように、スレーブセル変更部132は、各eNB1から取得した受信電力情報が表す受信電力により推定されるUE2の位置に基づき、グループセル50に含まれるスレーブセルを変更する従属変更手段の一例として機能する。 As described above, the slave cell changing unit 132 is an example of a dependent changing unit that changes the slave cell included in the group cell 50 based on the position of the UE 2 estimated from the received power represented by the received power information acquired from each eNB 1. Function.
 下位レイヤ処理部14は、MAC(Media Access Control)層およびPHY(Physical Layer)層に関する処理を実行する処理部である。例えば、下位レイヤ処理部14は、UE2とのインタフェースとしての機能を有し、無線リンクを介してUE2から受信したデータ(パケット)を識別して各処理部へ引き渡したり、各処理部から引き渡されたデータを無線リンクを介してUE2へ送信したりする。また、下位レイヤ処理部14は、UE2との通信のための無線リソースの割り当て制御を行う。また、下位レイヤ処理部14は、信号送信手段として機能し、パイロット信号をUE2に対して無線リンクを介し定期的に送信する。 The lower layer processing unit 14 is a processing unit that executes processing related to a MAC (Media Access Control) layer and a PHY (Physical Layer) layer. For example, the lower layer processing unit 14 has a function as an interface with the UE 2, identifies data (packets) received from the UE 2 via the radio link, and delivers the data to each processing unit, or is delivered from each processing unit. Data is transmitted to UE2 via a radio link. Also, the lower layer processing unit 14 performs radio resource allocation control for communication with the UE 2. Further, the lower layer processing unit 14 functions as a signal transmission unit, and periodically transmits a pilot signal to the UE 2 via a radio link.
 上位レイヤ処理部15は、PDCP(Packet Data Convergence Protocol)層およびRLC(Radio Link Control)層に関する処理を実行する処理部である。例えば、上位レイヤ処理部15は、UE2に送信するためのデータや各種信号のMME/UPE3との間での送受信をS1インタフェースを介して行う。 The upper layer processing unit 15 is a processing unit that executes processing related to the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer. For example, the upper layer processing unit 15 transmits / receives data to be transmitted to the UE 2 and various signals to / from the MME / UPE 3 via the S1 interface.
 スケジューリング部16は、eNB1MおよびeNB1Sの下位レイヤ処理部14の動作を同期させるための制御を行う。具体的には、スケジューリング部16は、下位レイヤ制御部161と、フィードバック制御部162とを備える。下位レイヤ制御部161は、下位レイヤ処理部14の制御を行う処理部であり、特に、自局がeNB1Mである場合、グループセル50内で共通に使用可能な無線リソースおよび送信電力を決定し、また再送制御を行う。フィードバック制御部162は、UE2がマスタセル及びスレーブセルを介して受信したパイロット信号の受信電力情報を該UE2から受信した場合、該受信電力情報を、該UE2からのフィードバック情報として下位レイヤ制御部161へ送信する。 The scheduling unit 16 performs control for synchronizing the operations of the lower layer processing unit 14 of the eNB 1M and the eNB 1S. Specifically, the scheduling unit 16 includes a lower layer control unit 161 and a feedback control unit 162. The lower layer control unit 161 is a processing unit that controls the lower layer processing unit 14, and in particular, when the local station is the eNB 1M, determines radio resources and transmission power that can be commonly used in the group cell 50, Also, retransmission control is performed. When the feedback control unit 162 receives the received power information of the pilot signal received by the UE 2 via the master cell and the slave cell from the UE 2, the feedback control unit 162 uses the received power information as feedback information from the UE 2 to the lower layer control unit 161. Send.
 また、データバッファ部17は、UE2へ送信するデータをeNB1MおよびeNB1Sの下位レイヤ処理部14へ同時に送信するための制御を行う。具体的には、データバッファ部17は、データ転送処理部171と、データ共有管理部172とを備える。データ転送処理部171は、上位レイヤ処理部15からのデータを下位レイヤ処理部14へと引き渡す処理部である。本実施例において、データ転送処理部171は、自局がeNB1Mである場合にのみ上位レイヤ処理部15からデータを受信し、該受信したデータを自局の下位レイヤ処理部14に送信するとともに、eNB1Sのデータ転送処理部171へ転送する。データ共有管理部172は、上位レイヤ処理部15からのデータが、eNB1Mの下位レイヤ処理部14およびeNB1Sの下位レイヤ処理部14に同時に送信されるようにするためのタイミング調整を行う。 In addition, the data buffer unit 17 performs control for simultaneously transmitting data to be transmitted to the UE 2 to the lower layer processing unit 14 of the eNB 1M and the eNB 1S. Specifically, the data buffer unit 17 includes a data transfer processing unit 171 and a data sharing management unit 172. The data transfer processing unit 171 is a processing unit that delivers data from the upper layer processing unit 15 to the lower layer processing unit 14. In the present embodiment, the data transfer processing unit 171 receives data from the upper layer processing unit 15 only when the own station is the eNB 1M, transmits the received data to the lower layer processing unit 14 of the own station, The data is transferred to the data transfer processing unit 171 of the eNB 1S. The data sharing management unit 172 performs timing adjustment so that the data from the upper layer processing unit 15 is transmitted to the lower layer processing unit 14 of the eNB 1M and the lower layer processing unit 14 of the eNB 1S at the same time.
 ここで、スケジューリング部16およびデータバッファ部17による処理は、上位レイヤ処理部15による処理と下位レイヤ処理部14による処理との間に行われる。以下に、図5を参照して、スケジューリング部16およびデータバッファ部17により実行される処理についてより具体的に説明する。図5は、スケジューリング部16およびデータバッファ部17により実行される処理について説明するための図である。 Here, the processing by the scheduling unit 16 and the data buffer unit 17 is performed between the processing by the upper layer processing unit 15 and the processing by the lower layer processing unit 14. Hereinafter, the processing executed by the scheduling unit 16 and the data buffer unit 17 will be described more specifically with reference to FIG. FIG. 5 is a diagram for explaining processing executed by the scheduling unit 16 and the data buffer unit 17.
 本実施例において、各eNB1の上位装置に相当するMME/UPE3は、UE2へのデータを、該UE2用のグループセル50におけるeNB1Mに対してのみ送信する。そして、eNB1Mの上位レイヤ処理部15は、MME/UPE3から受信したデータに対して各種処理を施し、該データを所定のプロトコル・データ単位に分割したRLC-PDU(RLC Protocol Data Unit)としてデータ転送処理部171へ送信する。 In this embodiment, the MME / UPE 3 corresponding to the host device of each eNB 1 transmits data to the UE 2 only to the eNB 1M in the group cell 50 for the UE 2. Then, the upper layer processing unit 15 of the eNB 1M performs various processes on the data received from the MME / UPE 3, and transfers the data as RLC-PDU (RLC Protocol Data Unit) obtained by dividing the data into predetermined protocol data units. Transmit to the processing unit 171.
 このように、上位レイヤ処理部15は、UE2へ送信するデータをMME/UPE3から受信し、該受信したデータに対して所定の処理を施して送信する上位レイヤ処理手段の一例として機能する。 As described above, the upper layer processing unit 15 functions as an example of an upper layer processing unit that receives data to be transmitted to the UE 2 from the MME / UPE 3, performs a predetermined process on the received data, and transmits the data.
 続いて、eNB1Mのデータ転送処理部171は、上位レイヤ処理部15からRLC-PDUを受信すると、該RLC-PDUを受信した旨をデータ到達通知としてデータ共有管理部172へ送信する。そして、データ到達通知を受けたデータ共有管理部172は、該RLC-PDUの下位レイヤ処理部14への送信タイミングを決定し、決定した送信タイミングを送信タイミング情報としてデータ転送処理部171へ通知する。 Subsequently, when the RLC-PDU is received from the upper layer processing unit 15, the data transfer processing unit 171 of the eNB 1 M transmits to the data sharing management unit 172 as a data arrival notification that the RLC-PDU has been received. Upon receiving the data arrival notification, the data sharing management unit 172 determines the transmission timing of the RLC-PDU to the lower layer processing unit 14, and notifies the data transfer processing unit 171 of the determined transmission timing as transmission timing information. .
 送信タイミング情報を受信したデータ転送処理部171は、RLC-PDUをMAC-SDU(MAC Service Data Unit)に変換した後、該MAC-SDUを送信タイミング情報とともにeNB1Sのデータ転送処理部171へ転送する。そして、eNB1Mのデータ転送処理部171およびeNB1Sのデータ転送処理部171は、該MAC-SDUの送信タイミングとなるまでの間、該MAC-SDUを各データ転送処理部171内に設けられた所定の記憶領域にバッファしておく。そして、eNB1Mのデータ転送処理部171およびeNB1Sのデータ転送処理部171は、MAC-SDUを送信するタイミングが到来すると、該MAC-SDUを各々の下位レイヤ処理部14へ送信する。 The data transfer processing unit 171 that has received the transmission timing information converts the RLC-PDU into a MAC-SDU (MAC Service Data Unit), and then transfers the MAC-SDU together with the transmission timing information to the data transfer processing unit 171 of the eNB 1S. . Then, the data transfer processing unit 171 of the eNB 1M and the data transfer processing unit 171 of the eNB 1S store the MAC-SDUs in the predetermined data transfer processing units 171 until the MAC-SDU transmission timing is reached. Buffer it in the storage area. Then, when the timing for transmitting the MAC-SDU arrives, the data transfer processing unit 171 of the eNB 1M and the data transfer processing unit 171 of the eNB 1S transmit the MAC-SDU to each lower layer processing unit 14.
 このように、データ共有管理部172は、上位レイヤ処理部15から受信したデータを下位レイヤ処理部14へ送信する場合のタイミングを決定する送信タイミング決定手段の一例として機能する。また、データ転送処理部171は、上位レイヤ処理部15から受信したデータおよびデータ共有管理部172により決定された送信タイミングに関する情報をスレーブセルを形成するeNB1Sへ転送するデータ転送手段の一例として機能する。また、データ転送処理部171は、データ共有管理部172により決定されたデータの送信タイミング、或いは、マスタセルを形成するeNB1Mから受信したデータの送信タイミングが到来した場合に、該データを下位レイヤ処理部14に送信するデータ送信手段の一例として機能する。 As described above, the data sharing management unit 172 functions as an example of a transmission timing determination unit that determines a timing when data received from the upper layer processing unit 15 is transmitted to the lower layer processing unit 14. The data transfer processing unit 171 functions as an example of a data transfer unit that transfers the data received from the upper layer processing unit 15 and the information related to the transmission timing determined by the data sharing management unit 172 to the eNB 1S forming the slave cell. . Further, the data transfer processing unit 171 receives the data when the data transmission timing determined by the data sharing management unit 172 or the data transmission timing received from the eNB 1M forming the master cell has arrived. 14 functions as an example of a data transmission unit that transmits data to 14.
 また、eNB1Mの下位レイヤ制御部161は、UE2との通信のための無線リソースであって、各eNB1Sおよび自局に共通して割当てるための無線リソースを決定する。 Also, the lower layer control unit 161 of the eNB 1M is a radio resource for communication with the UE 2, and determines a radio resource to be commonly allocated to each eNB 1S and the own station.
 具体的には、UE2へのデータ送信が行われる旨の通知を上位レイヤ処理部15から受けると、eNB1Mの下位レイヤ制御部161は、eNB1Sに対して、該eNB1Sの下位レイヤ情報を送信するよう要求する。続いて、eNB1Mの下位レイヤ制御部161および該要求を受信したeNB1Sの下位レイヤ制御部161は、各々の下位レイヤ情報を下位レイヤ処理部14より取得する。ここで、下位レイヤ情報には、自局に在圏する各UE2に対して割り当てた無線リソースに関する情報(リソース割当状況情報)が含まれる。 Specifically, when receiving a notification from the upper layer processing unit 15 that data transmission to the UE 2 is performed, the lower layer control unit 161 of the eNB 1M transmits the lower layer information of the eNB 1S to the eNB 1S. Request. Subsequently, the lower layer control unit 161 of the eNB 1M and the lower layer control unit 161 of the eNB 1S that has received the request acquire each lower layer information from the lower layer processing unit 14. Here, the lower layer information includes information (resource allocation status information) related to radio resources allocated to each UE 2 located in the own station.
 続いて、eNB1Sの下位レイヤ制御部161は、下位レイヤ処理部14から下位レイヤ情報に含まれるリソース割当状況情報を取得すると、取得したリソース割当状況情報をeNB1Mの下位レイヤ制御部161へX2インタフェースを介して送信する。このように、下位レイヤ処理部14および下位レイヤ制御部161は、自局の空き無線リソースに関する情報をリソース割当状況情報としてマスタセルを形成するeNB1Mへ送信するリソース割当状況情報送信手段の一例として機能する。 Subsequently, when the lower layer control unit 161 of the eNB 1S acquires the resource allocation status information included in the lower layer information from the lower layer processing unit 14, the acquired resource allocation status information is sent to the lower layer control unit 161 of the eNB 1M via the X2 interface. Send through. As described above, the lower layer processing unit 14 and the lower layer control unit 161 function as an example of a resource allocation status information transmission unit that transmits information on the available radio resources of the local station as resource allocation status information to the eNB 1M that forms the master cell. .
 そして、eNB1Mの下位レイヤ制御部161は、自局のリソース割当状況情報およびeNB1Sから受信したリソース割当状況情報に基づき、グループセル50内で共通の送信電力およびグループセル50内で共通に使用可能な無線リソースを算出する。具体的には、eNB1Mの下位レイヤ制御部161は、自局のリソース割当状況情報およびeNB1Sから受信したリソース割当状況情報に基づき、自局およびeNB1Sに共通する空き無線リソースを特定する。そして、eNB1Mの下位レイヤ制御部161は、該無線リソースを、スレーブセルを形成する基地局および自局に共通して割当てるための無線リソースとして決定する。 Then, the lower layer control unit 161 of the eNB 1M can use the transmission power common in the group cell 50 and the common use in the group cell 50 based on the resource allocation situation information of the own station and the resource allocation situation information received from the eNB 1S. Calculate radio resources. Specifically, the lower layer control unit 161 of the eNB 1M specifies a free radio resource common to the local station and the eNB 1S based on the resource allocation status information of the local station and the resource allocation status information received from the eNB 1S. And the lower layer control part 161 of eNB1M determines this radio | wireless resource as a radio | wireless resource for allocating in common with the base station which forms a slave cell, and an own station.
 また、eNB1Mの下位レイヤ制御部161は、フィードバック制御部162からフィードバック情報を受信した場合、かかるフィードバック情報も加味し、グループセル50内で共通の無線リソースや送信電力を算出する。 In addition, when receiving the feedback information from the feedback control unit 162, the lower layer control unit 161 of the eNB 1M calculates radio resources and transmission power that are common in the group cell 50 in consideration of the feedback information.
 続いて、eNB1Mの下位レイヤ制御部161は、決定した無線リソースに関する情報(以下、「無線リソース情報」とする)および決定した送信電力に関する情報(以下、「送信電力情報」とする)をeNB1Sの下位レイヤ制御部161へ送信する。そして、eNB1Mの下位レイヤ制御部161およびeNB1Sの下位レイヤ制御部161は、決定した無線リソース情報および送信電力情報を各々の下位レイヤ処理部14へ送信する。 Subsequently, the lower layer control unit 161 of the eNB 1M transmits information on the determined radio resource (hereinafter referred to as “radio resource information”) and information on the determined transmission power (hereinafter referred to as “transmission power information”) of the eNB 1S. It transmits to the lower layer control part 161. Then, the lower layer control unit 161 of the eNB 1M and the lower layer control unit 161 of the eNB 1S transmit the determined radio resource information and transmission power information to each lower layer processing unit 14.
 このように、下位レイヤ制御部161は、共通リソース決定手段の一例として機能し、UE2との通信のための無線リソースであって、スレーブセル決定部131により決定されたスレーブセルを形成するeNB1Sおよび自局に共通して割当てるための無線リソースを決定する。また、下位レイヤ制御部161は、無線リソース情報送信手段の一例として機能し、決定した無線リソースに関する情報をスレーブセルを形成するeNB1Sに対して送信する。 In this way, the lower layer control unit 161 functions as an example of a common resource determination unit, is a radio resource for communication with the UE 2, and forms the slave cell determined by the slave cell determination unit 131 and the eNB 1S and A radio resource to be allocated in common to the own station is determined. Further, the lower layer control unit 161 functions as an example of a radio resource information transmitting unit, and transmits information on the determined radio resource to the eNB 1S that forms the slave cell.
 続いて、eNB1MおよびeNB1Sの下位レイヤ処理部14は、無線リソース情報および送信電力情報を受信した場合、受信した無線リソース情報に対応する無線リソースをUE2との通信のための無線リソースとして確保する。そして、eNB1MおよびeNB1Sの下位レイヤ処理部14は、データ転送処理部171から受信したUE2へのデータ(MAC-SDU)を、受信した送信電力情報に基づく送信電力でUE2に対して無線リンクを介し送信する。 Subsequently, when receiving the radio resource information and the transmission power information, the lower layer processing unit 14 of the eNB 1M and the eNB 1S reserves a radio resource corresponding to the received radio resource information as a radio resource for communication with the UE 2. Then, the lower layer processing unit 14 of the eNB 1M and the eNB 1S transmits the data (MAC-SDU) to the UE 2 received from the data transfer processing unit 171 via the radio link to the UE 2 with transmission power based on the received transmission power information. Send.
 このように、本実施例にかかる移動通信システムSでは、グループセル50を構築する各eNB1が、グループセル50内共通の無線リソースを用いて、UE2への送信データを同時に送信する。これにより、UE2は、在圏中のセル5から他のセル5へUE2が移動した場合であっても、移動先のセル5には該UE2へのデータが既に送信されているため、ハンドオーバ処理を行うことなく移動することできる。 Thus, in the mobile communication system S according to the present embodiment, each eNB 1 that constructs the group cell 50 transmits transmission data to the UE 2 at the same time using radio resources common in the group cell 50. Thereby, even if UE2 moves from cell 5 in the area to another cell 5 because UE2 has already transmitted the data to UE2 to destination cell 5, handover processing is performed. You can move without doing.
 また、本実施例にかかる移動通信システムSでは、データ転送処理部171およびデータ共有管理部172を、PDCP層及びRLC層に相当する上位レイヤ処理部15とMAC層及びPHY層に相当する下位レイヤ処理部14との中間層として設ける。これにより、下位レイヤ処理部14および上位レイヤ処理部15の動作に変更を加えることなくグループセル50を構築することができる。すなわち、データ転送処理部171およびデータ共有管理部172により、UE2へのデータがeNB1Mおよび各eNB1Sの下位レイヤ処理部14に到達するタイミングを揃えることで、上位レイヤ処理部15と下位レイヤ処理部14の処理に変更を加えることなくグループセル50の構築を実現できる。 Further, in the mobile communication system S according to the present embodiment, the data transfer processing unit 171 and the data sharing management unit 172 are divided into the upper layer processing unit 15 corresponding to the PDCP layer and the RLC layer, and the lower layer corresponding to the MAC layer and the PHY layer. It is provided as an intermediate layer with the processing unit 14. Thereby, the group cell 50 can be constructed without changing the operations of the lower layer processing unit 14 and the upper layer processing unit 15. That is, the data transfer processing unit 171 and the data sharing management unit 172 align the timing at which the data for the UE 2 reaches the lower layer processing unit 14 of the eNB 1M and each eNB 1S, so that the upper layer processing unit 15 and the lower layer processing unit 14 The construction of the group cell 50 can be realized without changing the process.
 続いて、本実施例にかかるUE2の構成について具体的に説明する。図6は、本実施例にかかるUEの構成を示すブロック図である。図6に示すように、本実施例にかかるUE2は、IF部20と、ハンドオーバ処理部21と、操作入力部22と、信号送信部23と、電力計算部24とを備える。 Subsequently, the configuration of the UE 2 according to the present embodiment will be specifically described. FIG. 6 is a block diagram illustrating the configuration of the UE according to the present embodiment. As illustrated in FIG. 6, the UE 2 according to the present embodiment includes an IF unit 20, a handover processing unit 21, an operation input unit 22, a signal transmission unit 23, and a power calculation unit 24.
 ハンドオーバ処理部21は、在圏中のセル5から他のセル5へ移動する場合に、ハンドオーバ要求を送信し、eNB1との間でハンドオーバ処理を実行する。なお、ハンドオーバ処理部21は、後述する操作入力部22によりグループセル構築要求操作がなされた場合には、在圏中のセル5から他のセル5へ移動する場合であっても、ハンドオーバ要求の送信を行わない。 The handover processing unit 21 transmits a handover request and executes a handover process with the eNB 1 when moving from the cell 5 being located to another cell 5. Note that when a group cell construction request operation is performed by an operation input unit 22 (to be described later), the handover processing unit 21 receives a handover request even when moving from the cell 5 in the service area to another cell 5. Do not send.
