WO2010134612A1 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
WO2010134612A1
WO2010134612A1 PCT/JP2010/058673 JP2010058673W WO2010134612A1 WO 2010134612 A1 WO2010134612 A1 WO 2010134612A1 JP 2010058673 W JP2010058673 W JP 2010058673W WO 2010134612 A1 WO2010134612 A1 WO 2010134612A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
recording layer
underlayer
magnetic recording
Prior art date
Application number
PCT/JP2010/058673
Other languages
French (fr)
Japanese (ja)
Inventor
猛伯 梶原
藤吉郎 佐藤
貴弘 尾上
Original Assignee
ダブリュディ・メディア・シンガポール・プライベートリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダブリュディ・メディア・シンガポール・プライベートリミテッド filed Critical ダブリュディ・メディア・シンガポール・プライベートリミテッド
Publication of WO2010134612A1 publication Critical patent/WO2010134612A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/736Non-magnetic layer under a soft magnetic layer, e.g. between a substrate and a soft magnetic underlayer [SUL] or a keeper layer
    • G11B5/7363Non-magnetic single underlayer comprising nickel
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer
    • G11B5/678Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer having three or more magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • G11B5/737Physical structure of underlayer, e.g. texture

Definitions

  • the present invention relates to a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) or the like.
  • a perpendicular magnetic recording method has been proposed in order to achieve a high recording density in a magnetic recording medium used for an HDD or the like.
  • the perpendicular magnetic recording medium used for the perpendicular magnetic recording system is adjusted so that the easy axis of magnetization of the magnetic recording layer is oriented in the direction perpendicular to the substrate surface.
  • the perpendicular magnetic recording method can suppress the so-called thermal fluctuation phenomenon in which the thermal stability of the recording signal is lost due to the superparamagnetic phenomenon, and the recording signal disappears. Suitable for higher recording density.
  • Non-Patent Document 1 As a magnetic recording medium used in the perpendicular magnetic recording system, a CoCrPt—SiO 2 perpendicular magnetic recording medium (see Non-Patent Document 1) has been proposed because it exhibits high thermal stability and good recording characteristics. This is because the magnetic recording layer has a granular structure in which nonmagnetic grain boundary portions in which SiO 2 is segregated are formed between magnetic particles in which crystals of Co hcp crystal structure (hexagonal close-packed crystal lattice) are continuously grown in a columnar shape. The structure is formed, and the magnetic particles are miniaturized and the coercive force Hc is improved. It is known that an oxide is used for a nonmagnetic grain boundary (a nonmagnetic portion between magnetic grains). For example, any one of SiO 2 , Cr 2 O 3 , TiO, TiO 2 , and Ta 2 O 5 is used. Has been proposed (Patent Document 1).
  • Patent Document 2 proposes a perpendicular magnetic recording medium using an alloy containing NiW as a seed layer (pre-underlayer).
  • the seed layer is formed using a sputtering target containing Ni, and the grain size of the underlayer or the granular magnetic layer deposited subsequently to the seed layer is reduced to reduce lattice mismatch. Yes.
  • the magnetic recording medium has a higher recording density as described above, further improvement of the recording density is demanded in the future. Therefore, in order to achieve further higher recording density of the magnetic recording medium, it is necessary to establish a new method that can further improve the minimization of the OW characteristics, SNR, and track width.
  • the OW characteristic is a characteristic indicating the ease of rewriting the signal of the magnetic recording medium.
  • the OW characteristic and the coercive force Hc are basically in a trade-off relationship, and a strong coercive force Hc means that the magnetization direction is difficult to reverse, so that rewriting is difficult.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a perpendicular magnetic recording medium that can improve OW characteristics and achieve higher recording density.
  • a typical configuration of the perpendicular magnetic recording medium according to the present invention includes a magnetic recording layer for recording a signal on a substrate, and a Ru or Ru compound provided below the magnetic recording layer. And an underlayer for controlling the crystal orientation of the underlayer made of a nonmagnetic crystalline material provided under the underlayer, the preunderlayer having Ni as a main component, It is characterized by containing W as the second element and further containing Al, Zr or Si as the third element.
  • the strength ratio of the (111) plane to the (200) plane of the fcc crystal structure of the Ni crystal of the previous underlayer is improved by containing Al, Zr or Si, and the OW characteristics are also improved accordingly.
  • the strength ratio between the (111) plane and the (200) plane of the fcc crystal structure of the Ni crystal is improved, so that the Ru crystal orientation of the underlying layer is improved.
  • the crystal grains of the magnetic recording layer It is presumed that the crystal orientation is improved.
  • the content of the third element may be 1 at% to 5 at%. With this configuration, the OW characteristics of the perpendicular magnetic recording medium can be improved. On the other hand, if it is 1 at% or less, the desired effect of improving the OW characteristics cannot be obtained, and if it is 5 at% or more, the Ni content is low. The crystal orientation is reduced due to the decrease.
  • the total content of the second element and the third element may be 3 at% to 20 at%. According to this configuration, when 3 at% or less, Ni becomes magnetic (soft magnetism) and becomes a noise source. On the other hand, when 20 at% or more, Ni becomes amorphous, The crystal orientation cannot be improved. As a result, when the total content of W and Al is 3 at% to 20 at%, the OW characteristics of the perpendicular magnetic recording medium can be improved.
  • DESCRIPTION OF SYMBOLS 100 Perpendicular magnetic recording medium 110 ... Disk base
  • FIG. 1 is a diagram for explaining the configuration of a perpendicular magnetic recording medium 100 according to the present embodiment.
  • the perpendicular magnetic recording medium 100 includes a disk substrate 110, an adhesion layer 112, a first soft magnetic layer 114a, a spacer layer 114b, a second soft magnetic layer 114c, a pre-underlayer 116, a first underlayer 118a, a second underlayer 118b,
  • the disk substrate 110 may be a glass disk obtained by forming amorphous aluminosilicate glass into a disk shape by direct pressing.
  • the type, size, thickness, etc. of the glass disk are not particularly limited.
  • Examples of the material of the glass disk include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic such as crystallized glass. It is done.
  • the glass disk is subjected to grinding, polishing, and chemical strengthening sequentially to obtain a smooth non-magnetic disk base 110 made of a chemically strengthened glass disk.
  • a film is sequentially formed from the adhesion layer 112 to the auxiliary recording layer 126 by a DC magnetron sputtering method, and the medium protective layer 128 can be formed by a CVD (Chemical Vapor Deposition) method. Thereafter, the lubricating layer 130 can be formed by a dip coating method. Note that it is also preferable to use an in-line film forming method in terms of high productivity. Hereinafter, the configuration and manufacturing method of each layer will be described.
  • the adhesion layer 112 is formed in contact with the disk substrate 110, has a function of increasing the peel strength between the soft magnetic layer 114 formed on the disk substrate 110 and the disk substrate 110, and a crystal of each layer formed on the soft magnetic layer 114. It has a function to make grains finer and uniform.
  • the adhesion layer 112 is preferably an amorphous (amorphous) alloy film so as to correspond to the amorphous glass surface.
  • the adhesion layer 112 can be selected from, for example, a CrTi amorphous layer, a CoW amorphous layer, a CrW amorphous layer, a CrTa amorphous layer, or a CrNb amorphous layer.
  • the adhesion layer 112 may be a single layer made of a single material, or may be formed by laminating a plurality of layers. For example, a CoW layer or a CrW layer may be formed on the CrTi layer.
  • These adhesion layers 112 are preferably formed by sputtering with a material containing carbon dioxide, carbon monoxide, nitrogen, or oxygen, or the surface layer is exposed with these gases.
  • the soft magnetic layer 114 is a layer that temporarily forms a magnetic path during recording in order to pass magnetic flux in a direction perpendicular to the recording layer in the perpendicular magnetic recording method.
  • the soft magnetic layer 114 can be configured to have AFC (Antiferro-magnetic exchange coupling) by interposing a nonmagnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c. .
  • AFC Antiferro-magnetic exchange coupling
  • compositions of the first soft magnetic layer 114a and the second soft magnetic layer 114c include cobalt alloys such as CoTaZr, Co—Fe alloys such as CoCrFeB and CoFeTaZr, and Ni such as [Ni—Fe / Sn] n multilayer structure.
  • An Fe-based alloy or the like can be used.
  • the pre-underlayer 116 is a non-magnetic alloy layer that protects the soft magnetic layer 114 and the easy magnetization axis of the hexagonal close-packed structure (hcp crystal structure) included in the underlayer 118 formed thereon. Has a function of orienting the disk in the vertical direction of the disk.
  • the pre-underlayer 116 preferably has the (111) plane of the fcc crystal structure parallel to the main surface of the disk substrate 110. Further, the pre-underlayer 116 may have a configuration in which an fcc crystal structure and another structure or an amorphous structure are mixed.
  • an alloy containing Ni as a main component, W as the second element, and Al, Zr or Si as the third element is desirable.
  • the OW characteristics can be improved as compared with the conventional pre-underlayer 116 that does not contain the third element.
  • the coercive force Hc is improved by increasing the Ni content of the NiW alloy in the pre-underlayer 116. This is because the (111) plane of the Ni fcc crystal structure corresponds to (0001) of the hcp crystal structure of the underlayer, thereby improving the crystal orientation of the film above it and improving the coercive force Hc as a whole. It is thought to do. On the other hand, when the ratio of Ni decreases, when the predetermined ratio is exceeded, the crystal structure of the alloy containing Ni becomes amorphous.
  • the more Ni in the pre-underlayer 116 the better the crystal orientation of the layer above it, and the addition of W promotes the refinement of crystals.
  • the OW characteristics are improved. This is improved by the inclusion of the third element in the intensity ratio between the (111) plane and the (200) plane of the fcc crystal structure of the Ni crystal, and thereby the orientation of the underlayer 118 and the magnetic recording layer 122 thereon. It is presumed that this has led to an improvement.
  • the pre-underlayer 116 may have a third element content of 1 at% to 5 at%.
  • the OW characteristics can be improved by adding the third element to NiW. This is because if it is 1 at% or less, the desired effect of improving the OW characteristics cannot be obtained. On the other hand, if the content is 5 at% or more, the Ni content decreases and the crystal orientation deteriorates.
  • the ratio of the second element W and the third element Al, Zr, or Si in the pre-underlayer is preferably between 3 at% and 20 at%, which is the peak of the OW characteristics. With this configuration, the required performance can be realized. If it is 3 at% or less, Ni becomes magnetized and the front ground layer 116 becomes a noise source. On the other hand, if it is 20 at% or more, Ni becomes amorphous, and the crystal orientation of the layer above it cannot be improved, which is not preferable.
  • the underlayer 118 has an hcp crystal structure, and has a function of growing a crystal of the Co hcp crystal structure of the magnetic recording layer 122 as a granular structure. Therefore, the higher the crystal orientation of the underlayer 118, that is, the more the (0001) plane of the crystal of the underlayer 118 is parallel to the main surface of the disk substrate 110, the more the orientation of the magnetic recording layer 122 is improved. Can do.
  • Ru is a typical material for the underlayer 118, but in addition, it can be selected from RuCr and RuCo. Since Ru has an hcp crystal structure and the crystal lattice spacing is close to Co, the magnetic recording layer 122 containing Co as a main component can be well oriented.
  • the underlayer 118 is made of Ru
  • a two-layer structure made of Ru can be obtained by changing the gas pressure during sputtering.
  • the Ar gas pressure is set to a predetermined pressure, that is, a low pressure
  • the first lower layer 118b on the lower layer side is formed.
  • the gas pressure of Ar is set higher than when forming the first underlayer 118a, that is, the pressure is increased.
  • oxygen is included in the second underlayer formed immediately below the magnetic recording layer in the underlayer 118 constituted by two layers. That is, the second underlayer is made of RuO. Thereby, said advantage can be acquired most effectively.
  • oxygen may be contained by reactive sputtering, but it is preferable to use a target containing oxygen at the time of sputtering film formation.
  • the nonmagnetic granular layer 120 is a nonmagnetic layer having a granular structure.
  • a nonmagnetic granular layer 120 is formed on the hcp crystal structure of the underlayer 118, and a granular layer of the lower recording layer 122a (that is, the entire magnetic recording layer 122) is grown thereon, thereby initial growth of the magnetic granular layer. It has an action of separating from the stage (rise). Thereby, isolation of the magnetic particles of the magnetic recording layer 122 can be promoted.
  • the composition of the nonmagnetic granular layer 120 can be a granular structure by forming a grain boundary by segregating a nonmagnetic substance between nonmagnetic crystal grains made of a Co-based alloy.
  • CoCr—SiO 2 is used for the nonmagnetic granular layer 120.
  • SiO 2 nonmagnetic substance
  • the nonmagnetic granular layer 120 has a granular structure.
  • CoCr—SiO 2 is an example, and the present invention is not limited to this.
  • CoCrRu—SiO 2 can be preferably used, and Rh (rhodium), Pd (palladium), Ag (silver), Os (osmium), Ir (iridium), Au (gold) can be used instead of Ru. Can also be used.
  • a non-magnetic substance is a substance that can form a grain boundary around magnetic particles so that exchange interaction between magnetic particles (magnetic grains) is suppressed or blocked, and cobalt (Co). Any non-magnetic substance that does not dissolve in solution can be used. Examples thereof include silicon oxide (SiOx), chromium (Cr), chromium oxide (Cr 2 O 3 ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 5 ).
  • the nonmagnetic granular layer 120 is provided on the underlayer 188 (second underlayer 188b).
  • the present invention is not limited to this.
  • the recording medium 100 can also be configured.
  • the magnetic recording layer 122 has a columnar granular structure in which a nonmagnetic substance is segregated around a magnetic particle of a hard magnetic material selected from a Co alloy, an Fe alloy, and a Ni alloy to form a grain boundary. Yes.
  • the magnetic particles can be epitaxially grown continuously from the granular structure.
  • the magnetic recording layer 122 includes a lower recording layer 122a, an intervening layer 122b, a first main recording layer 122c, and a second main recording layer 122d. Thereby, small crystal grains of the first main recording layer 122c and the second main recording layer 122d continue to grow from the crystal grains (magnetic particles) of the lower recording layer 122a, and the main recording layer can be miniaturized. SNR can be improved.
  • CoCrPt—Cr 2 O 5 —SiO 2 is used for the lower recording layer 122a.
  • CoCrPt—Cr 2 O 5 —SiO 2 Cr 2 O 5 and SiO 2 (oxide), which are nonmagnetic substances, segregate around magnetic particles (grains) made of CoCrPt to form grain boundaries, and magnetic A granular structure is formed in which particles grow in a columnar shape. The magnetic particles were epitaxially grown continuously from the granular structure of the nonmagnetic granular layer 120.
  • the intervening layer 122b is a non-magnetic thin film, and is interposed between the lower recording layer 122a and the first main recording layer 122c, so that the magnetic continuity between them is divided. At this time, by setting the thickness of the intervening layer 122b to a predetermined thickness (0.7 to 0.9 nm), antiferromagnetic exchange coupling (AFC) is established between the lower recording layer 122a and the first main recording layer 122c. ) Occurs. As a result, magnetization is attracted between the upper and lower layers of the intervening layer 122b and acts to fix the magnetization directions to each other, so that fluctuations in the magnetization axis can be reduced and noise can be reduced.
  • AFC antiferromagnetic exchange coupling
  • the intervening layer 122b may be made of Ru or a Ru compound. This is because Ru has an atomic interval close to that of Co constituting the magnetic particles, and thus it is difficult to inhibit the epitaxial growth of Co crystal particles even if it is interposed between the magnetic recording layers 122. In addition, even if the intervening layer 122b is extremely thin, it is difficult to inhibit the epitaxial growth.
  • the lower recording layer 122a is a magnet that is continuous with the first main recording layer 122c and the second main recording layer 122d without the intervening layer 122b. Become. Further, by reducing the film thickness of the lower recording layer 122a, the aspect ratio of the granular magnetic particles is shortened (in the perpendicular magnetic recording medium, the film thickness direction corresponds to the longitudinal direction of the easy axis of magnetization). The demagnetizing field generated inside becomes stronger. For this reason, although the lower recording layer 122a is hard magnetic, the magnetic moment to be exposed to the outside becomes small and it is difficult to be picked up by the magnetic head.
  • the magnetic moment (magnet strength) is such that the magnetic flux does not easily reach the magnetic head and has a magnetic interaction with the first main recording layer 122c. ), A magnetic recording layer with low noise while exhibiting a high coercive force can be obtained.
  • the first main recording layer 122c is made of CoCrPt—SiO 2 —TiO 2 .
  • nonmagnetic materials such as SiO 2 and TiO 2 (composite oxide) are segregated around the magnetic grains (grains) made of CoCrPt to form grain boundaries, and the magnetic grains Formed a granular structure with columnar growth.
  • the second main recording layer 122d is continuous with the first main recording layer 122c, but the composition and film thickness are different.
  • the second main recording layer 122d is made of CoCrPt—SiO 2 —TiO 2 —Co 3 O 4 .
  • nonmagnetic materials such as SiO 2 , TiO 2 , and Co 3 O 4 (composite oxide) are segregated around the magnetic grains (grains) made of CoCrPt to form grain boundaries. As a result, a granular structure in which magnetic grains were grown in a columnar shape was formed.
  • the second main recording layer 122d includes a larger amount of oxide than the first main recording layer 122c. Thereby, separation of crystal grains can be promoted stepwise from the first main recording layer 122c to the second main recording layer 122d.
  • the second main recording layer 122d contains Co oxide.
  • SiO 2 or TiO 2 is mixed as an oxide, there is a fact that oxygen deficiency occurs, Si ions or Ti ions are mixed into the magnetic particles, the crystal orientation is disturbed, and the holding force Hc is reduced. Therefore, by containing Co oxide, it can function as an oxygen carrier for compensating for this oxygen deficiency.
  • Co 3 O 4 is exemplified as the Co oxide, but CoO may be used.
  • Co oxide has Gibbs liberalization energy ⁇ G larger than that of SiO 2 or TiO 2 , and Co ions and oxygen ions are easily separated. Therefore, oxygen is preferentially separated from the Co oxide, and oxygen vacancies generated in SiO 2 and TiO 2 are compensated to complete Si and Ti ions as oxides, which can be precipitated at grain boundaries. Thereby, it can prevent that foreign materials, such as Si and Ti, mix in a magnetic particle, and can prevent disordering the crystallinity of a magnetic particle by the mixing. At this time, surplus Co ions are considered to be mixed in the magnetic particles, but since the magnetic particles are a Co alloy in the first place, the magnetic properties are not impaired. Accordingly, the crystallinity and crystal orientation of the magnetic particles are improved, and the coercive force Hc can be increased. Further, since the saturation magnetization Ms is improved, there is an advantage that the overwrite characteristic is also improved.
  • the second main recording layer 122d is preferably thicker than the first main recording layer 122c.
  • the first main recording layer 122c is 2 nm and the second main recording layer 122d is 8 nm. be able to.
  • the materials used for the lower recording layer 122a, the first main recording layer 122c, and the second main recording layer 122d described above are merely examples, and the present invention is not limited thereto.
  • Examples of nonmagnetic substances for forming grain boundaries include silicon oxide (SiO x ), chromium (Cr), chromium oxide (Cr X O Y ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and oxidation.
  • the oxide include tantalum (Ta 2 O 5 ), iron oxide (Fe 2 O 3 ), and boron oxide (B 2 O 3 ).
  • nitrides such as BN, a carbide such as B 4 C 3 can also be suitably used.
  • two types of nonmagnetic substances are used in the lower recording layer 122a and the first main recording layer 122c, and three types of nonmagnetic substances (oxides) are used in the second main recording layer 122d. Absent.
  • one type of nonmagnetic material may be used, or two or more types of nonmagnetic materials may be used in combination. .
  • the magnetic recording layer is CoCrPt—SiO 2 —TiO 2. 2 is preferable.
  • the dividing layer 124 is a nonmagnetic layer provided between the magnetic recording layer 122 (second main recording layer 122d) and the auxiliary recording layer 126. However, the dividing layer 124 is formed thicker than the intervening layer 122b. Thereby, not the antiferromagnetic exchange coupling but the ferromagnetic exchange coupling occurs as a magnetic effect between the magnetic recording layer 122 and the auxiliary recording layer 126. Thereby, the magnetic recording layer 122 acts as a pinned layer (magnetization direction fixed layer) with respect to the auxiliary recording layer 126, and noise caused by the auxiliary recording layer 126 can be reduced and SNR can be improved.
  • the dividing layer 124 can be constituted by a thin film containing Ru, a Ru compound, Ru and oxygen, or Ru and an oxide. This can also reduce noise caused by the auxiliary recording layer 126.
  • oxygen contained in the dividing layer 124 is segregated on the oxide of the magnetic recording layer 122, and Ru is segregated on the magnetic particles. This is because the crystal structure of the auxiliary recording layer 126 can be inherited to Co.
  • the oxide contained in Ru of the split layer 124 may be RuO, RuWO 3 , or RuTiO 2 .
  • WO 3 can obtain a high effect.
  • WO 3 is preferable because it can have both the effect of adding oxygen and the effect of adding oxide.
  • the oxide include silicon oxide (SiO x ), chromium (Cr), chromium oxide (Cr X O Y ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O). 5 ), oxides such as iron oxide (Fe 2 O 3 ) and boron oxide (B 2 O 3 ). Further, nitrides such as BN, a carbide such as B 4 C 3 can also be suitably used.
  • the auxiliary recording layer 126 is a magnetic layer that is substantially magnetically continuous in the in-plane direction of the main surface of the substrate.
  • the auxiliary recording layer 126 needs to be adjacent or close to the magnetic recording layer 122 so as to have a magnetic interaction.
  • As the material of the auxiliary recording layer 126 for example, CoCrPt, CoCrPtB, or a small amount of oxides can be contained in these.
  • the purpose of the auxiliary recording layer 126 is to adjust the reverse domain nucleation magnetic field Hn and the coercive force Hc, thereby improving the heat-resistant fluctuation characteristics, the OW characteristics, and the SNR.
  • the auxiliary recording layer 126 has high perpendicular magnetic anisotropy Ku and saturation magnetization Ms.
  • the auxiliary recording layer 126 is provided above the magnetic recording layer 122, but may be provided below.
  • magnetically continuous means that magnetism is continuous.
  • substantially continuous means that the magnetism may be discontinuous due to grain boundaries of crystal grains, etc., instead of a single magnet when observed in the entire auxiliary recording layer 126.
  • the grain boundaries are not limited to crystal discontinuities, and Cr may be segregated, and further, a minute amount of oxide may be contained and segregated.
  • the area is smaller than the grain boundary of the magnetic recording layer 122 (the content of the oxide is small).
  • Hn and Hc can be adjusted by having a magnetic interaction (perform exchange coupling) with the granular magnetic particles of the magnetic recording layer 122, and heat resistance. It is thought that fluctuation characteristics and SNR are improved.
  • the crystal particles (crystal particles having magnetic interaction) connected to the granular magnetic particles have a larger area than the cross-section of the granular magnetic particles, the magnetization is easily reversed by receiving a large amount of magnetic flux from the magnetic head. It is thought to improve the characteristics.
  • the medium protective layer 128 can be formed by depositing carbon by a CVD method while maintaining a vacuum.
  • the medium protective layer 128 is a layer for protecting the perpendicular magnetic recording medium 100 from the impact of the magnetic head.
  • carbon deposited by the CVD method has improved film hardness compared to that deposited by the sputtering method, so that the perpendicular magnetic recording medium 100 can be more effectively protected against the impact from the magnetic head.
  • the lubricating layer 130 can be formed of PFPE (perfluoropolyether) by dip coating.
  • PFPE perfluoropolyether
  • PFPE has a long chain molecular structure and binds with high affinity to N atoms on the surface of the medium protective layer 128. Due to the action of the lubricating layer 130, even if the magnetic head comes into contact with the surface of the perpendicular magnetic recording medium 100, the medium protective layer 128 can be prevented from being damaged or lost.
  • the perpendicular magnetic recording medium 100 can improve the OW characteristics by adding Al, Zr, or Si as the third element to the pre-underlayer 116 as described above. This is because the intensity ratio between the (111) plane and the (200) plane of the fcc crystal structure of the Ni crystal of the pre-underlayer 116 is improved by containing Al, Zr or Si. It is presumed that this leads to an improvement in the orientation of the recording layer 122.
  • Example 1 according to the present embodiment will be described.
  • Example 1 On the disk substrate 110, a film was formed in order from the adhesion layer 112 to the auxiliary recording layer 126 in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated.
  • the adhesion layer 112 was made of CrTi.
  • the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was CoFeTaZr, and the composition of the spacer layer 114b was Ru.
  • the pre-underlayer 116 was formed using a target containing Ni, W, and Al as the third element while applying a DC bias ( ⁇ 300 V to ⁇ 500 V) to the substrate.
  • a DC bias ⁇ 300 V to ⁇ 500 V
  • a Ru film was formed in an Ar atmosphere at a predetermined pressure (low pressure: for example, 0.6 to 0.7 Pa).
  • a Ru (RuO) film containing oxygen is formed in an Ar atmosphere at a pressure higher than a predetermined pressure (high pressure: for example, 4.5 to 7 Pa) using a target containing oxygen.
  • the composition of the nonmagnetic granular layer 120 was nonmagnetic CoCr—SiO 2 .
  • the lower recording layer 122a contains Cr 2 O 5 and SiO 2 as examples of oxides in the grain boundary portion, and formed a hcp crystal structure of CoCrPt—Cr 2 O 5 —SiO 2 .
  • the intervening layer 122b was formed from Ru.
  • the first main recording layer 122c contained SiO 2 and TiO 2 as examples of complex oxides (plural types of oxides) at the grain boundary portion, and formed an hcp crystal structure of CoCrPt—SiO 2 —TiO 2 .
  • the second main recording layer 122d contains SiO 2 , TiO 2, and Co 3 O 4 as examples of complex oxides (plural types of oxides) at the grain boundary, and CoCrPt—SiO 2 —TiO 2 —Co 3. An O 4 hcp crystal structure was formed.
  • the dividing 124 formed from RuWO 3.
  • the composition of the auxiliary recording layer 126 was CoCrPtB.
  • the medium protective layer 128 was formed using C 2 H 4 and CN by the CVD method, and the lubricating layer 130 was formed using PFPE by the dip coating method.
  • FIG. 2 shows the relationship between MEW (Magnet Erase Width) and SNm (Write / Read at a medium frequency) by changing the composition ratio of the pre-underlayer 116.
  • MEW Magnetic Erase Width
  • SNm is an SNR (Signal Noise Ratio) when a write / read test is performed at a medium frequency.
  • SNR Signal Noise Ratio
  • FIG. 3 shows the relationship between MEW and SN2 by changing the composition ratio of the pre-underlayer 116.
  • SN2 is an SNR when a write / read test is performed at a predetermined high frequency (2T).
  • Example 1 and Comparative Example 1 shown in FIG. 3 are compared, Example 1 has a tendency that the MEW becomes narrower than Comparative Example 1, and SN2 is also greatly improved. From this, it can be seen that the addition of Al to the pre-underlayer 116 as in Example 1 promotes the narrowing of the track width and the improvement of the SNR in the high frequency region. From this, it can be seen that high recording density of the magnetic recording medium can be achieved by adding Al to the pre-underlayer 116.
  • FIG. 4 shows the relationship between the coercive force Hc and the reverse domain nucleation magnetic field Hn (hereinafter, simply referred to as “Hn”) by changing the composition ratio of the pre-underlayer 116.
  • Hn the reverse domain nucleation magnetic field
  • FIG. 5 is a diagram showing the result shown in FIG. 4 as a hysteresis curve.
  • Example 1 compared with Comparative Example 1, Hc is almost equal, while Hn is improved. Therefore, the slope of the hysteresis curve drawn from Example 1 is higher than that of Comparative Example 1 (changes in the direction in which the hysteresis curve stands). Thus, when the hysteresis curve stands, it means that the saturation magnetic field Hs becomes small, and it is proved that the OW characteristics are improved.
  • Example 1 1 or 3 at% Al was added as a third element to Ni-4W as described above.
  • Example 2 1, 3, 5, 10, 20 at% Al was added as a third element to Ni-5W.
  • Example 3 1 or 3 at% of Zr was added as a third element to Ni-5W.
  • Example 4 1, 3, 5 at% Si was added as a third element to Ni-5W.
  • a comparative example is Ni-5W with no third element added. Other configurations are the same as those in the first embodiment.
  • FIG. 6 shows the relationship between the addition amount of the third element and the intensity ratio of the (111) plane and the (200) plane of the fcc crystal structure by X-ray diffraction.
  • the (111) plane and the (200) plane are diffraction planes that satisfy the conditions of Bragg's law and cause diffraction, and (111) and (200) indicate the Miller index (hkl) of the diffraction plane. Comparing the comparative example with Examples 1 to 4, it can be confirmed that the strength ratio is improved by adding the third element. That is, the strength of the fcc (111) plane is increased, which indicates that the crystal orientation of the underlayer 118 having the hcp crystal structure can be improved.
  • Example 1 when the addition amount of the third element is 3 at%, the strength ratio is lower than when 1 at% is added. Therefore, the amount of the third element added is preferably about 1 at%.
  • the strength ratio decreases when the addition amount of the third element exceeds about 5 at%. Therefore, when the third element is Al, it can be seen that the addition amount is preferably 5 at% or less. Note that, as described above, if the total content of the second element and the third element exceeds 20 at%, Ni becomes amorphous and the fcc crystal structure cannot be maintained, so the contents of the second element and the third element Is preferably 3 at% to 20 at%.
  • the strength ratio of the (111) plane to the (200) plane of the fcc crystal structure is improved, and accordingly, the underlying layer thereon
  • the orientation of 118 and the magnetic recording layer 122 is also improved. This can contribute to the improvement of the OW characteristics of the perpendicular magnetic recording medium 100.
  • FIG. 7 is a diagram showing the effectiveness of each embodiment.
  • FIG. 7A is a table showing the compositions of Examples and Comparative Examples and measured values in each measurement item
  • FIG. 7B is a graph showing the relationship between MEW and SNR in FIG. 7B.
  • Example 5 in Examples 5 to 7, two kinds of third elements are added in the range of 1 at% to 5 at%, respectively.
  • 1 at% Al was added to Ni-4W as the first third element, and 1, 3, 5 at% Si was added as the other third element.
  • Example 6 1 at% Si was added as the first third element to Ni-4W, and 1, 3, 5 at% Al was added as the other third element.
  • Example 7 1 at% Al was added as the first third element to Ni-4W, and 1 at% Zr was added as the other third element.
  • Example 1 at% Al was added as the first third element to Ni-4W, and 1 at% Zr was added as the other third element.
  • the coercive force Hc is comparable even though each example has a smaller film thickness than the comparative example. This indicates that the coercive force Hc is improved by the addition of the third element, so that the same coercive force Hc as that of the comparative example can be secured even if the film thickness is reduced. Further, referring to the item of Hn, the value of Hn in each embodiment is improved as compared with the comparative example. This indicates that the crystallinity is improved by the addition of the third element.
  • Example 5 and Example 6 achieve good values for both MEW and SNR.
  • the present invention can be used for a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) or the like.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

