WO2010134737A2 - Apparatus and method for multilink adaptation - Google Patents

Apparatus and method for multilink adaptation Download PDF

Info

Publication number
WO2010134737A2
WO2010134737A2 PCT/KR2010/003120 KR2010003120W WO2010134737A2 WO 2010134737 A2 WO2010134737 A2 WO 2010134737A2 KR 2010003120 W KR2010003120 W KR 2010003120W WO 2010134737 A2 WO2010134737 A2 WO 2010134737A2
Authority
WO
WIPO (PCT)
Prior art keywords
link
primary
change information
frame
transmitting
Prior art date
Application number
PCT/KR2010/003120
Other languages
French (fr)
Korean (ko)
Other versions
WO2010134737A3 (en
Inventor
석용호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090101294A external-priority patent/KR20100126159A/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2010134737A2 publication Critical patent/WO2010134737A2/en
Publication of WO2010134737A3 publication Critical patent/WO2010134737A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to a wireless local area network (WLAN), and more particularly, to a technique for performing a link adaptation procedure and transmitting data in a wireless LAN system.
  • WLAN wireless local area network
  • Wireless LAN is based on radio frequency technology, using a portable terminal such as a personal digital assistant (PDA), a laptop computer, a portable multimedia player (PMP), etc. It is a technology that allows wireless access to the Internet in a specific service area.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • IEEE 802.11 improves Quality for Service (QoS), access point protocol compatibility, security enhancement, radio resource measurement, and wireless access vehicular environment. Standards of various technologies such as, fast roaming, mesh network, interworking with external network, and wireless network management are being put into practice.
  • IEEE 802.11b supports communication speeds up to 11Mbs while using frequencies in the 2.4GHz band.
  • IEEE 802.11a which was commercialized after IEEE 802.11b, reduces the influence of interference compared to the frequency of the congested 2.4 GHz band by using the frequency of the 5 GHz band instead of the 2.4 GHz band, and maximizes the communication speed by using OFDM technology. Up to 54Mbps.
  • IEEE 802.11a has a shorter communication distance than IEEE 802.11b.
  • IEEE 802.11g like IEEE 802.11b, uses a frequency of 2.4 GHz band to realize a communication speed of up to 54 Mbps and satisfies backward compatibility, thus receiving considerable attention. It is superior to
  • IEEE 802.11n In order to overcome the limitation of communication speed, which has been pointed out as a weak point in WLAN, IEEE 802.11n is a relatively recent technical standard. IEEE 802.11n aims to increase the speed and reliability of networks and to extend the operating range of wireless networks. More specifically, IEEE 802.11n supports High Throughput (HT) with data throughput of up to 540 Mbps and also uses multiple antennas at both the transmitter and receiver to minimize transmission errors and optimize data rates. It is based on Multiple Inputs and Multiple Outputs (MIMO) technology. In addition, the standard not only uses a coding scheme for transmitting multiple duplicate copies to increase data reliability, but may also use orthogonal frequency division multiplex (OFDM) to increase the speed.
  • HT High Throughput
  • MIMO Multiple Inputs and Multiple Outputs
  • OFDM orthogonal frequency division multiplex
  • VHT Very High Throughput
  • WLAN system is one of the recently proposed IEEE 802.11 WLAN system to support the data processing speed of 1Gbps or more.
  • the name of the VHT WLAN system is arbitrary, and feasibility tests are currently being conducted on systems using 4X4 MIMO and 80 MHz or more channel bandwidth to provide throughput of 1 Gbps or more.
  • VHT WLAN two methods using a band of 6 GHz or less and a 60 GHz band are currently being discussed as a method for achieving throughput of 1 Gbps or more.
  • a method of using a channel of 60 GHz band is receiving more attention. This is due to the disadvantage that the available radio resources are limited because the channel of the 6GHz or less band is also used in other wireless communication systems, and this disadvantage can be overcome when the channel of the 60GHz band is used.
  • the 60 GHz band has a disadvantage in that the service coverage is narrower than that of the 6 GHz band or less due to the nature of the high frequency band. Therefore, there is a need to solve a problem of narrow service coverage in an ultra high throughput WLAN system using a 60 GHz band.
  • link adaptation is a technique for adjusting and adapting transmission parameters according to changes in radio channel conditions, and aims to increase transmission speed, system capacity, and frequency efficiency.
  • the link adaptation process is a process for increasing data throughput using the highest possible data rate using a specific modulation and coding scheme at a given link quality.
  • Representative implementation techniques for link adaptation include power control, hybrid automatic repeat request (HARQ), adaptive modulation and coding (AMC), etc.
  • AMC is a predefined modulation and modulation scheme according to the change of channel environment.
  • Coding Selection is a link adaptation technique that determines the most suitable transmission scheme. Modulation and coding format is changed according to the channel environment.
  • One problem to be solved by the present invention is a multi-link adaptation method and apparatus that can not only extend service coverage but also secure data transmission to provide a data transmission service efficiently in a wireless LAN system. To provide.
  • a method for identifying a primary link and a secondary link through a beam training procedure comprising: Transmitting link change information to a receiver during data transmission on either link of the primary link and the secondary link within one transmission opportunity; Receiving an acknowledgment (ACK) for the link change information; And changing a link according to the link change information among the primary link and the secondary link.
  • ACK acknowledgment
  • a method including: finding a primary link and a secondary link through a beam training procedure; Transmitting a multi-link adaptation request message including link change information to a receiver through one of the primary link and the secondary link; Receiving a multilink adaptation response message from the receiver; And changing the link according to the link change information among the primary link and the secondary link.
  • a method of finding a primary link and a secondary link through a beam training procedure comprising the step of transmitting data corresponding to the PLCP header over a link according to the link change information.
  • PLCP physical layer convergence procedure
  • an appropriate link By setting up and using a plurality of links, an appropriate link can be selected and used according to channel conditions.
  • the efficiency of radio resource utilization can be improved. Overhead can be avoided by minimizing the number of transmitted frames.
  • FIG. 1 is a diagram illustrating an example of a WLAN system to which an embodiment of the present invention may be applied.
  • FIG. 2 is a diagram illustrating a beam training procedure.
  • FIG. 3 is a diagram schematically showing a primary link and a secondary link used in an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a beam training process for finding a primary link and a secondary link used in an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a method of performing a multi-link adaptation method according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a PPDU including a PLCP header transmitted in the embodiment shown in FIG. 5.
  • FIG. 7 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a QoS Control field transmitted in the embodiment shown in FIG. 7.
  • FIG. 9 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a multi-link adaptation request message transmitted in the embodiment shown in FIG. 9.
  • FIG. 11 is a diagram illustrating a multilink adaptation response message transmitted in the embodiment shown in FIG. 9.
  • FIG. 12 illustrates a wireless communication device for performing a multi-link adaptation procedure according to an embodiment of the present invention.
  • VHT Very High Throughput
  • the present invention may be usefully applied to a multicast procedure in a Very High Throughput (VHT) WLAN system operating in a 60 GHz band, but is not limited thereto.
  • VHT Very High Throughput
  • embodiments of the present invention described below may be equally applicable to a VHT WLAN system operating in a 6 GHz or less band.
  • FIG. 1 is a diagram illustrating an example of a WLAN system to which an embodiment of the present invention may be applied.
  • the WLAN system according to the example shown in FIG. 1 is a VHT (Very High Throughput) WLAN system.
  • VHT Very High Throughput
  • a WLAN system such as a VHT WLAN system includes one or more basic service sets (BSSs).
  • the BSS is a set of stations (STAs) that can successfully synchronize and communicate with each other, and is not a concept indicating a specific area.
  • STAs stations
  • VHT Very High Throughput
  • the VHT BSS can also be classified into an infrastructure BSS and an independent BSS.
  • the infrastructure BSS is illustrated in FIG. 1.
  • Infrastructure BSS (BSS1, BSS2) is an access point (AP 1 (STA 2), AP that is a station that provides one or more non-AP STAs (STA 1, STA 3, STA 4), Distribution Service) 2 (STA 5)), and a Distribution System (DS) that connects multiple access points (AP 1, AP 2).
  • the AP STA manages the Non-AP STAs of the BSS.
  • Independent BSSs are BSSs operating in ad-hoc mode. Since the IBSS does not include the AP VHT STA, there is no centralized management entity. That is, in the IBSS, Non-AP STAs are managed in a distributed manner. In the IBSS, all STAs may be configured as mobile stations, and access to the DS is not allowed, thereby forming a self-contained network.
  • a STA is any functional medium that includes a medium access control (MAC) compliant with the IEEE 802.11 standard and a physical layer interface to a wireless medium.
  • MAC medium access control
  • an AP and a non-AP station Non-AP Station
  • a STA that supports ultra-high speed data processing of 1 GHz or more in a multi-channel environment as described below is called a VHT STA.
  • all of the STAs included in the BSS may be VHT STAs, or both VHT STAs and legacy STAs (eg, HT STAs according to IEEE 802.11n) may coexist.
  • the STA for wireless communication includes a processor and a transceiver, and includes a user interface and a display means.
  • the processor is a functional unit designed to generate a frame to be transmitted through a wireless network or to process a frame received through the wireless network, and performs various functions for controlling an STA.
  • the transceiver is a unit that is functionally connected to the processor and is designed to transmit and receive frames over a wireless network for a station.
  • non-AP STAs portable terminals operated by a user
  • a non-AP STA is a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, or a mobile subscriber. It may also be called another name such as a mobile subscriber unit.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • a non-AP STA supporting ultra-fast data processing of 1 GHz or more in a multi-channel environment as described below is referred to as a non-AP VHT STA or simply a VHT STA.
  • the APs AP1 and AP2 are functional entities that provide access to the DS via a wireless medium for an associated station (STA) associated therewith.
  • STA station
  • communication between non-AP STAs is performed via an AP.
  • the AP may be called a centralized controller, a base station (BS), a node-B, a base transceiver system (BTS), or a site controller in addition to the access point.
  • BS base station
  • BTS base transceiver system
  • a site controller in addition to the access point.
  • an AP that supports ultra-high speed data processing of 1 GHz or more in a multi-channel environment as described below is called a VHT AP.
  • the plurality of infrastructure BSSs may be interconnected through a distribution system (DS).
  • DS distribution system
  • a plurality of BSSs connected through a DS is called an extended service set (ESS).
  • STAs included in the ESS may communicate with each other, and a non-AP STA may move from one BSS to another BSS while seamlessly communicating within the same ESS.
  • the DS is a mechanism for one AP to communicate with another AP, which means that an AP transmits a frame for STAs coupled to a BSS managed by the AP or when one STA moves to another BSS.
  • Frames can be delivered with external networks, such as wired networks.
  • This DS does not necessarily need to be a network, and there is no limitation on its form as long as it can provide certain distribution services defined in IEEE 802.11.
  • the DS may be a wireless network such as a mesh network or a physical structure that connects APs to each other.
  • a directional antenna may be used to increase service coverage.
  • the problem is that the use of a directional antenna can increase service coverage, while a hidden node can occur as the radio waves are concentrated in a specific direction. This problem becomes more serious because the service coverage is narrow when the VHT WLAN system operates in this 60 GHz band, but the same problem may occur when operating in a band below 6 GHz.
  • phased array antenna A phased array radar can electronically adjust the phase instead of a conventional mechanical antenna that rotates and tilts the antenna to adjust the radar beam formation and direction of propagation. It is a new concept radar system that detects and tracks objects by combining multiple antenna arrays to adjust the propagation beam without a mechanical drive for 360 degrees horizontally and 90 degrees high angle. It has several components that are electrically controllable to point in the desired direction at a particular phase or possible amplitude.
  • a terminal supporting a single antenna corresponds to a non-steerable STA
  • a terminal supporting a sector antenna and a phased array antenna corresponds to a steerable STA. Only a Steerable STA may perform directed transmission.
  • a central point such as an AP is used to solve a hidden node problem.
  • a directed RTS frame and an omni-directed CTS frame may be used. That is, the steerable STA transmits a directed RTS frame to the AP through beam-forming. In response, the AP responds with an omni-directed CTS frame. All stations belonging to the BSS listen to the CTS frame, and based on this, they may set their own Network Allocation Vector (NAV) value to solve the problem of hidden nodes. For reference, this method is called 'CP-initiated channel access mechanism'.
  • NAV Network Allocation Vector
  • FIG. 2 is a diagram illustrating a beam training procedure.
  • a directional antenna refers to the transmission of a signal only in a specific direction using beam forming technology.
  • the signal can be transmitted successfully over a longer distance.
  • a beamforming process using a beam training sequence is first performed between devices to communicate with each other using a directional antenna.
  • the beam training procedure described with reference to FIG. 2 is largely completed through a transmission sector sweep (Transmission (TX) Sector Sweep) step (S210) and a link refinement iteration step (S220).
  • TX Transmission
  • S210 Transmission
  • S220 link refinement iteration step
  • the transmitter performs a sector sweep
  • the receiver operates in quasi-omni RX mode.
  • the receiver may mean a receiving STA, which is a station for receiving a data frame
  • the transmitter may mean a transmitting STA, a station for transmitting a data frame.
  • the receiving station and the transmitting station, or the receiver and the transmitter are relative concepts and can be changed at any time according to the transmission direction of the data frame. This also applies to the following.
  • Sector sweep refers to checking TX diversity gain by transmitting a management frame while switching a beam direction or a beam sector. . At this point, the receiver switches close to the omni-directional mode to assist in the transmitter's transmit diversity gain check.
  • the transmission station checks the RX diversity gain in the link refinement iteration step S220.
  • the receiver receives a management frame while switching the beam direction or the beam sector with respect to the optimal transmission beam direction (TX beamdirection) set in the transmission sector sweep process. Through this process, the receiver can set the optimal RX beam-direction.
  • the receiver then causes the transmitter to perform transmission training again. While repeating the above procedure, the receiver and the transmitter may transmit the TX beam-direction and the receive beam direction (TX diversity gain) to maximize the TX diversity gain and RX diversity gain.
  • TX beamdirection can be set.
  • the beamforming process is performed using the beam training sequence for the entire direction without any prior information on the position of the moving station, it can be expected that the overhead due to the beamforming will be significantly increased.
  • the overhead of this beamforming process is further increased when the beam-width is narrowed to further extend service coverage.
  • FIG. 3 is a simplified diagram of a primary link 310 and a secondary link 320 used in an embodiment of the invention.
  • one or more links may exist between stations while undergoing a beamforming process.
  • STA 1 station 1
  • STA 2 station 2
  • the same link refinement process is repeated for several beamforming vectors in order to find a better beamforming vector.
  • One beamforming vector is formed for each link refinement process.
  • Each beamforming vector may be regarded as one link having different channel characteristics.
  • the primary link 310 and the secondary link 320 Use it.
  • the link adaptation process for these links may be referred to as a multi-link adaptation procedure.
  • the WLAN system must be able to support two or more links.
  • the two or more links do not mean only a link formed of two or more beamforming vectors, and each station is regarded as one link when transmitting and receiving by using an omnidirectional antenna and when transmitting and receiving by using a directional antenna.
  • This can be regarded as 2 links.
  • transmission and reception using the omnidirectional antenna may be used as the primary link, and transmission and reception using the directional antenna may be used as the secondary link, and vice versa. That is, switching between transmission and reception using an omnidirectional antenna and transmission and reception using a directional antenna may be regarded as switching between two links, which may be an example of a multi-link adaptation method proposed by the present invention, which will be described later.
  • a lower channel correlation between the primary link 310 and the secondary link 320 may be better. If the channel correlation between the two links is high, it is because diversity gain is reduced in performing replacement or change between the two links.
  • the beam training procedure for each link will be separately performed. That is, the beam training procedure may be additionally performed except for the beamforming vector used for the primary link 310, in order to find the secondary link 320.
  • FIG. 4 is a diagram illustrating a beam training process for finding a primary link and a secondary link used in an embodiment of the present invention.
  • the transmission sector sweep (S410) step is to check the transmission diversity gain (TX diversity gain), which is the same as the transmission sector sweep (S210) step of FIG.
  • the transmitter performs a sector sweep, and the receiver operates in quasi-omni RX mode, where the receiver is a receiving STA, which is a station that receives data frames, and the transmitter is a data receiver.
  • a transmitting station transmitting STA that is a station for transmitting a frame.
  • the receiving station and the transmitting station, or the receiver and the transmitter are relative concepts, and can be changed at any time according to the transmission direction of the data frame.
  • two link refinement repeat steps are performed.
  • One is a link refinement repeating step S420 for finding the main link.
  • a link refinement repeating step for finding the secondary link is performed (S430).
  • the transmit beam direction (TX beam-direction) and the receive beam direction (RX beam-direction) used for the primary link are excluded from the selectable beam direction.
  • TX beam-direction transmit beam direction
  • RX beam-direction receive beam direction
  • S410 two or more optimal beamforming vectors having low correlation are selected to perform link refinement iteration process for each beamforming vector. You may. In this case, the link refinement repeating process for one beamforming vector corresponds to S420, and the link refinement repeating process for another beamforming vector corresponds to S430.
  • the TX beam-direction or beamforming vector having a low correlation corresponds to a case where an AOD (Angle of Departure) is greater than or equal to a predetermined reference value between two transmission beam directions or beamforming vectors.
  • the reference value for evaluating whether the correlation is large or small according to the AOD value may be preset or determined by the AP or the corresponding station in consideration of a communication environment.
  • FIG. 5 is a diagram illustrating a method of performing a multi-link adaptation method according to an embodiment of the present invention.
  • the embodiment described with reference to FIG. 5 uses a method of transmitting data separately from a header while using multilink. That is, the transmitter first transmits a physical layer convergence procedure (PLCP) header to the receiver through the primary link (S510). If the state of the primary link is not good, the data is transmitted through the secondary link without notifying a separate message or negotiating (S520). In this case, before transmitting data through the secondary link, a preamble may be transmitted to the secondary link for channel estimation. According to this embodiment, even if the primary link is unstable or of poor quality, data can be transmitted reliably, saving time and preventing overhead.
  • PLCP physical layer convergence procedure
  • the PLCP header contains information indicating that data is to be separated and transmitted through another link (sub link). Accordingly, the receiver confirms that data is transmitted through another link, and changes the beamforming vector so that the receiver can normally receive data transmitted through the secondary link.
  • Information included in the PLCP header will be described with reference to FIG. 6.
  • FIG. 6 is a diagram illustrating a PPDU including a PLCP header transmitted in the embodiment shown in FIG. 5.
  • the PLCP protocol data unit includes a PLCP preamble 610, a PLCP header 620, and an MPDU 630.
  • the PLCP header 620 along with other fields, includes a multi-link adaptation field. 680 is included.
  • the embodiment described with reference to FIG. 5 corresponds to a per-frame multi-link adaptation procedure.
  • a transmitter transmits a frame to a receiver, it selects and switches a primary link and a secondary link on a frame-by-frame basis.
  • the PLCP preamble 610 and the PLCP header 620 of the frame are transmitted over the primary link.
  • the data MPDU 630 is separated and transmitted, and is referred to as a data field 630 to distinguish the data from a PLCP preamble 610 or a PLCP header 620.
  • the PLCP header includes information on a link to which a data field (i.e., PHY Protocol Data Unit) 630 is transmitted, or link change information.
  • the receiver acquires information on which link the data field 630 is to be transmitted or link change information from the PLCP header 620, and according to the information, the data field 630 is transmitted to the secondary link,
  • the receiver receiving the PLCP header 620 changes the beamforming vector to the secondary link.
  • the information on the link to which the data field 630 is transmitted is included in the multi-link adaptation field 625 of the PLCP header 620.
  • the data field 630 transmitted subsequent to the PLCP header 620 is transmitted over the primary link.
  • the field value of the multi-link adaptation field 625 is 1, the data field is transmitted using the secondary link.
  • the PLCP header 620 includes a scrambler initialization field, an MCS field, a length field, a GI length field, an additional PPDU field, and a packet type ( Packet type) field, a training length field, a reserved field, and an HCS field may be included.
  • a scrambler initialization field an MCS field
  • a length field a GI length field
  • an additional PPDU field an additional PPDU field
  • a packet type ( Packet type) field Packet type
  • a training length field a reserved field
  • HCS field an HCS field
  • FIG. 7 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention.
  • the multi-link adaptation method described with reference to FIG. 7 corresponds to a per-txop multi-link adaptation procedure in units of transmission opportunities.
  • the multi-link adaptation procedure refers to a method in which a transmitter acquires a transmission opportunity (TXOP) to transmit a plurality of frames to a receiver, and selects and modifies and uses a primary link and a secondary link in units of TXOP.
  • TXOP transmission opportunity
  • the transmitter and receiver When the transmitter transmits a plurality of frames to the receiver, the transmitter and receiver first exchange a request to send (RTS) frame and a clear to send (CTS) frame with each other. At this time, the transmitter transmits the RTS frame to the receiver through the primary link (S710), and the receiver also responds by transmitting the CTS frame to the transmitter through the primary link (S720).
  • the RTS signal transmitted by sending the RTS frame is a signal transmitted to know whether the area is clean.
  • the receiver receives the RTS signal
  • the response is transmitted by transmitting a clear to send (CTS) signal to the transmitter.
  • CTS clear to send
  • the CTS signal is included in the CTS frame.
  • the transmitter When the transmitter normally receives the CTS frame from the receiver through the primary link, the transmitter transmits data to the primary link (S730). Data may be transmitted over a plurality of frames. However, information for determining which link to transmit data may be included in an RTS frame and / or a CTS frame. For example, if the transmitter wants to transmit data frames on the sublink, the receiver receives the RTS frame and responds with the CTS frame, changing the beamforming vector to match the sublink.
  • the QoS Data frame and QoS null frame can be used.
  • a transmitter exemplifies a case of sending a QoS null frame to a receiver.
  • the sender sends a QoS null frame to the receiver, thereby linking from the primary link to the secondary link or from the secondary link to the primary link through the multilink adaptation field of the QoS control field of the QoS null frame. It may be informed that is switched (S740).
  • a QoS null frame is literally an empty frame with no actual data, and data is transmitted following the QoS null frame.
  • the transmitter transmits a QoS Data frame to the receiver.
  • the receiver receives a QoS null frame including information on the link change, the receiver transmits an ACK (acknowledgment response) thereto, and the link change is successfully performed (S750). Thereafter, the transmitter transmits data to the receiver through the secondary link (S760).
  • ACK acknowledgeledgment response
  • FIG. 8 is a diagram illustrating a QoS Control field transmitted in the embodiment shown in FIG. 7.
  • the QoS control field may be included in a QoS data frame or a QoS null frame, an RTS frame, a CTS frame, etc. according to the 802.11 MAC protocol and determines a link to be used during TXOP.
  • QoS control fields include a traffic identifier (TID) field 810, a multi-link adaptation field 820, an acknowledgment (ACK) policy field (830), a reserved field (840), and the like. Other fields may be further included according to which frame the QoS control field is included, and the contents of the QoS control field may be slightly different.
  • the QoS control field includes a multi-link adaptation field in common in which frame. This is because the multilink adaptation field includes content related to a multilink adaptation procedure according to an embodiment of the present invention.
  • the multi-link adaptation field carries information on a link to be used in the corresponding TXOP in which the multi-link adaptation field is transmitted or information on link selection and change. For example, if the field value of the multi-link adaptation field 820 is zero, the transmitter causes subsequent data frames to be transmitted using the primary link. On the other hand, when the field value of the multi-link adaptation field 820 is 1, the transmitter may be configured to transmit the data frame using the sub-link.
  • the ACK policy field 830 of the QoS control field should always use a normal ACK policy. If a non-ACK policy is used, the receiver does not receive confirmation such as ACK for transmission of the QoS control field from the receiver and cannot change the link.
  • Per-connection multi-link adaptation is a multi-link adaptation procedure that can continuously change the primary and secondary links established between the transmitter and the receiver as long as the connection between the transmitter and the receiver is maintained. it means.
  • the transmitter transmits a multi-link adaptation request message to the receiver (S910).
  • the receiver confirms the link change by transmitting a multi-link adaptation response message in response to the transmitter (S920). If a link change is made between the primary and secondary links through a multilink adaptation request message and a multilink adaptation response message, the connection remains valid while the connection between the transmitter and the receiver is continued and no other link change is performed again. Become.
  • the transmitter transmits the RTS frame through the secondary link as determined through the multi-link adaptation request message and the multi-link adaptation response message (S930), and the receiver also transmits the CTS frame to the transmitter through the secondary link (S940).
  • the transmitter may transmit data to the receiver through the secondary link (S950).
  • FIG. 10 is a diagram illustrating a multi-link adaptation request message transmitted in the embodiment shown in FIG. 9.
  • FIG. 11 is a diagram illustrating a multilink adaptation response message transmitted in the embodiment shown in FIG. 9.
  • the multi-link adaptation request message may use a multi-link switch request management frame shown in FIG. 10.
  • the multi-link adaptation response message may use a multi-link switch response management frame shown in FIG. 11. That is, when the transmitter transmits the multi link change request management frame to the receiver, the receiver determines whether to accept the link change request of the transmitter and transmits the multi link change response management frame.
  • the multi-link change request management frame illustrated in FIG. 10 includes a category field 1010, an action field 1020, a destination MAC address field 1030, and a source MAC address.
  • Field 1040 and multi-link adaptation field 1050.
  • the multi-link change request management frame illustrated in FIG. 11 includes a category field 1110, an action field 1120, a destination MAC address field 1130, and a source MAC address.
  • the category fields 1010 and 1110 and the action fields 1020 and 1120 of the multi-link change request management frame and the multi-link change response management frame indicate categories and operation contents of the corresponding frames.
  • the destination address fields 1030 and 1130 of the multi-link change request management frame and the multi-link change response management frame indicate a MAC address of a station which is to receive a corresponding frame, or a MAC address of a receiver.
  • the source address fields 1040 and 1140 indicate the MAC address of the station which is the source for transmitting the corresponding field, or the MAC address of the transmitter.
  • the multi-link adaptation field 1050 of the multi-link change request management frame includes information on whether to request a link change and / or to which link. For example, when transmitting by setting the field value of the multi-link adaptation field 1050 to 0, the transmitter may inform the receiver that it will use the primary link. In addition, when transmitting by setting the field value of the multi-link adaptation field 1050 to 1, the transmitter may inform the receiver that the secondary link will be used.
  • the status code field 1150 of the multi-link change response management frame transmitted by the receiver corresponding to the multi-link change request management frame is a field indicating whether or not to accept a link change.
  • the receiver may indicate whether to accept a link change by setting a field value of the status code field 1150 of the multi-link change response management frame to 0 or 1.
  • the wireless communication device includes a processor 1210, an RF unit 1220, and a memory 1230. That is, the wireless communication device illustrated in FIG. 12 may support a multi-link and perform a beam training procedure for a multi-link, and according to an embodiment of the present invention, a link change between multi-links, a multi-link adaptation procedure, and / or a multi-link adaptation The method can be performed.
  • the wireless communication device includes a processor 1210 and a radio frequency (RF) unit 1220.
  • the memory 1230 is connected to the processor 1210 and stores various information for driving the processor 1210.
  • the processor 1210 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device.
  • the memory 1230 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the wireless communication device may further include a display unit or a user interface, but is not illustrated in the drawings, and detailed description thereof will be omitted.
  • the processor 1210 includes a request for link change in a PLCP header, an RTS frame or a QoS null frame or a QoS data frame, a multilink adaptation request message, and the like.
  • the processor 1210 of the receiver that receives the PLCP header, the RTS frame or the QoS null frame or the QoS data frame, the multi-link adaptation request message, etc. including the link change request or the information on the change link, performs a link change or the like. Confirm the link change in response.
  • these messages or control signals may be transmitted and received through the RF unit 1220 and may be temporarily or permanently stored in the memory 1230.
  • the processor 1210 of the transmitter receiving the response to the link change or transmitting the PLCP header from the receiver changes the link and transmits data through the RF unit 1220 to the changed link.
  • a processor such as a microprocessor, a controller, a microcontroller, an application specific integrated circuit (ASIC), or the like according to software or program code coded to perform the method, or a processor of a terminal shown in FIG. 3. have.
  • ASIC application specific integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are an apparatus and a method for multilink adaptation. A transmitter searches a main link and a sub-link through a beam-training procedure, and transmits link change information to a receiver during data transmission performed through either the main link or the sub-link in a transmission opportunity. The transmitter receives an acknowledgement (ACK) message for the link change information, and changes the main link or the sub-link in accordance with the link change information.