 操作入力部22は、入力手段の一例に相当し、UE2のユーザからの入力操作を受け付ける。特に、本実施例にかかる操作入力部22は、ユーザからグループセル50の構築を要求するグループセル構築要求操作を受け付ける。ここで、グループセル構築要求操作としては、例えば、UE2に設けられた所定のボタンをユーザが押下する操作の他、グループセル50の構築を必要とするアプリケーションの起動操作等が含まれる。グループセル50の構築を必要とするアプリケーションとは、例えば、eNB1とのより確実な通信が必要なアプリケーション等である。 The operation input unit 22 corresponds to an example of an input unit, and receives an input operation from the user of the UE 2. In particular, the operation input unit 22 according to the present embodiment accepts a group cell construction request operation for requesting construction of the group cell 50 from the user. Here, the group cell construction request operation includes, for example, an operation of starting an application that requires construction of the group cell 50 in addition to an operation of a user pressing a predetermined button provided in the UE 2. The application that requires the construction of the group cell 50 is, for example, an application that requires more reliable communication with the eNB 1.
 信号送信部23は、各種信号のeNB1への送信処理を行う。特に、本実施例にかかる信号送信部23は、グループセル構築要求送信手段の一例として機能し、操作入力部22によりユーザからグループセル構築要求操作を受け付けた場合に、自局が在圏するセル5を形成するeNB1に対してグループセル構築要求を送信する。また、信号送信部23は、各eNB1に対して所定のパイロット信号を定期的に送信する。なお、グループセル構築要求は、専用の信号であってもよいし、報知情報などの他の信号に含ませて送信してもよい。 The signal transmission unit 23 performs transmission processing of various signals to the eNB 1. In particular, the signal transmission unit 23 according to the present embodiment functions as an example of a group cell construction request transmission unit, and when the operation input unit 22 receives a group cell construction request operation from a user, the cell in which the own station is located A group cell construction request is transmitted to eNB1 forming 5. Moreover, the signal transmission part 23 transmits a predetermined pilot signal regularly with respect to each eNB1. The group cell construction request may be a dedicated signal, or may be transmitted by being included in other signals such as broadcast information.
 電力計算部24は、各eNB1からセル5を介して定期的に送信されるパイロット信号の受信電力を計算する。また、電力計算部24は、該パイロット信号の受信電力情報を、自局用に構築されたグループセル50のeNB1Mに対して送信する。 The power calculator 24 calculates the received power of the pilot signal that is periodically transmitted from each eNB 1 through the cell 5. Moreover, the power calculation unit 24 transmits the received power information of the pilot signal to the eNB 1M of the group cell 50 constructed for the own station.
[3.eNBおよびUEの具体的動作について]
[3.1.ハンドオーバ処理について]
 次に、本実施例にかかるeNB1およびUE2の具体的動作について説明する。先ず、UE2及びeNB1間で行われるハンドオーバ処理について説明する。図7は、本実施例の移動通信システムSにおけるハンドオーバ処理の処理手順の一例を示すシーケンス図である。なお、図7では、eNB1aが形成するセル5aに在圏するUE2aが、eNB1bが形成するセル5fへ移動する場合に、UE2a,eNB1a及びeNB1b間で行われるハンドオーバ処理について説明する。
[3. Specific operation of eNB and UE]
[3.1. About handover processing]
Next, specific operations of the eNB 1 and the UE 2 according to the present embodiment will be described. First, the handover process performed between UE2 and eNB1 is demonstrated. FIG. 7 is a sequence diagram illustrating an example of a processing procedure of a handover process in the mobile communication system S of the present embodiment. In addition, in FIG. 7, when UE2a located in the cell 5a which eNB1a forms moves to the cell 5f which eNB1b forms, the handover process performed between UE2a, eNB1a, and eNB1b is demonstrated.
 図7に示すように、UE2aのハンドオーバ処理部21は、現在通信中のeNB1aが形成するセル5aから、eNB1bが形成するセル5fへ移動する場合、eNB1bへeNB1aを介してハンドオーバ要求を送信する(ステップS101)。ここで、ハンドオーバ要求には、eNB1bがハンドオーバ処理を実行する場合に必要な情報として、例えば、UE2aの移動先となるeNB1bが形成するセル5fの識別情報やUE2aに関する情報などが含まれる。 As illustrated in FIG. 7, when moving from the cell 5a formed by the currently communicating eNB 1a to the cell 5f formed by the eNB 1b, the handover processing unit 21 of the UE 2a transmits a handover request to the eNB 1b via the eNB 1a ( Step S101). Here, the handover request includes, for example, identification information of the cell 5f formed by the eNB 1b that is the destination of the UE 2a, information about the UE 2a, and the like as information necessary when the eNB 1b executes the handover process.
 続いて、ハンドオーバ要求を受信したeNB1bのハンドオーバ処理部11は、UE2aの受け入れ可否を判断する(ステップS102)。そして、eNB1bのハンドオーバ処理部11は、UE2aの受け入れが可能と判断した場合、UE2aとの無線通信に用いる無線リソースを確保し(ステップS103)、ハンドオーバ要求応答信号をeNB1aへ送信する(ステップS104)。 Subsequently, the handover processing unit 11 of the eNB 1b that has received the handover request determines whether or not the UE 2a can be accepted (step S102). If the handover processing unit 11 of the eNB 1b determines that the UE 2a can be accepted, the handover processing unit 11 secures radio resources used for radio communication with the UE 2a (step S103), and transmits a handover request response signal to the eNB 1a (step S104). .
 続いて、eNB1aのハンドオーバ処理部11は、UE2aに対してハンドオーバ指示信号を送信する(ステップS105)。ハンドオーバ指示信号には、UE2aがeNB1bとの無線通信に用いる無線リソースに関する情報等が含まれる。 Subsequently, the handover processing unit 11 of the eNB 1a transmits a handover instruction signal to the UE 2a (Step S105). The handover instruction signal includes information on radio resources used by the UE 2a for radio communication with the eNB 1b.
 UE2aのハンドオーバ処理部21は、ハンドオーバ指示信号を受信すると、ハンドオーバ指示信号に含まれる無線リソース情報に応じた無線リソースを確保し、eNB1bとの通信が可能な状態とする(ステップS106)。その後、UE21aは、eNB1bとの間で、フレーム同期確立やタイムアライメント調整を行うために、同期確立信号やタイミング情報等の送受を行い、正常な通信が可能になると、eNB1bに対してハンドオーバ完了信号を送信する(ステップS107)。そして、ハンドオーバ完了信号を受信したeNB1bのハンドオーバ処理部21は、eNB1aに対して無線リソースの開放指示信号を送信し(ステップS108)、eNB1aのハンドオーバ処理部21は、かかる無線リソースの開放指示信号に基づき、無線リソースを開放する(ステップS109)。これによりハンドオーバ処理が完了し、UE2aは、eNB1bとの間で無線通信を継続することができる。 When receiving the handover instruction signal, the handover processing unit 21 of the UE 2a secures radio resources according to the radio resource information included in the handover instruction signal and enables communication with the eNB 1b (step S106). Thereafter, the UE 21a transmits / receives a synchronization establishment signal, timing information, etc. in order to establish frame synchronization and time alignment adjustment with the eNB 1b, and when normal communication is possible, the handover completion signal to the eNB 1b. Is transmitted (step S107). Then, the handover processing unit 21 of the eNB 1b that has received the handover completion signal transmits a radio resource release instruction signal to the eNB 1a (step S108), and the eNB 1a handover processing unit 21 receives the radio resource release instruction signal. Based on this, radio resources are released (step S109). Thereby, the handover process is completed, and the UE 2a can continue the wireless communication with the eNB 1b.
[3.2.eNB1Mの処理手順の概要について]
 続いて、eNB1Mの処理手順の概要について説明する。図8は、本実施例にかかるeNB1Mの処理手順の概要を示すフローチャートである。
[3.2. Overview of eNB1M processing procedure]
Then, the outline | summary of the process sequence of eNB1M is demonstrated. FIG. 8 is a flowchart illustrating an outline of a processing procedure of the eNB 1M according to the present embodiment.
 図8に示すように、eNB1Mは、先ず、マスタセルの決定を行う(ステップS201)。具体的には、eNB1Mのマスタセル決定部121は、UE2からグループセル構築要求を受信すると、該UE2が在圏するセル5をマスタセルとして決定し、該セル5がマスタセルである旨をセル情報管理部124に登録する。 As shown in FIG. 8, the eNB 1M first determines a master cell (step S201). Specifically, when the master cell determination unit 121 of the eNB 1M receives the group cell construction request from the UE 2, the cell 5 in which the UE 2 is located is determined as a master cell, and a cell information management unit that the cell 5 is the master cell 124.
 続いて、eNB1Mは、スレーブセルの決定を行う(ステップS202)。具体的には、eNB1Mのスレーブセル決定部131は、所定の記憶領域に記憶された他のeNB1が形成するセル5の位置情報に基づき、マスタセルに隣接するセル5を特定する。そして、eNB1Mは、ステップS202において決定したスレーブセルがステップS201において決定したマスタセルに従属するように無線リソースの共有、再送制御、データ転送および該データの共有管理を行う(ステップS203)。 Subsequently, the eNB 1M determines a slave cell (step S202). Specifically, the slave cell determination unit 131 of the eNB 1M specifies the cell 5 adjacent to the master cell based on the position information of the cell 5 formed by another eNB 1 stored in a predetermined storage area. Then, the eNB 1M performs radio resource sharing, retransmission control, data transfer, and data sharing management so that the slave cell determined in step S202 is subordinate to the master cell determined in step S201 (step S203).
 続いて、eNB1Mのスレーブ制御部13は、UE2がグループセルの端に位置するか否かを判定する(ステップS204)。具体的には、かかる判定は、eNB1Mの電力計算部123およびeNB1Sの電力計算部123がそれぞれ計算したUE2からのパイロット信号の受信電力に基づき、該UE2の位置を推定することで判定される。 Subsequently, the slave control unit 13 of the eNB 1M determines whether or not the UE 2 is located at the end of the group cell (Step S204). Specifically, this determination is performed by estimating the position of the UE 2 based on the received power of the pilot signal from the UE 2 calculated by the power calculation unit 123 of the eNB 1M and the power calculation unit 123 of the eNB 1S.
 かかる処理において、UE2がグループセル50の端に位置すると判定した場合(ステップS204肯定)、eNB1Mのスレーブセル変更部132は、スレーブセルの再構築を行う(ステップS205)。具体的には、eNB1Mのスレーブセル変更部132は、推定したUE2の位置から該UE2が在圏するセル5を特定するとともに、該セル5に隣接するセル5であって、現在スレーブセルとなっていないセル5を新たなスレーブセルとして決定する。また、eNB1Mのスレーブセル変更部132は、新たに追加したスレーブセルの数に応じて、UE2からの距離が遠い順にスレーブセルの解放を行う。ステップS205の処理を終えると、eNB1Mは、処理をステップS203へ移行し、無線リソースの共有や再送制御等処理を再度行う。 In this process, when it is determined that the UE 2 is located at the end of the group cell 50 (Yes at Step S204), the slave cell changing unit 132 of the eNB 1M reconstructs the slave cell (Step S205). Specifically, the slave cell changing unit 132 of the eNB 1M specifies the cell 5 where the UE 2 is located from the estimated position of the UE 2, and is the cell 5 adjacent to the cell 5 and is the current slave cell. The cell 5 that has not been determined is determined as a new slave cell. In addition, the slave cell changing unit 132 of the eNB 1M releases the slave cells in order of increasing distance from the UE 2 according to the number of newly added slave cells. When the process of step S205 is completed, the eNB 1M shifts the process to step S203, and performs processes such as radio resource sharing and retransmission control again.
 一方、ステップS204において、UE2がグループセル50の端に位置しない場合(ステップS204否定)、eNB1Mのマスタ制御部12は、UE2とマスタセルとの通信品質が良好であるか否かを判定する(ステップS206)。具体的には、eNB1Mのマスタセル変更部122は、eNB1Mの電力計算部123およびeNB1Sの電力計算部123がそれぞれ計算したUE2からのパイロット信号の受信電力に基づき、スレーブセルを介して受信されたパイロット信号の受信電力が、マスタセルを介して受信されたパイロット信号の受信電力よりも高いか否かを判定する。 On the other hand, when UE2 is not located at the end of the group cell 50 in Step S204 (No in Step S204), the master control unit 12 of the eNB1M determines whether or not the communication quality between the UE2 and the master cell is good (Step S204). S206). Specifically, the master cell changing unit 122 of the eNB 1M receives the pilot received via the slave cell based on the received power of the pilot signal from the UE 2 calculated by the power calculating unit 123 of the eNB 1M and the power calculating unit 123 of the eNB 1S. It is determined whether the received power of the signal is higher than the received power of the pilot signal received via the master cell.
 かかる処理において、UE2とマスタセルとの通信品質が良好ではない場合(ステップS206否定)、すなわち、スレーブセルを介して受信されたパイロット信号の受信電力が、マスタセルを介して受信されたパイロット信号の受信電力よりも高い場合、eNB1Mのマスタセル変更部122は、マスタセルの変更を行う(ステップS207)。ステップS207の処理を終えたとき、或いは、ステップS206においてUE2とマスタセルとの通信品質が良好であると判定した場合(ステップS206肯定)、eNB1Mは、処理をステップS203へ移行し、無線リソースの共有や再送制御等処理を再度行う。 In such processing, when the communication quality between the UE 2 and the master cell is not good (No at Step S206), that is, the reception power of the pilot signal received via the slave cell is received by the pilot signal received via the master cell. When the power is higher than the power, the master cell changing unit 122 of the eNB 1M changes the master cell (step S207). When the process of step S207 is completed, or when it is determined in step S206 that the communication quality between the UE 2 and the master cell is good (Yes in step S206), the eNB 1M moves the process to step S203 and shares the radio resource. And processing such as retransmission control again.
[3.3.マスタセル決定処理について]
 続いて、ステップS201におけるマスタセル決定処理について説明する。図9は、本実施例にかかるマスタセル決定処理の処理手順の一例を示すシーケンス図である。
[3.3. About master cell determination process]
Next, the master cell determination process in step S201 will be described. FIG. 9 is a sequence diagram illustrating an example of a processing procedure of master cell determination processing according to the present embodiment.
 図9に示すように、UE2の操作入力部22は、自局のユーザからグループセル構築要求操作を取得すると(ステップS301)、グループセル構築要求操作を取得した旨を信号送信部23に通知する。続いて、かかる通知を受けた信号送信部23は、現在在圏しているセル(UE2在圏セル)を介し、該UE2在圏セルを形成するeNB1に対してグループセル構築要求を送信する(ステップS302)。このグループセル構築要求には、UE2を識別するための識別情報等が含まれる。 As illustrated in FIG. 9, when the operation input unit 22 of the UE 2 acquires a group cell construction request operation from the user of the own station (step S301), the operation input unit 22 notifies the signal transmission unit 23 that the group cell construction request operation has been acquired. . Subsequently, the signal transmission unit 23 that has received such notification transmits a group cell construction request to the eNB1 that forms the UE2 serving cell via the cell currently serving (UE2 serving cell) ( Step S302). This group cell construction request includes identification information for identifying UE2.
 そして、UE2在圏セルを介してグループセル構築要求を受信したeNB1のマスタセル決定部121は、該UE2在圏セルをマスタセルとしてセル情報管理部124に登録する(ステップS303)。これにより、UE2在圏セルは、UE2用に構築されるグループセル50のマスタセルとなり、該UE2在圏セルを形成するeNB1は、グループセルの構築や変更或いはUE2へのデータ送信に関する処理をeNB1Mとして実行する。 Then, the master cell determination unit 121 of the eNB 1 that has received the group cell construction request via the UE 2 serving cell registers the UE 2 serving cell as a master cell in the cell information management unit 124 (step S303). Thereby, UE2 serving cell becomes a master cell of group cell 50 constructed for UE2, and eNB1 forming the UE2 serving cell uses eNB1M as a process for constructing or changing group cell or transmitting data to UE2. Execute.
 このように、本実施例にかかる移動通信システムSでは、ユーザにより所定のボタンが押下された場合や所定のアプリケーションが起動された場合に、グループセル構築要求がeNB1に送信されて、グループセル50の構築が行なわれる。すなわち、ユーザは、例えば確実な通信が必要な場合にのみグループセル50を構築するといったことが可能となるため、通信費が必要以上に高くなることを防止できる。 As described above, in the mobile communication system S according to the present embodiment, when a predetermined button is pressed by the user or a predetermined application is activated, a group cell construction request is transmitted to the eNB1, and the group cell 50 Is built. That is, since the user can construct the group cell 50 only when reliable communication is necessary, for example, the communication cost can be prevented from becoming higher than necessary.
[3.4.スレーブセル決定処理について]
 続いて、ステップS202におけるスレーブセル決定処理について説明する。図10は、本実施例にかかるスレーブセル決定処理の処理手順の一例を示すシーケンス図である。なお、図10に示す処理は、図9に示すマスタセル決定処理に引き続き行われる。
[3.4. About slave cell decision processing]
Next, the slave cell determination process in step S202 will be described. FIG. 10 is a sequence diagram illustrating an example of the processing procedure of the slave cell determination processing according to the present embodiment. The process shown in FIG. 10 is continued from the master cell determination process shown in FIG.
 図10に示すように、eNB1Mのマスタセル決定部121は、自局のスレーブセル決定部131に対してスレーブセル決定要求を送信する(ステップS401)。スレーブセル決定要求には、どのセル5がマスタセルであるかを表す情報が含まれている。また、各eNB1は、自局が形成するセル5および他のeNB1が形成するセル5の位置情報を予め所定の記憶領域に記憶している。そして、eNB1Mのスレーブセル決定部131は、スレーブセル決定要求に基づき、どのセル5がマスタセルであるかを判断し、所定の記憶領域に記憶された情報に基づき該マスタセルに隣接するセル5を特定することにより、スレーブセルを決定する(ステップS402)。 As illustrated in FIG. 10, the master cell determination unit 121 of the eNB 1M transmits a slave cell determination request to the slave cell determination unit 131 of the local station (step S401). The slave cell determination request includes information indicating which cell 5 is the master cell. In addition, each eNB 1 stores in advance a position information of the cell 5 formed by the own station and the cell 5 formed by another eNB 1 in a predetermined storage area. Then, the slave cell determination unit 131 of the eNB 1M determines which cell 5 is the master cell based on the slave cell determination request, and identifies the cell 5 adjacent to the master cell based on the information stored in the predetermined storage area Thus, a slave cell is determined (step S402).
 続いて、eNB1Mのスレーブセル決定部131は、決定したスレーブセルを形成する他のeNB1に対して、スレーブ化要求をX2インタフェースを介して送信する(ステップS403)。また、eNB1Mのスレーブセル決定部131は、自局のセル5がスレーブセルに決定された場合には、自局のセル情報管理部124に対して、該セル5をスレーブセルとして登録するよう指示する(ステップS404)。 Subsequently, the slave cell determining unit 131 of the eNB 1M transmits a slave request via the X2 interface to the other eNB 1 that forms the determined slave cell (step S403). In addition, when the cell 5 of the own station is determined as a slave cell, the slave cell determination unit 131 of the eNB 1M instructs the cell information management unit 124 of the own station to register the cell 5 as a slave cell. (Step S404).
 また、eNB1Mからスレーブ化要求を受信したeNB1は、該スレーブ化要求に基づき、自局の対象セル5をスレーブセルとして登録するよう自局のセル情報管理部124に指示する(ステップS405)。なお、スレーブ化要求には、どのセル5がマスタセルであるかを示す情報が含まれる。これにより、スレーブ化要求を受信したeNB1は、どのeNB1がeNB1Mであるかを特定することができる。かかる情報は、該eNB1の所定の記憶領域に記憶される。 Also, the eNB 1 that has received the slave request from the eNB 1M instructs the cell information management unit 124 of the local station to register the target cell 5 of the local station as a slave cell based on the slave request (step S405). Note that the slave request includes information indicating which cell 5 is the master cell. Thereby, eNB1 which received the slave request | requirement can identify which eNB1 is eNB1M. Such information is stored in a predetermined storage area of the eNB 1.
 これにより、グループセル50に含まれるべきスレーブセルが決定され、スレーブ化要求を受けたeNB1は、グループセルの構築や変更或いはUE2へのデータ送信に関する処理をeNB1Sとして実行する。 Thus, the slave cell to be included in the group cell 50 is determined, and the eNB 1 that has received the slave request executes, as eNB 1S, processing related to the construction or change of the group cell or data transmission to the UE 2.
[3.5.データ転送処理およびデータ共有管理処理による処理について]
 続いて、ステップS203におけるデータ転送処理およびデータ共有管理処理について説明する。図11は、本実施例にかかるデータ転送処理およびデータ共有管理処理の処理手順の一例を示すシーケンス図である。
[3.5. Data transfer processing and data sharing management processing]
Next, the data transfer process and the data sharing management process in step S203 will be described. FIG. 11 is a sequence diagram illustrating an example of a processing procedure of data transfer processing and data sharing management processing according to the present embodiment.