A perpendicular magnetic recording medium (100) comprises, on a substrate, a magnetic recording layer (122) for recording signals; a foundation layer (118), which is disposed underneath the magnetic recording layer (122) and is formed from Ru or an Ru compound; and a prefoundation layer (116), which is disposed underneath the foundation layer (118), is formed from a non-magnetic crystalline material, and serves to control the crystal orientation of the foundation layer (118). The prefoundation layer (116) comprises Ni as the primary component, W as a second element, and further, Al, Zr, or Si as a third element.

Description

垂直磁気記録媒体Perpendicular magnetic recording medium
 本発明は、垂直磁気記録方式のHDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体に関するものである。 The present invention relates to a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) or the like.
 近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径の磁気記録媒体にして、1枚あたり200GBiteを超える情報記録容量が求められるようになってきており、このような要請にこたえるためには1平方インチあたり400GBitを超える情報記録密度を実現することが求められる。 With the recent increase in information processing capacity, various information recording technologies have been developed. In particular, the surface recording density of HDDs using magnetic recording technology continues to increase at an annual rate of about 100%. Recently, a 2.5-inch diameter magnetic recording medium used for HDDs or the like has been required to have an information recording capacity exceeding 200 GB per sheet. In order to meet such a demand, one square is required. It is required to realize an information recording density exceeding 400 GB per inch.
 HDD等に用いられる磁気記録媒体において高記録密度を達成するために、近年、垂直磁気記録方式が提案されている。垂直磁気記録方式に用いられる垂直磁気記録媒体は、磁気記録層の磁化容易軸が基板面に対して垂直方向に配向するよう調整されている。垂直磁気記録方式は従来の面内記録方式に比べて、超常磁性現象により記録信号の熱的安定性が損なわれ、記録信号が消失してしまう、いわゆる熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。 In recent years, a perpendicular magnetic recording method has been proposed in order to achieve a high recording density in a magnetic recording medium used for an HDD or the like. The perpendicular magnetic recording medium used for the perpendicular magnetic recording system is adjusted so that the easy axis of magnetization of the magnetic recording layer is oriented in the direction perpendicular to the substrate surface. Compared to the conventional in-plane recording method, the perpendicular magnetic recording method can suppress the so-called thermal fluctuation phenomenon in which the thermal stability of the recording signal is lost due to the superparamagnetic phenomenon, and the recording signal disappears. Suitable for higher recording density.
 垂直磁気記録方式に用いる磁気記録媒体としては、高い熱安定性と良好な記録特性を示すことから、CoCrPt-SiO垂直磁気記録媒体(非特許文献1参照)が提案されている。これは磁気記録層において、Coのhcp結晶構造(六方最密結晶格子)の結晶が柱状に連続して成長した磁性粒子の間に、SiOが偏析した非磁性の粒界部を形成したグラニュラ構造を構成し、磁性粒子の微細化と保磁力Hcの向上をあわせて図るものである。非磁性の粒界(磁性粒子間の非磁性部分)には酸化物を用いることが知られており、例えばSiO、Cr、TiO、TiO、Taのいずれか1つを用いることが提案されている(特許文献1)。 As a magnetic recording medium used in the perpendicular magnetic recording system, a CoCrPt—SiO 2 perpendicular magnetic recording medium (see Non-Patent Document 1) has been proposed because it exhibits high thermal stability and good recording characteristics. This is because the magnetic recording layer has a granular structure in which nonmagnetic grain boundary portions in which SiO 2 is segregated are formed between magnetic particles in which crystals of Co hcp crystal structure (hexagonal close-packed crystal lattice) are continuously grown in a columnar shape. The structure is formed, and the magnetic particles are miniaturized and the coercive force Hc is improved. It is known that an oxide is used for a nonmagnetic grain boundary (a nonmagnetic portion between magnetic grains). For example, any one of SiO 2 , Cr 2 O 3 , TiO, TiO 2 , and Ta 2 O 5 is used. Has been proposed (Patent Document 1).
 ところで、磁気記録媒体の高記録密度化のために重要な要素としては、上記の保磁力Hcや逆磁区核形成磁界Hnなどの静磁気特性の向上と、オーバーライト特性(OW特性)やSNR(Signal Noise Ratio)、トラック幅の狭小化などの電磁変換特性の向上がある。これらの特性を向上させるための方法はいくつか知られているが、例えば磁気記録層の膜厚を厚くする、磁気記録層の結晶配向性を向上させる(垂直磁気異方性を高める)などの方法が知られている。 By the way, as an important factor for increasing the recording density of the magnetic recording medium, improvement of the magnetostatic characteristics such as the above-mentioned coercive force Hc and reverse domain nucleation magnetic field Hn, overwriting characteristics (OW characteristics) and SNR ( Signal Noise 電磁 Ratio) and improvement of electromagnetic conversion characteristics such as narrowing of track width. Several methods for improving these characteristics are known. For example, increasing the film thickness of the magnetic recording layer, improving the crystal orientation of the magnetic recording layer (increasing perpendicular magnetic anisotropy), etc. The method is known.
 特に、磁気記録層の結晶配向性を高めるために、Ru下地層を設けたり、さらにRu下地層の結晶配向性を高めるために前下地層(シード層)を設けたりする方法が従来から知られている。例えば特許文献2には、シード層(前下地層)にNiWを含む合金を用いる垂直磁気記録媒体が提案されている。特許文献2では、シード層はNiを含むスパッタターゲットを用いて成膜され、シード層に続いて付着される下地層または粒状磁気層の粒径を微細化し、格子不整合を低減すると記載されている。 In particular, a method of providing a Ru underlayer in order to increase the crystal orientation of the magnetic recording layer or a pre-underlayer (seed layer) to further improve the crystal orientation of the Ru underlayer has been conventionally known. ing. For example, Patent Document 2 proposes a perpendicular magnetic recording medium using an alloy containing NiW as a seed layer (pre-underlayer). In Patent Document 2, it is described that the seed layer is formed using a sputtering target containing Ni, and the grain size of the underlayer or the granular magnetic layer deposited subsequently to the seed layer is reduced to reduce lattice mismatch. Yes.
特開2006-024346号公報JP 2006-024346 A 特開2007-179598号公報JP 2007-179598 A
 上記の如く高記録密度化している磁気記録媒体であるが、今後記録密度の更なる向上が要請されている。このため、磁気記録媒体の更なる高記録密度化を達成するには、特にOW特性やSNR、トラック幅の極小化を更に向上させることが可能な新たな手法を確立する必要があった。 Although the magnetic recording medium has a higher recording density as described above, further improvement of the recording density is demanded in the future. Therefore, in order to achieve further higher recording density of the magnetic recording medium, it is necessary to establish a new method that can further improve the minimization of the OW characteristics, SNR, and track width.
 上記のうちOW特性は、磁気記録媒体の信号の書き換えやすさを示す特性である。OW特性と保磁力Hcは基本的にトレードオフの関係にあり、保磁力Hcが強いということは磁化方向が反転しにくいことを意味するため、書き換えにくいことになる。この高保磁力とOW特性を両立させるために、磁気ヘッドの性能の更なる向上を図ることも考えられた。 Of the above, the OW characteristic is a characteristic indicating the ease of rewriting the signal of the magnetic recording medium. The OW characteristic and the coercive force Hc are basically in a trade-off relationship, and a strong coercive force Hc means that the magnetization direction is difficult to reverse, so that rewriting is difficult. In order to achieve both the high coercivity and the OW characteristics, it has been considered to further improve the performance of the magnetic head.
 しかし、現在の磁気ヘッドの性能は進化しつつあるものの、近年の急激な磁気ディスクの保磁力Hcの向上に対して円滑に追従できてはいなかった。また磁気ヘッド側においては低消費電力も大きな課題の一つであるため、大きな出力をかけずに書き換えを行いたいという要請があった。 However, although the performance of the current magnetic head is evolving, it has not been able to smoothly follow the rapid improvement in coercive force Hc of recent magnetic disks. On the magnetic head side, low power consumption is one of the major issues, and there has been a demand for rewriting without applying a large output.
 また、逆説的ではあるが、高いOW特性を得ることができれば、保磁力Hcが高くても書き換えが可能になるため、磁気ヘッドの性能を変えずに保磁力Hcを高くすることが許容される。そして保磁力Hcの高い膜を使えば、磁気記録層の膜厚を薄くすることができる。すると磁気ヘッドから軟磁性層までのスペーシングロスを低減(狭く)し得るため、磁束の拡散を防止してその密度を高めることが可能になり、記録ビットの微少化が図られ、高記録密度化に資することができる。そのため、高記録密度化を達成するためには、保磁力Hcの高い膜の開発やSNRの向上と同様に、OW特性の向上が非常に重要な課題となっている。 Further, although paradoxically, if high OW characteristics can be obtained, rewriting is possible even if the coercive force Hc is high, so that it is allowed to increase the coercive force Hc without changing the performance of the magnetic head. . If a film having a high coercive force Hc is used, the thickness of the magnetic recording layer can be reduced. Then, the spacing loss from the magnetic head to the soft magnetic layer can be reduced (narrowed), so that the density can be increased by preventing the diffusion of magnetic flux, and the recording bits can be miniaturized, resulting in a high recording density. Can contribute. Therefore, in order to achieve high recording density, improvement of OW characteristics has become a very important issue as well as development of a film having a high coercive force Hc and improvement of SNR.
 本発明は、このような課題に鑑み、OW特性を向上させ、更なる高記録密度化を達成し得る垂直磁気記録媒体を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a perpendicular magnetic recording medium that can improve OW characteristics and achieve higher recording density.
 上記課題を解決するために発明者らは鋭意検討し、前下地層を構成する物質を見直すに至った。そして実験を重ね、NiW合金で構成されている前下地層に別の金属元素を添加することで保磁力Hcの低下を抑えつつOW特性が変化する点に着目した。そして、さらに研究を重ねることにより、かかる層にAl、ZrまたはSiを含有させることで、所望の状態を導き得ることを見出し、本発明を完成するに到った。 In order to solve the above problems, the inventors diligently studied and reviewed the substances constituting the pre-underlayer. The experiment was repeated and attention was paid to the fact that the addition of another metal element to the pre-underlayer composed of the NiW alloy changes the OW characteristics while suppressing the decrease in the coercive force Hc. Further, by further research, it was found that a desired state can be derived by adding Al, Zr or Si to the layer, and the present invention has been completed.
 すなわち、上記課題を解決するために、本発明にかかる垂直磁気記録媒体の代表的な構成は、基体上に、信号を記録する磁気記録層と、磁気記録層より下に設けられRuまたはRu化合物からなる下地層と、下地層の下に設けられ非磁性の結晶質材料からなり下地層の結晶配向性を制御するための前下地層と、を備え、前下地層はNiを主成分とし、第2元素としてWを含有し、さらに第3元素としてAl、ZrまたはSiを含有することを特徴とする。 That is, in order to solve the above-described problem, a typical configuration of the perpendicular magnetic recording medium according to the present invention includes a magnetic recording layer for recording a signal on a substrate, and a Ru or Ru compound provided below the magnetic recording layer. And an underlayer for controlling the crystal orientation of the underlayer made of a nonmagnetic crystalline material provided under the underlayer, the preunderlayer having Ni as a main component, It is characterized by containing W as the second element and further containing Al, Zr or Si as the third element.
 上記構成によると、前下地層のNi結晶のfcc結晶構造の(111)面と(200)面の強度比がAl、ZrまたはSiを含有させることで向上し、これに伴いOW特性も向上することで更なる高記録密度化を達成し得る垂直磁気記録媒体を提供することが可能となる。なお、Ni結晶のfcc結晶構造の(111)面と(200)面の強度比が向上することで、その上の下地層のRuの結晶配向性が向上し、結果として磁気記録層の結晶粒子の結晶配向性が向上していると推測される。 According to the above configuration, the strength ratio of the (111) plane to the (200) plane of the fcc crystal structure of the Ni crystal of the previous underlayer is improved by containing Al, Zr or Si, and the OW characteristics are also improved accordingly. This makes it possible to provide a perpendicular magnetic recording medium that can achieve a higher recording density. Note that the strength ratio between the (111) plane and the (200) plane of the fcc crystal structure of the Ni crystal is improved, so that the Ru crystal orientation of the underlying layer is improved. As a result, the crystal grains of the magnetic recording layer It is presumed that the crystal orientation is improved.
 第3元素の含有量は1at%~5at%であってもよい。この構成であれば、垂直磁気記録媒体のOW特性の向上が可能となる一方、1at%以下ではOW特性の向上という所望の効果を得ることができず、また5at%以上ではNiの含有量が少なくなって結晶配向性が低下してしまう。 The content of the third element may be 1 at% to 5 at%. With this configuration, the OW characteristics of the perpendicular magnetic recording medium can be improved. On the other hand, if it is 1 at% or less, the desired effect of improving the OW characteristics cannot be obtained, and if it is 5 at% or more, the Ni content is low. The crystal orientation is reduced due to the decrease.
 第2元素と第3元素の含有量は合計が3at%~20at%であってもよい。この構成によると、3at%以下では、Niが磁性を帯びてしまい(軟磁性)、ノイズ源となってしまう一方、20at%以上とすると、Niがアモルファスになってしまい、それより上の層の結晶配向性を向上させられなくなってしまう。これにより、WとAlの含有量の合計が3at%~20at%であることで、垂直磁気記録媒体のOW特性の向上が可能となる。 The total content of the second element and the third element may be 3 at% to 20 at%. According to this configuration, when 3 at% or less, Ni becomes magnetic (soft magnetism) and becomes a noise source. On the other hand, when 20 at% or more, Ni becomes amorphous, The crystal orientation cannot be improved. As a result, when the total content of W and Al is 3 at% to 20 at%, the OW characteristics of the perpendicular magnetic recording medium can be improved.
 本発明によれば、保磁力HcとSNRを維持しつつOW特性を向上させ、更なる高記録密度化を達成し得る垂直磁気記録媒体を提供することができる。 According to the present invention, it is possible to provide a perpendicular magnetic recording medium capable of improving the OW characteristics while maintaining the coercive force Hc and SNR and achieving further higher recording density.