Description

멀티 링크 적응 장치 및 방법Multi-link adaptation device and method
본 발명은 무선랜(Wireless Local Area Network, WLAN)에 관한 것으로, 보다 구체적으로 무선랜 시스템에서 링크 적응 절차를 수행하고 데이터를 전송하는 기술에 관련된다.The present invention relates to a wireless local area network (WLAN), and more particularly, to a technique for performing a link adaptation procedure and transmitting data in a wireless LAN system.
최근 정보통신 기술의 발전과 더불어 다양한 무선 통신 기술이 개발되고 있다. 이 중에서 무선랜(WLAN)은 무선 주파수 기술을 바탕으로 개인 휴대용 정보 단말기(Personal Digital Assistant, PDA), 랩탑 컴퓨터, 휴대형 멀티미디어 플레이어(Portable Multimedia Player, PMP) 등과 같은 휴대형 단말기를 이용하여 가정이나 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 접속할 수 있도록 하는 기술이다.Recently, with the development of information and communication technology, various wireless communication technologies have been developed. Wireless LAN (WLAN) is based on radio frequency technology, using a portable terminal such as a personal digital assistant (PDA), a laptop computer, a portable multimedia player (PMP), etc. It is a technology that allows wireless access to the Internet in a specific service area.
WLAN 기술의 표준화 기구인 IEEE(Institute of Electrical and Electronics Engineers) 802가 1980년 2월에 설립된 이래, 많은 표준화 작업이 수행되고 있다.Since the Institute of Electrical and Electronics Engineers (IEEE) 802, the standardization body for WLAN technology, was established in February 1980, a number of standardization tasks have been performed.
초기의 WLAN 기술은 IEEE 802.11을 통해 2.4GHz 주파수를 사용하여 주파수 호핑, 대역 확산, 적외선 통신 등으로 1~2Mbps의 속도를 지원한 이래, 최근에는 OFDM(Orthogonal Frequency Division Multiplex)을 적용하여 최대 54Mbps의 속도를 지원할 수 있다. 이외에도 IEEE 802.11에서는 QoS(Quality for Service)의 향상, 액세스 포인트(Access Point) 프로토콜 호환, 보안 강화(Security Enhancement), 무선 자원 측정(Radio Resource measurement), 차량 환경을 위한 무선 접속 (Wireless Access Vehicular Environment), 빠른 로밍(Fast Roaming), 메쉬 네트워크(Mesh Network), 외부 네트워크와의 상호작용(Interworking with External Network), 무선 네트워크 관리(Wireless Network Management) 등 다양한 기술의 표준을 실용화 또는 개발 중에 있다. Early WLAN technology used 2.4 GHz frequency through IEEE 802.11 to support speeds of 1 to 2 Mbps for frequency hopping, spread spectrum, infrared communication, etc. Recently, Orthogonal Frequency Division Multiplex (OFDM) has been applied to up to 54 Mbps. Can support speed. In addition, IEEE 802.11 improves Quality for Service (QoS), access point protocol compatibility, security enhancement, radio resource measurement, and wireless access vehicular environment. Standards of various technologies such as, fast roaming, mesh network, interworking with external network, and wireless network management are being put into practice.
IEEE 802.11 중에서 IEEE 802.11b는 2.4GHz 대역의 주파수를 사용하면서 최고 11Mbs의 통신 속도를 지원한다. IEEE 802.11b 이후에 상용화된 IEEE 802.11a는 2.4GHz 대역이 아닌 5GHz 대역의 주파수를 사용함으로써 상당히 혼잡한 2.4GHz 대역의 주파수에 비해 간섭에 대한 영향을 줄였으며, OFDM 기술을 사용하여 통신 속도를 최대 54Mbps까지 향상시켰다. 그러나 IEEE 802.11a는 IEEE 802.11b에 비해 통신 거리가 짧은 단점이 있다. 그리고 IEEE 802.11g는 IEEE 802.11b와 마찬가지로 2.4GHz 대역의 주파수를 사용하여 최대 54Mbps의 통신속도를 구현하며, 후방 호환성(Backward Compatibility)을 만족하고 있어 상당한 주목을 받고 있는데, 통신 거리에 있어서도 IEEE 802.11a보다 우위에 있다.Among IEEE 802.11, IEEE 802.11b supports communication speeds up to 11Mbs while using frequencies in the 2.4GHz band. IEEE 802.11a, which was commercialized after IEEE 802.11b, reduces the influence of interference compared to the frequency of the congested 2.4 GHz band by using the frequency of the 5 GHz band instead of the 2.4 GHz band, and maximizes the communication speed by using OFDM technology. Up to 54Mbps. However, IEEE 802.11a has a shorter communication distance than IEEE 802.11b. And IEEE 802.11g, like IEEE 802.11b, uses a frequency of 2.4 GHz band to realize a communication speed of up to 54 Mbps and satisfies backward compatibility, thus receiving considerable attention. It is superior to
그리고 무선랜에서 취약점으로 지적되어온 통신 속도에 대한 한계를 극복하기 위하여 비교적 최근에 제정된 기술 규격으로써 IEEE 802.11n이 있다. IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 데이터 처리 속도가 최대 540Mbps 이상인 고처리율(High Throughput, HT)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다. 또한, 이 규격은 데이터 신뢰성을 높이기 위해 중복되는 사본을 여러 개 전송하는 코딩 방식을 사용할 뿐만 아니라, 속도를 증가시키기 위해 직교 주파수 분할 다중(Orthogonal Frequency Division Multiplex, OFDM)을 사용할 수도 있다.In order to overcome the limitation of communication speed, which has been pointed out as a weak point in WLAN, IEEE 802.11n is a relatively recent technical standard. IEEE 802.11n aims to increase the speed and reliability of networks and to extend the operating range of wireless networks. More specifically, IEEE 802.11n supports High Throughput (HT) with data throughput of up to 540 Mbps and also uses multiple antennas at both the transmitter and receiver to minimize transmission errors and optimize data rates. It is based on Multiple Inputs and Multiple Outputs (MIMO) technology. In addition, the standard not only uses a coding scheme for transmitting multiple duplicate copies to increase data reliability, but may also use orthogonal frequency division multiplex (OFDM) to increase the speed.
WLAN의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, 최근에는 IEEE 802.11n이 지원하는 데이터 처리 속도보다 더 높은 처리율을 지원하기 위한 새로운 WLAN 시스템에 대한 필요성이 대두되고 있다. 초고처리율(Very High Throughput, VHT) 무선랜 시스템은 1Gbps 이상의 데이터 처리 속도를 지원하기 위하여 최근에 새롭게 제안되고 있는 IEEE 802.11 무선랜 시스템 중의 하나이다. VHT 무선랜 시스템이란 명칭은 임의적인 것이며, 현재는 1Gbps 이상의 쓰루풋을 제공하기 위하여 4X4 MIMO 및 80MHz 또는 그 이상의 채널 밴드폭을 사용하는 시스템에 대한 실현 가능성 테스트(feasibility test)가 진행되고 있다. Background of the Invention As the spread of WLAN and applications diversifying using it have recently emerged, there is a need for a new WLAN system to support higher throughput than the data throughput supported by IEEE 802.11n. Very High Throughput (VHT) WLAN system is one of the recently proposed IEEE 802.11 WLAN system to support the data processing speed of 1Gbps or more. The name of the VHT WLAN system is arbitrary, and feasibility tests are currently being conducted on systems using 4X4 MIMO and 80 MHz or more channel bandwidth to provide throughput of 1 Gbps or more.
VHT 무선랜에서는 현재 1Gbps 이상의 쓰루풋을 달성하기 위한 방법으로 6GHz 이하의 밴드와 60GHz 밴드를 이용하는 두 가지 방법이 논의되고 있는데, 현재 60GHz 밴드의 채널을 이용하는 방안이 더 큰 주목을 받고 있다. 이것은 6GHz 이하 밴드의 채널은 다른 무선통신 시스템에서도 사용 중이기 때문에 사용 가능한 무선 자원이 한정되어 있다는 단점 등에 기인한 것으로서, 60GHz 밴드의 채널을 사용할 경우에는 이러한 단점을 극복할 수 있다. 하지만, 60GHz 밴드는 고주파수의 특성상 6GHz 이하의 밴드에 비하여 서비스 커버리지가 좁은 단점을 갖는다. 따라서 60GHz 밴드를 사용하는 초고처리율 무선랜 시스템에서는 좁은 서비스 커버리지의 문제를 해결하는 방안이 필요하다. In VHT WLAN, two methods using a band of 6 GHz or less and a 60 GHz band are currently being discussed as a method for achieving throughput of 1 Gbps or more. Currently, a method of using a channel of 60 GHz band is receiving more attention. This is due to the disadvantage that the available radio resources are limited because the channel of the 6GHz or less band is also used in other wireless communication systems, and this disadvantage can be overcome when the channel of the 60GHz band is used. However, the 60 GHz band has a disadvantage in that the service coverage is narrower than that of the 6 GHz band or less due to the nature of the high frequency band. Therefore, there is a need to solve a problem of narrow service coverage in an ultra high throughput WLAN system using a 60 GHz band.
한편 링크 적응(Link Adaptation)은 무선 채널 상태의 변화에 따라 전송 파라미터를 조절 적응시키는 기술로써, 전송속도, 시스템 수용 용량 및 주파수 효율을 높이는 데 목적이 있다. 링크 적응 과정은 링크 적응은 주어진 링크 품질에서 특정 변조 및 코딩 방식을 사용하여 가능한 가장 높은 전송률을 사용하여 데이터 수율(throughput)을 증가시키기 위한 과정이다.On the other hand, link adaptation is a technique for adjusting and adapting transmission parameters according to changes in radio channel conditions, and aims to increase transmission speed, system capacity, and frequency efficiency. The link adaptation process is a process for increasing data throughput using the highest possible data rate using a specific modulation and coding scheme at a given link quality.
링크 적응을 위한 대표적인 구현 기술에는 전력제어(power control), HARQ(Hybrid Automatic Repeat Request), AMC(Adaptive Modulation and Coding) 등이 있는데 이 중 AMC는 채널 환경의 변화에 따라 미리 정의된 MCS(Modulation and Coding Selection) 레벨 중 가장 적합한 전송방식을 결정하는 링크 적응 기법이다. 채널 환경에 따라 변조(Modulation) 및 코딩 포멧(Coding Format)을 변화시킨다.Representative implementation techniques for link adaptation include power control, hybrid automatic repeat request (HARQ), adaptive modulation and coding (AMC), etc. Among these, AMC is a predefined modulation and modulation scheme according to the change of channel environment. Coding Selection) is a link adaptation technique that determines the most suitable transmission scheme. Modulation and coding format is changed according to the channel environment.
본 발명이 해결하고자 하는 하나의 과제는, 무선랜 시스템에서 효율적으로 데이터 전송 서비스를 제공할 수 있도록, 서비스 커버리지를 확장할 수 있을 뿐만 아니라 데이터 전송의 신뢰성을 확보할 수 있는 멀티 링크 적응 방법 및 장치를 제공하는 것이다.One problem to be solved by the present invention is a multi-link adaptation method and apparatus that can not only extend service coverage but also secure data transmission to provide a data transmission service efficiently in a wireless LAN system. To provide.
본 발명의 일 양태에 따르면 빔 트레이닝 절차를 통해 주 링크 및 부 링크를 찾는 단계; 하나의 전송 기회 내에서 주 링크와 부 링크 중 어느 하나의 링크를 통해 데이터 전송 도중, 링크 변경 정보를 수신기로 전송하는 단계; 상기 링크 변경 정보에 대한 ACK(Acknowledgement)를 수신하는 단계; 및 상기 주 링크와 상기 부 링크 중, 상기 링크 변경 정보에 따라 링크를 변경하는 단계를 포함하는 멀티 링크 적응 방법이 제공된다.According to an aspect of the present invention, there is provided a method for identifying a primary link and a secondary link through a beam training procedure; Transmitting link change information to a receiver during data transmission on either link of the primary link and the secondary link within one transmission opportunity; Receiving an acknowledgment (ACK) for the link change information; And changing a link according to the link change information among the primary link and the secondary link.
본 발명의 다른 양태에 따르면 빔 트레이닝 절차를 통해 주 링크 및 부 링크를 찾는 단계; 링크 변경 정보가 포함된 멀티 링크 적응 요청 메시지를 상기 주 링크와 부 링크 중 어느 하나의 링크를 통해 수신기로 전송하는 단계; 상기 수신기로부터 멀티 링크 적응 응답 메시지를 수신하는 단계; 및 상기 주 링크와 부 링크 중, 상기 링크 변경 정보에 따라 링크를 변경하는 단계를 포함하는 멀티 링크 적응 방법이 제공된다. According to another aspect of the present invention, there is provided a method including: finding a primary link and a secondary link through a beam training procedure; Transmitting a multi-link adaptation request message including link change information to a receiver through one of the primary link and the secondary link; Receiving a multilink adaptation response message from the receiver; And changing the link according to the link change information among the primary link and the secondary link.
본 발명의 또 다른 양태에 따르면 빔 트레이닝 절차를 통해 주 링크 및 부 링크를 찾는 단계; 주 링크와 부 링크 중 어느 하나의 링크를 통해 링크 변경 정보가 포함된 PLCP(physical layer convergence procedure) 헤더를 수신기로 전송하는 단계; 상기 주 링크와 부 링크 중에서, 상기 링크 변경 정보에 따른 링크를 통해 상기 PLCP 헤더에 상응하는 데이터를 전송하는 단계를 포함하는 멀티 링크 적응 방법이 제공된다.According to still another aspect of the present invention, there is provided a method of finding a primary link and a secondary link through a beam training procedure; Transmitting a physical layer convergence procedure (PLCP) header including link change information to a receiver through any one of a primary link and a secondary link; Among the primary link and the secondary link, there is provided a multi-link adaptation method comprising the step of transmitting data corresponding to the PLCP header over a link according to the link change information.
복수의 링크를 설정하고 이용함으로써 채널 상황에 따라 적합한 링크를 선택하여 사용할 수 있다. 무선자원 활용의 효율성을 높일 수 있다. 전송되는 프레임의 수를 최소화함으로써 오버헤드를 방지할 수 있다. By setting up and using a plurality of links, an appropriate link can be selected and used according to channel conditions. The efficiency of radio resource utilization can be improved. Overhead can be avoided by minimizing the number of transmitted frames.
도 1은 본 발명의 실시예가 적용될 수 있는 무선랜 시스템의 일 예를 나타낸 도면이다. 1 is a diagram illustrating an example of a WLAN system to which an embodiment of the present invention may be applied.
도 2는 빔 트레이닝 절차를 예시한 도면이다.2 is a diagram illustrating a beam training procedure.
도 3은 본 발명의 실시예에서 이용되는 주 링크(primary link) 와 부 링크(secondary link)를 간략히 도시한 도면이다. FIG. 3 is a diagram schematically showing a primary link and a secondary link used in an embodiment of the present invention.
도 4는 본 발명의 실시예에서 사용되는 주 링크(primary link)와 부 링크(secondary link)를 찾기 위한 빔 트레이닝 과정을 나타낸 도면이다. 4 is a diagram illustrating a beam training process for finding a primary link and a secondary link used in an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 멀티 링크 적응 방법를 수행하는 방법을 나타낸 도면이다. 5 is a diagram illustrating a method of performing a multi-link adaptation method according to an embodiment of the present invention.
도 6은 도 5에 도시된 실시예에서 전송되는 PLCP 헤더(PLCP Header)가 포함된 PPDU를 나타낸 도면이다. FIG. 6 is a diagram illustrating a PPDU including a PLCP header transmitted in the embodiment shown in FIG. 5.
도 7은 본 발명의 다른 실시예에 따른 멀티 링크 적응 방법을 나타낸 도면이다. 7 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention.
도 8은 도 7에 도시된 실시예에서 전송되는 QoS 제어 필드(QoS Control field)를 나타낸 도면이다. FIG. 8 is a diagram illustrating a QoS Control field transmitted in the embodiment shown in FIG. 7.