 図11に示すように、eNB1Mの上位レイヤ処理部15は、MME/UPE3から受信したデータに対して各種処理を施し、該データを所定のプロトコル・データ単位に分割したRLC-PDUとしてデータ転送処理部171へ送信する(ステップS501)。続いて、eNB1Mのデータ転送処理部171は、上位レイヤ処理部15からRLC-PDUを受信すると、該RLC-PDUを受信した旨をデータ到達通知としてデータ共有管理部172へ送信する(ステップS502)。 As shown in FIG. 11, the upper layer processing unit 15 of the eNB 1M performs various processes on the data received from the MME / UPE 3, and performs data transfer processing as RLC-PDU obtained by dividing the data into predetermined protocol data units. It transmits to the part 171 (step S501). Subsequently, when the data transfer processing unit 171 of the eNB 1M receives the RLC-PDU from the higher layer processing unit 15, the data transfer processing unit 171 transmits to the data sharing management unit 172 as a data arrival notification that the RLC-PDU has been received (step S502). .
 データ到達通知を受けたデータ共有管理部172は、該RLC-PDUの下位レイヤ処理部14への送信タイミングを決定し(ステップS503)、決定した送信タイミングに関する情報を送信タイミング情報としてデータ転送処理部171へ通知する(ステップS504)。続いて、送信タイミング情報を受けたデータ転送処理部171は、RLC-PDUをMAC-SDUに変換した後、該変換したMAC-SDUに送信タイミング情報を付与し(ステップS505)、eNB1Sのデータ転送処理部171へ転送する(ステップS506)。 Upon receiving the data arrival notification, the data sharing management unit 172 determines the transmission timing of the RLC-PDU to the lower layer processing unit 14 (step S503), and uses the information regarding the determined transmission timing as transmission timing information. 171 is notified (step S504). Subsequently, after receiving the transmission timing information, the data transfer processing unit 171 converts the RLC-PDU into the MAC-SDU, and then adds the transmission timing information to the converted MAC-SDU (step S505), and the data transfer of the eNB 1S The data is transferred to the processing unit 171 (step S506).
 そして、eNB1Mのデータ転送処理部171およびeNB1Sのデータ転送処理部171は、該MAC-SDUの送信タイミングとなるまでの間、該MAC-SDUを各データ転送処理部171内に設けられた所定の記憶領域にバッファしておく。その後、eNB1Mのデータ転送処理部171は、送信タイミング情報に基づき、MAC-SDUを送信するタイミングが到来した場合(ステップS507)、該MAC-SDUを各々の下位レイヤ処理部14へ送信する(ステップS508)。同様に、eNB1Sのデータ転送処理部171は、送信タイミング情報に基づき、MAC-SDUを送信するタイミングが到来した場合(ステップS509)、該MAC-SDUを各々の下位レイヤ処理部14へ送信する(ステップS510)。 Then, the data transfer processing unit 171 of the eNB 1M and the data transfer processing unit 171 of the eNB 1S store the MAC-SDUs in the predetermined data transfer processing units 171 until the MAC-SDU transmission timing is reached. Buffer it in the storage area. Thereafter, when the timing for transmitting the MAC-SDU has arrived based on the transmission timing information (step S507), the data transfer processing unit 171 of the eNB 1M transmits the MAC-SDU to each lower layer processing unit 14 (step S507). S508). Similarly, when the timing for transmitting the MAC-SDU has arrived based on the transmission timing information (step S509), the data transfer processing unit 171 of the eNB 1S transmits the MAC-SDU to each lower layer processing unit 14 ( Step S510).
[3.6.無線リソース共有処理および再送制御処理について]
 続いて、ステップS203における無線リソース共有処理および再送制御処理について説明する。図12は、本実施例にかかる無線リソース共有処理および再送制御処理の処理手順の一例を示すシーケンス図である。
[3.6. About radio resource sharing processing and retransmission control processing]
Next, the radio resource sharing process and the retransmission control process in step S203 will be described. FIG. 12 is a sequence diagram illustrating an example of a processing procedure of the radio resource sharing process and the retransmission control process according to the present embodiment.
 図12に示すように、下位レイヤ処理部14からフィードバック情報を受信すると(ステップS601)、eNB1Mのフィードバック制御部162は、下位レイヤ制御部161に対して再送要求を行う(ステップS602)。ここで、フィードバック情報とは、UE2の上り信号の受信結果である。 As shown in FIG. 12, when feedback information is received from the lower layer processing unit 14 (step S601), the feedback control unit 162 of the eNB 1M makes a retransmission request to the lower layer control unit 161 (step S602). Here, the feedback information is a reception result of the uplink signal of UE2.
 続いて、eNB1Mの下位レイヤ制御部161は、自局の下位レイヤ情報に含まれるリソース割当状況情報を下位レイヤ処理部14より取得する(ステップS603)。同様に、eNB1Mから下位レイヤ情報を送信するよう要求されたeNB1Sの下位レイヤ制御部161は、下位レイヤ情報に含まれるリソース割当状況情報を下位レイヤ処理部14より取得し(ステップS604)、eNB1Mの下位レイヤ制御部161へX2インタフェースを介して転送する(ステップS605)。 Subsequently, the lower layer control unit 161 of the eNB 1M acquires the resource allocation status information included in the lower layer information of the own station from the lower layer processing unit 14 (step S603). Similarly, the lower layer control unit 161 of the eNB 1S requested to transmit the lower layer information from the eNB 1M acquires the resource allocation status information included in the lower layer information from the lower layer processing unit 14 (step S604), and the eNB 1M Transfer to the lower layer control unit 161 via the X2 interface (step S605).
 続いて、eNB1Mの下位レイヤ制御部161は、自局のリソース割当状況情報およびeNB1Sから受信したリソース割当状況情報に基づき、グループセル50内で共通に使用可能な無線リソースを算出する(ステップS606)。具体的には、eNB1Mの下位レイヤ制御部161は、自局のリソース割当状況情報およびeNB1Sから受信したリソース割当状況情報に基づき、自局およびeNB1Sに共通する空き無線リソースを特定する。そして、eNB1Mの下位レイヤ制御部161は、特定した無線リソースを、スレーブセルを形成する基地局および自局に共通して割当てるための無線リソースとして決定する。 Subsequently, the lower layer control unit 161 of the eNB 1M calculates radio resources that can be commonly used in the group cell 50 based on the resource allocation status information of the own station and the resource allocation status information received from the eNB 1S (step S606). . Specifically, the lower layer control unit 161 of the eNB 1M specifies a free radio resource common to the local station and the eNB 1S based on the resource allocation status information of the local station and the resource allocation status information received from the eNB 1S. And the lower layer control part 161 of eNB1M determines the specified radio | wireless resource as a radio | wireless resource for allocating in common with the base station which forms a slave cell, and an own station.
 続いて、eNB1Mの下位レイヤ制御部161は、決定した無線リソースに関する情報である無線リソース情報を自局の下位レイヤ処理部14へ送信する(ステップS607)。また、eNB1Mの下位レイヤ制御部161は、無線リソース情報をeNB1Sの下位レイヤ制御部161に対してX2インタフェースを介し転送する(ステップS608)。そして、無線リソース情報を受信したeNB1Mの下位レイヤ制御部161は、受信した無線リソース情報を自局の下位レイヤ処理部14へ送信する(ステップS609)。 Subsequently, the lower layer control unit 161 of the eNB 1M transmits radio resource information, which is information regarding the determined radio resource, to the lower layer processing unit 14 of the own station (step S607). Further, the lower layer control unit 161 of the eNB 1M transfers the radio resource information to the lower layer control unit 161 of the eNB 1S via the X2 interface (Step S608). And the lower layer control part 161 of eNB1M which received radio | wireless resource information transmits the received radio | wireless resource information to the lower layer process part 14 of an own station (step S609).
 そして、eNB1Mの下位レイヤ処理部14は、受信した無線リソース情報に対応する無線リソースをUE2との通信のための無線リソースとして確保する(ステップS610)。同様に、eNB1Sの下位レイヤ処理部14は、受信した無線リソース情報に対応する無線リソースをUE2との通信のための無線リソースとして確保する(ステップS611)。これにより、UE2への送信データは、グループセル50内共通の無線リソースを用いてeNB1MおよびeNB1Sから同時に送信される。その結果、UE2は、在圏中のセル5から他のセル5へUE2が移動した場合であっても、移動先のセル5には該UE2へのデータが既に送信されているため、ハンドオーバ処理を行うことなく移動することできる。 Then, the lower layer processing unit 14 of the eNB 1M secures a radio resource corresponding to the received radio resource information as a radio resource for communication with the UE 2 (Step S610). Similarly, the lower layer processing unit 14 of the eNB 1S reserves a radio resource corresponding to the received radio resource information as a radio resource for communication with the UE 2 (Step S611). Thereby, the transmission data to UE2 are simultaneously transmitted from eNB1M and eNB1S using the radio | wireless resource common in the group cell 50. FIG. As a result, even if UE2 moves from cell 5 in the area to another cell 5 since UE2 has already transmitted data to UE2 to destination cell 5, handover processing is performed. You can move without doing.
[3.7.マスタセル変更処理について]
 続いて、ステップS205におけるマスタセル変更処理について説明する。図13-1は、新たなマスタセルがeNB1Mが形成するセルである場合におけるマスタセル変更処理の処理手順の一例を示すシーケンス図である。
[3.7. About master cell change processing]
Next, the master cell change process in step S205 will be described. FIG. 13A is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell formed by the eNB 1M.
 図13-1に示すように、UE2は、各eNB1に対してパイロット信号を定期的に送信している(ステップS701)。続いて、eNB1Mのマスタ制御部12は、マスタセルを介して受信したパイロット信号の受信電力を電力計算部123により計算する(ステップS702)。同様に、eNB1Mのマスタ制御部12は、スレーブセルを介して受信したパイロット信号の受信電力を電力計算部123により計算する(ステップS703)。また、eNB1Sのマスタ制御部12は、スレーブセルを介して受信したパイロット信号の受信電力を電力計算部123により計算する(ステップS704)。そして、eNB1Sのマスタ制御部12は、計算結果である受信電力情報をeNB1Mのマスタ制御部12へX2インタフェースを介して転送する(ステップS705)。 As shown in FIG. 13A, UE2 periodically transmits a pilot signal to each eNB1 (step S701). Subsequently, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (step S702). Similarly, the master control unit 12 of the eNB 1M uses the power calculation unit 123 to calculate the received power of the pilot signal received via the slave cell (step S703). In addition, the master control unit 12 of the eNB 1S calculates the received power of the pilot signal received via the slave cell by the power calculation unit 123 (step S704). Then, the master control unit 12 of the eNB 1S transfers the received power information that is the calculation result to the master control unit 12 of the eNB 1M via the X2 interface (Step S705).
 続いて、eNB1Mのマスタセル変更部122は、各eNB1Sから受信した受信電力情報が示す受信電力および自局のスレーブセルを介して受信したパイロット信号の受信電力を比較して、新たなマスタセルを選択する(ステップS706)。具体的には、eNB1Mのマスタセル変更部122は、各受信電力情報に基づき、最も受信電力の高いスレーブセルを決定する。続いて、eNB1Mのマスタセル変更部122は、受信電力が最も高いスレーブセルの受信電力と、マスタセルを介して受信したUE2からのパイロット信号の受信電力を比較する。そして、マスタセルの受信電力よりもスレーブセルの受信電力の方が高い場合、eNB1Mのマスタセル変更部122は、該スレーブセルを新たなマスタセルとし、現マスタセルをスレーブセルとして決定する。 Subsequently, the master cell changing unit 122 of the eNB 1M compares the received power indicated by the received power information received from each eNB 1S with the received power of the pilot signal received via the slave cell of the own station, and selects a new master cell. (Step S706). Specifically, the master cell changing unit 122 of the eNB 1M determines a slave cell with the highest received power based on each received power information. Subsequently, the master cell changing unit 122 of the eNB 1M compares the received power of the slave cell with the highest received power with the received power of the pilot signal received from the UE 2 via the master cell. If the received power of the slave cell is higher than the received power of the master cell, the master cell changing unit 122 of the eNB 1M determines that the slave cell is a new master cell and the current master cell is a slave cell.
 ここで、新たなマスタセルがeNB1Mが形成するセルである場合、セル情報管理部124に対して、パイロット信号が最も高かったスレーブセルをマスタセルに変更し、現マスタセルをスレーブセルに変更するよう指示する(ステップS707)。これにより、現マスタセルは、スレーブセルに変更され(スレーブ化)、パイロット信号の最も高かった現スレーブセルが新たなマスタセルとなる(マスタ化)。また、かかる場合、現eNB1Mは、引き続きeNB1Mとして機能する。 Here, when the new master cell is a cell formed by the eNB 1M, the cell information management unit 124 is instructed to change the slave cell having the highest pilot signal to the master cell and to change the current master cell to the slave cell. (Step S707). As a result, the current master cell is changed to a slave cell (slave), and the current slave cell having the highest pilot signal becomes a new master cell (master). In such a case, the current eNB 1M continues to function as the eNB 1M.
 一方、新たなマスタセルがeNB1Mが形成するセル以外のセルである場合には、図13-2に示すような処理が行われる。図13-2は、新たなマスタセルがeNB1Mが形成するセル以外のセルである場合におけるマスタセル変更処理の処理手順の一例を示すシーケンス図である。なお、図13-2に示すステップS751~S755までの処理は、図13-1に示すステップS701~S705までの処理と同じであるため、その説明を省略する。 On the other hand, when the new master cell is a cell other than the cell formed by the eNB 1M, a process as shown in FIG. 13-2 is performed. FIG. 13-2 is a sequence diagram illustrating an example of a processing procedure of a master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M. Note that the processing from Steps S751 to S755 shown in FIG. 13-2 is the same as the processing from Steps S701 to S705 shown in FIG.
 図13-2のステップS756において、パイロット信号の受信電力が最も高かったセル5がeNB1Sが形成するスレーブセルである場合、eNB1Mのマスタセル変更部122は、該eNB1Sに対して、該セル5をマスタセルとすべき旨のマスタセル変更通知を送信する(ステップS757)。また、eNB1Mのマスタセル変更部122は、セル情報管理部124に対して、現マスタセルをスレーブセルに変更するよう指示する(ステップS758)。 In step S756 of FIG. 13-2, when the cell 5 with the highest pilot signal reception power is a slave cell formed by the eNB 1S, the master cell changing unit 122 of the eNB 1M sets the cell 5 as a master cell to the eNB 1S. A master cell change notification to the effect is transmitted (step S757). Also, the master cell changing unit 122 of the eNB 1M instructs the cell information managing unit 124 to change the current master cell to a slave cell (step S758).
 また、eNB1Sのマスタセル変更部122は、eNB1Mからマスタセル変更通知を受信すると、該マスタセル変更通知に基づき、マスタ化の対象となったスレーブセルをマスタセルに変更するようセル情報管理部124に指示する(ステップS759)。これにより、かかるeNB1Sは、eNB1Mとして機能するようになる。なお、マスタセル変更通知には、グループセル50を構築する各eNB1Sを特定するための情報が含まれる。そして、マスタセル変更通知を受信し、eNB1Mとなった場合、マスタセル変更部122は、グループセル50を構築する各eNB1Sに対して、自局がeNB1Mとなった旨を通知する。これにより、グループセル50を構築する各eNB1Sは、新たなeNB1Mを特定することができる。 Further, when receiving the master cell change notification from the eNB 1M, the master cell changing unit 122 of the eNB 1S instructs the cell information managing unit 124 to change the master cell to the master cell based on the master cell change notification ( Step S759). Thereby, this eNB1S comes to function as eNB1M. The master cell change notification includes information for specifying each eNB 1S that constructs the group cell 50. And when a master cell change notification is received and becomes eNB1M, the master cell change part 122 notifies each eNB1S which constructs the group cell 50 that the own station became eNB1M. Thereby, each eNB1S which constructs the group cell 50 can specify a new eNB1M.
 このように、本実施例にかかる移動通信システムSは、UE2とマスタセルとの通信品質が悪化した場合、すなわち、UE2とスレーブセルとの通信品質がUE2とマスタセルとの通信品質よりも高くなった場合、マスタセルを変更する。これにより、UE2は、グループセル50の構築後にグループセル50内を移動した場合であっても、グループセル50内で最も通信品質の高いセル5との間で無線通信を行うことができる。 Thus, in the mobile communication system S according to the present embodiment, when the communication quality between the UE2 and the master cell deteriorates, that is, the communication quality between the UE2 and the slave cell becomes higher than the communication quality between the UE2 and the master cell. If so, change the master cell. Thereby, even if UE2 moves in the group cell 50 after the construction of the group cell 50, it can perform radio communication with the cell 5 having the highest communication quality in the group cell 50.
[3.8.スレーブセル変更処理について]
 続いて、ステップS207におけるスレーブセル変更処理について説明する。図14は、本実施例にかかるスレーブセル変更処理の処理手順の一例を示すシーケンス図である。
[3.8. About slave cell change processing]
Next, the slave cell change process in step S207 will be described. FIG. 14 is a sequence diagram illustrating an example of the processing procedure of the slave cell change processing according to the present embodiment.
 図14に示すように、UE2は、各eNB1に対してパイロット信号を定期的に送信している(ステップS801)。続いて、eNB1Mのマスタ制御部12は、マスタセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS802)、計算結果である受信電力情報をスレーブセル変更部132へ送信する(ステップS803)。同様に、eNB1Mのマスタ制御部12は、スレーブセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS804)、計算結果である受信電力情報をスレーブセル変更部132へ送信する(ステップS805)。また、eNB1のマスタ制御部12は、セル5を介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS806)、計算結果である受信電力情報をeNB1Mのスレーブ制御部13へX2インタフェースを介して転送する(ステップS807)。 As shown in FIG. 14, UE2 regularly transmits a pilot signal to each eNB1 (step S801). Subsequently, the master control unit 12 of the eNB 1M calculates the reception power of the pilot signal received via the master cell by the power calculation unit 123 (step S802), and transmits the received power information that is the calculation result to the slave cell change unit 132. (Step S803). Similarly, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the slave cell by the power calculation unit 123 (step S804), and the received power information as the calculation result to the slave cell change unit 132. Transmit (step S805). Further, the master control unit 12 of the eNB 1 calculates the received power of the pilot signal received via the cell 5 by the power calculation unit 123 (step S806), and the received power information as the calculation result is sent to the slave control unit 13 of the eNB 1M. The transfer is performed via the X2 interface (step S807).
 続いて、eNB1Mのスレーブセル変更部132は、自局のマスタ制御部12あるいは他のeNB1から受信した受信電力情報に基づき、UE2の現在位置を推定する。続いて、マスタセルおよび各スレーブセルに対応する受信電力に基づき推定したUE2の位置が、グループセル50の端近傍である場合、eNB1Mのスレーブセル変更部132は、グループセル50を構築するスレーブセルを再決定する(ステップS808)。具体的には、eNB1Mのスレーブセル変更部132は、推定したUE2の位置から該UE2が在圏中のセル5を特定し、該セル5に隣接するセル5であって、現在グループセル50を構築するスレーブセル以外のセル5を新たなスレーブセルとして決定する。そして、eNB1Mのスレーブセル変更部132は、新たなスレーブセルとして決定されたセル5を形成するeNB1に対して、スレーブ化要求を送信する(ステップS809)。 Subsequently, the slave cell changing unit 132 of the eNB 1M estimates the current position of the UE 2 based on the received power information received from the master control unit 12 of the own station or another eNB 1. Subsequently, when the position of the UE 2 estimated based on the reception power corresponding to the master cell and each slave cell is near the end of the group cell 50, the slave cell changing unit 132 of the eNB 1M selects the slave cell that configures the group cell 50. It is determined again (step S808). Specifically, the slave cell changing unit 132 of the eNB 1M specifies the cell 5 in which the UE 2 is located from the estimated position of the UE 2, and is the cell 5 adjacent to the cell 5, and the current group cell 50 is changed. Cells 5 other than the slave cell to be constructed are determined as new slave cells. Then, the slave cell changing unit 132 of the eNB 1M transmits a slave request to the eNB 1 that forms the cell 5 determined as a new slave cell (step S809).
 また、eNB1Mのスレーブセル変更部132は、自局のスレーブセルがグループセル50からの解放対象となった場合、解放除対象となったスレーブセルを通所のセルに変更するようセル情報管理部に指示する(ステップS810)。また、eNB1のスレーブセル変更部132は、eNB1Mからスレーブ化要求を受信した場合、セル情報管理部124に対して、スレーブ化の対象となったセル5をスレーブセルとして登録するよう指示する(ステップS811)。 In addition, when the slave cell changing unit 132 of the eNB 1M becomes a release target from the group cell 50, the slave information changing unit 132 changes the slave cell that is the release target to the cell in the cell information management unit. An instruction is given (step S810). In addition, when the slave cell changing unit 132 of the eNB 1 receives the slave request from the eNB 1M, the slave cell changing unit 132 instructs the cell information management unit 124 to register the cell 5 that is the subject of slave formation as a slave cell (step S811).