垂直磁気記録媒体の構成を説明する図である。It is a figure explaining the structure of a perpendicular magnetic recording medium. 実施例1のMEWとSNmの関係を示した図である。It is the figure which showed the relationship between MEW of Example 1 and SNm. 実施例1のMEWとSN2の関係を示した図である。It is the figure which showed the relationship between MEW and SN2 of Example 1. 実施例1のHcとHnの関係を示した図である。It is the figure which showed the relationship between Hc and Hn of Example 1. 実施例1の図4における結果を説明するための図である。It is a figure for demonstrating the result in FIG. 4 of Example 1. FIG. 第3元素添加による影響の試験結果を説明するための図である。It is a figure for demonstrating the test result of the influence by 3rd element addition. 各実施例の有効性を示す図である。It is a figure which shows the effectiveness of each Example.
100…垂直磁気記録媒体
110…ディスク基体
112…付着層
114…軟磁性層
114a…軟磁性層
114b…軟磁性層
116…前下地層
118…下地層
118a…下地層
118b…下地層
120…非磁性グラニュラ層
122…磁気記録層
122a…磁気記録層
122b…磁気記録層
122c…磁気記録層
122d…磁気記録層
124…分断層
126…補助記録層
128…媒体保護層
130…潤滑層
DESCRIPTION OF SYMBOLS 100 ... Perpendicular magnetic recording medium 110 ... Disk base | substrate 112 ... Adhesion layer 114 ... Soft magnetic layer 114a ... Soft magnetic layer 114b ... Soft magnetic layer 116 ... Pre-underlayer 118 ... Underlayer 118a ... Underlayer 118b ... Underlayer 120 ... Nonmagnetic Granular layer 122 ... magnetic recording layer 122a ... magnetic recording layer 122b ... magnetic recording layer 122c ... magnetic recording layer 122d ... magnetic recording layer 124 ... divided layer 126 ... auxiliary recording layer 128 ... media protective layer 130 ... lubricating layer
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
[垂直磁気記録媒体]
 本発明にかかる垂直磁気記録媒体の第1実施形態について説明する。図1は、本実施形態にかかる垂直磁気記録媒体100の構成を説明する図である。
[Perpendicular magnetic recording medium]
A first embodiment of a perpendicular magnetic recording medium according to the present invention will be described. FIG. 1 is a diagram for explaining the configuration of a perpendicular magnetic recording medium 100 according to the present embodiment.
 垂直磁気記録媒体100は、ディスク基体110、付着層112、第1軟磁性層114a、スペーサ層114b、第2軟磁性層114c、前下地層116、第1下地層118a、第2下地層118b、非磁性グラニュラ層120、下記録層122a、介在層122b、第1主記録層122c、第2主記録層122d、分断層124、補助記録層126、媒体保護層128、潤滑層130で構成されている。なお第1軟磁性層114a、スペーサ層114b、第2軟磁性層114cはあわせて軟磁性層114を構成する。第1下地層118aと第2下地層118bはあわせて下地層118を構成する。下記録層122aと介在層122b、第1主記録層122c、第2主記録層122dはあわせて磁気記録層122を構成する。 The perpendicular magnetic recording medium 100 includes a disk substrate 110, an adhesion layer 112, a first soft magnetic layer 114a, a spacer layer 114b, a second soft magnetic layer 114c, a pre-underlayer 116, a first underlayer 118a, a second underlayer 118b, The non-magnetic granular layer 120, the lower recording layer 122 a, the intervening layer 122 b, the first main recording layer 122 c, the second main recording layer 122 d, the dividing layer 124, the auxiliary recording layer 126, the medium protective layer 128, and the lubricating layer 130. Yes. The first soft magnetic layer 114a, the spacer layer 114b, and the second soft magnetic layer 114c together constitute the soft magnetic layer 114. The first base layer 118a and the second base layer 118b together constitute the base layer 118. The lower recording layer 122a, the intervening layer 122b, the first main recording layer 122c, and the second main recording layer 122d together constitute the magnetic recording layer 122.
 ディスク基体110は、アモルファスのアルミノシリケートガラスをダイレクトプレスで円板状に成型したガラスディスクを用いることができる。なおガラスディスクの種類、サイズ、厚さ等は特に制限されない。ガラスディスクの材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は、結晶化ガラス等のガラスセラミックなどが挙げられる。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性のディスク基体110を得ることができる。 The disk substrate 110 may be a glass disk obtained by forming amorphous aluminosilicate glass into a disk shape by direct pressing. The type, size, thickness, etc. of the glass disk are not particularly limited. Examples of the material of the glass disk include aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, chain silicate glass, or glass ceramic such as crystallized glass. It is done. The glass disk is subjected to grinding, polishing, and chemical strengthening sequentially to obtain a smooth non-magnetic disk base 110 made of a chemically strengthened glass disk.
 ディスク基体110上に、DCマグネトロンスパッタリング法にて付着層112から補助記録層126まで順次成膜を行い、媒体保護層128はCVD(Chemical Vapor Deposition)法により成膜することができる。この後、潤滑層130をディップコート法により形成することができる。なお、生産性が高いという点で、インライン型成膜方法を用いることも好ましい。以下、各層の構成および製造方法について説明する。 On the disk substrate 110, a film is sequentially formed from the adhesion layer 112 to the auxiliary recording layer 126 by a DC magnetron sputtering method, and the medium protective layer 128 can be formed by a CVD (Chemical Vapor Deposition) method. Thereafter, the lubricating layer 130 can be formed by a dip coating method. Note that it is also preferable to use an in-line film forming method in terms of high productivity. Hereinafter, the configuration and manufacturing method of each layer will be described.
 付着層112はディスク基体110に接して形成され、この上に成膜される軟磁性層114とディスク基体110との剥離強度を高める機能と、軟磁性層114上に成膜される各層の結晶グレインを微細化及び均一化させる機能を備えている。付着層112は、ディスク基体110がアモルファスガラスからなる場合、そのアモルファスガラス表面に対応させる為にアモルファス(非晶質)の合金膜とすることが好ましい。 The adhesion layer 112 is formed in contact with the disk substrate 110, has a function of increasing the peel strength between the soft magnetic layer 114 formed on the disk substrate 110 and the disk substrate 110, and a crystal of each layer formed on the soft magnetic layer 114. It has a function to make grains finer and uniform. When the disk substrate 110 is made of amorphous glass, the adhesion layer 112 is preferably an amorphous (amorphous) alloy film so as to correspond to the amorphous glass surface.
 付着層112としては、例えばCrTi系非晶質層、CoW系非晶質層、CrW系非晶質層、CrTa系非晶質層、CrNb系非晶質層から選択することができる。付着層112は単一材料からなる単層でも良いが、複数層を積層して形成してもよい。例えばCrTi層の上にCoW層またはCrW層を形成してもよい。またこれらの付着層112は、二酸化炭素、一酸化炭素、窒素、又は酸素を含む材料によってスパッタを行うか、もしくは表面層をこれらのガスで暴露したものであることが好ましい。 The adhesion layer 112 can be selected from, for example, a CrTi amorphous layer, a CoW amorphous layer, a CrW amorphous layer, a CrTa amorphous layer, or a CrNb amorphous layer. The adhesion layer 112 may be a single layer made of a single material, or may be formed by laminating a plurality of layers. For example, a CoW layer or a CrW layer may be formed on the CrTi layer. These adhesion layers 112 are preferably formed by sputtering with a material containing carbon dioxide, carbon monoxide, nitrogen, or oxygen, or the surface layer is exposed with these gases.
 軟磁性層114は、垂直磁気記録方式において記録層に垂直方向に磁束を通過させるために、記録時に一時的に磁路を形成する層である。軟磁性層114は第1軟磁性層114aと第2軟磁性層114cの間に非磁性のスペーサ層114bを介在させることによって、AFC(Antiferro-magnetic exchange coupling)を備えるように構成することができる。これにより軟磁性層114の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化方向の垂直成分が極めて少なくなるため、軟磁性層114から生じるノイズを低減することができる。第1軟磁性層114a、第2軟磁性層114cの組成としては、CoTaZrなどのコバルト系合金、CoCrFeB、CoFeTaZrなどのCo-Fe系合金、[Ni-Fe/Sn]n多層構造のようなNi-Fe系合金などを用いることができる。 The soft magnetic layer 114 is a layer that temporarily forms a magnetic path during recording in order to pass magnetic flux in a direction perpendicular to the recording layer in the perpendicular magnetic recording method. The soft magnetic layer 114 can be configured to have AFC (Antiferro-magnetic exchange coupling) by interposing a nonmagnetic spacer layer 114b between the first soft magnetic layer 114a and the second soft magnetic layer 114c. . As a result, the magnetization direction of the soft magnetic layer 114 can be aligned along the magnetic path (magnetic circuit) with high accuracy, and the vertical component of the magnetization direction is extremely reduced, so that noise generated from the soft magnetic layer 114 is reduced. Can do. The compositions of the first soft magnetic layer 114a and the second soft magnetic layer 114c include cobalt alloys such as CoTaZr, Co—Fe alloys such as CoCrFeB and CoFeTaZr, and Ni such as [Ni—Fe / Sn] n multilayer structure. An Fe-based alloy or the like can be used.
 前下地層116は非磁性の合金層であり、軟磁性層114を防護する作用と、この上に成膜される下地層118に含まれる六方最密充填構造(hcp結晶構造)の磁化容易軸をディスク垂直方向に配向させる機能を備える。前下地層116はfcc結晶構造の(111)面がディスク基体110の主表面と平行となっていることが好ましい。また前下地層116は、fcc結晶構造と、他の構造またはアモルファスとが混在した構成としてもよい。 The pre-underlayer 116 is a non-magnetic alloy layer that protects the soft magnetic layer 114 and the easy magnetization axis of the hexagonal close-packed structure (hcp crystal structure) included in the underlayer 118 formed thereon. Has a function of orienting the disk in the vertical direction of the disk. The pre-underlayer 116 preferably has the (111) plane of the fcc crystal structure parallel to the main surface of the disk substrate 110. Further, the pre-underlayer 116 may have a configuration in which an fcc crystal structure and another structure or an amorphous structure are mixed.
 本実施形態における前下地層116の材質としては、Niを主成分とし、第2元素としてWを含有し、さらに第3元素としてAl、ZrまたはSiを含む合金が望ましい。このように前下地層116に第3元素を含有することで、従来の第3元素を含有しない前下地層116と比較してOW特性の向上を図ることができる。 As the material of the pre-underlayer 116 in this embodiment, an alloy containing Ni as a main component, W as the second element, and Al, Zr or Si as the third element is desirable. By including the third element in the pre-underlayer 116 as described above, the OW characteristics can be improved as compared with the conventional pre-underlayer 116 that does not contain the third element.
 前下地層116において、NiW合金のNiの含有量を多くすることで保磁力Hcが向上する。これは、Niのfcc結晶構造の(111)面が下地層のhcp結晶構造の(0001)と対応することにより、それより上の膜の結晶配向性が向上し、全体として保磁力Hcが向上するものと考えられる。一方、Niの比率が少なくなった場合、所定の割合を超えるとNiを含む合金の結晶構造がアモルファスとなる。 The coercive force Hc is improved by increasing the Ni content of the NiW alloy in the pre-underlayer 116. This is because the (111) plane of the Ni fcc crystal structure corresponds to (0001) of the hcp crystal structure of the underlayer, thereby improving the crystal orientation of the film above it and improving the coercive force Hc as a whole. It is thought to do. On the other hand, when the ratio of Ni decreases, when the predetermined ratio is exceeded, the crystal structure of the alloy containing Ni becomes amorphous.
 すなわち、前下地層116においてNiが多いほどその上の層の結晶配向性がよく、Wを加えると結晶の微細化が促進される。そして、さらに第3元素としてAl、ZrまたはSiを加えると、OW特性が改善される。これは、Ni結晶のfcc結晶構造の(111)面と(200)面の強度比が第3元素を含有させることで向上し、これによって下地層118およびその上の磁気記録層122の配向性の向上に繋がっているものと推測される。 That is, the more Ni in the pre-underlayer 116, the better the crystal orientation of the layer above it, and the addition of W promotes the refinement of crystals. Further, when Al, Zr or Si is further added as the third element, the OW characteristics are improved. This is improved by the inclusion of the third element in the intensity ratio between the (111) plane and the (200) plane of the fcc crystal structure of the Ni crystal, and thereby the orientation of the underlayer 118 and the magnetic recording layer 122 thereon. It is presumed that this has led to an improvement.
 上記の前下地層116は、第3元素の含有量が1at%~5at%であってもよい。前述の通りNiWに第3元素を含有させることで、OW特性を向上させることができる。1at%以下では、OW特性の向上という所望の効果が得られないためである。一方、5at%以上とすると、Niの含有量が少なくなって結晶配向性が低下してしまうためである。 The pre-underlayer 116 may have a third element content of 1 at% to 5 at%. As described above, the OW characteristics can be improved by adding the third element to NiW. This is because if it is 1 at% or less, the desired effect of improving the OW characteristics cannot be obtained. On the other hand, if the content is 5 at% or more, the Ni content decreases and the crystal orientation deteriorates.
 第2元素であるWと、第3元素であるAl、ZrまたはSiを合わせて前下地層に含有する割合は、OW特性のピークとなる3at%~20at%の間であることが好ましい。かかる構成により、求められる性能を実現することができる。なお3at%以下とすると、Niが磁性を帯びてしまい、前下地層116がノイズ源となってしまう。一方、20at%以上とすると、Niがアモルファスになってしまい、それより上の層の結晶配向性を向上させられなくなってしまうため好ましくない。 The ratio of the second element W and the third element Al, Zr, or Si in the pre-underlayer is preferably between 3 at% and 20 at%, which is the peak of the OW characteristics. With this configuration, the required performance can be realized. If it is 3 at% or less, Ni becomes magnetized and the front ground layer 116 becomes a noise source. On the other hand, if it is 20 at% or more, Ni becomes amorphous, and the crystal orientation of the layer above it cannot be improved, which is not preferable.
 下地層118はhcp結晶構造であって、磁気記録層122のCoのhcp結晶構造の結晶をグラニュラ構造として成長させる作用を有している。したがって、下地層118の結晶配向性が高いほど、すなわち下地層118の結晶の(0001)面がディスク基体110の主表面と平行になっているほど、磁気記録層122の配向性を向上させることができる。下地層118の材質としてはRuが代表的であるが、その他に、RuCr、RuCoから選択することができる。Ruはhcp結晶構造をとり、また結晶の格子間隔がCoと近いため、Coを主成分とする磁気記録層122を良好に配向させることができる。 The underlayer 118 has an hcp crystal structure, and has a function of growing a crystal of the Co hcp crystal structure of the magnetic recording layer 122 as a granular structure. Therefore, the higher the crystal orientation of the underlayer 118, that is, the more the (0001) plane of the crystal of the underlayer 118 is parallel to the main surface of the disk substrate 110, the more the orientation of the magnetic recording layer 122 is improved. Can do. Ru is a typical material for the underlayer 118, but in addition, it can be selected from RuCr and RuCo. Since Ru has an hcp crystal structure and the crystal lattice spacing is close to Co, the magnetic recording layer 122 containing Co as a main component can be well oriented.