도 9는 본 발명의 또 다른 실시예에 따른 멀티 링크 적응 방법을 나타낸 도면이다. 9 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention.
도 10은 도 9에 도시된 실시예에서 전송되는 멀티 링크 적응 요청 메시지를 나타낸 도면이다.FIG. 10 is a diagram illustrating a multi-link adaptation request message transmitted in the embodiment shown in FIG. 9.
도 11은 도 9에 도시된 실시예에서 전송되는 멀티 링크 적응 응답 메시지를 나타낸 도면이다. FIG. 11 is a diagram illustrating a multilink adaptation response message transmitted in the embodiment shown in FIG. 9.
도 12는 본 발명의 실시예에 따른 멀티 링크 적응 절차를 수행하는 무선통신 장치를 나타낸 도면이다.12 illustrates a wireless communication device for performing a multi-link adaptation procedure according to an embodiment of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 실시예에 대하여 상세히 설명한다. 후술하는 실시예에서는 60GHz 밴드에서 동작하는 초고처리율(Very High Throughput, VHT) 무선랜 시스템에서의 멀티캐스트 절차에 유용하게 적용될 수 있지만 여기에만 한정되는 것은 아니다. 예를 들어, 후술하는 본 발명의 실시예는 6GHz 이하 밴드에서 동작하는 VHT 무선랜 시스템에서도 동일하게 적용될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the embodiments described below, the present invention may be usefully applied to a multicast procedure in a Very High Throughput (VHT) WLAN system operating in a 60 GHz band, but is not limited thereto. For example, embodiments of the present invention described below may be equally applicable to a VHT WLAN system operating in a 6 GHz or less band.
도 1은 본 발명의 실시예가 적용될 수 있는 무선랜 시스템의 일 예를 나타낸 도면이다. 도 1에 도시된 예에 따른 무선랜 시스템은 VHT(Very High Throughput) 무선랜 시스템이다. 1 is a diagram illustrating an example of a WLAN system to which an embodiment of the present invention may be applied. The WLAN system according to the example shown in FIG. 1 is a VHT (Very High Throughput) WLAN system.
도 1을 참조하면, VHT 무선랜 시스템과 같은 무선랜 시스템은 하나 또는 그 이상의 기본 서비스 세트(Basic Service Set, BSS)를 포함한다. BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 스테이션(Station, STA)의 집합으로써, 특정 영역을 가리키는 개념은 아니다. 그리고 본 발명의 실시예가 적용될 수 있는 무선랜 시스템과 같이, 1GHz 이상의 초고속 데이터 처리를 지원하는 BSS를 VHT(Very High Throughput) BSS라고 한다.Referring to FIG. 1, a WLAN system such as a VHT WLAN system includes one or more basic service sets (BSSs). The BSS is a set of stations (STAs) that can successfully synchronize and communicate with each other, and is not a concept indicating a specific area. Like a WLAN system to which an embodiment of the present invention can be applied, a BSS supporting ultra-high speed data processing of 1 GHz or more is called a VHT (Very High Throughput) BSS.
VHT BSS도 인프라스트럭쳐 BSS(infrastructure BSS)와 독립 BSS(Independent BSS, IBSS)로 구분할 수 있는데, 도 1에는 인프라스트럭쳐 BSS가 도시되어 있다. 인프라스트럭쳐 BSS(BSS1, BSS2)는 하나 또는 그 이상의 Non-AP STA(STA 1, STA 3, STA 4), 분배 서비스(Distribution Service)를 제공하는 스테이션인 액세스 포인트(AP 1(STA 2), AP 2(STA 5)), 및 다수의 액세스 포인트(AP 1, AP 2)를 연결시키는 분배 시스템(Distribution System, DS)을 포함한다. 인프라스트럭쳐 BSS에서는 AP STA이 BSS의 Non-AP STA들을 관리한다.The VHT BSS can also be classified into an infrastructure BSS and an independent BSS. The infrastructure BSS is illustrated in FIG. 1. Infrastructure BSS (BSS1, BSS2) is an access point (AP 1 (STA 2), AP that is a station that provides one or more non-AP STAs (STA 1, STA 3, STA 4), Distribution Service) 2 (STA 5)), and a Distribution System (DS) that connects multiple access points (AP 1, AP 2). In the infrastructure BSS, the AP STA manages the Non-AP STAs of the BSS.
반면, 독립 BSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP VHT STA을 포함하지 않기 때문에 중앙에서 관리기능을 수행하는 개체(Centralized Management Entity)가 없다. 즉, IBSS에서는 Non-AP STA들이 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA이 이동 스테이션으로 이루어질 수 있으며, DS에로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.Independent BSSs, on the other hand, are BSSs operating in ad-hoc mode. Since the IBSS does not include the AP VHT STA, there is no centralized management entity. That is, in the IBSS, Non-AP STAs are managed in a distributed manner. In the IBSS, all STAs may be configured as mobile stations, and access to the DS is not allowed, thereby forming a self-contained network.
STA은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비AP 스테이션(Non-AP Station)을 모두 포함한다. 그리고 후술하는 바와 같은 다중 채널 환경에서 1GHz 이상의 초고속 데이터 처리를 지원하는 STA을 VHT STA이라고 한다. 본 발명의 실시예가 적용될 수 있는 VHT 무선랜 시스템에서는, 상기 BSS에 포함되는 STA은 모두 VHT STA이거나 또는 VHT STA과 레거시 STA(예컨대, IEEE 802.11n에 따른 HT STA)이 공존할 수도 있다.A STA is any functional medium that includes a medium access control (MAC) compliant with the IEEE 802.11 standard and a physical layer interface to a wireless medium. Broadly speaking, an AP and a non-AP station (Non- AP Station). In addition, a STA that supports ultra-high speed data processing of 1 GHz or more in a multi-channel environment as described below is called a VHT STA. In the VHT WLAN system to which an embodiment of the present invention can be applied, all of the STAs included in the BSS may be VHT STAs, or both VHT STAs and legacy STAs (eg, HT STAs according to IEEE 802.11n) may coexist.
무선 통신을 위한 STA은 프로세서(Processor)와 트랜시버(transceiver)를 포함하고, 사용자 인터페이서와 디스플레이 수단 등을 포함한다. 프로세서는 무선 네트워크를 통해 전송할 프레임을 생성하거나 또는 상기 무선 네트워크를 통해 수신된 프레임을 처리하도록 고안된 기능 유닛으로써, STA을 제어하기 위한 여러 가지 기능을 수행한다. 그리고 트랜시버는 상기 프로세서와 기능적으로 연결되어 있으며 스테이션을 위하여 무선 네트워크를 통해 프레임을 송수신하도록 고안된 유닛이다.The STA for wireless communication includes a processor and a transceiver, and includes a user interface and a display means. The processor is a functional unit designed to generate a frame to be transmitted through a wireless network or to process a frame received through the wireless network, and performs various functions for controlling an STA. The transceiver is a unit that is functionally connected to the processor and is designed to transmit and receive frames over a wireless network for a station.
STA 중에서 사용자가 조작하는 휴대용 단말은 Non-AP STA(STA1, STA3, STA4, STA5)이다. Non-AP STA은 단말(terminal), 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU), 사용자 장비(User Equipment, UE), 이동국(Mobile Station, MS), 휴대용 단말(Mobile Terminal), 또는 이동 가입자 유닛(Mobile Subscriber Unit) 등의 다른 명칭으로도 불릴 수 있다. 그리고 후술하는 바와 같은 다중 채널 환경에서 1GHz 이상의 초고속 데이터 처리를 지원하는 Non-AP STA을 Non-AP VHT STA 또는 간단히 VHT STA이라고 한다.Among the STAs, portable terminals operated by a user are non-AP STAs (STA1, STA3, STA4, and STA5). A non-AP STA is a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, or a mobile subscriber. It may also be called another name such as a mobile subscriber unit. In addition, a non-AP STA supporting ultra-fast data processing of 1 GHz or more in a multi-channel environment as described below is referred to as a non-AP VHT STA or simply a VHT STA.
그리고 AP(AP1, AP2)는 자신에게 결합된 STA(Associated Station)을 위하여 무선 매체를 경유하여 DS에 대한 접속을 제공하는 기능 개체이다. AP를 포함하는 인프라스트럭쳐 BSS에서 비AP STA들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이나, 다이렉트 링크가 설정된 경우에는 비AP STA들 사이에서도 직접 통신이 가능하다. AP는 엑세스 포인트라는 명칭 외에 집중 제어기, 기지국(Base Station, BS), 노드-B, BTS(Base Transceiver System), 또는 사이트 제어기 등으로 불릴 수도 있다. 그리고 후술하는 바와 같은 다중 채널 환경에서 1GHz 이상의 초고속 데이터 처리를 지원하는 AP를 VHT AP라고 한다.The APs AP1 and AP2 are functional entities that provide access to the DS via a wireless medium for an associated station (STA) associated therewith. In an infrastructure BSS including an AP, communication between non-AP STAs is performed via an AP. However, when a direct link is established, direct communication between non-AP STAs is possible. The AP may be called a centralized controller, a base station (BS), a node-B, a base transceiver system (BTS), or a site controller in addition to the access point. In addition, an AP that supports ultra-high speed data processing of 1 GHz or more in a multi-channel environment as described below is called a VHT AP.
복수의 인프라스트럭쳐 BSS는 분배 시스템(Distribution System, DS)을 통해 상호 연결될 수 있다. DS를 통하여 연결된 복수의 BSS를 확장 서비스 세트 (Extended Service Set, ESS)라 한다. ESS에 포함되는 STA들은 서로 통신할 수 있으며, 동일한 ESS 내에서 비AP STA은 끊김 없이 통신하면서 하나의 BSS에서 다른 BSS로 이동할 수 있다. The plurality of infrastructure BSSs may be interconnected through a distribution system (DS). A plurality of BSSs connected through a DS is called an extended service set (ESS). STAs included in the ESS may communicate with each other, and a non-AP STA may move from one BSS to another BSS while seamlessly communicating within the same ESS.
DS는 하나의 AP가 다른 AP와 통신하기 위한 메커니즘으로서, 이에 의하면 AP가 자신이 관리하는 BSS에 결합되어 있는 STA들을 위해 프레임을 전송하거나 또는 어느 하나의 STA이 다른 BSS로 이동한 경우에 프레임을 전달하거나 유선 네트워크 등과 같은 외부 네트워크와 프레임을 전달할 수가 있다. 이러한 DS는 반드시 네트워크일 필요는 없으며, IEEE 802.11에 규정된 소정의 분배 서비스를 제공할 수 있다면 그 형태에 대해서는 아무런 제한이 없다. 예컨대, DS는 메쉬 네트워크와 같은 무선 네트워크이거나 또는 AP들을 서로 연결시켜 주는 물리적인 구조물일 수도 있다. The DS is a mechanism for one AP to communicate with another AP, which means that an AP transmits a frame for STAs coupled to a BSS managed by the AP or when one STA moves to another BSS. Frames can be delivered with external networks, such as wired networks. This DS does not necessarily need to be a network, and there is no limitation on its form as long as it can provide certain distribution services defined in IEEE 802.11. For example, the DS may be a wireless network such as a mesh network or a physical structure that connects APs to each other.
그런데 앞서 설명한 바와 같이, 60GHz 에서 동작하는 VHT 시스템의 경우, 서비스 커버리지(service coverage)를 늘리기 위해 방향성 안테나(directional antenna)를 사용하기도 한다. 문제는, 방향성 안테나를 사용하는 경우 서비스 커버리지는 늘어날 수 있는 반면, 전파가 특정 방향으로 집중적으로 진행함으로 인해 히든 노드(hidden node)가 발생할 수 있다는 점이다. 이러한 문제점은 상기 VHT WLAN 시스템이 이 60GHz 밴드에서 동작하는 경우에 서비스 커버리지가 좁기 때문에 더욱 큰 이슈가 되지만, 6GHz 이하의 밴드에서 동작할 경우에도 동일한 문제가 발생할 수가 있다.As described above, in the case of a VHT system operating at 60 GHz, a directional antenna may be used to increase service coverage. The problem is that the use of a directional antenna can increase service coverage, while a hidden node can occur as the radio waves are concentrated in a specific direction. This problem becomes more serious because the service coverage is narrow when the VHT WLAN system operates in this 60 GHz band, but the same problem may occur when operating in a band below 6 GHz.
참고로 60 GHz 에서 동작하는 VHT 시스템은 3가지 유형의 안테나를 지원한다. 1) 싱글 안테나(Single antenna): 고정 안테나(fixed antenna)로서 조종 능력이 없는 안테나(without any steering capability), 2) 섹터 안테나(Sector antenna): 미리 설정된 개수(predefined number)의 방향으로 파워를 방출하는(radiate) 안테나, 3) 위상 배열 안테나(Phased array antenna) : 위상배열 레이다는 안테를 회전 및 경사시켜 레이다 빔의 형성과 전파 방향을 조정하는 기존의 기계적인 안테나 대신 전자적으로 위상을 조정할 수 있는 다수의 안테나 배열을 조합시켜서 수평으로 360도 와 고각 90도의 전방위에 대하여 기계적인 구동 장치가 없이 전파빔을 조정함으로써 물체의 탐지와 추적이 가능한 신개념의 레이더 시스템이다. 특정 위상이나 가능한 진폭으로 원하는 방향으로 향하도록 전기적으로 제어 가능한 몇몇의 구성 요소를 가진다. For reference, the VHT system operating at 60 GHz supports three types of antennas. 1) Single antenna: fixed antenna, without any steering capability, 2) Sector antenna: release power in the direction of a predefined number 3) Phased array antenna: A phased array radar can electronically adjust the phase instead of a conventional mechanical antenna that rotates and tilts the antenna to adjust the radar beam formation and direction of propagation. It is a new concept radar system that detects and tracks objects by combining multiple antenna arrays to adjust the propagation beam without a mechanical drive for 360 degrees horizontally and 90 degrees high angle. It has several components that are electrically controllable to point in the desired direction at a particular phase or possible amplitude.
싱글 안테나를 지원하는 단말은 비조정 스테이션(non-steerable STA)에 해당되며, 섹터 안테나와 위상 배열 안테나를 지원하는 단말은 조정 스테이션(steerable STA)에 해당된다. 조정 스테이션(Steerable STA)만이 방향성 전송(directed transmission)을 수행할 수 있다. A terminal supporting a single antenna corresponds to a non-steerable STA, and a terminal supporting a sector antenna and a phased array antenna corresponds to a steerable STA. Only a Steerable STA may perform directed transmission.
60 GHz 에서 동작하는 VHT 시스템의 경우, 히든 노드의 문제를 해결하기 위해 AP 와 같은 CP(central point)을 활용한다. 또는 방향성 RTS 프레임(directed RTS frame) 및 전방향 CTS 프레임(omni-directed CTS frame)을 사용할 수도 있다. 즉, 조정 가능한 스테이션(Steerable STA)은 빔 포밍(beam-forming)을 통해 방향성 RTS 프레임(directed RTS frame)을 AP로 전송한다. 이에 대해 AP는 전방향 CTS 프레임(omni-directed CTS frame)으로 응답한다. BSS에 속하는 모든 스테이션들은 CTS 프레임을 듣게 되며, 이를 토대로 자신의 NAV(Network Allocation Vector) 값을 설정하여 히든 노드가 발생되는 문제를 해결하고자 하기도 한다. 참고로 이러한 방법을 'CP-initiated channel access mechanism' 이라 부른다.In the case of a VHT system operating at 60 GHz, a central point (CP) such as an AP is used to solve a hidden node problem. Alternatively, a directed RTS frame and an omni-directed CTS frame may be used. That is, the steerable STA transmits a directed RTS frame to the AP through beam-forming. In response, the AP responds with an omni-directed CTS frame. All stations belonging to the BSS listen to the CTS frame, and based on this, they may set their own Network Allocation Vector (NAV) value to solve the problem of hidden nodes. For reference, this method is called 'CP-initiated channel access mechanism'.
도 2는 빔 트레이닝 절차를 예시한 도면이다.2 is a diagram illustrating a beam training procedure.