 このように、本実施例にかかる移動通信システムSでは、UE2がグループセル50の端に位置する場合に、グループセル50に含まれるスレーブセルを変更することで、UE2がグループセル50外へ移動することを未然に防ぐことができる。 Thus, in the mobile communication system S according to the present embodiment, when the UE 2 is located at the end of the group cell 50, the UE 2 moves out of the group cell 50 by changing the slave cell included in the group cell 50. Can be prevented in advance.
[実施例1の効果]
 上述してきたように、本実施例によれば、グループセル50を構築する複数のセル5間でUE2との通信のための無線リソースを共有し、eNB1MおよびeNB1Sが共有した無線リソースを用いてUE2へのデータを一斉に送信する。すなわち、UE2が在圏していないセル5をハンドオーバ処理が完了した状態としておくことで、UE2が該セル5へ移動してきた場合であっても、ハンドオーバ処理を行うことなく、該UE2と移動先のeNB1との間で無線通信を継続させることができる。その結果、UE2がグループセル50内において他のセル5への移動を頻繁に繰り返した場合であっても、ハンドオーバ処理に起因して生じる通信品質の劣化や通信の遮断を防ぐことが可能となる。
[Effect of Example 1]
As described above, according to the present embodiment, the radio resource for communication with the UE 2 is shared between the plurality of cells 5 that configure the group cell 50, and the radio resource shared by the eNB 1M and the eNB 1S is used to transmit the UE 2 Send data to all at once. That is, by setting the cell 5 where the UE 2 is not located in a state in which the handover process has been completed, even if the UE 2 has moved to the cell 5, the UE 2 and the destination can be moved without performing the handover process. Wireless communication can be continued with the eNB1. As a result, even when the UE 2 frequently moves to another cell 5 in the group cell 50, it is possible to prevent communication quality degradation and communication interruption caused by the handover process. .
 また、本実施例によれば、UE2がグループセル50外に移動しないよう、UE2の位置に応じてグループセル50を再構築することにより、UE2がハンドオーバ処理を行うことなくセル5間を移動できる状態を維持することができる。 Further, according to the present embodiment, the UE 2 can move between the cells 5 without performing the handover process by reconstructing the group cell 50 according to the position of the UE 2 so that the UE 2 does not move outside the group cell 50. The state can be maintained.
 すなわち、本実施例によれば、UE2とスレーブセルとの通信品質がUE2とマスタセルとの通信品質よりも高くなった場合、UE2との通信品質が最も高いスレーブセルを新たなマスタセルとすることにより、UE2は、グループセル50の構築後にグループセル50内を移動した場合であっても、グループセル50内で最も通信品質の高いセル5との間で無線通信を行うことができる。 That is, according to the present embodiment, when the communication quality between the UE2 and the slave cell is higher than the communication quality between the UE2 and the master cell, the slave cell having the highest communication quality with the UE2 is set as a new master cell. The UE 2 can perform wireless communication with the cell 5 having the highest communication quality in the group cell 50 even if the UE 2 moves within the group cell 50 after the group cell 50 is constructed.
 また、本実施例によれば、UE2がグループセル50の端に位置する場合に、グループセル50に含まれるスレーブセルを変更することで、UE2がグループセル50外へ移動することを未然に防ぐことができる。また、かかる場合、グループセル50を構築するセル5以外のセル5であって、UE2が在圏するセル5に隣接するセル5を該グループセル50に追加する新たなスレーブセルとして決定する。すなわち、UE2が移動する可能性が高いセル5を新たなスレーブセルとしてグループセル50に追加することにより、UE2のセル5間の移動に伴うハンドオーバ処理の発生をより確実に防止することができる。 Further, according to the present embodiment, when UE2 is located at the end of group cell 50, UE2 can be prevented from moving out of group cell 50 by changing the slave cell included in group cell 50. be able to. In such a case, a cell 5 other than the cell 5 that configures the group cell 50 and adjacent to the cell 5 where the UE 2 is located is determined as a new slave cell to be added to the group cell 50. That is, by adding the cell 5 having a high possibility that the UE 2 moves to the group cell 50 as a new slave cell, it is possible to more reliably prevent the occurrence of the handover process accompanying the movement of the UE 2 between the cells 5.
 しかも、本実施例によれば、マスタセルの変更とスレーブセルの変更を独立して行なうため、グループセル50の再構築に対する処理を分散させることができる。 In addition, according to the present embodiment, since the change of the master cell and the change of the slave cell are performed independently, the processing for the reconstruction of the group cell 50 can be distributed.
 ところで、本件に開示する移動通信システム、基地局、移動局および無線通信方法は、上述した実施例以外にも、種々の異なる形態にて実施されてよい。そこで、実施例2では、本件に開示する移動通信システム、基地局、移動局および無線通信方法の他の実施例について説明する。なお、既に説明した構成と同じものについては同一の符号を付し、その説明を省略する。 By the way, the mobile communication system, the base station, the mobile station, and the wireless communication method disclosed in this case may be implemented in various different forms other than the above-described embodiments. Therefore, in the second embodiment, another embodiment of the mobile communication system, the base station, the mobile station, and the wireless communication method disclosed in this case will be described. In addition, the same code | symbol is attached | subjected about the same thing as the already demonstrated structure, and the description is abbreviate | omitted.
[グループセル構築要求の自動送信]
 上記実施例では、グループセル構築要求の送信は、ユーザにより所定のボタンの押下された場合やグループセル50の構築が必要なアプリケーションが起動した場合に行われることとしたが、これに限らず、自動的に送信されてもよい。図15は、グループセル構築要求が自動的に送信される場合におけるマスタセル決定処理の処理手順を示すシーケンス図である。
[Automatic transmission of group cell construction request]
In the above embodiment, the group cell construction request is transmitted when a predetermined button is pressed by the user or when an application that needs to construct the group cell 50 is activated. It may be sent automatically. FIG. 15 is a sequence diagram illustrating a processing procedure of master cell determination processing when a group cell construction request is automatically transmitted.
 図15に示すように、eNB1は、下位レイヤ処理部14により、自局のセル5の状態等の情報を含んだ報知情報を自局が形成するセル5に在圏するUE2に対して定期的に送信する(ステップS901)。ここで、本実施例にかかる下位レイヤ処理部14は、自局がグループセル50を構築可能なeNB1であることを示す情報(グループセル構築可能情報)を上記報知情報に追加して、UE2へ送信する。このように、下位レイヤ処理部14は、自局がグループセルの構築が可能なeNBであることを示すグループセル構築可能情報をUE2に対して送信するグループセル構築可能情報送信手段の一例として機能する。 As illustrated in FIG. 15, the eNB 1 periodically transmits notification information including information such as the state of the cell 5 of the own station to the UE 2 located in the cell 5 formed by the own station by the lower layer processing unit 14. (Step S901). Here, the lower layer processing unit 14 according to the present embodiment adds information (group cell constructable information) indicating that the own station is an eNB 1 capable of constructing the group cell 50 to the broadcast information, and then sends it to the UE 2. Send. Thus, the lower layer processing unit 14 functions as an example of a group cell constructable information transmitting unit that transmits group cell constructable information indicating that the local station is an eNB capable of constructing a group cell to the UE 2. To do.
 続いて、UE2は、在圏中のセル5を形成するeNB1がグループセル50を構築可能か否かを信号送信部23により判定する(ステップS902)。すなわち、UE2は、該eNB1から受信した報知情報に、該eNB1がグループセル50を構築する機能を有するeNB1であることを示す情報が含まれているか否か判定する。そして、eNB1から受信した報知情報に、該eNB1がグループセル50を構築する機能を有するeNB1であることを示す情報が含まれている場合(ステップS902肯定)、UE2は、該eNB1へグループセル構築要求を送信する(ステップS903)。そして、UE2が在圏するセル5を介してグループセル構築要求を受信したeNB1は、該セル5をマスタセルとしてセル情報管理部124に登録する(ステップS904)。 Subsequently, the UE 2 determines whether or not the eNB 1 forming the cell 5 in the service area can construct the group cell 50 by using the signal transmission unit 23 (step S902). That is, the UE 2 determines whether the broadcast information received from the eNB 1 includes information indicating that the eNB 1 is an eNB 1 having a function of constructing the group cell 50. And when the information which shows that this eNB1 is eNB1 which has the function to construct | assemble the group cell 50 is contained in the alerting | reporting information received from eNB1 (step S902 affirmation), UE2 will construct a group cell to this eNB1. A request is transmitted (step S903). Then, the eNB 1 that has received the group cell construction request via the cell 5 where the UE 2 is located registers the cell 5 as a master cell in the cell information management unit 124 (step S904).
 このように、UE2は、グループセル50を構築可能なeNB1のセル5に在圏した場合に、該eNB1に対して自動的にグループセル構築要求を送信するため、ユーザからの所定の操作に基づきグループセル構築要求を送信する場合と比較して、より迅速にグループセル50を構築することができる。このようなグループセル構築要求の自動送信は、特に、UE2が高速移動をしている場合に有効となる。 As described above, when the UE 2 is located in the cell 5 of the eNB 1 capable of constructing the group cell 50, the UE 2 automatically transmits a group cell construction request to the eNB 1, and therefore, based on a predetermined operation from the user. Compared with the case of transmitting a group cell construction request, the group cell 50 can be constructed more quickly. Such automatic transmission of the group cell construction request is particularly effective when the UE 2 is moving at high speed.
[UE2の電力計算によるマスタセル変更処理]
 上記実施例では、UE2から送信されたパイロット信号の受信電力をeNB1MおよびeNB1Sがそれぞれ計算し、各受信電力をeNB1Mのマスタセル変更部122が比較して新たなマスタセルを決定することとしたが、新たなマスタセルをUE2が決定してもよい。以下、かかる場合について説明する。図16は、他の実施例にかかるUE2の構成を示すブロック図である。
[Master cell change processing by power calculation of UE2]
In the above embodiment, the eNB 1M and the eNB 1S calculate the received power of the pilot signal transmitted from the UE 2, and the master cell changing unit 122 of the eNB 1M compares the received power to determine a new master cell. UE2 may determine a correct master cell. Hereinafter, such a case will be described. FIG. 16 is a block diagram illustrating a configuration of the UE 2 according to another embodiment.
 図16に示すように、かかる場合のUE2は、IF部20、ハンドオーバ処理部21、操作入力部22、信号送信部23、電力計算部24に加えて、マスタセル変更判定部25を備える。マスタセル変更判定部25は、電力計算部24によるパイロット信号の受信電力の計算結果に基づき、マスタセルを変更するか否かを判定する。具体的には、マスタセル変更判定部25は、先ず、eNB1MおよびeNB1Sからマスタセルおよびスレーブセルを介して送信されたパイロット信号の受信電力情報を電力計算部24から取得する。そして、マスタセル変更判定部25は、最も高い受信電力を示すセル5がスレーブセルである場合、該スレーブセルを新たなマスタセルに変更すべき旨のマスタ変更通知(基準変更要求に相当)をeNB1Mのマスタ制御部12へマスタセルを介して送信する。 16, the UE 2 in this case includes a master cell change determination unit 25 in addition to the IF unit 20, the handover processing unit 21, the operation input unit 22, the signal transmission unit 23, and the power calculation unit 24. The master cell change determination unit 25 determines whether or not to change the master cell based on the calculation result of the received power of the pilot signal by the power calculation unit 24. Specifically, the master cell change determination unit 25 first acquires the received power information of the pilot signal transmitted from the eNB 1M and the eNB 1S via the master cell and the slave cell from the power calculation unit 24. Then, when the cell 5 showing the highest received power is a slave cell, the master cell change determination unit 25 sends a master change notification (corresponding to a reference change request) to the eNB 1M that the slave cell should be changed to a new master cell. It transmits to the master control part 12 via a master cell.
 続いて、かかる場合におけるマスタセル変更処理の具体的動作について説明する。図17-1は、新たなマスタセルがeNB1Mが形成するセルである場合におけるマスタセル変更処理の処理手順の他の一例を示すシーケンス図である。 Next, the specific operation of the master cell change process in such a case will be described. FIG. 17A is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell formed by the eNB 1M.
 図17-1に示すように、eNB1MおよびeNB1Sは、UE2に対してパイロット信号を定期的に送信している(ステップS1001)。続いて、UE2の電力計算部24は、マスタセルおよびスレーブセルを介して受信したパイロット信号の受信電力を計算する(ステップS1002)。 As shown in FIG. 17-1, eNB1M and eNB1S periodically transmit pilot signals to UE2 (step S1001). Subsequently, the power calculation unit 24 of the UE 2 calculates the reception power of the pilot signal received via the master cell and the slave cell (step S1002).
 続いて、UE2のマスタセル変更判定部25は、電力計算部24からマスタセルおよびスレーブセルを介して受信したパイロット信号の受信電力情報を取得すると、これら受信電力情報を比較し、新たなマスタセルを選択する(ステップS1003)。具体的には、マスタセル変更判定部25は、電力計算部24から取得した受信電力情報のうち、最も高い受信電力を示すセル5がスレーブセルである場合、該スレーブセルを新たなマスタセルとして決定する。そして、マスタセル変更判定部25は、該スレーブセルを新たなマスタセルに変更すべき旨のマスタ変更通知をeNB1Mのマスタ制御部12へマスタセルを介して送信する(ステップS1004)。eNB1Mのマスタセル変更部122は、UE2から無線リンクを介してマスタ変更通知を受信する。 Subsequently, when the master cell change determination unit 25 of the UE 2 acquires the received power information of the pilot signal received via the master cell and the slave cell from the power calculation unit 24, the received power information is compared and a new master cell is selected. (Step S1003). Specifically, when the cell 5 indicating the highest received power among the received power information acquired from the power calculator 24 is a slave cell, the master cell change determination unit 25 determines the slave cell as a new master cell. . Then, the master cell change determination unit 25 transmits a master change notification indicating that the slave cell should be changed to a new master cell to the master control unit 12 of the eNB 1M via the master cell (step S1004). The master cell changing unit 122 of the eNB 1M receives the master change notification from the UE 2 via the radio link.
 このように、マスタセル変更判定部25は、eNB1MおよびeNB1Sからそれぞれ受信したパイロット信号の受信電力を比較し、スレーブセルを介して受信したパイロット信号の受信電力のうち最も高い受信電力が、マスタセルを介して受信したパイロット信号の受信電力よりも高い場合、該最も高い受信電力を示すパイロット信号が送信されたスレーブセルをマスタセルに変更すべき旨の基準変更要求をeNB1Mへ送信する基準変更要求送信手段の一例として機能する。 As described above, the master cell change determination unit 25 compares the received power of the pilot signals received from the eNB 1M and the eNB 1S, and the highest received power among the received powers of the pilot signals received via the slave cell is transmitted via the master cell. A reference change request transmitting means for transmitting to the eNB 1M a reference change request indicating that the slave cell to which the pilot signal indicating the highest received power is transmitted should be changed to a master cell. It serves as an example.
 ここで、新たなマスタセルがeNB1Mが形成するセルである場合、eNB1Mのマスタセル変更部122は、マスタ化の対象となったスレーブセルをマスタセルとし、現マスタセルをスレーブセルに変更するようセル情報管理部124に指示する(ステップS1005)。 Here, when the new master cell is a cell formed by the eNB 1M, the master cell changing unit 122 of the eNB 1M sets the slave cell to be mastered as the master cell, and changes the current master cell to the slave cell. 124 is instructed (step S1005).
 一方、新たなマスタセルがeNB1Mが形成するセル以外のセルである場合には、図17-2に示すような処理が行われる。図17-2は、新たなマスタセルがeNB1Mが形成するセル以外のセルである場合におけるマスタセル変更処理の処理手順の他の一例を示すシーケンス図である。なお、図17-2に示すステップS1051~S1054までの処理は、図17-1に示すステップS1001~S1004までの処理と同じであるため、その説明を省略する。 On the other hand, when the new master cell is a cell other than the cell formed by the eNB 1M, a process as shown in FIG. 17-2 is performed. FIG. 17-2 is a sequence diagram illustrating another example of the processing procedure of the master cell change process when the new master cell is a cell other than the cell formed by the eNB 1M. Note that the processing from steps S1051 to S1054 shown in FIG. 17-2 is the same as the processing from steps S1001 to S1004 shown in FIG.
 図17-2のステップS1054において、パイロット信号の受信電力が最も高かったセル5がeNB1Sが形成するスレーブセルである場合、eNB1Mのマスタセル変更部122は、該eNB1Sに対して、該セル5をマスタセルとすべき旨のマスタセル変更通知を送信する(ステップS1055)。また、eNB1Mのマスタセル変更部122は、現マスタセルをスレーブセルに変更するようセル情報管理部124に指示する(ステップS1056)。 When the cell 5 having the highest pilot signal reception power is the slave cell formed by the eNB 1S in step S1054 of FIG. 17-2, the master cell changing unit 122 of the eNB 1M sets the cell 5 as the master cell to the eNB 1S. A master cell change notification to the effect is transmitted (step S1055). In addition, the master cell changing unit 122 of the eNB 1M instructs the cell information managing unit 124 to change the current master cell to a slave cell (step S1056).
 また、eNB1Sのマスタセル変更部122は、eNB1Mからマスタセル変更通知を受信すると、該マスタセル変更通知に基づき、マスタ化の対象となったスレーブセルをマスタセルに変更するようセル情報管理部124に指示する(ステップS1057)。これにより、かかるeNB1Sは、eNB1Mとして機能するようになる。このように、マスタセル変更部122は、UE2からマスタ変更通知を受信した場合に、該マスタ変更通知に基づき、最も高い受信電力を示すパイロット信号が送信されたスレーブセルを新たなマスタセルに変更し、自局が形成するマスタセルをスレーブセルに変更する。 Further, when receiving the master cell change notification from the eNB 1M, the master cell changing unit 122 of the eNB 1S instructs the cell information managing unit 124 to change the master cell to the master cell based on the master cell change notification ( Step S1057). Thereby, this eNB1S comes to function as eNB1M. As described above, when the master cell changing unit 122 receives the master change notification from the UE 2, the master cell changing unit 122 changes the slave cell to which the pilot signal indicating the highest received power is transmitted to a new master cell based on the master change notification. The master cell formed by the own station is changed to a slave cell.
 このように、UE2がeNB1MおよびeNB1Sから受信したパイロット信号の受信電力に基づき新たなマスタセルの選択を行なうことにより、eNB1Mのマスタセル変更部122への負荷を軽減することができる。 Thus, by selecting a new master cell based on the received power of the pilot signal received by the UE 2 from the eNB 1M and the eNB 1S, the load on the master cell changing unit 122 of the eNB 1M can be reduced.
[UE2の電力計算によるスレーブセル変更処理]
 上記実施例では、UE2から受信したパイロット信号の受信電力をeNB1MおよびeNB1Sがそれぞれ計算し、各受信電力をeNB1Mのスレーブセル変更部132が比較して新たなスレーブセルを決定することとしたが、新たなスレーブセルをUE2が決定してもよい。以下、かかる場合について説明する。図18は、他の実施例にかかるUE2の構成を示すブロック図である。
[Slave cell change processing by power calculation of UE2]
In the above embodiment, the eNB 1M and the eNB 1S calculate the received power of the pilot signal received from the UE 2, and the slave cell changing unit 132 of the eNB 1M compares the received power to determine a new slave cell. The UE2 may determine a new slave cell. Hereinafter, such a case will be described. FIG. 18 is a block diagram illustrating a configuration of the UE 2 according to another embodiment.
 図18に示すように、かかる場合のUE2は、IF部20、ハンドオーバ処理部21、操作入力部22、信号送信部23、電力計算部24に加えて、スレーブセル変更判定部26を備える。スレーブセル変更判定部26は、電力計算部24によるパイロット信号の受信電力の計算結果に基づき、スレーブセルを変更するか否かを判定する。具体的には、スレーブセル変更判定部26は、先ず、eNB1MおよびeNB1Sからマスタセルおよびスレーブセルを介して送信されたパイロット信号の受信電力情報を電力計算部24より取得する。続いて、スレーブセル変更判定部26は、取得した各受信電力情報を比較し、自局の位置を推定する。 As shown in FIG. 18, the UE 2 in this case includes a slave cell change determination unit 26 in addition to the IF unit 20, the handover processing unit 21, the operation input unit 22, the signal transmission unit 23, and the power calculation unit 24. The slave cell change determination unit 26 determines whether or not to change the slave cell based on the calculation result of the received power of the pilot signal by the power calculation unit 24. Specifically, the slave cell change determination unit 26 first acquires the received power information of the pilot signal transmitted from the eNB 1M and the eNB 1S via the master cell and the slave cell from the power calculation unit 24. Subsequently, the slave cell change determination unit 26 compares the acquired pieces of received power information and estimates the position of the own station.