 下地層118をRuとした場合において、スパッタ時のガス圧を変更することによりRuからなる2層構造とすることができる。具体的には、下層側の第1下地層118aを形成する際にはArのガス圧を所定圧力、すなわち低圧にし、上層側の第2下地層118bを形成する際には、下層側の第1下地層118aを形成するときよりもArのガス圧を高くする、すなわち高圧にする。これにより、第1下地層118aによる磁気記録層122の結晶配向性の向上、および第2下地層118bによる磁気記録層122の磁性粒子の粒径の微細化が可能となる。 When the underlayer 118 is made of Ru, a two-layer structure made of Ru can be obtained by changing the gas pressure during sputtering. Specifically, when forming the first underlayer 118a on the lower layer side, the Ar gas pressure is set to a predetermined pressure, that is, a low pressure, and when forming the second underlayer 118b on the upper layer side, the first lower layer 118b on the lower layer side is formed. The gas pressure of Ar is set higher than when forming the first underlayer 118a, that is, the pressure is increased. Thereby, the crystal orientation of the magnetic recording layer 122 can be improved by the first underlayer 118a, and the grain size of the magnetic particles of the magnetic recording layer 122 can be reduced by the second underlayer 118b.
 また、ガス圧を高くするとスパッタリングされるプラズマイオンの平均自由行程が短くなるため、成膜速度が遅くなり、皮膜が粗になるため、Ruの結晶粒子の分離微細化を促進することができ、Coの結晶粒子の微細化も可能となる。 Further, when the gas pressure is increased, the mean free path of the plasma ions to be sputtered is shortened, so that the film formation rate is slow and the film becomes rough, so that separation and refinement of Ru crystal particles can be promoted, Co crystal grains can also be made finer.
 さらに、下地層118のRuに酸素を微少量含有させてもよい。これによりさらにRuの結晶粒子の分離微細化を促進することができ、磁気記録層122のさらなる孤立化と微細化を図ることができる。したがって、本実施形態では、2層で構成される下地層118のうち、磁気記録層の直下に成膜される第2下地層に酸素を含ませる。すなわち第2下地層をRuOにより構成する。これにより、上記の利点を最も効果的に得ることができる。なお酸素はリアクティブスパッタによって含有させてもよいが、スパッタリング成膜する際に酸素を含有するターゲットを用いることが好ましい。 Furthermore, a small amount of oxygen may be contained in Ru of the base layer 118. As a result, the separation and refinement of the Ru crystal grains can be further promoted, and the magnetic recording layer 122 can be further isolated and refined. Therefore, in the present embodiment, oxygen is included in the second underlayer formed immediately below the magnetic recording layer in the underlayer 118 constituted by two layers. That is, the second underlayer is made of RuO. Thereby, said advantage can be acquired most effectively. Note that oxygen may be contained by reactive sputtering, but it is preferable to use a target containing oxygen at the time of sputtering film formation.
 非磁性グラニュラ層120はグラニュラ構造を有する非磁性の層である。下地層118のhcp結晶構造の上に非磁性グラニュラ層120を形成し、この上に下記録層122a(すなわち磁気記録層122全体)のグラニュラ層を成長させることにより、磁性のグラニュラ層を初期成長の段階(立ち上がり)から分離させる作用を有している。これにより、磁気記録層122の磁性粒子の孤立化を促進することができる。非磁性グラニュラ層120の組成は、Co系合金からなる非磁性の結晶粒子の間に、非磁性物質を偏析させて粒界を形成することにより、グラニュラ構造とすることができる。 The nonmagnetic granular layer 120 is a nonmagnetic layer having a granular structure. A nonmagnetic granular layer 120 is formed on the hcp crystal structure of the underlayer 118, and a granular layer of the lower recording layer 122a (that is, the entire magnetic recording layer 122) is grown thereon, thereby initial growth of the magnetic granular layer. It has an action of separating from the stage (rise). Thereby, isolation of the magnetic particles of the magnetic recording layer 122 can be promoted. The composition of the nonmagnetic granular layer 120 can be a granular structure by forming a grain boundary by segregating a nonmagnetic substance between nonmagnetic crystal grains made of a Co-based alloy.
 本実施形態においては、かかる非磁性グラニュラ層120にCoCr-SiOを用いる。これにより、Co系合金(非磁性の結晶粒子)の間にSiO(非磁性物質)が偏析して粒界を形成し、非磁性グラニュラ層120がグラニュラ構造となる。なお、CoCr-SiOは一例であり、これに限定するものではない。他には、CoCrRu-SiOを好適に用いることができ、さらにRuに代えてRh(ロジウム)、Pd(パラジウム)、Ag(銀)、Os(オスミウム)、Ir(イリジウム)、Au(金)も利用することができる。また非磁性物質とは、磁性粒子(磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒子の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。例えば酸化珪素(SiOx)、クロム(Cr)、酸化クロム(Cr)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)を例示できる。 In this embodiment, CoCr—SiO 2 is used for the nonmagnetic granular layer 120. As a result, SiO 2 (nonmagnetic substance) segregates between Co-based alloys (nonmagnetic crystal grains) to form grain boundaries, and the nonmagnetic granular layer 120 has a granular structure. Note that CoCr—SiO 2 is an example, and the present invention is not limited to this. In addition, CoCrRu—SiO 2 can be preferably used, and Rh (rhodium), Pd (palladium), Ag (silver), Os (osmium), Ir (iridium), Au (gold) can be used instead of Ru. Can also be used. A non-magnetic substance is a substance that can form a grain boundary around magnetic particles so that exchange interaction between magnetic particles (magnetic grains) is suppressed or blocked, and cobalt (Co). Any non-magnetic substance that does not dissolve in solution can be used. Examples thereof include silicon oxide (SiOx), chromium (Cr), chromium oxide (Cr 2 O 3 ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 5 ).
 なお本実施形態では、下地層188(第2下地層188b)の上に非磁性グラニュラ層120を設けているが、これに限定されるものではなく、非磁性グラニュラ層120を設けずに垂直磁気記録媒体100を構成することも可能である。 In this embodiment, the nonmagnetic granular layer 120 is provided on the underlayer 188 (second underlayer 188b). However, the present invention is not limited to this. The recording medium 100 can also be configured.
 磁気記録層122は、Co系合金、Fe系合金、Ni系合金から選択される硬磁性体の磁性粒子の周囲に非磁性物質を偏析させて粒界を形成した柱状のグラニュラ構造を有している。この磁性粒子は、非磁性グラニュラ層120を設けることにより、そのグラニュラ構造から継続してエピタキシャル成長することができる。磁気記録層122は、本実施形態では下記録層122a、介在層122b、第1主記録層122c、第2主記録層122dから構成されている。これにより、下記録層122aの結晶粒子(磁性粒子)から継続して第1主記録層122c、第2主記録層122dの小さな結晶粒子が成長し、主記録層の微細化を図ることができ、SNRの向上が可能となる。 The magnetic recording layer 122 has a columnar granular structure in which a nonmagnetic substance is segregated around a magnetic particle of a hard magnetic material selected from a Co alloy, an Fe alloy, and a Ni alloy to form a grain boundary. Yes. By providing the nonmagnetic granular layer 120, the magnetic particles can be epitaxially grown continuously from the granular structure. In this embodiment, the magnetic recording layer 122 includes a lower recording layer 122a, an intervening layer 122b, a first main recording layer 122c, and a second main recording layer 122d. Thereby, small crystal grains of the first main recording layer 122c and the second main recording layer 122d continue to grow from the crystal grains (magnetic particles) of the lower recording layer 122a, and the main recording layer can be miniaturized. SNR can be improved.
 本実施形態では、下記録層122aにCoCrPt-Cr-SiOを用いる。CoCrPt-Cr-SiOは、CoCrPtからなる磁性粒子(グレイン)の周囲に、非磁性物質であるCr、SiO(酸化物)が偏析して粒界を形成し、磁性粒子が柱状に成長したグラニュラ構造を形成する。この磁性粒子は、非磁性グラニュラ層120のグラニュラ構造から継続してエピタキシャル成長した。 In this embodiment, CoCrPt—Cr 2 O 5 —SiO 2 is used for the lower recording layer 122a. In CoCrPt—Cr 2 O 5 —SiO 2 , Cr 2 O 5 and SiO 2 (oxide), which are nonmagnetic substances, segregate around magnetic particles (grains) made of CoCrPt to form grain boundaries, and magnetic A granular structure is formed in which particles grow in a columnar shape. The magnetic particles were epitaxially grown continuously from the granular structure of the nonmagnetic granular layer 120.
 介在層122bは非磁性の薄膜であって、下記録層122aと第1主記録層122cの間に介在させることにより、これらの間の磁気的な連続性は分断される。このとき介在層122bの膜厚を所定の膜厚(0.7~0.9nm)とすることにより、下記録層122aと第1主記録層122cとの間には反強磁性交換結合(AFC)が発生する。これにより介在層122bの上下の層の間では磁化が引き合い、相互に磁化方向を固定するように作用するため、磁化軸の揺らぎが低減し、ノイズを低減することができる。 The intervening layer 122b is a non-magnetic thin film, and is interposed between the lower recording layer 122a and the first main recording layer 122c, so that the magnetic continuity between them is divided. At this time, by setting the thickness of the intervening layer 122b to a predetermined thickness (0.7 to 0.9 nm), antiferromagnetic exchange coupling (AFC) is established between the lower recording layer 122a and the first main recording layer 122c. ) Occurs. As a result, magnetization is attracted between the upper and lower layers of the intervening layer 122b and acts to fix the magnetization directions to each other, so that fluctuations in the magnetization axis can be reduced and noise can be reduced.
 介在層122bは、Ru又はRu化合物で構成されるとよい。Ruは磁性粒子を構成するCoと原子間隔が近いため、磁気記録層122の間に介在させてもCoの結晶粒子のエピタキシャル成長を阻害しにくいからである。また介在層122bが極めて薄いことによっても、エピタキシャル成長を阻害しにくいものとなっている。 The intervening layer 122b may be made of Ru or a Ru compound. This is because Ru has an atomic interval close to that of Co constituting the magnetic particles, and thus it is difficult to inhibit the epitaxial growth of Co crystal particles even if it is interposed between the magnetic recording layers 122. In addition, even if the intervening layer 122b is extremely thin, it is difficult to inhibit the epitaxial growth.
 ここで下記録層122aは、介在層122bがなければ第1主記録層122cおよび第2主記録層122dと連続した磁石であったところ、介在層122bによって分断されるために個別の短い磁石となる。そして、さらに下記録層122aの膜厚を薄くすることにより、グラニュラ磁性粒子の縦横比が短くなることから(垂直磁気記録媒体においては、膜厚方向が磁化容易軸の縦方向にあたる)、磁石の内部に発生する反磁界が強くなる。このため下記録層122aは硬磁性であるにもかかわらず、外部に出す磁気モーメントが小さくなり、磁気ヘッドによって拾われにくくなる。すなわち、下記録層122aの膜厚を調節することによって、磁気ヘッドまで磁束が到達しにくく、かつ第1主記録層122cに対しては磁気的相互作用を有する程度に磁気モーメント(磁石の強さ)を設定することにより、高保磁力を発揮しながらもノイズの少ない磁気記録層とすることができる。 Here, the lower recording layer 122a is a magnet that is continuous with the first main recording layer 122c and the second main recording layer 122d without the intervening layer 122b. Become. Further, by reducing the film thickness of the lower recording layer 122a, the aspect ratio of the granular magnetic particles is shortened (in the perpendicular magnetic recording medium, the film thickness direction corresponds to the longitudinal direction of the easy axis of magnetization). The demagnetizing field generated inside becomes stronger. For this reason, although the lower recording layer 122a is hard magnetic, the magnetic moment to be exposed to the outside becomes small and it is difficult to be picked up by the magnetic head. That is, by adjusting the film thickness of the lower recording layer 122a, the magnetic moment (magnet strength) is such that the magnetic flux does not easily reach the magnetic head and has a magnetic interaction with the first main recording layer 122c. ), A magnetic recording layer with low noise while exhibiting a high coercive force can be obtained.
 本実施形態において第1主記録層122cはCoCrPt-SiO-TiOを用いる。これにより、第1主記録層122cにおいても、CoCrPtからなる磁性粒(グレイン)の周囲に非磁性物質であるSiO、TiO(複合酸化物)が偏析して粒界を形成し、磁性粒が柱状に成長したグラニュラ構造を形成した。 In the present embodiment, the first main recording layer 122c is made of CoCrPt—SiO 2 —TiO 2 . As a result, also in the first main recording layer 122c, nonmagnetic materials such as SiO 2 and TiO 2 (composite oxide) are segregated around the magnetic grains (grains) made of CoCrPt to form grain boundaries, and the magnetic grains Formed a granular structure with columnar growth.
 また本実施形態において第2主記録層122dは第1主記録層122cと連続しているが、組成および膜厚が異なっている。第2主記録層122dはCoCrPt-SiO-TiO-Coを用いる。これにより、第2主記録層122dにおいても、CoCrPtからなる磁性粒(グレイン)の周囲に非磁性物質であるSiO、TiO、Co(複合酸化物)が偏析して粒界を形成し、磁性粒が柱状に成長したグラニュラ構造を形成した。 In the present embodiment, the second main recording layer 122d is continuous with the first main recording layer 122c, but the composition and film thickness are different. The second main recording layer 122d is made of CoCrPt—SiO 2 —TiO 2 —Co 3 O 4 . As a result, also in the second main recording layer 122d, nonmagnetic materials such as SiO 2 , TiO 2 , and Co 3 O 4 (composite oxide) are segregated around the magnetic grains (grains) made of CoCrPt to form grain boundaries. As a result, a granular structure in which magnetic grains were grown in a columnar shape was formed.
 上記のように、本実施形態では第2主記録層122dが第1主記録層122cよりも多くの酸化物を含む構成としている。これにより、第1主記録層122cから第2主記録層122dにかけて、結晶粒子の分離を段階的に促進することができる。 As described above, in the present embodiment, the second main recording layer 122d includes a larger amount of oxide than the first main recording layer 122c. Thereby, separation of crystal grains can be promoted stepwise from the first main recording layer 122c to the second main recording layer 122d.
 また上記のように、第2主記録層122dにCo酸化物を含有させている。SiOやTiOを酸化物として混入すると、酸素欠損が生じる事実があり、SiイオンやTiイオンが磁性粒子に混入して結晶配向性が乱れ、保持力Hcが低下してしまう。そこでCo酸化物を含有させることにより、この酸素欠損を補うための酸素担持体として機能させることができる。Co酸化物としてはCoを例示するが、CoOでもよい。 Further, as described above, the second main recording layer 122d contains Co oxide. When SiO 2 or TiO 2 is mixed as an oxide, there is a fact that oxygen deficiency occurs, Si ions or Ti ions are mixed into the magnetic particles, the crystal orientation is disturbed, and the holding force Hc is reduced. Therefore, by containing Co oxide, it can function as an oxygen carrier for compensating for this oxygen deficiency. Co 3 O 4 is exemplified as the Co oxide, but CoO may be used.
 Co酸化物はSiOやTiOよりもギブスの自由化エネルギーΔGが大きく、Coイオンと酸素イオンが分離しやすい。したがってCo酸化物から優先的に酸素が分離し、SiOやTiOにおいて生じた酸素欠損を補って、SiやTiのイオンを酸化物として完成させ、粒界に析出させることができる。これにより、SiやTiなどの異物が磁性粒子に混入することを防止し、その混入によって磁性粒子の結晶性を乱すことを防止することができる。このとき余剰となったCoイオンは磁性粒子に混入すると考えられるが、そもそも磁性粒子がCo合金であるために、磁気特性を損なうことはない。したがって磁性粒子の結晶性および結晶配向性が向上し、保持力Hcを増大させることが可能となる。また、飽和磁化Msが向上することから、オーバーライト特性も向上するという利点を有している。 Co oxide has Gibbs liberalization energy ΔG larger than that of SiO 2 or TiO 2 , and Co ions and oxygen ions are easily separated. Therefore, oxygen is preferentially separated from the Co oxide, and oxygen vacancies generated in SiO 2 and TiO 2 are compensated to complete Si and Ti ions as oxides, which can be precipitated at grain boundaries. Thereby, it can prevent that foreign materials, such as Si and Ti, mix in a magnetic particle, and can prevent disordering the crystallinity of a magnetic particle by the mixing. At this time, surplus Co ions are considered to be mixed in the magnetic particles, but since the magnetic particles are a Co alloy in the first place, the magnetic properties are not impaired. Accordingly, the crystallinity and crystal orientation of the magnetic particles are improved, and the coercive force Hc can be increased. Further, since the saturation magnetization Ms is improved, there is an advantage that the overwrite characteristic is also improved.