앞서 언급한 바와 같이, 60GHz 대역을 사용하는 VHT 무선랜 시스템에서, 서비스 커버리지가 좁은 단점을 보완하기 위하여 방향성 안테나(Directional Antenna)를 사용하는 것이 고려되고 있다. 방향성 안테나는, 전방향(omni-directional) 안테나와 대비되는 것으로서, 빔포밍(Beam Forming) 기술을 이용하여 특정한 방향으로만 신호를 전송하는 것을 가리킨다.As mentioned above, in a VHT WLAN system using a 60 GHz band, it is considered to use a directional antenna to compensate for the disadvantage of narrow service coverage. A directional antenna, as opposed to an omni-directional antenna, refers to the transmission of a signal only in a specific direction using beam forming technology.
빔포밍 기술을 이용하기 위해서는 빔 트레이닝 시퀀스(Beam Training Sequence)를 이용하는 빔포밍 과정을 미리 수행할 필요가 있는데, 빔 트레이닝 시퀀스를 도 2를 참조하여 설명하도록 한다. 여기서 빔포밍 기술의 구체적인 구현 방법에 대해서는 아무런 제한이 없으며 빔포밍 기술에 의해 본 발명의 권리범위가 제한되지 않는다.In order to use the beamforming technique, it is necessary to perform a beamforming process using a beam training sequence in advance. The beam training sequence will be described with reference to FIG. 2. There is no limitation on the specific implementation method of the beamforming technology, and the scope of the present invention is not limited by the beamforming technology.
방향성 안테나를 이용하여 수신기가 있는 소정의 방향으로만 신호를 전송할 경우, 보다 먼 거리까지 신호를 성공적으로 보낼 수가 있다. 이와 같이, 방향성 안테나를 사용하여 서로 통신하고자 하는 장치들 사이에서는 신호의 송수신 이전에 빔 트레이닝 시퀀스를 이용하는 빔포밍 과정이 먼저 수행된다.When using a directional antenna to transmit the signal only in the predetermined direction in which the receiver is located, the signal can be transmitted successfully over a longer distance. As described above, a beamforming process using a beam training sequence is first performed between devices to communicate with each other using a directional antenna.
도 2를 참조하여 설명하는 빔 트레이닝 절차(Beam training procedure)는 크게 전송 섹터 스윕(Transmission(TX) Sector Sweep) 단계(S210), 링크 정제 반복(Link Refinement Iteration) 단계(S220)를 거쳐 완료된다. 전송 섹터 스윕 단계(S210)에서, 전송기는 섹터 스윕(sector sweep)을 수행하고, 수신기는 준전방향 수신(quasi-omni RX) 모드에서 동작한다.The beam training procedure described with reference to FIG. 2 is largely completed through a transmission sector sweep (Transmission (TX) Sector Sweep) step (S210) and a link refinement iteration step (S220). In the transmit sector sweep step S210, the transmitter performs a sector sweep, and the receiver operates in quasi-omni RX mode.
여기서 수신기는 데이터 프레임을 수신하는 스테이션인 수신 스테이션(receiving STA)을, 전송기는 데이터 프레임을 전송하는 스테이션인 전송 스테이션(transmitting STA)을 의미할 수 있다. 수신 스테이션과 전송 스테이션, 또는 수신기와 송신기는 상대적인 개념으로서, 데이터 프레임의 전송 방향에 따라 언제든지 바뀔 수 있다. 이는 이하에서도 마찬가지로 적용된다.Here, the receiver may mean a receiving STA, which is a station for receiving a data frame, and the transmitter may mean a transmitting STA, a station for transmitting a data frame. The receiving station and the transmitting station, or the receiver and the transmitter are relative concepts and can be changed at any time according to the transmission direction of the data frame. This also applies to the following.
섹터 스윕(Sector Sweep)이란, 빔 방향(beam direction)이나 빔 섹터(beam sector)를 전환(switch)하면서 관리 프레임(management frame)을 전송하여 전송 다이버시티 이득(TX diversity gain)을 점검하는 것을 말한다. 이 때, 수신기는 전방향 모드에 가깝게 전환하여 송신기의 전송 다이버시티 이득 점검에 협조한다.Sector sweep refers to checking TX diversity gain by transmitting a management frame while switching a beam direction or a beam sector. . At this point, the receiver switches close to the omni-directional mode to assist in the transmitter's transmit diversity gain check.
섹터 스윕 후, 전송 스테이션은 링크 정제 반복(Link Refinement Iteration) 단계(S220)에서 수신 다이버시티 이득(RX diversity gain)을 점검한다. 전송 섹터 스윕 과정에서 설정한 최적의 전송 빔 방향(TX beamdirection)에 대해서, 수신기는 빔 방향이나 빔 섹터를 전환(switch)해가면서 관리 프레임을 수신한다. 이 과정을 통해 수신기 최적의 수신 빔 방향(RX beam-direction)을 설정할 수 있다.After the sector sweep, the transmission station checks the RX diversity gain in the link refinement iteration step S220. The receiver receives a management frame while switching the beam direction or the beam sector with respect to the optimal transmission beam direction (TX beamdirection) set in the transmission sector sweep process. Through this process, the receiver can set the optimal RX beam-direction.
최적의 수신 빔 방향을 설정한 수신기는, 이어서 송신기로 하여금 전송 트레이닝을 다시 수행하게 한다. 상술한 절차를 반복하면서, 수신기와 송신기는 전송 다이버시티 이득(TX diversity gain), 수신 다이버시티 이득(RX diversity gain)을 최대로 할 수 있는 전송 빔 방향(TX beam-direction)과 수신 빔 방향(RX beamdirection)을 설정할 수 있게 된다.Having set the optimal receive beam direction, the receiver then causes the transmitter to perform transmission training again. While repeating the above procedure, the receiver and the transmitter may transmit the TX beam-direction and the receive beam direction (TX diversity gain) to maximize the TX diversity gain and RX diversity gain. RX beamdirection can be set.
이와 같이 이동하는 스테이션의 위치 등에 대한 아무런 사전 정보 없이 전체 방향에 대하여 빔 트레이닝 시퀀스를 이용하여 빔포밍 과정을 수행한다면 빔포밍에 따른 오버헤드가 상당히 커질 것을 예측할 수 있다. 게다가 이러한 빔포밍 과정의 오버헤드는 서비스 커버리지를 보다 확장시키기 위하여 빔-폭(Beam-width)을 좁힐 경우에 더욱 증가하게 된다.If the beamforming process is performed using the beam training sequence for the entire direction without any prior information on the position of the moving station, it can be expected that the overhead due to the beamforming will be significantly increased. In addition, the overhead of this beamforming process is further increased when the beam-width is narrowed to further extend service coverage.
도 3은 본 발명의 실시예에서 이용되는 주 링크(primary link)(310)와 부 링크(secondary link)(320)를 간략히 도시한 도면이다. FIG. 3 is a simplified diagram of a primary link 310 and a secondary link 320 used in an embodiment of the invention.
본 발명의 실시예에서는 빔포밍 과정을 거치면서, 스테이션 간에는 하나 이상의 링크가 존재할 수 있음을 가정한다. 스테이션들 간에는 하나 이상의 빔포밍 벡터가 존재한다. AP와 스테이션 1(STA 1) 및 스테이션 2(STA 2)에 여러 방향의 화살표들이 도시되어 있는데, 이는 복수의 빔포밍 벡터를 의미한다. 도 2를 참조하여 설명한 빔 트레이닝 과정에서도 알 수 있듯이, 링크 정제 반복 과정에서는 보다 좋은 빔 포밍 벡터를 찾기 위해 동일힌 링크 정제 과정이 여러 빔포밍 벡터에 대해 여러 번 반복된다. 각각의 링크 정제 과정마다 하나의 빔포밍 벡터가 형성된다. 빔포밍 벡터 각각은 서로 다른 채널 특성(channel characteristic)을 가지는 하나의 링크로 간주될 수 있다. In the embodiment of the present invention, it is assumed that one or more links may exist between stations while undergoing a beamforming process. There is one or more beamforming vectors between stations. Arrows of various directions are shown in the AP, the station 1 (STA 1) and the station 2 (STA 2), which means a plurality of beamforming vectors. As can be seen from the beam training process described with reference to FIG. 2, in the link refinement iteration process, the same link refinement process is repeated for several beamforming vectors in order to find a better beamforming vector. One beamforming vector is formed for each link refinement process. Each beamforming vector may be regarded as one link having different channel characteristics.
그런데 가장 좋은 링크를 하나만 찾기보다는 하나 이상의 링크를 사용하면 각 링크의 상태 등을 고려하여 보다 나은 서비스를 제공할 수 있다는 점에 착안하여, 본 발명에서는 주 링크(310)와 부 링크(320)를 사용하도록 한다. 따라서 이들 링크에 대한 링크 적응 과정은 멀티-링크 적응 절차로 지칭될 수 있다. 물론 이를 위해서는 무선랜 시스템이 2 이상의 링크를 지원할 수 있어야 한다.However, in view of the fact that the use of one or more links rather than finding the best one can provide a better service in consideration of the status of each link, in the present invention, the primary link 310 and the secondary link 320 Use it. Thus, the link adaptation process for these links may be referred to as a multi-link adaptation procedure. Of course, to do this, the WLAN system must be able to support two or more links.
여기에서, 2 이상의 링크는 2 이상의 빔포밍 벡터로 형성되는 링크만을 의미하는 것은 아니며 어느 스테이션이 전방향 안테나를 이용하여 송수신 하는 경우와 방향성 안테나를 이용하여 송수신 하는 경우를 각각 하나의 링크로 간주하여, 이를 2 링크에 해당하는 것으로 볼 수 있다. 이 때, 전방향 안테나를 이용한 송수신을 주 링크(primary link)로 하고 방향성 안테나를 이용한 송수신을 부 링크(secondary link)로 할 수 있으며, 반대의 경우도 가능하다. 즉, 전방향 안테나를 이용한 송수신과 방향성 안테나를 이용한 송수신간의 전환은 두 링크간의 전환으로 볼 수 있으며 이는 후술하는, 본 발명에서 제안하는 멀티 링크 적응방법의 일례가 될 수 있다.Here, the two or more links do not mean only a link formed of two or more beamforming vectors, and each station is regarded as one link when transmitting and receiving by using an omnidirectional antenna and when transmitting and receiving by using a directional antenna. This can be regarded as 2 links. In this case, transmission and reception using the omnidirectional antenna may be used as the primary link, and transmission and reception using the directional antenna may be used as the secondary link, and vice versa. That is, switching between transmission and reception using an omnidirectional antenna and transmission and reception using a directional antenna may be regarded as switching between two links, which may be an example of a multi-link adaptation method proposed by the present invention, which will be described later.
본 발명의 실시예에 따른 링크 적응 절차의 수행 방법이 그 성능을 향상시키기 위해서는 주 링크(310)와 부 링크(320) 간의 채널 상관도(channel correlation)이 낮을수록 좋다. 만약 두 링크 간에 채널 상관도가 높다면, 두 링크 간에 교체 또는 변경을 수행함에 있어서 다이버시티 이득(diversity gain)이 줄어들기 때문이다. In order to improve the performance of the method of performing a link adaptation procedure according to an embodiment of the present invention, a lower channel correlation between the primary link 310 and the secondary link 320 may be better. If the channel correlation between the two links is high, it is because diversity gain is reduced in performing replacement or change between the two links.
따라서 두 링크 간의 채널 상관도를 고려하기 위해, 도 4를 참조하여 이하에서 설명하는 바와 같이, 각각의 링크에 대한 빔 트레이닝 절차를 별도로 실시하고자 한다. 즉 부 링크(320)를 찾기 위에, 주 링크(310)에 사용된 빔포밍 벡터를 제외하고 빔 트레이닝 절차를 추가적으로 수행하도록 한다. Therefore, in order to consider the channel correlation between the two links, as described below with reference to FIG. 4, the beam training procedure for each link will be separately performed. That is, the beam training procedure may be additionally performed except for the beamforming vector used for the primary link 310, in order to find the secondary link 320.
도 4는 본 발명의 실시예에서 사용되는 주 링크(primary link)와 부 링크(secondary link)를 찾기 위한 빔 트레이닝 과정을 나타낸 도면이다. 4 is a diagram illustrating a beam training process for finding a primary link and a secondary link used in an embodiment of the present invention.
전송 섹터 스윕(S410) 단계는 전송 다이버시티 이득(TX diversity gain)을 점검하는 것으로서, 도 2의 전송 섹터 스윕(S210) 단계와 동일하므로 중복된 설명은 생략하도록 한다. 여기서도, 전송기는 섹터 스윕(sector sweep)을 수행하고, 수신기는 준전방향 수신(quasi-omni RX) 모드에서 동작하는데, 수신기는 데이터 프레임을 수신하는 스테이션인 수신 스테이션(receiving STA)을, 전송기는 데이터 프레임을 전송하는 스테이션인 전송 스테이션(transmitting STA)을 의미한다. 또한 수신 스테이션과 전송 스테이션, 또는 수신기와 송신기는 상대적인 개념으로서, 데이터 프레임의 전송 방향에 따라 언제든지 바뀔 수 있음은 물론이다.The transmission sector sweep (S410) step is to check the transmission diversity gain (TX diversity gain), which is the same as the transmission sector sweep (S210) step of FIG. Here too, the transmitter performs a sector sweep, and the receiver operates in quasi-omni RX mode, where the receiver is a receiving STA, which is a station that receives data frames, and the transmitter is a data receiver. A transmitting station (transmitting STA) that is a station for transmitting a frame. In addition, the receiving station and the transmitting station, or the receiver and the transmitter are relative concepts, and can be changed at any time according to the transmission direction of the data frame.
전송 섹터 스윕(S410) 후에, 두 번의 링크 정제 반복 단계가 수행된다. 하나는 주 링크를 찾기 위한 링크 정제 반복 단계(S420)이다. 이를 통해 주 링크를 찾고 나면, 부 링크를 찾기 위한 링크 정제 반복 단계가 수행된다(S430). After the transmission sector sweep S410, two link refinement repeat steps are performed. One is a link refinement repeating step S420 for finding the main link. After this, after finding the primary link, a link refinement repeating step for finding the secondary link is performed (S430).
부 링크를 찾기 위해 빔 트레이닝 절차를 재수행하는 경우, 주 링크에 사용된 전송 빔 방향(TX beam-direction)과 수신 빔 방향(RX beam-direction)은 선택 가능한 빔 방향(beam direction)에서 제외된다. 그런데 이처럼 빔 트레이닝 절차(Beam training procedure)를 재수행하는 경우, 오버헤드(overhead)가 커진다는 문제점이 있다. 이러한 문제점을 해결하기 위한 다른 방법으로, 섹터 스윕(S410) 과정에서, 상관도가 낮은 최적은 전송 빔포밍 벡터를 2 개 또는 그 이상 선정하여, 각각의 빔포밍 벡터에 대해 링크 정제 반복 과정을 수행할 수도 있다. 이 경우 그 중 하나의 빔포밍 벡터에 대한 링크 정제 반복 과정이 S420에, 다른 하나의 빔포밍 벡터에 대한 링크 정제 반복 과정이 S430에 해당된다. When performing the beam training procedure again to find the secondary link, the transmit beam direction (TX beam-direction) and the receive beam direction (RX beam-direction) used for the primary link are excluded from the selectable beam direction. However, when the beam training procedure is performed again, there is a problem that the overhead becomes large. As another method to solve this problem, in the sector sweep process (S410), two or more optimal beamforming vectors having low correlation are selected to perform link refinement iteration process for each beamforming vector. You may. In this case, the link refinement repeating process for one beamforming vector corresponds to S420, and the link refinement repeating process for another beamforming vector corresponds to S430.
여기서 상관도가 낮은 전송 빔 방향(TX beam-direction) 또는 빔포밍 벡터란, 두 개의 전송빔 방향 또는 빔포밍 벡터 간에 AOD(Angle of Departure) 가 일정 기준값 이상인 경우에 해당된다. AOD값에 따라 상관도가 큰지 작은지를 평가하기 위한 기준값은 미리 설정되거나, 통신 환경을 고려하여 AP 또는 해당 스테이션이 결정할 수 있다. Here, the TX beam-direction or beamforming vector having a low correlation corresponds to a case where an AOD (Angle of Departure) is greater than or equal to a predetermined reference value between two transmission beam directions or beamforming vectors. The reference value for evaluating whether the correlation is large or small according to the AOD value may be preset or determined by the AP or the corresponding station in consideration of a communication environment.