 続いて、スレーブセル変更判定部26は、推定した自局の位置がグループセル50の端に近い場合、グループセル50に追加すべきスレーブセルと解放すべきスレーブセルを決定する。具体的には、スレーブセル変更判定部26は、自局が在圏するセル5に隣接するセル5であって、現在グループセル50を構築するスレーブセル以外のセル5を新たなスレーブセルとして決定する。また、スレーブセル変更判定部26は、グループセル50に新たに追加するセル5の数に応じて、グループセル50から解放するスレーブセルを決定する。そして、スレーブセル変更判定部26は、eNB1Mのスレーブ制御部13に対してマスタセルを介してスレーブ化要求(従属変更要求に相当)を送信する。 Subsequently, when the estimated position of the own station is close to the end of the group cell 50, the slave cell change determination unit 26 determines a slave cell to be added to the group cell 50 and a slave cell to be released. Specifically, the slave cell change determination unit 26 determines a cell 5 that is adjacent to the cell 5 in which the station is located and other than the slave cell that currently constructs the group cell 50 as a new slave cell. To do. The slave cell change determination unit 26 determines a slave cell to be released from the group cell 50 according to the number of cells 5 newly added to the group cell 50. Then, the slave cell change determination unit 26 transmits a slave request (corresponding to a dependent change request) to the slave control unit 13 of the eNB 1M via the master cell.
 このように、スレーブセル変更判定部26は、各eNB1から取得した受信電力情報が表す受信電力により推定される自局の位置に基づき、グループセルに含まれるスレーブセルを変更すべき旨のスレーブ化要求をeNB1Mへ送信する従属変更要求送信手段の一例として機能する。なお、かかるスレーブ化要求には、グループセル50に新たに追加されるスレーブセルを特定するための情報およびグループセル50から解放されるスレーブセルを特定するための情報が含まれる。なお、UE2は、eNB1Mからグループセル50を構築するeNB1MおよびeNB1Sに関する情報を定期的に取得することで、eNB1MおよびeNB1Sを特定することができる。 As described above, the slave cell change determination unit 26 becomes a slave indicating that the slave cell included in the group cell should be changed based on the position of the local station estimated from the received power represented by the received power information acquired from each eNB1. It functions as an example of a dependent change request transmission unit that transmits a request to the eNB 1M. The slave request includes information for specifying a slave cell newly added to the group cell 50 and information for specifying a slave cell released from the group cell 50. In addition, UE2 can identify eNB1M and eNB1S by acquiring the information regarding eNB1M and eNB1S which construct the group cell 50 from eNB1M regularly.
 続いて、かかる場合におけるスレーブセル変更処理の具体的動作について説明する。図19は、スレーブセル変更処理の処理手順の他の一例を示すシーケンス図である。 Next, the specific operation of the slave cell change process in such a case will be described. FIG. 19 is a sequence diagram illustrating another example of the processing procedure of the slave cell change process.
 図19に示すように、eNB1MおよびeNB1Sは、UE2に対してパイロット信号を定期的に送信している(ステップS1101)。続いて、UE2の電力計算部24は、マスタセルおよびスレーブセルを介して受信したパイロット信号の受信電力を計算する(ステップS1102)。 As shown in FIG. 19, eNB1M and eNB1S periodically transmit pilot signals to UE2 (step S1101). Subsequently, the power calculation unit 24 of the UE 2 calculates the reception power of the pilot signal received via the master cell and the slave cell (step S1102).
 続いて、UE2のスレーブセル変更判定部26は、電力計算部24からマスタセルおよびスレーブセルを介して受信したパイロット信号の受信電力情報を取得すると、これら受信電力情報に基づき自局の位置を推定し、スレーブセルを再決定する(ステップS1103)。そして、グループセル50に追加するスレーブセルを特定する情報およびグループセル50から解放するスレーブセルを特定する情報を含んだスレーブ再構築通知をマスタセルを介してeNB1Mのスレーブセル変更部132へ送信する(ステップS1104)。 Subsequently, when the slave cell change determination unit 26 of the UE 2 acquires the received power information of the pilot signal received via the master cell and the slave cell from the power calculation unit 24, the slave cell change determination unit 26 estimates the position of the own station based on the received power information. Then, the slave cell is determined again (step S1103). Then, a slave reconfiguration notification including information for specifying a slave cell to be added to the group cell 50 and information for specifying a slave cell to be released from the group cell 50 is transmitted to the slave cell changing unit 132 of the eNB 1M via the master cell ( Step S1104).
 続いて、スレーブ再構築通知を受信したeNB1Mのスレーブセル変更部132は、スレーブ化の対象となったセル5を形成するeNB1に対してスレーブ化要求を送信する(ステップS1105)。また、グループセル50からの解放対象となったスレーブセルが自局が形成するセル5である場合、eNB1Mのスレーブセル変更部132は、該スレーブセルを通常のセルに変更するようセル情報管理部124に指示する(ステップS1106)。 Subsequently, the slave cell changing unit 132 of the eNB 1M that has received the slave reconfiguration notification transmits a slave request to the eNB 1 that forms the cell 5 that is the target of the slave (step S1105). Further, when the slave cell to be released from the group cell 50 is the cell 5 formed by the own station, the slave cell changing unit 132 of the eNB 1M changes the cell information managing unit to change the slave cell to a normal cell. 124 is instructed (step S1106).
 そして、eNB1Mからスレーブ化要求をX2インタフェースを介して受信したeNB1のスレーブセル変更部132は、スレーブ化の対象となったセル5をスレーブセルとしてセル情報管理部124に登録する(ステップS1107)。このように、スレーブセル変更部132は、従属変更手段の一例として機能し、UE2からスレーブ化要求を受信した場合に、該スレーブ化要求に基づき、グループセル50に含まれるスレーブセルを変更する。 Then, the slave cell changing unit 132 of the eNB 1 that has received the slave request from the eNB 1M via the X2 interface registers the cell 5 to be slaved in the cell information management unit 124 as a slave cell (step S1107). As described above, the slave cell changing unit 132 functions as an example of a slave changing unit, and when receiving a slave request from the UE 2, changes the slave cell included in the group cell 50 based on the slave request.
 このように、UE2がeNB1MおよびeNB1Sから受信したパイロット信号の受信電力に基づきグループセル50に追加するスレーブセルや解放するスレーブセルを選択することにより、eNB1Mへの負荷を軽減することができる。 Thus, by selecting the slave cell to be added to the group cell 50 or the slave cell to be released based on the received power of the pilot signal received by the UE 2 from the eNB 1M and the eNB 1S, the load on the eNB 1M can be reduced.
[eNB1の位置座標情報に基づくスレーブセル決定処理]
 上記実施例では、所定の記憶領域に予め記憶しておいた各eNB1が形成するセル5の位置情報に基づき、スレーブセルの決定や変更を行なうこととしたが、セル5の位置情報は、スレーブセルの決定や変更を行なう際に各eNB1から受信してもよい。以下、かかる場合について説明する。図20は、各eNB1から受信したセル位置座標情報に基づきスレーブセルを決定する場合におけるスレーブセル決定処理の処理手順の一例を示すシーケンス図である。
[Slave cell determination processing based on position coordinate information of eNB1]
In the above-described embodiment, the slave cell is determined or changed based on the location information of the cell 5 formed by each eNB 1 stored in advance in a predetermined storage area. You may receive from each eNB1 when performing determination or a change of a cell. Hereinafter, such a case will be described. FIG. 20 is a sequence diagram illustrating an example of a processing procedure of a slave cell determination process when a slave cell is determined based on cell position coordinate information received from each eNB1.
 図20に示すように、eNB1Mの周辺に設置されたeNB1は、自局が形成するセルの位置座標を表すセル位置座標情報をX2インタフェースを介してeNB1Mへ送信する(ステップS1201)。ここで、セル位置座標情報は、各eNB1固有のパラメータとして入力されているものとする。すなわち、セル位置座標情報には、セル位置座標に関する情報とともに該セル位置座標に対応するセル5を特定するための情報が含まれる。eNB1Mの周辺に設置されたeNB1は、eNB1Mからセル位置座標情報を送信すべき旨の要求を受けた場合に、セル位置座標情報を送信する。 As shown in FIG. 20, the eNB 1 installed in the vicinity of the eNB 1M transmits cell position coordinate information indicating the position coordinates of the cell formed by the own station to the eNB 1M via the X2 interface (step S1201). Here, it is assumed that the cell position coordinate information is input as a parameter unique to each eNB1. That is, the cell position coordinate information includes information related to the cell position coordinates and information for specifying the cell 5 corresponding to the cell position coordinates. The eNB 1 installed in the vicinity of the eNB 1M transmits the cell position coordinate information when receiving a request from the eNB 1M to transmit the cell position coordinate information.
 続いて、eNB1Mのスレーブセル決定部131は、近隣のeNB1から受信したセル位置座標情報に基づき、スレーブセルを決定する(ステップS1202)。具体的には、eNB1Mのスレーブセル決定部131は、受信したセル位置座標情報に基づき、マスタセルから各セル5までの距離をそれぞれ割り出し、マスタセルからとの距離が近いセル5を所定数選択し、選択したセル5をスレーブセルとして決定する。 Subsequently, the slave cell determination unit 131 of the eNB 1M determines a slave cell based on the cell position coordinate information received from the neighboring eNB 1 (step S1202). Specifically, the slave cell determination unit 131 of the eNB 1M calculates the distance from the master cell to each cell 5 based on the received cell position coordinate information, selects a predetermined number of cells 5 that are close to the master cell, The selected cell 5 is determined as a slave cell.
 続いて、eNB1Mのスレーブセル決定部131は、ステップS1202において決定したスレーブセルを形成するeNB1に対してスレーブ化要求を送信する(ステップS1203)。また、自局が形成するセル5がスレーブセルとして決定された場合、eNB1Mのスレーブセル決定部131は、決定されたセルをスレーブセルとしてセル情報管理部に登録する(ステップS1204)。かかるスレーブ化要求には、どのセル5をスレーブ化すべきかを示す情報が含まれる。 Subsequently, the slave cell determination unit 131 of the eNB 1M transmits a slave request to the eNB 1 that forms the slave cell determined in step S1202 (step S1203). When the cell 5 formed by the own station is determined as a slave cell, the slave cell determination unit 131 of the eNB 1M registers the determined cell as a slave cell in the cell information management unit (step S1204). The slave request includes information indicating which cell 5 should be slaved.
 そして、かかるスレーブ化要求をX2インタフェースを介して受信したeNB1のスレーブセル決定部131は、スレーブ化の対象となったセル5をスレーブセルとしてセル情報管理部124に登録する(ステップS1205)。これにより、スレーブ化の対象となったeNB1Mのセル5およびeNB1のセル5がスレーブ化し、また、スレーブ化通知を受信したeNB1は、eNB1Sとして機能するようになる。 Then, the slave cell determination unit 131 of the eNB 1 that has received the slave request via the X2 interface registers the cell 5 to be slaved in the cell information management unit 124 as a slave cell (step S1205). As a result, the cell 5 of the eNB 1M and the cell 5 of the eNB 1 that are the slaves become slaves, and the eNB 1 that has received the slave notification functions as the eNB 1S.
 このように、スレーブセル決定部131は、従属セル決定手段の一例として機能し、UE2からグループセル構築要求を受信した場合に、他のeNB1から受信した該eNB1が形成するセルの位置情報に基づき、自局が形成するセルをマスタセルとするグループセル50に含まれるスレーブセルを決定する。 As described above, the slave cell determination unit 131 functions as an example of a dependent cell determination unit, and when receiving a group cell construction request from the UE 2, the slave cell determination unit 131 is based on the location information of the cell formed by the eNB 1 received from another eNB 1. The slave cell included in the group cell 50 having the cell formed by the own station as the master cell is determined.
[UE2の移動状態に応じたスレーブセル数の変更]
 上記実施例では、マスタセルに隣接するセル5をスレーブセルとして決定することとしたが、グループセル50を構築するスレーブセルの数をUE2の移動状態に応じて変更してもよい。以下、かかる場合について説明する。図21-1は、UE2が移動中であると判断しスレーブセル数を増加させる場合の処理手順を示すシーケンス図である。
[Change in number of slave cells according to UE2 movement status]
In the above-described embodiment, the cell 5 adjacent to the master cell is determined as the slave cell. However, the number of slave cells constituting the group cell 50 may be changed according to the movement state of the UE 2. Hereinafter, such a case will be described. FIG. 21A is a sequence diagram illustrating a processing procedure when it is determined that the UE 2 is moving and the number of slave cells is increased.
 図21-1に示すように、UE2は、各eNB1に対してパイロット信号を定期的に送信している(ステップS1301)。続いて、eNB1Mのマスタ制御部12は、マスタセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS1302)、計算結果である受信電力情報をeNB1Mのスレーブセル変更部132へ送信する(ステップS1303)。同様に、eNB1Mのマスタ制御部12は、マスタセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS1304,S1306)、計算結果である受信電力情報をeNB1Mのスレーブセル変更部132へ送信する(ステップS1305,S1307)。 As shown in FIG. 21-1, UE2 periodically transmits a pilot signal to each eNB1 (step S1301). Subsequently, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (step S1302), and the received power information that is the calculation result is the slave cell change unit 132 of the eNB 1M. (Step S1303). Similarly, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (steps S1304 and S1306), and changes the received power information as the calculation result to the slave cell change of the eNB 1M. The data is transmitted to the unit 132 (steps S1305 and S1307).
 また、eNB1Sのマスタ制御部12も、同様に、スレーブセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し、計算結果である受信電力情報をeNB1Mのスレーブ制御部13へX2インタフェースを介して転送する。 Similarly, the master control unit 12 of the eNB 1S calculates the reception power of the pilot signal received via the slave cell by the power calculation unit 123, and the received power information as a calculation result is transmitted to the slave control unit 13 of the eNB 1M X2. Transfer through the interface.
 続いて、eNB1Mのスレーブセル変更部132は、各eNB1Sから受信した受信電力情報が示す受信電力および自局のスレーブセルを介して受信したパイロット信号の受信電力を比較することにより推定したUE2の位置に基づき、該UE2の移動状態を判定する。具体的には、eNB1Mのスレーブセル変更部132は、過去に推定したUE2の位置の履歴情報を所定の記憶領域に記憶しておき、これら履歴情報に基づくUE2の位置と今回推定したUE2の位置とから該UE2の位置の変化量を算出する。そして、eNB1Mのスレーブセル変更部132は、算出した変化量が所定の値以上である場合、該UE2が移動していると判定する(ステップS1308)。 Subsequently, the slave cell changing unit 132 of the eNB 1M determines the position of the UE 2 estimated by comparing the received power indicated by the received power information received from each eNB 1S and the received power of the pilot signal received through the slave cell of the own station. The movement state of the UE 2 is determined based on Specifically, the slave cell changing unit 132 of the eNB 1M stores history information of the UE 2 position estimated in the past in a predetermined storage area, and the UE 2 position based on the history information and the currently estimated UE 2 position. From this, the amount of change in the position of the UE2 is calculated. And the slave cell change part 132 of eNB1M determines with this UE2 moving, when the calculated variation | change_quantity is more than predetermined value (step S1308).
 ステップS1308において、UE2が移動していると判定すると、eNB1Mのスレーブセル変更部132は、グループセル50を拡大させるために、eNB1に対してスレーブ化要求を送信する(ステップS1309)。具体的には、eNB1Mのスレーブセル変更部132は、先ず、現グループセル50に含まれるセル5以外のセル5であって、スレーブセルに隣接するセル5を、グループセル50に追加する新たなスレーブセルとして決定する。例えば、図2に示すグループセル50を拡大させる場合、eNB1Mのスレーブセル変更部132は、現グループセル50のスレーブセルに隣接するセル5d,5h,5j,5k,5l,5m,5n,5o,5p,5t,5v,5xを新たに追加するスレーブセルとして決定する。 If it is determined in step S1308 that the UE2 is moving, the slave cell changing unit 132 of the eNB1M transmits a slave request to the eNB1 in order to expand the group cell 50 (step S1309). Specifically, the slave cell changing unit 132 of the eNB 1M first adds a cell 5 other than the cell 5 included in the current group cell 50 and adjacent to the slave cell to the group cell 50. Determine as a slave cell. For example, when expanding the group cell 50 shown in FIG. 2, the slave cell changing unit 132 of the eNB 1M causes the cells 5d, 5h, 5j, 5k, 5l, 5m, 5n, 5o, which are adjacent to the slave cell of the current group cell 50, 5p, 5t, 5v, and 5x are determined as slave cells to be newly added.
 続いて、eNB1Mのスレーブセル変更部132は、スレーブ化の対象となったセル5を形成するeNB1に対してスレーブ化要求を送信する。例えば、上記の例において、eNB1Mのスレーブセル変更部132は、セル5dを形成するeNB1b、セル5hを形成するeNB1c、セル5j,5kを形成するeNB1d、セル5l,5mを形成するeNB1eに対してスレーブ化要求を送信する。同様に、eNB1Mのスレーブセル変更部132は、セル5n,5oを形成するeNB1f、セル5pを形成するeNB1g、セル5tを形成するeNB1h、セル5v,5xを形成するeNB1jに対してスレーブ化要求を送信する。 Subsequently, the slave cell changing unit 132 of the eNB 1M transmits a slave request to the eNB 1 that forms the cell 5 to be slaved. For example, in the above example, the slave cell changing unit 132 of the eNB 1M performs the following operations on the eNB 1b that forms the cell 5d, the eNB 1c that forms the cell 5h, the eNB 1d that forms the cells 5j and 5k, and the eNB 1e that forms the cells 5l and 5m. Send a slave request. Similarly, the slave cell changing unit 132 of the eNB 1M sends a slave request to the eNB 1f that forms the cells 5n and 5o, the eNB 1g that forms the cell 5p, the eNB 1h that forms the cell 5t, and the eNB 1j that forms the cells 5v and 5x. Send.
 続いて、eNB1MからX2インタフェースを介してスレーブ化要求を受信したeNB1のスレーブセル決定部131は、該スレーブ化要求に基づき、スレーブ化の対象となったセルをスレーブセルとしてセル情報管理部124に登録する(ステップS1310)。 Subsequently, the slave cell determination unit 131 of the eNB 1 that has received the slave request from the eNB 1M via the X2 interface, the cell information management unit 124 sets the cell to be slaved as a slave cell based on the slave request. Registration is performed (step S1310).
 一方、UE2が静止している場合には、グループセルを縮小させてもよい。図21-2は、UE2が静止中であると判断しスレーブセル数を減少させる場合の処理手順を示すシーケンス図である。なお、図21-2に示すステップS1351~S1357の処理は、図21-1に示すステップS1301~1307の処理と同様であり、その説明を省略する。 On the other hand, when UE2 is stationary, the group cell may be reduced. FIG. 21-2 is a sequence diagram illustrating a processing procedure when it is determined that the UE 2 is stationary and the number of slave cells is decreased. Note that the processing in steps S1351 to S1357 shown in FIG. 21-2 is the same as the processing in steps S1301 to 1307 shown in FIG. 21-1, and a description thereof will be omitted.
 eNB1Mのスレーブセル変更部132は、過去に推定したUE2の位置の履歴情報と今回推定したUE2の位置情報とから該UE2の位置の変化量を算出した結果、算出した変化量が所定の値未満である場合、該UE2が静止していると判定する(ステップS1358)。そして、UE2が静止していると判定すると、eNB1Mのスレーブセル変更部132は、グループセル50を縮小させるために、現グループセル50に含まれるスレーブセルの解放を行なう。そして、eNB1Mのスレーブセル変更部132は、スレーブ解放の対象となったスレーブセルを通常のセルに変更するようセル情報管理部124に指示する(ステップS1359)。 The slave cell changing unit 132 of the eNB 1M calculates the amount of change in the position of the UE 2 from the history information of the position of the UE 2 estimated in the past and the position information of the UE 2 estimated this time. As a result, the calculated amount of change is less than a predetermined value. If it is, it is determined that the UE2 is stationary (step S1358). When determining that the UE 2 is stationary, the slave cell changing unit 132 of the eNB 1M releases the slave cell included in the current group cell 50 in order to reduce the group cell 50. Then, the slave cell change unit 132 of the eNB 1M instructs the cell information management unit 124 to change the slave cell that is the target of slave release to a normal cell (step S1359).