 ただし、磁気記録層にCo酸化物を混入すると、SNRが低下するという問題がある。そこで、上記のようにCo酸化物を混入しない第1主記録層122cを設けることにより、第1主記録層122cで高いSNRを確保しつつ、第2主記録層122dで高い保持力Hcおよびオーバーライト特性を得ることが可能となる。なお第1主記録層122cの膜厚よりも第2主記録層122dの膜厚が厚いことが好ましく、好適な一例として第1主記録層122cを2nm、第2主記録層122dを8nmとすることができる。 However, when Co oxide is mixed in the magnetic recording layer, there is a problem that the SNR is lowered. Therefore, by providing the first main recording layer 122c not mixed with Co oxide as described above, a high SNR is secured in the first main recording layer 122c, while a high holding force Hc and overload are achieved in the second main recording layer 122d. Light characteristics can be obtained. The second main recording layer 122d is preferably thicker than the first main recording layer 122c. As a preferred example, the first main recording layer 122c is 2 nm and the second main recording layer 122d is 8 nm. be able to.
 なお、上記に示した下記録層122aおよび第1主記録層122c、第2主記録層122dに用いた物質は一例であり、これに限定するものではない。粒界を形成するための非磁性物質としては、例えば酸化珪素(SiO)、クロム(Cr)、酸化クロム(Cr)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)、酸化鉄(Fe)、酸化ボロン(B)等の酸化物を例示できる。また、BN等の窒化物、B等の炭化物も好適に用いることができる。 The materials used for the lower recording layer 122a, the first main recording layer 122c, and the second main recording layer 122d described above are merely examples, and the present invention is not limited thereto. Examples of nonmagnetic substances for forming grain boundaries include silicon oxide (SiO x ), chromium (Cr), chromium oxide (Cr X O Y ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and oxidation. Examples of the oxide include tantalum (Ta 2 O 5 ), iron oxide (Fe 2 O 3 ), and boron oxide (B 2 O 3 ). Further, nitrides such as BN, a carbide such as B 4 C 3 can also be suitably used.
 さらに本実施形態では、下記録層122aおよび第1主記録層122cにおいて2種類、第2主記録層122dにおいて3種類の非磁性物質(酸化物)を用いているが、これに限定するものではない。例えば、下記録層122aから第2主記録層122dのいずれかまたはすべてにおいて、1種類の非磁性物質を用いてもよいし、2種類以上の非磁性物質を複合して用いることも可能である。このとき含有する非磁性物質の種類には限定がないが、本実施形態の如く特にSiOおよびTiOを含むことが好ましい。したがって、本実施形態とは異なり、下記録層122aから第2主記録層122dが1層のみで構成される場合(介在層122bを設けない場合)、かかる磁気記録層はCoCrPt-SiO-TiOからなることが好ましい。 Furthermore, in the present embodiment, two types of nonmagnetic substances (oxides) are used in the lower recording layer 122a and the first main recording layer 122c, and three types of nonmagnetic substances (oxides) are used in the second main recording layer 122d. Absent. For example, in any or all of the lower recording layer 122a to the second main recording layer 122d, one type of nonmagnetic material may be used, or two or more types of nonmagnetic materials may be used in combination. . Although there is no limitation on the kind of nonmagnetic substance contained at this time, it is particularly preferable to contain SiO 2 and TiO 2 as in this embodiment. Therefore, unlike the present embodiment, when the second recording layer 122d is composed of only one layer from the lower recording layer 122a (when the intervening layer 122b is not provided), the magnetic recording layer is CoCrPt—SiO 2 —TiO 2. 2 is preferable.
 分断層124は、磁気記録層122(第2主記録層122d)と補助記録層126との間に設けられた非磁性の層である。ただし分断層124は、介在層122bよりも厚く形成する。これにより、磁気記録層122と補助記録層126の間には磁気的効果として反強磁性交換結合ではなく、強磁性交換結合が発生する。これにより磁気記録層122が補助記録層126に対するピン層(磁化方向固定層)として作用し、補助記録層126に起因するノイズを低減させてSNRを向上させることができる。 The dividing layer 124 is a nonmagnetic layer provided between the magnetic recording layer 122 (second main recording layer 122d) and the auxiliary recording layer 126. However, the dividing layer 124 is formed thicker than the intervening layer 122b. Thereby, not the antiferromagnetic exchange coupling but the ferromagnetic exchange coupling occurs as a magnetic effect between the magnetic recording layer 122 and the auxiliary recording layer 126. Thereby, the magnetic recording layer 122 acts as a pinned layer (magnetization direction fixed layer) with respect to the auxiliary recording layer 126, and noise caused by the auxiliary recording layer 126 can be reduced and SNR can be improved.
 また本実施形態において分断層124は、Ru、Ru化合物、Ruと酸素、またはRuと酸化物を含む薄膜によって構成することができる。これによっても、補助記録層126に起因するノイズを低減させることができる。分断層124を成膜する際に、分断層124に含有される酸素が磁気記録層122の酸化物の上に偏析し、磁性粒子の上にRuが偏析することにより、磁気記録層122のCoの結晶構造を補助記録層126のCoまで継承させられるためと考えられる。 In the present embodiment, the dividing layer 124 can be constituted by a thin film containing Ru, a Ru compound, Ru and oxygen, or Ru and an oxide. This can also reduce noise caused by the auxiliary recording layer 126. When the dividing layer 124 is formed, oxygen contained in the dividing layer 124 is segregated on the oxide of the magnetic recording layer 122, and Ru is segregated on the magnetic particles. This is because the crystal structure of the auxiliary recording layer 126 can be inherited to Co.
 分断層124のRuに含有させる酸化物としては様々なものが考えられるが、特にW、Ti、Ruの酸化物を用いることにより、電磁変換特性(SNR)を向上させることができる。例えば分断層124は、RuO、RuWO、またはRuTiOであってもよい。中でも、WOは高い効果を得ることができる。 Various oxides are conceivable as the oxide contained in Ru of the split layer 124. In particular, by using oxides of W, Ti, and Ru, electromagnetic conversion characteristics (SNR) can be improved. For example, the dividing layer 124 may be RuO, RuWO 3 , or RuTiO 2 . Among them, WO 3 can obtain a high effect.
 これは、Ruに含有させた酸素がスパッタ中に解離され、解離された酸素が、酸素添加の効果も示すためと考えられる。つまり、WOを使うことにより、酸素添加の効果と酸化物添加の効果を併せ持つことができるので、好適である。酸化物の他の例としては、酸化珪素(SiO)、クロム(Cr)、酸化クロム(Cr)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)、酸化鉄(Fe)、酸化ボロン(B)等の酸化物を例示できる。また、BN等の窒化物、B等の炭化物も好適に用いることができる。 This is presumably because oxygen contained in Ru is dissociated during sputtering, and the dissociated oxygen also exhibits the effect of oxygen addition. That is, the use of WO 3 is preferable because it can have both the effect of adding oxygen and the effect of adding oxide. Other examples of the oxide include silicon oxide (SiO x ), chromium (Cr), chromium oxide (Cr X O Y ), titanium oxide (TiO 2 ), zircon oxide (ZrO 2 ), and tantalum oxide (Ta 2 O). 5 ), oxides such as iron oxide (Fe 2 O 3 ) and boron oxide (B 2 O 3 ). Further, nitrides such as BN, a carbide such as B 4 C 3 can also be suitably used.
 補助記録層126は基体主表面の面内方向に磁気的にほぼ連続した磁性層である。補助記録層126は磁気記録層122に対して磁気的相互作用を有するように、隣接または近接している必要がある。補助記録層126の材質としては、例えばCoCrPt、CoCrPtB、またはこれらに微少量の酸化物を含有させて構成することができる。補助記録層126は逆磁区核形成磁界Hnの調整、保磁力Hcの調整を行い、これにより耐熱揺らぎ特性、OW特性、およびSNRの改善を図ることを目的としている。この目的を達成するために、補助記録層126は垂直磁気異方性Kuおよび飽和磁化Msが高いことが望ましい。なお本実施形態において補助記録層126は磁気記録層122の上方に設けているが、下方に設けてもよい。 The auxiliary recording layer 126 is a magnetic layer that is substantially magnetically continuous in the in-plane direction of the main surface of the substrate. The auxiliary recording layer 126 needs to be adjacent or close to the magnetic recording layer 122 so as to have a magnetic interaction. As the material of the auxiliary recording layer 126, for example, CoCrPt, CoCrPtB, or a small amount of oxides can be contained in these. The purpose of the auxiliary recording layer 126 is to adjust the reverse domain nucleation magnetic field Hn and the coercive force Hc, thereby improving the heat-resistant fluctuation characteristics, the OW characteristics, and the SNR. In order to achieve this object, it is desirable that the auxiliary recording layer 126 has high perpendicular magnetic anisotropy Ku and saturation magnetization Ms. In this embodiment, the auxiliary recording layer 126 is provided above the magnetic recording layer 122, but may be provided below.
 なお、「磁気的に連続している」とは磁性が連続していることを意味している。「ほぼ連続している」とは、補助記録層126全体で観察すれば一つの磁石ではなく、結晶粒子の粒界などによって磁性が不連続となっていてもよいことを意味している。粒界は結晶の不連続のみではなく、Crが偏析していてもよく、さらに微少量の酸化物を含有させて偏析させても良い。ただし補助記録層126に酸化物を含有する粒界を形成した場合であっても、磁気記録層122の粒界よりも面積が小さい(酸化物の含有量が少ない)ことが好ましい。補助記録層126の機能と作用については必ずしも明確ではないが、磁気記録層122のグラニュラ磁性粒子と磁気的相互作用を有する(交換結合を行う)ことによってHnおよびHcを調整することができ、耐熱揺らぎ特性およびSNRを向上させていると考えられる。またグラニュラ磁性粒子と接続する結晶粒子(磁気的相互作用を有する結晶粒子)がグラニュラ磁性粒子の断面よりも広面積となるため磁気ヘッドから多くの磁束を受けて磁化反転しやすくなり、全体のOW特性を向上させるものと考えられる。 In addition, “magnetically continuous” means that magnetism is continuous. “Substantially continuous” means that the magnetism may be discontinuous due to grain boundaries of crystal grains, etc., instead of a single magnet when observed in the entire auxiliary recording layer 126. The grain boundaries are not limited to crystal discontinuities, and Cr may be segregated, and further, a minute amount of oxide may be contained and segregated. However, even when a grain boundary containing an oxide is formed in the auxiliary recording layer 126, it is preferable that the area is smaller than the grain boundary of the magnetic recording layer 122 (the content of the oxide is small). Although the function and action of the auxiliary recording layer 126 are not necessarily clear, Hn and Hc can be adjusted by having a magnetic interaction (perform exchange coupling) with the granular magnetic particles of the magnetic recording layer 122, and heat resistance. It is thought that fluctuation characteristics and SNR are improved. In addition, since the crystal particles (crystal particles having magnetic interaction) connected to the granular magnetic particles have a larger area than the cross-section of the granular magnetic particles, the magnetization is easily reversed by receiving a large amount of magnetic flux from the magnetic head. It is thought to improve the characteristics.
 媒体保護層128は、真空を保ったままカーボンをCVD法により成膜して形成することができる。媒体保護層128は、磁気ヘッドの衝撃から垂直磁気記録媒体100を防護するための層である。一般にCVD法によって成膜されたカーボンはスパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に垂直磁気記録媒体100を防護することができる。 The medium protective layer 128 can be formed by depositing carbon by a CVD method while maintaining a vacuum. The medium protective layer 128 is a layer for protecting the perpendicular magnetic recording medium 100 from the impact of the magnetic head. In general, carbon deposited by the CVD method has improved film hardness compared to that deposited by the sputtering method, so that the perpendicular magnetic recording medium 100 can be more effectively protected against the impact from the magnetic head.
 潤滑層130は、PFPE(パーフロロポリエーテル)をディップコート法により成膜することができる。PFPEは長い鎖状の分子構造を有し、媒体保護層128表面のN原子と高い親和性をもって結合する。この潤滑層130の作用により、垂直磁気記録媒体100の表面に磁気ヘッドが接触しても、媒体保護層128の損傷や欠損を防止することができる。 The lubricating layer 130 can be formed of PFPE (perfluoropolyether) by dip coating. PFPE has a long chain molecular structure and binds with high affinity to N atoms on the surface of the medium protective layer 128. Due to the action of the lubricating layer 130, even if the magnetic head comes into contact with the surface of the perpendicular magnetic recording medium 100, the medium protective layer 128 can be prevented from being damaged or lost.
 なお、本実施形態にかかる垂直磁気記録媒体100は、上述したように前下地層116に第3元素としてAl、ZrまたはSiを含有させることでOW特性を向上させることが可能となる。これは前下地層116のNi結晶のfcc結晶構造の(111)面と(200)面の強度比がAl、ZrまたはSiを含有させることで向上し、これによって下地層118およびその上の磁気記録層122の配向性の向上に繋がっているものと推測される。 In addition, the perpendicular magnetic recording medium 100 according to the present embodiment can improve the OW characteristics by adding Al, Zr, or Si as the third element to the pre-underlayer 116 as described above. This is because the intensity ratio between the (111) plane and the (200) plane of the fcc crystal structure of the Ni crystal of the pre-underlayer 116 is improved by containing Al, Zr or Si. It is presumed that this leads to an improvement in the orientation of the recording layer 122.
 以上の製造工程により、垂直磁気記録媒体100を得ることができた。次に、本実施形態にかかる実施例1を説明する。 Through the above manufacturing process, the perpendicular magnetic recording medium 100 could be obtained. Next, Example 1 according to the present embodiment will be described.
(実施例1)
 ディスク基体110上に、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にてAr雰囲気中で、付着層112から補助記録層126まで順次成膜を行った。付着層112は、CrTiとした。軟磁性層114は、第1軟磁性層114a、第2軟磁性層114cの組成はCoFeTaZrとし、スペーサ層114bの組成はRuとした。
Example 1
On the disk substrate 110, a film was formed in order from the adhesion layer 112 to the auxiliary recording layer 126 in an Ar atmosphere by a DC magnetron sputtering method using a film forming apparatus that was evacuated. The adhesion layer 112 was made of CrTi. In the soft magnetic layer 114, the composition of the first soft magnetic layer 114a and the second soft magnetic layer 114c was CoFeTaZr, and the composition of the spacer layer 114b was Ru.
 前下地層116は、Ni、W、第3元素としてAlを含んだターゲットを用いて、基体に直流バイアス(-300V~-500V)を印加しながら成膜した。なお、実施例1は95Ni-4W-1Alと93Ni-4W-3Alの二つのサンプルを作成した。 The pre-underlayer 116 was formed using a target containing Ni, W, and Al as the third element while applying a DC bias (−300 V to −500 V) to the substrate. In Example 1, two samples of 95Ni-4W-1Al and 93Ni-4W-3Al were prepared.