도 5는 본 발명의 일 실시예에 따른 멀티 링크 적응 방법를 수행하는 방법을 나타낸 도면이다. 5 is a diagram illustrating a method of performing a multi-link adaptation method according to an embodiment of the present invention.
무선통신 환경에 따라 데이터 전송이 원활하지 못한 경우, 종래에는 데이터를 재전송하거나 해당 MCS(modulation and coding scheme) 값을 떨어뜨려, 데이터율을 낮추는 방법이 있었다. 그러나 재전송의 경우 오버헤드를 높인다는 문제가 있고, 데이터율을 낮추는 경우에는 다른 서비스나 데이터 전송에도 부정적인 영향을 미칠 수 있다는 문제점이 있다. When data transmission is not smooth according to a wireless communication environment, conventionally, there has been a method of lowering a data rate by retransmitting data or decreasing a corresponding modulation and coding scheme (MCS) value. However, in case of retransmission, there is a problem of increasing overhead, and in case of lowering the data rate, there is a problem in that it may adversely affect other services or data transmission.
따라서 도 5를 참조하여 설명하는 실시예에서는 멀티 링크를 이용하면서 데이터를 헤더와 분리하여 전송하는 방법을 사용한다. 즉 전송기는 수신기로 주 링크를 통해 PLCP(physical layer convergence procedure) 헤더를 우선 전송한다(S510). 만일 주 링크의 상태가 좋지 않다면, 별도의 메시지로 알리거나 협의(negotiation)를 거치지 않고 부 링크를 통해 데이터를 전송한다(S520). 이때, 부 링크를 통하여 데이터를 전송하기 전에, 채널 평가(channel estimation)를 위해 부 링크로 프리앰블(preamble)이 전송될 수 있다. 본 실시예에 따르면, 주 링크가 불안정하거나 품질이 좋지 않더라도 데이터를 신뢰성있게 전송할 수 있으며, 시간을 절약하고 오버헤드를 방지할 수 있다. Therefore, the embodiment described with reference to FIG. 5 uses a method of transmitting data separately from a header while using multilink. That is, the transmitter first transmits a physical layer convergence procedure (PLCP) header to the receiver through the primary link (S510). If the state of the primary link is not good, the data is transmitted through the secondary link without notifying a separate message or negotiating (S520). In this case, before transmitting data through the secondary link, a preamble may be transmitted to the secondary link for channel estimation. According to this embodiment, even if the primary link is unstable or of poor quality, data can be transmitted reliably, saving time and preventing overhead.
이 경우 PLCP 헤더에는 데이터를 분리하여 다른 링크(부 링크)를 통해 전송할 것임을 알리는 정보가 포함된다. 이에 따라 수신기는 데이터가 다른 링크를 통해 전송된다는 것을 확인하고, 빔포밍 벡터를 변경하여 부 링크를 통해 전송되는 데이터를 정상적으로 수신할 수 있게 된다. PLCP 헤더에 포함되는 정보에 대해서는 도 6을 참조하여 설명하도록 한다. In this case, the PLCP header contains information indicating that data is to be separated and transmitted through another link (sub link). Accordingly, the receiver confirms that data is transmitted through another link, and changes the beamforming vector so that the receiver can normally receive data transmitted through the secondary link. Information included in the PLCP header will be described with reference to FIG. 6.
도 6은 도 5에 도시된 실시예에서 전송되는 PLCP 헤더(PLCP Header)가 포함된 PPDU를 나타낸 도면이다. PPDU(PLCP protocol data unit)에는 PLCP 프리앰블(610), PLCP 헤더(620), MPDU(630)가 포함되는데, PLCP 헤더(620)에는 다른 필드들과 함께 멀티 링크 적응 필드(Multi-link adaption field)(680)가 포함된다. FIG. 6 is a diagram illustrating a PPDU including a PLCP header transmitted in the embodiment shown in FIG. 5. The PLCP protocol data unit (PPDU) includes a PLCP preamble 610, a PLCP header 620, and an MPDU 630. The PLCP header 620, along with other fields, includes a multi-link adaptation field. 680 is included.
도 5를 참조하여 설명한 실시예는 프레임 단위 멀티 링크 적응 절차(Per-frame multi-link adaption)에 해당된다. 전송기가 수신기에게 프레임을 전송할 때, 프레임 단위로 주 링크와 부 링크를 선택(select)하고 변경(switch) 하는 것을 말한다. The embodiment described with reference to FIG. 5 corresponds to a per-frame multi-link adaptation procedure. When a transmitter transmits a frame to a receiver, it selects and switches a primary link and a secondary link on a frame-by-frame basis.
전송기가 수신기에게 프레임을 전송할 때, 프레임의 PLCP 프리앰블(PLCP preamble)(610), PLCP 헤더(PLCP header)(620)는 주 링크를 통해 전송된다. 그리고 데이터(MPDU(630)) 가 분리되어 전송되는데, 여기서 데이터를 PLCP 프리앰블(PLCP preamble)(610)이나 PLCP 헤더(PLCP header)(620)와 구분짓기 위해, '데이터 필드(630)'로 지칭하도록 한다. 여기서 PLCP 헤더에는 데이터 필드(DATA field)(i.e., PHY 프로토콜 데이터 유닛(PHY Protocol Data Unit)) (630)가 전송될 링크에 대한 정보, 또는 링크 변경 정보가 포함된다. 만약, 데이터 필드(630)가 어느 링크를 통해 전송될 것인지에 대한 정보 또는 링크 변경 정보를 수신기가 PLCP 헤더(620)로부터 획득하고, 그 정보에 따르면 데이터 필드(630)가 부 링크로 전송되는 경우, PLCP 헤더(620)를 수신한 수신기는 빔포밍 벡터를 부 링크로 변경한다. When the transmitter sends a frame to the receiver, the PLCP preamble 610 and the PLCP header 620 of the frame are transmitted over the primary link. The data MPDU 630 is separated and transmitted, and is referred to as a data field 630 to distinguish the data from a PLCP preamble 610 or a PLCP header 620. Do it. Here, the PLCP header includes information on a link to which a data field (i.e., PHY Protocol Data Unit) 630 is transmitted, or link change information. If the receiver acquires information on which link the data field 630 is to be transmitted or link change information from the PLCP header 620, and according to the information, the data field 630 is transmitted to the secondary link, The receiver receiving the PLCP header 620 changes the beamforming vector to the secondary link.
여기서 데이터 필드(630)가 전송될 링크에 대한 정보는 PLCP 헤더(620) 중 멀티 링크 적응 필드(Multi-link adaption field)(625)에 포함된다. 예를 들어 PLCP 헤더의 멀티 링크 적응 필드(625)의 필드값이 0 일 경우, PLCP 헤더(620)에 이어서 전송되는 데이터 필드(630)는 주 링크를 통해 전송된다. 그리고 멀티 링크 적응 필드(625)의 필드값이 1인 경우, 데이터 필드는 부 링크를 사용하여 전송된다. In this case, the information on the link to which the data field 630 is transmitted is included in the multi-link adaptation field 625 of the PLCP header 620. For example, if the field value of the multi-link adaptation field 625 of the PLCP header is 0, the data field 630 transmitted subsequent to the PLCP header 620 is transmitted over the primary link. And if the field value of the multi-link adaptation field 625 is 1, the data field is transmitted using the secondary link.
PLCP 헤더(620)에는 멀티 링크 적응 필드(625) 이외에도 스크램블러 개시(Scrambler Initialization) 필드, MCS 필드, 길이(Length) 필드, GI 길이(GI length) 필드, 추가 PPDU(Additional PPDU) 필드, 패킷 타입(Packet type) 필드, 트레이닝 길이(Training Length) 필드, 예비(reserved) 필드와 HCS 필드 등이 포함될 수 있다. 이들 필드들은 PLCP 헤더의 일반적인 기능을 위한 것으로, 본 발명의 속하는 기술분야에서 통상의 지식을 가지는 당업자에게 자명한 사항이므로 이들 필드에 대한 상세한 설명은 생략하도록 한다. 또한 위에서 나열한 필드들 중 일부의 필드는 실시예에 따라 생략될 수 있다. In addition to the multilink adaptation field 625, the PLCP header 620 includes a scrambler initialization field, an MCS field, a length field, a GI length field, an additional PPDU field, and a packet type ( Packet type) field, a training length field, a reserved field, and an HCS field may be included. These fields are for the general function of the PLCP header, and will be omitted by those skilled in the art having ordinary skill in the art. In addition, some of the fields listed above may be omitted in some embodiments.
도 7은 본 발명의 다른 실시예에 따른 멀티 링크 적응 방법을 나타낸 도면이다. 도 7을 참조하여 설명하는 멀티 링크 적응 방법은 전송 기회 단위의 멀티 링크 적응 절차(Per-txop multi-link adaption)에 해당된다. 7 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention. The multi-link adaptation method described with reference to FIG. 7 corresponds to a per-txop multi-link adaptation procedure in units of transmission opportunities.
멀티 링크 적응 절차는 전송기가 수신기에게 복수의 프레임을 전송하기 위해 전송 기회(Transmission Opportunity, TXOP)를 획득하여, TXOP 단위로 주 링크와 부 링크를 선택 및 변경하며 사용하는 방식을 의미한다. The multi-link adaptation procedure refers to a method in which a transmitter acquires a transmission opportunity (TXOP) to transmit a plurality of frames to a receiver, and selects and modifies and uses a primary link and a secondary link in units of TXOP.
전송기가 수신기에게 복수의 프레임들을 전송할 때, 우선 전송기와 수신기는 RTS(request to send) 프레임과 CTS(clear to send) 프레임을 서로 주고 받는다. 이때, 전송기는 주 링크를 통해 수신기로 RTS 프레임을 전송하고(S710), 수신기 역시 주 링크를 통해 전송기로 CTS 프레임을 전송하여 응답한다(S720). 여기서 상기 RTS 프레임의 발송으로 전송되는 RTS 신호는 영역이 깨끗한지를 알기 위해 전송하는 신호이며, 수신기가 RTS 신호를 수신하게 되면, 전송기로 CTS(Clear to Send) 신호를 전송함으로써 응답이 이루어진다. 물론 CTS 신호는 CTS 프레임에 포함된다. When the transmitter transmits a plurality of frames to the receiver, the transmitter and receiver first exchange a request to send (RTS) frame and a clear to send (CTS) frame with each other. At this time, the transmitter transmits the RTS frame to the receiver through the primary link (S710), and the receiver also responds by transmitting the CTS frame to the transmitter through the primary link (S720). Here, the RTS signal transmitted by sending the RTS frame is a signal transmitted to know whether the area is clean. When the receiver receives the RTS signal, the response is transmitted by transmitting a clear to send (CTS) signal to the transmitter. Of course, the CTS signal is included in the CTS frame.
전송기는 수신기로부터 주 링크를 통해 CTS 프레임을 정상적으로 수신하면, 주 링크로 데이터를 전송한다(S730). 데이터는 복수의 프레임에 걸쳐 전송될 수 있다. 그런데 데이터를 어느 링크를 통해 전송할 것인지를 결정하는 정보는 RTS 프레임 및/또는 CTS 프레임에 포함될 수 있다. 예를 들어 전송기가 데이터 프레임들을 부링크로 전송하고자 하는 경우라면, 수신기는 RTS 프레임을 수신하고 CTS 프레임으로 응답하면서 빔포밍 벡터를 부 링크에 맞게 변경한다. When the transmitter normally receives the CTS frame from the receiver through the primary link, the transmitter transmits data to the primary link (S730). Data may be transmitted over a plurality of frames. However, information for determining which link to transmit data may be included in an RTS frame and / or a CTS frame. For example, if the transmitter wants to transmit data frames on the sublink, the receiver receives the RTS frame and responds with the CTS frame, changing the beamforming vector to match the sublink.
주 링크에서 부 링크로 링크를 변경(switch)하는 것은 그 당시 현재의 TXOP 내에 한해서만 유효하며, 해당 TXOP 이 끝난 후에는 다시 주 링크가 기본적으로 사용된다. 물론 주 링크 사용이 디폴트로 지정되어 있는 경우를 가정한 설명이다. 따라서 이 경우 다음번 TXOP을 획득하기 위한 RTS 프레임과 CTS 프레임의 전송은 주 링크를 통해 이루어지게 된다. Switching a link from the primary link to the secondary link is only valid within the current TXOP at that time, and after that TXOP is over, the primary link is again used by default. Of course, it is assumed that the use of the main link is set as the default. Therefore, in this case, transmission of the RTS frame and the CTS frame to obtain the next TXOP is performed through the main link.
만약, 하나의 TXOP가 끝나기 전에, 즉 TXOP 중간에 남아 있는 TXOP 지속 시간(Duration) 동안 주 링크와 부 링크 간의 링크 변경(link switch)을 하려는 경우에는 QoS 데이터 프레임(QoS Data fame), QoS 널 프레임(QoS Nulll frame)이 사용될 수 있다. 여기서는 전송기가 수신기에게 QoS 널 프레임(QoS Nulll frame)을 전송하는 경우를 예시한다. If a link switch is made between the primary link and the secondary link before one TXOP ends, that is, during the TXOP Duration remaining in the middle of the TXOP, the QoS Data frame and QoS null frame. (QoS Nulll frame) can be used. Here, a transmitter exemplifies a case of sending a QoS null frame to a receiver.
전송기는 수신기에게 QoS 널 프레임(QoS Null frame)을 전송함으로써, QoS 널 프레임(QoS Null frame)의 QoS 제어 필드의 멀티 링크 적응 필드를 통해 주 링크에서 부 링크로, 또는 부 링크에서 주 링크로 링크가 변경(switch)된다는 것을 알릴 수 있다(S740). QoS 널 프레임은 용어 그대로 실질적인 데이터 없이 비어있는 프레임을 의미하며, QoS 널 프레임에 이어서 데이터가 전송된다. The sender sends a QoS null frame to the receiver, thereby linking from the primary link to the secondary link or from the secondary link to the primary link through the multilink adaptation field of the QoS control field of the QoS null frame. It may be informed that is switched (S740). A QoS null frame is literally an empty frame with no actual data, and data is transmitted following the QoS null frame.
또한 전송기가 수신기에게 QoS 데이터 프레임(QoS Data frame)을 전송하는 경우도 마찬가지이다. 이 경우에는, QoS 데이터 프레임(QoS Data frame)의 QoS 제어 필드의 멀티 링크 적응 필드를 통해 주 링크에서 부 링크로, 또는 부 링크에서 주 링크로 링크가 변경됨을 알릴 수 있다. The same is true when the transmitter transmits a QoS Data frame to the receiver. In this case, it is possible to inform that the link is changed from the primary link to the secondary link or the secondary link to the primary link through the multi-link adaptation field of the QoS control field of the QoS data frame.
링크 변경에 대한 정보를 포함한 QoS 널 프레임을 수신한 수신기는 이에 대해 ACK(긍정 응답)을 전송하고, 링크 변경은 성공적으로 수행된다(S750). 이후, 전송기는 부 링크를 통해 수신기에게 데이터를 전송한다(S760). Receiving a QoS null frame including information on the link change, the receiver transmits an ACK (acknowledgment response) thereto, and the link change is successfully performed (S750). Thereafter, the transmitter transmits data to the receiver through the secondary link (S760).
도 8은 도 7에 도시된 실시예에서 전송되는 QoS 제어 필드(QoS Control field)를 나타낸 도면이다. QoS 제어 필드는 802.11 MAC 프로토콜 에 따른 QoS 데이터 프레임(QoS DATA frame) 또는 QoS 널 프레임(QoS Null frame), RTS 프레임, CTS 프레임 등에 포함될 수 있으며 TXOP 동안에 사용될 링크를 결정한다. FIG. 8 is a diagram illustrating a QoS Control field transmitted in the embodiment shown in FIG. 7. The QoS control field may be included in a QoS data frame or a QoS null frame, an RTS frame, a CTS frame, etc. according to the 802.11 MAC protocol and determines a link to be used during TXOP.