 このように、eNB1Mのスレーブセル変更部132は、推定したUE2の位置情報の履歴を記憶しておき、それらの変化量を算出することでUE2の移動状態を判定する。そして、eNB1Mのスレーブセル変更部132は、判定した移動状態に応じてスレーブセルの数を変更することにより、より効率的なスレーブセルの管理を行うことができる。すなわち、例えば、UE2が移動している場合、グループセル50に含まれるスレーブセルの数を増加させることにより、UE2がグループセル50外に移動してしまうことを確実に防止できる。一方、UE2が静止している場合には、グループセル50に含まれるスレーブセルの数を減少させることにより、不必要な無線リソースの使用を防ぐことができる。 As described above, the slave cell changing unit 132 of the eNB 1M stores the estimated location information history of the UE 2, and determines the movement state of the UE 2 by calculating the amount of change. And the slave cell change part 132 of eNB1M can perform management of a more efficient slave cell by changing the number of slave cells according to the determined movement state. That is, for example, when the UE 2 is moving, it is possible to reliably prevent the UE 2 from moving out of the group cell 50 by increasing the number of slave cells included in the group cell 50. On the other hand, when UE2 is stationary, it is possible to prevent unnecessary use of radio resources by reducing the number of slave cells included in group cell 50.
[下り電力制御]
 上記実施例では、マスタセルおよびスレーブセルを介して送信されるデータの送信電力は、グループセル50内で共通としたが、これに限らず、グループセル50内で送信電力を異ならせてもよい。例えば、グループセル50がマスタセルを中心として同心円状に形成されている場合、eNB1Mの下位レイヤ制御部161は、グループセル50の中心に位置するセル5ほど送信電力を高めに設定し、グループセル50の外縁に位置するセル5ほど送信電力を低めに設定する。以下、かかる場合について説明する。図22は、グループセル50内での送信電力を異ならせる場合の処理手順の一例を示すシーケンス図である。
[Downlink power control]
In the above embodiment, the transmission power of data transmitted via the master cell and the slave cell is common in the group cell 50, but the transmission power is not limited to this, and the transmission power may be different in the group cell 50. For example, when the group cell 50 is formed concentrically around the master cell, the lower layer control unit 161 of the eNB 1M sets the transmission power higher for the cell 5 located at the center of the group cell 50, and the group cell 50 The transmission power is set to be lower for the cell 5 located at the outer edge. Hereinafter, such a case will be described. FIG. 22 is a sequence diagram illustrating an example of a processing procedure when the transmission power in the group cell 50 is varied.
 図22に示すように、eNB1Mの下位レイヤ制御部161は、グループセル50の外縁近傍に位置するスレーブセルを形成するeNB1Sに対しては、基準値よりも低めに設定された送信電力を示す下り送信電力情報をX2インタフェースを介して送信する(ステップS1401)。そして、eNB1Sの下位レイヤ制御部161は、該受信した下り送信電力情報に基づき、UE2へのデータの送信電力を基準値よりも低めに決定する(ステップS1402)。 As illustrated in FIG. 22, the lower layer control unit 161 of the eNB 1M indicates the downlink power that is set lower than the reference value for the eNB 1S that forms a slave cell located near the outer edge of the group cell 50. Transmit power information is transmitted via the X2 interface (step S1401). Then, the lower layer control unit 161 of the eNB 1S determines the transmission power of data to the UE 2 to be lower than the reference value based on the received downlink transmission power information (step S1402).
 一方、eNB1Mの下位レイヤ制御部161は、グループセル50の中心であるマスタセルに対応する送信電力を基準よりも高めに決定する(ステップS1403)。また、eNB1Mの下位レイヤ制御部161は、自局が形成するスレーブセルに対応する送信電力を基準値に決定する(ステップS1404)。このように、eNB1Mの下位レイヤ制御部161は、共通リソース決定手段の一例として機能し、グループセル50を構築するマスタセルおよびスレーブセルごとに異なる送信電力を決定する。 On the other hand, the lower layer control unit 161 of the eNB 1M determines the transmission power corresponding to the master cell that is the center of the group cell 50 to be higher than the reference (step S1403). Further, the lower layer control unit 161 of the eNB 1M determines the transmission power corresponding to the slave cell formed by the own station as a reference value (step S1404). In this way, the lower layer control unit 161 of the eNB 1M functions as an example of a common resource determination unit, and determines different transmission power for each master cell and slave cell that constructs the group cell 50.
 このように、グループセル50内で送信電力を異ならせることにより、グループセル50のより効率的な運用が可能となる。例えば、グループセル50がマスタセルを中心として同心円状に形成されている場合、グループセル50の中心に位置するセル5ほど送信電力を高めに設定することで、UE2とのより確実な通信を可能とし、また、グループセル50の外縁に位置するセル5ほど送信電力を低めに設定することで、他のセル5への影響を低減することができる。 Thus, by making the transmission power different in the group cell 50, the group cell 50 can be operated more efficiently. For example, when the group cell 50 is formed concentrically around the master cell, the cell 5 located at the center of the group cell 50 is set to a higher transmission power, thereby enabling more reliable communication with the UE 2. In addition, by setting the transmission power to be lower for the cells 5 located at the outer edge of the group cell 50, the influence on the other cells 5 can be reduced.
[UE2からのフィードバック情報に基づく下り電力制御]
 また、グループセル50内で下りの送信電力を異ならせる場合、UE2からのフィードバック情報に基づいて、設定した送信電力の修正を行なってもよい。以下、かかる場合について説明する。図23は、UE2からのフィードバック情報に基づき下り送信電力を変更する場合の処理手順の一例を示すシーケンス図である。
[Downlink power control based on feedback information from UE2]
When the downlink transmission power is varied within the group cell 50, the set transmission power may be corrected based on feedback information from the UE2. Hereinafter, such a case will be described. FIG. 23 is a sequence diagram illustrating an example of a processing procedure when the downlink transmission power is changed based on feedback information from the UE2.
 図23に示すように、eNB1MおよびeNB1Sは、eNB1Mの下位レイヤ制御部161によりそれぞれ決定された送信電力を用いて、マスタセルおよびスレーブセルを介してパイロット信号を送信する(ステップS1501)。続いて、これらパイロット信号を無線リンクを介して受信したUE2は、各パイロット信号の受信電力を電力計算部123により計算し(ステップS1502)、計算結果である受信電力情報をマスタセルを介してeNB1Mの下位レイヤ制御部161へ送信する(ステップS1503)。 As shown in FIG. 23, the eNB 1M and the eNB 1S transmit pilot signals through the master cell and the slave cell using the transmission power determined by the lower layer control unit 161 of the eNB 1M, respectively (step S1501). Subsequently, the UE 2 that has received these pilot signals via the radio link calculates the reception power of each pilot signal by the power calculation unit 123 (step S1502), and the received power information that is the calculation result of the eNB 1M via the master cell. It transmits to the lower layer control part 161 (step S1503).
 このように、電力計算部123は、eNB1MおよびeNB1Sからパイロット信号を受信した場合、該パイロットの受信電力を表す受信電力情報を、eNB1Mへ送信する受信電力情報送信手段の一例として機能する。 Thus, when receiving a pilot signal from the eNB 1M and the eNB 1S, the power calculation unit 123 functions as an example of a received power information transmitting unit that transmits received power information indicating the received power of the pilot to the eNB 1M.
 続いて、eNB1Mの下位レイヤ制御部161は、受信した受信電力情報に基づき、マスタセルおよびスレーブセルごとに変更後の下り送信電力を決定する(ステップS1504)。例えば、eNB1Mの下位レイヤ制御部161は、UE2がマスタセルを介して受信したパイロット信号の受信電力が所定値よりも高い場合、該マスタセルに対応する送信電力を低めに修正する。また、UE2がグループセル50の外縁に位置するスレーブセルを介して受信したパイロット信号の受信電力が所定値よりも低い場合、eNB1Mの下位レイヤ制御部161は、該スレーブセルに対応する送信電力を高めに修正する。 Subsequently, the lower layer control unit 161 of the eNB 1M determines the changed downlink transmission power for each master cell and slave cell based on the received reception power information (step S1504). For example, the lower layer control unit 161 of the eNB 1M corrects the transmission power corresponding to the master cell to be lower when the reception power of the pilot signal received by the UE 2 via the master cell is higher than a predetermined value. In addition, when the reception power of the pilot signal received by the UE 2 via the slave cell located at the outer edge of the group cell 50 is lower than a predetermined value, the lower layer control unit 161 of the eNB 1M sets the transmission power corresponding to the slave cell. Correct higher.
 このように、eNB1Mの下位レイヤ制御部161は、共通リソース決定手段の一例として機能し、自局およびeNB1Sが送信したパイロット信号の受信電力情報をUE2から受信した場合、該受信電力情報に基づき、前記マスタセルおよびスレーブセルごと決定した送信電力を変更する。 As described above, the lower layer control unit 161 of the eNB 1M functions as an example of a common resource determination unit, and when receiving the received power information of the pilot signal transmitted from the own station and the eNB 1S from the UE 2, based on the received power information, The transmission power determined for each master cell and slave cell is changed.
 このようにしてマスタセルおよびスレーブセルごとに下り送信電力の変更を行なった場合、eNB1Mの下位レイヤ制御部161は、変更後の下り送信電力を示す下り送信電力情報をeNB1Sの下位レイヤ制御部161へ送信する。そして、eNB1Sの下位レイヤ制御部161は、X2インタフェースを介して受信した下り送信電力情報に基づき、対応するスレーブセルの送信電力を変更する(ステップS1506)。また、eNB1Mの下位レイヤ制御部161は、ステップS1504での決定結果に基づき、マスタセルの送信電力を変更するとともに(ステップS1507)、スレーブセルの送信電力を変更する(ステップS1508)。 When the downlink transmission power is changed for each master cell and slave cell in this way, the lower layer control unit 161 of the eNB 1M sends the downlink transmission power information indicating the changed downlink transmission power to the lower layer control unit 161 of the eNB 1S. Send. Then, the lower layer control unit 161 of the eNB 1S changes the transmission power of the corresponding slave cell based on the downlink transmission power information received via the X2 interface (step S1506). Further, the lower layer control unit 161 of the eNB 1M changes the transmission power of the master cell (step S1507) and changes the transmission power of the slave cell (step S1508) based on the determination result in step S1504.
 このように、UE2がeNB1MおよびeNB1Sから受信したパイロット信号の受信電力情報をフィードバック情報とし、該フィードバック情報に基づき、マスタセルおよびスレーブセルに対応する下り送信電力を変更することにより、マスタセルおよびスレーブセルに対応する下り送信電力を最適化することができる。 Thus, UE2 uses the received power information of the pilot signals received from eNB1M and eNB1S as feedback information, and changes the downlink transmission power corresponding to the master cell and slave cell based on the feedback information, thereby enabling the master cell and slave cell to Corresponding downlink transmission power can be optimized.
 なお、UE2から送信されるフィードバック情報は、該UE2がeNB1MおよびeNB1Sから受信したパイロット信号の受信電力情報としたが、マスタセルおよびスレーブセルごとに決定した下り送信電力が適切か否かをeNB1Mの下位レイヤ制御部161が判断できる情報であればよく、例えば、エラーレート等であってもよい。 Note that the feedback information transmitted from the UE2 is the reception power information of the pilot signal received by the UE2 from the eNB1M and the eNB1S. However, whether or not the downlink transmission power determined for each master cell and slave cell is appropriate is lower than the eNB1M. Any information that can be determined by the layer control unit 161 may be used. For example, an error rate may be used.
[下り電力送信対象の動的制御]
 上記実施例では、グループセル50を構築する全てのeNB1MおよびeNB1Sが、UE2へのデータを送信することとしたが、これに限らず、一部のeNB1SがUE2へのデータ送信を行わないこととしてもよい。以下、かかる場合について説明する。図24-1は、一部のeNB1SがUE2へのデータ送信を行わない様子を示す図であり、図24-2は、UE2の移動に伴いUE2へのデータ送信を行わないeNB1Sが変更される様子を示す図である。
[Dynamic control of downlink power transmission target]
In the said Example, although all eNB1M and eNB1S which comprise the group cell 50 decided to transmit the data to UE2, not only this but some eNB1S do not perform the data transmission to UE2 Also good. Hereinafter, such a case will be described. FIG. 24-1 is a diagram illustrating a state in which some eNBs 1S do not perform data transmission to the UE 2, and FIG. 24-2 illustrates that the eNB 1S that does not perform data transmission to the UE 2 is changed as the UE 2 moves. It is a figure which shows a mode.
 図24-1に示すように、UE2a用のグループセルとして、セル5aをマスタセルとし、セル5b,5c,5d~5g,5i,5t,5vをスレーブセルとするグループセル50が構築されているとする。かかる場合、eNB1MであるeNB1aの下位レイヤ制御部161は、マスタセルおよび該マスタセルに隣接するスレーブセルのみ電力制御の対象とする。具体的には、図24-1に示すように、eNB1aの下位レイヤ制御部161は、マスタセルであるセル5aおよび該セル5aに隣接するセル5b,5c,5e,5f,5g,5iのみを電力制御の対象とする。 As shown in FIG. 24-1, a group cell 50 is constructed as a group cell for the UE 2a, in which the cell 5a is a master cell and the cells 5b, 5c, 5d to 5g, 5i, 5t, and 5v are slave cells. To do. In such a case, the lower layer control unit 161 of the eNB 1a that is the eNB 1M sets power control only for the master cell and the slave cell adjacent to the master cell. Specifically, as illustrated in FIG. 24-1, the lower layer control unit 161 of the eNB 1a powers only the cell 5a that is the master cell and the cells 5b, 5c, 5e, 5f, 5g, and 5i adjacent to the cell 5a. Controlled.
 そして、eNB1aの下位レイヤ制御部161は、電力制御の対象となったスレーブセルを形成するeNB1Sに対して電力制御対象通知を送信する。具体的には、eNB1aの下位レイヤ制御部161は、電力制御の対象となったセル5e,5fを形成するeNB1b、セル5g,5iを形成するeNB1cに対して、電力制御対象通知をX2インタフェースを介して送信する。これにより、電力制御対象通知を受信したeNB1b,1cは、eNB1Mのデータ転送処理部171からUE2へのデータを受信した場合、該データをグループセル50内で共通の無線リソースを用いて送信する。 And the lower layer control part 161 of eNB1a transmits a power control object notification with respect to eNB1S which forms the slave cell used as the object of power control. Specifically, the lower layer control unit 161 of the eNB 1a sends a power control target notification to the eNB 1b that forms the cells 5e and 5f that are the targets of power control and the eNB 1c that forms the cells 5g and 5i via the X2 interface. Send through. Thus, when receiving data from the data transfer processing unit 171 of the eNB 1M to the UE 2, the eNBs 1b and 1c that have received the power control target notification transmit the data using the common radio resource in the group cell 50.
 一方、eNB1aの下位レイヤ制御部161は、電力制御の対象ではないスレーブセルであるセル5dを形成するeNB1b、セル5tを形成するeNB1h、セル5vを形成するeNB1jに対しては、電力制御非対象通知をX2インタフェースを介して送信する。これにより、電力制御非対象通知を受信したeNB1b,1h,1jは、eNB1Mのデータ転送処理部171からUE2へのデータを受信した場合であっても、該データの送信は行わず、グループセル50内で共通の無線リソースのみが確保された状態となる。 On the other hand, the lower layer control unit 161 of the eNB 1a is not subject to power control for the eNB 1b that forms the cell 5d that is a slave cell that is not the target of power control, the eNB 1h that forms the cell 5t, and the eNB 1j that forms the cell 5v. A notification is sent via the X2 interface. As a result, the eNB 1b, 1h, 1j that has received the power control non-target notification does not transmit the data even when it receives data from the data transfer processing unit 171 of the eNB 1M to the UE 2, and the group cell 50 In this state, only the common radio resource is secured.
 また、グループセル50内においてUE2が移動した場合、該UE2の移動に伴い、電力制御の対象となるセル5が変更される。例えば、図24-2に示すように、UE2がeNB1aの形成するセル5aからeNB1bの形成するセル5eへ移動したとする。かかる場合、新たにeNB1MとなったeNB1bの下位レイヤ制御部161は、マスタセルであるセル5eおよび該セル5eに隣接するセル5a,5d,5f,5g,5t,5vを電力制御の対象とし、セル5eに隣接しないセル5b,5c,5iを電力制御の対象外とする。これにより、UE2の移動前において電力制御の対象外であったセル5d,5t,5vが新たに電力制御の対象となり、UE2の移動前において電力制御の対象であったセル5b,5c,5iが電力制御の対象外となる。 Further, when the UE 2 moves in the group cell 50, the cell 5 to be subjected to power control is changed as the UE 2 moves. For example, as illustrated in FIG. 24-2, it is assumed that the UE 2 moves from the cell 5a formed by the eNB 1a to the cell 5e formed by the eNB 1b. In such a case, the lower layer control unit 161 of the eNB 1b that has newly become the eNB 1M sets the cell 5e as the master cell and the cells 5a, 5d, 5f, 5g, 5t, and 5v adjacent to the cell 5e to be subjected to power control. The cells 5b, 5c, 5i not adjacent to 5e are excluded from power control. As a result, the cells 5d, 5t, and 5v that are not subject to power control before the UE2 moves are newly subject to power control, and the cells 5b, 5c, and 5i that are subject to power control before the UE2 move are Not subject to power control.
 このように、eNB1aの下位レイヤ制御部161は、共通リソース決定手段の一例として機能し、グループセル50を構築するスレーブセルのうち、所定のスレーブセルに対して電力制御対象通知を送信する。また、下位レイヤ処理部14は、下位レイヤ処理手段として機能し、eNB1Mから電力制御対象通知を受信した場合にのみ、グループセル50内で共通の無線リソースを用いて、UE2へのデータを送信する。 Thus, the lower layer control unit 161 of the eNB 1a functions as an example of a common resource determination unit, and transmits a power control target notification to a predetermined slave cell among slave cells that construct the group cell 50. Further, the lower layer processing unit 14 functions as a lower layer processing unit, and transmits data to the UE 2 using a common radio resource in the group cell 50 only when a power control target notification is received from the eNB 1M. .
 続いて、かかる場合の具体的な処理手順について説明する。図25は、下り電力送信対象の動的制御を行う場合における処理手順の一例を示す図である。なお、図25において、eNB1Mは、パイロット信号の受信電力を比較等によりUE2の位置を予め特定しているものとする。 Next, a specific processing procedure in such a case will be described. FIG. 25 is a diagram illustrating an example of a processing procedure when dynamic control of a downlink power transmission target is performed. In FIG. 25, it is assumed that the eNB 1M specifies the position of the UE 2 in advance by comparing the received power of the pilot signal.
 図25に示すように、eNB1Mの下位レイヤ制御部161は、マスタセルに隣接するスレーブセルを選択し(ステップS1601)、選択したスレーブセルを形成するeNB1Sに対して、電力制御対象通知を送信する(ステップS1602)。また、eNB1Mの下位レイヤ制御部161は、自局のマスタセルおよびスレーブセルが電力制御対象セルであることをセル情報管理部124に登録する(ステップS1603)。また、eNB1Mから電力制御対象通知を受信したeNB1Sの下位レイヤ制御部161は、該電力制御対象通知に基づき、自局のスレーブセルが電力制御対象セルであることをセル情報管理部124に登録する(ステップS1604)。これにより、eNB1Mおよび電力制御対象通知を受信したeNB1Sは、自局が形成するマスタセルやスレーブセルが電力制御対象セルであると判断することができる。電力制御対象セルを形成するeNB1MやeNB1Sは、グループセル50内で共通の無線リソースを用いてUE2へのデータを送信する。 As illustrated in FIG. 25, the lower layer control unit 161 of the eNB 1M selects a slave cell adjacent to the master cell (step S1601), and transmits a power control target notification to the eNB 1S that forms the selected slave cell ( Step S1602). Also, the lower layer control unit 161 of the eNB 1M registers in the cell information management unit 124 that the master cell and slave cell of the own station are power control target cells (step S1603). Also, the lower layer control unit 161 of the eNB 1S that has received the power control target notification from the eNB 1M registers in the cell information management unit 124 that the slave cell of the local station is the power control target cell based on the power control target notification. (Step S1604). Thereby, eNB1S which received eNB1M and the power control object notification can judge that the master cell and slave cell which an own station forms are power control object cells. The eNB 1M and the eNB 1S that form the power control target cell transmit data to the UE 2 using a common radio resource in the group cell 50.
 一方、eNB1Mの下位レイヤ制御部161は、マスタセルに隣接しないスレーブセルを形成するeNB1Sに対して、電力制御非対象通知を送信する(ステップS1605)。そして、電力制御非対象通知をX2インタフェースを介して受信したeNB1Sの下位レイヤ制御部161は、自局が形成するスレーブセルが電力制御対象外であることをセル情報管理部124に登録する(ステップS1606)。これにより、電力制御非対象通知を受信したeNB1Sは、自局が形成するスレーブセルが電力制御対象外であると判断することができる。電力制御対象外のスレーブセルを形成するeNB1Sは、グループセル50内共通の無線リソースの確保のみを行い、eNB1Mのデータ転送処理部171からUE2へのデータが転送されてきた場合であっても、該データのUE2への送信は行わない。 Meanwhile, the lower layer control unit 161 of the eNB 1M transmits a power control non-target notification to the eNB 1S that forms a slave cell that is not adjacent to the master cell (step S1605). Then, the lower layer control unit 161 of the eNB 1S that has received the power control non-target notification via the X2 interface registers in the cell information management unit 124 that the slave cell formed by itself is not the power control target (step S1606). Accordingly, the eNB 1S that has received the power control non-target notification can determine that the slave cell formed by the own station is out of the power control target. Even when the eNB 1S that forms a slave cell that is not subject to power control only secures radio resources that are common in the group cell 50 and data is transferred from the data transfer processing unit 171 of the eNB 1M to the UE 2, The data is not transmitted to UE2.