 第1下地層118aは所定圧力(低圧:例えば0.6~0.7Pa)のAr雰囲気下でRu膜を成膜した。第2下地層118bは、酸素が含まれているターゲットを用いて所定圧力より高い圧力(高圧:例えば4.5~7Pa)のAr雰囲気下で、酸素を含有するRu(RuO)膜を成膜した。非磁性グラニュラ層120の組成は非磁性のCoCr-SiOとした。下記録層122aは粒界部に酸化物の例としてCrおよびSiOを含有し、CoCrPt-Cr-SiOのhcp結晶構造を形成した。介在層122bはRuから形成した。第1主記録層122cは、粒界部に複合酸化物(複数の種類の酸化物)の例としてSiOおよびTiOを含有し、CoCrPt-SiO-TiOのhcp結晶構造を形成した。第2主記録層122dは、粒界部に複合酸化物(複数の種類の酸化物)の例としてSiO、TiOおよびCoを含有し、CoCrPt-SiO-TiO-Coのhcp結晶構造を形成した。分断層124はRuWOから形成した。補助記録層126の組成はCoCrPtBとした。媒体保護層128はCVD法によりCおよびCNを用いて成膜し、潤滑層130はディップコート法によりPFPEを用いて形成した。 As the first underlayer 118a, a Ru film was formed in an Ar atmosphere at a predetermined pressure (low pressure: for example, 0.6 to 0.7 Pa). As the second underlayer 118b, a Ru (RuO) film containing oxygen is formed in an Ar atmosphere at a pressure higher than a predetermined pressure (high pressure: for example, 4.5 to 7 Pa) using a target containing oxygen. did. The composition of the nonmagnetic granular layer 120 was nonmagnetic CoCr—SiO 2 . The lower recording layer 122a contains Cr 2 O 5 and SiO 2 as examples of oxides in the grain boundary portion, and formed a hcp crystal structure of CoCrPt—Cr 2 O 5 —SiO 2 . The intervening layer 122b was formed from Ru. The first main recording layer 122c contained SiO 2 and TiO 2 as examples of complex oxides (plural types of oxides) at the grain boundary portion, and formed an hcp crystal structure of CoCrPt—SiO 2 —TiO 2 . The second main recording layer 122d contains SiO 2 , TiO 2, and Co 3 O 4 as examples of complex oxides (plural types of oxides) at the grain boundary, and CoCrPt—SiO 2 —TiO 2 —Co 3. An O 4 hcp crystal structure was formed. The dividing 124 formed from RuWO 3. The composition of the auxiliary recording layer 126 was CoCrPtB. The medium protective layer 128 was formed using C 2 H 4 and CN by the CVD method, and the lubricating layer 130 was formed using PFPE by the dip coating method.
(評価試験)
 以下に、上記実施形態にかかる実施例1の2つのサンプルのうち、95Ni-4W-1Alを用いて、本実施形態の有効性を評価し、その試験結果を図2、図3、図4および図5を参照して説明する。比較例1は前下地層116を95Ni-5Wとした。前下地層116以外は上記説明した構成とした。
(Evaluation test)
Below, the effectiveness of this embodiment is evaluated using 95Ni-4W-1Al among the two samples of Example 1 according to the above embodiment, and the test results are shown in FIG. 2, FIG. 3, FIG. This will be described with reference to FIG. In Comparative Example 1, the pre-underlayer 116 was 95Ni-5W. The configuration described above is used except for the pre-underlayer 116.
 図2は、前下地層116の組成比の変更によるMEW(Magnet Erase Width)とSNm(中程度の周波数でのWrite/Read)の関係を示している。なお、MEWはイレース幅を含んだトラック幅であり、SNmは中程度の周波数でWrite/Read試験を行った際のSNR(Signal Noise Ratio)である。図2に示す実施例1及び比較例1を比較すると、実施例1は比較例1よりもSNmはわずかに低下する傾向にあるものの、MEWは大幅に小さく(狭く)なっている。このことから、実施例1のように、前下地層116にAlを添加させることにより、トラック幅の狭小化が促進されることがわかる。 FIG. 2 shows the relationship between MEW (Magnet Erase Width) and SNm (Write / Read at a medium frequency) by changing the composition ratio of the pre-underlayer 116. Note that MEW is a track width including an erase width, and SNm is an SNR (Signal Noise Ratio) when a write / read test is performed at a medium frequency. When Example 1 and Comparative Example 1 shown in FIG. 2 are compared, although Example 1 has a tendency that SNm is slightly lower than that of Comparative Example 1, MEW is significantly smaller (narrower). From this, it can be seen that, as in Example 1, the addition of Al to the pre-underlayer 116 promotes the narrowing of the track width.
 図3は、前下地層116の組成比の変更によるMEWとSN2の関係を示している。なお、SN2は所定の高周波(2T)でのWrite/Read試験を行った際のSNRである。図3に示す実施例1及び比較例1を比較すると、実施例1は比較例1よりもMEWは狭くなる傾向にあり、かつSN2も大幅に向上している。このことから、実施例1のように前下地層116にAlを添加させることにより、高周波領域におけるトラック幅の狭小化とSNRの向上が促進されていることが見て取れる。このことから、前下地層116にAlを添加することで、磁気記録媒体の高記録密度化が達成し得ることがわかる。 FIG. 3 shows the relationship between MEW and SN2 by changing the composition ratio of the pre-underlayer 116. SN2 is an SNR when a write / read test is performed at a predetermined high frequency (2T). When Example 1 and Comparative Example 1 shown in FIG. 3 are compared, Example 1 has a tendency that the MEW becomes narrower than Comparative Example 1, and SN2 is also greatly improved. From this, it can be seen that the addition of Al to the pre-underlayer 116 as in Example 1 promotes the narrowing of the track width and the improvement of the SNR in the high frequency region. From this, it can be seen that high recording density of the magnetic recording medium can be achieved by adding Al to the pre-underlayer 116.
 図4は、前下地層116の組成比の変更による保磁力Hcと逆磁区核形成磁界Hn(以下、単に「Hn」という。)の関係を示している。図5に示す実施例1及び比較例1を比較すると、実施例1の保磁力Hcは比較例1とほぼ同一な範囲に値が表れているが、実施例1は比較例1よりHnが向上していることが確認できる。この図4で示した結果について図5を参照して以下に説明する。 FIG. 4 shows the relationship between the coercive force Hc and the reverse domain nucleation magnetic field Hn (hereinafter, simply referred to as “Hn”) by changing the composition ratio of the pre-underlayer 116. When Example 1 and Comparative Example 1 shown in FIG. 5 are compared, the coercive force Hc of Example 1 shows a value in the almost same range as Comparative Example 1, but Example 1 has an improvement in Hn over Comparative Example 1. You can confirm that The results shown in FIG. 4 will be described below with reference to FIG.
 図5は、図4で示した結果をヒステリシス曲線で表した図である。実施例1は、比較例1と比較して、Hcはほぼ同等である一方、Hnは向上している。そのため、実施例1から描かれるヒステリシス曲線の傾斜は比較例1より高くなっている(ヒステリシス曲線が立つ方向に変化している)。このようにヒステリシス曲線が立つと、飽和磁界Hsが小さくなることを意味し、OW特性が向上していることを証明している。 FIG. 5 is a diagram showing the result shown in FIG. 4 as a hysteresis curve. In Example 1, compared with Comparative Example 1, Hc is almost equal, while Hn is improved. Therefore, the slope of the hysteresis curve drawn from Example 1 is higher than that of Comparative Example 1 (changes in the direction in which the hysteresis curve stands). Thus, when the hysteresis curve stands, it means that the saturation magnetic field Hs becomes small, and it is proved that the OW characteristics are improved.
 以下では図6を用いて第3元素添加による影響を評価し、その試験結果を説明する。なお、Niのat%は他の元素のat%に応じて適宜変更した。実施例1は上記のようにNi-4Wに第3元素としてAlを1または3at%添加した。実施例2はNi-5Wに第3元素としてAlを1、3、5、10、20at%添加した。実施例3はNi-5Wに第3元素としてZrを1または3at%添加した。実施例4はNi-5Wに第3元素としてSiを1、3、5at%添加した。比較例は第3元素を添加していないNi-5Wである。その他の構成は実施例1と同一とした。 Hereinafter, the effect of the third element addition will be evaluated using FIG. 6 and the test results will be described. The at% of Ni was appropriately changed according to the at% of other elements. In Example 1, 1 or 3 at% Al was added as a third element to Ni-4W as described above. In Example 2, 1, 3, 5, 10, 20 at% Al was added as a third element to Ni-5W. In Example 3, 1 or 3 at% of Zr was added as a third element to Ni-5W. In Example 4, 1, 3, 5 at% Si was added as a third element to Ni-5W. A comparative example is Ni-5W with no third element added. Other configurations are the same as those in the first embodiment.
 図6は第3元素添加量と、X線回折によるfcc結晶構造の(111)面および(200)面の強度比の関係を示している。なお(111)面および(200)面は、Braggの法則の条件を満たして回折を起こす回折面であり、(111)および(200)は回折面のミラー指数(hkl)を示している。比較例と、実施例1~実施例4を比較すると、第3元素を添加することにより強度比が向上していることが確認できる。すなわち、fcc(111)面の強度が強くなっていることを示しており、hcp結晶構造を有する下地層118の結晶配向性を向上しうることを示している。これは前下地層116のfcc結晶構造の(111)面に六角形ができるため、これに倣って下地層118のhcp結晶構造の(0001)面が形成され、垂直方向にC軸を向けた状態で結晶成長するものと考えられるためである。 FIG. 6 shows the relationship between the addition amount of the third element and the intensity ratio of the (111) plane and the (200) plane of the fcc crystal structure by X-ray diffraction. The (111) plane and the (200) plane are diffraction planes that satisfy the conditions of Bragg's law and cause diffraction, and (111) and (200) indicate the Miller index (hkl) of the diffraction plane. Comparing the comparative example with Examples 1 to 4, it can be confirmed that the strength ratio is improved by adding the third element. That is, the strength of the fcc (111) plane is increased, which indicates that the crystal orientation of the underlayer 118 having the hcp crystal structure can be improved. This is because a hexagonal shape is formed on the (111) plane of the fcc crystal structure of the pre-underlayer 116, so that the (0001) plane of the hcp crystal structure of the underlayer 118 is formed and the C axis is directed in the vertical direction. This is because it is considered that crystals grow in a state.
 また、実施例1と実施例3は共に第3元素添加量を3at%添加すると1at%添加した場合よりも強度比の低下が見られる。したがって第3元素の添加量は1at%程度であることが好ましい。ただし実施例2を参照すると、Ni-5WにAlを添加する場合には、第3元素添加量の添加がおおむね5at%を超えると強度比が低下してしまっている。したがって、第3元素がAlである場合には、その添加量が5at%以下であることが好ましいことがわかる。なお上記したように、第2元素と第3元素の含有量の合計が20at%を超えるとNiが非晶質化してfcc結晶構造を維持できなくなるため、第2元素と第3元素の含有量の合計は3at%~20at%が好ましい。 Further, in both Example 1 and Example 3, when the addition amount of the third element is 3 at%, the strength ratio is lower than when 1 at% is added. Therefore, the amount of the third element added is preferably about 1 at%. However, referring to Example 2, when Al is added to Ni-5W, the strength ratio decreases when the addition amount of the third element exceeds about 5 at%. Therefore, when the third element is Al, it can be seen that the addition amount is preferably 5 at% or less. Note that, as described above, if the total content of the second element and the third element exceeds 20 at%, Ni becomes amorphous and the fcc crystal structure cannot be maintained, so the contents of the second element and the third element Is preferably 3 at% to 20 at%.
 これらのことから、第3元素を1at%~5at%の範囲で添加することによってfcc結晶構造の(111)面と(200)面の強度比が向上し、これに伴ってその上の下地層118および磁気記録層122の配向性も向上する。これによって垂直磁気記録媒体100のOW特性の向上に資することが可能である。 From these facts, by adding the third element in the range of 1 at% to 5 at%, the strength ratio of the (111) plane to the (200) plane of the fcc crystal structure is improved, and accordingly, the underlying layer thereon The orientation of 118 and the magnetic recording layer 122 is also improved. This can contribute to the improvement of the OW characteristics of the perpendicular magnetic recording medium 100.
 以下では図7を用いて、第3元素の添加による影響を評価し、その試験結果を説明する。図7は各実施例の有効性を示す図である。図7(a)は、実施例および比較例の組成と各測定項目における測定値を示す表、図7(b)は図7(b)のMEWとSNRとの関係を示すグラフである。 Hereinafter, the effect of the addition of the third element will be evaluated using FIG. 7 and the test results will be described. FIG. 7 is a diagram showing the effectiveness of each embodiment. FIG. 7A is a table showing the compositions of Examples and Comparative Examples and measured values in each measurement item, and FIG. 7B is a graph showing the relationship between MEW and SNR in FIG. 7B.
 図7(a)に示すように、実施例5~実施例7には2種類の第3元素をそれぞれ1at%~5at%の範囲で添加している。実施例5は、Ni-4Wに、1つめの第3元素としてAlを1at%添加し、他の第3元素としてSiを1、3、5at%添加した。実施例6は、Ni-4Wに、1つめの第3元素としてSiを1at%添加し、他の第3元素としてAlを1、3、5at%添加した。実施例7は、Ni-4Wに、1つめの第3元素としてAlを1at%添加し、他の第3元素としてZrを1at%添加した。なお、実施例1および比較例の組成については、図6と同様である。 As shown in FIG. 7A, in Examples 5 to 7, two kinds of third elements are added in the range of 1 at% to 5 at%, respectively. In Example 5, 1 at% Al was added to Ni-4W as the first third element, and 1, 3, 5 at% Si was added as the other third element. In Example 6, 1 at% Si was added as the first third element to Ni-4W, and 1, 3, 5 at% Al was added as the other third element. In Example 7, 1 at% Al was added as the first third element to Ni-4W, and 1 at% Zr was added as the other third element. In addition, about the composition of Example 1 and a comparative example, it is the same as that of FIG.
 図7(a)の膜厚および保磁力Hcを参照すると、比較例に比べて各実施例は膜厚が薄いにも関わらず保磁力Hcは同程度である。これは、第3元素の添加によって保磁力Hcが向上した結果、膜厚を薄くしても比較例と同程度の保磁力Hcが確保できることを示している。また、Hnの項目を参照すると、比較例に比べて各実施形態のHnの値は向上している。これは、第3元素の添加により結晶性が向上したことを示している。 Referring to the film thickness and the coercive force Hc in FIG. 7A, the coercive force Hc is comparable even though each example has a smaller film thickness than the comparative example. This indicates that the coercive force Hc is improved by the addition of the third element, so that the same coercive force Hc as that of the comparative example can be secured even if the film thickness is reduced. Further, referring to the item of Hn, the value of Hn in each embodiment is improved as compared with the comparative example. This indicates that the crystallinity is improved by the addition of the third element.
 図7(b)を参照する。図7(d)に示す比較例と各実施形態とを比較すると、各実施形態は第3元素の添加によりMEWが狭くなり、SNRが向上している。特に、実施例5および実施例6は、MEWおよびSNR共に良好な値を達成している。 Refer to FIG. 7 (b). When the comparative example shown in FIG. 7D is compared with each embodiment, in each embodiment, the MEW is narrowed and the SNR is improved by the addition of the third element. In particular, Example 5 and Example 6 achieve good values for both MEW and SNR.
 上記のように、図7(b)からは、第3元素としてAlおよびSiの2種類の元素を添加させることにより、トラック幅の狭小化とSNRの向上とを的確に促進可能であることが見て取れる。したがって、垂直磁気記録媒体100のOW特性のさらなる向上に資することが可能でなる。 As described above, from FIG. 7B, it is possible to accurately promote the narrowing of the track width and the improvement of the SNR by adding two kinds of elements of Al and Si as the third element. I can see it. Therefore, it is possible to contribute to further improvement of the OW characteristics of the perpendicular magnetic recording medium 100.
 以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although the suitable Example of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
 本発明は、垂直磁気記録方式のHDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体に利用することができる。 The present invention can be used for a perpendicular magnetic recording medium mounted on a perpendicular magnetic recording type HDD (hard disk drive) or the like.