QoS 제어 필드는 TID(traffic identifier) 필드(810), 멀티 링크 적응 필드(820), ACK(acknowledgement) 정책(ACK Policy) 필드(830), 예비 필드(reserved field)(840) 등을 포함하는데, QoS 제어 필드가 어느 프레임에 포함되는지에 따라 이 외의 다른 필드들이 더 포함될 수 있으며, QoS 제어 필드의 내용은 조금씩 상이할 수 있다. 다만, 본 발명의 실시예에서는 QoS 제어 필드가 어느 프레임에 포함되든 멀티 링크 적응 필드를 공통적으로 포함한다. 멀티 링크 적응 필드가 본 발명의 실시예에 따른 멀티 링크 적응 절차와 관련된 내용을 포함하기 때문이다. QoS control fields include a traffic identifier (TID) field 810, a multi-link adaptation field 820, an acknowledgment (ACK) policy field (830), a reserved field (840), and the like. Other fields may be further included according to which frame the QoS control field is included, and the contents of the QoS control field may be slightly different. However, in the embodiment of the present invention, the QoS control field includes a multi-link adaptation field in common in which frame. This is because the multilink adaptation field includes content related to a multilink adaptation procedure according to an embodiment of the present invention.
앞서 설명한 바와 같이, 멀티 링크 적응 필드는 그 멀티 링크 적응 필드가 전송된 해당 TXOP 내에서 사용될 링크에 대한 정보 또는 링크 선택 및 변경에 대한 정보를 전달한다. 예컨대 멀티 링크 적응 필드(820)의 필드값이 0 일 경우, 전송기는 이후의 데이터 프레임들을 주 링크를 사용해서 전송하도록 한다. 반면 멀티 링크 적응 필드(820)의 필드값이 1인 경우, 전송기는 부 링크를 사용하여 데이터 프레임을 전송하도록 설정될 수 있다. As described above, the multi-link adaptation field carries information on a link to be used in the corresponding TXOP in which the multi-link adaptation field is transmitted or information on link selection and change. For example, if the field value of the multi-link adaptation field 820 is zero, the transmitter causes subsequent data frames to be transmitted using the primary link. On the other hand, when the field value of the multi-link adaptation field 820 is 1, the transmitter may be configured to transmit the data frame using the sub-link.
그리고 QoS 데이터 프레임 또는 QoS 널 프레임 등을 사용하여 멀티 링크 적응 절차를 수행하는 경우, QoS 제어 필드의 ACK 폴리시 필드(ACK Policy field)(830)는 항상 노멀 ACK 폴리시(Normal ACK Policy)를 사용해야 한다. 만약, 비 ACK 폴리시(No ACK Policy)를 사용하게 되면, 수신기로부터 QoS 제어 필드의 전송에 대해 ACK와 같은 확답(confirmation)을 받지 못하고, 링크를 변경하지 못한다. In the case of performing a multi-link adaptation procedure using a QoS data frame or a QoS null frame, the ACK policy field 830 of the QoS control field should always use a normal ACK policy. If a non-ACK policy is used, the receiver does not receive confirmation such as ACK for transmission of the QoS control field from the receiver and cannot change the link.
도 9는 본 발명의 또 다른 실시예에 따른 멀티 링크 적응 방법을 나타낸 도면이다. 접속 단위 멀티 링크 적응(Per-connection multi-link adaption)이란, 전송기와 수신기 사이에 접속(connection)이 지속되는 한 전송기와 수신기 사이에 설정된 주 링크와 부 링크를 계속적으로 변경 가능한 멀티 링크 적응 절차를 의미한다. 9 is a diagram illustrating a multi-link adaptation method according to another embodiment of the present invention. Per-connection multi-link adaptation is a multi-link adaptation procedure that can continuously change the primary and secondary links established between the transmitter and the receiver as long as the connection between the transmitter and the receiver is maintained. it means.
이를 위해 전송기는 수신기에게 멀티 링크 적응 요청 메시지를 전송한다(S910). 수신기는 전송기에게 응답으로 멀티 링크 적응 응답 메시지를 전송함으로써 링크 변경을 확인(confirm)한다(S920). 멀티 링크 적응 요청 메시지와 멀티 링크 적응 응답 메시지를 통해 주 링크와 부 링크 간 링크 변경이 이루어지면, 전송기와 수신기 간의 접속(connection)이 지속되고, 다른 링크 변경이 다시 수행되지 않는 동안 변경 사항이 유효해진다. To this end, the transmitter transmits a multi-link adaptation request message to the receiver (S910). The receiver confirms the link change by transmitting a multi-link adaptation response message in response to the transmitter (S920). If a link change is made between the primary and secondary links through a multilink adaptation request message and a multilink adaptation response message, the connection remains valid while the connection between the transmitter and the receiver is continued and no other link change is performed again. Become.
따라서 전송기는 멀티 링크 적응 요청 메시지와 멀티 링크 적응 응답 메시지를 통해 정해진 바에 따라 부 링크를 통해 RTS 프레임을 전송하고(S930), 수신기 역시 부 링크를 통해 CTS 프레임을 전송기에게 전송한다(S940). 부 링크를 통한 RTS 프레임 및 CTS 프레임의 교환이 이루어지면, 전송기는 부 링크를 통해 수신기로 데이터를 전송할 수 있다(S950). Therefore, the transmitter transmits the RTS frame through the secondary link as determined through the multi-link adaptation request message and the multi-link adaptation response message (S930), and the receiver also transmits the CTS frame to the transmitter through the secondary link (S940). When the RTS frame and the CTS frame are exchanged through the secondary link, the transmitter may transmit data to the receiver through the secondary link (S950).
도 10은 도 9에 도시된 실시예에서 전송되는 멀티 링크 적응 요청 메시지를 나타낸 도면이다. 도 11은 도 9에 도시된 실시예에서 전송되는 멀티 링크 적응 응답 메시지는 나타낸 도면이다. FIG. 10 is a diagram illustrating a multi-link adaptation request message transmitted in the embodiment shown in FIG. 9. FIG. 11 is a diagram illustrating a multilink adaptation response message transmitted in the embodiment shown in FIG. 9.
멀티 링크 적응 요청 메시지는 도 10에 도시된 멀티 링크 변경 요청 관리 프레임(multi-link switch request management frame)을 사용할 수 있다. 또한 멀티 링크 적응 응답 메시지는 도 11에 도시된 멀티 링크 변경 응답 관리 프레임(multi-link switch response management frame)을 사용할 수 있다. 즉 전송기가 수신기에게 멀티 링크 변경 요청 관리 프레임을 전송하면, 수신기는 전송기의 링크 변경 요청에 대하여 수락 여부를 결정하여 멀티 링크 변경 응답 관리 프레임을 전송한다. The multi-link adaptation request message may use a multi-link switch request management frame shown in FIG. 10. In addition, the multi-link adaptation response message may use a multi-link switch response management frame shown in FIG. 11. That is, when the transmitter transmits the multi link change request management frame to the receiver, the receiver determines whether to accept the link change request of the transmitter and transmits the multi link change response management frame.
도 10에 도시된 멀티 링크 변경 요청 관리 프레임은 카테고리(Category) 필드(1010), 액션(Action) 필드(1020), 목적지 MAC 어드레스(Destination MAC Address) 필드(1030), 소스 MAC 어드레스(Source MAC Address) 필드(1040), 멀티 링크 적응(Multi-link Adaptation) 필드(1050)를 포함한다. 그리고 도 11에 도시된 멀티 링크 변경 요청 관리 프레임은 카테고리(Category) 필드(1110), 액션(Action) 필드(1120), 목적지 MAC 어드레스(Destination MAC Address) 필드(1130), 소스 MAC 어드레스(Source MAC Address) 필드(1140), 상태 코드(Status Code) 필드(1150)를 포함한다. The multi-link change request management frame illustrated in FIG. 10 includes a category field 1010, an action field 1020, a destination MAC address field 1030, and a source MAC address. ) Field 1040, and multi-link adaptation field 1050. The multi-link change request management frame illustrated in FIG. 11 includes a category field 1110, an action field 1120, a destination MAC address field 1130, and a source MAC address. An address field 1140 and a status code field 1150.
멀티 링크 변경 요청 관리 프레임 및 멀티 링크 변경 응답 관리 프레임의 카테고리 필드(1010, 1110)와 액션 필드(1020, 1120)는 해당 프레임들의 카테고리와 동작 내용을 나타낸다. 또한 멀티 링크 변경 요청 관리 프레임 및 멀티 링크 변경 응답 관리 프레임의 목적지 어드레스 필드(1030, 1130)는 해당 프레임을 수신하게 될 목적지가 되는 스테이션의 MAC 어드레스, 또는 수신기의 MAC 어드레스를 나타낸다. 소스 어드레스 필드(1040, 1140)는 해당 필드를 전송하는 소스가 되는 스테이션의 MAC 어드레스, 또는 전송기의 MAC 어드레스를 나타낸다. The category fields 1010 and 1110 and the action fields 1020 and 1120 of the multi-link change request management frame and the multi-link change response management frame indicate categories and operation contents of the corresponding frames. In addition, the destination address fields 1030 and 1130 of the multi-link change request management frame and the multi-link change response management frame indicate a MAC address of a station which is to receive a corresponding frame, or a MAC address of a receiver. The source address fields 1040 and 1140 indicate the MAC address of the station which is the source for transmitting the corresponding field, or the MAC address of the transmitter.
멀티 링크 변경 요청 관리 프레임의 멀티 링크 적응 필드(1050)에는 링크 변경을 요청하는지 여부 및/또는 어느 링크로 변경할 것인지에 대한 정보가 포함된다. 예컨대 멀티 링크 적응 필드(1050)의 필드값을 0으로 설정하여 전송하는 경우, 전송기는 수신기에게 주 링크를 사용할 것임을 알릴 수 있다. 또한 멀티 링크 적응 필드(1050)의 필드값을 1로 설정하여 전송하는 경우, 전송기는 수신기에게 부 링크를 사용할 것임을 알릴 수 있다. The multi-link adaptation field 1050 of the multi-link change request management frame includes information on whether to request a link change and / or to which link. For example, when transmitting by setting the field value of the multi-link adaptation field 1050 to 0, the transmitter may inform the receiver that it will use the primary link. In addition, when transmitting by setting the field value of the multi-link adaptation field 1050 to 1, the transmitter may inform the receiver that the secondary link will be used.
멀티 링크 변경 요청 관리 프레임에 상응하여 수신기가 전송하는 멀티 링크 변경 응답 관리 프레임의 상태 코드 필드(1150)는 링크 변경에 대한 가부 또는 수락 여부를 나타내는 필드이다. 예컨대 수신기는 멀티 링크 변경 응답 관리 프레임의 상태 코드 필드(1150)의 필드값을 0 또는 1로 설정하여 링크 변경을 수락하는지 여부를 나타낼 수 있다. The status code field 1150 of the multi-link change response management frame transmitted by the receiver corresponding to the multi-link change request management frame is a field indicating whether or not to accept a link change. For example, the receiver may indicate whether to accept a link change by setting a field value of the status code field 1150 of the multi-link change response management frame to 0 or 1.
도 12는 본 발명의 실시예에 따른 멀티 링크 적응 절차를 수행하는 무선통신 장치를 나타낸 도면이다. 본 발명의 실시예에 따른 무선통신 장치는 프로세서(1210)와 RF 부(1220) 및 메모리(1230)를 포함한다. 즉 도 12에 도시된 무선통신 장치는 멀티 링크를 지원하고 멀티 링크에 대한 빔 트레이닝 절차를 수행할 수 있으며 본 발명의 실시예에 따라 멀티 링크 간 링크 변경, 멀티 링크 적응 절차 및/또는 멀티 링크 적응 방법을 수행할 수 있다. 12 illustrates a wireless communication device for performing a multi-link adaptation procedure according to an embodiment of the present invention. The wireless communication device according to the embodiment of the present invention includes a processor 1210, an RF unit 1220, and a memory 1230. That is, the wireless communication device illustrated in FIG. 12 may support a multi-link and perform a beam training procedure for a multi-link, and according to an embodiment of the present invention, a link change between multi-links, a multi-link adaptation procedure, and / or a multi-link adaptation The method can be performed.
무선통신 장치는 프로세서(processor)(1210)와 RF(radio frequency) 부(1220)를 포함한다. 메모리(1230)는 프로세서(1210)와 연결되어, 프로세서(1210)를 구동하기 위한 다양한 정보를 저장한다. 프로세서(1210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(1230)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 이 밖에도 무선통신 장치는 디스플레이부나 사용자 인터페이스를 더 포함할 수 있으나 도면상에 도시하지 않으며, 상세한 설명 또한 생략하도록 한다. The wireless communication device includes a processor 1210 and a radio frequency (RF) unit 1220. The memory 1230 is connected to the processor 1210 and stores various information for driving the processor 1210. The processor 1210 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and / or a data processing device. The memory 1230 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device. In addition, the wireless communication device may further include a display unit or a user interface, but is not illustrated in the drawings, and detailed description thereof will be omitted.
프로세서(1210)는 PLCP 헤더, RTS 프레임 또는 QoS 널 프레임이나 QoS 데이터 프레임, 멀티 링크 적응 요청 메시지 등에 링크 변경에 대한 요청 사항을 포함시킨다. 그리고 링크 변경 요청이나 변경 링크에 대한 정보가 포함된 상기 PLCP 헤더, RTS 프레임 또는 QoS 널 프레임이나 QoS 데이터 프레임, 멀티 링크 적응 요청 메시지 등을 수신한 수신기의 프로세서(1210)는 링크 변경을 수행하거나 이에 응답하여 링크 변경을 확인(confirm)한다. 물론 이들 메시지 또는 제어 신호는 RF 부(1220)를 통해 송수신될 수 있으며 메모리(1230)에 임시적으로 또는 영구적으로 저장 가능하다. The processor 1210 includes a request for link change in a PLCP header, an RTS frame or a QoS null frame or a QoS data frame, a multilink adaptation request message, and the like. The processor 1210 of the receiver that receives the PLCP header, the RTS frame or the QoS null frame or the QoS data frame, the multi-link adaptation request message, etc. including the link change request or the information on the change link, performs a link change or the like. Confirm the link change in response. Of course, these messages or control signals may be transmitted and received through the RF unit 1220 and may be temporarily or permanently stored in the memory 1230.
수신기로부터 링크 변경에 대한 응답을 받거나 PLCP 헤더를 전송한 전송기의 프로세서(1210)는 링크를 변경하고, 변경된 링크로 RF부(1220)를 통해 데이터를 전송한다. The processor 1210 of the transmitter receiving the response to the link change or transmitting the PLCP header from the receiver changes the link and transmits data through the RF unit 1220 to the changed link.
상술한 모든 방법은 상기 방법을 수행하도록 코딩된 소프트웨어나 프로그램 코드 등에 따른 마이크로프로세서, 제어기, 마이크로 제어기, ASIC(Application Specific Integrated Circuit) 등과 같은 프로세서 또는 도 3에 도시된 단말의 프로세서에 의해 수행될 수 있다. 상기 코드의 설계, 개발 및 구현은 본 발명의 설명에 기초하여 당업자에게 자명하다고 할 것이다. All the above-described methods may be performed by a processor such as a microprocessor, a controller, a microcontroller, an application specific integrated circuit (ASIC), or the like according to software or program code coded to perform the method, or a processor of a terminal shown in FIG. 3. have. The design, development and implementation of the code will be apparent to those skilled in the art based on the description of the present invention.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.Although the present invention has been described above with reference to the embodiments, it will be apparent to those skilled in the art that the present invention may be modified and changed in various ways without departing from the spirit and scope of the present invention. I can understand. Therefore, the present invention is not limited to the above-described embodiment, and the present invention will include all embodiments within the scope of the following claims.