 このように、グループセル50に含まれるスレーブセルのうち、UE2からの距離が遠く、該UE2との無線通信に影響の少ないスレーブセルについては、該UE2へのデータ送信を行なわないことにより、グループセル50の周辺セルへの干渉を抑えることができる。また、電力制御対象外であっても、無線リソースのみを確保しておくことにより、UE2の移動により電力非対象セルが電力制御対象セルとなった場合に、該無線リソースを用いてUE2へのデータ送信をいち早く行なうことができる。 As described above, among the slave cells included in the group cell 50, the slave cell that is far from the UE 2 and has little influence on the radio communication with the UE 2 does not perform data transmission to the UE 2 to perform group transmission. Interference with the neighboring cells of the cell 50 can be suppressed. In addition, even if it is not subject to power control, by securing only radio resources, when a non-power target cell becomes a power control target cell due to movement of UE2, the radio resource is used to transmit to UE2. Data can be transmitted quickly.
 なお、電力制御非対象セルを形成するeNB1Sの下位レイヤ制御部161は、優先度の高い他のデータを送信する必要がある場合には、確保した無線リソースを一時的に解放し、当該優先度の高いデータの送信に割り当ててもよい。 Note that the lower layer control unit 161 of the eNB 1S that forms the power control non-target cell temporarily releases the secured radio resource when it is necessary to transmit other data with high priority, and the priority May be assigned to transmission of high data.
[上り送信電力制御]
 ここで、上り送信電力の一般的な制御方法について説明する。図26は、上り送信電力の制御処理の処理手順を示すシーケンス図である。
[Uplink transmission power control]
Here, a general control method of uplink transmission power will be described. FIG. 26 is a sequence diagram illustrating a processing procedure of uplink transmission power control processing.
 図26に示すように、UE2は、各eNB1に対してパイロット信号を定期的に送信する(ステップS1701)。続いて、eNB1Mの下位レイヤ制御部161は、マスタセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し、計算結果に基づき上り送信電力値を決定する(ステップS1702)。具体的には、eNB1Mの下位レイヤ制御部161は、UE2から受信したパイロット信号の受信電力により、マスタセルを介して行なわれるUE2との無線通信の通信品質を特定する。そして、eNB1Mの下位レイヤ制御部161は、例えば、特定した通信品質が低い場合には上り送信電力を高めるなどして、最適な上り送信電力を決定する。 As shown in FIG. 26, UE2 periodically transmits a pilot signal to each eNB1 (step S1701). Subsequently, the lower layer control unit 161 of the eNB 1M calculates the reception power of the pilot signal received via the master cell by the power calculation unit 123, and determines the uplink transmission power value based on the calculation result (step S1702). Specifically, the lower layer control unit 161 of the eNB 1M specifies the communication quality of radio communication with the UE 2 performed via the master cell, based on the received power of the pilot signal received from the UE 2. Then, the lower layer control unit 161 of the eNB 1M determines the optimum uplink transmission power, for example, by increasing the uplink transmission power when the specified communication quality is low.
 続いて、eNB1Mの下位レイヤ制御部161は、ステップS1702において決定した上り送信電力に関する情報含んだ送信電力制御信号(Transmit Power Control:TPC)をマスタセルを介してUE2へ送信する(ステップS1703)。また、UE2は、上り送信電力制御として、受信したTPCに基づき上り送信電力値の変更を行う(ステップS1704)。そして、UE2は、変更後の上り送信電力値を用いてパイロット信号を再度eNB1Mへ送信する(ステップS1705)。このように、UE2およびeNB1Mは、ステップS1701~S1705の処理を繰り返すことにより上り送信電力の制御を行なう。 Subsequently, the lower layer control unit 161 of the eNB 1M transmits a transmission power control signal (Transmit Power Control: TPC) including information on the uplink transmission power determined in Step S1702 to the UE 2 via the master cell (Step S1703). Further, UE2 changes the uplink transmission power value based on the received TPC as uplink transmission power control (step S1704). And UE2 transmits a pilot signal to eNB1M again using the uplink transmission power value after a change (step S1705). Thus, UE2 and eNB1M control uplink transmission power by repeating the processes of steps S1701 to S1705.
[eNB1M,eNB1Sからのフィードバック情報に基づく上り送信電力制御]
 上記の例において、eNB1Mの下位レイヤ制御部161は、UE2から受信したパイロット信号の受信電力のみに基づき上り送信電力の決定することとしたが、これに限らず、各スレーブセルを介して受信したパイロット信号の受信電力を加味してもよい。以下、かかる場合について説明する。図27は、マスタセルおよびスレーブセルを介して受信したパイロット信号の受信電力に基づく上り送信電力の制御処理の処理手順を示すシーケンス図である。
[Uplink transmission power control based on feedback information from eNB1M and eNB1S]
In the above example, the lower layer control unit 161 of the eNB 1M determines the uplink transmission power based only on the reception power of the pilot signal received from the UE 2, but is not limited thereto, and is received via each slave cell. You may consider the reception power of a pilot signal. Hereinafter, such a case will be described. FIG. 27 is a sequence diagram showing a processing procedure of uplink transmission power control processing based on the received power of the pilot signal received via the master cell and the slave cell.
 図27に示すように、UE2は、各eNB1に対してパイロット信号を定期的に送信している(ステップS1801)。続いて、eNB1Mのマスタ制御部12は、マスタセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS1802)、計算結果である受信電力情報をスレーブセル変更部132へ送信する(ステップS1803)。同様に、eNB1Mのマスタ制御部12は、スレーブセルを介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS1804)、計算結果である受信電力情報をスレーブセル変更部132へ送信する(ステップS1805)。 As shown in FIG. 27, UE2 periodically transmits a pilot signal to each eNB1 (step S1801). Subsequently, the master control unit 12 of the eNB 1M calculates the received power of the pilot signal received via the master cell by the power calculation unit 123 (step S1802), and transmits the received power information as a calculation result to the slave cell change unit 132. (Step S1803). Similarly, the master control unit 12 of the eNB 1M calculates the reception power of the pilot signal received via the slave cell by the power calculation unit 123 (step S1804), and the received power information as the calculation result to the slave cell change unit 132. Transmit (step S1805).
 また、eNB1Sのマスタ制御部12は、セル5を介して受信したパイロット信号の受信電力を電力計算部123により計算し(ステップS1806)、計算結果である受信電力情報をeNB1Mのスレーブ制御部13へX2インタフェースを介して転送する(ステップS1807)。 Further, the master control unit 12 of the eNB 1S calculates the received power of the pilot signal received via the cell 5 by the power calculation unit 123 (step S1806), and the received power information as a calculation result is sent to the slave control unit 13 of the eNB 1M. The data is transferred via the X2 interface (step S1807).
 続いて、eNB1Mのスレーブセル変更部132は、自局のマスタ制御部12あるいは他のeNB1から受信した受信電力情報に基づき、上り送信電力値を決定する(ステップS1808)。例えば、グループセル50の外縁に位置するスレーブセルを介して受信したパイロット信号の受信電力が基準値よりも高い場合には、eNB1Mの下位レイヤ制御部161は、上り送信電力値を現在よりも低めるなどして、最適な上り送信電力を決定する。このように、eNB1Mの下位レイヤ制御部161は、共通リソース決定手段の一例として機能し、自局および各eNB1Sから取得した受信電力情報に基づき、UE2がeNB1へ信号を送信する場合における送信電力である上り送信電力を変更する。 Subsequently, the slave cell changing unit 132 of the eNB 1M determines an uplink transmission power value based on the received power information received from the master control unit 12 of the own station or another eNB 1 (step S1808). For example, when the reception power of the pilot signal received via the slave cell located at the outer edge of the group cell 50 is higher than the reference value, the lower layer control unit 161 of the eNB 1M lowers the uplink transmission power value from the current value. Thus, the optimum uplink transmission power is determined. In this way, the lower layer control unit 161 of the eNB 1M functions as an example of a common resource determination unit, and the transmission power when the UE 2 transmits a signal to the eNB 1 based on the received power information acquired from the own station and each eNB 1S. A certain upstream transmission power is changed.
 続いて、eNB1Mの下位レイヤ制御部161は、ステップS1808において決定した上り送信電力に関する情報含んだTPCをマスタセルを介してUE2へ送信する(ステップS1809)。そして、UE2は、上り送信電力制御として、受信したTPCに基づき上り送信電力値の変更を行う(ステップS1810)。 Subsequently, the lower layer control unit 161 of the eNB 1M transmits a TPC including information on the uplink transmission power determined in step S1808 to the UE 2 via the master cell (step S1809). And UE2 changes an uplink transmission power value based on received TPC as uplink transmission power control (step S1810).
 このように、マスタセルを介して受信したパイロット信号の受信電力だけでなくスレーブセルを介して受信したパイロット信号の受信電力も加味して上り送信電力を決定することにより、UE2とグループセル50との間の無線通信をより適切に行うことができる。 Thus, by determining the uplink transmission power in consideration of the reception power of the pilot signal received via the slave cell as well as the reception power of the pilot signal received via the master cell, the UE 2 and the group cell 50 Wireless communication can be performed more appropriately.
 以上、本発明の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the embodiments of the present invention have been described in detail with reference to the drawings. However, these are merely examples, and various embodiments can be made based on the knowledge of those skilled in the art including the aspects described in the section of the disclosure of the invention. The present invention can be implemented in other forms that have been modified or improved.
 例えば、本件に開示する基地局は、eNBに限らず、LTE/SAEよりも前の世代の無線基地局(BS:Base Station)などであってもよい。 For example, the base station disclosed in this case is not limited to the eNB, but may be a radio base station (BS: Base Station) of a generation prior to LTE / SAE.
 また、上記実施例では、マスタセルに隣接するセル5がスレーブセルとして決定されるとしたが、スレーブセルとして決定されるセル5は、必ずしもマスタセルに隣接している必要はない。すなわち、本件に開示する技術により構築されるグループセル50の形状は、どのようであってもよい。 In the above embodiment, the cell 5 adjacent to the master cell is determined as the slave cell. However, the cell 5 determined as the slave cell is not necessarily adjacent to the master cell. That is, the shape of the group cell 50 constructed by the technique disclosed in this case may be any shape.
 また、上記実施例では、自局が形成するセル5がマスタセルであるかスレーブセルであるか等の情報をセル情報管理部124が管理することとしたが、これに限ったものではない。例えば、eNB1に、自局が形成するセル5がマスタセルであるかスレーブセルであるかといったセル5の状態を管理する状態管理部をセル5毎に設けて、各セル5の状態をこれら状態管理部がそれぞれ管理するようにしてもよい。また、かかる場合、各状態管理部は、受信電力情報送信手段の一例として機能し、各セル5を介して受信したパイロット信号の受信電力を計算し、その計算結果をeNB1Mのマスタ制御部12やスレーブ制御部13へ報告するようにしてもよい。このように、eNB1に各セル5を管理する状態管理部を設けることにより、マスタ制御部12による処理を軽減することができる。 In the above embodiment, the cell information management unit 124 manages information such as whether the cell 5 formed by the own station is a master cell or a slave cell. However, the present invention is not limited to this. For example, in eNB1, a state management unit that manages the state of cell 5 such as whether the cell 5 formed by the own station is a master cell or a slave cell is provided for each cell 5, and the state of each cell 5 is managed by these state managements. Each section may manage each. In such a case, each state management unit functions as an example of the reception power information transmission unit, calculates the reception power of the pilot signal received via each cell 5, and outputs the calculation result to the master control unit 12 or the eNB 1M. You may make it report to the slave control part 13. FIG. In this way, by providing the eNB 1 with a state management unit that manages each cell 5, processing by the master control unit 12 can be reduced.
 また、上記実施例において、eNB1MおよびeNB1Sは、どのeNB1がeNB1MでありどのeNB1がeNB1Sであるかを、eNB1MおよびeNB1Sが各自で情報を送信し合って把握することとした。しかし、これに限らず、MME/UPE3が、グループセル50を構築するeNB1MおよびeNB1Sに関する情報を管理し、必要に応じてeNB1MおよびeNB1Sに通知するようにしてもよい。 Further, in the above embodiment, the eNB 1M and the eNB 1S are configured to grasp which eNB 1 is the eNB 1M and which eNB 1 is the eNB 1S by transmitting information by themselves. However, the present invention is not limited to this, and the MME / UPE 3 may manage information on the eNB 1M and the eNB 1S that construct the group cell 50, and notify the eNB 1M and the eNB 1S as necessary.
 例えば、eNB1MやeNB1SとなったeNB1は、自局のどのセルがマスタセルあるいはスレーブセルとなったか、或いは、スレーブ解放の対象となったかをMME/UPE3に通知する。そして、MME/UPE3は、かかる通知を受けると、グループセル50を構築するマスタセルやスレーブセルの状態情報を更新して、eNB1MおよびeNB1Sへ通知する。このようにして、eNB1MおよびeNB1Sが、どのeNB1がeNB1MでありどのeNB1がeNB1Sであるかを把握できるようにしてもよい。 For example, the eNB 1 that has become the eNB 1M or the eNB 1S notifies the MME / UPE 3 which cell of its own station has become the master cell or the slave cell, or the slave release target. And MME / UPE3 will update the status information of the master cell and slave cell which comprise the group cell 50, and will notify to eNB1M and eNB1S, if this notification is received. In this way, the eNB 1M and the eNB 1S may be able to grasp which eNB 1 is the eNB 1M and which eNB 1 is the eNB 1S.
  S 移動通信システム
  1a~1j 無線基地局
  2a,2b UE
  3 MME/UPE
  5a~5x セル
 11 ハンドオーバ処理部
 12 マスタ制御部
 13 スレーブ制御部
 14 下位レイヤ処理部
 15 上位レイヤ処理部
 16 スケジューリング部
 17 データバッファ部
121 マスタセル決定部
122 マスタセル変更部
123 電力計算部
124 セル情報管理部
131 スレーブセル決定部
132 スレーブセル変更部
161 下位レイヤ制御部
162 フィードバック制御部
171 データ転送処理部
172 データ共有管理部
 20 IF部
 21 ハンドオーバ処理部
 22 操作入力部
 23 信号送信部
 24 電力計算部
 25 マスタセル変更判定部
 26 スレーブセル変更判定部
S Mobile communication system 1a to 1j Radio base station 2a, 2b UE
3 MME / UPE
5a to 5x cell 11 handover processing unit 12 master control unit 13 slave control unit 14 lower layer processing unit 15 upper layer processing unit 16 scheduling unit 17 data buffer unit 121 master cell determination unit 122 master cell change unit 123 power calculation unit 124 cell information management unit 131 Slave cell determination unit 132 Slave cell change unit 161 Lower layer control unit 162 Feedback control unit 171 Data transfer processing unit 172 Data sharing management unit 20 IF unit 21 Handover processing unit 22 Operation input unit 23 Signal transmission unit 24 Power calculation unit 25 Master cell Change determination unit 26 Slave cell change determination unit

Claims (20)

  1.  移動局と、前記移動局からのハンドオーバ要求を受信した場合に、該移動局との通信のための無線リソースを確保して該移動局との通信が可能な状態とするハンドオーバ処理を実行する複数の基地局とを含む移動通信システムであって、
     前記移動局は、
     複数の前記基地局がそれぞれ形成するセルを仮想的に統合したセルであるグループセルの構築を要求するグループセル構築要求を、在圏する前記基地局へ送信するグループセル構築要求送信手段を備え、
     前記基地局は、
     前記移動局から前記グループセル構築要求を受信した場合に、自局が形成するセルを基準セルとするグループセルに含まれる従属セルを決定する従属セル決定手段と、
     前記移動局との通信のための無線リソースであって、前記従属セル決定手段により決定された従属セルを形成する基地局および自局に共通して割当てるための無線リソースを決定する共通リソース決定手段と、
     前記共通リソース決定手段により決定した無線リソースに関する情報を前記従属セルを形成する基地局に対して送信する無線リソース情報送信手段と、
     前記共通リソース決定手段により決定した無線リソース、或いは、前記基準セルを形成する基地局から受信した無線リソース情報に基づく無線リソースを確保する下位レイヤ処理手段と
     を備えたことを特徴とする移動通信システム。
    A plurality of handover processes for securing radio resources for communication with a mobile station and enabling communication with the mobile station when a mobile station and a handover request from the mobile station are received A mobile communication system including a base station of
    The mobile station
    A group cell construction request transmitting means for transmitting a group cell construction request for requesting construction of a group cell, which is a virtually integrated cell formed by a plurality of base stations, to the base station in the area;
    The base station
    When receiving the group cell construction request from the mobile station, dependent cell determining means for determining a dependent cell included in a group cell having a cell formed by the local station as a reference cell;
    Common resource determining means for determining radio resources for communication with the mobile station, the wireless resources being commonly allocated to the base station forming the dependent cell determined by the dependent cell determining means and the own station When,
    Radio resource information transmitting means for transmitting information on radio resources determined by the common resource determining means to a base station forming the dependent cell;
    A mobile communication system, comprising: a radio resource determined by the common resource determination means, or a lower layer processing means for securing radio resources based on radio resource information received from a base station forming the reference cell. .
  2.  前記従属セルを形成する基地局は、自局の空き無線リソースに関する情報をリソース割当状況情報として前記基準セルを形成する基地局へ送信するリソース割当状況情報送信手段をさらに備え、
     前記共通リソース決定手段は、前記従属セルを形成する基地局から受信したリソース割当状況情報および自局のリソース割当状況情報に基づき、前記従属セルを形成する基地局および自局に共通する空き無線リソースを、前記従属セルを形成する基地局および自局に共通して割当てるための無線リソースとして決定することを特徴とする請求項1に記載の移動通信システム。
    The base station forming the subordinate cell further comprises resource allocation status information transmitting means for transmitting information on free radio resources of the own station as resource allocation status information to the base station forming the reference cell,
    The common resource determining means is a free radio resource common to the base station forming the dependent cell and the own station based on the resource allocation status information received from the base station forming the dependent cell and the resource allocation status information of the own station. The mobile communication system according to claim 1, wherein the mobile communication system is determined as a radio resource to be commonly allocated to a base station and a local station forming the subordinate cell.
  3.  前記基準セルを形成する基地局は、前記移動局との通信品質が最も高い従属セルと前記移動局との通信品質が、前記移動局と前記基準セルとの通信品質よりも高い場合、該従属セルを形成する基地局に対して、該従属セルを基準セルに変更すべき旨の要求を送信するとともに、自局が形成する基準セルを従属セルに変更する基準変更手段をさらに備えたことを特徴とする請求項1に記載の移動通信システム。 The base station that forms the reference cell, when the communication quality between the subordinate cell having the highest communication quality with the mobile station and the mobile station is higher than the communication quality between the mobile station and the reference cell, The base station forming the cell is further transmitted with a request to change the subordinate cell to the reference cell, and further includes reference changing means for changing the reference cell formed by the own station to the subordinate cell. The mobile communication system according to claim 1, characterized in that:
  4.  前記従属セルを形成する基地局は、前記移動局からパイロット信号を受信した場合、該パイロット信号の受信電力を表す受信電力情報を、前記基準セルを形成する基地局へ送信する受信電力情報送信手段をさらに備え、
     前記基準変更手段は、前記従属セルを形成する基地局から該従属セルを介して受信した受信電力情報が表す受信電力のうち最も高い受信電力が、自局が前記基準セルを介して前記移動局から受信した前記パイロット信号の受信電力よりも高い場合、該最も高い受信電力を表す受信電力情報を送信した基地局に対して、該従属セルを基準セルに変更すべき旨の要求を送信するとともに、自局が形成する基準セルを従属セルに変更することを特徴とする請求項3に記載の移動通信システム。
    When the base station that forms the subordinate cell receives a pilot signal from the mobile station, the base station that forms the reference cell transmits received power information indicating the received power of the pilot signal to the base station that forms the reference cell. Further comprising
    The reference changing means is configured such that the highest received power among the received power represented by the received power information received from the base station forming the dependent cell via the dependent cell is determined by the mobile station via the reference cell. When the received power of the pilot signal received from the base station is higher than the received power information indicating the highest received power, a request to change the subordinate cell to the reference cell is transmitted to the base station that has transmitted the received power information representing the highest received power. 4. The mobile communication system according to claim 3, wherein a reference cell formed by the own station is changed to a subordinate cell.