Claims (3)

  1.  基体上に、
     信号を記録する磁気記録層と、
     前記磁気記録層より下に設けられRuまたはRu化合物からなる下地層と、
     前記下地層の下に設けられ非磁性の結晶質材料からなり該下地層の結晶配向性を制御するための前下地層と、
    を備え、
     前記前下地層はNiを主成分とし、第2元素としてWを含有し、さらに第3元素としてAl、ZrまたはSiを含有することを特徴とする垂直磁気記録媒体。
    On the substrate,
    A magnetic recording layer for recording signals;
    An underlayer made of Ru or a Ru compound provided below the magnetic recording layer;
    A pre-underlayer for controlling the crystal orientation of the underlayer comprising a non-magnetic crystalline material provided under the underlayer;
    With
    2. The perpendicular magnetic recording medium according to claim 1, wherein the pre-underlayer includes Ni as a main component, W as a second element, and Al, Zr, or Si as a third element.
  2.  前記第3元素の含有量が1at%~5at%であることを特徴とする請求項1に記載の垂直磁気記録媒体。 2. The perpendicular magnetic recording medium according to claim 1, wherein the content of the third element is 1 at% to 5 at%.
  3.  前記第2元素と前記第3元素の含有量の合計が3at%~20at%であることを特徴とする請求項1に記載の垂直磁気記録媒体。 2. The perpendicular magnetic recording medium according to claim 1, wherein the total content of the second element and the third element is 3 at% to 20 at%.
PCT/JP2010/058673 2009-05-21 2010-05-21 Perpendicular magnetic recording medium WO2010134612A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009123091 2009-05-21
JP2009-123091 2009-05-21

Publications (1)

Publication Number Publication Date
WO2010134612A1 true WO2010134612A1 (en) 2010-11-25

Family

ID=43126289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058673 WO2010134612A1 (en) 2009-05-21 2010-05-21 Perpendicular magnetic recording medium

Country Status (1)

Country Link
WO (1) WO2010134612A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179598A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2008146801A (en) * 2006-12-05 2008-06-26 Heraeus Inc Magnetic recording medium, sputtering target and manufacturing method of magnetic recording medium
WO2009133921A1 (en) * 2008-04-30 2009-11-05 山陽特殊製鋼株式会社 Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JP2009289361A (en) * 2008-05-30 2009-12-10 Showa Denko Kk Perpendicular magnetic recording medium and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179598A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2008146801A (en) * 2006-12-05 2008-06-26 Heraeus Inc Magnetic recording medium, sputtering target and manufacturing method of magnetic recording medium
WO2009133921A1 (en) * 2008-04-30 2009-11-05 山陽特殊製鋼株式会社 Sputtering target material for producing intermediate layer film of perpendicular magnetic recording medium and thin film produced by using the same
JP2009289361A (en) * 2008-05-30 2009-12-10 Showa Denko Kk Perpendicular magnetic recording medium and device

Similar Documents

Publication Publication Date Title
JP5643516B2 (en) Perpendicular magnetic recording medium
JP5645443B2 (en) Perpendicular magnetic recording medium
JP5646865B2 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium
US9064518B2 (en) Perpendicular magnetic recording medium
US8057926B2 (en) Perpendicular magnetic recording medium
US8951651B2 (en) Perpendicular magnetic recording disk
US9047903B2 (en) Perpendicular magnetic recording medium and process for manufacture thereof
WO2009123161A1 (en) Vertical magnetic recording medium
WO2010064724A1 (en) Magnetic disk and method for manufacturing same
WO2009119708A1 (en) Vertical magnetic recording medium and method for making vertical magnetic recording medium
JP2010257567A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2011248966A (en) Perpendicular magnetic recording medium
JP2011248969A (en) Perpendicular magnetic disk
JP2012009086A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP5530673B2 (en) Perpendicular magnetic recording medium
JP5620118B2 (en) Perpendicular magnetic recording medium
JP5620071B2 (en) Perpendicular magnetic recording medium
WO2010134612A1 (en) Perpendicular magnetic recording medium
JP2011192319A (en) Perpendicular magnetic recording medium
JP2009099242A (en) Perpendicular magnetic recording medium
JP2010086583A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2010086565A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2010097680A (en) Vertical magnetic recording medium
JP2010086584A (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2010287300A (en) Method for manufacturing magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777843

Country of ref document: EP

Kind code of ref document: A1