Claims (12)

  1. 빔 트레이닝 절차를 통해 주 링크 및 부 링크를 찾는 단계; Finding a primary link and a secondary link through a beam training procedure;
    하나의 전송 기회 내에서 주 링크와 부 링크 중 어느 하나의 링크를 통해 데이터 전송 도중, 링크 변경 정보를 수신기로 전송하는 단계; Transmitting link change information to a receiver during data transmission on either link of the primary link and the secondary link within one transmission opportunity;
    상기 링크 변경 정보에 대한 ACK(Acknowledgement)를 수신하는 단계; 및 Receiving an acknowledgment (ACK) for the link change information; And
    상기 주 링크와 상기 부 링크 중, 상기 링크 변경 정보에 따라 링크를 변경하는 단계를 포함하는 멀티 링크 적응 방법. Changing a link according to the link change information among the primary link and the secondary link.
  2. 제1항에 있어서, The method of claim 1,
    상기 주 링크와 상기 부 링크 중, 상기 링크 변경 정보에 따라 변경된 링크를 통해 나머지 데이터를 전송하는 단계를 더 포함하는 멀티 링크 적응 방법.And transmitting remaining data over the changed link according to the link change information among the primary link and the secondary link.
  3. 제1항에 있어서, The method of claim 1,
    상기 링크 변경 정보는 QoS(Quality of Service) 널 프레임(QoS Null frame)에 포함되어 전송되는 것을 특징으로 하는 멀티 링크 적응 방법. The link change information is transmitted in a manner of being included in a quality of service (QoS) null frame.
  4. 제1항에 있어서, The method of claim 1,
    상기 링크 변경 정보는 QoS 데이터 프레임(QoS DATA frame)에 포함되어 전송되는 것을 특징으로 하는 멀티 링크 적응 방법. The link change information is included in the QoS data frame (QoS DATA frame), characterized in that transmitted in the multi-link adaptation method.
  5. 제1항에 있어서, The method of claim 1,
    상기 링크 변경 정보를 전송하기 전에, RTS(request to send) 프레임을 전송하고 CTS(clear to send) 프레임을 수신하면서 상기 전송 기회에서 링크가 변경되기 전까지 사용할 상기 어느 하나의 링크를 결정하는 단계를 더 포함하는 멀티 링크 적응 방법. Prior to transmitting the link change information, further determining the one link to be used before transmitting the link at the transmission opportunity while transmitting a request to send (RTS) frame and receiving a clear to send (CTS) frame. Multi-link adaptation method that includes.
  6. 제1항에 있어서, The method of claim 1,
    상기 주 링크와 상기 부 링크는 서로 채널 상관도(channel correlation)가 낮은 것을 특징으로 하는 멀티 링크 적응 방법. And the primary link and the secondary link have low channel correlation with each other.
  7. 빔 트레이닝 절차를 통해 주 링크 및 부 링크를 찾는 단계; Finding a primary link and a secondary link through a beam training procedure;
    링크 변경 정보가 포함된 멀티 링크 적응 요청 메시지를 상기 주 링크와 부 링크 중 어느 하나의 링크를 통해 수신기로 전송하는 단계; Transmitting a multi-link adaptation request message including link change information to a receiver through one of the primary link and the secondary link;
    상기 수신기로부터 멀티 링크 적응 응답 메시지를 수신하는 단계; 및 Receiving a multilink adaptation response message from the receiver; And
    상기 주 링크와 부 링크 중, 상기 링크 변경 정보에 따라 링크를 변경하는 단계를 포함하는 멀티 링크 적응 방법. And changing the link according to the link change information among the primary link and the secondary link.
  8. 제7항에 있어서, The method of claim 7, wherein
    변경된 링크를 통해 RTS 프레임을 전송하는 단계; 및Transmitting an RTS frame over the changed link; And
    상기 주 링크와 부 링크 중, 상기 링크 변경 정보에 따라 변경된 링크를 통해 CTS 프레임을 수신하는 단계를 더 포함하는 멀티 링크 적응 방법Receiving a CTS frame through the link changed in accordance with the link change information of the primary link and the secondary link, further comprising the step of
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 주 링크와 부 링크 중, 상기 링크 변경 정보에 따라 변경된 링크를 통해 데이터를 전송하는 단계를 더 포함하는 멀티 링크 적응 방법. And transmitting data over the changed link according to the link change information among the primary link and the secondary link.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 주 링크와 상기 부 링크는 서로 채널 상관도가 낮은 것을 특징으로 하는 멀티 링크 적응 방법. And the primary link and the secondary link have low channel correlation with each other.
  11. 빔 트레이닝 절차를 통해 주 링크 및 부 링크를 찾는 단계; Finding a primary link and a secondary link through a beam training procedure;
    주 링크와 부 링크 중 어느 하나의 링크를 통해 링크 변경 정보가 포함된 PLCP(physical layer convergence procedure) 헤더를 수신기로 전송하는 단계; Transmitting a physical layer convergence procedure (PLCP) header including link change information to a receiver through any one of a primary link and a secondary link;
    상기 주 링크와 부 링크 중에서, 상기 링크 변경 정보에 따른 링크를 통해 상기 PLCP 헤더에 상응하는 데이터를 전송하는 단계를 포함하는 멀티 링크 적응 방법.Transmitting data corresponding to the PLCP header through the link according to the link change information among the primary link and the secondary link.
  12. 제11항에 있어서, The method of claim 11,
    상기 PLCP 헤더에는 상기 PLCP 헤더에 상응하는 데이터가 다른 링크를 통해 전송될 것이라는 정보가 더 포함되는 것을 특징으로 하는 멀티 링크 적응 방법.The PLCP header further includes information that data corresponding to the PLCP header will be transmitted through another link.
PCT/KR2010/003120 2009-05-22 2010-05-18 Apparatus and method for multilink adaptation WO2010134737A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18044209P 2009-05-22 2009-05-22
US61/180,442 2009-05-22
KR1020090101294A KR20100126159A (en) 2009-05-22 2009-10-23 Method of multi-link adaptation
KR10-2009-0101294 2009-10-23

Publications (2)

Publication Number Publication Date
WO2010134737A2 true WO2010134737A2 (en) 2010-11-25
WO2010134737A3 WO2010134737A3 (en) 2011-03-03

Family

ID=43126640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003120 WO2010134737A2 (en) 2009-05-22 2010-05-18 Apparatus and method for multilink adaptation

Country Status (1)

Country Link
WO (1) WO2010134737A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176684A1 (en) * 2014-05-23 2015-11-26 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same
US9954590B2 (en) 2014-05-23 2018-04-24 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same
CN110225548A (en) * 2018-03-01 2019-09-10 苹果公司 Request sends (RTS)/clear to send (CTS) design in 5G
CN110337787A (en) * 2017-02-23 2019-10-15 高通股份有限公司 Beam scanning for controlling and data are transmitted
WO2020032633A1 (en) * 2018-08-10 2020-02-13 엘지전자 주식회사 Method and device for transmitting signal through multi-link in wireless lan system
WO2021002617A1 (en) * 2019-07-02 2021-01-07 엘지전자 주식회사 Mapping of tid and link in multi-link
WO2021006545A1 (en) * 2019-07-05 2021-01-14 현대자동차주식회사 Multiplex transmission method and apparatus in multi-link wireless lan
WO2021010663A1 (en) * 2019-07-12 2021-01-21 한국전자통신연구원 Link setting method and device for multi-link transmission in wireless lan communication system
WO2021085948A1 (en) * 2019-10-31 2021-05-06 현대자동차주식회사 Method and apparatus for cooperative communication using multi-link in communication system
WO2021225367A1 (en) * 2020-05-04 2021-11-11 주식회사 윌러스표준기술연구소 Wireless communication method using multiple links, and wireless communication terminal using same
WO2021225328A1 (en) * 2020-05-04 2021-11-11 현대자동차주식회사 Method and device for indicating data transmission in communication system supporting multiple links
WO2021246656A1 (en) * 2020-06-01 2021-12-09 엘지전자 주식회사 Method for transmitting preferred link information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051436A1 (en) * 2000-10-27 2002-05-02 L-3 Communications Corporation Use of wide element spacing to improve the flexibility of a circular basestation antenna array in a space division/multiple access synchronous CDMA communication system
US20080049672A1 (en) * 2006-07-13 2008-02-28 Oz Barak Point to point communication method with interference mitagation
US20080159362A1 (en) * 2006-12-29 2008-07-03 Clearwire Corporation System and method for adaptive modulation and power control in a wireless communication system
US20080212526A1 (en) * 2007-03-02 2008-09-04 Ozgur Oyman Link adaptation and antenna selection in cooperative multiple access systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020051436A1 (en) * 2000-10-27 2002-05-02 L-3 Communications Corporation Use of wide element spacing to improve the flexibility of a circular basestation antenna array in a space division/multiple access synchronous CDMA communication system
US20080049672A1 (en) * 2006-07-13 2008-02-28 Oz Barak Point to point communication method with interference mitagation
US20080159362A1 (en) * 2006-12-29 2008-07-03 Clearwire Corporation System and method for adaptive modulation and power control in a wireless communication system
US20080212526A1 (en) * 2007-03-02 2008-09-04 Ozgur Oyman Link adaptation and antenna selection in cooperative multiple access systems

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876549B2 (en) 2014-05-23 2018-01-23 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same
US9954590B2 (en) 2014-05-23 2018-04-24 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same
WO2015176684A1 (en) * 2014-05-23 2015-11-26 Mediatek Inc. Methods for efficient beam training and communications apparatus and network control device utilizing the same
CN110337787B (en) * 2017-02-23 2022-06-28 高通股份有限公司 Beam scanning for control and data transmission
CN110337787A (en) * 2017-02-23 2019-10-15 高通股份有限公司 Beam scanning for controlling and data are transmitted
CN110225548A (en) * 2018-03-01 2019-09-10 苹果公司 Request sends (RTS)/clear to send (CTS) design in 5G
CN110225548B (en) * 2018-03-01 2022-09-06 苹果公司 Request To Send (RTS)/Clear To Send (CTS) design in 5G
WO2020032633A1 (en) * 2018-08-10 2020-02-13 엘지전자 주식회사 Method and device for transmitting signal through multi-link in wireless lan system
US11723094B2 (en) 2018-08-10 2023-08-08 Lg Electronics Inc. Method and device for transmitting signal through multi-link in wireless LAN system
WO2021002617A1 (en) * 2019-07-02 2021-01-07 엘지전자 주식회사 Mapping of tid and link in multi-link
WO2021006545A1 (en) * 2019-07-05 2021-01-14 현대자동차주식회사 Multiplex transmission method and apparatus in multi-link wireless lan
WO2021010663A1 (en) * 2019-07-12 2021-01-21 한국전자통신연구원 Link setting method and device for multi-link transmission in wireless lan communication system
WO2021085948A1 (en) * 2019-10-31 2021-05-06 현대자동차주식회사 Method and apparatus for cooperative communication using multi-link in communication system
WO2021225328A1 (en) * 2020-05-04 2021-11-11 현대자동차주식회사 Method and device for indicating data transmission in communication system supporting multiple links
WO2021225367A1 (en) * 2020-05-04 2021-11-11 주식회사 윌러스표준기술연구소 Wireless communication method using multiple links, and wireless communication terminal using same
WO2021246656A1 (en) * 2020-06-01 2021-12-09 엘지전자 주식회사 Method for transmitting preferred link information

Also Published As

Publication number Publication date
WO2010134737A3 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
WO2010134737A2 (en) Apparatus and method for multilink adaptation
US10122499B2 (en) Method and apparatus for ACK transmission in a WLAN
KR101621096B1 (en) Method for multicast frame transmission and duplicated multicast frame detection
KR101543803B1 (en) Method and apparatus of processing multicast frame
CN110326230B (en) Fast beam refinement phase for periodic beamforming training
US9397737B2 (en) Method and apparatus for indicating destination stations in WLAN system supporting multi-user multiple input multiple output
KR101973746B1 (en) Method and apparatus for transmitting a frame in a wireless lan system
WO2015069090A1 (en) Station and wireless link configuration method therefor
KR20100138692A (en) Method of performing link adaptation procedure
US8886116B2 (en) Link adaptation method and apparatus in wireless LAN system
EP2653005A2 (en) Millimeter-wave communication station and methods for station and information discovery in a millimeter-wave basic service set
EP1787401A2 (en) Implementing a smart antenna in a wireless local area network
JP2009519690A (en) Dual CTS protection system and method
KR20100028933A (en) Protocol architecture for overlay wlan and/or millimeter portal, and frame format and frame transmission method for the protocol architecture in a vht wlan system
WO2018160672A1 (en) Partial multi-antenna sector level sweep
WO2022012561A1 (en) Data transmission method and apparatus
KR100678972B1 (en) Apparatus and method for transmitting/receiving wireless data
KR20070073556A (en) Method and apparatus for transmitting/receiving wireless data
JP2009525000A (en) Send notification instructions
KR101511471B1 (en) Commuinication method and wireless device using the same
US20240163787A1 (en) Multi link device cooperation in wireless communication networks
US20230299816A1 (en) Multi-Antenna Wireless Transmitter and Method with MIMO Beamforming
US20240154764A1 (en) Method and apparatus for transmitting and receiving block ack in wireless communication system supporting multi-link
KR20100137341A (en) Method of directional link measurement
US20240146370A1 (en) Asymmetric coordinated beamforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777924

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777924

Country of ref document: EP

Kind code of ref document: A2