  5.  各前記基地局は、前記移動局からパイロット信号を受信した場合、該パイロットの受信電力を表す受信電力情報を、前記基準セルを形成する基地局へ送信する受信電力情報送信手段をさらに備え、
     前記基準セルを形成する基地局は、各前記基地局から取得した受信電力情報が表す受信電力により推定される前記移動局の位置に基づき、前記グループセルに含まれる従属セルを変更する従属変更手段をさらに備えたことを特徴とする請求項1に記載の移動通信システム。
    Each of the base stations, when receiving a pilot signal from the mobile station, further comprises received power information transmitting means for transmitting received power information representing the received power of the pilot to the base station forming the reference cell,
    The base station that forms the reference cell includes a subordinate changing unit that changes subordinate cells included in the group cell based on the position of the mobile station estimated from the received power represented by the received power information acquired from each base station. The mobile communication system according to claim 1, further comprising:
  6.  各前記基地局は、
     前記移動局へ送信するデータを上位装置から受信し、該受信したデータに対して所定の処理を施して送信する上位レイヤ処理手段と、
     前記上位レイヤ処理手段から受信したデータを前記下位レイヤ処理手段へ送信する場合の送信タイミングを決定する送信タイミング決定手段と、
     前記上位レイヤ処理手段から受信したデータおよび前記送信タイミング決定手段により決定された送信タイミングに関する情報を前記従属セルを形成する基地局へ転送するデータ転送手段と、
     前記送信タイミング決定手段により決定された前記データの送信タイミング、或いは、前記基準セルを形成する基地局から受信した前記データの送信タイミングが到来した場合に、該データを下位レイヤ処理手段に送信するデータ送信手段と
     をさらに備えたことを特徴とする請求項1に記載の移動通信システム。
    Each said base station
    Upper layer processing means for receiving data to be transmitted to the mobile station from an upper device, performing predetermined processing on the received data, and transmitting the received data;
    A transmission timing determination means for determining a transmission timing when data received from the upper layer processing means is transmitted to the lower layer processing means;
    Data transfer means for transferring data received from the upper layer processing means and information on the transmission timing determined by the transmission timing determination means to the base station forming the dependent cell;
    Data to be transmitted to lower layer processing means when the transmission timing of the data determined by the transmission timing determination means or the transmission timing of the data received from the base station forming the reference cell has arrived The mobile communication system according to claim 1, further comprising: a transmission unit.
  7.  前記移動局は、ユーザからの入力操作を受け付ける入力手段をさらに備え、
     前記グループセル構築要求送信手段は、前記入力手段により前記ユーザから受け付けた入力操作に基づき、前記グループセル構築要求を送信することを特徴とする請求項1に記載の移動通信システム。
    The mobile station further includes input means for receiving an input operation from a user,
    The mobile communication system according to claim 1, wherein the group cell construction request transmission unit transmits the group cell construction request based on an input operation received from the user by the input unit.
  8.  前記基地局は、自局が前記グループセルの構築が可能な基地局であることを示すグループセル構築可能情報を前記移動局に対して送信するグループセル構築可能情報送信手段をさらに備え、
     前記グループセル構築要求送信手段は、在圏するセルを構築する基地局から前記グループセル構築可能情報を受信した場合に、該基地局に対して前記グループセル構築要求を送信することを特徴とする請求項1に記載の移動通信システム。
    The base station further comprises group cell constructable information transmission means for transmitting group cell constructable information indicating that the own station is a base station capable of constructing the group cell to the mobile station,
    The group cell construction request transmission means transmits the group cell construction request to the base station when the group cell construction request information is received from a base station that constructs a cell in the area. The mobile communication system according to claim 1.
  9.  前記基地局は、自局のセルを介して前記移動局に対しパイロット信号を送信する信号送信手段をさらに備え、
     前記移動局は、前記基準セルを形成する基地局および前記従属セルを形成する基地局からそれぞれ受信したパイロット信号の受信電力を比較し、前記従属セルを介して受信したパイロット信号の受信電力のうち最も高い受信電力が、前記基準セルを介して受信した前記パイロット信号の受信電力よりも高い場合、該最も高い受信電力を示すパイロット信号が送信された従属セルを基準セルに変更すべき旨の基準変更要求を前記基準セルを形成する基地局へ送信する基準変更要求送信手段をさらに備え、
     前記基準変更手段は、前記移動局から前記基準変更要求を受信した場合に、該基準変更要求に基づき、前記最も高い受信電力を示すパイロット信号が送信された従属セルを新たな基準セルに変更し、自局が形成する基準セルを従属セルに変更することを特徴とする請求項3に記載の移動通信システム。
    The base station further comprises signal transmission means for transmitting a pilot signal to the mobile station via the cell of the own station,
    The mobile station compares the received power of pilot signals received from the base station forming the reference cell and the base station forming the dependent cell, and the received power of the pilot signal received via the dependent cell is Criteria indicating that if the highest received power is higher than the received power of the pilot signal received via the reference cell, the subordinate cell to which the pilot signal indicating the highest received power is transmitted should be changed to the reference cell. Further comprising reference change request transmitting means for transmitting a change request to a base station forming the reference cell;
    When the reference change request is received from the mobile station, the reference change unit changes a dependent cell to which a pilot signal indicating the highest received power is transmitted to a new reference cell based on the reference change request. 4. The mobile communication system according to claim 3, wherein a reference cell formed by the own station is changed to a subordinate cell.
  10.  前記基地局は、自局のセルを介して前記移動局に対しパイロット信号を送信する信号送信手段をさらに備え、
     前記移動局は、各前記基地局から取得した受信電力情報が表す受信電力により推定される前記移動局の位置に基づき、前記グループセルに含まれる従属セルを変更すべき旨の従属変更要求を前記基準セルを形成する基地局へ送信する従属変更要求送信手段をさらに備え、
     前記従属変更手段は、前記移動局から前記従属変更要求を受信した場合に、該従属変更要求に基づき、前記グループセルに含まれる従属セルを変更することを特徴とする請求項5に記載の移動通信システム。
    The base station further comprises signal transmission means for transmitting a pilot signal to the mobile station via the cell of the own station,
    The mobile station sends a subordinate change request to change subordinate cells included in the group cell based on the position of the mobile station estimated by the received power represented by the received power information acquired from each base station. Dependent change request transmitting means for transmitting to the base station forming the reference cell,
    The mobile according to claim 5, wherein when the dependent change request is received from the mobile station, the dependent changing means changes the dependent cell included in the group cell based on the dependent change request. Communications system.
  11.  前記従属セル決定手段は、前記移動局から前記グループセル構築要求を受信した場合に、他の前記基地局から受信した該基地局が形成するセルの位置情報に基づき、自局が形成するセルを基準セルとするグループセルに含まれる従属セルを決定することを特徴とする請求項1に記載の移動通信システム。 When the subordinate cell determining means receives the group cell construction request from the mobile station, the subordinate cell determining means determines a cell formed by the own station based on the position information of the cell formed by the base station received from the other base station. The mobile communication system according to claim 1, wherein a subordinate cell included in a group cell as a reference cell is determined.
  12.  前記従属変更手段は、各前記基地局から受信した前記受信電力情報の履歴に基づき前記移動局の移動状態を判定し、判定した前記移動局の移動状態に応じて、前記グループセルに含まれる従属セルの数を変更することを特徴とする請求項5に記載の移動通信システム。 The dependency changing means determines a movement state of the mobile station based on a history of the received power information received from each base station, and includes a dependency included in the group cell according to the determined movement state of the mobile station. The mobile communication system according to claim 5, wherein the number of cells is changed.
  13.  前記共通リソース決定手段は、前記グループセルを構築する基準セルおよび従属セルごとに異なる送信電力を決定することを特徴とする請求項1に記載の移動通信システム。 The mobile communication system according to claim 1, wherein the common resource determining means determines different transmission power for each reference cell and subordinate cell constituting the group cell.
  14.  前記基地局は、自局のセルを介して前記移動局に対しパイロット信号を送信する信号送信手段をさらに備え、
     前記移動局は、前記基準セルを形成する基地局および前記従属セルを形成する基地局からパイロット信号を受信した場合、該パイロットの受信電力を表す受信電力情報を、前記基準セルを形成する基地局へ送信する受信電力情報送信手段をさらに備え、
     前記共通リソース決定手段は、前記移動局から受信した受信電力情報に基づき、前記基準セルおよび従属セルごと決定した送信電力を変更することを特徴とする請求項13に記載の移動通信システム。
    The base station further comprises signal transmission means for transmitting a pilot signal to the mobile station via the cell of the own station,
    When the mobile station receives a pilot signal from a base station that forms the reference cell and a base station that forms the subordinate cell, the mobile station uses received power information indicating the received power of the pilot as a base station that forms the reference cell. Further comprising reception power information transmission means for transmitting to
    The mobile communication system according to claim 13, wherein the common resource determination unit changes transmission power determined for each of the reference cell and the subordinate cell based on reception power information received from the mobile station.
  15.  前記共通リソース決定手段は、前記グループセルを構築する従属セルのうち、所定の従属セルに対して電力制御対象通知を送信し、
     前記下位レイヤ処理手段は、前記基準セルを形成する基地局から前記電力制御対象通知を受信した場合にのみ、前記共通リソース決定手段により決定した無線リソース、或いは、前記基準セルを形成する基地局から受信した無線リソース情報に基づき確保した無線リソースを用いて、前記移動局へのデータを送信することを特徴とする請求項1に記載の移動通信システム。
    The common resource determining means transmits a power control target notification to a predetermined subordinate cell among subordinate cells constituting the group cell,
    The lower layer processing means receives the power control target notification from the base station forming the reference cell only from the radio resource determined by the common resource determination means or from the base station forming the reference cell. The mobile communication system according to claim 1, wherein data is transmitted to the mobile station using a radio resource secured based on the received radio resource information.
  16.  前記移動局からパイロット信号を受信した場合、該パイロット信号の受信電力を表す受信電力情報を、前記基準セルを形成する基地局へ送信する受信電力情報送信手段をさらに備え、
     前記共通リソース決定手段は、各前記基地局から取得した受信電力情報に基づき、前記移動局が前記基地局へ信号を送信する場合における送信電力を変更することを特徴とする請求項1に記載の移動通信システム。
    When receiving a pilot signal from the mobile station, the mobile station further includes reception power information transmitting means for transmitting reception power information indicating reception power of the pilot signal to a base station forming the reference cell,
    The said common resource determination means changes the transmission power in case the said mobile station transmits a signal to the said base station based on the received power information acquired from each said base station, The Claim 1 characterized by the above-mentioned. Mobile communication system.
  17.  移動局からのハンドオーバ要求を受信した場合に、該移動局との通信のための無線リソースを確保して該移動局との通信が可能な状態とするハンドオーバ処理を実行する基地局であって、
     複数の前記基地局がそれぞれ形成するセルを仮想的に統合したセルであるグループセルの構築を要求するグループセル構築要求を前記移動局から受信した場合に、自局が形成するセルを基準セルとするグループセルに含まれる従属セルを決定する従属セル決定手段と、
     前記移動局との通信のための無線リソースであって、前記従属セル決定手段により決定された従属セルを形成する基地局および自局に共通して割当てるための無線リソースを決定する共通リソース決定手段と、
     前記共通リソース決定手段により決定した無線リソースに関する情報を前記従属セルを形成する基地局に対して送信する無線リソース情報送信手段と、
     前記共通リソース決定手段により決定した無線リソース、或いは、前記基準セルを形成する基地局から受信した無線リソース情報に基づく無線リソースを確保する下位レイヤ処理手段と
     を備えたことを特徴とする基地局。
    When receiving a handover request from a mobile station, a base station that executes a handover process for securing radio resources for communication with the mobile station and enabling communication with the mobile station,
    When receiving from the mobile station a group cell construction request for requesting construction of a group cell, which is a virtually integrated cell formed by a plurality of base stations, the cell formed by the mobile station is defined as a reference cell. Subordinate cell determining means for determining subordinate cells included in the group cell,
    Common resource determining means for determining radio resources for communication with the mobile station, the wireless resources being commonly allocated to the base station forming the dependent cell determined by the dependent cell determining means and the own station When,
    Radio resource information transmitting means for transmitting information on radio resources determined by the common resource determining means to a base station forming the dependent cell;
    A base station comprising: a radio resource determined by the common resource determining means, or a lower layer processing means for securing radio resources based on radio resource information received from a base station forming the reference cell.
  18.  前記共通リソース決定手段は、前記従属セルを形成する基地局から受信した該基地局の空き無線リソースに関する情報であるリソース割当状況情報と、自局のリソース割当状況情報とに基づき、前記従属セルを形成する基地局および自局に共通する空き無線リソースを、前記従属セルを形成する基地局および自局に共通して割当てるための無線リソースとして決定することを特徴とする請求項17に記載の基地局。 The common resource determining means determines the dependent cell based on resource allocation status information received from the base station forming the dependent cell and information on the available radio resources of the base station and the resource allocation status information of the own station. The base station according to claim 17, wherein an empty radio resource common to the base station to be formed and the own station is determined as a radio resource to be commonly allocated to the base station and the own station to form the subordinate cell. Bureau.
  19.  ユーザからの入力操作を受け付ける入力手段と、
     前記入力手段により前記ユーザから受け付けた入力操作に基づき、複数の基地局がそれぞれ形成するセルを仮想的に統合したセルであるグループセルの構築を要求するグループセル構築要求を、在圏する前記基地局へ送信するグループセル構築要求送信手段と
     を備えたことを特徴とする移動局。
    An input means for accepting an input operation from a user;
    Based on the input operation received from the user by the input means, the base station that is in the area of a group cell construction request for requesting construction of a group cell that is a virtual integration of cells formed by a plurality of base stations, respectively A mobile station comprising group cell construction request transmission means for transmitting to the station.
  20.  移動局と、前記移動局からのハンドオーバ要求を受信した場合に、該移動局との通信のための無線リソースを確保して該移動局との通信が可能な状態とするハンドオーバ処理を実行する複数の基地局とを備える移動通信システムにおける無線通信方法であって、
     前記移動局が、
     複数の前記基地局がそれぞれ形成するセルを仮想的に統合したセルであるグループセルの構築を要求するグループセル構築要求を、在圏する前記基地局へ送信するグループセル構築要求送信ステップと、
     前記グループセル構築要求を受信した前記基地局が、
     自局が形成するセルを基準セルとするグループセルに含まれる従属セルを決定する従属セル決定ステップと、
     前記グループセル構築要求を受信した前記基地局が、
     前記移動局との通信のための無線リソースであって、前記従属セル決定ステップにおいて決定した従属セルを形成する基地局および自局に共通して割当てるための無線リソースを決定する共通リソース決定ステップと、
     前記グループセル構築要求を受信した前記基地局が、
     前記共通リソース決定ステップにおいて決定した無線リソースに関する情報を前記従属セルを形成する基地局に対して送信する無線リソース情報送信ステップと、
     前記グループセル構築要求を受信した前記基地局および前記従属セルを形成する基地局が、
     前記共通リソース決定ステップにおいて決定した無線リソース、或いは、前記基準セルを形成する基地局から受信した無線リソース情報に基づく無線リソースを確保する下位レイヤ処理ステップと
     を含んだことを特徴とする無線通信方法。
    A plurality of handover processes for securing radio resources for communication with a mobile station and enabling communication with the mobile station when a mobile station and a handover request from the mobile station are received A wireless communication method in a mobile communication system comprising a base station,
    The mobile station is
    A group cell construction request transmission step for transmitting a group cell construction request for requesting construction of a group cell, which is a cell obtained by virtually integrating cells formed by a plurality of base stations, to the base station in the area;
    The base station that has received the group cell construction request,
    A subordinate cell determining step of determining subordinate cells included in the group cell with the cell formed by the own station as a reference cell;
    The base station that has received the group cell construction request,
    A radio resource for communication with the mobile station, a common resource determining step for determining a radio resource to be commonly allocated to a base station and a local station forming the subordinate cell determined in the subordinate cell determining step; ,
    The base station that has received the group cell construction request,
    A radio resource information transmitting step for transmitting information on the radio resource determined in the common resource determining step to a base station forming the subordinate cell;
    The base station that has received the group cell construction request and the base station that forms the subordinate cell,
    A radio communication method, comprising: a radio resource determined in the common resource determination step, or a lower layer processing step for securing radio resources based on radio resource information received from a base station forming the reference cell. .
PCT/JP2009/059802 2009-05-28 2009-05-28 Mobile communication system, base station, mobile station, and wireless communication method WO2010137155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059802 WO2010137155A1 (en) 2009-05-28 2009-05-28 Mobile communication system, base station, mobile station, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059802 WO2010137155A1 (en) 2009-05-28 2009-05-28 Mobile communication system, base station, mobile station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2010137155A1 true WO2010137155A1 (en) 2010-12-02

Family

ID=43222296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059802 WO2010137155A1 (en) 2009-05-28 2009-05-28 Mobile communication system, base station, mobile station, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2010137155A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169698A (en) * 2011-02-09 2012-09-06 Mitsubishi Electric Corp Radio communication system
WO2012131857A1 (en) * 2011-03-25 2012-10-04 富士通株式会社 Base station, communication system, and communication method
EP2932626A4 (en) * 2012-12-14 2016-11-02 Samsung Electronics Co Ltd Apparatus and method for managing mobility in a wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327048A (en) * 1993-05-18 1994-11-25 Oki Electric Ind Co Ltd Mobile communication system
WO2006073084A1 (en) * 2005-01-07 2006-07-13 Matsushita Electric Industrial Co., Ltd. Communication system, resource management device, resource management method, communication management device, and communication management method
JP2009049974A (en) * 2007-08-16 2009-03-05 Korea Electronics Telecommun Network resource reservation method based on terminal moving speed, network resource reservation device, network resource reservation system, and mobile terminal used in the system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327048A (en) * 1993-05-18 1994-11-25 Oki Electric Ind Co Ltd Mobile communication system
WO2006073084A1 (en) * 2005-01-07 2006-07-13 Matsushita Electric Industrial Co., Ltd. Communication system, resource management device, resource management method, communication management device, and communication management method
JP2009049974A (en) * 2007-08-16 2009-03-05 Korea Electronics Telecommun Network resource reservation method based on terminal moving speed, network resource reservation device, network resource reservation system, and mobile terminal used in the system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169698A (en) * 2011-02-09 2012-09-06 Mitsubishi Electric Corp Radio communication system
WO2012131857A1 (en) * 2011-03-25 2012-10-04 富士通株式会社 Base station, communication system, and communication method
JP5692360B2 (en) * 2011-03-25 2015-04-01 富士通株式会社 Base station, radio communication system, communication system, and communication method
US9504094B2 (en) 2011-03-25 2016-11-22 Fujitsu Limited Base station, communication system, and communication method
EP2932626A4 (en) * 2012-12-14 2016-11-02 Samsung Electronics Co Ltd Apparatus and method for managing mobility in a wireless communication system
US10097988B2 (en) 2012-12-14 2018-10-09 Samsung Electronics Co., Ltd. Apparatus and method for managing mobility in a wireless communication system

Similar Documents

Publication Publication Date Title
JP7465348B2 (en) Cell management method, device, equipment, and storage medium
CN114175836B (en) System and method for side-link resource allocation in a user equipment group
KR102486810B1 (en) Method for managing measurement report/event in ue autonomous handover and signaling network
US10306521B2 (en) Method and apparatus for performing handover of user equipment in wireless communication system supporting dual connectivity
JP7344258B2 (en) Measurement signaling of secondary node changes in next generation wireless networks
EP2978258B1 (en) Seamless replacement of a first drone base station with a second drone base station
JP4988937B2 (en) Communication method in wireless network
EP2838311B1 (en) Method and Device of Communicating in Wireless Network
KR101805288B1 (en) Partial offloading to pico bs
JP2017507581A (en) Method, base station, and dual connectivity system for servicing user equipment handover
EP2744260B1 (en) Data transmission method and device
EP3628133A1 (en) UE GROUPS, UE GROUP MANAGER UEs AND UE GROUP MEMBER UES
WO2016106740A1 (en) Wireless communication method, apparatus and system
CN109819491B (en) Handover control method, base station, and storage medium
CN105765882A (en) Method for obtaining uplink synchronization and configuring uplink connection
CN106941700B (en) Data transmission method and device, base station and UE
EP2806689B1 (en) A telecommunications method, telecommunications system, primary node, secondary node and use equipment
KR20200035062A (en) Communication method in wireless communication network and system therefor
KR20200088427A (en) Method and apparatus for switching pscell
JP2018500802A (en) Change of secondary base station bearer
WO2014000684A1 (en) Method, system and device for switching
JP2015530839A (en) Method for handover management in heterogeneous networks
WO2010137155A1 (en) Mobile communication system, base station, mobile station, and wireless communication method
CN108810942B (en) Communication method, device and system
US20150098319A1 (en) Method for reducing overhead of control signal during connection of plural lte base stations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP